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A Note on the Conversion of Item Parameters Standard Errors 

 

Abstract 

The relations among alternative parameterizations of the binary factor analysis (FA) model and 

two-parameter logistic (2PL) item response theory (IRT) model have been thoroughly discussed 

in literature (e.g., Lord & Novick, 1968; Takane & de Leeuw, 1987; McDonald, 1999; Wirth & 

Edwards, 2007; Kamata & Bauer, 2008). However, the conversion formulas widely available are 

mainly for transforming parameter estimates from one parameterization to another. There is a 

lack of discussion about the standard error (SE) conversion among different parameterizations, 

when SEs of IRT model parameters are often of immediate interest to practitioners. This paper 

provides general formulas for computing the SEs of transformed parameter values, when these 

parameters are transformed from FA to IRT models. These formulas are suitable for 

unidimensional 2PL, multidimensional 2PL, and bi-factor 2PL models. A simulation study is 

conducted to verify the formula by providing empirical evidence. A real data example is given in 

the end for an illustration.  

Key words: item response theory, standard error, factor analysis 
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Standard errors of item parameter estimates in item response theory (IRT), or more 

generally error covariance matrices, play an important role because the uncertainty in item 

parameter estimates is often carried over in subsequent analysis, such as test form assembly, IRT 

scoring, equating and linking (e.g., Cheng & Yuan, 2010; Mislevy, Wingersky, & Sheehan, 

1993; Thissen & Wainer, 1990). Moreover, obtaining the SEs is also a prerequisite for 

conducting hypothesis testing to evaluate differential item functioning (Cai, Yang, & Hansen, 

2011; Woods, Cai & Wang, 2013) or item parameter drift (Bock, Muraki, & Pfeiffenberger, 

1988); as well as developing asymptotic adjustments for limited-information goodness-of-fit 

statistics (Cai, 2008; Cai, Maydeu-Olivares, Coffman, & Thissen, 2006).  

In IRT when full information maximum likelihood (FIML) estimation method is used, 

the parameter error covariance matrix can be computed as the inverse of the Fisher information 

matrix. Based on the statistical theory from the standard discrete multivariate analysis (Rao, 

1973), the error covariance matrix computed this way is considered “gold standard” (Tian, Cai, 

Thissen, & Xin, 2012). However, the computation burden of this Fisher information based SE 

(FISE) increases drastically as test length increases because the number of possible response 

patterns increases exponentially. Two computationally feasible alternatives are the empirical 

cross-product approach (XPD) and the supplemented expectation maximization (SEM) approach 

(Cai, 2008). Past research has demonstrated that XPD, though computationally most efficient, 

works well only when sample size is much larger than test length, otherwise it produces upward 

bias (Paek & Cai, 2014). On the other hand, the SEM approach is based on numerically 

differentiating an implicit function defined by EM iterations (a.k.a., EM map) and it generally 

performs well under a variety of different conditions. 

Item factor analysis (FA) which is rooted in categorical confirmatory factor analysis 
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offers an alternative to IRT parameterization. It assumes that ordered-categorical item responses 

are discrete representations of underlying continuous latent responses. Different from FIML that 

is often used in IRT framework, weighted least squares (WLS) estimation is usually adopted 

within the FA framework. A challenge with WLS is that the size of the optimal weight matrix 

becomes exceedingly large and increases rapidly when test length increases, hence a statistically 

less efficient yet computationally more feasible alternative is the diagonally weighted least 

squares method (Satorra & Bentler, 1990; Wirth & Edwards, 2007). This reduction in efficiency 

leads to biased standard errors and hence the robust standard error is recommended.  

Previous research has discussed the advantages and limitations of both IRT and FA 

frameworks, along with their preferred estimation algorithms, i.e., FIML versus WLS1 (Wirth & 

Edwards, 2007). Transformation formulas are available for practitioners to transform parameter 

estimates from one framework to the other (Kamata & Bauer, 2008; Wang, Kohli, & Henn, 

2016). However, when the parameters from FA model are transformed to the IRT 

parameterization, there is a lack of documentation on how to compute the SEs of the transformed 

parameters (i.e., convert the standard errors) accordingly, and this note tends to fill the gap. 

Forero and Maydeu-Olivares (2009) mentioned of using the delta method for conversion, but the 

details were not provided. We believe the conversion formulas will be useful in at least three 

scenarios: (1) when researchers choose to estimate the FA model via WLSMV (either because of 

their familiarity with the FA model or because WLSMV is much faster with high-dimensional 

models) but later want to report the IRT item parameter estimates, the SEs of the transformed 

parameter values can be obtained directly from the plug-in equations provided in this note; (2) 

                                                        
1 Other estimation methods are also available, such as Monte Carlo EM, Markov chain Monte Carlo, etc., but 
they are not the focus of this note.  
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when researchers want to compare the performance of a sandwich estimator versus XPD/SEM, 

the transformation is needed to put SEs from the two models on the same metric; (3) when 

researchers want to compare the performance of WLSMV and MML with respect to the SEs of 

item parameter estimates, the transformation formula facilitates a direct comparison, whereas 

prior studies had to conduct hundreds of replications to obtain the empirical standard deviation 

(e.g., Finch, 2010; DeMars, 2012).  

To align with Kamata and Bauer’s (2008) argument, in this note, the conversion formulas 

are provided for four different FA parameterizations (marginal vs. conditional, and reference 

indicator vs. standardized factor) that cover the majority of the applications. The conversion 

formulas are also general enough to be used with unidimensional, multidimensional, and bi-

factor models. The rest of the paper is organized as follows. We first briefly introduce the IRT 

model and factor analytic model along with the four parameterizations. These four 

parameterizations were extensively discussed in Kamata and Bauer (2008). Then we discuss the 

standard error transformation and provide the conversion transformation table. The simulation 

study is then given, followed by a real data example. The final conclusion is given in the end. 

IRT Models, FA Models, and Four Parameterizations 

In this section, we will briefly introduce the IRT models, factor analytic models, and the four 

different parameterizations (Kamata & Bauer, 2008).  

IRT and FA Models 

Starting with the simplest unidimensional IRT (UIRT) two-parameter model, the item 

response function is defined as  

( 1 , , ) ( )ij ij i i j i j ip p y a d f a d                                                         (1) 

where 𝑦௜௝ denotes the item response of person j to item i. In Equation (1), 𝑎௜ and 𝑑௜ are known as 
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the item slope (discrimination) and intercept (threshold) parameters respectively, whereas 𝜃௝ 

denotes the latent trait of person j. f (.) is the cumulative distribution function (CDF), chosen to 

be either a normal ogive or logistic CDF. Here we use the intercept-slope notation to make the 

notation consistent with the other models. For instance, the multidimensional IRT (MIRT) is a 

natural extension of UIRT, with the item response function defined as  

( 1 , , ) ( )T
ij ij i i j i j ip p y d f d    a a ,                                                (2) 

where 1 2( , , , )T
j j j jK   K  denotes a column vector of K latent traits, and 𝒂௜ is a vector of 

K slope parameters. This notation is used throughout Reckase (2009) (Equation 4.5, p. 86). In 

a general MIRT model, an item can load on either one of the K dimensions (i.e., simple 

structure) or on multiple dimensions (i.e., complex structure), and all dimensions of θ are 

correlated.   

The bi-factor model originally proposed by Holzinger and Swineford (1937) and 

popularized by Gibbons and Hedeker (1992) represents a unique type of factor structure. In 

this structure, each item loads on one general factor and one specific factor, and all factors are 

independent (Reise, 2012). Hence, only two elements in 𝒂௜ are non-zero.  

For readers interested in the traditional discrimination-difficulty notation for the 

unidimensional two-parameter model,  

                 ( 1 , , ) ( ( ))ij i i j i j ip y a b f a b    ,                                        (3) 

or the simple structure MIRT model assuming item i measures the kth latent trait, i.e.,   

( 1 , , ) ( ( ))ij i i j ik jk ikp y a b f a b    ,                                      (4) 

the conversion formula for computing the SE of 𝑏௜ (or 𝑏௜௞ሻ are provided as well.  

          All different two-parameter IRT models can be reparameterized in the FA framework. 
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Let 𝑦௜௝
∗  denote the continuous latent response variable governing the observed binary 

response 𝑦௜௝, then 𝑦௜௝
∗  is written as the additive linear form 

*
1 1ij i i j iK jK ijy           .                                      (5) 

In Equation (5), 𝜐௜ is the intercept, usually fixed at zero for identification; 𝜆௜௞ is the factor 

loading on the kth factor corresponding to item i; 𝜉௝௞ is the latent factor score for individual j on 

factor k and 𝜀௜௝ is the residual for person j on item i. 𝑦௜௝
∗  is then dichotomized to form the binary 

observed 𝑦௜௝ based on the following rule 

                          

*

*

1  if  
,

0  if  
ij i

ij
ij i

y
y

y




   
                                                       (6) 

where 𝜏௜ is the threshold for item i. If a unidimensional model is considered, then K = 1. 

For bi-factor model, K equals the number of group factors plus one. 

Four Parameterizations 

The exposition in this section will closely mirror Kamata and Bauer (2008), readers 

familiar with this reference can skip this section. In item factor analysis, the scale of the latent 

response variable can be fixed by two different parameterizations. On one hand, the variance of 

𝑦௜௝
∗  is constrained to be 1 for all items such that the residual variance, V(𝜀௜௝), is estimated as 

V(𝜀௜௝)= 1 െ 𝝀௜
்𝑐𝑜𝑣ሺ𝝃ሻ𝝀௜. This unit variance constraint for 𝑦௜௝

∗  is rooted in the weighted least 

squares estimation method for binary FA, which involves the use of tetrachoric correlations 

(Kamata & Bauer, 2008). In fact, the tetrachoric correlation matrix is essentially a covariance 

matrix between underlying latent response variables with unit variance (Millsap & Yun-Tein, 

2004). Following the naming convention in Kamata and Bauer (2008), this parameterization 

fixes the marginal distribution for the continuous latent variable 𝑦௜௝
∗  and hence it is referred to as 
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the marginal parameterization. On the other hand, if fixing the residual variance V(𝜀௜௝) to 1, then 

the marginal variance of 𝑦௜௝
∗  is computed as V(𝑦௜௝

∗ )=1 ൅ 𝝀௜
்𝑐𝑜𝑣ሺ𝝃ሻ𝝀௜. This parameterization is 

more in line with the convention in probit regression model, and it is referred to as the 

conditional parameterization.  

As both the marginal and conditional parameterizations fix the scale of 𝑦௜௝
∗ , to further 

identify the model, the scale of the latent factors also has to be fixed. Note that scaling 𝑦௜௝
∗  is only 

needed for FA, whereas scaling ξ (or θ in IRT) is needed for both FA and IRT. Two widely used 

scaling conventions, in unidimensional scenario, are to standardize the common factor or to 

choose a reference indicator. When a multidimensional model is considered (bi-factor structure 

included), one must standardize all K factors where K refers to the total number of factors. With 

the choice of reference indicator, at least K items need to be selected as references whose 

parameters are fixed. In the confirmatory item factor analysis, when the item-factor loading 

structure is pre-determined, no further constraints are needed to remove rotational indeterminacy. 

Taken together, Table 1 summarizes four different parameterizations. In Mplus (Muthén & 

Muthén, 1998-2015), the marginal parameterization is notated as “DELTA” parameterization, 

and the conditional parameterization is notated as “THETA” parameterization. 

Table 1. Summary of four parameterizations. 
 Reference Indicator Standardized Factor 
Marginal 
(DELTA)  

𝜆௜௞= 1, 𝜏௜௞ = 0 for k=1,…,K 
V(𝑦∗) = 1  

𝐸ሺ𝜉௞ሻ ൌ 0, 𝑉ሺ𝜉௞ሻ ൌ 1, for k=1,…,K 
V(𝑦∗) = 1 

Conditional  
(THETA) 

𝜆௜௞= 1, 𝜏௜௞ = 0 for k=1,…,K 
V(𝜀) = 1 

𝐸ሺ𝜉௞ሻ ൌ 0, 𝑉ሺ𝜉௞ሻ ൌ 1, for k=1,…,K 
V(𝜀) = 1 

Note. (1) 𝑦∗ and 𝜀 have no subscript, and it refers to all (i, j)’s.  
 

The conversion between FA and IRT parameterization is well established in 

unidimensional model (e.g., Takane & de Leeuw, 1987), and multidimensional models 
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(e.g., McDonald, 1999; Finch, 2010). Following the same derivations in Kamata and Bauer 

(2008), we arrive at the general conversion formulas for multidimensional models in Table 

2. When K = 1, the formulas are exactly the same as those in Table 2 of Kamata and Bauer 

(2008, p.144). In Table 2, 𝐸ሺ𝜉௞ሻ and 𝑉ሺ𝜉௞ሻ denote the mean and variance of the kth factor, 

𝜉௞. 𝝀௜ denotes the column vector of loading parameters of item i, and 𝑐𝑜𝑣ሺ𝝃ሻ denotes the 

covariance matrix of the factors. The last row in Table 2 refers to the discrimination-

difficulty notation, in which the conversions for a-parameter stay the same as in the slope-

intercept parameterization. The conversions for b-parameter are presented, and they are the 

same for both marginal and conditional parameterizations.  

Table 2. Conversion formulas for four factor analysis parameters  
 Reference Indicator Standardized Factor 

Marginal   
 

1 2

1 cov

ik k
ik T

i i

V
a

 


  
  1 cov

ik
ik T

i i

a



   

 

  
 1 cov

T
i i

i T
i i

E
d

   


 

  
  1 cov

i
i T

i i

d



   

 

   

Conditional  1 2

ik ik ka V   ik ika   

  T
i i id E       i id   

Discrimination-Difficulty Notation 
(Equations 3 & 4) 

 
 1 2

T
i i

i

ik k

E
b

V



 




 
 

i
i

ik

b



  

Note. When logistic CDF is used, all above transformation formulas need to be multiplied by a constant 1.7.  
 

 

Standard Error Conversions 

In the FA framework, the limited information WLS is often used. Instead of using the 

raw response patterns as in MMLE/EM, WLS uses the first-order and second-order marginal 

proportions obtained from the response contingency tables to facilitate parameter estimation. The 
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primary idea is to find item parameter values such that they minimize the weighted deviations 

between the model-implied correlation matrix and the sample tetrachoric correlation matrix. 

Because WLS usually requires a large sample to precisely estimate a full, optimal weight matrix 

(Muthén, du Toit, & Spisic, 1997), researchers have suggested using only the diagonals of the 

weight matrix for estimation, leading to the so-called diagonally weighted (or modified) WLS 

estimators. Due to this “misspecification” of the weight matrix, the resulting standard errors are 

biased. As a remedy, the robust standard error via the Huber sandwich estimator is used to 

correct for specification error (Satorra & Bentler, 1990; Muthén & Muthén, 2015). With high-

dimensional models, WLS is much faster than FIML (e.g., Wang, et al., 2016; Wang, Su, & 

Weiss, 2018).  

In this section, we provide the conversion formulas for SE transformation in Table 3. The 

multivariate delta method (Casella & Berger, 2002) is used to obtain the SE of the transformed 

FA parameter values when they are transformed to the IRT parameters in Table 2. For item i as 

an example,𝑎௜ ൌ 𝑔ሺ 𝜏௜ ,𝝀௜ , 𝐸ሺ𝝃ሻ, 𝑐𝑜𝑣ሺ𝝃ሻሻ, and the specific form of the function 𝑔ሺ∙ሻ is provided 

in Table 2. Then, given the error covariance matrix obtained via the sandwich estimator from a 

FA model, denoted as ∑ி஺, the standard error of 𝑎௜, the transformed parameter, can be obtained 

via the multivariate delta method as follows 

SE(𝑎௜)=ට𝜞௔೔
୘ ൈ ∑ி஺ ൈ 𝜞௔೔  .        (7) 

In Equation (7), the superscript “T” denotes the matrix transpose, 𝜞௔೔ are the first derivative of 

𝑎௜ ൌ 𝑔ሺ 𝜏௜ ,𝝀௜ , 𝐸ሺ𝝃ሻ, 𝑐𝑜𝑣ሺ𝝃ሻሻ with respect to the model parameters, i.e., 𝝀௜ , 𝜏௜ ,𝐸ሺ𝝃ሻ, 𝑐𝑜𝑣ሺ𝝃ሻ. The 

error covariance matrix ∑ி஺  is a Q-by-Q matrix output from the WLS estimation procedure, 

where Q stands for the total number of parameters in a model. A concrete example is given in 

Table 5 below. The same generic form in (7) applies to 𝑑௜ and 𝑏௜, but their specific forms differ 
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by the four parameterizations. The generic forms are presented in Table 3 and specific forms of 

𝜞௔೔ and 𝜞ௗ೔  (𝜞௕೔) are presented in the Appendix. This multivariate delta method is implemented 

in R (R core team, 2016), and the script file is available in the online appendix for interested 

users.  

In Table 3, 1

( ( ))
i

s

a
vec

E

 
  

 denote the vectorized elements of the first derivatives, which 

is a K-by-1 vector with the sth element being 1

( ( ))
i

s

a

E


 

. Similarly, taking the first derivative of 

𝑎௜ଵ with respect to the lower-triangular elements of factor covariance matrix 𝑐𝑜𝑣ሺ𝝃ሻ and stacking 

them into a K × (K+1)/2–by–1 vector results in 1

(cov( ))
i

st

a
vec


 
  

. Here the (st) in the subscript 

denote the (s, t)th element of the covariance matrix. Please note that although the full size of 𝜞௔೔ 

(or 𝜞ௗ೔) could be large, there will be a lot of 0’s in the vector. That is, for item i, any derivatives 

with respect to 𝝀௛ and 𝜏௛ where item ℎ ് item 𝑖 are 0 by definition. For the full dimension of the 

Γ matrix, please refer to Table 5 for a few concrete examples. Otherwise, for the non-zero 

elements in the Γ matrix, please refer to Table 3. 
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Table 3. Generic forms of 𝜞௔೔ and 𝜞௕೔ in Equation (7) 

Parameterization 𝜞௔೔ 𝜞ௗ೔ 

Reference 
indicator 

1

2 2

1

1

12 12

1

1

1

( ( )) ( ( ))

(cov( )) (cov( ))

i iD

i iK

I I

i iK

i iK

IK IK

i iK

s s

i iK

st st

a a

a a

a a

a a

a a
vec vec

E E

a a
vec vec

 

 

 

 

  
   
 
   
  
   
  
 
 
  
 

  
              


    
         

 

 

L

M M

L

L

M M

L

L

L






 

2

12

( ( ))

(cov( ))

i

i

I

i

i

IK

i

s

i

st

d

d

d

d

d
vec

E

d
vec

















 
  
 
  
 
  
 
 
 
 
 

 
      
 

  
    

 

Remarks 

Because 𝜏ଵ, 𝜆ଵଵ,…, 𝜆∗௄ are fixed as reference indicators, their relevant 
terms do not appear in the above matrix. In practice, the “reference 
indicators” do not have to be the first or first K items and hence “∗” 
denotes the unspecified reference indicator items. For MIRT/bi-factor 
models, K loadings have to be fixed.  

   

Standardized 
factor 

1

1 1

1

1

11 11

1

1

(cov( )) (cov( ))

i iK

i iK

I I

i iK

i iK

IK IK

i iK

st st

a a

a a

a a

a a

a a
vec vec

 

 

 

 

  
   
 
   
  
   
  
 
 
  
 

  
               

L

M M

L

L

M M

L

L
 

 

2

12

(cov( ))

i

i

I

i

i

IK

i

st

d

d

d

d

d
vec









 
  
 
  
 
  
 
 
 
 
 

 
       

M

M

 

Remarks 

Because the factor means are fixed as constants, the derivatives with 
respect to 𝐸ሺ𝝃ሻ disappear. In addition, although we write  𝑐𝑜𝑣ሺ𝝃ሻ here, it 
is really the off-diagonal terms that matter because the variances are fixed 
as constants as well.  

Note: The generic form of 𝜞௕೔  is the same as that of 𝜞ௗ೔  by replacing 𝑑௜ with 𝑏௜. 

A Simulation Study 

A small scale simulation study was conducted to evaluate if the conversion formulas in 

Table 3 actually work in terms of computing SEs of the transformed FA parameters when they 
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are transformed to the equivalent IRT parameterizations (based on Table 2). The models 

considered were unidimensional two parameter logistic model (2PL), multidimensional 2PL 

(both simple and complex structures) and bi-factor 2PL. Four parameterizations were included. 

Please note that we do not intend to compare the transformed SE to the SE obtained directly 

from the IRT parameterization because the comparison would be confounded by the type of 

estimators, i.e., sandwich estimator from WLSMV vs. SEM/XPD from FIML. Instead, we intend 

to show the SEs of the transformed parameter values (obtained from the multivariate delta 

method) are close to the empirical, “true” SEs from simulations.  

Design 

For all simulations, logistic CDF is used as the link function in IRT model, and sample 

size was fixed at 1,000. For the unidimensional 2PL model, test length was fixed at 15. For the 

between-item multidimensional model, there were 45 items with 15 items measuring each one of 

the three latent traits separately. For the within-item multidimensional model, there were 45 

items that measure multiple latent traits, and each latent trait was measured by 30 items. As an 

example, 𝜃ଵ was measured by items 1~5, 16~25, and 31~45. For the bi-factor model, there were 

45 items which measure one general latent trait and one of the three group latent traits. The 

specific simulation design is shown in Table 4, with details regarding the distributions from 

which the parameters were simulated. Two hundred replications were conducted per condition2. 

FA models were fitted using Mplus3, parameters are estimated by WLS with means and variance 

adjusted (i.e.,WLSMV) along with the sandwich standard errors under all four parameterizations 

                                                        
2 We conducted a sensitivity analysis and found that the empirical standard deviation stabilized at around 150 
replications, hence 200 is a conservative choice.  

3 Mplus was chosen because it is a widely used structural equation modeling software package. Other SEM 
software packages could also be used.  
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(Finney & DiStefano, 2006; Flora & Curran, 2004). The parameter estimates were transformed 

using the conversion formula in Table 2, and the SEs were transformed using the conversion 

formula in Equation (7) and Table 3, with 𝜞௔೔ and 𝜞ௗ೔ taking the following dimensions for 

different models: 

Insert Table 4 Here 

 
Table 5. The dimension of the Γ matrix in this study. 

Model UIRT bi-factor Between-item MIRT Within-item MIRT 
𝜞௔೔ 30 × 1 135 × 4 93 × 3 138 × 3 
𝜞ௗ೔ 30 × 1 135 × 1 93 × 1 138 × 1 

Note: 30=15 (#of items in a test)ൈ2 (#of parameters per item); 135 = 45 (# of items in a test)ൈ3 (#of parameters 
per item); 93=45 (# of items in a test)ൈ2 (#of parameters per item)+3 (correlations among factors); 138=30 (# 
of items measuring each factor)ൈ3 (# of factors)+45 (# of intercept parameters)+3 (correlations among factors). 
The number of columns in the Γ matrix is consistent with the dimension of the parameter vector, i.e., 1 in UIRT 
refers to 1 discrimination and 1 intercept parameters per item; 4 and 1 in the bi-factor model refer to 4 
discrimination (1 general factor and 3 group factors) and 1 intercept parameters per item; 3 and 1 in both 
between-item and within-item MIRT refer to 3 discrimination and 1 intercept parameters per item.  
 
Evaluation Criteria  

To compare the SE conversions under four parameterizations, average root mean square error 

(RMSE), average bias, and average relative bias were calculated. The ARMSE is defined by 

2

1 1

1 1
ˆ( )

R I
r
i i

r i

RMSE
R I

 
 

    , 

where 𝜎ො௜
௥ is the transformed SE estimate from the delta method for item i in replication r, and 𝜎௜ 

is the empirical standard deviation of transformed parameters across replications and it serves as 

the true value. Here, σ is used to denote the standard error of a generic parameter, which could be 

discrimination or threshold parameters. I denotes the total number of items, and R denotes the 

number of replications. Similarly, the average bias is computed by 
1 1

1 1
ˆ( )

R I
r
i i

r i

bias
R I

 
 

 
  

 
  , 
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and the average relative bias computed by 
1 1

ˆ( )1 1 rR I
i i

r i i

RB
R I

 
 

 
  

 
  . For quality control, we 

also checked the parameter recovery from the FA parameterization (after transformation) as 

compared to the true parameter. The purpose is to check the behavior of the conversion formula 

in Table 2. The average RMSE, bias, and relative bias were also computed for the item 

parameter estimates.  

Results 

The results are summarized in Table 6 for unidimensional 2PL, in Table 7 for between-

item multidimensional 2PL (M2PL), in Table 8 for within-item M2PL, and in Table 9 for bi-

factor 2PL, respectively. In each table, per parameter, the first row is the parameter recovery and 

the second row refers to the standard error recovery. Note that for the reference indicator option, 

the reference items are excluded from computing the average bias and average RMSE. For the 

2PL and between-item M2PL, results for both the b-parameter (i.e., Equations 3, 4) and the d-

parameter (i.e., Equations 1, 2) are included.  

Insert Tables 6 to 9 Here 

 
For unidimensional IRT model, the four different parameterizations in the FA framework 

generated almost identical parameter estimates, which was indicated by the small average bias, 

relative bias, and RMSE. The standard error estimates in the FA framework, after 

transformation, aligned well with the “true”, empirical standard error. There was no appreciable 

difference among the four parameterizations in terms of standard error recovery for a- and d- and 

b- parameters. Overall, all parameterizations yielded satisfactory standard error recovery. 

For the between-item MIRT model, all replications successfully converged but not all 

replications entered into the final results. In particular, for the marginal-standardized factor 
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parameterization, there were 17% replications with negative factor loadings, resulting in “NaN” 

for the transformed SEs (due to negative variance estimates after transformation). Even though 

these replications were excluded in our results, a closer inspection revealed that the negative 

factor loadings are due to the flipping (reversing) of the corresponding factor. For instance, when 

𝜃ଵ was reversed, all items loaded on 𝜃ଵ had negative loadings and 𝜃ଵ was also correlated 

negatively with 𝜃ଶ and 𝜃ଷ. In this case, researchers could either manually multiply the 

parameters related to 𝜃ଵ by -1, or add non-negative constraints on factor loadings during 

estimation. Please note that the identifiability constraints in Table 1 do not preclude the 

possibility of factor flipping. Hence, in the marginal-standardized factor parameterization, 

researchers need to be aware that models could be equivalent up to factor reversing, and only if 

non-negative constraints are added is that the model strictly identified.  

Similarly, 18% replications from the marginal-reference parameterization, and 30.5% 

replications from the conditional-reference parameterization were excluded due to the observed 

“NaN” from the SEs of the transformed d-parameters. There is no clear interpretation why the 

variance of the transformed d-parameters became negative, and one possible reason is that the 

original sandwich SE estimates of those parameters were relatively high. The results in Table 7 

were therefore based on the remaining replications per parameterization. Again, overall, all four 

parameterizations resulted in acceptable parameter and standard error recovery with no 

noticeable differences, except the marginal-reference parameterization. In this case, the relative 

bias of standard error recovery is considerably higher. Even so, the actual bias is still acceptable. 

This is not surprising because marginal-reference combination requires the most complex 

transformation. Because the multivariate delta method relies on the first-order approximation of 

a Taylor series, it introduces some error by ignoring the higher-order terms. Please also note that 
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the transformation formula for the reference parameterization depends on the estimated mean 

and covariance of the latent factors. Hence any estimation error in the factor mean and 

covariance will be carried over in the transformed SEs. The SE recovery of the b-parameters was 

comparable to that of the d-parameters.  

For within-item multidimensional models, we ran 200 replications among which only 131 

replications converged properly from Mplus. The non-converged cases only happened for the 

marginal-standardized factor parameterization, and when it occurred, the entire replication was 

eliminated although the other three parameterizations still yielded converged estimates. Out of 

these 131 replications, only 63 replications from the marginal-standardized factor 

parameterization enter final calculation because the other 68 replications produced negative 

correlation estimates among θ’s, which again distorted the parameter estimates and their standard 

error estimates. The negative correlation again could be explained by possible reversing of some 

factors.  For the other three parameterizations, all 131 replications were included in the final 

results. 

An elimination criterion was also used for bi-factor model results. Again, out of 200 

replications, only 175 converged properly, and non-convergence happened for the marginal and 

conditional reference indicator parameterizations. For these two parameterizations, the anomaly 

occurred when the factor mean estimates were extreme (i.e., >20 or <-20). Because the bi-factor 

model contains the larger number of parameters compared to the within-item or between-item 

MIRT models, it is unsurprising that fixing one item’s parameters may not be enough to fix the 

scale sometimes, resulting in extreme factor mean estimates. Among these converged 

replications, only 113 yielded proper parameter and standard error estimates for the marginal and 

conditional reference indicator parameterizations. The other 62 replications again yielded 
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extreme factor mean estimates (i.e., absolute values of factor means exceeding 10). For both the 

within-factor MIRT and bi-factor models, similar trends still continue to hold. That is, all four 

parameterizations seemed to work equally well, except a few cells, such as the 𝑎ଶ parameter in 

the marginal-standardized factor parameterization from the within-item MIRT model, and the 𝑎଴ 

parameter in the marginal-standardized factor parameterization from the bi-factor model. Again, 

even for these outstanding cells, the actual bias of SE is still acceptable.  

In sum, for all four different models considered in the study, the SEs from successful 

replications are all comparable across the four different parameterizations. However, given the 

large proportion of unsuccessful replications observed in some cases, we have the following 

recommendations: 

1. UIRT: Any of the four parameterizations is fine. 

2. Between-item/Within-item MIRT: The marginal-standardized parameterization may 

result in factor reversing, which is easy to spot and correct. The marginal-reference and 

conditional-reference parameterizations sometimes yield invalid SEs of d-parameters 

after transformation, and future studies need to be conducted to further explore the 

reasons. 

3. Bi-factor model: The marginal-reference and conditional-reference parameterizations 

may sometimes yield extreme factor means, which lead to either non-convergence or 

invalid transformed SEs. 

4. For multidimensional models in general, the conditional-standardized parameterization is 

recommended.    

A Real Data Example 

For illustration purposes, a unidimensional factor analysis model employing each of the four 
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parameterizations was fit to the National Educational Longitudinal Study (NELS) science test 

data. The test consists of 25 dichotomous items, and a sample size of 13,487. We randomly 

sampled 1,000 students for illustration because otherwise, the standard errors of the parameter 

estimates will all be smaller than .0001, and Mplus default output of four decimal places could 

not capture the small values. The same data set was also input in flexMIRT (Cai, 2017) to obtain 

the IRT parameter estimates.  

     Table 10 presents the FA model parameter estimates for the NELS science test data, 

along with the robust SEs. Unsurprisingly, both parameter estimates and their SEs are quite 

different across the four parameterizations. Then Table 11 presents the transformed values of the 

item parameter estimates, and the computed SEs of the transformed item parameter estimates. 

Consistent with our expectation, after transformation, the item parameter estimates are all quite 

similar and they are also close to the direct IRT parameter estimates. The SEs of the transformed 

parameter values also look similar and the differences mostly appear in the third decimal place. 

The SEs from the direct IRT model fitting are not directly comparable because they are obtained 

from different estimators (sandwich estimator vs. supplemental EM), but the values are still 

close. 

 

Discussion 

In this note, we provide a general conversion formula for transforming the standard errors 

of item parameter estimates from four different parameterizations in factor analysis framework to 

the corresponding IRT parameterization. The conversion formula is suitable for a broad family of 

models, such as unidimensional, correlated-factor, and bi-factor models. This note is motivated 

by the observation that there is a lack of documentation on computing the standard errors of 
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transformed parameter values yet there is a need, for instance, to compare the standard error 

estimates across different studies for meta-analytic purposes.  

While previous research that evaluated standard errors (Finch 2010, 2011) comparison 

between WLS and IRT estimations (such as EM) mainly used empirical standard errors by 

computing the standard deviation of parameter estimates across replications, the conversion 

formulas provided in this note offer to directly compute and compare SEs from different 

parameterizations. A simulation study is conducted to empirically evaluate the performance of 

the proposed conversion formula. Because the robust standard errors for WLS estimates has been 

shown to work well (Forero & Maydeu-Olivares, 2009) in the factor analytic framework, the SE 

of the transformed parameters also showed negligible bias. Even though we did not manipulate 

any factors (such as test length or sample size) in the simulation design, we considered four 

different IRT models which encompassed the majority of the applications. The R script crafted 

for this study is available to interested researchers who need to obtain the standard errors of item 

parameters from the IRT parameterization when the parameters are obtained in the FA models.  

Please note that we did not claim that the transformed SEs from FA models using 

WLSMV are directly equivalent to those obtained from IRT models via FIML. This is because 

the sandwich estimator of SEs differs fundamentally from the SEM/XPD methods (limited-

information vs. full-information approaches). Instead, we intend to claim that the transformed 

SEs from WLSMV are appropriate for the parameter estimates that are transformed to the IRT 

metric.  

On a last note, although the SEs from the four different parameterizations in CFA 

framework can be transformed to the SEs of the item parameters from IRT metric, users need to 

exercise caution when using the SEs for Wald type of hypothesis testing for DIF and/or item drift 
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analysis. According to Gonzalez and Griffin (2001), in CFA, “alternative but equivalent ways to 

identify a model may yield different standard errors, and hence different Z test for a parameter”. 

This lack of identification invariance of SEs implies that a parameter’s SE, and hence its 

significance test, can be sensitive to arbitrary choice of identification (i.e., reference indicator vs. 

standardized factor). Although their conclusion was for the continuous factor analysis, it is likely 

that the same conclusion also generalizes to categorical CFA due to the nonlinear transformation 

reflected in Table 2. Future research should look into this issue more closely. It is especially 

important to check how the Type I error and power of the Wald-based DIF/item drift analysis 

methods may be affected by the different identification parameterizations of IRT models.  
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Table 4. Summary of Generation Models. 
 UIRT Between-item MIRT Within-item MIRT Bi-factor 

Item 
Parameter 

ai ~ logN(μa=0,σa=0.2) 
di ~ U(-2, 2) 

aid ~ logN(μa=0, σa=0.2) 
di ~ U(-2, 2) 

aid ~ logN(μa=0, σa=0.2) 
di ~ U(-2, 2) 

aiGEN ~ logN(μa=0, σa=0.2) 
aiGR ~ logN(μa=0, σa=0.2) 

di ~ U(-2, 2) 
Person 

Parameter θj ~ N(μθ=0, σθ=1)  
0 1 0.5 0.5

~ 0 , 0.5 1 0.5

0 0.5 0.5 1
i MVN

    
    
    
        

θ
  

0 1 0.5 0.5

~ 0 , 0.5 1 0.5

0 0.5 0.5 1
i MVN

    
    
    
        

θ
 θjGEN ~ N(μθ=0, σθ=1) 

θjGR ~ N(μθ=0, σθ=1) 

Test 
Structure 

 

   
Note. UIRT = Unidimensional IRT model. For the test structure of bi-factor models, θ0 is the vector of general factor, θ1 , θ2 , and  
θ3 are the vectors of group factor 
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Table 6. Parameter and standard error recovery of Unidimensional IRT Model. 

  Marginal Conditional 
  Standardized Reference Standardized Reference 
  RMSE bias RB RMSE bias RB RMSE bias RB RMSE bias RB 
a Par. .1221 .0056 .0065 .1217 .0048 .0060 .1221 .0056 .0065 .1217 .0048 .0060 
 S.E. .0101 -.0034 -.0293 .0101 -.0036 -.0305 .0101 -.0035 -.0292 .0101 -.0036 -.0305 
d Par. .0927 -.0061 .0216 .0925 -.0053 .0219 .0927 -.0061 .0216 .0925 -.0052 .0218 
 S.E. .0088 .0010 .0079 .0074 -.0023 -.0252 .0072 -.0022 -.0240 .0079 .0008 .0102 
b Par. .1634 .0057 .0258 .1669 .0055 .0269 .1634 .0058 .0258 .1668 .0054 .0268 
 S.E. .0331 -.0029 -.0093 .0341 -.0030 -.0089 .0331 -.0029 -.0094 .0341 -.0029 -.0085 

  Note. For each parameter, the first row is the parameter recovery and the second row refers to SE recovery. 
 

Table 7. Parameter and standard error recovery of between-item MIRT Model. 
  Marginal Conditional 
  Standardized Reference Standardized Reference 
  RMSE bias RB RMSE bias RB RMSE bias RB RMSE bias RB 

a1 Par. .1214 .0149 .0160 .1202 .0172 .0185 .1200 .0151 .0162 .1202 .0172 .0186 
 S.E. .0156 .0014 .0201 .0465 .0422 .3759 .0113 .0005 .0084 .0142 -.0002 .0073 

a2 Par. .1191 .0131 .0171 .1193 .0104 .0137 .1191 .0125 .0162 .1192 .0103 .0137 
 S.E. .0125 -.0005 -.0015 .0337 .0295 .2580 .0109 -.0013 -.0064 .0127 -.0017 -.0074 

a3 Par. .1234 .0108 .0107 .1213 .0151 .0146 .1237 .0109 .0109 .1213 .0151 .0146 
 S.E. .0153 -.0014 -.0066 .0289 .0233 .2003 .0110 -.0016 -.0112 .0116 -.0023 -.0154 
d Par. .0899 -.0046 .0379 .0887 -.0030 .0369 .0892 -.0036 .0353 .0887 -.0030 .0367 
 S.E. .0087 .0046 .0605 .0232 .0077 .0907 .0080 -.0003 -.0018 .0187 -.0000 .0029 
b Par. .1513 .0050 .0357 .1483 .0072 .0342 .1511 .0038 .0339 .1483 .0071 .0341 
 S.E. .0331 .0004 .0292 .0377 -.0034 -.0282 .0319 -.0021 -.0125 .0371 -.0011 .0009 

Note. There are 17% abnormal replications from the marginal-standardization parameterization (i.e., negative loading parameters  
resulting in “NaN” for the transformed standard errors), 18% replications from the marginal-reference parameterization, and 30.5%  
from the conditional-reference parameterization. These replications were excluded from the summary. 
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Table 8. Parameter and standard error recovery of Within-item IRT Model. 

  Marginal Conditional 
  Standardized Reference Standardized Reference 
  RMSE bias RB RMSE bias RB RMSE bias RB RMSE bias RB 

a1 Par. .1763 .0187 .0202 .1746 .0000 -.0004 .1745 -.0002 -.0006 .1746 -.0001 -.0005 
 S.E. .0219 -.0093 -.0471 .0186 -.0064 -.0358 .0281 .0116 .0585 .0189 -.0085 -.0470 

a2 Par. .3066 -.0573 -.0556 .1804 -.0102 -.0095 .1803 -.0104 -.0097 .1803 -.0104 -.0097 
 S.E. .1396 -.1317 -.4373 .0209 -.0090 -.0465 .0298 .0118 .0627 .0217 -.0115 -.0592 

a3 Par. .1737 -.0228 -.0231 .1729 -.0053 -.0051 .1729 -.0052 -.0051 .1729 -.0052 -.0051 
 S.E. .0215 -.0060 -.0258 .0190 -.0042 -.0199 .0329 .0165 .0950 .0194 -.0063 -.0313 
d Par. .1142 .0088 .0026 .1154 .0024 .0064 .1137 .0011 .0071 .1153 .0025 .0062 
 S.E. .0129 .0005 .0108 .0145 .0035 .0299 .0107 .0002 .0059 .0110 .0002 .0063 

Note. 131/200 valid replications. Among the valid replications, 34% replications from the marginal-standardization parameterization 
failed to produce valid transformed SEs due to the negative estimated loadings. 
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Table 9. Parameter and standard error recovery of bi-factor IRT Model. 

  Marginal Conditional 
  Standardized Reference Standardized Reference 
  RMSE bias RB RMSE bias RB RMSE bias RB RMSE bias RB 

a0 Par. .1322 .0015 .0056 .1317 .0054 .0066 .1322 .0045 .0056 .1316 .0054 .0066 
 S.E. .0681 .0574 .4362 .0334 .0101 .0784 .0117 -.0009 -.0041 .0115 -.0007 -.0032 

a1 Par. .1539 -.0017 -.0021 .1519 -.0019 -.0023 .1539 -.1730 -.0021 .1519 -.0018 -.0022 
 S.E. .0179 -.0057 -.0304 .0237 .0000 .0098 .0179 -.0056 -.0303 .0189 -.0077 -.0434 

a2 Par. .1418 .0062 .0074 .1430 .0057 .0066 .1418 .0062 .0073 .1431 .0057 .0066 
 S.E. .0136 -.0033 -.0203 .0461 .0197 .1343 .0136 -.0033 -.0202 .0139 -.0017 -.0068 

a3 Par. .1444 .0039 .0049 .1456 .0031 .0039 .1444 .0039 .0049 .1456 .0033 .0042 
 S.E. .0126 -.0016 -.0090 .0240 .0063 .0453 .0126 -.0016 -.0091 .0152 -.0018 -.0071 
d Par. .1037 .0000 .0058 .1037 .0003 .0066 .1037 .0001 .0056 .1036 .0004 .0070 
 S.E. .0095 -.0006 -.0017 .0128 .0000 .0052 .0095 -.0006 -.0017 .0118 .0004 .0078 

Note. 175/200 valid replications. Among them, 43.5% replications from both the marginal-reference and conditional-reference  
 parameterizations failed to produce valid transformed SEs due to the extreme factor mean estimates (i.e., absolute values exceeding 10)
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Table 10. Factor analysis model parameter estimates for NELS Science data. 

Item 
No. 

Marginal Conditional 
Standardized 

Factor 
Reference 
Indicator 

Standardized 
Factor 

Reference 
Indicator 

λ τ λ τ λ τ λ τ 
1 0.516 -0.516 1 0 0.602 -0.602 1 0 
 (0.038) (0.042)   (0.061) (0.05)   

2 0.47 -0.827 0.912 -0.357 0.533 -0.938 0.885 -0.405 
 (0.042) (0.045) (0.104) (0.08) (0.06) (0.054) (0.132) (0.085) 

3 0.373 -0.479 0.723 -0.106 0.402 -0.516 0.668 -0.114 
 (0.042) (0.041) (0.099) (0.075) (0.053) (0.045) (0.113) (0.079) 

4 0.399 -0.53 0.773 -0.132 0.435 -0.578 0.722 -0.144 
 (0.041) (0.042) (0.096) (0.07) (0.054) (0.046) (0.113) (0.075) 

5 0.658 -0.824 1.275 -0.166 0.874 -1.094 1.451 -0.221 
 (0.034) (0.045) (0.114) (0.092) (0.08) (0.068) (0.195) (0.118) 

6 0.587 -0.852 1.138 -0.265 0.726 -1.053 1.204 -0.328 
 (0.037) (0.045) (0.108) (0.085) (0.071) (0.062) (0.163) (0.1) 

7 0.394 -0.49 0.763 -0.097 0.428 -0.533 0.711 -0.105 
 (0.041) (0.041) (0.095) (0.071) (0.053) (0.046) (0.11) (0.076) 

8 0.423 -0.24 0.82 0.183 0.467 -0.265 0.775 0.202 
 (0.04) (0.04) (0.095) (0.07) (0.053) (0.044) (0.114) (0.079) 

9 0.498 -0.479 0.966 0.019 0.575 -0.552 0.954 0.022 
 (0.039) (0.041) (0.105) (0.081) (0.06) (0.049) (0.14) (0.094) 

10 0.544 -0.253 1.055 0.291 0.649 -0.302 1.077 0.347 
 (0.037) (0.04) (0.107) (0.081) (0.063) (0.048) (0.152) (0.102) 

11 0.294 -0.048 0.569 0.246 0.307 -0.05 0.51 0.257 
 (0.043) (0.04) (0.091) (0.065) (0.049) (0.041) (0.094) (0.07) 

12 0.572 -0.687 1.109 -0.115 0.698 -0.838 1.159 -0.14 
 (0.037) (0.043) (0.107) (0.085) (0.067) (0.056) (0.158) (0.101) 

13 0.459 -0.732 0.889 -0.274 0.516 -0.824 0.857 -0.308 
 (0.043) (0.044) (0.105) (0.078) (0.062) (0.052) (0.132) (0.083) 

14 0.679 -0.192 1.315 0.487 0.924 -0.261 1.534 0.663 
 (0.033) (0.04) (0.114) (0.09) (0.083) (0.055) (0.203) (0.135) 

15 0.438 0.202 0.848 0.639 0.487 0.225 0.808 0.711 
 (0.041) (0.04) (0.101) (0.074) (0.056) (0.045) (0.124) (0.092) 

16 0.325 -0.07 0.629 0.254 0.343 -0.074 0.569 0.269 
 (0.042) (0.04) (0.096) (0.071) (0.05) (0.042) (0.103) (0.078) 

17 0.512 0.123 0.992 0.635 0.596 0.143 0.989 0.739 
 (0.039) (0.04) (0.104) (0.077) (0.062) (0.046) (0.142) (0.101) 

18 0.496 -0.058 0.961 0.438 0.571 -0.066 0.948 0.504 
 (0.039) (0.04) (0.102) (0.078) (0.059) (0.046) (0.136) (0.097) 

19 0.454 0.136 0.88 0.589 0.509 0.152 0.846 0.662 
 (0.04) (0.04) (0.101) (0.075) (0.057) (0.045) (0.127) (0.094) 

20 0.282 0.148 0.546 0.43 0.294 0.155 0.488 0.449 
 (0.043) (0.04) (0.091) (0.066) (0.049) (0.042) (0.092) (0.072) 

21 0.34 0.093 0.658 0.432 0.361 0.099 0.599 0.46 
 (0.042) (0.04) (0.096) (0.071) (0.051) (0.042) (0.104) (0.08) 

22 0.219 0.285 0.424 0.503 0.224 0.292 0.372 0.515 
 (0.045) (0.04) (0.092) (0.064) (0.049) (0.041) (0.087) (0.069) 

23 0.214 0.176 0.415 0.39 0.219 0.181 0.364 0.4 
 (0.044) ()0.04 (0.09) (0.062) (0.048) (0.041) (0.085) (0.067) 

24 0.527 0.356 1.022 0.883 0.621 0.419 1.03 1.039 
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 (0.04) (0.041) (0.105) (0.077) (0.065) (0.049) (0.146) (0.108) 
25 0.297 0.729 0.575 1.025 0.31 0.763 0.515 1.074 

 (0.051) (0.044) (0.108) (0.074) (0.058) (0.047) (0.111) (0.091) 
Note. Values in parentheses are standard errors. Under both reference indicator 

 parameterizations, the first item was chosen as the anchor item, of which the intercept 
 and slope were fixed as 0 and 1, respectively. The mean (𝜇క) and variance (𝜎క

ଶ) of 
 factors under both standardized factor parameterizations were fixed as 0 and 1, 
 respectively. Under the marginal-reference parameterization, the estimated value and 
 standard error of 𝜇క were 0.516 and 0.042, and the estimated value and standard error 
 of 𝜎క

ଶ were 0.266 and 0.04, respectively. And under the conditional-reference 
 parameterization, the estimated value and standard error of 𝜇క were 0.602 and 0.05, 
 and the estimated value and standard error of 𝜎క

ଶ were 0.363 and 0.073, respectively. 

 
 

Table 11. Transformed IRT parameter estimates and direct estimates of IRT  
parameters and their corresponding standard errors for NELS Science data. 

Item 
No. 

Marginal Conditional 
Direct 
IRT 

Standardized 
Factor 

Reference 
Indicator 

Standardized 
Factor 

Reference 
Indicator 

a d a d a d a d a d 
1 1.024 1.024 1.023 1.024 1.023 1.023 1.024 1.023 1.04 1.02 
 (0.086) (0.092)   (0.108) (0.076)   (0.12) (0.09) 

2 0.905 1.593 0.906 1.594 0.906 1.595 0.906 1.594 0.98 1.61 
 (0.111) (0.096) (0.104) (0.097) (0.108) (0.093) (0.106) (0.088) (0.13) (0.11) 

3 0.683 0.878 0.683 0.878 0.683 0.877 0.684 0.877 0.68 0.85 
 (0.095) (0.084) (0.100) (0.087) (0.093) (0.076) (0.092) (0.054) (0.10) (0.08) 

4 0.740 0.983 0.739 0.984 0.740 0.983 0.740 0.984 0.75 0.96 
 (0.099) (0.085) (0.098) (0.080) (0.093) (0.076) (0.092) (0.080) (0.10) (0.08) 

5 1.485 1.860 1.484 1.859 1.486 1.860 1.486 1.861 1.70 2.00 
 (0.126) (0.122) (0.149) (0.071) (0.132) (0.120) (0.12 ) (0.129) (0.19) (0.16) 

6 1.233 1.789 1.232 1.789 1.234 1.790 1.233 1.790 1.37 1.87 
 (0.101) (0.107) (0.151) (0.149) (0.120) (0.108) (0.122) (0.065) (0.16) (0.14) 

7 0.729 0.906 0.728 0.907 0.728 0.906 0.728 0.906 0.74 0.89 
 (0.098) (0.085) (0.097) (0.096) (0.093) (0.076) (0.086) (0.079) (0.10) (0.08) 

8 0.794 0.450 0.793 0.450 0.794 0.451 0.794 0.450 0.78 0.44 
 (0.102 ) (0.085) (0.103) (0.081) (0.093) (0.076) (0.092) (0.054) (0.10) (0.08) 

9 0.976 0.939 0.977 0.940 0.978 0.938 0.977 0.939 0.98 0.93 
 (0.117) (0.092) (0.110) (0.088) (0.108) (0.076) (0.104) (0.092) (0.11) (0.09) 

10 1.102 0.513 1.102 0.513 1.103 0.513 1.103 0.512 1.09 0.52 
 (0.091) (0.091) (0.124) (0.088) (0.108) (0.076) (0.104) (0.046) (0.11) (0.08) 

11 0.523 0.085 0.522 0.085 0.522 0.085 0.522 0.085 0.49 0.08 
 (0.087) (0.080) (0.078) (0.082) (0.076) ()0.076 (0.078) (0.057) (0.08) (0.07) 

12 1.185 1.424 1.185 1.424 1.187 1.425 1.187 1.424 1.29 1.47 
 (0.097) (0.100) (0.135) (0.065) (0.108) (0.093) (0.113) (0.085) (0.14) (0.11) 

13 0.878 1.401 0.877 1.402 0.877 1.401 0.878 1.401 0.91 1.40 
 (0.108) (0.093) (0.101) (0.100) (0.108) (0.093) (0.101) (0.085) (0.11) (0.10) 

14 1.572 0.445 1.569 0.443 1.571 0.444 1.571 0.443 1.56 0.47 
 (0.136) (0.105) (0.163) (0.074) (0.142) (0.093) (0.133) (0.082) (0.14) (0.10) 

15 0.828 -0.382 0.827 -0.381 0.828 -0.383 0.828 -0.382 0.76 -0.36 
 (0.105) (0.085) (0.090) (0.099) (0.093) (0.076) (0.091) (0.083) (0.09) (0.08) 

16 0.584 0.126 0.583 0.127 0.583 0.126 0.583 0.125 0.57 0.12 
 (0.090) (0.080) (0.087) (0.080) (0.076) (0.076) (0.081) (0.084) (0.09) (0.07) 

17 1.013 -0.243 1.012 -0.244 1.013 -0.243 1.013 -0.244 0.97 -0.23 
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 (0.120) (0.089) (0.114) (0.063) (0.108) (0.076) (0.103) (0.090) (0.10) (0.08) 
18 0.971 0.114 0.970 0.113 0.971 0.112 0.971 0.113 0.94 0.12 

 (0.116) (0.088) (0.101) (0.043) (0.108) (0.076) (0.093) (0.081) (0.10) (0.08) 
19 0.866 -0.259 0.866 -0.257 0.865 -0.258 0.867 -0.260 0.83 -0.24 

 (0.107) (0.086) (0.092) (0.097) (0.093) (0.076) (0.096) (0.089) (0.09) (0.08) 
20 0.500 -0.262 0.499 -0.263 0.500 -0.264 0.500 -0.264 0.50 -0.25 

 (0.086) (0.079) (0.089) (0.074) (0.076) (0.076) (0.087) (0.076) (0.08) (0.07) 
21 0.615 -0.168 0.613 -0.167 0.614 -0.168 0.614 -0.169 0.59 -0.16 

 (0.091) (0.081) (0.089) (0.076) (0.093) (0.076) (0.090) (0.055) (0.09) (0.07) 
22 0.382 -0.497 0.381 -0.495 0.381 -0.496 0.381 -0.495 0.37 -0.47 

 (0.082) (0.078) (0.083) (0.067) (0.076) (0.076) (0.087) (0.064) (0.08) (0.07) 
23 0.372 -0.306 0.372 -0.306 0.372 -0.308 0.373 -0.307 0.35 -0.29 

 (0.082) (0.078) (0.082) (0.067) (0.076) (0.076) (0.081) (0.076) (0.08) (0.07) 
24 1.054 -0.712 1.054 -0.711 1.056 -0.712 1.055 -0.712 0.99 -0.68 

 (0.124) (0.092) (0.118) (0.076) (0.108) (0.076) (0.108) (0.094) (0.10) (0.08) 
25 0.529 -1.298 0.528 -1.296 0.527 -1.297 0.527 -1.299 0.53 -1.26 

 (0.107) (0.083) (0.101) (0.106) (0.093) (0.076) (0.096) (0.067) (0.09) (0.08) 

Note. Values in parentheses are standard errors. The direct IRT model fitting was conducted 

using flexMIRT.
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Appendix A: 𝜞𝒂𝒊 and 𝜞𝒃𝒊 in Table 3 for different parameterizations 

A1. Marginal-Reference Indicator 

The analytic forms for the first derivatives are presented below, the non-presented terms, such as 
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A2. Conditional-Reference Indicator 

The analytic forms for the first derivatives are presented as follows. The non-presented terms, such 
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A3. Marginal-Standardized Factor 

The analytic forms for the first derivatives are presented as follows. In all the following equations, 

cov( ) cor( )ξ ξ  because the factors are standardized.  
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A4. The analytic forms for 𝜞௕೔ in Table 3 
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Appendix B: 𝐌plus syntax for bi-factor models 

 

B1. Marginal standardized factor parameterization 

TITLE: binary bi-factor analysis model BY MARGINAL STANDARDIZED FACTOR 
DATA: FILE IS bif.dat; 
VARIABLE: NAMES ARE u1-u45; 
CATEGORICAL ARE u1-u45; 
ANALYSIS: MODEL = NOCOVARIANCES; 
TYPE = GENERAL; 
ESTIMATOR = WLSMV; 
PARAMETERIZATION = DELTA;  

! DELTA = marginal parameterization; THETA = conditional parameterization. 
MODEL: skill0 BY u1* u2-u45; 
skill1 BY u1* u2-u15; 
skill2 BY u16* u17-u30; 
skill3 BY u31* u32-u45; 
[skill1@0]; 
skill1@1; 
[skill2@0]; 
skill2@1; 
[skill3@0]; 
skill3@1; 
[skill0@0]; 
skill0@1; 
OUTPUT: TECH1, TECH3,TECH4; 
 
 
B2. Marginal reference indicator parameterization 

TITLE: binary bi-factor analysis model BY MARGINAL REFERENCE INDICATOR 
DATA: FILE IS bif.dat; 
VARIABLE: NAMES ARE u1-u45; 
CATEGORICAL ARE u1-u45; 
ANALYSIS: MODEL = NOCOVARIANCES; 
TYPE = GENERAL; 
ESTIMATOR = WLSMV; 
PARAMETERIZATION = DELTA; 

! DELTA = marginal parameterization; THETA = conditional parameterization. 
MODEL: skill0 BY u1* u2@1 u3-u45; 
skill1 BY u1 u2-u15; 
skill2 BY u16 u17-u30; 
skill3 BY u31 u32-u45; 
[u1$1@0]; 
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[u2$1@0]; 
[u16$1@0]; 
[u31$1@0]; 
[skill0*]; 
[skill1*]; 
[skill2*]; 
[skill3*]; 
OUTPUT: TECH1, TECH3,TECH4; 


