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Detection of Item Preknowledge Using Response Times

Abstract

Benefiting from item preknowledge (e.g., McLeod, Lewis, & Thissen, 2003) is a major

type of fraudulent behavior during educational assessments. This paper suggests a new

statistic that can be used for detecting the examinees who may have benefitted from item

preknowledge using their response times. The statistic quantifies the difference in speed

between the compromised items and the non-compromised items of the examinees. The

distribution of the statistic under the null hypothesis of no preknowledge is proved to be

the standard normal distribution. A simulation study is used to evaluate the Type I error

rate and power of the suggested statistic. A real data example demonstrates the usefulness

of the new statistic that is found to provide information that is not provided by statistics

based only on item scores.

Key words: Item compromise; likelihood ratio statistic; Wald statistic.
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Item preknowledge refers to some examinees having prior access to test questions and/or

answers before taking the test. For example, Educational Testing Service (ETS) discovered

in 2002 that students in several countries were benefiting from websites showing live items

used in the Graduate Record Examination (GRE); the phenomenon was so widespread that

average scores on GRE Verbal increased by 100 points (out of a possible 800 points) in one

country and 50 points in another (Kyle, 2002). The leaked/shared/memorized items are

usually referred to as “compromised” items. The focus of this paper will be on detecting

examinees who may have benefited from item preknowledge. This paper considers only the

case when the investigator knows which items are compromised.

Research on detection of item preknowledge has mostly been based on the item scores

of the examinees. Researchers such as Drasgow, Levine, and Zickar (1996), McLeod et

al. (2003), Shu, Henson, and Luecht (2013), and Sinharay (2017a) suggested a variety of

methods based on item scores to detect item preknowledge. Sinharay (2017a) suggested the

Ls statistic, which is based on the likelihood ratio; Sinharay (2017a) and Sinharay (2017b)

demonstrated that the Ls statistic performed satisfactorily in detecting item preknowledge.

However, given the current popularity of online testing, response times are being recorded

for an increasing number of tests (e.g., Wang, Xu, Shang, & Kuncel, 2018) and researchers

have realized the importance of response times in detecting various types of test fraud

including item preknowledge. Consequently, researchers such as Fox and Marianti (2017),

Sinharay (2018), Toton and Maynes (2019), van der Linden and Guo (2008), and Wang

et al. (2018) have suggested a variety of approaches that can be used to detect item

preknowledge based on response times. This paper suggests a simple frequentist approach

to detect item preknowledge using response times. The new approach is essentially an

examination of whether the examinees answer the compromised items faster in comparison

to the non-compromised items.

The next section includes reviews of (a) a popular response time model (RTM), (b)

the existing approaches for estimation of the parameters of the model, and (c) the existing

approaches for detection of item preknowledge using response times. The Methods section

includes the description of a new statistic for detection of item preknowledge and of its null
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distribution. The Simulation section includes a comparison of the Type I error rate and

power of the new approach to those of two existing approaches. The Real Data section

includes an application of the new approach to an operational data set. Discussion and

conclusions are provided in the last section.

Background

The Lognormal Model for Response Times

Let us consider a test that includes I items. Let ti denote the response time of a

randomly chosen examinee1 on item i, where i = 1, 2, · · · , I. Let us define

yi = log(ti)·

Under the lognormal model for response times (LNMRT; van der Linden, 2006), yi,

i = 1, 2, . . . , I, are independent given τ and

yi|τ ∼ N
(
βi − τ,

1

α2
i

)
, (1)

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2. The

parameter τ is the examinee’s speed parameter; a larger value of the parameter results in

smaller expected response times on all the items for the examinee. The parameter βi is the

time-intensity parameter for item i; a larger value of the parameter results in larger expected

response times for all examinees on the item. The parameter αi is the discrimination

parameter for item i; a larger value of the parameter leads to more information on and

hence smaller standard error of the examinee speed parameters. To estimate the item

parameters of the LNMRT using a marginal maximum likelihood approach or to perform a

Bayesian inference on the examinee ability, one assumes a prior distribution g(τ) on τ . As

is common in applications of LNMRT (see, for example, van der Linden & Guo, 2008), g(τ)

is assumed to be the normal distribution with mean 0 and variance σ2 in this paper.

1No subscript is used here for the examinees because the existing statistics and the new statistic will be

described for one randomly chosen examinee.
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The LNMRT is arguably one of the most popular RTMs. The model was considered,

either to analyze only the response times, or to analyze the response times and item scores,

by, for example, Bolsinova and Tijmstra (2018), Boughton, Smith, and Ren (2017), Glas

and van der Linden (2010), Qian, Staniewska, Reckase, and Woo (2016), Sinharay (2018),

van der Linden (2007), van der Linden (2009), van der Linden (2016), van der Linden and

Glas (2010), and van der Linden and Guo (2008). Bolsinova and Tijmstra (2018, p. 13)

commented that the LNMRT is used in most applications of RTMs.

Estimation of the Item and Examinee Parameters of the LNMRT

A Gibbs sampler (e.g., Gelman et al., 2014, p. 276) was suggested by van der Linden

(2006) to estimate the item parameters of the LNMRT. That approach has been used in

most applications of the model and the R package LNIRT (Fox, Klein Entink, & Klotzke,

2017) can be used to implement the Gibbs sampler. Glas and van der Linden (2010)

suggested an approach to compute the marginal maximum likelihood estimates (MMLEs)

of the item parameters when the LNMRT is used along with the three-parameter logistic

model (3PLM) to jointly analyze both response times and item scores. Finger and Chee

(2009) showed how one can use factor analysis to obtain the MMLEs of the item parameters

of the LNMRT when it is used as a stand-alone model, as in van der Linden (2006). The

R package lavaan (Rosseel, 2012), which is used to perform factor analysis and structural

equation modeling (SEM), was used in this paper, both in the simulation study and real

data analysis, to estimate the item parameters of the LNMRT.

van der Linden (2006) showed that given α2
i ’s and βi’s, the MLE of the person speed

parameter τ for the LNMRT can be obtained as

τ̂ =

∑
i α

2
i (βi − yi)∑

i α
2
i

· (2)

Equation 2 was used in this paper (both in the simulation study and real data analysis) to

estimate the person speed parameters of the LNMRT. Because τ̂ is a linear combination

of normal random variables yi’s, it has a normal distribution (because of, for example,
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Theorem 2.4.1 of Anderson, 1984, p. 25) with mean and variance given by

E(τ̂) = τ and Var(τ̂) =
1∑
i α

2
i

(3)

when the LNMRT fits the data.

Detection of Item Preknowledge Using Response Times: A Review

Let c denote the set of compromised items that was administered to the randomly

chosen examinee considered above. Let c denote the set of non-compromised items

that were administered to the examinee. Together, c and c constitute all the I items

administered to the examinee. Let yc and yc denote the collection of logarithms of response

times of the examinee on the items in c and c, respectively.

Sinharay (2018) suggested for the LNMRT a person-fit statistic χpf that is given by

χpf =
∑
i

α2
i (yi − βi + τ̂)2, (4)

and showed that when the LNMRT fits the data, χpf follows the χ2 distribution with I − 1

degrees of freedom. The χpf statistic can be used to detect item preknowledge. Marianti,

Fox, Avetisyan, Veldkamp, and Tijmstra (2014) and Fox and Marianti (2017) suggested

a Bayesian person-fit analysis approach that was found to perform very similarly, but

slightly worse than the χpf statistic by Sinharay (2018)—so their Bayesian approach is not

considered henceforth.

A Bayesian approach was suggested by van der Linden and Guo (2008) to determine

if the response time of an examinee-item combination is aberrant and the approach can

be used to detect item preknowledge. It was proved by van der Linden and Guo (2008)

that the posterior distribution of the predicted value of the log-response time on item

i conditional on y−i = (y1, y2, · · · , yi−1, yi+1, · · · , yI), is normal. Then, the standardized

residual is computed as

ei =
yi − E(yi|y−i)√

Var(yi|y−i)
· (5)
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If the absolute value of ei is larger than an appropriate quantile of the standard normal

distribution, the response time for the examinee for item i is considered aberrant. One

can compute the ei’s for an examinee over all the compromised items and then combine

information over these items for the examinee to assess item preknowledge, as in Boughton

et al. (2017, p. 181) and Qian et al. (2016). In this paper, an examinee is flagged as having

item preknowledge if at least one ei for a compromised item is statistically significant and

negative for a compromised item, similar to how van der Linden and Guo (2008, p. 382)

suggested detecting item preknowledge.

Lee and Wollack (2017) and Wang et al. (2018) used a mixture hierarchical IRT model,

which is fitted using the Bayesian Markov chain Monte Carlo algorithm (e.g., Gelman,

Carlin, Stern, & Rubin, 2003), to determine whether the response time and item score for

an item-examinee combination are aberrant. Wang et al. (2018) showed that the approach

outperforms the approach of van der Linden and Guo (2008). This approach can be used

to detect item preknowledge and does not require the assumption of known compromised

items.

Toton and Maynes (2019) suggested an approach to detect item preknowledge that

does not require fitting any model to the data. The approach involves a comparison of an

examinee’s response time on an item to the average response time of all examinees who did

not have preknowledge of the item, conditioned on whether the item was answered correctly

and incorrectly. This approach is simple, but requires a group of examinees who did not

have item preknowledge.

The only frequentist approach that can be used to detect item preknowledge for RTMs

is the one suggested by Sinharay (2018). This lack of frequentist approaches is surprising

given the existence of several frequentist approaches to assess, for example, item fit (e.g.,

Glas & van der Linden, 2010; Ranger & Ortner, 2012), fit of the local independence

assumption (Glas & van der Linden, 2010), independence of responses and response times

(van der Linden & Glas, 2010), and differential item functioning (Glas & van der Linden,

2010) for RTMs. In addition, the existing approaches that can be used to detect item

preknowledge based on response times are all designed to detect a variety of aberrant
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responses (or, a variety of person misfit) and are expected to have low power for detecting

item preknowledge. This expectation is based on the finding by researchers such as Glas

and Dagohoy (2007) and Sinharay (2017a) that person-fit statistics based on item scores

have much smaller power compared to statistics for detecting item preknowledge based on

item scores.

Detection of Item Preknowledge Using Item Scores

Several methods (e.g., Drasgow et al., 1996; McLeod et al., 2003; Shu et al., 2013;

Sinharay, 2017a) exist for detecting item preknowledge using only item scores.

Let xi denote the score of a randomly chosen examinee on item i. Let xc and xc

respectively denote the collection of scores of the examinee on the items in c and c.

For an examinee, let us define the maximum likelihood estimate (MLE) or the weighted

maximum likelihood estimate (WLE; Warm, 1989) of the examinee ability from the scores

on c as θ̂c, that from the scores on c as θ̂c, and that from the scores on all the items as θ̂.

The likelihood ratio test (LRT) statistic (e.g., Finkelman, Weiss, & Kim-Kang, 2010;

Guo & Drasgow, 2010) for testing the null hypothesis of equality of the examinee ability

over c and c is given by

Γ = 2[`(θ̂c;xi, i ∈ c) + `(θ̂c;xi, i ∈ c)− `(θ̂;xi, i = 1, 2, . . . , I)], (6)

where

`(θ̂c;xi, i ∈ c) = log-likelihood of the scores on c at θ̂c,

`(θ̂c;xi, i ∈ c) = log-likelihood of the scores on c at θ̂c,

and `(θ̂;xi, i = 1, 2, . . . , N) = log-likelihood of the scores on all the items at θ̂.

Letting Pi(xi|θ̂c) denote the likelihood of xi given θ̂c, one obtains

`(θ̂c;xi, i ∈ c) =
∑
i∈c

logPi(xi|θ̂c)·

Then the LRT statistic given in Equation 6 can be expressed as

Γ = 2

{∑
i∈c

logPi(xi|θ̂c) +
∑
i∈c

logPi(xi|θ̂c)−
I∑

i=1

logPi(xi|θ̂)

}
·
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Sinharay (2017a) suggested the signed likelihood ratio statistic given by

Ls =


√

Γ if θ̂c ≥ θ̂c,

−
√

Γ if θ̂c < θ̂c

for detecting item preknowledge. The statistic Ls has an asymptotic standard normal

distribution (e.g., Sinharay, 2017a; Cox, 2006, p. 104) under the null hypothesis of no item

preknowledge. A large value of Ls leads to the rejection of the null hypothesis of no item

preknowledge.

Sinharay (2017a) and Sinharay (2017b) demonstrated that the Ls statistic performed

quite well in comparison to existing statistics in detecting item preknowledge.

Method: A New Statistic Based on Response Times

If some examinees benefited from item preknowledge, it is likely that they would

perform faster on the compromised items in comparison to the non-compromised items.

Kasli and Zopluoglu (2018) and Toton and Maynes (2019) analyzed real data sets involving

item compromise and found that those with item preknowledge answered the compromised

items faster than the rest. Consequently, the speed parameter (τ) of the examinees with

item preknowledge would not be equal to their original speed parameters, but would

be larger on average than the latter on the compromised items. This phenomenon is

very similar to item preknowledge leading to examinee-ability estimates being larger on

the compromised items than on non-compromised items (e.g., Sinharay, 2017a). Thus,

it is possible to determine whether examinees benefited from item preknowledge by

examining whether their speed parameters are larger on the compromised items than on

the non-compromised items. Let τc and τc respectively denote an examinee’s true speed

parameters on the compromised and non-compromised items, respectively and let τ̂c and τ̂c

denote their MLEs. Let τ̂ denote the MLE of the examinee’s true speed parameter based

on all the I items on the test.

One way to detect item preknowledge using RTMs is to test the null hypothesis

H0 : τc = τc versus the alternative hypothesis H1 : τc > τc. It is reasonable to test this
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hypothesis using the likelihood ratio test (e.g., Cox & Hinkley, 1974; Lehmann & Romano,

2005; Rao, 1973) or LRT given the satisfactory performance of LRTs in a wide variety of

hypothesis testing problems (e.g., Casella & Berger, 2002, p. 374). The LRT statistic for

testing H0 : τc = τc versus the alternative hypothesis H ′1 : τc 6= τc is given by

Λ = 2[`(τ̂c; yi, i ∈ c) + `(τ̂c; yi, i ∈ c)− `(τ̂ ; yi, i = 1, 2, . . . , I)], (7)

where, for example,

`(τ̂c; yi, i ∈ c) = log-likelihood of the log-response times on the items in c, computed at τ̂c·

For the LNMRT (van der Linden, 2006), one can express `(τ̂c; yi, i ∈ c) as

`(τ̂c; yi, i ∈ c) =
∑
i∈c

[
−1

2
log(2π) + log(αi)−

α2
i

2
(yi − βi + τ̂c)

2

]
=

∑
i∈c

[
−1

2
log[2π] + log(αi)−

α2
i

2
τ̂ 2c −

α2
i

2
(yi − βi)2 + τ̂cα

2
i (yi − βi)

]
=

∑
i∈c

[
−1

2
log[2π] + log(αi)

]
− τ̂ 2c

∑
i∈c

α2
i

2
−
∑
i∈c

α2
i

2
(yi − βi)2 + τ̂c

∑
i∈c

α2
i (yi − βi)

=
∑
i∈c

[
−1

2
log[2π] + log(αi)

]
− τ̂ 2c

∑
i∈c

α2
i

2
−
∑
i∈c

α2
i

2
(yi − βi)2 + τ̂ 2c

∑
i∈c

α2
i

=
∑
i∈c

[
−1

2
log[2π] + log(αi)

]
+ τ̂ 2c

∑
i∈c

α2
i

2
−
∑
i∈c

α2
i

2
(yi − βi)2, (8)

where the penultimate equality holds because of Equation 2.

Then one obtains from Equation 7 that

Λ = τ̂ 2c
∑
i∈c

α2
i + τ̂ 2c

∑
i∈c

α2
i − τ̂ 2

I∑
i=1

α2
i · (9)

To test H0 : τc = τc versus H1 : τc > τc, one can use the signed likelihood ratio statistic that

is given by

Λs =


√

Λ if τ̂c ≥ τ̂c,

−
√

Λ if τ̂c < τ̂c
(10)

(Cox, 2006; Sinharay, 2017a). The appendix includes an R (R Core Team, 2019) function

for computing Λs from a data set.
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It can be shown that for this hypothesis-testing problem, the Λs statistic is equal to the

Wald test statistic given by

Z =
τ̂c − τ̂c√

Var(τ̂c) + Var(τ̂c)
=

τ̂c − τ̂c√
[
∑

i∈c α
2
i ]
−1 + [

∑
i∈c α

2
i ]
−1
·

Noting that the log-likelihood of the response times of a person is quadratic in the speed

parameter (see Equation 8), the equality of Λs and Z agrees with the result of Buse (1982)

that for quadratic log-likelihoods, the Wald test and the LRT are identical.

The statistic Λs follows the standard normal distribution for large c and c under the

null hypothesis of no item preknowledge (e.g., Cox, 2006, p. 104). In this case, it is possible

to obtain a distributional result that is more general. Because Λs is identical to Z in this

case, and because Z is a linear combination of normal random variables (see Equation 2)

divided by its standard deviation (Equation 3) under the null hypothesis, Z and hence Λs

follows the standard normal distribution under the null hypothesis even when the test is

not long.

Simulation Based on Real Data

It is not known whether any RTM perfectly reflects reality or fits real data adequately.

For example, even though the LNMRT is quite popular, researchers such as Bolsinova and

Tijmstra (2018) and Ranger (2013) pointed to some limitations of the model. Therefore,

to examine the properties of Λs, simulations based on real data were used rather than

simulations based on data generated from a RTM. For comparison purposes, the properties

of χpf and the Bayesian residuals of van der Linden and Guo (2008) were also examined.

Simulation Design

The starting point of this examination was a real data set that consisted of the response

times of more than 18,000 test takers on a computerized test for English proficiency. The

test includes 34 operational items that are all multiple-choice. The mean response times

on the operational items were between 21 and 52 seconds and the mean per-item response
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times of the persons on the operational items were between 9 and 53 seconds. There were

no evidence of item compromise or item preknowledge for the test. The item parameters of

the LNMRT were estimated once from the whole data set (of 18,000 test takers) using the

R package lavaan (Rosseel, 2012) and then these estimates were used in the next steps of

the study. The R codes for estimating the item parameters for the data set using the lavaan

package are included in the appendix. The item fit statistic for the LNMRT of Glas and

van der Linden (2010) was statistically significant for 3 out of 34 items, or 8.8% items at

5% level, which indicates that the LNMRT shows some misfit, but is not too unreasonable

for these data.

Then the following steps were performed 100 times for different choices of the size of

the set of compromised items, c (2, 4, 7, or 10 items), and a quantity d (with values 0, 1, 2,

or 3) that determines the speed of those with preknowledge on the compromised items:

1. Randomly select 10,000 examinees from the original data set.

2. From the 10,000 examinees, randomly identify 1,000 examinees who would be treated

as those with item preknowledge; the remaining 9,000 examinees would be treated as

not having item preknowledge.

3. Randomly choose the items that would constitute c (that is, from the 34 items in the

data set, choose the 2, 4, 7, or 10 items that would be treated as compromised).

4. For each item in c and each examinee with item preknowledge, reset the logarithm of

the response time to be its actual value minus d times the standard deviation (over all

examinees) of the logarithm of the response times for the item. This step artificially

creates a data set with item preknowledge.

5. Compute the MLEs of the person speed parameters (τc, τc, and τ) from the (changed)

data set.

6. Compute the Λs and χpf statistics and the Bayesian residuals for all the examinees in

the (changed) data set using the person parameter estimates computed in the previous
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step and using Equations 10, 4, and 5 above and Equations 14 and 15 of van der Linden

(2006).

Note that when d is 0, the response times are actually not changed in Step 4 and the

statistics are computed from data sets that actually do not include any preknowledge.

The simulations for these cases allowed us to approximate the Type I error rate of the

statistics as the proportion of all examinees that had a significant value of the statistic. The

simulations for the cases with d > 0 allowed us to approximate the power of the statistics

as the proportion of examinees with item preknowledge that had a significant value of the

statistic.

Results from the Simulation

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Value

D
en

si
ty

Λs

N(0, 1)

Figure 1: The kernel-density estimate of the distribution of Λs for the case of 10 compromised

items.

Figure 1 shows (using a dashed line) the kernel-density estimate2 of the distribution

2The figure was created using the function “density” in the R software (R Core Team, 2019).
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of the values of Λs for the simulation case of d=0 for the case of 10 compromised items.

The theorized standard normal null distribution is also shown (using a solid line) in the

figure for convenience. The distribution of the values of Λs is very close, especially at the

right tail, to the corresponding theorized null distribution. Thus, the standard normal null

distribution of Λs seems to adequately hold for data that involve no preknowledge.

Table 1: The Type I Error Rates at 1% Level.

Statistic 2 items 4 items 7 items 10 items
χpf 0.063 0.063 0.063 0.062

Bayesian residuals 0.017 0.028 0.048 0.055
Λs 0.005 0.006 0.009 0.008

Table 1 shows the Type I error rates at 1% level of χpf , Bayesian residuals, and Λs for

different numbers of compromised items. Wollack, Cohen, and Eckerly (2015) commented

that methods for detection of test fraud are typically applied with conservative levels—that

is why results are reported for 1% level rather than the customary 5% level. The Type I

error rates of χpf are considerably larger than the nominal level. Presumably, this is due to

a general misfit of the LNMRT to the data as well as the presence of person misfit other

than item preknowledge in the data set. The Type I error rates of the Bayesian residuals

are also inflated. On the contrary, the Type I error rates of Λs are always smaller than the

nominal level, which provides favorable evidence for Λs given that the data used to compute

these rates are not simulated, but real data; the rates become closer to the nominal level as

the number of compromised items increases.

Figure 2 shows the power at 1% level of Λs, Bayesian residuals, and χpf , to detect

item preknowledge for different combinations of values of number of items compromised

and d. The four panels of the figure show the power of the statistics when the number

of compromised items (shown in the title of each panel) is 2, 4, 7, and 10, respectively.

In each panel, the value of d is shown along the X-axis and the power is shown along the

Y-axis. The power for Λs, Bayesian residuals, and χpf are shown using hollow circles,

hollow triangles, and plus signs respectively, joined by a solid line.
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Figure 2: The power of the statistics at 1% level.

Figure 2 shows that the power of Λs is considerably larger than that of χpf and the

Bayesian residuals. The smaller power of χpf is expected given the common knowledge that

person-fit statistics have small power against specific alternatives (e.g., Glas & Dagohoy,

2007; Sinharay, 2017a). The figure also shows that the power of each statistic increases as

the number of compromised items increases and as d increases. The power of Λs is larger

than 0.8 when d is 2 or 3 and the number of compromised items is 4 or larger.
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Real Data Example

Let us consider data from two forms of a non-adaptive licensure test. The data

sets (or other data sets similar to these two) were analyzed in several chapters of Cizek

and Wollack (2017) and also in Fox and Marianti (2017) and Sinharay (2017a). Each test

form includes 170 operational items. Item scores and response times were available for

1,624 and 1,629 examinees, respectively, for Forms 1 and 2. The licensure organization who

provided the data identified as compromised 63 and 61 items, respectively, on the forms.

The organization also flagged 41 and 42 examinees (among the above-mentioned 1,624 and

1,629 examinees), respectively, as possible cheaters from a variety of statistical analysis and

a rigorous investigative process that brought in other information; given the rigor of the

investigative process, these examinees will be treated as truly aberrant.

The LNMRT was fitted to the data sets (and its item parameters estimated) using the

R package lavaan (Rosseel, 2012). The item fit statistic of Glas and van der Linden (2010)

was statistically significant for 7.6% items at 5% level, which indicates that the LNMRT

fits these data not too poorly although there is some evidence of misfit of the model. Then

the values of χpf (Marianti et al., 2014), Bayesian Residuals (van der Linden & Guo, 2008),

and Λs were computed from the two data sets. In addition, because the item scores were

available for the data sets, the unidimensional two-parameter logistic model was fitted to

the item scores using the R package mirt (Chalmers, 2012) and the Ls statistic (Sinharay,

2017a) was computed for all the examinees.

Table 2: The Percent of Examinees for Whom χpf , Bayesian Residuals, Λs, and Ls Were
Significant for the Real Data.

Level Form 1 Form 2
Not Flagged Flagged Not Flagged Flagged

χpf ei Λs Ls χpf ei Λs Ls χpf ei Λs Ls χpf ei Λs Ls

0.1% 10 2 1 0 27 5 22 10 10 2 2 1 17 6 19 14
1% 15 2 3 3 29 10 29 19 14 1 3 3 17 7 21 19

The rounded percentages of examinees for whom χpf , the Bayesian Residual (ei), Ls,

and Λs were significant at significance levels of 0.1% and 1% for the two forms are provided
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in Table 2. For each form, the first four columns include the percents significant among the

examinees who were not flagged by the licensure organization and the last four columns

include the percents significant only among the 41 or 42 examinees who were flagged

as possible cheaters by the licensure organization; thus, for example, the percent 27 in

sixth column of the first row of numbers denotes that among the 41 examinees flagged by

the licensure organization, χpf was significant at 0.1% level for 11 examinees (note that

11/41≈0.27).

Table 2 shows that the values of percent significant among the non-flagged examinees

for χpf are much larger than those for the other two statistics and also larger than the

significance level. This finding is in agreement with the inflated Type I error rate of χpf in

the simulation studies described earlier.
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Figure 3: A scatter-plot of Λs versus Ls for the 41 flagged examinees for Form 1.

In Table 2, the percents of significant values for Λs are close to those for Ls and the

Bayesian residuals for the non-flagged examinees, but are considerably larger than those for

Ls and the Bayesian residuals for the flagged examinees. Thus, Λs seems to provide useful
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information that is not provided by other existing statistics for the data.

Further insight is provided by Figure 3 that shows the values of the Λs statistic (along

the Y-axis) versus those of the Ls statistic (along the X-axis) for the 41 examinees who

were flagged by the licensure organization for Form 1. Each circle (either hollow or filled

in gray) in the figure shows the combination of values of Ls and Λs for one examinee.

For example, the topmost circle (filled in gray) in the plot corresponds to an examinee

for whom Ls and Λs are 1.99 and 6.13, respectively. Horizontal and vertical dashed lines

are shown at the 99.9th percentile of the standard normal distribution; any value larger

than this quantile is statistically significant at 0.1% significance level. The figure shows

that for the flagged examinees, the two statistics are positively correlated (the correlation

coefficient is 0.48)3, indicating that among the flagged examinees, those who performed

better on the compromised items were also faster on those items in general. The value of

Λs is significant at 0.1% level for nine examinees (those corresponding to the points above

the horizontal dashed line). Interestingly, each of these nine examinees performed better

on the compromised items than on the non-compromised items, which is evident from Ls

being positive for all of them. Also, Ls is not significant at 0.1% level for six of these

nine examinees (corresponding to the six circles filled in gray)—so Λs provides additional

evidence (over and above Ls) of item preknowledge for these six examinees. The fact that

only one among Λs and Ls is significant for a few flagged examinees (note the one flagged

examinee for whom Ls is significant while Λs is not) indicates that each of Λs and Ls

provides some unique information regarding item preknowledge—so using both of them

may be a prudent strategy in investigations of item preknowledge.

In Table 2, the percents significant for each statistic are much larger among the

examinees flagged by the licensure organization than among those not flagged—this result

provides some evidence that the statistics are somewhat successful—they are significant

at a larger rate among the examinees who are truly aberrant. Note that item compromise

was not the only reason of flagging by the licensure organization; for example, researchers

3The two statistics are positively correlated for the non-flagged examinees (correlation=0.20) and whole

sample (correlation=0.28) as well.
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such as Zopluoglu (2017) found the values of answer-copying statistics to be statistically

significant for some of these flagged examinees. Therefore, percents considerably smaller

than 100 for the flagged examinees in Table 2 is not a severe limitation of the statistics.

Conclusions and Recommendations

This paper suggested a frequentist approach to detect item preknowledge based on

response times. The distribution of the suggested statistic under the null hypothesis is

proved to be a standard normal distribution irrespective of the test length and the number

of compromised items. Simulations based on real data show that the Type I error rate of

the new statistic is close to the nominal level and the power of the statistic is larger than

that of existing statistics. An encouraging aspect of the new statistic is that the statistic

appears to have satisfactory power in several cases even for the conservative significance

level of 1% (see Figure 2). The new statistic can be calculated very easily, as is clear from

the computer code that is provided—so the statistic may become useful to those interested

in detection of test fraud.

Though the new statistic seems promising in detecting test fraud, it should not be used

as a sole measure to detect test fraud. Experts such as van der Linden and Guo (2008)

suggested using statistics based on response times to detect aberrant examinee behavior as

a part of quality control and the new statistic can be used in the same manner. van der

Linden and Guo (2008) also warned against the mechanical use of statistics based on

response times in high-stakes contexts such as detection of cheating because of the presence

of false alarms of these statistics. A wise strategy in high-stakes contexts would involve

the use of the new statistic and/or other statistics for detection of test fraud as secondary

evidence, as recommended by experts such as Hanson, Harris, and Brennan (1987).

The statistic Λs can only be applied when only a subset of all the items is compromised.

Thus, the statistic cannot be applied when all or almost all items are compromised—the

only (suboptimal) solution in such a case is to compare the performance of the examinees

to the performance predicted from covariates such as scores on other tests. In addition,

Λs can only be applied when the set of compromised items is known; researchers such as
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Drasgow et al. (1996), Sinharay (2017a), Shu et al. (2013), and van der Linden and Guo

(2008) considered this case.4 Typically, such a case arises when the test administrators

become aware after an administration about some items possibly being compromised (one

example of this is that the test administrators come across a website where some test items

have been posted). Cizek and Wollack (2017, p. 14) and Eckerly, Smith, and Lee (2018)

described real data sets where the set of compromised items was known. The case of known

compromised items may also arise when the test administrators have applied a method for

detection of compromised items (e.g., that suggested by Veerkamp & Glas, 2000) to flag

several items that may have been compromised. In cases when the set of compromised

items is not precisely known, Λs can be applied if the examinees were also administered a

set of items that are new (that is, they were not administered in the past), as was the case

in the study of item compromised by Smith and Davis-Becker (2011)—the old and new

items would respectively play the roles of the compromised and non-compromised items.

Item parameters were assumed known (and estimated from a previous calibration)

in the derivation of the distribution of the new statistic and in the simulation and no

adjustment is made to the distribution of Λs to account for the uncertainty in the estimates

of the item parameters. This assumption is common in various person-level analysis

such as erasure analysis (e.g., Wollack et al., 2015), person-fit analysis (e.g., Snijders,

2001), and detection of item preknowledge using item scores (e.g., Sinharay, 2017a). In

addition, this assumption of known item parameters is reasonable in several contexts

such as in computerized adaptive testing where item parameters are assumed known (and

estimated from a previous calibration) and in cases where the proportion of examinees

with item preknowledge is small. However, if the proportion of examinees with item

preknowledge is large, then the assumption may lead to undesirable consequences regarding

detection of item preknowledge. For example, for a non-adaptive test for which the item

parameters are estimated from the examinee sample, the time-intensity parameters of the

compromised items would be substantially underestimated if a large number of examinees

4McLeod et al. (2003) and Wang et al. (2018) considered the case when the set of compromised items is

unknown.
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have preknowledge of those items because they would answer those items faster. As a

consequence, the speed-parameter estimate based on the compromised items (τ̂c) would be

substantially underestimated for those with preknowledge and without preknowledge—this

underestimation would lead to smaller power and a false alarm rate that is smaller than

nominal level. This phenomenon was verified in an additional set of simulations in which

the item parameters were estimated between the fourth and fifth steps of the above

simulation. In these additional simulations,5 the comparative performance of the statistics

was very similar to those reported in this paper, but the false alarm rate of Λs was smaller

than the nominal level and the power of the statistic was smaller than those reported in

Figure 2. One possible solution in the face of a severe extent of item preknowledge involves

the four-step purification process of (a) estimating item parameter from the full sample,

(b) computing Λs for the full sample using item-parameter estimates computed in the

previous step, (c) reestimating the item parameters from the subset of the sample that

does not have significant values of Λs, and (d) computing Λs for the full sample using

the item-parameter estimates computed in the previous step. Such procedures have been

successfully applied in other types of person-level analysis such as person-fit analysis (e.g.,

Patton, Cheng, Hong, & Diao, 2019). However, when the percent of examinees benefiting

from item preknowledge is very large (say, larger than 50%), then even a purification would

not work well and retesting all examinees would be the only reasonable choice. However,

tests for which a large proportion of examinees benefited from item preknowledge are very

rare, if not unheard of. The effect of the assumption of known item parameters on the

properties of the new statistic and new approaches for accounting for the uncertainty of the

item parameters in the distribution of the new statistic may be explored in future research.

The statistic Λs is expected to have small power when the number of compromised

items is small because the estimate of the examinee speed parameter for the compromised

items (τ̂c) would have a large variance in this case. Overall, Table 3 reflects a rough guideline

about the performance of Λs for different percentages of items that are compromised and

5The results from these additional simulations are not reported in this paper and can be obtained from

the authors upon request.
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different percentages of examinees who have preknowledge for tests in which the item

parameters are estimated from the examinee sample. The table shows that the statistic

Table 3: A Rough Guide to the Application of Λs.

% Items % of Examinees with Preknowledge
Compromised Small Moderately large Large

Small Low power Low power Unreliable result
Moderately large Large power Low power Unreliable result

Large Low power Unreliable result Unreliable result

should have best performance in the form of large power when the percent of examinees

with preknowledge is small and the percent of items that are compromised is moderately

large. In four cases, the statistic is expected to have low power due to reasons like too few

compromised items leading to inaccurate estimation of τ . In four other cases including

three with a large percent of examinees with preknowledge, the statistic would lead to

unreliable results and should not be used. If accurate estimates of item parameters are

available (for example, on a computerized adaptive test), then the performance of Λs would

not depend on the percent of examinees with preknowledge and would only depend on

the percent of compromised items an examinee answers in a manner shown in the second

column of Table 3.

The results on the distribution of Λs were derived under the assumption that the

LNMRT fits the data adequately. Therefore, one should assess the overall fit of the LNMRT

to the data set before applying the Λs statistic. If the LNMRT does not fit the data

overall (due to, for example, a violation of the local independence assumption), then the

null distribution of Λs may not be standard normal and the use of the statistic could lead

to erroneous conclusions. The percentage of standardized residuals (van der Linden & Guo,

2008) over all examinee-item combinations and the item fit statistic of Glas and van der

Linden (2010) may be used to assess the fit of the LNMRT before computing Λs for the

data. However, the simulations based on the real data showed that the distribution of Λs

statistic under no item preknowledge was close to the standard normal distribution for a

real data set even though the LNMRT showed a small extent of misfit to the data—this
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result shows that Λs may be robust to model misfit that is typically observed for real data.

This paper has several limitations and, consequently, leaves plenty of room for future

research. First, the suggested statistic should be computed for more simulated and real

data sets. Second, only the LNMRT was considered in this paper—extension of the

suggested statistic to other types of RTMs would be a potential area of future research. It

is anticipated that for other RTMs, the suggested statistic would have a standard-normal

distribution under the null hypothesis only for long tests because of the central limit

theorem. Third, though the simulation study provided some evidence that the new statistic

is robust to misfit of the LNMRT, it is possible to further examine the consequences of

misfit of the LNMRT on the properties of the new statistic in future research. Fourth, this

paper only deals with the case of a known set of compromised items. Extension of the

suggested statistic to the case of unknown compromised items is a potential area for further

research. Finally, extension of the suggested approach to detect item preknowledge using

both response times and item scores would be a possible area for further research. Sinharay

and Johnson (2019) made some progress along this line of research.
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Appendix: R Code to Estimate Item Parameters and Compute the New

Statistic

# R Subroutine to estimate item parameters of the LNMRT; ltimes is the matrix of

# log-response times

library(lavaan)

ly <- data.frame(ltimes)# ltimes (of dimension nxI) includes log-response times

I=34#I, the number items, is 34 for the data set in the Simulation Study

model=paste("f1=~",paste0("a*X",1:(I-1),"+",collapse=""),paste("a*X",I,sep=""))

fit <- cfa(model, data = ly, meanstructure = TRUE, auto.var= TRUE)

pars <- coef(fit)#pars[35:69], sqrt(1/pars[1:34]), and pars[35] include

# estimated beta’s, alpha’s, and sigma_squared

# R Subroutine to compute the new statistic; ltimes is the matrix of

# log-response times, comp is the set of compromised items, alpha and

# beta are item parameters of the log-normal response time model

Lambdas=function(ltimes,comp,alpha,beta){

ncomp=setdiff(1:ncol(ltimes),comp)

tcomp=PPest(alpha[comp],beta[comp],ltimes[,comp])

tncomp=PPest(alpha[ncomp],beta[ncomp],ltimes[,ncomp])

tall=PPest(alpha,beta,ltimes)

return((tcomp-tncomp)/sqrt(1/sum((alpha[comp])^2) + 1/sum((alpha[ncomp])^2)))}

# PPest is the subroutine to compute estimated person parameters

PPest=function(alpha,beta,ltimes)

{tauhat=rep(sum(alpha*alpha*beta)/sum(alpha*alpha),nrow(ltimes))

-ltimes%*%(alpha*alpha)/(sum(alpha*alpha))

return(tauhat)}
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