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Abstract. This paper describes an initial pilot study of Rimac, a natural-language 

tutoring system for physics. Rimac uses a student model to guide decisions about 

what content to discuss next during reflective dialogues that are initiated after 

students solve quantitative physics problems, and how much support to provide 

during these discussions⎯that is, domain contingent scaffolding and instruc-

tional contingent scaffolding, respectively. The pilot study compared an experi-

mental and control version of Rimac. The experimental version uses students’ 

responses to pretest items to initialize the student model and dynamically updates 

the model based on students’ responses to tutor questions during reflective dia-

logues. It then decides what and how to discuss the next question based on the 

model predictions. The control version initializes its student model based on stu-

dents’ pretest performance but does not update the model further and assigns stu-

dents to a fixed line of reasoning level based on the student model predictions. 

We hypothesized that students who used the experimental version of Rimac 

would achieve higher learning gains than students who used the control version. 

Although we did not find a significant difference in learning between conditions, 

the experimental group took significantly less time to complete the pilot study 

dialogues than did the control group. That is, the experimental condition led to 

more efficient learning, for both low and high prior knowledge level learners. We 

discuss this finding and describe future work to improve the tutor’s potential to 

support student learning. 

Keywords: Dialogue-Based Tutoring Systems, Student Modeling, Contingent 

Scaffolding. 

1 Introduction 

The key features of instructional scaffolding, as described by [12], include contingency, 

fading and, correspondingly, the gradual transfer of responsibility for learning and suc-

cessful performance to the learner. “Contingency” refers to the adaptive nature of scaf-

folding and is believed to be its core feature, from which the other two features stem. 

Instructors dynamically adjust their degree of control over the learning task according 
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to their diagnosis of the student’s current level of understanding or performance [14]. 

“Fading” refers to the gradual release of this support so that scaffolding can achieve its 

ultimate aim: to shift responsibility for successful performance to the student.  

Wood and Wood [14] distinguished between three types of contingency during hu-

man tutoring sessions: temporal, domain, and instructional contingency (see also 13). 

Temporal contingency is concerned with deciding when to intervene versus letting the 

learner struggle for a while or request help. Domain contingency is concerned with 

choosing appropriate content to address during an intervention, while instructional con-

tingency is concerned with deciding how to address focal content—for example, in how 

much detail and through which pedagogical strategies (e.g., modeling, hinting, explain-

ing, question asking)? 

For the Rimac natural-language tutor [1, 2, 5, 9], we developed an Instructional Fac-

tors student model [4] that dynamically updates throughout the tutorial dialogue in or-

der to represent the student’s current level of understanding.  The student model is used 

during decision-making about domain and instructional contingency.  We compared 

this version of Rimac to a version that uses a static representation of the student’s un-

derstanding based solely on the student’s pretest performance, i.e., to a version that uses 

an array of knowledge components initialized with pretest scores as a student model, to 

make decisions about domain and instructional contingency.  We predicted that class-

room students who interacted with the version of Rimac that incorporates the adaptive 

student model would show greater learning gains than those who interacted with a ver-

sion of Rimac that incorporates a simple static representation of a student’s level of 

understanding.  A student model that reflects students’ progress should lead to more 

appropriate decisions regarding domain and instructional contingency. To our 

knowledge, this is the first real-time test of an Instructional Factors Model (IFM) being 

used by an ITS to tutor students in the classroom. 

2 Rimac: an adaptive natural-language tutoring system 

Rimac is a dialogue-based tutoring system that engages high school students in concep-

tual discussions after they solve quantitative physics problems (e.g., [1, 2, 10]). These 

dialogues are developed using an authoring framework called Knowledge Construction 

Dialogues (KDCs) (e.g., 6, 7, 11).  KCDs present a series of carefully ordered questions 

known as a Directed Line of Reasoning (DLR) [6], which guide students in responding 

to complex conceptual questions (reflection questions, or RQs). When the student 

makes an error at a particular step in the DLR, the tutor initiates a remedial sub-dialogue 

to address that error. Figure 1 shows the system’s interface which presents, in the left 

pane, the problem statement along with a sample solution to a quantitative problem that 

students watch as a video and, in the right pane, an excerpt of a reflective dialogue 

between the system and the student which addresses conceptual knowledge associated 

with the quantitative problem. 

Rimac adapts its instruction to students’ ever evolving knowledge by incorporating 

a student model that is updated as the student engages in the dialogues and by imple-

menting policies that, with the help of the student model predictions, allow it to choose 
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the next question to ask at the appropriate level of granularity and with adequate sup-

port. The granularity level refers to domain contingency⎯that is, how much content is 

explicitly discussed with the student (e.g. discuss all the steps in the reasoning vs skip 

over some steps that the student can likely infer on her own). Adequate support refers 

to instructional contingency⎯that is, how much detail should be provided in questions 

and hints about the selected content. 

 

Fig. 1. Rimac interface. Problem statement shown in upper left pane, worked example video in 

lower left pane, and dialogue excerpt in right pane. 

An individual learner’s student model is built in two steps: first, using the results of the 

student’s pretest, a clustering algorithm classifies the student as low, medium, or high. 

The purpose of this initial clustering is to increase the accuracy of the student model’s 

predictions. Second, the student is assigned a cluster-specific regression equation that 

is then personalized with the results of the student’s pretest. The regression equation 

assigned to the student represents an implementation of an Instructional Factor Analysis 

Model (IFM), as proposed by [4]. This student model uses logistic regression to predict 

the probability of a student answering a question correctly as a linear function of the 

student’s proficiency in the relevant knowledge components (KCs). Additionally, as 

the student progresses through the dialogues, her student model is dynamically updated 

according to the correctness of her responses to the tutor’s questions [5]. 

To be able to vary the level at which the tutorial discussions are conducted, for each 

reflection question (RQ), we developed dialogues at three different levels of 
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granularity: an expert level (P⎯primary) which only includes the essential steps of the 

reasoning, a medium level (S⎯secondary), and a novice level (T⎯tertiary) which in-

cludes more basic knowledge such as definitions of concepts and laws. Figure 2 shows 

a graphic representation of an excerpt of a line of reasoning (if the net force on an object 

is zero then the object’s velocity is constant) at three different levels of granularity. 

 

 

Fig. 2. Graphical representation of the line of reasoning Fnet=0 → v=constant with different 

levels of granularity. Nodes represent questions the tutor could ask. Arcs represent the knowledge 

(KCs) required to make the inference from one node to the next. 

After the tutor asks the student a reflection question, it first needs to decide if the 

student is knowledgeable enough to skip the discussion all together. To this end, if the 

student answers the reflection question correctly, the tutor consults the student model 

and if the student is predicted to know the relevant knowledge pertaining to the RQ 

with a probability of 80% or higher, she is considered to have mastered the target 

knowledge and is allowed to skip the RQ. On the other hand, if the student either does 

not answer the RQ correctly or has not mastered its relevant knowledge, the tutor en-

gages in a reflective dialogue with the learner. At each step of this discussion, the tutor 

needs to decide at what level of granularity it will ask the next question in the line of 

reasoning (LOR) (or in a remedial sub-dialogue if the previous question was answered 

incorrectly) in order to proactively adapt to the student’s changing knowledge level. It 

performs this adaptation by following policies aimed at driving the student to reason in 

an expert-like manner while providing adequate scaffolding. Hence, the tutor will 

choose a question in the highest possible granularity level that it deems the student will 

respond to correctly or that it perceives will be in the student’s zone of proximal devel-

opment (ZPD)⎯“a zone within which a child can accomplish with help what he can 

later accomplish alone” [3].  

To make this choice, Rimac consults the student model, which predicts the likeli-

hood that the student will answer a question correctly. The tutor interprets this proba-

bility in the following way: if the probability of the student responding correctly is 

higher than 60% then the student is likely to be able to respond correctly, and if it is 

lower than 40% the student is likely to respond incorrectly. However, as the prediction 

gets closer to 50%, there is greater uncertainty since there is a 50% chance that she will 

be able to answer correctly and a 50% chance that she will answer incorrectly. This 
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uncertainty on the part of the tutor about the student’s ability could indicate that the 

student is in her ZPD with regards to the relevant knowledge. Hence the tutor perceives 

the range of probabilities between 40% and 60% as a model of the student’s ZPD [5]. 

Thus, the tutor will choose to ask the question in the highest possible level of the LOR 

that has a predicted probability of at least 40% of being answered correctly [2]. The 

exception to this policy is for questions belonging to the expert level LOR. For those 

questions, the tutor takes a more cautious approach and only asks them if it is quite 

certain that the student will answer them correctly, i.e., if the predicted probability of 

the student answering the expert level question is equal to or greater than 60%.  

The expression of each question within the LOR is adapted to provide increased 

support as the certainty of a correct answer decreases [9]. For example, the tutor can 

ask a question directly with little support such as, “What is the value of the net force?” 

or with more support by expressing it as “Given that the man’s acceleration is zero what 

is the value of the net force applied on the man?” In the latter case, the object is named 

concretely and a relevant hint (“Given that the man’s acceleration is zero”) is included, 

making this second version of the question less cognitively demanding. 

3 Testing the system 

3.1 Conditions 

Two versions of the system were developed to use as control and experimental con-

ditions. The control version used a “poor man’s” student model that consisted of an 

array of KCs initialized with a score based on the student’s pretest performance and 

that score did not vary throughout the study. Additionally, when students started a re-

flection question, they were assigned to a fixed LOR level (expert, medium, or novice) 

based on the correctness of their response to the RQ and on their KC scores according 

to the algorithm shown in Figure 3. 

The experimental condition used the adaptive version of the system described in 

previous sections, which embeds a student model that updates its estimates as the dia-

logue progresses and implements domain and instructional contingent scaffolding. 

3.2 Participants 

Students from a high school in Pittsburgh, Pennsylvania, in the U.S. were recruited to 

participate in the study. They were taking a college preparatory class (though not honors 

or Advanced Placement) that covered the topics discussed in the system. Students were 

randomly assigned to the control and experimental conditions and used the system as 

an in-class homework helper, hence the system was used after the material had been 

covered in class. A total of 73 students participated in the study; N=42 were in the 

control condition and N=31 in the experimental condition. The imbalance in the number 

of participants was due to students missing school and hence not completing the study 

(a t-test revealed no pretest difference between students who completed the study and 

those that did not, p=.471). 
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3.3 Materials 

Using the experimental and control versions of the system, students solved 5 problems 

with 3-5 reflection questions per problem on the topic of dynamics. A pretest and iso-

morphic posttest (i.e., the pretest and corresponding posttest items only differed in their 

cover stories) were developed. The tests consisted of 35 multiple-choice test items that 

were presented online and automatically graded, though students did not receive feed-

back on the correctness of their answers. The test items were conceptual questions that 

tested the KCs associated with tutor’s reflection questions but were not similar to the 

homework problems which required quantitative solutions as seen in the sample prob-

lem solution in Figure 1. Students were given 30 minutes to complete the tests.  

 

 
 

 Relevant KCs 
scores >=80%? 

 Relevant KCs 
scores >=70%? 

 Relevant KCs 
scores >=40%? 

 RQ answered 
correctly? 

Place in expert level LOR. 
Questions are asked with 

low support. 

Place in novice level LOR. 
Questions are asked with 

high support. 

Place in medium level LOR. 
Questions are asked with 

medium support. 

Skip RQ 

Place in novice level LOR. 
Questions are asked with 

high support. 

NO 

NO 

NO 

NO 

YES 

YES 

YES 

YES 
 

Fig. 3. Flow chart showing behavior of control condition 

3.4 Protocol 

Students started by taking the online pretest. After the pretest, they interleaved solving 

homework problems on paper with using the system in the following way: First, stu-

dents solved on paper the quantitative homework problem presented by the system; 

second, they viewed a video of a sample solution to that problem on the system as 

feedback (the video contained no discussion of conceptual material); third, students 

engaged in conceptual dialogues with the tutorial system which addressed the concep-

tual aspects of the quantitative problem they had just attempted to solve. After all prob-

lems were completed, students took the online posttest and a short satisfaction survey. 

The entirety of the study was performed in class over the course of 4 days. All students 

took the pretest on Day 1 and the posttest on Day 4 and worked on the homework 

problems at their own pace on Days 1-3. 
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3.5 Results 

Our main hypothesis is that students in the experimental condition would learn more 

than those in the control condition due to the system’s proactive adaptation of scaffold-

ing to students’ evolving needs. To test this hypothesis, we started by evaluating 

whether students in each condition learned from interacting with the system. Then we 

compared the mean learning gains between conditions and checked for an aptitude 

treatment interaction. Finally, we compared time on task between conditions. 

Did students in each condition learn from interacting with the system? To answer 

this question a paired-samples t-test was performed comparing the mean scores of the 

pretest to those of the posttest in each condition. The tests revealed a statistically sig-

nificant difference between mean pretest scores and mean posttest scores for students 

in both conditions suggesting that students learned from interacting with the system. 

Table 1 shows the results. 

Table 1. Pretest vs. Posttest scores 

Condition 
Pretest 

Mean SD 

Posttest 

Mean SD 
t(n) p 

Cohen’s 

d 

Experimental 
M=.505 

SD=.093 

M=.592 

SD=.091 
t(30)=6.540 <.001 1.2 

Control 
M=.503 

SD=.091 

M=.615 

SD=.089 
t(41)=7.565 <.001 1.2 

Did students in one condition learn more than in the other? To investigate whether 

one version of the system fostered more learning than the other, we first performed an 

ANCOVA with Condition as fixed factor, prior knowledge (as measured by pretest) as 

covariate, and Posttest as the dependent variable. The results of this test suggest that 

condition had no statistically significant effect on posttest when controlling for the ef-

fects of prior knowledge, F(1,70)=1.770, p=.19 Additionally, we performed an inde-

pendent samples t-test comparing the mean gain from pretest to posttest between con-

ditions. No statistically significant difference was found between the mean gain of the 

experimental condition (M=.087, SD=.074) and the mean gain of the control condition 

(M=.112, SD=.096), t(71)=1.226, p=.22. The results of the t-test and ANCOVA suggest 

that students in both conditions learned equally. We also evaluated whether the incom-

ing knowledge⎯as measured by pretest score⎯of students in each condition was com-

parable. An independents sample t-test revealed no statistically significant difference 

in students’ prior knowledge between conditions t(71)=.127, p=.90. 

Did the effectiveness of the treatment vary depending on students’ prior 

knowledge? In other words, was there an aptitude-treatment interaction? To study 

this issue, we performed a regression analysis using Condition, Pretest, and Condi-

tion*Pretest (interaction term) as independent variables and gain as the dependent 
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variable. The regression coefficient of the interaction term was not significant suggest-

ing no aptitude-treatment interaction F(1,69)=1.456, p=.23. 

Was one version of the system more efficient than the other? To investigate this 

possibility, we compared the mean time that students spent working on the system1 

between conditions by performing an independent samples t-test. The test revealed that 

the mean time on task of the experimental condition (M=51.26 min, SD=12.44 min) 

was significantly shorter than the mean time on task of the control condition (M=71.52 

min, SD=16.42 min), t(71)=5.754, p< .001, Cohen’s d=1.4. 

A closer look at time on task: Was the experimental system more efficient than the 

control system for students of all incoming knowledge levels? In a prior study  where 

we compared a version of Rimac that used a “poor man’s” student model (similar to 

the control condition of this study) to a version of Rimac that did not have a student 

model and had all students go through the novice LOR, we found the system with the 

student model was significantly more efficient than the system without the student 

model, but only for high prior knowledge students [8]. Hence, we decided to investigate 

if in the current study the experimental version was more efficient than the control for 

students of all levels of incoming knowledge. To this end, we partitioned the students 

in each condition into those with high incoming knowledge and those with low incom-

ing knowledge using a median split. We then compared the time on task of high prior 

knowledge students in the control and experimental groups. To that end we performed 

an ANOVA which revealed that the mean time of task of high pretesters in the experi-

mental group was 31% (20.8 min) shorter than in the control group, a statistically sig-

nificant difference. Similarly, when comparing time on task for low prior knowledge 

students between conditions, an ANOVA revealed a 27% time on task difference in 

favor of the experimental condition which was statistically significant. See results in 

Table 2 and Figure 4. 

Table 2. Comparison of time on task (TOT) between conditions for high and low incoming 

knowledge students 

Student 

prior kw 
Condition N 

Mean TOT 

(min) 

SD TOT 

(min) 
F p 

Cohen’s 

d 

Low 
Control 21 74.72 14.82 F(1,35)= 

18.29 
<.001 1.4 

Experimental 16 54.78 12.95 

High 
Control 21 68.33 17.66 F(1,34)= 

16.201 
<.001 1.4 

Experimental 15 47.51 11.09 

                                                           
1  Time on task did not include the time students spent solving the problems on paper. Addition-

ally, any inactivity longer than three minutes while a student worked on the system was not 

counted towards the time on task estimate since it could be indicative that the student had 

taken a break from the learning activity. 
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Fig. 4. Comparison of time on task between conditions for High and Low prior knowledge stu-

dents. 

4 Discussion and Future Work 

In this paper we report on the comparison of two versions of Rimac to explore the 

effectiveness of incorporating a student model that is dynamically updated throughout 

the interaction to enable domain and instructional contingency during tutorial dia-

logues. One version of Rimac (experimental version) proactively adapts the content it 

discusses as well as the amount of support it provides during its interaction with the 

student by using the predictions of a student model that dynamically updates its assess-

ment of students’ understanding of particular KCs as the student progresses through the 

dialogues. The second version of Rimac (control version) sets the student on a fixed 

line of reasoning, rather than adapting to the students’ evolving knowledge needs, based 

on the student’s initial response to the reflection question under consideration and on 

the predictions of a static student model that only considers the student’s pretest per-

formance. We found that students in both conditions learned equally well. One possible 

reason this may have occurred is that regardless of the level of line of reasoning at 

which students are placed in the control system, if they lack the necessary knowledge 

to answer a question correctly, they are presented with a remedial sub dialogue that 

covers the knowledge subsumed in the lower level LORs. Hence, it is possible that the 

fixed LOR with its remediations were enough for students to have comparable 

knowledge gains as in the more adaptive, experimental condition.  

The key finding of this work is that students who used the system with the dynamic 

student model (i.e., the experimental system) learned more efficiently, that is, in less 

time, than those who used the system with the static student model (i.e., control ver-

sion). Of particular interest is the discovery that students with low incoming knowledge 
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in the experimental condition were able to go through all the dialogues 27% faster (on 

average, experimental condition: 55 min, control condition: 75 min) than those in the 

control condition. This suggests that a dynamic student model is more effective than a 

static one in supporting domain and instructional contingency. The dynamic student 

model is able to effectively adjust to the students’ evolving knowledge allowing them 

to traverse higher level lines of reasoning⎯which are shorter⎯as their knowledge im-

proves, thereby saving them time. In contrast, a static student model will keep the gran-

ularity of the discussions with the students at the level defined by their incoming 

knowledge regardless of improvements in their knowledge that occur during the dia-

logues. 

In future work, we plan to compare the adaptive system with two less adaptive ver-

sions of the system to try to separate on the one hand, the effect on learning of updating 

the student model during the dialogues and, on the other hand, the effects of providing 

domain and instructional contingency. In the first study, we will perform a more in-

depth analysis of the impact that the student model’s dynamic updates have on students’ 

learning by isolating the evaluation of this feature. We will compare the current exper-

imental version of the system with a control condition that would perform exactly the 

same way as the experimental version ⎯i.e., deciding at what level to ask the next 

question and with how much support to express it rather than placing students in a fixed 

LOR⎯except that it would choose the next question based on the predictions of the 

static KC scores derived from the pretest rather than on the dynamically updated model. 

In the second study, we will evaluate more precisely the value of performing domain 

and instructional contingency(i.e., deciding what to ask and how to ask it on each step 

of the dialogue) by comparing the current version of the experimental condition with a 

control condition that improves on the flexibility of the one presented in this paper by 

placing students in fixed low, medium or high levels of lines of reasoning not just when 

the student answers the reflection question correctly (as in the current study) but also 

when the student answers it incorrectly. This may allow Rimac to place a student who 

may have slipped when answering the RQ in a more appropriate LOR level. The com-

parison of these versions of Rimac might provide additional evidence of the value of 

implementing scaffolding that contains domain and instructional contingency. 
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