
Title: 
Evaluating Structural Equation Models for Categorical Outcomes: A New Test Statistic 
and a Practical Challenge of Interpretation 
 
Authors: 
Scott Monroe 
Li Cai 
 
Journal publication date: 
2015 
 
Published in: 
Multivariate Behavioral Research, 50(6), 569-583 
 
IES grant information: 
Grant number R305D140046 
Funded by National Center for Education Research (NCER) 
 
  



Accepted in Multivariate Behavioral Research 

 

 

 

 

 

 

Evaluating Structural Equation Models for Categorical Outcomes:  

A New Test Statistic and a Practical Challenge of Interpretation 

 

Scott Monroe 

Li Cai 

University of California, Los Angeles 

 

 

March 18, 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

The authors thank the Associate Editor and reviewers for their helpful suggestions.  Part of this 

research is supported by an Institute of Education Sciences statistical methodology grant 

(R305D140046). The views expressed here belong to the authors and do not reflect the views or 

policies of the funding agency. 

 

Address all correspondence to: Scott Monroe, CRESST, UCLA, Los Angeles, CA, USA 

90095-1521. Email: scott.monroe@ucla.edu. Phone: 310.926.9665. Fax: 310.825.3883.  



2 
 

Evaluating Structural Equation Models for Categorical Outcomes:  

A New Test Statistic and a Practical Challenge of Interpretation 

 

Abstract 

This research is concerned with two topics in assessing model fit for categorical data analysis.  

The first topic involves the application of a limited-information overall test, introduced in the 

item response theory literature, to Structural Equation Modeling (SEM) of categorical outcome 

variables. Most popular SEM test statistics assess how well the model reproduces estimated 

polychoric correlations. In contrast, limited-information test statistics assess how well the 

underlying categorical data are reproduced. Here, the recently introduced 𝐶2 statistic of Cai and 

Monroe (2014) is applied. The second topic concerns how the Root Mean Square Error of 

Approximation (RMSEA) fit index can be affected by the number of categories in the outcome 

variable. This relationship creates challenges for interpreting RMSEA. While the two topics 

initially appear unrelated, they may conveniently be studied in tandem since RMSEA is based 

on an overall test statistic, such as 𝐶2. The results are illustrated with an empirical application to 

data from a large-scale educational survey.  

 

 

Keywords: Limited-information testing, structural equation modeling, categorical data analysis, 

RMSEA  
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1 Introduction 

 This research concerns two distinct but related topics in assessing the fit of latent 

variable models for ordered categorical data.  The first topic is the application of the limited-

information overall test statistic 𝐶2 (Cai & Monroe, 2014) to Structural Equation Modeling 

(SEM).  The second topic is how the Root Mean Square Error of Approximation index (RMSEA; 

Steiger & Lind, 1980) is affected by the number of categories in the outcome variable.  An 

important connection between the two topics is that RMSEA is based on non-centrality 

(population lack of fit) estimated from an overall goodness-of-fit (GOF) test statistic, such as 𝐶2.  

That is, RMSEA also depends on the choice of underlying overall test statistic, since different 

test statistics lead to different manifestations of non-centrality. 

 To appreciate the motivation for the application of 𝐶2, it is helpful to consider the 

testing of structural models for continuous data.  In this case, a sample covariance matrix 

summarizes the continuous data.  Then, following estimation, a test statistic is formed that 

measures how well the structural model reproduces the sample covariance matrix.  Depending 

on the estimation approach, a moment correction (e.g., Satorra & Bentler, 1994; Asparouhov & 

Muthén, 2010) can be applied to the test statistic so that it approximately follows a chi-square 

distribution. 

 Currently, in many popular SEM software packages, the standard procedure for 

estimating structural models for ordinal variables is the multistage estimator (e.g., Muthén, 

1984).  With this estimator, a polychoric correlation matrix is estimated from the categorical 

data.  Then, typically, testing the structural model proceeds as in the continuous case.  More 

specifically, a test statistic is formed that measures how well the structural model reproduces 

the estimated polychoric correlation matrix.  Also, a moment correction is applied to the test 

statistic. 

 While the two procedures just described are quite similar, a fundamental distinction 

exists.  As noted in Muthén (1993), unlike the sample covariances of continuous variables, the 

estimated polychoric correlations of categorical variables are model-based.  Specifically, in 

practice, it is assumed that the observed categorical data arise from discretizing a multivariate 

normal density.  Given this additional stage of estimation, it is arguably necessary to test the 
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structural model directly against the observed categorical data.  This can be accomplished using 

limited-information test statistics, such as 𝐶2. 

 The 𝐶2 statistic is among a number of limited-information tests that have been 

developed recently (e.g., Maydeu-Olivares & Joe, 2006; Cai & Hansen, 2013) for models of 

categorical data.  For n observed categorical variables, the data can be organized in an n-way 

contingency table.  While full-information tests, such as Pearson’s 𝑋2, depend on the entire n-

way table, limited-information tests are “limited” in the sense that they depend on some subset 

of lower-order marginal tables.  For 𝐶2, the subscript denotes the use of marginal tables up to 

the second-order (i.e., first- and second-order).  In comparison to full-information tests, limited-

information tests have two main advantages: they are better-calibrated (Maydeu-Olivares & Joe, 

2006) and potentially more powerful (Joe & Maydeu-Olivares, 2010).  These advantages are 

more pronounced for sparse contingency tables, which are routinely encountered in 

applications of SEM to empirical data in the social and behavioral sciences (Bartholomew & 

Tzamourani, 1999). 

 While the limited-information testing methodology has been primarily applied to Item 

Response Theory (IRT) models, the methodology has also been applied to SEM.  In an early 

application of limited-information tests, Maydeu-Olivares (2006) proposed a quadratic form in 

second-order residuals for this purpose.  However, more recent research on the limited-

information methodology (e.g., Maydeu-Olivares & Joe, 2006) has yielded tests that are 

practically and theoretically more appealing.  One such test statistic is 𝐶2.  As discussed in Cai 

and Monroe (2014), 𝐶2 is well-calibrated under a variety of conditions, such as second-order 

marginal table sparseness, and can be computed for models with relatively few outcome 

variables and relatively many ordinal categories.  Further, in comparison to other limited-

information test statistics, 𝐶2 can be substantially more powerful in detecting model 

misspecification (Cai & Monroe, 2014).  The first contribution of this research, then, is to apply 

𝐶2 to SEM of ordered categorical data, specifically in the context of multistage estimation.  This 

context also provides an opportunity to compare a limited-information test (i.e., 𝐶2) to a 

moment-corrected test, which, to our knowledge, has not been done before.  
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 As mentioned above, the second contribution of this research concerns the 

interpretation of RMSEA when the observed variables are categorical.  Given a sufficiently large 

sample size, the presence of any amount of model error (e.g., MacCallum & Tucker, 1991) will 

lead to a proposed model being rejected by an overall GOF statistic, such as 𝐶2.  In the SEM 

literature, this is commonly referred to as the sample size problem (Cudeck & Henly, 1991).  In 

response to this problem, SEM researchers have, over the years, proposed various fit indices 

and developed interpretive guidelines for continuous normally-distributed outcomes.  For 

example, with the RMSEA index, a value of less than .05 is indicative of “close-fit” (Browne & 

Cudeck, 1993). 

 More recently, researchers have made efforts to adapt these indices and guidelines for 

use with categorical outcomes.  Within the IRT framework, these indices are typically based on 

the limited-information 𝑀2 statistic (Maydeu-Olivares & Joe, 2006).  For example, Maydeu-

Olivares (2013) developed a rationale for constructing an 𝑀2-based RMSEA.  More recently, 

Maydeu-Olivares & Joe (2014) expanded on this line of research and proposed some cutoff 

criteria for approximate fit.  Another example is provided by Lee and Cai (2012), which 

proposed an 𝑀2-based Tucker-Lewis Index (Tucker & Lewis, 1973).  Within the SEM 

framework, these indices have typically been constructed from moment-corrected tests.  

Notwithstanding the specific framework, the interpretation of these indices has received much 

less attention for categorical data than for continuous data.  To help address this issue, we 

examine how RMSEA is affected by the number of categories in the outcome variables.  This 

choice is motivated by results reported in Cai and Monroe (2013), which suggest that RMSEA, 

in a sense, behaves differently depending on the number of categories of the outcome variables. 

 This RMSEA behavior can conveniently be studied along with 𝐶2 due to the 

underlying response process formulation of factor analytic measurement models (Thurstone, 

1925; Thurstone, 1927; Lord, 1952) assumed under multistage estimation.  The underlying 

response process provides a direct connection between structural models of continuous and 

categorical data, which can be utilized in the following way. 

 First, given some form of introducing model error, a population correlation matrix of 

continuous variables can be created.  For a chosen (working) model and discrepancy function 
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(e.g., the maximum likelihood discrepancy function; Browne & Arminger, 1995), minimization 

of the function for the population correlation matrix yields a population discrepancy function 

value and derived population RMSEA.  Next, underlying response variables can be randomly 

sampled from this population matrix to create datasets of continuous variables.  In accordance 

with the underlying response variable formulation, these continuous variables may be 

discretized to generate categorical datasets.  All of the datasets contain both model error, 

because of the nonzero population RMSEA, as well as sampling error.  However, for the 

categorical datasets, the discretization itself does not introduce additional model error, 

assuming correct distributional specification of the underlying response process variables (e.g., 

multivariate normal).  With a sufficiently large number of Monte Carlo replications, the 

sampling error may be averaged out.  Then, the RMSEA estimates may be directly compared to 

the uniquely defined population RMSEA.  We believe that the simulation results may shed 

some light on how RMSEA should be practically interpreted for SEM of categorical data. 

 The rest of the paper is organized as follows. Section 2 presents a motivating example.  

Section 3 presents a structural model for ordinal data and the multistage estimator.  Also, 

established fit statistics for the multistage estimator are introduced.  Then, in Section 4, limited-

information testing methodology is presented and the 𝐶2 statistic is introduced.  Section 5 

presents a simulation study for 𝐶2 and the results.  Section 6 explores the behavior of RMSEA, 

using the results from Section 5.  Then, an empirical application of the proposed methods is 

given in Section 7.  Finally, a conclusion and discussion of further research directions are 

provided in Section 8. 

2 A Running Example  

 The Program for International Student Assessment (PISA; OECD, 2005) administers a 

student questionnaire containing various schooling and background related variables.  One of 

these topics, surveyed in 2003, is students’ perceptions of their own mathematical aptitude.  

Table 1 presents the 12 items hypothesized to represent three distinct but correlated constructs.  

These constructs are positive self-concept as a mathematics student (PSC), mathematics anxiety 

(ANX), and task-specific confidence (TASK).  Each of the 12 items has a 4-point response scale.  

For PSC and ANX, the options are “strongly disagree,” “disagree,” “agree,” and “strongly 
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agree.”  For TASK, the options are “not at all confident,” “not very confident,” “confident,” and 

“very confident.” 

Insert Table 1 about here 

 

 One of the reasons PISA administers the student questionnaire is to allow researchers 

to explore how school and student characteristics relate to achievement outcomes.  As an 

example, consider the full mediation model (see, e.g., Finch, West, & MacKinnon, 1997) shown 

in Figure 1.  While this model is merely illustrative, it is similar to those studied by substantive 

researchers (see, e.g., Meece, Eccles, & Wigfield, 1990).  In the model, ANX is regressed on PSC.  

Further, TASK is regressed on both ANX and PSC.  This ordinal structural model could be 

estimated by the multistage estimator, at which point a researcher would typically need to 

examine its fit to data. 

Insert Figure 1 about here 

3 A Structural Equation Model for Ordered Categorical Responses 

3.1 The Data and the Model 

 Let there be 𝑖 = 1,… ,𝑁 respondents and 𝑗 = 1,… , 𝑛 variables.  Let 𝒚𝑖
∗ be an 𝑛 ×  1 vector 

of continuous underlying response variables.  It is typically assumed that 𝒚𝑖
∗ is multivariate 

normal , that is, 𝒚𝑖
∗ ∼ 𝒩𝑛(𝟎, 𝐏) where 𝐏 is an 𝑛 ×  𝑛 correlation matrix.  The 𝑑𝜌 = 𝑛(𝑛 − 1)/2 

unique correlations are stacked and collected in the 𝑑𝜌  ×  1 vector 𝝆. 

  It is assumed that a 𝑝 ×  1 vector of latent factors is related to 𝒚∗ via a factor analytic 

measurement model.  For the 𝑖th case, this may be represented as 𝒚𝑖
∗ = 𝚲𝜼𝑖 + 𝝐𝑖.  Further, the 

structural relationships among the latent variables is assumed to take the form 𝜼𝑖 = 𝜶 + 𝐁𝜼𝑖 +

𝜻𝑖.  In the above equations, the unique factors in 𝝐 and the disturbance terms in 𝜻 have zero 

means.  Their covariance matrices are 𝚿 and 𝚽, respectively.  Assuming that 𝝐 and 𝜻 are 

orthogonal, the covariance structure for 𝒚∗ is 

 𝑐𝑜𝑣(𝒚∗) = 𝚲𝐀𝚽𝐀′𝚲′ + 𝚿 (1)  

where 𝐀 = (𝐈𝑝 − 𝐁)−1 is invertible and 𝐈𝑝 is a 𝑝 ×  𝑝 identity matrix.  To identify the model, it is 

generally necessary to set diag(𝚿) = diag(𝐈𝑝 − 𝚲𝐀𝚽𝐀′𝚲′).  This identification condition implies 

that 𝑐𝑜𝑣(𝒚∗) = 𝐏 is a correlation matrix. 
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 By the underlying response process formulation, the continuous 𝒚𝑖
∗ are not observed.  

Instead, the 𝑛 ×  1 vector of observed categorical variables 𝒚𝑖 result from the discretization of 𝒚𝑖
∗.  

To facilitate the presentation, we assume that all observed variable have the same number of 

categories, 𝐾.  Then, for each variable, there are 𝐾 − 1 thresholds, 𝜏1, … , 𝜏𝐾−1.  In all, there are 

𝑑𝜏 = 𝑛(𝐾 − 1) thresholds, which can collected into a 𝑑𝜏  ×  1 vector 𝝉.  Finally, 𝑦𝑖𝑗
∗  and 𝑦𝑖𝑗 are 

related via the thresholds where 

 𝑦𝑖𝑗 = 𝑘,     if 𝜏𝑗,𝑘 < 𝑦𝑖𝑗
∗ < 𝜏𝑗,𝑘+1, (2)  

with 𝜏𝑗,0 = −∞, 𝜏𝑗,𝐾 = ∞.   

3.2 Multistage Estimation and Testing 

 Multistage estimation begins by obtaining an estimate of the (polychoric) correlations in 

𝝆.  In practice, this is often accomplished in two steps.  First, the thresholds are estimated by 

maximum likelihood, one item at a time, yielding 𝝉̂.  Next, treating 𝝉̂ as fixed, the bivariate 

correlations are estimated by maximum likelihood, one pair of items at a time.  This yields a 

vector of estimated polychoric correlations, 𝝆̂.  To facilitate the presentation, we assume that no 

constraints are imposed on the thresholds.  Then, the free structural parameters (e.g., factor 

loadings and latent regression coefficients) can be estimated by minimizing a weighted least 

squares (WLS) function of the polychoric correlation residuals.  Formally, let the 𝑞 free 

parameters be collected in the vector 𝜽, and let 𝝆(𝜽) represent the model-implied correlations.  

Then, the estimator 𝜽̂ is obtained by minimizing 

 𝐹(𝜽;𝐖) = (𝝆̂ − 𝝆(𝜽))
′
𝐖(𝝆̂ − 𝝆(𝜽)), (3)  

where 𝐖 is a positive definite weight matrix. 

 Next, we consider the form of the weight matrix 𝐖.  Let 𝐕̂ be a consistent estimate of 

the asymptotic covariance matrix of 𝝆̂.  Further, let 𝐃̂ = diag(𝐕̂) be a diagonal matrix.  The most 

common choices for 𝐖 in Equation (3) are as follows.  Choosing 𝐖 = 𝐕̂−1 results in the full 

weighted least squares estimator (WLS, Muthén, 1978).  Choosing 𝐖 = 𝐃̂−1 results in the 

diagonally weighted least squares estimator (DWLS, Muthén, du Toit, & Spisic, 1997).  Finally, 

choosing 𝐖 = 𝐈 results in the unweighted least squares estimator (ULS, Muthén, 1993).  While 

theoretically important, WLS is not often used in practice as it tends to perform poorly unless 𝑁 

is very large.  Under correct model specification and standard regularity conditions, the 
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multistage estimator is √𝑁-consistent and asymptotically normal (Jöreskog, 1994; Lee, Poon, & 

Bentler, 1995; Muthén & Satorra, 1995). 

 In this research, only ULS and DWLS are used to estimate ordinal structural models.  

Accordingly, let 𝜽̂𝑈 and 𝜽̂𝐷 be the vectors of parameter estimates obtained using ULS and 

DWLS, respectively.  Similarly, let 𝐹̂𝑈 and 𝐹̂𝐷 be the respective minimized discrepancy function 

values.  Such a discrepancy function value, 𝐹̂, can be used to construct an overall GOF statistic, 

𝑇 = 𝑁 × 𝐹̂.  However, for ULS and DWLS, 𝑇 is not chi-square distributed even under correct 

model specification (Browne, 1984).  But, as suggested by Muthén (1993), moment corrections 

may be applied to 𝑇 to construct a test statistic that is approximately chi-square distributed.  

These moment corrections are analogous to those used in the continuous data case (Satorra & 

Bentler, 1994).  While several adjustments have been proposed, this research utilizes the 

correction of Asparouhov and Muthén (2010), which is denoted by 𝑇̃.  An advantage of 𝑇̃ is that 

it scales 𝑇 so that the resulting statistic is approximately chi-square distributed with the 

“natural” degrees of freedom (i.e., the difference between the numbers of parameters in the 

saturated and estimated models).  The use of ULS and DWLS to calculate 𝑇̃ yields 𝑇̃𝑈 and 𝑇̃𝐷, 

respectively. 

4 Limited-Information Testing Methodology 

 While test statistics based on quadratic forms in the correlational residuals in 𝝆̂ − 𝝆(𝜽) 

have proven useful in evaluating the fit of ordinal structural models, these statistics were not 

specifically developed for categorical data and contingency tables. In a certain sense, these 

statistics may be regarded as afterthoughts, developed as the result of fitting categorical data 

into a factor-analytic framework largely dominated by continuous outcomes. On the other hand, 

recent years have seen a number of limited-information statistics specifically developed for 

latent variable models with categorical outcomes.  Generally, these statistics are quadratic forms 

in linear functions of multinomial cell residuals from the n-way contingency tables formed by 

the cross-tabulations of the observed responses.  Some examples are 𝑀2 (Maydeu-Olivares & Joe, 

2006), 𝑀2
∗ (Cai & Hansen, 2013), and 𝐶2 (Cai & Monroe, 2014).  We have chosen to apply and 

study the 𝐶2 statistic in this research, as it has theoretical and practical advantages over both 𝑀2 

and 𝑀2
∗ (Cai & Monroe, 2014).  The presentation here focuses on the application of 𝐶2 to the 
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ordinal structural model with multistage estimation.  Readers interested in a more technical 

account of 𝐶2, or its application to IRT models, are referred to Cai and Monroe (2014). 

4.1 Full-Information and Limited-Information Test Statistics 

 Returning to the structure of the data, recall that 𝐾 is the number of response 

categories per item.  In total, there are 𝜅 = 𝐾𝑛 possible response patterns, which increases 

rapidly with 𝐾 and/or 𝑛.  For example, for the PISA model introduced in Section 2, 𝜅 = 412 > 16 

million.  Let the 𝜅 ×  1 vector 𝒑 collect the 𝜅 sample proportions.  Similarly, let 𝝅(𝜽) collect the 

𝜅 model-implied response pattern probabilities.  Then, let 𝒆 = 𝒑 − 𝝅(𝜽) be the cell residuals.  

Assuming the model is correctly specified in the population and given a vector of true 

parameters 𝜽0, let the true model-implied probabilities be 𝝅0 = 𝝅(𝜽0).  In this case, the 

observed data may be considered to be a sample of size 𝑁 from a multinomial with 𝜅 categories. 

 One approach to testing structural models for categorical data is to use a full-

information test which directly uses the full set of multinomial residuals.  Pearson’s 𝑋2 is one 

such test, and is defined as 𝑋2 = 𝑁 ∑ [𝑝𝑖 − 𝜋𝑖(𝜽̂)]
2
/𝜋𝑖(𝜽̂)𝜅

𝑖=1 .  When a fully-efficient estimator, 

such as maximum-likelihood, is used to obtain 𝜽̂, and the model is correctly specified in the 

population, 𝑋2 is approximately chi-square distributed with 𝜅 − 𝑞 − 1 degrees of freedom.  

Despite this asymptotic result, 𝑋2 is not generally useful for testing structural models for 

categorical data, for several reasons.  First, for large values of 𝜅, some model-implied 

probabilities must necessarily be near-zero.  In the literature, this is often referred to as 

sparseness of the contingency table.  Under sparseness, the Type I error rates and power of 𝑋2 

are both adversely affected (e.g., Bartholomew and Leung, 2002).  An accompanying problem is 

computational.  For large 𝐾 and/or 𝑛, 𝜅 may be so large that calculating 𝑋2 becomes 

computationally impractical.  Recall that 𝜅 > 16 million for the PISA model, with only 12 

variables.  Finally, in fitting structural models to categorical data, estimators that are not fully-

efficient, such as the multistage estimator, are frequently used.  In this case, 𝑋2 will not follow 

its nominal chi-square distribution with 𝜅 − 𝑞 − 1 degrees of freedom. 

 Another, more appealing, approach is provided by limited-information tests.  

Generally, these tests are quadratic forms that depend on lower-order sample proportions and 

model-implied probabilities.  Different limited-information tests can be distinguished by: 1) 
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which lower-order proportions and probabilities are used; 2) how the proportions and 

probabilities are combined; and 3) how the distribution of the test is approximated.  Here, we 

focus on first and second-order proportions and probabilities to summarize the categorical data, 

which is akin to using means and covariances to summarize continuous data. 

 For a single variable, there are only 𝐾 − 1 independent probabilities as the 𝐾 cells 

must sum to 1.  Conveniently, a set of independent cells can be obtained by removing any cell 

with category code 𝑘 = 0.  Then, let 𝒑̇ and 𝝅̇(𝜽) be the vectors of length 𝑠1 = 𝑛(𝐾 − 1) = 𝑑𝜏, 

consisting of all linearly independent first-order marginal probabilities and proportions, 

respectively.  Let 𝒆̇ = 𝒑̇ − 𝝅̇(𝜽) be the vector of linearly independent first-order residual 

probabilities. 

 For a pair of variables, there are (𝐾 − 1)2 independent second-order marginal 

proportions or model-implied probabilities upon knowing the first-order margins. Again, an 

independent set may be obtained by removing any cell in the 𝐾 × 𝐾 two-way table where either 

category code is 0.  Then, let 𝒑̈ and 𝝅̈(𝜽) be the vectors of length 𝑠2 = 𝑛(𝑛 − 1)/2 × (𝐾 − 1)2 =

𝑑𝜌(𝐾 − 1)2 of all linearly independent second-order proportions and model-implied 

probabilities, respectively.  And, let 𝒆̈ = 𝒑̈ − 𝝅̈(𝜽) be the vector of all linearly independent 

second-order residual probabilities. 

 With these definitions, we now explain how limited-information tests may be more 

easily applied than full-information tests.  While first and second-order sub-tables can still be 

affected by sparseness, these tables are necessarily better-filled than the entire 𝑛-way 

contingency table with 𝜅 cells.  Consequently, limited-information tests are less vulnerable to 

the sparseness issue that affects the utility of full-information tests.  Additionally, limited-

information tests are potentially less computationally burdensome than full-information tests.  

For example, the number of first and second-order probabilities (𝑠1 and 𝑠2, respectively) may be 

much smaller than 𝜅.  For the PISA model, 𝑠1 = 36 and 𝑠2 = 594, while 𝜅 > 16 million.  Finally, 

limited-information tests do not require a fully-efficient estimator.  Instead, they only require 

consistency and asymptotic normality (Maydeu-Olivares and Joe, 2006), which are properties 

enjoyed by numerous estimators for structural models of categorical data, including the 
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multistage, pairwise likelihood (Katsikatsou, Moustaki, Yang-Wallentin, & Jöreskog, 2012), and 

polychoric instrumental variable (Bollen & Maydeu-Olivares, 2007) estimators. 

4.2 Three Limited-Information Test Statistics 

 The limited-information test of Maydeu-Olivares (2006) is noteworthy due to its 

application to structural models of categorical data.  For convenience, let 𝑀̈ denote this statistic.  

𝑀̈ is an unweighted sum of squares of the second-order residual probabilities in 𝒆̈.  The 

distribution of 𝑀̈ can be approximated by moment-matching (Satorra & Bentler, 1994). 

 The 𝑀2 statistic (Maydeu-Olivares & Joe, 2006) is noteworthy here for at least two 

reasons.  First, 𝑀2 and 𝐶2 have analogous structures, which will be presented below.  Second, 

𝑀2 has been widely-applied in IRT modeling and is available in commercial IRT software (e.g., 

flexMIRT®, Cai, 2013).  Like 𝑀̈, 𝑀2 uses the second-order residual probabilities in 𝒆̈, but it also 

incorporates the first-order residual probabilities in 𝒆̇.  Let 𝒆2 = (𝒆̇′, 𝒆̈′)′ be the vector of length 

𝑠 = 𝑠1 + 𝑠2 that collects all linearly independent first and second-order residual probabilities.  

Then, 𝑀2 can be defined as 

 𝑀2 = 𝑁𝒆̂2′𝛀̂2𝒆̂2, (4)  

where 

 𝛀2 = 𝚵2
−1 − 𝚵2

−1𝚫2(𝚫2
′ 𝚵2

−1𝚫2)
−1𝚫2

′ 𝚵2
−1, (5)  

and all matrices are evaluated at 𝜽̂.  In Equation (5), 𝚵𝟐 is the asymptotic covariance matrix of 

the first and second-order sample proportions, and 𝚫2 is the matrix of derivatives of the first 

and second-order model-implied probabilities with respect to the vector of parameter estimates, 

𝜽̂.  In words, 𝑀2 is a quadratic form in the first and second-order residual probabilities.  The 

matrix of the quadratic form, 𝛀2, weights these residual probabilities so that 𝑀2 is 

asymptotically chi-square distributed with 𝑠 − 𝑞 degrees of freedom (Maydeu-Olivares & Joe, 

2006). 

 While 𝑀̈ and 𝑀2 are more robust to sparseness than full-information statistics, they can 

still be affected by the issue when the number of variable categories is large.  As explained by 

Cai and Hansen (2012), this is because for some pairs of variables, certain response 

combinations are highly unlikely.  For example, with the PISA survey, a student is unlikely to 

respond “strongly agree” to the item, “I learn mathematics quickly,” while also responding 
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“strongly disagree” to the item, “In my mathematics class, I understand even the most difficult 

work.”  As shown in Cai and Hansen (2012), this sparseness in the 𝐾 × 𝐾 two-way table can 

negatively impact the Type I error rates and power of 𝑀2.  Additionally, when both 𝐾 and the 

number of variables are relatively large (i.e., when 𝑠2 is very large), it can become 

computationally burdensome to calculate, store, and manipulate all of the second-order 

residual probabilities in 𝒆̈, the derivatives, and the even larger number of elements in the 

weight matrix. 

 𝐶2 addresses these issues by collapsing each 𝐾 × 𝐾 two-way table of residuals into a 

single residual moment.  This is facilitated by using the ordered category codes 𝑘 = 0,… , 𝐾 − 1, 

as the raw scores.  Let 𝑒̈𝑙,𝑚,𝑘𝑙,𝑘𝑚
 be the second-order marginal residual probability for variables 𝑙 

and 𝑚 in categories 𝑘𝑙 and 𝑘𝑚, respectively.  The residual moment for variables 𝑙 and 𝑚 is given 

by the weighted sum 

 
𝑟̈𝑙,𝑚 = ∑ ∑ 𝑘𝑙𝑘𝑚𝑒̈𝑙,𝑚,𝑘𝑙,𝑘𝑚

𝐾−1

𝑘𝑚=1

.

𝐾−1

𝑘𝑙=1

 

(6)  

In words, 𝑟̈𝑙,𝑚 sums all of the second-order residual probabilities for variables l and m, weighted 

by the product of the two corresponding category codes.  These second-order marginal residual 

moments can be collected into a vector 𝒓̈ = (𝑟̈2,1, 𝑟̈3,1, … , 𝑟̈𝑛,𝑛−1)′ of dimension 𝑠2
∗ = 𝑛(𝑛 − 1)/2 =

𝑑𝜌.  Then, let the vector 𝒓2 = (𝒆̇′, 𝒓̈′)′, with dimension 𝑑 = 𝑠1 + 𝑠2
∗, collect all of the linearly 

independent first-order marginal residual probabilities as well as the collapsed second-order 

marginal residual moments.   

 Then, 𝐶2 is a quadratic form in 𝒓2, defined as 

 𝐶2 = 𝑁𝒓̂2′𝐔̂2𝒓̂2, (7)  

where 

 𝐔2 = 𝚺2
−1 − 𝚺2

−1𝐉2(𝐉2
′ 𝚺2

−1𝐉2)
−1𝐉2

′ 𝚺2
−1, (8)  

and all matrices are evaluated at 𝜽̂.  The construction of 𝐶2 parallels that of 𝑀2, with 𝒓̂2 

replacing 𝒆̂2, and corresponding changes made in the weight matrix 𝐔2.  That is, in Equation (8), 

𝚺2 is the asymptotic covariance matrix of the first and collapsed second-order sample 

proportions, and 𝐉2 is the matrix of derivatives of the first-order and collapsed second-order 

model-implied probabilities with respect to the vector of parameter estimates, 𝜽̂.  The matrix of 
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the quadratic form, 𝐔2, weights the residual probabilities and moments so that 𝐶2 is 

asymptotically chi-square distributed with 𝑑 − 𝑞 degrees of freedom (Cai & Monroe, 2014). 

4.3 Technical Details for 𝑪𝟐 

 A derivation of 𝐶2, and its application to IRT, is given in Cai and Monroe (2014).  We 

refer interested readers to that report.  However, the application of 𝐶2 to structural models of 

categorical data in this research necessitates the presentation of certain technical topics, which 

are contained in the Appendix. 

 These topics include: 1) satisfaction of regularity conditions by the multistage estimator; 

2) calculation of model-implied probabilities; and 3) calculation of the derivatives of the first 

and second-order model-implied probabilities with respect to the vector of parameter estimates. 

5 Simulation Study for 𝑪𝟐 

 A simulation study was conducted to compare the 𝐶2 statistic with the traditional 𝑇̃𝑈 

and 𝑇̃𝐷 statistics in terms of Type I error rates and power.  The sample sizes considered were 

𝑁 = 100, 200, 500, and 1000.  The form of the generating structural model was identical to the 

theorized mediation model presented in Figure 1.  Referring to the notation presented earlier, 

the latent variables PSC, ANX, and TASK can be considered 𝜂1, 𝜂2, and 𝜂3 respectively.  The 

true structural parameters in 𝐁 were 𝛽21 = 0.3, 𝛽31 = 0.4, and 𝛽32 = 0.36, values used in Finch 

et al. (1997). 

5.1 Design: Data Generation 

 For the null condition, a population correlation matrix, 𝐏0, was calculated via Equation 

(1), using the factor loadings and unique variances shown in Table 2.  For each of 500 

replications, 𝒚𝑖
∗ ∼ 𝒩𝑛(𝟎, 𝐏0) were sampled to form a dataset of continuous underlying variables.  

Let 𝐘∗ be this dataset.  Then, 𝐘∗ was discretized to yield three categorical datasets, 𝐘(𝐾), for 

𝐾 = 2, 4, and 6.  For a given replication, the categorical datasets are “nested” in the following 

sense.  First, 𝐘∗ was discretized using 5 thresholds per variable to yield 𝐘(6).  Next, a random 

subset of the thresholds, fixed over replications, was used to create 𝐘(4).  Finally, a further 

random subset of the thresholds, fixed over replications, was used to create 𝐘(2).  The 

thresholds and subsets are presented in Table 2. 
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Insert Table 2 about here 

 

 To study the power of 𝐶2, we used the steps just detailed, but introduced model error 

when generating the population correlation matrices.  Specifically, structural model error was 

introduced using a variation of the Cudeck and Browne (1992) procedure.  Given a choice of 

discrepancy function, the Cudeck and Browne (1992) procedure produces a correlation matrix 

with a prespecified discrepancy function value.  To be consistent with the choice of estimator 

for the simulated categorical datasets, we chose the ordinary least squares discrepancy function.  

And, in a slight variation of the original procedure, we specified an exact population RMSEA 

value instead of the discrepancy function value as the former is more familiar.  Let 𝜀0
∗ be this 

value, where the asterisk emphasizes that the definition is at the level of the continuous 

underlying response variables, 𝒚∗.  The chosen values for 𝜀0
∗ were .01, .05, and .10.  For 

continuous normally distributed outcomes, these values are often considered cutoffs for 

“excellent,” “close,” and ”mediocre” fit, respectively (see, e.g., Browne & Cudeck, 1993), though 

alternative cutoff values exist (e.g., Hu & Bentler, 1999).  An example population correlation 

matrix for the 𝜀0
∗ = .10 model is shown in Table 3. 

 

Insert Table 3 about here 

 

5.2 Design: Estimation and Collected Statistics 

 For each simulated data set, the mediation model shown in Figure 1 was estimated 

twice in Mplus (Muthén & Muthén, 2010), once with ULS and once with DWLS.  These two 

model fittings yielded 𝑇̃𝑈 and 𝑇̃𝐷, respectively.  The ULS parameter estimates were then used 

along with the replication's dataset to obtain the 𝐶2 statistic.  To the extent that the ULS and 

DWLS point estimates differ, the resulting 𝐶2 values will also differ.  However, we found this 

difference to be negligible and choose to report only the ULS-based 𝐶2. 

 Solutions were checked to see if they were proper.  Solutions were deemed improper if 

the estimated error variance was negative for any variable.  These replications were discarded 

and not included in the results.  Collected statistics include the proportion of properly 
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converged replications and rejection rates at common alpha levels.  For all test statistics, the 

empirical mean and variance were recorded.  Also, for the null condition, two-sided 

Kolmogorov-Smirnov (K-S) tests were conducted. 

 After collecting and examining the results, it became clear that the results for DWLS 

and 𝑇̃𝐷 were very similar to those for ULS and 𝑇̃𝑈.  Thus, we only report the latter results. 

5.3 Results: Null Condition 

 Table 4 presents the results for the null condition of the simulation study.  As expected, 

the proportion of valid replications increases with 𝑁 and 𝐾.  For instance, whereas the 

proportion of valid replications for 𝑁 = 100 and 𝐾 = 2 is 0.71, for 𝑁 = 1000 and 𝐾 = 4, all 

replications converged properly.  Generally, the calibration of the statistics also improves with 

increases in 𝑁 and 𝐾.  For the 𝑁 = 100 and 𝐾 = 2 condition, neither statistic is well-calibrated, 

as measured by the K-S p-values.  This conclusion is supported by the Type I error rates, which 

differ substantially from the nominal values.  We can also compare the empirical means and 

variances of 𝐶2 and 𝑇̃𝑈 to the mean (𝑑𝑓) and variance (2𝑑𝑓) of the reference chi-square (𝑑𝑓 = 51).  

For this condition, the empirical distributions of 𝐶2 and 𝑇̃𝑈 appear stochastically smaller than 

the reference.  On the other hand, for the largest sample size (𝑁 = 1000) and 𝐾 = 6 condition, 

both statistics appear well-calibrated, as evidenced by the Type I error rates and K-S p-values. 

 

Insert Table 4 about here 

  

 Examining Table 4 more closely, 𝐶2 appears to be better-calibrated than 𝑇̃𝑈 at smaller 

sample sizes or with smaller 𝐾.  At 𝑁 = 100, 𝐶2 appears reasonably well-calibrated for both 

𝐾 = 4 and 𝐾 = 6, as evidenced by the non-significant p-values (.099 and .169, respectively) and 

Type I error rates that approximately track the nominal levels.  In contrast, 𝑇̃𝑈 has significant 𝑝-

values for these conditions (.016 and .003, respectively).  Turning to 𝐾 = 2, at 𝑁 = 200, 𝐶2 again 

appears better-calibrated than 𝑇̃𝑈, as the latter statistic clearly under-rejects the null hypothesis. 

 In summary, there are conditions, particularly with small 𝑁 or small 𝐾, where 𝐶2 is 

well-calibrated, while 𝑇̃𝑈 is not.  However, there are no conditions where 𝑇̃𝑈 is well-calibrated, 

while 𝐶2 is not.  Thus, 𝐶2 appears to be slightly better calibrated than 𝑇̃𝑈. 
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5.4 Results: Power 

 Table 5 presents empirical rejection rates at the 𝛼 = .05 level when model error is 

introduced via 𝜀0
∗.  The cells shaded in gray correspond to conditions under the null where the 

K-S p-values were significant.  Since the significant p-values suggest the statistic may not be 

well-calibrated, care should be taken in interpreting these rejection rates.  If we limit our 

evaluation to the non-shaded cells, then it is clear that 𝐶2 is generally more powerful than 𝑇̃𝑈.  In 

many cases, the difference in power is quite small.  And, at the highest values of 𝜀0
∗ and 𝑁, both 

statistics have power at or near 1.0 and cannot be distinguished.  However, in other cases, such 

as 𝜀0
∗ = .05, 𝑁 = 500, and 𝐾 = 4, the difference in rejection rates is substantial (.820 and .570, for 

𝐶2 and 𝑇̃𝑈, respectively).  Also, because 𝐶2 appears generally better-calibrated than 𝑇̃𝑈, there are 

conditions where the rejection rate for 𝐶2 may be the only meaningful result.  Based on Table 5, 

𝐶2 has more power than 𝑇̃𝑈 in detecting the model error introduced via the Cudeck and Browne 

(1992) procedure. 

 

Insert Table 5 about here 

 

 As mentioned earlier, in practice, with a sufficiently large sample size and any amount 

of model error, the proposed model will be rejected by an overall test, such as 𝑇̃𝑈 or 𝐶2.  In this 

event, practitioners routinely examine fit indices, such as RMSEA, to assess the approximate fit 

of the model.  Given our simulation procedure, one RMSEA, which is based on 𝑇̃𝑈, may be 

obtained using the Mplus output.  However, an alternative RMSEA, based on 𝐶2, may also be 

calculated.  In the next section, we compare these two RMSEA estimates, and investigate how 

they are affected by the number of variable categories. 

6 The Relationship Between RMSEA and Number of Categories 

 This Section uses the simulation results of Section 5 to study RMSEA for structural 

models of categorical data.  To study power in Section 5, structural model error was introduced 

with a specified population RMSEA value, denoted by 𝜀0
∗.  Again, the chosen values for 𝜀0

∗ were 

.01, .05, and .10.  Let 𝜀̂(𝐾) be the sample RMSEA estimate for 𝐘(𝐾), where 𝜀̂(𝐾) may be based on 

either 𝑇̃𝑈 or 𝐶2.  Then, the interpretation of RMSEA for categorical data may be studied in two 
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ways.  First, for a given simulation condition, the 𝜀̂(𝐾) may be averaged over the 500 replications 

for the sampling error to become negligible.  Let 𝜀̅(𝐾) be such an average.  Then, 𝜀̅(𝐾) may be 

directly compared to 𝜀0
∗, with discrepancies suggesting that the population RMSEA values for 

the continuous underlying response variables and the discretized categorical variables are not 

the same.  Second, for each 𝐘∗, the 𝜀̂(𝐾) values for the nested datasets may be compared to one 

another.  Any systematic relationship that holds across the Monte Carlo replications would also 

be of interest. 

 The RMSEA estimate 𝜀̂(𝐾) was obtained by 

 
𝜀̂(𝐾) = √max (

𝑇 − 𝑑𝑓

𝑁 × 𝑑𝑓
, 0) 

(9)  

where T is either 𝐶2 or 𝑇̃𝑈, and df is the corresponding degrees of freedom.  For each of the 500 

replications, the mean RMSEA values and empirical 5th and 95th percentiles were recorded. 

 Figure 2 displays the means and empirical 90% confidence intervals for selected 

simulation conditions.  Results corresponding to the 𝑁 = 100 sample size have been omitted, as 

they are quite similar to the 𝑁 = 200 sample size.  A number of trends in Figure 2 are 

noteworthy.  Overall, 𝜀̅(𝐾) based on 𝐶2 is greater than the corresponding 𝜀̅(𝐾) based on 𝑇̃𝑈.  This 

is expected, as 𝐶2 is generally the more powerful statistic.  Also, as expected, the sampling 

variability of 𝜀̂(𝐾) decreases for larger 𝑁, as evidenced by the shorter line segments spanning the 

90% confidence intervals.  Note, however, that for any given 𝜀0
∗ and 𝐾, the 𝜀̅(𝐾) values are 

relatively stable across the various sample sizes. 

Insert Figure 2 about here 

 For the 𝜀0
∗ = .01 conditions (the top row of plots in Figure 2), the 𝜀̅(𝐾) values do not 

appear to depend on 𝐾.  Further, all of the 𝜀̅(𝐾) estimates are near 𝜀0
∗ = .01, and for all 𝑁 and 𝐾, 

the 90% empirical confidence interval of 𝜀̂(𝐾) spans 𝜀0
∗.  For the 𝜀0

∗ = .05 conditions (the middle 

row of plots in Figure 2), the pattern of results is quite different.  There is a clear dependence on 

𝐾, with 𝜀̅(𝐾) increasing in 𝐾.  Also, for all 𝑁 and 𝐾, 𝜀̅(𝐾) < 𝜀0
∗ = .05.  And, for the largest sample 

size, the 90% empirical confidence intervals of 𝜀̂(𝐾) do not span 𝜀0
∗.  Finally, the pattern of results 

for the 𝜀0
∗ = .10 conditions (the bottom row of plots in Figure 2) is quite similar to that of the 
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𝜀0
∗ = .05 conditions.  Again, 𝜀̅(𝐾) clearly increases with 𝐾, and is always less than 𝜀0

∗ = .10 for the 

studied conditions. 

  Figure 3 presents results from another perspective, focusing on the “nested” nature of 

the datasets for the 𝑁 = 1000 and 𝜀0
∗ = .10 condition.  That is, Figure 3 gives a more detailed 

look at the results corresponding to the lower-right plot in Figure 2.  For each replication, there 

is a 𝜀̂(𝐾) value for 𝐾 = 2, 4, and 6.  Further, an RMSEA estimate can be computed upon fitting 

the structural model to the underlying continuous data for the replication because we have 

access to them in a simulation.  Denote this estimate as 𝜀̂∗.  Figure 3 shows the relationship 

among these various RMSEA estimates (based on 𝐶2 for the categorical data and ordinary least 

squares for the continuous underlying response data).   

 

Insert Figure 3 about here 

 

 For this condition, from Figure 2, we know that 𝜀̅(𝐾) increases with 𝐾.  However, 

Figure 3 makes clear that, for this condition, the RMSEA estimates for “nested” datasets are 

positively correlated.  An implication of Figure 3 is that for a dataset from this condition, any 

decrease in the number of categories will likely result in a smaller RMSEA estimate.  For other 

conditions, though, the various RMSEA estimates may be more weakly correlated.  Factors that 

influence the strength of the relationships include the magnitudes of 𝑁 (since a smaller 𝑁 leads 

to increased sampling variability) and 𝜀0
∗ (since RMSEA is bounded below by 0).  Finally, Figure 

3 illustrates that with the continuous underlying variables (𝑦-axes for top row of plots), the 𝜀̂∗ 

values estimate 𝜀0
∗ with little bias because the distribution appears to center on the true RMSEA 

value.  In this case, the empirical mean is .099, very close to 𝜀0
∗ = .10. 

 From Figures 2 and 3, it is clear that 𝜀̅(𝐾) is a poor estimate of 𝜀0
∗.  As one extreme 

example, consider the 𝐾 = 2 and 𝑁 = 1,000 condition, when 𝜀0
∗ = .10.  In this case, 𝜀̅(2) = .034 

for 𝐶2 and . 027 for 𝑇̃𝑈.  Based on these large discrepancies, we reason that 𝜀̅(𝐾) is approximating 

a different population value, due to the discretization process.  Let 𝜀0
(𝐾)

 be such a value.  To the 

extent that 𝜀̅(𝐾) is a reasonable estimate for 𝜀0
(𝐾)

, it is clear that 𝜀0
(𝐾)

≠ 𝜀0
∗.  Also, for relatively 

large values of 𝜀0
∗ (e.g., .05 or .10), 𝜀0

(𝐾)
 is always less than 𝜀0

∗.  Further, for such conditions, 𝜀0
(𝐾)
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appears to converge towards 𝜀0
∗ as 𝐾 increases, though the convergence is slow.  Greater values 

of 𝐾 (e.g., 10) would be helpful in exploring this apparent convergence.  However, such high 

values are not common in empirical data and were not included in the simulation.  In any case, 

Figures 2 and 3 suggest that the guidelines developed for RMSEA interpretation using 

continuous data may not be applicable for use with categorical data. 

 Also, 𝜀̅(𝐾), and presumably 𝜀0
(𝐾)

, clearly depends on the underlying test statistic, 𝐶2 or 

𝑇̃𝑈.  For the studied conditions, 𝜀̅(𝐾) based on 𝐶2 is a less biased estimate of 𝜀0
∗.  In other words, 

the 𝐶2-based RMSEA for the categorical datasets is generally a better estimate of the population 

RMSEA defined at the level of the continuous data.  In summary, even when the population 

RMSEA for the continuous underlying response variables is fixed, the estimated value of 

RMSEA for categorical variables depends on a number of things, including the discrepancy 

function, number of categories per variable, and the choice of underlying test statistic. 

7 Empirical Application 

 In this section, we apply 𝐶2 to the PISA example presented in Section 2.  We also 

calculate the RMSEA estimates and discuss their interpretation in light of the simulation study 

results.  Only a random subset (𝑁 = 1000 complete cases) of the United States school sample is 

used.  For this illustration, we ignore the complex sampling design of the survey, though it 

would need to be modeled for proper inference.  As opposed to the goal of producing valid 

substantive findings, our goals here are to demonstrate the utility of 𝐶2 in assessing a structural 

model of real data, and highlight the challenges in interpreting RMSEA for such models. 

 

Insert Table 6 about here 

 

 The model was fitted twice in Mplus, once using ULS and once with DWLS.  The 

overall model fit statistics and select fit indices are presented in Table 6.  For all of the test 

statistics (i.e., the ULS-based 𝐶2, 𝑇̃𝑈 and 𝑇̃𝐷), 𝑝 < .001.  The large sample size (𝑁 = 1000) may be 

an issue in the use of the chi-square test statistics.  Turning to the RMSEA estimates, the 𝐶2-

based estimate (.036) is less than either the 𝑇̃𝑈 or 𝑇̃𝐷-based estimates (.041 and .054).  This is not 

inconsistent with the simulation study results, where the 𝐶2-based RMSEA estimates were only 
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greater than the 𝑇̃𝑈 or 𝑇̃𝐷-based RMSEA estimates on average and certainly can be smaller on 

occasion.  Also, it is possible that 𝑇̃𝑈 and 𝑇̃𝐷 are more powerful than 𝐶2 against certain types of 

model error.  Applying conventional guidelines for RMSEA interpretation, the observed 

estimates are all near the .05 cut-off of “close-fit.”  In particular, the upper-bound of the 90% 

confidence interval for the 𝐶2-based estimate is .044, which lends further support to the position 

that the theorized mediation model is close-fitting.  However, the results from the simulation 

study suggest that guidelines developed for use with continuous data may be less applicable for 

categorical data.  More specifically, for models with 𝐾 = 4, the conventional guidelines may be 

too lenient. Examining Figure 2 again, we may have reason to believe that in the categorical case, 

with 𝐾 = 4, the RMSEA estimates are smaller by about 20-30% than in the continuous case.  

Consequently, at least for 𝐶2, perhaps the cut-off between “close” and “not close” should be 

around .03 as opposed to .05.  This, however, is merely a conjecture as opposed to any sort of 

suggested guideline. 

8 Discussion and Conclusion 

 In this research, limited-information testing principles, heretofore primarily applied 

in the context of IRT, were applied to SEM of ordinal data.  Specifically, the 𝐶2 statistic proposed 

in Cai and Monroe (2014) was compared to test statistics based on quadratic forms in polychoric 

correlation residuals. 𝐶2 was shown to perform at least as well as the competing statistics in 

terms of calibration under the null as well as power.  For some conditions, 𝐶2 clearly 

outperformed the other statistics.  This research also took the opportunity presented by the 

simulation study to examine the behavior of the RMSEA fit index under varying conditions.  

While guidelines for RMSEA interpretation of continuous variables have been developed over 

many years, the use of RMSEA for assessing fit of categorical variables is a much more recent 

phenomenon.  The simulation results suggest that the magnitude of RMSEA estimates is 

surprisingly dependent on the number of variable categories. 

 While we believe this research has contributed to the area of model fit assessment for 

categorical SEM, it has also left many questions unanswered.  Regarding the 𝐶2 statistic, it is 

unknown how 𝐶2 will perform under other conditions.  Notably, 𝐶2 should be studied with 

larger models, as the simulation study in this research focused on a relatively small model (with 
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only 12 variables).  Also, it would be interesting to study 𝐶2 when the underlying continuous 

variables are not normal.  Presumably, 𝐶2 would have more power to detect this sort of 

misspecification than statistics that assume multivariate normality of the underlying response 

variables.  Additionally, the statistic itself can be further developed for structural models for 

categorical data.  Under multistage estimation, the sample proportions can be perfectly 

reproduced by the threshold estimates, leading to all first-order residual probabilities being 

equal to zero.  In this case, perhaps 𝐶2, and other limited-information statistics, can be 

simplified. 

 As for the interpretation of RMSEA for categorical data, a number of questions 

deserve further study.  Again, since the simulation study only used one model size, it is unclear 

to what extent model size will impact the behavior of RMSEA.  Additionally, while the Browne 

and Cudeck (1992) procedure proved convenient in this research as a method of introducing 

model error, other forms of model misspecification (e.g., omitted cross-loadings) could elicit 

different behaviors of RMSEA.  Also, given how RMSEA appears to depend on the number of 

categories in the outcome variables, to what extent can corrections or adjustments to RMSEA 

make the fit index easier to interpret or more useful?  Finally, RMSEA is but one fit index.  It 

would stand to reason that other statistics based on chi-square approximations (e.g., TLI) may 

exhibit interesting behaviors.  In any case, both the current research and potential future 

research topics reinforce the notion that practitioners should exercise caution in interpreting fit 

index values (see, e.g., Marsh, Hau, & Wen, 2004).  In closing, while this research has 

contributed to the understanding of model fit assessment for categorical data, much work 

remains. 
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Appendix 

Regularity Conditions for the Multistage Estimator 

 Maydeu-Olivares and Joe (2006) assumed regularity conditions on the model that must 

be satisfied for application of the limited-information testing methodology.  There must be a 

matrix 𝐇 such that 

 √N(𝜽̂ − 𝜽) =
𝑎

 𝐇√N(𝒑 − 𝝅), (10)  

where “=
𝑎

” denotes asymptotic equivalence.  Maydeu-Olivares and Joe (2006) presented 𝐇 for 

the maximum likelihood estimator.  Here, 𝐇 is presented for the multistage estimator.  

Essentially, the approach taken here is to piece together results from Maydeu-Olivares (2006), 

which also considers asymptotic properties of the multistage estimator. 

 Let  𝚫̃ = 𝜕𝜸(𝜽)/𝜕𝜽′ be a 𝑑 ×  𝑞 matrix.  Recall that 𝐖 is the 𝑑 ×  𝑑 matrix used in the 

third stage of estimation.  Then, let 𝐌 = (𝚫̃′𝐖𝚫̃)
−1

𝚫̃′𝐖 be a 𝑞 ×  𝑑 matrix.  The estimates of the 

structural parameters may be expressed as a linear function of the estimates from the first and 

second stages, 

 √N(𝜽̂ − 𝜽) =
𝑎

 𝐌√N(𝜸̂ − 𝜸), (11)  

which is Equation (18) in Maydeu-Olivares (2006).  The 𝑑 × 𝑠2 matrix 𝐆, defined in Equation 

(14) of Maydeu-Olivares (2006), is used to account for the first and second stages of estimation.  

Then, the estimates of the structural parameters may be expressed as a linear function of the 

underlying sample proportions and probabilities,  

 √N(𝜽̂ − 𝜽) =
𝑎

 𝐌𝐆𝐋̈√N(𝒑 − 𝝅), (12)  

where 𝐋̈ is an 𝑠2  ×  𝜅 operator matrix (see, e.g., Cai and Hansen, 2013) such that 𝐞̈ = 𝐋̈𝒆.  Taking 

𝐇 = 𝐌𝐆𝐋̈ satisfies the requirements for the multistage estimator. 

Model-Implied Probabilities 

Calculation of 𝒓2 requires first and second-order model-implied probabilities.  The 

covariance matrix in Equation (8), 𝚺2, requires first, second, third, and fourth-order model-

implied probabilities.  Details of the pattern of model-implied probabilities necessary for 𝚺2 can 

be found in Cai and Hansen (2013).  According to the model, we can find the marginal 

probability of any subset of 𝜈 variables as 
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Pr [⋂𝑦𝑗 = 𝑘𝑗

𝜈

𝑗=1

] = ∫⋯
ℙ

 ∫𝜙𝜈(𝒚
∗; 𝟎, 𝐏ν)𝑑𝐲∗ 

(13)  

where 𝜙(∙) denotes a 𝜈-variate normal density and ℙ is a 𝜈-dimensional parallelepiped region of 

integration given by ℙ =⊗𝑗=1
𝑣 (𝜏𝑗,𝑘𝑗

, 𝜏𝑗,𝑘𝑗+1).  The correlation matrix 𝐏𝜈 is the 𝜈 ×  𝜈 sub-matrix 

from 𝐏.  The regions of integration obviously depend on the thresholds 𝝉̂, and the correlations 

between the underlying variables depend on other free parameters of 𝜽̂, according to Equation 

(1).  If 𝜈 = 𝑛, Equation (13) provides the marginal probability of an entire response pattern. And 

for 𝜈 < 𝑛, Equation (13) can be used with any subset of the items to find marginal probabilities 

of any order as needed.  For this research, we calculated Equation (13) for up to fourth-order 

probabilities using the Monte Carlo approach presented in Genz (1992).  Though observed 

proportions could be substituted for the probabilities, these would likely prove unstable, in 

particular for smaller sample sizes. 

Derivatives of the First and Second-Order Model-Implied Probabilities 

 The weight matrix of 𝐶2 in Equation (8), 𝐔2, depends on 𝐉2.  Instead of focusing on the 

elements of 𝐉2, it is sufficient to focus on the elements of 𝚫2, as 𝐉2 = 𝐓𝚫2 for an appropriate 

operator matrix 𝐓.  𝚫2 is the matrix of derivatives of first and second-order model-implied 

probabilities with respect to 𝜽.  Without loss of generality of the method, we make two 

simplifying assumptions for ease of exposition.  Namely, we assume that there are no 

additional constraints placed on the free parameters, and that the thresholds are saturated, i.e., 

the model contains as many location parameters as there are thresholds.  Following our 

notational convention, 𝝅2(𝜽̂) = (𝝅̇(𝜽̂)
′
, 𝝅̈(𝜽̂)′)′.  It is also convenient to partition the 

components of 𝜽 in the following way.  Again, assuming saturated thresholds, let 𝜽𝝉 be those 

parameters that model 𝝉̂, and let 𝜽𝝆 be those parameters that model 𝝆̂ (free parameters in 𝚲, 𝐁, 

etc.).  Then, 𝜽 = (𝜽𝝉′, 𝜽𝝆′)′, and 𝚫̂2 may be partitioned as 

 

𝚫̂2 =

[
 
 
 
 
𝜕𝝅̇(𝜽̂)

𝜕𝜽𝝉

𝜕𝝅̇(𝜽̂)

𝜕𝜽𝝆

𝜕𝝅̈(𝜽̂)

𝜕𝜽𝝉

𝜕𝝅̈(𝜽̂)

𝜕𝜽𝝆 ]
 
 
 
 

. 

(14)  

As the first-order moments do not depend on correlations, the upper-right block of 𝚫̂2 is 𝟎.  
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Maydeu-Olivares (2006, Appendix 2) presents results for the upper-left and lower-left blocks of 

𝚫̂2.  In the same Appendix 2, results are given for 𝜕𝝅̈(𝜽̂)/𝜕𝝆.  By the chain rule, the lower-right 

block may be obtained as the product of 𝜕𝝅̈(𝜽̂)/𝜕𝝆 and 𝜕𝝆̂/𝜕𝜽𝝆.  Thus, the elements of 𝜕𝝆̂/𝜕𝜽𝝆 

are needed, which are standard results in the SEM literature (Bock & Bargmann, 1966). 
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Table 1 

 

Prompts and Item Wording for the PISA Empirical Example 

 

Construct/ 

Item 

Stem/ 

Wording 

PSC How much do you disagree or agree with the following statements? 

1 I get good <marks> in mathematics. 

2 I learn mathematics quickly. 

3 I have always believed that mathematics is one of my best subjects. 

4 In my mathematics class, I understand even the most difficult work. 

ANX How much do you disagree or agree with the following statements? 

5 I often worry that it will be difficult for me in mathematics class. 

6 I get very tense when I have to do mathematics homework. 

7 I get very nervous doing mathematics problems.  

8 I feel helpless when doing a mathematics problem. 

TASK How confident do you feel about having to do the following calculations? 

9 Using a <train timetable>, how long it would take to get from Zedville to Zedtown 

10 Calculating how many square metres of tiles you need to cover a floor 

11 Finding the actual distance between two places on a map with a 1:10,000 scale 

12 Calculating the petrol consumption rate of a car 

 

Note.  PSC = positive self-concept as a mathematics student.  ANX = mathematics anxiety.  TASK 

= task-specific confidence 
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Table 2 

Simulation Study: True Generating Parameters 

Variable (j) 𝜏𝑗,1 𝜏𝑗,2 𝜏𝑗,3 𝜏𝑗,4 𝜏𝑗,5 𝜆𝑗,1 𝜆𝑗,2 𝜆𝑗,3 𝜓𝑗,𝑗  

1 −1.27 −0.69 −0.28 0.28 1.19 0.70 0 0 0.51 

2 −1.11 −0.71 −0.07 0.36 0.73 0.73 0 0 0.47 

3 −0.74 −0.39 −0.03 0.24 1.15 0.73 0 0 0.47 

4 −1.15 −0.26 0.06 0.66 1.20 0.69 0 0 0.52 

5 −0.64 −0.18 0.21 0.57 0.94 0 0.65 0 0.54 

6 −1.17 −0.54 −0.23 0.47 1.15 0 0.73 0 0.42 

7 −1.15 −0.45 −0.17 0.18 0.74 0 0.73 0 0.42 

8 −1.07 −0.38 0.07 0.55 1.09 0 0.67 0 0.51 

9 −0.80 −0.45 −0.07 0.22 0.52 0 0 0.62 0.47 

10 −1.02 −0.26 0.12 0.46 1.06 0 0 0.68 0.36 

11 −1.11 −0.47 0.40 0.76 1.19 0 0 0.76 0.20 

12 −1.07 −0.18 0.10 0.37 1.10 0 0 0.61 0.48 

 

Note.  For 𝐾 = 6 categories, 𝜏𝑗,𝑚 is the 𝑚th ordered threshold for variable 𝑗.  For 𝐾 = 4, the 

subset of thresholds is in boldface.  For 𝐾 = 2, the further subset of thresholds is also italicized.   

𝜆𝑗,𝑝 is the loading of the 𝑗th variable on the 𝑝th factor.  𝜓𝑗,𝑗 is unique variance 𝑗.  
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Table 3 

 

Population Correlation Matrices for Correctly Specified Model (Lower Triangle) and Model 

with 𝜀0
∗ = .10 (Upper Triangle) 

 

Item 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.000 .532 .459 .455 .219 .099 .116 .121 .266 .254 .303 .231 

2 .511 1.000 .569 .479 .164 .164 .117 .184 .255 .147 .265 .185 

3 .511 .533 1.000 .549 .094 .162 .147 .206 .141 .213 .290 .218 

4 .483 .504 .504 1.000 .185 .064 .219 .130 .226 .200 .249 .213 

5 .137 .142 .142 .135 1.000 .473 .515 .510 .292 .270 .204 .157 

6 .153 .160 .160 .151 .517 1.000 .645 .541 .220 .298 .262 .294 

7 .153 .160 .160 .151 .517 .581 1.000 .469 .252 .268 .232 .337 

8 .141 .147 .147 .139 .475 .533 .533 1.000 .284 .220 .295 .184 

9 .208 .217 .217 .205 .219 .246 .246 .226 1.000 .568 .694 .436 

10 .228 .238 .238 .225 .240 .270 .270 .248 .586 1.000 .721 .628 

11 .255 .266 .266 .252 .269 .302 .302 .277 .655 .719 1.000 .646 

12 .205 .214 .214 .202 .216 .242 .242 .222 .526 .577 .645 1.000 
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Table 4 

 

Simulation Results: Null Condition 

 

      

 

      Rejection Rates     

𝐾  N Stat Reps Mean Var   .01 .05 .10 

 

K-S 

2 100 𝐶2 .71 48.6 102.9   .020 .034 .070   < .001 

  

𝑇̃𝑈 .71 50.2 60.5 

 

.006 .025 .053 

 

< .001 

 

200 𝐶2 .88 50.1 95.0 

 

.009 .034 .066 

 

.371 

  

𝑇̃𝑈 .88 50.3 63.2 

 

.007 .016 .052 

 

.001 

 

500 𝐶2 .98 51.5 113.6 

 

.012 .059 .128 

 

.348 

  

𝑇̃𝑈 .98 51.5 95.0 

 

.012 .053 .108 

 

.490 

 

1000 𝐶2 1.00 50.8 116.2 

 

.012 .064 .114 

 

.526 

  

𝑇̃𝑈 1.00 51.4 98.6 

 

.006 .062 .100 

 

.885 

4 100 𝐶2 .97 51.9 97.0 

 

.010 .052 .115 

 

.099 

  

𝑇̃𝑈 .97 51.2 68.6 

 

.008 .027 .054 

 

.013 

 

200 𝐶2 1.00 51.5 99.6 

 

.014 .064 .102 

 

.459 

  

𝑇̃𝑈 1.00 50.8 75.7 

 

.002 .028 .074 

 

.090 

 

500 𝐶2 1.00 51.4 114.3 

 

.014 .064 .116 

 

.260 

  

𝑇̃𝑈 1.00 51.3 96.8 

 

.012 .054 .108 

 

.561 

 

1000 𝐶2 1.00 51.4 109.6 

 

.018 .052 .102 

 

.667 

  

𝑇̃𝑈 1.00 51.2 95.9 

 

.010 .054 .082 

 

.762 

6 100 𝐶2 .99 51.9 96.3 

 

.010 .062 .123 

 

.169 

  

𝑇̃𝑈 .99 51.4 69.1 

 

.006 .036 .073 

 

.002 

 

200 𝐶2 1.00 51.6 107.1 

 

.016 .074 .106 

 

.632 

  

𝑇̃𝑈 1.00 51.0 86.1 

 

.010 .050 .096 

 

.183 

 

500 𝐶2 1.00 51.3 108.7 

 

.008 .064 .112 

 

.516 

  

𝑇̃𝑈 1.00 51.2 104.0 

 

.016 .050 .108 

 

.976 

 

1000 𝐶2 1.00 51.5 105.1 

 

.014 .056 .108 

 

.699 

  

𝑇̃𝑈 1.00 51.2 94.3 

 

.014 .054 .090 

 

.430 

Note.  𝐾 is the number of categories per variable.  ‘Reps’ is the proportion of valid replications.  

‘K-S’ is the two-sided Kolmogorov-Smirnov p-value.  The degrees of freedom for the model is 

51.



Accepted in Multivariate Behavioral Research 

Table 5 

 

Simulation Results: Power at 𝛼 = .05 Level 

 

   𝑁 = 100  𝑁 = 200  𝑁 = 500  𝑁 = 1000 

𝜀0
∗ Stat  𝐾 = 2 𝐾 = 4 𝐾 = 6  𝐾 = 2 𝐾 = 4 𝐾 = 6  𝐾 = 2 𝐾 = 4 𝐾 = 6  𝐾 = 2 𝐾 = 4 𝐾 = 6 

.01 𝐶2  .033 .064 .056  .062 .062 .074  .065 .080 .080  .092 .116 .108 

 𝑇̃𝑈  .014 .023 .032  .025 .036 .050  .053 .072 .060  .070 .078 .084 

                  

.05 𝐶2  .057 .176 .219  .118 .364 .450  .185 .820 .920  .476 .996 1.000 

 𝑇̃𝑈  .027 .068 .081  .055 .173 .212  .140 .570 .692  .308 .958 .986 

                  

.10 𝐶2  .085 .708 .884  .241 .982 .998  .794 1.000 1.000  .996 1.000 1.000 

 𝑇̃𝑈  .041 .298 .400  .115 .737 .886  .498 1.000 1.000  .910 1.000 1.000 

 

Note. 𝜀0
∗ is population RMSEA.  𝐾 is the number of categories per variable.
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Table 6 

 

PISA Data Example: Test Statistics and Select Fit Indices 

 

Stat df Value p-value TLI RMSEA 90% CI 

𝐶2 51 116.61 < .001 .997 .036 (.027, .044) 

𝑇̃𝑈 51 138.30 < .001 .989 .041 (.033, .050) 

𝑇̃𝐷 51 199.42 < .001 .992 .054 (.046, .062) 

 

Note.  ‘TLI’ = Tucker-Lewis Index.  ‘90% CI’ = 90% confidence interval for the RMSEA estimate.  



1 
 

 

 

Figure Captions 

 

Figure 1.  Ordinal Structural Model for PISA Example 

Circles represent latent variables.  PSC = positive self-concept as a mathematics student.  ANX = 

mathematics anxiety.  TASK = task-specific confidence.  𝛽 = regression weight.  𝜁 = equation disturbances.  

Squares represent observed variables.  𝜖 = unique factors. 

 

Figure 2.  Mean and Empirical 90% Confidence Intervals for RMSEA Estimates Based on 𝐶2 and 𝑇̃𝑈 

For each row of plots, the dashed line marks the value of 𝜀0
∗.  K is number of categories per variable.  N is 

sample size. 

 

Figure 3.  Bivariate Plots of RMSEA Estimates for “Nested” Datasets when 𝜀0
∗ = 0.10 and 𝑁 = 1000 

RMSEA estimates based on 𝐶2. For each plot, each point represents 1 of 500 Monte Carlo replications.  

The axes labels (𝐾) indicate the number of categories per variable in the dataset.  In the top row of plots, 

𝑦∗ indicates continuous data.  Dotted lines mark . 05. Dashed lines mark 𝜀0
∗ = .10. 
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