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A flexible full-information approach to the modeling of response styles

Abstract

In this paper, we present a flexible full-information approach to modeling multiple user-
defined response styles across multiple constructs of interest. The model is based on
a novel parameterization of the multidimensional nominal response model that sepa-
rates estimation of overall item slopes from the scoring functions (indicating the order
of categories) for each item and latent trait. This feature allows for the definition of
response styles to vary across items as well as overall item slopes that vary across items
for both substantive and response style dimensions. The model is compared with sim-
ilar approaches using examples from the smoking initiative of NIH’s Patient Reported
Outcomes Measurement Information System. A small set of simulations show that the
estimation approach is able to recover model parameters, factor scores, and reasonable
estimates of standard errors. Furthermore, these simulations suggest that failing to in-
clude response style factors (when present in the data generating model) has adverse
consequences for substantive trait factor score recovery.

Keywords: Response styles; multidimensional item response theory; nominal re-
sponse model
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1 Introduction

Researchers often ask their participants to complete survey measures that include

Likert-type items (e.g., rating one’s agreement to a statement on a scale from 1 - Strongly

Disagree to 7 - Strongly Agree). The use of such items is pervasive throughout the social

sciences, including social and personality psychology (Paulhus & Vazire, 2007), clinical

psychology (Morey, 1991), patient reported outcomes (Hansen et al., 2014), and so on.

However, individuals are sometimes thought to exhibit different response styles; that

is, they tend to use the response options in different ways (Baumgartner & Steenkamp,

2001; Paulhus, 1991). Common examples include extreme response style (ERS; tendency

to use the endpoints, e.g., 1 or 7), midpoint responding (MRS; tendency to use of the

middle response category; e.g., 4) and acquiescence (ARS; a tendency to agree with

items; Baumgartner & Steenkamp, 2001). Additional response styles may have an un-

derlying motivational component, such as responding to all items in a socially desirable

way (SDR; Kuncel & Tellegen, 2009; Paulhus, 1991) to make oneself look good to others.

Although there are many different approaches to modeling or measuring response

styles (Chen, Lee, & Stevenson, 1995; Cheung & Rensvold, 2000; Clarke, 2001; Green-

leaf, 1992; Fischer, 2004), recent advances include the development of full-information

methods that use the same items to simultaneously assess substantive constructs and

response styles. For instance, responses to such items may involve multiple decision

processes that depend on the latent variables for the construct of interest and response

styles (e.g., ERS and MRS), and can be formally modeled using multidimensional item

response theory (e.g., Böckenholt, 2012, 2014; Khorramdel & von Davier, 2014; Plieninger

& Meiser, 2014; Thissen-Roe & Thissen, 2013). Wang and colleagues (Jin & Wang, 2014;

Wang, Wilson, & Shih, 2006; Wang & Wu, 2011) have presented extensions of the rating

scale, partial credit, and generalized partial credit models that can include either ran-

dom thresholds across persons or a multiplicative person parameter representing ERS

that affects item thresholds. Other approaches allow for heterogeneous thresholds across
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persons to account for ERS using a graded response model (Johnson, 2003; Rossi, Gilula,

& Allenby, 2001), ERS using mixed Rasch models (e.g., Wetzel, Carstensen, & Böhnke,

2013), or ERS and ARS using an unfolding model (Javaras & Ripley, 2007). Using a

multidimensional nominal response model (MNRM), response style factors have been

added in a compensatory manner to affect the probability of choosing certain categories;

such examples include discrete latent traits (or latent classes) representing ERS (Kieruj

& Moors, 2010; Moors, 2003, 2004; Morren, Gelissen, & Vermunt, 2011, 2012), ERS and

ARS (Kieruj & Moors, 2013), response style classes (van Rosmalen, van Herk, & Groenen,

2010), or continuous latent traits for ERS (Bolt & Johnson, 2009; Bolt & Newton, 2011;

Johnson & Bolt, 2010).

While these approaches are all important developments, a review of the literature

reveals some limitations in the flexibility of the types of response styles that can be ac-

commodated, and the capacity to simultaneously model multiple response styles and

multiple substantive constructs. For instance, with the exception of a few approaches

(Böckenholt, 2012; Bolt & Newton, 2011; van Rosmalen et al., 2010), most of the above

developments are specialized for modeling only one or two response styles at a time -

usually ERS, MRS, and/or ARS. In some cases, ERS and MRS are considered opposite

poles of the same underlying dimension and cannot be separated (e.g., Jin & Wang, 2014;

Thissen-Roe & Thissen, 2013). In some cases where two response styles are modeled, a

simplifying assumption is often made that the response style dimension affects all items

equally (i.e., loadings are equal across items; Böckenholt, 2012; Bolt & Newton, 2011;

Plieninger & Meiser, 2014; Kieruj & Moors, 2013, for an exception see Khorramdel &

von Davier, 2014). Even if this assumption were correct, these applications exclude the

possibility where a researcher would like to explicitly test this assumption. While deci-

sion process models may offer flexibility in the types of response styles modeled, they

have so far been restricted to either models with equal loadings across items (Böckenholt,

2012; Plieninger & Meiser, 2014) or demonstrations modeling only ERS and MRS (e.g.,
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Khorramdel & von Davier, 2014; Thissen-Roe & Thissen, 2013).

Computational reasons have also limited the number of constructs modeled. Re-

sponse style models have been demonstrated with Maximum Likelihood estimation via

the EM algorithm coupled with numerical integration using either Gaussian or Monte

Carlo methods, or the use of Bayesian MCMC methods. These approaches can be com-

putationally prohibitive (see Cai, 2010a). As a result, the most number of correlated

continuous latent traits that we have seen in the above research is only three (Bolt &

Newton, 2011; Kieruj & Moors, 2013). To achieve the modeling of additional traits, some

research has substituted latent classes with a discrete number of ordered levels instead of

continuous latent traits (Khorramdel & von Davier, 2014; Kieruj & Moors, 2013; Moors,

2003, 2004; van Rosmalen et al., 2010), or estimate substantive traits that are uncorrelated

(e.g., Thissen-Roe & Thissen, 2013).

To address these limitations, the present research combines the innovative approach

of using continuous latent traits and the MNRM by Bolt and colleagues (Bolt & Johnson,

2009; Bolt & Newton, 2011; Johnson & Bolt, 2010) with a novel parameterization of the

MNRM (Thissen, Cai, & Bock, 2010; Thissen & Cai, in press) and efficient estimation

via the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm (Cai, 2010a, 2010b).

The model subsumes work by Bolt and colleagues, and is able to handle multiple user-

defined response style factors across multiple substantive traits. In contrast to previous

research with the MNRM, our implementation includes overall item slopes for each fac-

tor (rather than slopes for individual categories as in the original MNRM), which allows

researchers to fit and test models where the effect of response styles may be constant or

varying across items. In addition, the model allows users to define a particular response

style in a different way across items, meaning that the response style can be defined by

the choice of different categories across items as is the case with recent formulations of

socially desirable responding (Kuncel & Tellegen, 2009). In this paper, we demonstrate

the simultaneous modeling of ERS and MRS, and we outline how the model may also
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be used for ARS, SDR, and other arbitrarily defined response style factors.

Additionally, MH-RM allows for estimation of a high number of continuous corre-

lated latent traits and can result in concurrent estimation of parameter standard errors.

In some cases, this approach may be preferable to the use of latent classes or estimation

of only a few latent traits. To the extent that the underlying latent traits may be contin-

uous, use of latent classes with few ordinal levels may be a simplifying approximation.

Furthermore, it has been recommended that if response styles represent stable person-

ality traits that affect all items, their proper assessment is best achieved by including a

large number of items or substantive constructs (Bolt & Newton, 2011; Greenleaf, 1992).

Our primary goal is to present the MNRM modeling framework and demonstrate its

flexibility. To this end, Section 2 presents a motivating example for the development of

the model. In Section 3, we present the reparameterized MNRM, examples of response

functions under various response styles, and compare our modeling approach with pre-

vious uses of the MNRM. In Section 4, our approach is demonstrated on empirical data.

In Section 5, we present two small simulation studies that evaluate the performance of

our approach. Section 6 concludes with closing remarks and future directions.

2 Empirical Example Data

To motivate development of the model, imagine we are left with the following prob-

lem using data from the PROMIS R©smoking initiative (Hansen et al., 2014). The PROMIS R©

cigarette smoking domain includes six correlated constructs (nicotine dependence, he-

donic benefits, coping benefits, social benefits, psychosocial risks, and health risks), each

measured by 12 to 27 5-point Likert-type items (all positively keyed). The item banks

were refined using a combination of exploratory and confirmatory item factor analytic

methods from a much larger original pool of items developed and reviewed using stan-

dard PROMIS R© protocols. Each bank is calibrated on data from 4,201 daily (109 items)

and 1,183 non-daily smokers (107 items) collected online by Harris Interactive.

Imagine that we want to perform item calibration across both groups and all six



August 13, 2015 6

dimensions simultaneously while probing for the presence of response styles across all

items (see Figure 1). For illustration, let us just consider the possibility that ERS or MRS

or both response styles are present in the data. For example, we may hypothesize that

some participants have a tendency to use just the endpoints of the scale (ERS) or the

midpoint of the scale (MRS) - response strategies that may reduce cognitive burden in

making more nuanced choices among the response options (e.g., Kieruj & Moors, 2010).

We also question whether ERS and MRS are distinct uncorrelated dimensions or are just

opposite poles of the same response style dimension (a tendency to use categories near

the middle of the scale versus the endpoints, which we label EMRS). Based on research

suggesting that item-level features may affect the prevalence of response styles, we also

wonder whether response styles affect all items equally or whether some items are more

prone to response styles than others (e.g., perhaps items that require more cognitive

effort in order to achieve a nuanced response; Krosnick, 1991).

The need to model MRS separately from ERS precludes approaches that have been

developed exclusively for ERS or consider ERS and MRS to only be on opposite poles of

the same dimension (e.g., Jin & Wang, 2014; Thissen-Roe & Thissen, 2013). Furthermore,

we wish to fit models with eight correlated continuous latent traits and response style

loadings that are fixed or vary across items. Both the high dimensionality and varying

response style loadings have not been demonstrated in previous uses of the MNRM

(Bolt & Johnson, 2009; Bolt & Newton, 2011; Johnson & Bolt, 2010). Using this empirical

example, in the next section we formalize how the MNRM can be used to accommodate

the above modeling situations, as well as other arbitrarily defined response styles.

3 The Proposed Modeling Approach

3.1 The Multidimensional Nominal Response Model (MNRM)

Takane and de Leeuw (1987) presented a multivariate generalization of Bock’s nom-

inal response model (NRM; Bock, 1972). In econometrics, McFadden (1974) is generally

credited with the development of the multinomial logistic formalism inherent in the
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NRM. Johnson and Bolt (2010, see also Moors 2003, 2004) presented the NRM again as

useful for response styles.

To introduce notation, consider i = 1, . . . , N independent subjects who respond to j =

1, . . . , n items. Let Yij be a discrete random variable representing observed item response

for subject i on item j and yij is its realization. Let there be k = 1, . . . , Kj possible ordered

response options for item j. Consider also xi as a D × 1 vector representing subject i’s

factor scores on d = 1, . . . , D latent dimensions. Typically, the latent dimensions are

assumed multivariate normal, xi ∼ N (µ, Σ) with a certain covariance structure among

the latent traits, Σ. Let X = (x′1, . . . , x′i, . . . , x′N)
′ be an N×D matrix containing as its rows

each individual’s vector of factor scores and let Y be an N × n matrix of item responses

where the (i, j)th entry is Yij. For now, if we drop item and subject subscripts to avoid

notational clutter, and note that item parameters and factor scores may vary across items

and subjects, then the category response functions under the original MNRM are based

on the multinomial logistic distribution:

P(Y = k|x, ã, c) =
exp(ã′kx + ck)

∑K
m=1 exp(ã′mx + cm)

(1)

where ãk is a D× 1 vector of slopes that represents loadings of category k on the D latent

variables and ck is the intercept for category k. All slopes and intercepts are contained

in ã and c, respectively.

Thissen and Cai (in press) present the following reparameterization of the MNRM:

P(Y = k|x, a, S, c) =
exp([a ◦ sk]

′x + ck)

∑K
m=1 exp([a ◦ sm]′x + cm)

(2)

where x and k are defined as before, a is a vector of slope parameters of length D, and

c is a vector of intercept parameters of length K. The symbol ◦ denotes the Schur (or

entrywise) product. As before, ck is the kth element in the vector c, or the intercept that

corresponds to category k. S is a D × K matrix that contains scoring function values
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with sk pertaining to the kth column of S. In other words, each column of S corresponds

to a particular category for the item and each row of S corresponds to a particular

latent dimension. This model is similar to one presented by Thissen et al. (2010) and

implemented in IRTPRO (Cai, Thissen, & du Toit, 2011), flexMIRT R©(Cai, 2013) and the

mirt package (Chalmers, 2012) except that the scoring functions in the present approach

may vary across latent dimensions. Whereas various submodels of (1) have been used

to model response styles (e.g., Bolt & Johnson, 2009; Bolt & Newton, 2011; Johnson &

Bolt, 2010), to our knowledge the parameterization in (2) has not and is the focus of the

current paper. A module implementing the new model is scheduled for the next major

update in flexMIRT R©sometime late 2015 or early 2016.

3.2 Scoring Functions for the Modeling of Response Styles

The key insight useful for the MNRM in modeling response styles under both of

these parameterizations lies in the ability to estimate or fix the order of the categories

and interpret how they relate to each latent trait. For the model in (1), the order of cate-

gories and the strength of their relation to the latent trait is determined by the category

slopes, ã. For a 5-category item with ordered responses, slopes for a single dimension

proportional to [ãd,1 ãd,2 ãd,3 ãd,4 ãd,5] = [0 1 2 3 4] , with ãd,k representing

the slope for dimension d and category k, would represent graded responses similar to

the partial credit (PC) or generalized partial credit (GPC) models (Masters, 1982; Mu-

raki, 1992). In (2), the order of categories is determined by the scoring functions, S. Each

row of S determines the order of the categories for the item and how they relate to that

particular latent trait. For example, [sd,1 sd,2 sd,3 sd,4 sd,5] = [0 1 2 3 4] , with

sd,k representing row d and column k of S, is equivalent to the PC or GPC models. The

difference in these parameterizations is that under (2) the order of categories (scoring

functions), S, are separated from the overall item slopes, a, allowing researchers to fix

the order of categories for the dimension according to theoretically interesting or hypoth-

esized values, but estimate overall item slopes for that dimension that may vary across



August 13, 2015 9

items. This represents our preferred approach for modeling response styles and allows

response styles to have slopes that differ across items. In what follows, we primarily

focus on this latter parameterization unless noted otherwise.

To see how response styles may be defined and affect item responses, we consider ex-

ample response functions for a single 5-category hedonic benefits item (“Smoking makes

me feel content”). These response functions were obtained by fitting several models un-

der (2) that will later be described in detail; response style factors were allowed to cor-

relate with substantive traits and each other, scoring functions were fixed, item slopes

were estimated, and item parameter estimates appear in Table 1. In the absence of re-

sponse styles, if this item loads on a hedonic benefits factor whose scoring functions are

ordered as in the GPC model, it may result in response functions similar to those that

appear in the top row of Figure 2. If ERS also affects this item and is thought to be a

preference for the endpoint categories, defined by scoring functions of [1 0 0 0 1] ,

this results in response functions in the first column in Figure 2. Thus, Figure 2 depicts

cross sections of response functions with the x-axis representing hedonic benefits, and

each row representing a different level of the response style. The top row in Figure 2 is

at the mean of the response style (ERS=0), the middle row is above the mean (ERS=1),

and the bottom row is below (ERS=-1). Notice that when ERS=1, the response categories

appear contracted towards the middle of the scale and the response functions for the

lowest and highest categories have high probabilities for a large range of the hedonic

benefits latent trait. Conceptually, if a respondent is high on ERS, they are more likely to

pick one of the endpoint categories and we are less confident that such a response indi-

cates that they are actually high (or low) on hedonic benefits. In contrast, when ERS=-1,

the middle three categories are exaggerated and have higher probabilities across a much

wider range of hedonic benefits.

The remaining two columns in Figure 2 are also from models with a single response

style factor and represent response function cross-sections where MRS is defined as pref-
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erence for the middle category with scoring functions [0 0 1 0 0] and EMRS as a

graded preference for the middle versus endpoint categories defined by scoring func-

tions [2 1 0 1 2] . These examples illustrate the possibility that a fine distinction

between ERS, MRS, and EMRS is possible, with the modeling of each resulting in differ-

ent response function shapes. For example, high on MRS (MRS=1) results in a middle

category that has a relatively high probability across hedonic benefits, which is not com-

pletely redundant with being low on ERS (ERS=-1). In addition, note the difference

between ERS=1 and EMRS=1, suggesting that an exclusive preference for the endpoint

categories (ERS) is not the same as graded preference for the endpoints versus categories

that are towards the middle of the scale (EMRS).

The example response functions in Figure 3 include two correlated response style

factors, ERS and MRS, with scoring functions defined as before. These examples illus-

trate additional response function shapes not possible when only a single response style

dimension is in the model. For example, being high on both of these factors (ERS=1,

MRS=1) is indicative of more frequent use of the endpoint categories and the midpoint

category whereas being low on these factors (ERS=-1, MRS=-1) indicates more frequent

use of the intermediate categories.

Although we have focused on ERS, MRS, and EMRS, the scoring functions simply

define how the order of the categories relate to each latent trait and may follow almost

any user-specified values. Table 2 lists several additional options for defining scoring

functions. A useful heuristic is to consider scoring functions analogous to contrasts used

for categorical predictors in linear models (e.g., regression, ANOVA). For instance, we

could have used the contrast [1 −1 −1 −1 1] for ERS, which would have yielded

an equivalent item model, but changes the scaling of the item slope. A positive slope for

ERS indicates that selection of the endpoint categories would reflect being higher on the

ERS latent trait and that both endpoints are weighted equally. An additional heuristic

is to consider the scoring functions analogous to category weights used in ad-hoc sum
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score approaches to measuring response styles (for a review, see de Jong, Steenkamp,

Fox, & Baumgartner, 2008). For example, counting the number of times a participant

selects the endpoint categories as an index for ERS conceptually maps onto the scoring

function values used in Table 2, yet does not readily incorporate a measurement model

to disentangle style from content.

Our approach also retains the possibility of modeling ARS by defining the scoring

function for an orthogonal ARS dimension as in the GPC model and fixing ARS load-

ings equal across items (Maydeu-Olivares & Coffman, 2006; Savalei & Falk, 2014), or

defining ARS as the choice of categories above the midpoint of the response options,

[0 0 0 1 1] . However, we agree with Maydeu-Olivares and Coffman (2006) that

whether the emerging dimension represents ARS or something substantive must be de-

termined based on theoretical grounds.1 In general, the interpretation of response style

factors may be more difficult as the scoring functions more closely resemble possible

substantive traits. For instance, in some scoring algorithms for SDR (Paulhus, 1991), the

top two-most categories on 7-point positively keyed items count towards SDR, possi-

bly representing the scoring function [0 0 0 0 0 1 1] . While it is possible to fit a

model with this SDR definition and a substantive dimension simultaneously, additional

work is needed to establish the validity and interpretation of the emerging dimensions.

We also note that the scoring functions need not be fixed to the exact same values across

items for any given dimension. If there is sufficient theory or evidence that a particular

category for a particular item defines a response style, then researchers may define the

scoring function for that item in a unique way that contrasts that category with the other

available response options (e.g., see Table 2). For example, if the 4th category is the most

socially desirable response for item 1, but the 3rd category is the most desirable for item

2 (e.g., Kuncel & Tellegen, 2009), these two items may have different scoring functions for

1We refer the reader for a more extensive discussion of the former definition of ARS in Maydeu-Olivares
and Coffman (2006). We also suspect that in some cases its interpretation as ARS may be bolstered by low
correlations with substantive dimensions, the presence of both positive and negatively worded items, or
substantive traits that are nearly uncorrelated.
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the same SDR latent trait. Yet, the scoring functions also need not follow integer values;

for example, participant or expert ratings of the social desirability of different response

options may determine the category weights (see last row of Table 2).

3.3 Additional Details

The models in (1) and (2) are not identified without additional constraints as dis-

cussed in detail for the unidimensional case by multiple authors (Bock, 1972; Thissen et

al., 2010; Thissen & Cai, in press; Thissen & Steinberg, 1986) and for the multidimen-

sional case by Johnson and Bolt (2010). One indeterminacy common to multidimensional

factor analytic models concerns rotation and reflection of factor slopes, and is discussed

in further detail by Johnson and Bolt (2010). In short, exploratory item factor analysis

will require an additional D(D− 1)/2 constraints on category or item slopes.

In the present application, we are utilizing the model in a confirmatory mode, which

entails additional constraints. If we include only substantive latent traits and items load

on only one factor, such a simple structure allows for identification and estimation of

the correlation between factors. The addition of response style factors introduces addi-

tional complexity as items load on more than one factor and we may wish to estimate

the correlation between response style and substantive factors. Models such as those

depicted in Figure 1 may not intuitively appear to be identified, but may be provided

that the scoring functions for response style factors are not redundant with each other

and that of the substantive factors. In Supplementary Materials we provide an example

of how to check the identifiability of a model and test it on a hypothetical example with

one substantive trait and two response style traits (ERS and MRS) that are all correlated

and load on all items.2 That said, estimation problems may be fewer if slopes on the

response style factor are equal or fixed across items (e.g., Bolt & Newton, 2011; Johnson

& Bolt, 2010), or if response style factors are kept orthogonal to substantive dimensions

(e.g., theoretically consistent with Couch & Keniston, 1960; Jackson & Messick, 1961).

2This process involves checking the rank of the Jacobian matrix formed by differentiating each model
implied probability for all possible response patterns with respect to each model parameter.
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Another indeterminacy is inherent to the translation invariance of the multinomial

logistic response functions. The addition of a constant to c or any given set of slope

parameters for a particular dimension, ãk, will yield the same value for the response

function. Constraints often include either the fixing of one intercept parameter and one

slope per dimension (e.g., c1 = 0 and ãd,1 = 0) or constraints that enforce ∑K
k=1 ãd,k = 0

for all d and ∑K
k=1 ck = 0.

Under the reparameterization in (2) as under some versions of the original nominal

model, constraints necessary for identification are formed via products of the actual item

parameters with other constant contrast matrices, T (Thissen et al., 2010; Thissen & Cai,

in press). For instance, c involves K− 1 parameters in γ, and row d of S involves K− 1

parameters in αd. Details of these parameters and contrast matrices are discussed in

Appendix A.

3.4 Relationship to Similar Approaches

To our knowledge, the reparameterization in (2) has not been previously used to

model response styles, but can subsume models used by Bolt and colleagues (Bolt &

Johnson, 2009; Bolt & Newton, 2011; Johnson & Bolt, 2010). To aid in comparing various

submodels, Table 3 presents how slopes and scoring functions for a single dimension

and intercepts may be defined (subject to identification constraints on scoring functions

and intercepts; see also Appendix A). The two features that distinguish our approach

are the added ability to estimate overall item slopes for response style dimensions that

differ across items, and user-defined response style scoring functions that may differ

across items (see “Response style” in Table 3). The item models used for response styles

by Bolt and colleagues can accommodate category slopes representing the order of cat-

egories for a given latent trait (e.g., ã) that are fully estimated from the data (subject

to identification constraints) and different across items (NRM-free), estimated from the

data but constrained equal across items (NRM-equal), or all fixed to prespecified val-

ues (NRM-fixed; often with the variance of the latent trait estimated). Under NRM-free
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and NRM-equal, there is no guarantee that the estimated order of categories for a given

factor will neatly represent any known response style. If the order of categories for a

factor is fixed or constrained equal across items as under NRM-fixed and NRM-equal,

an assumption is being made that the factor affects all items equally. In the parameteri-

zation in (2) scoring functions are separated from overall item slopes, which allows for

fitting all of the aforementioned modeling approaches as well as allowing item slopes

for response style dimensions to vary across items. We now briefly describe how the

models fit by Bolt and colleagues can also be accommodated under (2).

Based on the results of an exploratory item factor analysis, Bolt and Johnson (2009)

fit a two-dimensional model with orthogonal factors in which the category slopes were

estimated from the data, but were equal across items for the response style factor and

free for the substantive factor (NRM-equal and NRM-free) or constrained for both factors

(both NRM-equal). NRM-free for a factor is simply the full nominal model for that

dimension (e.g., full rank T) and requires estimating a and α2, . . . , αK−1 parameters for

that dimension. To fit NRM-equal under (2), these same parameters are estimated, but

are constrained equal across items (see Table 3).

To data that theoretically contained two correlated substantive dimensions, Bolt and

Newton (2011) fit three models. After fitting a 2-dimensional PC model for substantive

factors only, a second model included an additional NRM-free factor. A third, and

best fitting model additionally used NRM-fixed with slopes of [1 −1 −1 1] , and

estimated the factor variance-covariance matrix. Fitting the PC or NRM-fixed approaches

both involve fixing the scoring functions to predetermined values by fixing α1 = 1 and

α2, . . . , αK−1 = 0 and setting the first column of T to the desired scoring function (see

also Appendix A). In addition, item slopes are constrained equal across items or fixed to

a predetermined value (e.g., 1) while estimating of the variance of the latent trait.

Finally, Johnson and Bolt (2010) presented a two-factor model used in simulations

in which the substantive dimension (and intercepts) followed a “stereotype” (ST) model
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and a second dimension was NRM-equal. A second more constrained model was fit

to actual data in which the substantive dimension (and intercepts) followed the rating

scale (RTS) model and the second dimension was again NRM-equal. In both models

the correlation between the response style factor and substantive factor was estimated.

Although only used for substantive dimensions under Johnson and Bolt (2010), we note

that item slopes for the ST model are decomposed into overall item and category effects.

Under our parameterization, this is equivalent to freely estimating a, but constraining

α2, . . . , αK−1 or the scoring functions for a given dimension to be equal across items (see

also Table 3). The RTS model has item slopes parameterized in the same way as the PC

model. However, both the RTS and ST models are characterized by intercepts that are

separated into overall item and category effects (i.e., cjk = β j + ck with ck equal across

items) and two constraints for identification.3 Such intercept constraints are possible by

using those described by Thissen and Steinberg (1986) for the RTS model.

On the basis of the above review of previous works (Bolt & Johnson, 2009; Bolt &

Newton, 2011; Johnson & Bolt, 2010), we point out that category slopes were often ei-

ther fully exploratory across items (NRM-free) or constrained equal across items (NRM-

equal, NRM-fixed, PC, RTS). This observation holds for both substantive and response

style dimensions with the lone exception the ST model for a single substantive dimen-

sion for a model in simulations by Johnson and Bolt (2010). Although response styles are

often thought to affect all items equally, such an assumption may be questioned on em-

pirical and theoretical grounds (e.g., Ferrando, Lorenzo-Seva, & Chico, 2003; Krosnick,

1991; Trott & Jackson, 1967), and these possibilities omit the case where a researcher may

wish to explicitly test this assumption. In the case of substantive dimensions, this may

result in an unrealistic assumption that the items are equally related to the latent trait.

The alternative allowed by the reparameterization of the MNRM is for researchers to

determine the order of each item’s categories and how they relate to each latent trait by

3Johnson and Bolt (2010) constrain one c and one β parameter to 0.
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fixing the scoring functions, while allowing estimation of overall item slopes. This may

ease the interpretation of how response styles and substantive dimensions are thought

to affect item responses and provide a compromise between exploratory and highly con-

strained parameterizations. Although the ST model decomposes slopes into overall item

and category slopes which may allow for this possibility, it does not allow for category

slopes that define a particular response style in different ways across items, and also

includes additional constraints on intercepts that may not be desired.

4 Estimation, Standard Errors, and Scoring

Full-information maximum marginal likelihood estimation is widely used in item

parameter estimation (Bock & Lieberman, 1970; Bock & Aitkin, 1981; Schilling & Bock,

2005). To avoid a prohibitive number of quadrature points necessary for integration, we

use the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm, which is described in

further detail elsewhere (Cai, 2010a, 2010b; Monroe & Cai, 2014; Yang & Cai, 2014). MH-

RM is a stochastic approximation method that is able to handle a high number of latent

traits and converges to the maximum marginal likelihood solution. We briefly describe

MH-RM, but refer the reader to additional details in Appendix B and C and the above

references.

Recall X is an N × D matrix of factor scores and Y is an N × n matrix of item re-

sponses. When one takes the view that the latent factor scores X are the missing data

and the item responses Y are the observed data, MH-RM proceeds by “filling in” the

missing data and iteratively updates the parameters of the complete-data model until

convergence. In MH-RM, the imputations for X are drawn from the posterior predictive

distribution, Π(X|Y, ω), which is proportional to the complete-data log-likelihood and

where ω contains all model parameters.

At iteration (p + 1) of the algorithm and given initial parameter estimates, mp impu-

tations of the latent traits
{

X(p+1)
t ; t = 1, . . . , mp

}
are combined with the observed data,

Y, to represent mp complete data sets. Typically mp = 1 imputation per iteration is
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sufficient. For this, we use the same Metropolis-within-Gibbs sampler as in Cai (2010a).

Once imputations from Π(X|Y, ω) for iteration p + 1 are obtained, they are used to

provide an approximation for the observed data gradient of the marginal log-likelihood,

l̇(ω|Y) = ∂l(ω|Y)
∂ω . In particular, the complete data first-order derivatives, l̇(ω|X(p+1)

t , Y) =
∂l(ω|X(p+1)

t ,Y)
∂ω , for each imputation are computed and averaged to form gp+1. This ap-

proximation of l̇(ω|Y) works because due to Fisher’s identity (Fisher, 1925), l̇(ω|Y) is

the same as the expectation of the gradient vector for the complete data log-likelihood,

l̇(ω|X, Y), over the posterior predictive distribution of the latent traits, Π(X|Y, ω). Di-

rectional information for updated parameter estimates is provided by g, and additional

curvature information is computed via a recursive approximation to the conditional ex-

pectation of the complete data information matrix, Γ (see Appendix B and C). Parameter

estimates are then updated by:

ω(p+1) = ω(p) + βpΓ−1
p+1gp+1 (3)

where βp is a gain constant. After updating parameter estimates, the next iteration

begins with updated imputations from the posterior predictive distribution.

The sequence of gain constants,
{

βp; p ≥ 1
}

, can be defined to slowly decay across

iterations. This constitutes the Robbins-Monro part of the algorithm and filters out noise

across iterations. In practice, recent instantiations of MH-RM (Cai, 2013; Monroe &

Cai, 2014; Yang & Cai, 2014) divide iterations into several stages that have different

gain constants and/or starting values. Stage 1 is often intended to improve parameter

estimates that may be far away from the MLE and has a gain constant that remains the

same across iterations. Once parameter estimates stabilize around a neighborhood of the

MLE, Stage 2 iterations begin. They also have the same gain constant across iterations

and are often intended to obtain good starting values for the next stage. In Stage 3,

the mean of parameter estimates across iterations for Stage 2 are often taken as starting
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values for Stage 3, which has gain constants defined by βp = β0/pε with 1/2 < ε ≤ 1

and β0. Iterations may be terminated after the minimum change in parameter estimates

is below some threshold (e.g., 1e-4) for across a window of previous iterations (e.g., 3).

The MH-RM algorithm proceeds in nearly the exact same way in multiple group anal-

yses: Imputations from the posterior predictive distribution can be conducted separately

for each group, as are computations of complete data gradient and information matri-

ces. The complete data log-likelihood is simply the sum of each group’s log-likelihood.

Similarly, the observed data gradient, l̇(ω|Y), at iteration p + 1 can be approximated by

combining g from each of the groups (see Appendix C for further details).

For the present application, equality constraints on parameters may be implemented

in the same way as in (Cai, 2010b). Specifically, linear constraints can be implemented

by ωr = c + Lω, where ωr is the q× 1 vector of parameters that satisfies the constraints,

ω represents all free parameters (p × 1 with p ≤ q), c is a q × 1 vector of constants,

and L is a q× p matrix that implements linear (equality) constraints. The gradient and

information matrix for updating ω is then obtained by g = grL and Γ = L′ΓrL, where

gr and Γr involve derivatives with respect to ωr, ignoring the presence of constraints.

MH-RM requires reasonable starting values at iteration 0 for draws of the latent traits,

X(0), from the posterior predictive distribution. Under the MNRM we computed the

following weighted mean scores for each participant based on starting values for item

slopes and scoring functions, x(0)i = 1
ni

∑ni
j=1 ∑

Kj
k=1 χk(yij)[aj ◦ sk,j]

′ where j item indexes

a and sk, and X(0) was then normalized across participants. In the analyses reported in

this paper, unit weights were used for all free a starting values.

Standard errors under MH-RM are often obtained following a formula given by

Louis (1982), whose elements can be recursively approximated during optimization (Cai,

2010a). As noted by others (Yang & Cai, 2014), sometimes this approach may not yield

valid standard errors (i.e., negative diagonal elements of the inverse information matrix),

possibly due to stability issues for the second-order derivative approximations when the
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fraction of missing information for the latent variable model is high, e.g., when the

dimensionality is large or model structure complex. In such a case, Monte Carlo integra-

tion upon convergence of the MH-RM algorithm can be used in a more direct application

of Louis’s (1982) formula: Parameter estimates are fixed at the MLE and draws of the

latent traits are taken from the posterior predictive distribution (see Diebolt & Ip, 1996;

Fox, 2003). Following Yang and Cai (2014) we refer to the former approach as recursively

approximated standard errors and the latter as post-convergence standard errors. Both are

studied in our simulations.

Finally, upon estimation of item parameters, we can obtain factor scores of individ-

ual respondents using the expected a posteriori (EAP) method (Bock & Mislevy, 1982).

Although typical applications of EAP use quadrature to integrate across the distribution

of latent traits, Monte Carlo integration is also possible by taking a large number of

draws from the distribution of latent traits. We utilize the latter approach in empirical

examples and simulations.

5 Empirical Demonstration

Returning to our PROMIS R©example, we fit a series of models listed in Table 4 to daily

and non-daily smokers simultaneously.4 The mean and variances of the latent variables

were fixed for daily smokers (all µ = 0 and all σ2 = 1; the reference group), but esti-

mated for non-daily smokers (the focal group). Additionally, all factor covariances were

freely estimated for both groups, including those involving response style factors. Item

parameters (intercepts, and substantive and response style slopes) for 78 common items

were constrained equal across groups. For simplicity, these anchors were chosen based

on differential item functioning analysis undertaken as a part of the initial calibration

results for the PROMIS R©smoking initiative, though we note that multidimensional DIF

testing incorporating response style factors could also be undertaken (e.g., Bolt & John-

4All programming for empirical examples and simulations was done by the first author and imple-
mented in R (R Core Team, 2012) with first- and second-order analytical derivatives using the Rcpp
(Eddelbuettel & Francois, 2011) and RcppArmadillo packages (Eddelbuettel & Sanderson, 2014). Mod-
els 1, 4, 6, and 8 are used for the example response functions in Figures 2 and 3.
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son, 2009). If one is not interested in comparing response style means across groups, all

slopes for the response style factors could also be unconstrained across groups. Con-

fidence intervals for AIC and BIC were based on Monte Carlo integration using 25,000

points upon model convergence (see Appendix C). Estimation details typically included

a burn-in of 10 for draws from the posterior predictive distribution, followed by 2,000

Stage 1 iterations, 500 Stage 2 iterations with β0 = .75, ε = 1, a convergence window of 3

with a 5e− 5 tolerance, and 1 imputation per iteration of the algorithm. All models con-

verged within 8,500 Stage 3 iterations. In some cases, a few steps (e.g., 5-100) with tiny

gain constants (e.g., 5e-5 to .01) were necessary to obtain better starting values before

commencing with Stage 1 iterations, or use of starting values based on estimates from a

more constrained model.5

Models 1-11 pertain to those we allude to in Section 2, whereas Models 12-17 rep-

resent models similar to those used by Bolt and colleagues in Section 3.4. We use the

abbreviations 6D and 6D ST to refer to modeling of the six substantive dimensions using

the GPC or ST models, respectively. The remaining dimensions include free estimation

of the order of categories for a particular dimension (NRM) or response style factors

ERS, MRS, and EMRS using scoring functions appearing in Table 2. The column for a

in Table 2 indicates whether item slopes were free or constrained equal across items for

the substantive and each of the response style dimensions. The first 11 Models therefore

include ERS, MRS, and EMRS separately, and the combination of ERS and MRS with all

possible permutations of fixing response style slopes equal or setting free across items.

AIC and BIC both indicated that the best fitting model was one that included both

ERS and MRS, modeled as separate factors and with freely estimating ERS slopes. BIC

clearly suggested that MRS slopes should be further fixed equal across items (Model 10;

see Table 4), whereas AIC did not clearly differentiate between this model and uncon-

5A previous version of the paper included Models 2-11 in which response style factors were orthogonal
to each other and all other dimensions. Use of starting values from these models aided in estimating
Models 2-11 in the current paper, in which the covariances among all factors are estimated. Results from
these and other fitted models appear in Supplementary Materials.
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strained slopes (Model 8). We are inclined to select Model 10 as BIC clearly prefers this

model (AIC yielded an inconclusive decision) and tends to select more parsimonious

models than does AIC. That these models were preferred to those including EMRS sug-

gests that ERS and MRS may not be different poles of the same dimension, and that the

assumption that response style factors affect all items equally may not be tenable for

ERS, but may be for MRS. In fact, estimated factor covariances for Model 10 (Table 5)

reveal that ERS and MRS were nearly uncorrelated with each other and most substantive

dimensions. It is notable that either Model 8 or 10 exhibited better fit than all of Models

12-17.

Models 12-15 are similar to those fit by Bolt and Newton (2011) in which both sub-

stantive and response style slopes were fixed across items for any given dimension

(NRM-fixed). These parallel Models 3, 5, 7, and 11 in which there are free substantive

slopes. AIC and BIC both preferred Models 3, 5, 7, and 11, suggesting that constraints on

substantive slopes may be unrealistic. Model 16 is similar to that fit by Bolt and Johnson

(2009), in which an additional NRM-equal factor is added to the six-dimensional model.

This Model’s fit is comparable to Models 2 and 3 (that also model ERS), and the esti-

mated category slopes for this exploratory dimension are suggestive of ERS or EMRS,

[0 −.93 −1.10 −.89 .27] , though does not provide better fit than any models that

have both ERS and MRS as separate dimensions. Model 17 is similar to a model fit by

Johnson and Bolt (2010) and parallels Model 16 with the addition of intercept constraints

imposed by the ST model, which appear to hinder model fit.6

To inspect changes in subject scores on the substantive traits, we conducted EAP

scoring using Monte Carlo integration with 100,000 draws per subject under Models 1

(substantive traits only) and 10 (ERS and MRS with MRS slopes constrained equal). EAP

scores for daily smokers for each substantive trait under these Models are plotted in

6The ST model without response styles and additional variants of Models 16 and 17 (without
substantive-response style factor correlations) appear in Supplementary Materials and did not provide
any improvements in model fit.
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Figure 4, with ERS and scores from Model 10 used to group subjects into low (< −1),

moderate (−1 to 1) and high (> 1) on the response style. Overall there is a strong, but

imperfect relationship between scores under each model, suggesting that inclusion of re-

sponse styles in Model 10 (relative to their absence from Model 1) results in adjustments

to subject’s scores. Note that in the top row of Figure 4, subjects high in ERS tended

to have their scores adjusted towards the mean (indicated by the slope of the cloud of

points being slightly flat), whereas in the lowest panel those with low ERS scores tended

to have their scores adjusted away from the mean on the substantive traits (indicated by

a steeper slope in the cloud of points). A consistent pattern of score changes due to MRS

is less obvious and appears in Supplementary Materials.

6 Simulations

Two small sets of simulations were conducted to check the ability of the model and

estimation approach at recovering model parameters, subjects’ factor scores, and estimat-

ing standard errors. A secondary goal of Simulation 1 was to check the consequences

of a misspecified model (e.g., failing to estimate response style factors when included in

the data generation model, and vice versa). Since it is commonly thought that it is easier

to disentangle response styles from substantive traits that are unrelated (e.g., Greenleaf,

1992), a secondary goal of Simulation 2 was to test for differences in the outcomes if the

data generating model included substantive factors that were either nearly uncorrelated

or moderately correlated.

The data generating models for all conditions were based in part on models fit to

actual data: 16 hedonic benefits (HB) and 27 nicotine dependence (ND) items from

PROMIS R©daily smokers. In all cases, the model included two correlated substantive

factors for these two dimensions and differed in terms of included response style dimen-

sions. In all but one case later described, item parameter estimates and factor correlations

were then treated as population values for data generation (see Supplementary Materi-

als for individual values). For each data generating condition, one-hundred datasets of
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N = 2000 were created assuming multivariate normal latent traits.

Details common to estimated models in simulations included a burn-in of 10 for

draws from the posterior predictive distribution, followed by 300 Stage 1 iterations, 500

Stage 2 iterations with constant gain constants of .5, an initial Stage 3 gain constant of

β0 = .1, ε = .75, a convergence window of 3 with a 5e− 5 tolerance, and 1 imputation

per iteration with thinning of 5 between draws. Instead of true parameter values, unit

slopes, zero intercepts, and zero factor correlations were used for all starting values. All

models converged in under 5,100 Stage 3 iterations. Post-convergence standard errors

were computed when the true model was fit to the data with a minimum of 100 draws

and yielded valid standard errors in 100% of cases in 310 iterations or less. For each

fitted model, EAP scores for all factors were computed using 25,000 Monte Carlo draws.

6.1 Simulation 1

6.1.1 Method

Three data generating models were used: 1) a two-factor substantive traits only

model (GPC), 2) a four-factor model with ERS and MRS factors that were orthogonal

to each other and the substantive traits (RS), and 3) a four-factor model in which ERS

and MRS were correlated with each other and the substantive dimensions (RS-cor). Scor-

ing functions for ERS and MRS were [1 0 0 0 1] and [0 0 1 0 0] , respectively.

To each generated dataset, we fit three models: GPC, RS, and RS-cor. Thus, for each data

generating condition, the true model was always fit to the data as well as two overfit-

ted or misspecified models. AIC and BIC point estimates were also calculated for each

estimated model based on 25,000 Monte Carlo integration points.

6.1.2 Results

When the true model was fit to the data, no appreciable estimation bias was ob-

served for any type of parameter (see top row of Figure 5). Specifically, raw bias across

replications averaged to .01 or less in absolute value for each type of model parame-

ter. Root mean square error (RMSE) was similarly good. For instance, under all three
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data generating models average RMSE (across items) was .06 for substantive slopes (all

SD = .02), and was .06 and .07 for γ parameters (all SD = .04) for the GPC and both

response style models, respectively. RMSE for response style slopes was nearly as good

as those for substantive traits, averaging .08 to .09 for ERS for the RS (SD = .01) and

RS-cor (SD = .02) models, respectively, and was .08 for MRS for both models (both

SD = .01). Finally, RMSE for factor covariances was slightly smaller for the GPC (.02)

and RS models (.02) than for the RS-cor model (M = .03, SD = .005).

Recursive standard errors were available in 94%, 87%, and 84% of cases for the GPC,

RS, and RS-cor models, respectively, with the remaining cases having at least one neg-

ative value on the diagonal of the inverse information matrix. In what follows, we re-

port on recursive standard errors from valid replications and post-convergence standard

errors from all replications. The middle and bottom row of Figure 5 compare empiri-

cal standard deviations against recursive and post-convergence standard errors, respec-

tively. Both types of standard errors provided a reasonable approximation to empirical

standard deviations. The mean of standard error estimates across replications for each

data generating conditions were mostly (68% or more) within .01 of the empirical stan-

dard deviations and all were within .05. The quality of standard errors declined slightly

with the more complex model (RS-cor) and with post-convergence standard errors. For

example, for all other conditions the maximum discrepancy was less than .04, and 77%

or more of mean standard errors were within .01 of empirical standard deviations.

Finally, we examined trait recovery (Table 6) using both Pearson correlations and

RMSEθ =
(

N−1 ∑N
i=1(θ̂i − θi)

2
)1/2

× 100, where N is the number of respondents, θ̂i is

the EAP score and θ is the true trait score. Fitting the true model to data resulted in

good substantive trait recovery, with r ranging from .96 to .98 and RMSEθ from 18.24

to 29.65. Recovery of ERS was also decent, r = .91, .91, and RMSEθ = 41.49, 40.74

for RS and RS-cor true models, respectively, but less impressive for MRS, r = .77, .78,

and RMSEθ = 63.80, 62.85. Overfitted models did not have worse trait recovery. For
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instance, trait recovery for substantive factors under the GPC data generating model

was excellent when fitting the true model, r = .97, .98, and RMSEθ = 24.48, 18.24, but

was nearly indistinguishable from when the RS or RS-cor models were fit to the same

data. Similarly, fitting the RS-cor model to RS data also yielded good trait recovery. Trait

recovery worsened when the GPC model was fit to data generated with response styles.

For example, for RS-cor data, substantive trait recovery dropped to r = .91, .93, and

RMSEθ = 41.14, 36.41 for the GPC fitted model. However, the consequences of fitting RS

to RS-cor data were negligible, suggesting that perhaps response style factor correlations

(.31 or less) from the data generating model were not large enough to have a substantial

effect on RS model results (see also Supplementary Materials).

Although the study was not designed to test the efficacy of AIC and BIC in model

selection, it is worth noting that BIC selected the true model in 100% of cases. AIC se-

lected the correct model in 99% of cases when GPC was the true model, and 100% of

cases when RS-cor was the true model. When RS was the true model, AIC always pre-

ferred the response style models over the GPC model, but only selected the RS model

over the RS-cor model in 52% of cases, thus sometimes suggesting unnecessarily that

response style factors be correlated with other factors. However, as seen with trait re-

covery, the consequences of this overfitting may not be harmful.

6.2 Simulation 2

6.2.1 Method

Two data generating models were used and differed on whether the substantive

traits were moderately correlated (Mod-cor) or weakly correlated (Low-cor). In both

cases, a correlated four-factor model with ERS and ARS was used. ARS was conceptu-

alized as choosing a score above the midpoint of the Likert scale, with scoring function

[0 0 0 1 1] . This allowed it to correlate with substantive dimensions, yet based on

the PROMIS R©data the estimated factor correlations of ARS with substantive dimensions

were less than .1 in absolute value (see Supplementary Materials). Since the estimated
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HB-ND correlation was large, r = .46, item parameters and the factor correlation from

this model served as the Mod-cor data generating model. For the Low-cor model, the

same item parameters and factor correlations were used, except the HB-ND correlation

was arbitrarily set to .05. To each generated dataset, only the true model was fit.

6.2.2 Results

On average, zero bias was observed for both models and all parameters (see top row

of Figure 6). RMSE for Mod-cor ranged from .02 to .13 (M = .08, SD = .02) for item

slopes, .02 to .19 (M = .07, SD = .04) for γ parameters, and from .02 to .04 (M = .03,

SD = .01) for factor correlations. These values differed little from those for the Low-cor

model, from .02 to .18 (M = .08, SD = .02) for item slopes, .02 to .22 (M = .07, SD = .04)

for item intercepts, and from .02 to .03 (M = .03, SD = .00) for factor correlations.

Similar to the previous set of simulations, under both models RMSE for substantive

slopes (both M = .06, SD = .02) was slightly better than that for response style slopes.

Specifically, RMSE for ERS was about the same across the Mod-cor (M = .09, SD = .01)

and Low-cor (M = .09, SD = .02) models, and similar to that for ARS under the Mod-cor

(M = .09, SD = .01) and Low-cor (M = .10, SD = .02) models.

For both models, recursive standard errors were available for 84% of replications.

Both recursive and post-convergence standard errors were well calibrated, with a possi-

ble exception for post-convergence standard errors for the Mod-cor model (see row 3 of

Figure 6), which on average were underestimated by .01 relative to empirical standard

deviations. Even in this condition, however, the maximum difference between average

estimated standard errors and empirical standard deviations was .08, and 57% of mean

standard errors were within .01 of empirical standard deviations. In all other cases, the

maximum difference was always under .04 and 79% or more were within .01.

Recovery of substantive traits was good for the Mod-cor model, r = .94, .97 and

RMSEθ = 33.18, 26.17, (for HB and ND, respectively) and the Low-cor model, r = .94,

.97 and RMSEθ = 33.12, 25.86. Recovery of ERS was also good for Mod-cor r = .91,
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RMSEθ = 41.20, and Low-cor, r = .91, RMSEθ = 40.79. Recovery of ARS was slightly less

impressive for both Mod-cor, r = .80, RMSEθ = 60.27, and Low-cor, r = .80, RMSEθ =

59.67. Pearson correlations for trait recovery were identical to the second decimal place

for each type of model, and RMSE values were trivially smaller for the Low-cor model.

7 Discussion

We have presented a flexible multidimensional item response theory model using

a novel MNRM parameterization that is able to model multiple response styles across

multiple substantive constructs. The model is able to subsume previous approaches

(e.g., Bolt & Johnson, 2009; Bolt & Newton, 2011; Johnson & Bolt, 2010) while allowing

for item slopes for response style factors to vary across items, and definition of response

styles or other factors whose order of categories is different across items.

Results from the empirical application suggest that our preferred modeling approach

has the potential to fit data better than previous uses of the MNRM for modeling re-

sponse styles. For instance, allowing response style and substantive item slopes to be

free across items often resulted in better model fit, and is possible even when response

style factors are correlated with other dimensions. That our model allows for estimating

varying slopes should open the door to extensions or additional research for identifying

item features most likely to yield low/high response style slopes. While we must be cau-

tious not to overgeneralize from a single illustrative example in which the study design

was not initially intended to investigate response styles, the example also illuminated the

possibility that ERS and MRS may be separate factors in that the best fitting models had

these factors as separate dimensions that were nearly uncorrelated. This builds upon

previous research using the MNRM where a single response style dimension reveals an

ERS or EMRS factor (Bolt & Johnson, 2009; Johnson & Bolt, 2010; Kieruj & Moors, 2010,

2013), or a factor in which preference is for the endpoints or the midpoint (Moors, 2004;

Morren et al., 2011). We are at the mercy of AIC and BIC, however, and do not know

with complete certainty which model is a better or more useful approximation to reality
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and whether this result will generalize. For instance, with a longer Likert scale (e.g., 7-

point), it is possible that extreme response style may better resemble a graded preference

for the endpoints (like EMRS) that could be simultaneously modeled with MRS.7

The simulations also showed that our estimation and scoring approach is feasible

and results in good parameter recovery and well-calibrated standard errors. Simulation

1 additionally suggested that it may be prudent to err on the side of modeling response

styles as the consequences of overfitting are outweighed by the consequences of failing to

include response styles. For Simulation 2, while it may be possible that low correlations

among substantive factors are better for disentangling response styles from substan-

tive traits (and ARS in particular), we found little evidence of such an effect under the

limited set of data generation conditions studied. However, we consider these results

preliminary and better examined by a fuller set of simulations and real data analyses.

Our modeling framework is general enough to accommodate arbitrarily defined re-

sponse styles, provided that the response styles are thought to affect item responses in a

compensatory manner. While we focused on ERS and MRS in this paper’s empirical ex-

ample, we also specifically outlined how our approach may be adapted for more refined

distinctions among response styles (e.g., EMRS) and other arbitrarily defined response

styles including ARS and SDR. Future research may be undertaken to demonstrate mod-

eling of such additional response styles. Yet we note that our model’s flexibility should

not be a substitute for good scale construction practices and strong theory. Under con-

ditions of low information (e.g., few good items, subjects) it may still be difficult to

disentangle response styles from substantive constructs and additional research may

identify cases where this is true. This issue or difficulty interpreting the response styles

factor may occur, for example, with response style constructs whose scoring functions

are similar to substantive traits (e.g., ARS) or when response style factors, such as SDR,

are highly correlated with some substantive trait. There will also be an upper limit to

7We thank an anonymous reviewer for suggesting how extreme response style may be manifested in
items with more response options.
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the number of factors that can be simultaneously estimated from the data, and different

configurations will result in models with different substantive meanings.

Likewise, our approach has also not yet been thoroughly compared with alterna-

tive modeling approaches, yet we note that there are few existing comparisons among

other approaches. For example, it is an open question as to whether the compensatory

effect of response styles follows the process modeled with the MNRM, or if complet-

ing Likert-type items is closer to a multiple-stage decision making process (Böckenholt,

2012; Plieninger & Meiser, 2014; Thissen-Roe & Thissen, 2013). Our approach also uses

the same item data for estimation of response styles, whereas it is also possible to use

data external to the constructs of interest (Bolt, Lu, & Kim, in press) or measurement

instruments specifically designed for this purpose (Paulhus, 1991). Therefore, while our

current modeling framework showed promise in an empirical application and simula-

tion study, there is a growing need for additional comparisons among full-information

approaches with both real and simulated data.
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Appendix A. Contrast Matrices

Contrast matrices facilitate the implementation of the identification constraints. In

particular, c = Tcγ and the rows of S come from (Ta,dαd)
′, where d = 1, 2, . . . , D serves

to dimension index the Ta matrix and α vector, with the first α parameter for each

dimension constrained to 1 (e.g., αd,1 ≡ 1). Both γ and αd are (K − 1) × 1 vectors of

parameters. Thus, S can be partitioned as:

S =



(Ta,1α1)
′

(Ta,2α2)
′

...

(Ta,DαD)
′


(4)

Both Tc and Ta,d are K× (K− 1) matrices. Whereas Bock (1972) initially proposed the

use of deviation contrasts common in the use of analysis of variance Thissen et al. (2010)

and Thissen and Cai (in press) suggest the use of either a Fourier basis or identity-based

T matrix (see also Thissen & Steinberg, 1986). For instance,

TF =



0 0 . . . 0

1 t22 . . . t2(K− 1)

2 t32 . . . t3(K− 1)
...

...
...

K− 1 0 . . . 0


(5)

has a linear first column, with the remaining columns determined by a Fourier basis

with tkp = sin[π(p− 1)(k− 1)/(K− 1)]. An identity-based matrix would be defined as:

TI =


0 0′K−2

0K−2 IK−2

K− 1 0′K−2

 (6)
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where 0K−2 represents a (K − 2)× 1 vector of 0’s and IK−2 is a (K − 2)× (K − 2) iden-

tity matrix. Use of either TF or TI and estimation of γ and for a particular dimension,

ad and αd,2, . . . , αd,K−1, is equivalent to the least constrained model for that dimension

where the scoring functions are fully estimated from the data. The use of TF and TI

add additional utility when more constrained versions are used. For example, use of TF

while constraining αd,2, . . . , αd,K−1 to 0 for a particular dimension is equivalent to a repa-

rameterization of the GPC model. Fewer constraints on αd and the Fourier basis allow

models that lie somewhere between the NRM and GPC, whereas additional constraints

on slopes and/or intercepts may result in the partial credit (PC) and rating scale (RS)

models (Thissen et al., 2010; Thissen & Cai, in press; Thissen & Steinberg, 1986). The

GPC for a particular dimension may also be fit through the use of TI by constraining

αd,k = k − 1 for αd,2, . . . , αd,K−1. The use of TI also allows equality constraints on the

values of the scoring functions (see Thissen et al., 2010; Thissen & Cai, in press).

The approach we use to fix scoring functions for estimation of response style factors

is to place constraints on αd such that αd,1 = 1 and αd,2, . . . , αd,K−1 are 0, and then define

the first column of Ta,d to reflect the desired scoring function values for that particular

dimension. This is the same approach in the use of TF in fitting the GPC model. Since all

α parameters are constrained in this approach, it may not be necessary to go through the

process of reparameterizing the scoring function values as in the full MNRM. However,

retaining this type of model within the framework of the MNRM allows flexibility, such

as freely estimating the order of categories for one dimension, while constraining the

scoring functions for another latent dimension. Researchers may also wish to compare

models in which the scoring functions for a particular dimension are fixed versus freely

estimated or vary between the GPC and NRM.
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Appendix B. Complete Data Likelihood and Derivatives

We define the conditional mass function of Yij as:

f (yij|xi, ηj) =

Kj

∏
k=1

P(Yij = k|xi, ηj)
χk(yij) (7)

where χk(yij) is an indicator function that equals 1 if yij = k and 0 otherwise, P(Yij =

k|xi, ηj) is the response function for item j and category k, and ηj = [a′j, α′j, γ′j]
′ contains

all item parameters for item j. The conditional mass function of yi = (Yi1, . . . , Yin)
′ is:

f (yi|xi, η) =
n

∏
j=1

f (yij|xi, ηj) (8)

where η contains parameters across all items. For a single group, the complete data

likelihood is:

L(η, µ, Σ|X, Y) =

[
N

∏
i=1

f (yi|xi, η)

] [
N

∏
i=1

φ(xi|µ, Σ)

]
. (9)

The log-likelihood allows separation of item parameters and parameters pertaining to

the distribution of latent traits:

log L(η, µ, Σ|X, Y) = log L(η|X, Y) + log L(µ, Σ|X) (10)

The left-hand side results in the following, and resembles n independent multinomial

logistic regression log-likelihoods:

l(η|X, Y) = log L(η|X, Y) =
n

∑
j=1

 N

∑
i=1

Kj−1

∑
k=0

χk(yij) log P(Yij = k|xi, ηj)

 (11)

If we assume that the latent traits are multivariate normal, this results in the following



August 13, 2015 33

for the right-hand side of (10):

l(µ, Σ|X) = log L(µ, Σ|X) ∝
N

∑
i=1

(
−1

2
log |Σ| − 1

2
(xi − µ)′Σ−1(xi − µ)

)
(12)

While the derivatives for (12) are well-known, derivatives for item parameters can be

obtained in the following manner. Dropping item and subject subscripts, the likelihood

contribution of a single subject and item can be written as:

l = l(η|x, y) =
K−1

∑
k=0

χk(y) log [P(Y = k|x, a, S, c)]

The first order derivatives are given by the following:

∂l
∂γ

=
K

∑
k=1

χk(y)

[
K

∑
h=1

Ph(tc,k − tc,h)
′
]

∂l
∂αd

=
K

∑
k=1

χk(y)

[
K

∑
h=1

Ph(Sd,k − Sd,h)
′
]

Dax

∂l
∂a

=
K

∑
k=1

χk(y)

[
K

∑
h=1

Ph(sk − sh)

]
◦ x

where Ph = P(Y = h|x, a, S, c) is short-hand for the response function, tc,k is the kth row

of Tc, sk is defined as before (the kth column of S), Da = diag(a) is a diagonal matrix,

and Sd,k is defined as:

∂sk
∂αd

=



0
...

ta,d,k
...

0


= Sd,k

with ta,d,k as the kth row of the Ta matrix for dimension d.
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Then the second-order derivatives are given by:

∂2l
∂γ∂γ′

=
K

∑
k=1

χk(y)

[
K

∑
h=1

∂Ph
∂γ

(tc,k − tc,h)

]
∂2l

∂γ∂α′d
=

K

∑
k=1

χk(y)

[
K

∑
h=1

∂Ph
∂αd

(tc,k − tc,h)

]′
∂2l

∂γ∂a′
=

K

∑
k=1

χk(y)

[
K

∑
h=1

∂Ph
∂a

(tc,k − tc,h)

]′
∂2l

∂a∂a′
=

K

∑
k=1

χk(y)

[
K

∑
h=1

∂Ph
∂a

(Dx(sk − sh))
′
]

∂2l
∂a∂α′d

=
K

∑
k=1

χk(y)

[
K

∑
h=1

∂Ph
∂αd

(Dx(sk − sh))
′ + Ph (Dx(Sd,k − Sd,h))

′
]′

∂2l
∂αd∂α′t

=
K

∑
k=1

χk(y)

[
K

∑
h=1

∂Ph
∂αt

(x′Da(Sd,k − Sd,h))

]′

where Dx = diag(x) is a diagonal matrix and:

∂Ph
∂γ

= Ph

[
K

∑
m=1

Pm(tc,h − tc,m)
′
]

∂Ph
∂αd

= Ph

[
K

∑
m=1

Pm(Sd,h − Sd,m)
′
]

Dax

∂Ph
∂a

= Ph

[
K

∑
m=1

Pm(sh − sm)

]
◦ x
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Appendix C. Additional Estimation, Standard Error, and Scoring Details

The goal of MH-RM is to optimize the parameter estimates with respect to the ob-

served data marginal log-likelihood:

l(ω|Y) = log L(η, µ, Σ|Y) =
N

∑
i=1

log
[∫

f (yi|xi, η)φ(xi|µ, Σ)dx
]

(13)

Unfortunately, the D-fold integral in (13) makes computations intensive for numerical

integration. MH-RM relies on the insight, due to Fisher’s identity (Fisher, 1925), that:

l̇(ω|Y) =
∫

l̇(ω|X, Y)Π(X|Y, ω)dX (14)

We obtain draws from Π(X|Y, ω) to provide a Monte Carlo approximation to l̇(ω|X, Y)

using the same Metropolis-within-Gibbs sampler as in Cai (2010a). Proposal draws

for the vector of latent traits are x∗i = xi + ei, with the increments drawn from a D-

dimensional multivariate normal distribution, ei ∼ N(0D, c2ID), with tuning parameter

c. Acceptance probabilities of the proposals can be computed by:

min
{

f (yi|η, x∗i )φ(xi|µ, Σ)

f (yi|η, xi)φ(x∗i |µ, Σ)
, 1
}

(15)

The observed data gradient, can then be approximated by averaging across the com-

plete data gradient of the mp imputations,

l̇(ω|Y) ≈ gp+1 =
1

mp

mp

∑
t=1

l̇(ω|X(p+1)
t , Y) (16)

And a recursive approximation to the conditional expectation of the complete data

information matrix is computed by:

Γp+1 = Γp + βp

{
1

mp

mp

∑
t=1

H(ω(p)|Xp+1
t , Y)− Γp

}
(17)
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where H(ω|X, Y) = − ∂2l(ω|X,Y)
∂ω∂ω′ is the complete data information matrix. The sequence

of gain constants,
{

βp; p ≥ 1
}

, in the final stage of estimation meet the following condi-

tions, ensuring that noise introduced by taking a small number of imputations at each

iteration is filtered out:

βp ∈ (0, 1],
∞

∑
p=1

βp = ∞, and
∞

∑
p=1

β2
p < ∞

In the case of multiple groups, g = 1, 2, . . . , G, the complete data log-likelihood is

simply the sum of each group’s log-likelihood, with group subscripts added to all item

parameters, observed responses, and latent trait scores:

l(ω|X, Y) =
G

∑
g=1

{
l(ηg|Xg, Yg) + l(µg, Σg|Xg)

}
(18)

The observed data gradient, l̇(ω|X, Y), at iteration p + 1 can be approximated by

combining the average of complete data gradients for each of the groups,

gp+1 =

[
g′p+1,1 g′p+1,2 · · · g′p+1,G

]′
(19)

where the second subscript provides the group index. The conditional expectation of

the complete data information matrix is thus the super matrix:

Γp+1 =



Γp+1,1 0 · · · 0

0 Γp+1,2 · · · 0
...

... . . . ...

0 0 · · · Γp+1,G


(20)

If there are any parameter constraints across groups, these may be implemented in

via the strategy already presented in Section 4 and as also used by Cai (2010b), which

may change (20) to something other than block-diagonal.
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Standard errors under MH-RM are often obtained via the following equation due to

(Louis, 1982), the elements of which can be approximated during or after estimation (see

Cai, 2010a; Yang & Cai, 2014):

−∂2l(ω|Y)
∂ω∂ω′

=
∫ [

H(ω|X, Y)− l̇(ω|X, Y)[l̇(ω|X, Y)]′
]

Π(X|Y, ω)dX

+
∫

l̇(ω|X, Y)Π(X|Y, ω)dX
∫
[l̇(ω|X, Y)]′Π(X|Y, ω)dX

EAP scoring and marginal log-likelihood approximations (including transformations

such as AIC and BIC) can be accomplished via Monte Carlo integration that entails av-

eraging over Q draws for each xi from φ(·|µ, Σ). For example, a marginal log-likelihood

approximation of (13) is:

l(ω|Y) ≈
N

∑
i=1

log

[
1
Q

Q

∑
q=1

f (yi|x
(q)
i , η)

]
(21)

Confidence intervals may be formed by approximating the variance of this quan-

tity or transformations of it via the Delta method. For example, if we define vi =

1
Q ∑Q

q=1 f (yi|x
(q)
i , η), then we can obtain the approximate variance of −2l(ω|Y) by:

var

(
−2

N

∑
i=1

log

[
1
Q

Q

∑
q=1

f (yi|x
(q)
i , η)

])
≈ 4

N

∑
i=1

var(log(vi)) (22)

where

var(log(vi)) =
1
v2

i
var

(
1
Q

Q

∑
q=1

f (yi|x
(q)
i , η)

)
=

1
v2

i (Q− 1)

Q

∑
q=1

( f (yi|x
(q)
i , η)− vi)

2 (23)



August 13, 2015 38

References

Baumgartner, H., & Steenkamp, J.-B. E. M. (2001). Response style in marketing research:

A cross-national investigation. Journal of Martketing Research, 38, 143–156.

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are

scored in two or more nominal categories. Psychometrika, 37, 29–51.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item

parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously

scored items. Psychometrika, 35, 179–197.

Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcom-

puter environment. Applied Psychological Measurement, 6, 431–444.

Böckenholt, U. (2012). Modeling multiple response processes in judgment and choice.

Psychological Methods, 17, 665-678.

Böckenholt, U. (2014). Modeling motivated misreports to sensitive survey questions.

Psychometrika, 79, 51–537.

Bolt, D. M., & Johnson, T. R. (2009). Addressing score bias and differential item func-

tioning due to individual differences in response style. Applied Psychological Mea-

surement, 33, 335-352.

Bolt, D. M., Lu, Y., & Kim, J.-S. (in press). Measurement and control of response styles

using anchoring vignettes: A model-based approach. Psychological Methods.

Bolt, D. M., & Newton, J. R. (2011). Multiscale measurement of extreme response style.

Educational and Psychological Measurement, 71, 814-833.

Cai, L. (2010a). High-dimensional exploratory item factor analysis by a Metropolis-

Hastings Robbins-Monro algorithm. Psychometrika, 75, 33–57.

Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item

factor analysis. Journal of Educational and Behavioral Statistics, 35, 307–335.

Cai, L. (2013). flexMIRT R© version 2: Flexible multilevel item factor analysis and test



August 13, 2015 39

scoring [Computer software]. Chapel Hill, NC: Vector Psychometric Group, LLC.

Cai, L., Thissen, D., & du Toit, S. H. C. (2011). IRTPRO: Flexible, multidimensional, mul-

tiple categorical IRT modeling [Computer software]. Lincolnwood, IL: Scientific

Software Internatonal, Inc.

Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the

R environment. Journal of Statistical Software, 48, 1-29.

Chen, C., Lee, S.-Y., & Stevenson, H. W. (1995). Response style and cross-cultural compar-

isons of rating scales among East Asian and North American students. Psychological

Science, 6, 170-175.

Cheung, G. W., & Rensvold, R. B. (2000). Assessing extreme and acquiescence response

sets in cross-cultural research using structural equations modeling. Journal of Cross-

Cultural Psychology, 31, 187-212.

Clarke, I. (2001). Extreme response style in cross-cultural research. International Marketing

Review, 18, 301-324.

Couch, A., & Keniston, K. (1960). Yeasayers and naysayers: Agreeing response set as a

personality variable. Journal of Abnormal and Social Psychology, 60, 151-174.

de Jong, M. G., Steenkamp, J.-B. E. M., Fox, J.-P., & Baumgartner, H. (2008). Using item

response theory to measure extreme response style in marketing research: A global

investigation. Journal of Marketing Research, 45, 104-115.

Diebolt, J., & Ip, E. H. S. (1996). Stochastic EM: method and application. In W. Gilks,

S. Richardson, & D. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (p. 259-

273). London: Chapman and Hall.

Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal

of Statistical Software, 40(8), 1-18.

Eddelbuettel, D., & Sanderson, C. (2014, March). RcppArmadillo: Accelerating R with

high-performance C++ linear algebra. Computational Statistics and Data Analysis, 71,

1054–1063.



August 13, 2015 40

Ferrando, P. J., Lorenzo-Seva, U., & Chico, E. (2003). Unrestricted factor analytic pro-

cedures for assessing acquiescent responding in balanced, theoretically unidimen-

sionaly personality scales. Multivariate Behavioral Research, 38, 353-374.

Fischer, R. (2004). Standardization to account for cross-cultural response bias: A classi-

fication of score adjustment procedures and review of research in JCCP. Journal of

Cross-Cultural Psychology, 35, 263-282.

Fisher, R. A. (1925). Theory of statistical estimation. Proceedings of the Cambridge Philo-

sophical Society, 22, 700-725.

Fox, J. P. (2003). Stochastic EM for estimating the parameters of a multilevel IRT model.

British Journal of Mathematical and Statistical Psychology, 56, 65-81.

Greenleaf, E. A. (1992). Improving rating scale measures by detecting and correcting bias

components in some response styles. Journal of Marketing Research, 29, 176-188.

Hansen, M., Cai, L., Stucky, B. D., Tucker, J. S., Shadel, W. G., & Edelen, M. O. (2014).

Methodology for developing and evaluating the PROMIS smoking item banks.

Nicotine & Tobacco Research, 16, S175–S189.

Jackson, D. N., & Messick, S. (1961). Acquiescence and desirability as response determi-

nants on the MMPI. Educational and Psychological Measurement, 21, 771-790.

Javaras, K. N., & Ripley, B. D. (2007). An “unfolding” latent variable model for Likert at-

titude data: Drawing inferences adjusted for response style. Journal of the American

Statistical Association, 102, 454-463.

Jin, K.-Y., & Wang, W.-C. (2014). Generalized IRT models for extreme response style.

Educational and Psychological Measurement, 74, 116-138.

Johnson, T. R. (2003). On the use of heterogeneous thresholds ordinal regression models

to account for individual differences in response styles. Psychometrika, 68, 563-583.

Johnson, T. R., & Bolt, D. M. (2010). On the use of factor-analytic multinominal logit item

response models to account for individual differences in response styles. Journal of

Educational and Behavioral Statistics, 35, 92-114.



August 13, 2015 41

Khorramdel, L., & von Davier, M. (2014). Measuring response styles across the Big

Five: A multiscale extension of an approach using multinomial processing trees.

Multivariate Behavioral Research, 49, 161-177.

Kieruj, N. D., & Moors, G. (2010). Variations in response style behaviour by response

scale format in attitude research. International Journal of Public Opinion Research, 22,

320-342.

Kieruj, N. D., & Moors, G. (2013). Response style behavior: question format dependent

or personal style? Quality & Quantity, 47, 193-211.

Krosnick, J. A. (1991). Response strategies for coping with the cognitive demands of

attitude measures in surveys. Applied Cognitive Psychology, 5, 213-236.

Kuncel, N. R., & Tellegen, A. (2009). A conceptual and empirical reexamination of the

measurement of the social desirability of items: Implications for detecting desirable

response style and scale development. Personnel Psychology, 62, 201-228.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algo-

rithm. Journal of the Royal Statistical Society - Series B, 44(2), 226-233.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47,

149–174.

Maydeu-Olivares, A., & Coffman, D. L. (2006). Random intercept item factor analysis.

Psychological Methods, 11, 344-362.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In

P. Zarembka (Ed.), Frontiers of econometrics (p. 105âĂŞ142). New York, NY: Aca-
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Table 1: Item parameters from Item 1 of Hedonic Benefits under 4 different response
style models.

Parameter ERS MRS EMRS ERS and MRS

a1 1.48 1.47 1.49 1.48
a2 1.74 0.83 0.93 1.69
a3 0.75
c1 0.00 0.00 0.00 0.00
c2 2.22 2.01 2.20 2.21
c3 3.07 2.70 2.84 3.03
c4 2.16 1.89 2.06 2.11
c5 -0.18 0.21 -0.04 -0.24

Note. a1 always refers to the slope on hedonic benefits and a2 to the slope of the response
style factor. In the case of ERS and MRS, a2 is for ERS and a3 is for MRS. For identifica-
tion, estimation of intercept parameters is done via estimating γ, i.e., c = Tcγ (see also
Appendix A).
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Table 2: Possible scoring functions for a hypothetical 5-category graded item.

Scoring Function Latent trait[
0 1 2 3 4

]
Substantive trait[

1 0 0 0 1
]

Extreme Response Style (ERS)[
0 0 1 0 0

]
Midpoint Response Style (MRS)[

2 1 0 1 2
]

Hybrid Extreme-Mid Response Style (EMRS)[
0 1 2 3 4

]
Acquiescence bias (slopes equal across items)[

0 0 0 1 1
]

Acquiescence as a tendency to respond above the midpoint[
1 0 1 0 1

]
Use of extreme and midpoint anchors[

0 0 0 1 0
]

Socially Desirable Responding*[
0.8 1.6 2.8 2.9 2.2

]
Socially Desirable Responding with varying weights**

Note. * Assuming the fourth category is the most socially desirable response. ** Non-
integer weights representing degree of social desirability for each category based on
data (e.g., “Spontaneous, impulsive” at five trait levels in a “general” context; Kuncel &
Tellegen, 2009).
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Table 3: Constraints for common and fitted models.

Model Slope SF SF Constraints Intercept for category k
Full nominal (NRM-free) ajd sjd Estimated cjk
Stereotype (ST) ajd sd Estimated cj + βk
Generalized partial credit (GPC) ajd sjd Fixed to [0 1 . . . Kj − 1] cjk
Partial credit (PC) ad sjd Fixed to [0 1 . . . Kj − 1] cjk
Rating scale (RTS) ad sjd Fixed to [0 1 . . . Kj − 1] cj + βk
Response style ajd sjd Fixed to user-specified values cjk
NRM-equal ad sd Estimated cjk
NRM-fixed ad sjd Fixed to user-specified values cjk

Note. SF = Scoring function. Item slopes and scoring functions are particular for a given dimension, d, with sjd indicating
row d in S for item j. Omitted j subscripts indicate equality across items. In the case of GPC, PC, RTS, and NRM-
fixed models, j varies for scoring functions because of possible differences in the number of categories across items.
Parameterizations assume fixed variance of latent traits (in the case of single-group models). Alternative parameterizations
of PC, RS, and NRM-fixed models could include fixing item slopes (e.g., to 1) and freeing the variance of the latent trait.
Appendix A describes how scoring functions and intercepts are re-parameterized as α and γ, respectively, to allow for
identification and estimation.
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Table 4: Models fit to PROMIS R© smoking data.

Model Dimensions a # param. AIC BIC

1 6D free 732 [768271, 768394] [773096, 773218]
2 6D, ERS free, free 884 [744698, 744862] [750525, 750688]
3 6D, ERS free, equal 747 [746216, 746376] [751140, 751300]
4 6D, MRS free, free 884 [762042, 762192] [767869, 768018]
5 6D, MRS free, equal 747 [762118, 762267] [767042, 767191]
6 6D, EMRS free, free 884 [750358, 750515] [756184, 756342]
7 6D, EMRS free, equal 747 [751288, 751445] [756212, 756369]
8 6D, ERS, MRS free, free free 1038 [740394, 740586] [747236, 747427]
9 6D, ERS, MRS free, equal, free 901 [741941, 742130] [747880, 748068]
10 6D, ERS, MRS free, free, equal 901 [740418, 740609] [746356, 746547]
11 6D, ERS, MRS free, equal, equal 764 [742159, 742348] [747195, 747384]
12 6D, ERS equal, equal 615 [755334, 755483] [759387, 759536]
13 6D, MRS equal, equal 615 [772884, 773018] [776937, 777071]
14 6D, EMRS equal, equal 615 [760698, 760842] [764752, 764896]
15 6D, ERS, MRS equal, equal, equal 632 [751107, 751282] [755272, 755448]
16 6D, NRM free, equal 750 [745423, 745587] [750366, 750530]
17 6D ST, NRM free, equal 357 [758617, 758776] [760970, 761129]

Note. “a” indicates whether slopes were free across items or constrained equal across items for each dimension listed. See
Table 2 for example scoring functions for ERS, MRS, and EMRS. AIC and BIC are 95% CI estimates based on a Monte
Carlo integration estimate of the marginal log-likelihood for each model.
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Table 5: Estimated latent variable means and variance-covariance matrices for Model 10.

HB ND HR PSR CB SB ERS MRS
Daily smokers

HB 1.00
ND 0.52 1.00
HR 0.06 0.46 1.00
PSR 0.14 0.52 0.83 1.00
CB 0.71 0.72 0.32 0.39 1.00
SB 0.72 0.67 0.30 0.34 0.77 1.00
ERS 0.21 0.09 0.03 0.05 0.10 0.14 1.00
MRS 0.00 -0.04 -0.00 -0.03 -0.02 -0.01 -0.12 1.00

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Non-daily smokers

HB 1.04
ND 0.66 1.44
HR 0.22 0.73 1.09
PSR 0.17 0.64 0.78 0.98
CB 0.59 0.86 0.43 0.40 1.00
SB 0.82 0.70 0.42 0.34 0.69 1.24
ERS 0.16 0.03 -0.02 -0.04 -0.01 0.04 0.96
MRS 0.03 0.04 -0.03 -0.04 -0.01 -0.05 -0.04 1.04

Mean -0.38 -1.12 -0.22 -0.11 -0.55 -0.32 -0.04 -0.17

Note. HB = Hedonic benefits; ND = Nicotine dependence; HR = Health risks; PSR = Psy-
chosocial risks; CB = Coping benefits; SB = Social benefits; ERS = Extreme response style;
MRS = Midpoint response style. Means and variances are fixed to 0 and 1, respectively,
for daily smokers.
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Table 6: Latent trait recovery for Simulation 1.
GPC RS RS-cor

r RMSE r RMSE r RMSE
GPC Data Generating Model

Hedonic benefits 0.97 24.48 0.97 24.52 0.97 24.52
Nicotine dependence 0.98 18.24 0.98 18.30 0.98 18.29

RS Data Generating Model
Hedonic benefits 0.92 39.84 0.96 29.65 0.96 29.65
Nicotine dependence 0.94 35.50 0.97 23.69 0.97 23.69
Extreme response style 0.91 41.49 0.91 41.50
Midpoint response style 0.77 63.80 0.77 63.84

RS-cor Data Generating Model
Hedonic benefits 0.91 41.14 0.95 29.97 0.96 29.62
Nicotine dependence 0.93 36.41 0.97 23.92 0.97 23.73
Extreme response style 0.91 41.79 0.91 40.74
Midpoint response style 0.77 64.34 0.78 62.85

Note. Columns correspond to each fitted model. GPC = Generalized partial credit model
with only substantive traits; RS = Model with additional response styles (ERS and MRS)
that are uncorrelated, RS-cor = Model with additional response styles (ERS and MRS)
that are correlated with each other and substantive traits.
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Figure 1: Six-dimensional model plus two additional response style factors.

y1 . . . y16 y17 . . . y43 y44 . . . y62 y63 . . . y82 y83 . . . y97 y98 . . . y109

θ1 θ2 θ3 θ7 θ8 θ4 θ5 θ6

Note. θ1 = Hedonic benefits; θ2 = Nicotine dependence; θ3 = Health risks; θ4 = Psychosocial risks; θ5 = Coping benefits; θ6
= Social benefits; θ7 and θ8 are two hypothetical response style dimensions.
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Figure 2: Example item response functions for a hedonic benefits item from three models
that each include a single response style factor.
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Figure 3: Example item response functions for a hedonic benefits item from a single
model that includes two response style factors.
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Figure 4: Substantive trait EAP scores at three grouped levels of ERS.
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Figure 5: Simulation 1 parameter recovery and standard error calibration.

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●●●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●●
●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

0 1 2 3 4

0
1

2
3

4

Mean of Estimated Parameter Values

Tr
ue

 P
ar

am
et

er
 V

al
ue

s GPC

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●
●

●

●●

●

●

●●

●

●

●●●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●

●

●●

●

●

●
●

●●

●
●

●

●

●●

●

●

●●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●●

●

●

●●

●

0 1 2 3 4
0

1
2

3
4

Mean of Estimated Parameter Values

Tr
ue

 P
ar

am
et

er
 V

al
ue

s RS

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●
●

●

●●
●

●

●●
●

●

●●

●

●

●●
●

●

●●

●

●

●●
●

●

●●

●

●

●●

●

●

●●

●●

●
●

●

●

●●

●

●

●●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●
●

●

0 1 2 3 4

0
1

2
3

4

Mean of Estimated Parameter Values

Tr
ue

 P
ar

am
et

er
 V

al
ue

s RS−cor

●

●

●

●
●

●

●

●
●●

●

●●●

●

●
●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●●

●
●

●

●
●

●●●

●

●

0.05 0.10 0.15 0.20

0.
05

0.
10

0.
15

0.
20

Mean of Recursive SE

E
m

pi
ric

al
 S

ta
nd

ar
d 

D
ev

ia
tio

n

GPC

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●●

●

●

●
●●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20

0.
05

0.
10

0.
15

0.
20

Mean of Recursive SE

E
m

pi
ric

al
 S

ta
nd

ar
d 

D
ev

ia
tio

n

RS

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20
0.

05
0.

10
0.

15
0.

20
Mean of Recursive SE

E
m

pi
ric

al
 S

ta
nd

ar
d 

D
ev

ia
tio

n

RS−cor

●

●

●

●
●

●

●

●
●●

●

●●●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●●

●
●

●

●
●

●●●

●

●

0.05 0.10 0.15 0.20

0.
05

0.
10

0.
15

0.
20

Mean of Post−Convergence SE

E
m

pi
ric

al
 S

ta
nd

ar
d 

D
ev

ia
tio

n

GPC

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●●

●

●

●
● ●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●
●

●

●
●

●

●

●

●

●

●

●●

● ●

● ●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20

0.
05

0.
10

0.
15

0.
20

Mean of Post−Convergence SE

E
m

pi
ric

al
 S

ta
nd

ar
d 

D
ev

ia
tio

n

RS

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●●

●

●
●
●

●

●
●

●

●

●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20

0.
05

0.
10

0.
15

0.
20

Mean of Post−Convergence SE

E
m

pi
ric

al
 S

ta
nd

ar
d 

D
ev

ia
tio

n

RS−cor

Note. Each column is from a different data generating model, from left to right: Gen-
eralized partial credit model with substantive traits only (GPC), the GPC model with
the addition of orthogonal extreme response style and midpoint response style factors
(RS), and extreme response style and midpoint response style factors that are correlated
with each other and the substantive dimensions (RS-cor). Each row examines a differ-
ent outcome, from top to bottom: Parameter recovery, recursive standard errors, and
post-convergence standard errors. SE = Standard errors.
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Figure 6: Simulation 2 parameter recovery and standard error calibration.
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Note. Each column is from a different data generating model, from left to right: ERS
and ARS with a moderate correlation (Mod-cor) of .46 between two substantive factors,
and ERS and ARS with a low correlation (Low-cor) of .05 between two substantive fac-
tors. Each row examines a different outcome, from top to bottom: Parameter recovery,
recursive standard errors, and post-convergence standard errors. SE = Standard errors.


