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Abstract 

Previous research has found that different presentations of the same concept can result in 

different patterns of transfer to isomorphic instances of the same concept. Much of this work has 

framed these effects in terms of advantages and disadvantages of concreteness or abstractness. We 

note that mathematics is a richly structured field, with deeply interconnected concepts and many 

distinct aspects of understanding of each concept, and we discuss difficulties with the idea that 

differences among presentations can be ordered on a concrete-abstract dimension. To move beyond 

this, we explore how different presentations of a concept can affect learning of subsequent concepts 

and assess several distinct aspects of understanding. Using the domain of elementary group theory, 

we teach adult participants a group operation using a visuospatial or an arithmetic presentation. 

We then teach them concepts that build upon this operation. We demonstrate that our 

presentations differentially support learning complementary aspects of the system presented. We 

argue that these differences arise from the fact that each presentation supports learning by 

connecting to different systems of reasoning learners are already familiar with, and that i t  is 

these connections to extant knowledge systems, rather than differences in concreteness vs 

abstractness that determine whether a presentation will be helpful. Furthermore, we show that 

presenting both presentations and encouraging participants to recognize the relationship between 

them improves performance without requiring additional time, at least for some participants. 

Educational Impact and Implications Statement  

The details of how a concept is taught can have far-reaching effects on students’ learning. 

Using abstract algebra with adult subjects, we show that two presentations of a concept that 

connect to different types of students’ prior knowledge can have advantages and disadvantages for 

later learning that builds on the target concept. We show that one possible solution to the 

dilemma of choosing which presentation to use is giving students both concepts and explaining 
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how they are related to each other. In summary, when designing pedagogical materials, we should 

consider not only how they affect learning of the present concept, but also how they support 

learning of future concepts, and use multiple complementary presentations rather than searching 

for a single ideal one.  
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Different presentations of a mathematical concept can support learning in complementary ways 

Introduction 

What is the purpose of a pedagogical presentation of a mathematical concept? How do 

features of the presentation affect understanding of the concept being presented? Given that 

mathematics is highly structured and concepts are connected in a variety of ways, how does the 

presentation of one concept affect understanding of related concepts? These are central issues for a 

science of pedagogy and education. We explore them here in the context of learning basic concepts 

in abstract algebra. 

First, we must define our terms. We use the term “presentation” to refer to the details of 

the pedagogical materials, in contrast to the more common “external representation,” in order to 

highlight a few distinctions. First, the presentation encompasses more than just an external 

representation, i t  also includes the pedagogical explanations used to describe the external 

representation and the practice problems that students are given. Second, presentations are provided 

by the curriculum, while external representations could be created in some other way, e.g. by a 

student drawing a diagram. We reserve the term “representation” to refer to participants’ mental 

representation of the concepts, which, while grounded in the presentation used, may differ from it 

in important ways. As the name suggests, presentations are generally used to present a concept, 

category, or idea, and to link i t  to other related concepts. However, usually the presentation will 

not be perfect, in the sense that only some of its features will be category-general. These features 

may highlight or obscure certain aspects of the concept in question. In addition, students may 

have some prior knowledge about the objects included in the presentation. Both of these factors 

may affect the inferences students make about the concept being explained. Thus changing the way 

a concept is presented may alter what students learn. Kaminski et al. have demonstrated this using 
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different presentations of a cyclic group (Kaminski, Sloutsky, & Heckler, 2008), as we will 

discuss more fully below. 

In this paper, we elaborate upon this work in three ways. We explore: 
 
1. The effects of presentations on learning related concepts and other aspects of 

understanding. 

2. How to characterize the ways presentations differ from each other. 

3. The potential benefits of combining presentations to achieve the advantages of both. 
 

First, how do presentations of a concept affect learning of other concepts? Nothing in 

mathematics is taught in isolation; there are multifarious relationships among mathematical 

concepts. The fact that concepts are organized and intricately related, and that earlier concepts 

affect how later concepts are learned, has been considered for a long time within cognitive 

psychology, (e.g. Fischer, 1980; Bransford &Schwartz, 1999), and more specifically within 

mathematical cognition, (e.g. Hazzan, 1999; Richland, Stigler, & Holyoak, 2012). Mathematics 

education research has also highlighted connections between concepts as an essential aspect of 

what it means to understand (e.g. Hiebert et al., 1997). Thus it is important to consider the 

effect of presentations beyond the single concept being presented. For instance, teachers often rely 

on previously learned concepts to teach a new idea, and students rely on previously learned 

concepts to reason about it (Hazzan, 1999). Thus it is possible that the presentations used to 

teach a concept can also influence students’ understanding of later concepts that are related to i t .  

Furthermore there are often many aspects of understanding of a concept, for example thinking of 

it as a process vs. an object (Hazzan, 1999), or thinking intuitively vs. formally, which may be 

influenced by features of presentations. 

Second, how should we think about the factors that vary between different presentations? 

The work of Kaminski et al. (2008) and much of the following work has focused on a single axis 

of concrete (or grounded) vs. abstract (or generic). Some previous work has acknowledged that 

there are concrete features that may be irrelevant to student learning, such as decorative features 
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like toppings on pizza slices when learning fractions (e.g. Belenky & Schalk, 2014). This raises 

many questions: what types of concrete features are relevant, and which are irrelevant? Is there 

really only a single concrete vs. abstract axis that affects what is learned from a presentation, or is 

the space of possible presentations more complicated? Are “concrete” and “abstract” broadly 

useful terms for describing the features that differ between presentations, or are they just a proxy 

for other factors? Is there an important distinction between “abstract” and “generic” or 

“idealized” presentations? Can presentations of a concept that connect to different types of 

knowledge result in different types of understanding? Some previous work would suggest that this 

can occur, at least with large differences in pedagogical strategy (Nokes & Ohlsson, 2005). 

Finally, is there any advantage to combining presentations? I t  has been known for some 

time that seeing multiple distinct examples can lead to better generalization in some cases (Gick & 

Holyoak, 1983). Previous work has found that using multiple external representations may be 

beneficial, although it also imposes higher cognitive demands and can even be detrimental 

(Ainsworth, 2006; Rau, 2016), and in particular that fading details from concrete to abstract may 

be beneficial (Goldstone & Son, 2005; Fyfe, McNeil, Son, & Goldstone, 2014). However, when 

considering the full ramifications of a presentation, including how it affects learning of other 

concepts, will multiple presentations still be beneficial? 

In this project, we explored these issues and found evidence that two different presentations 

of a concept can have differential advantages, supporting different aspects of students’ later 

understanding. We argue that the two presentations we used cannot be clearly ordered on a single 

concrete vs. abstract axis. Instead, they link the concept to different systems which learners may 

have prior experience with. Building on this, we explored the possibility that exposure to both 

presentations might allow students to benefit from the advantages of both. We found evidence that 
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some students were able to achieve the benefits of both presentations, and that the benefit increased 

as students practiced answering questions. 

We examined these issues within the area of elementary group theory, specifically cyclic 

groups (also used by Kaminski et al. (2008)) and a few concepts about them. An introduction to 

the relevant concepts is provided in Appendix A, but we briefly sketch them here. A group 

consists of a set of elements and an operation that takes any two members of the group and always 

produces a group member as a result. A cyclic group is a group whose members can be seen as 

forming a cycle. More specifically, the cyclic group of order n is a group of n elements whose 

elements can be brought into correspondence with the numbers 0 to n-1. Once a correspondence 

with the integers 0 to n-1 has been established, the rule for combining two elements can be described 

as adding the two numbers, and subtracting n if the result is greater than or equal to n. There are 

many concepts that can be built up from these simple ideas, including the identity element of the 

group (the element that leaves every other element unchanged under the operation, in this case 0); 

the concept of the inverse of an element (the thing you combine with an element to get the 

identity); and the concept of a generator of the group (an element that can make every other 

element of the group by repeatedly adding the element to i tself). 

The question we attempt to address in this paper is how learning of these concepts can be 

altered by the way the group operation is presented. In the next section, we introduce some of the 

background needed to explore this question, by examining some of the ways that concepts are 

related to one another in mathematics. 

Relationships Among Mathematical Concepts 

How are concepts related to each other in mathematics, and how does this affect 

mathematical cognition? Some mathematical educators have suggested that relationships among 
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concepts are so fundamental to mathematics that the definition of understanding a mathematical 

concept should be “[seeing] how it is related or connected to other things we know” (Hiebert et 

al., 1997). Indeed, it  has been suggested that students viewing mathematical concepts as isolated 

rules and procedures, rather than coherent systems of related ideas, is one of the fundamental 

problems in mathematics education (Richland et al., 2012). There are many kinds of relationships 

between mathematical concepts, some of which underlie abstract fields such as category theory. 

Here, we focus specifically on the relationships that are introduced to students when a concept is 

explained in terms of previously learned concepts. 

For example, consider arithmetic. Multiplication is often explained as repeated addition; 

division may be explained a s  “undoing” multiplication. These are pedagogically useful 

relationships between one arithmetic concept and another. Examples that demonstrate arithmetic 

concepts also often make connections to students’ experiences and intuitive ideas (“Jane has twelve 

apples, and wants to share them evenly with her three friends...”). Furthermore, once students 

understand the arithmetic operations, concepts like primality can be explained in terms of 

conditions on how numbers behave under the operations. 

When students move on to algebra, they learn more powerful, formal ways of manipulating 

numerical concepts, but they learn them as extensions of the rules of arithmetic they already 

know. Thus concepts also support later formalisms and other aspects of understanding. For 

example, the concept of variables as unknowns can be introduced by just substituting a variable in 

as the solution of a problem the students can already solve (e.g. “5+? = 11” to “5 + x = 11, solve 

for x”).  Concepts in mathematics are not presented in isolation, but are explained in terms of the 

related concepts that students have previously learned. 
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How does this affect learning? Orit Hazzan has suggested that students learning a new 

concept (at least in abstract algebra) reduce the level of abstraction by relying on properties of 

more “concrete” examples that they understand (Hazzan, 1999), i.e. the concepts they have 

previously learned. For example, a student learning a theorem about which elements generate a 

cyclic group of order n may think about specific examples, such as a cyclic group of order 6. 

Because students rely on earlier concepts to understand new ones, presentations of these earlier 

concepts may have an effect on later learning. Thus it is important not only that a presentation 

convey a concept clearly, but also that i t  provide a foundation for understanding related concepts 

that will be learned later. 

For example, consider cyclic groups. The groups Kaminski and colleagues studied all 

correspond to the cyclic group of order 3. In an educational setting, after learning this operation 

students might learn about the identity of the group, inverses, generators, etc. They might also be 

asked to generalize this understanding to non-isomorphic cyclic groups, or to make general and 

possibly formal statements about the family of all cyclic groups. These related concepts and more 

formal aspects of understanding might also be affected by the presentation of the group operation. 

Indeed, it has been noted for some time that the term “understanding” does not have a 

single meaning within mathematical cognition, but rather can refer to factors such as conformance 

to a rule when solving problems procedurally, explicit awareness of the rule, ability to transfer the 

rule to an analogous situation, etc., and that the inferences we make about students level of 

“understanding” can depend upon which of these features we use to evaluate it (Bisanz & LeFevre, 

1992). For instance, Greeno and Riley (1987) show that students can possess the ability to execute a 

procedure without having the ability to articulate the rules that the procedure follows. To 

address this issue, Bisanz and LeFevre (1992) created a framework for analyzing assessments of 
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understanding, based on two features: activity and generality. Activities vary from applying a 

procedure on a task to justifying a procedure or evaluating a presented procedure, while 

generality varies according to how broadly the procedure, justification, or evaluation is applied. 

This work implies that i t  is important to not focus solely on evaluating a single feature of what 

has been learned when evaluating a mathematical presentation. Mathematical education will 

ideally convey many aspects of understanding, not just a single one. 

Concrete Versus Abstract? 

What features of presentations might allow them to convey multiple aspects of 

understanding well? There has been a recent focus on the effects of concrete (or grounded) and 

abstract (or idealized or generic) materials on learning in mathematics (e.g. Kaminski et al., 

2008; Belenky & Schalk, 2014). The broad consensus has been that concrete presentations offer 

benefits for initial learning and performance, while abstract presentations are beneficial for certain 

types of transfer (Belenky & Schalk, 2014). Thus we might hope that more abstract presentations 

would be beneficial for other aspects of understanding as well. 

However, there are reasons to think that the abstract-concrete distinction may be 

misleading. Schwartz and Goldstone (2015) have argued that rather than thinking of dichotomies 

in education as an “either-or problem,” i t’s often better to focus on coordinating different 

learning processes – “rather than choosing one or the other, the best strategy is to choose both.”  

They explicitly reference the abstract-concrete dichotomy, and indeed, some work has shown the 

benefits of “fading” from concrete presentations to more abstract ones (Goldstone & Son, 2005; 

Fyfe et al., 2014). 

We believe that the concrete vs. abstract is a false dichotomy more generally, not just 

because both sides are useful, as the concreteness fading work shows and Schwartz and Goldstone 
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(2015) argue, but because the space of presentations is much more complicated than this 

description would suggest. One aspect of this is the fact that the concepts of “concrete” and 

“abstract” are themselves difficult to define. For example, some authors have argued that 

“concreteness is not a property of an object but rather a property of a person’s relationship to an 

object” (Wilensky, 1991). However, this perspective on concreteness seems to elide the physicality 

that the word commonly conveys. The appropriate definition of concrete may be hard to find. 

There may be many ideas conflated under this single word. 

Similarly, there are many different possible meanings of the word “abstract.”  Hazzan 

(1999) describes several of these, ranging from “abstract” as approximately the opposite of 

“concrete” as defined by Wilensky (1991) to “abstract” as an object rather than a process 

understanding o f  a concept. Which of these is meant when Kaminski et al. (2008) say that there is 

an advantage of abstract examples? Is there an important distinction to be drawn between 

“abstract” and “generic” pedagogical materials, and if so, why are these terms used inconsistently 

in the literature (Kaminski et al., 2008; De Bock, Deprez, Van Dooren, Roelens, & Verschaffel, 

2011; Belenky & Schalk, 2014)? 

To avoid these definitional conundrums, instead of thinking of presentations in terms of 

“concrete” and “abstract,” we prefer to think about how presentations may support links to 

systems of thinking that students already understand. We believe this feature is more relevant to 

understanding the effects of presentations. 

For example, from the perspective of students just learning arithmetic, the set of all 

integers would be an incredibly “abstract” concept. Yet from the perspective of the mathematics 

students studied by Hazzan (1999), who have experience reasoning with various infinite sets of 

numbers, this concept is a useful basis for thinking about more formal ideas. The relevant feature 
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of these concepts is not their “concreteness”, but instead the students’ relationships to the 

concepts. 

When we take the perspective that what matters is how concepts relate to students’ extant 

systems of knowledge, it becomes clear that since students have rich experience, there can be many 

different presentations of a concept that relate it to the many different reasoning systems that the 

students are familiar with.  These systems can be quite diverse; a presentation may relate a concept 

to visuospatial thinking (Rau, 2016), to more basic mathematical concepts the students 

understand (Hazzan, 1999), to physical understanding like measuring cups (Kaminski et al., 2008), 

or embodiment (Nathan, 2008). Some of these presentations may be “concrete” in some sense, but 

i t ’s not clear how to order them on a single concrete-abstract dimension. Indeed, it’s not clear 

that we should, because presentations that relate a concept to different systems of understanding 

may have quite different support for learning of later concepts. For example, the training and 

transfer presentations that Kaminski and colleagues used are both “concrete” in some sense, but 

they ground the concept in very different ways which we argue support different types of 

understanding. In the next section, we explore this in more detail. 

The Advantage(?) of Abstract E x a mpl e s  

Kaminski et al. (2008) explored the effects of presentations in a cyclic group of order 3. 

They presented participants with either a “generic” instantiation of the group, or a “concrete” 

one. Their presentations are illustrated in figure 1a. The generic presentation consists of some 

arbitrary geometric symbols, with enforced rules for combining them, and the concrete 

presentation consisted of an example with a narrative about combining fractional cups of liquid, 

and finding the amount left over. There were two other concrete presentations (not shown) that 

were also used in some experimental sessions (using fractional slices of a pizza or number of tennis 
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balls in a can as the concrete objects.) They trained participants to perform the operation in 

either the generic presentation or one to three concrete presentations. They then showed 

participants the isomorphic transfer domain shown in figure 1b, where the objects of the group 

are grounded as toys in a children’s game. (The transfer domain item shown is analogous to the 

rule on the last line of 1a.) The participants were explicitly told that this followed the same rules 

as the earlier examples, and that they should try to use their knowledge to predict the results of 

the game. Kaminski and colleagues found that the participants who learned the generic 

presentation performed better at this transfer than the participants who learned the concrete 

presentation(s). From this, they concluded that “instantiating an abstract concept in a concrete, 

contextualized manner appears to constrain that knowledge and hinder the ability to recognize the 

same concept elsewhere” (Kaminski et al., 2008). 

 
(a) Group presentations 

 
 

(b) Transfer domain 

 
Figure 1. Presentations from Kaminski, Sloutsky, & Heckler (2008). Figures adapted with 
permission from “The Advantage of Abstract Examples in Learning Math” by J. A. Kaminski, V. 
M. Sloutsky, & A. F. Heckler, 2008, Science, 320, Supplemental Material.  
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However, i t  is possible to offer alternative interpretations of Kaminski and colleagues’ 

results. For example, Jones (2009) suggests that in the concrete presentations “the feature in 

question ... is the physical objects that behave like quantities” and the problems can be solved by 

adding and subtracting, whereas in the generic presentation “the symbols used do not appear to 

represent quantities, and are not combined,” and the transfer task, similarly “does not exhibit a 

quantitative feature; instead it is another version of the generic instantiation with a different 

contextualization.”  Thus he concludes that “The transfer task is more similar to the generic 

instantiation than to the concrete ones.”  In a response to this interpretation, Kaminski, Sloutsky, 

and Heckler (2009) asserted that the generic and transfer domains were not more similar, because 

after describing the domains to a set of participants (without teaching them the rules for 

combinations), and asking them to rate the similarity between domains, they did not find any 

significant differences in rated similarity.  However, the possibility remains that there are 

structural or conceptual differences between the concrete and generic instantiations. 

For example, one aspect of the presentations that is different is the asymmetry that 

participants previous arithmetic knowledge will introduce between the elements which are 

represented as 1/3 of a cup or 2/3 of a cup in the concrete instantiation.  Although from a 

mathematical perspective it is clear that the generic, numeric, and transfer presentations are 

isomorphic, in the generic and transfer presentations the symmetry between the two non-identity 

elements is clear – circle circle = diamond, and diamond diamond= circle – whereas in the 

numeric presentations the symmetry is broken. While the rules that 1 + 1 = 2 and 2 + 2 = 1 do 

follow from the presentation in the numeric case, there is a fundamental asymmetry to the 

arithmetic interpretations of them (i.e. 1 + 1 = 2 because 1/3 cup two times makes 2/3 cups, but 

2 + 2 = 1 because 2/3 cup two times makes 1 and 1/3 cups, and we throw away the full cup to get 
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back to 1/3). We suspect this asymmetry may be to blame for the worse transfer performance, 

since students looking for a cue to map one object to the unit quantity and the other to twice 

that quantity would not find any such cue. Similarly, if the notion of generators had been 

discussed in the study, participants who saw the numeric examples would probably have been 

biased to choose 1 as a generator, even though 2 is an equally good choice, whereas in the generic or 

transfer case there would be no such bias. The numeric presentations provide a shared basis 

(number of identified parts, be they tennis balls, slices of pizza, or 1/3s of a cup of liquid) that 

can be used to map one onto another. This obvious mapping is not present in either the generic or 

transfer examples. Although the transfer example is quite “concrete” in that i t  relates to a 

physical game played with physical objects, it doesn’t naturally support this numerical 

interpretation. Different ways of presenting a concept may support different types of 

understanding about it. 

This idea is supported by De Bock et al., in their replication of Kaminski’s study (De 

Bock et al., 2011). In this study, they compared the transfer from the generic domain to the 

concrete, and found that i t  was worse than the transfer from the concrete domain to a new 

concrete domain, or from a generic to another generic. Thus, each presentation was better for 

transferring to presentations that were similar in terms of whether or not they supported a 

mapping to number. The relevant feature for transfer was not the “concreteness” of the 

presentations, but what systems of thinking they connected to and thus what types of reasoning 

they supported. 

Furthermore, De Bock and colleagues asked participants to give a free response justifying 

their answer to a problem of combining four elements of the group, and rated it on the ideas that 

i t  contained. They found that generic-presentation group participants mentioned more group-
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theoretic ideas (although they still appeared to attain very little understanding of them), but that 

concrete-presentation group participants mentioned the ideas of modular arithmetic as well as 

some group-theoretic ideas. Thus, the choice of presentation had an effect not just on transfer, but 

on the more abstract concepts being inferred. Since Hazzan (1999) showed that students were 

relating more abstract concepts back to their understanding of simpler ones, the inferences they 

make about the simpler concepts could provide differential preparation for future learning 

(Bransford & Schwartz, 1999) of more advanced concepts. Thus in pedagogically more realistic 

scenarios where students are asked to learn about a system of related concepts, different 

presentation of a concept may have effects that propagate to other related concepts. 

De Bock et al. and Kaminski et al. did not teach additional concepts to their participants 

beyond presenting the rules for applying the operation to arbitrary strings of symbols, (although 

some concepts may have been implicitly communicated by the format of the rules). They tested 

only on transfer to a mathematically isomorphic concept, whereas most examples in math 

instruction are intended to illustrate something more general (a teacher does not show students that 

5 + 6 = 11 just so they can add 5 and 6 in the future, but rather to illustrate the more general 

principles of addition, carrying, etc.) Furthermore, they only explored participants’ ability to 

identify the correspondences between the original elements and the transfer elements in order to 

perform the operation. They did not evaluate how presentations affected participants’ ability to 

learn other related concepts, or more formal ways of understanding the group in question. We 

believe that examining the effects of presentations on other concepts is vital, because 

mathematical concepts are generally not presented in isolation, but rather within a richly 

structured web of previously learned concepts, and students are not assessed on a single outcome, 

but rather on their grasp of multiple aspects of understanding. 
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Criteria for Presentations 

In order to more thoroughly assess a presentation of a concept, we propose the following 

set of questions for evaluating its impact on various aspects of understanding. They may not 

capture all the aspects of understanding that are pedagogically relevant in all circumstances;  we 

propose these questions more as a starting point for thinking about these issues than a definitive 

list. We think that they will provide a useful basis for beginning to consider the effects of how 

material is presented more broadly in mathematics education. The questions we suggest for 

assessing a presentation (with examples from the case of cyclic groups) are: 

• Does it allow students to apply the directly-instructed base concepts correctly? Does it 

allow them to transfer these base concepts to a non-isomorphic group? (Does i t  allow 

students to combine elements using the group operation within the context of the specific 

example – e.g. a group of order 6 – used to introduce the operation? Once they have 

learned this in a group of order 6, does it allow them to do similarly in a group of order 9 

with minimal additional explanation?) 

• Does it allow them to answer questions about further concepts that build upon the base 

concept, within the original instance? Does it allow them to transfer these concepts to a 

non-isomorphic group? (Does it allow them to correctly identify inverses and generators 

in the cyclic group of order 6? Does it allow them to transfer this understanding to a 

cyclic group of order 9?) 

• Does it allow them to generalize about a class of instances?  Does it allow them to express 

(or evaluate the truth of) these generalizations using formal mathematical expressions and 

language? (Can they explain in words how to find inverses in an arbitrary group? Can 

they write a formula for the inverse in a generic group of order n, or correctly assess 

formal statements about which elements are generators?) 
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These points attempt to span varied types of understanding, from the most procedural and 

implicit to the most formal and explicit. Obviously, a single presentation may not address all of 

these points adequately, but i t  is important to consider all of them when evaluating a 

presentation. As mentioned above Kaminski et al. (2008) (and the follow-up work discussed 

above) focused primarily on transfer between distinct presentations of the same group. From the 

perspective of Bisanz and LeFevre (1992), Kaminski & colleagues assessments of understanding 

occurred at the “application” activity level. Their participants may have developed other aspects 

of understanding (for example, participants might have discovered the concept of inverses as 

computationally useful when combining long strings of symbols), but their experiments did not 

explicitly encourage or assess this. Here, we move beyond this to ask which presentations are better 

for advancing each of these aspects of understanding. We find that two presentations which give 

similar performance on direct application of the group operation can each have advantages and 

disadvantages for other aspects of understanding of group-theoretic concepts. 

Multiple Presentations 

If we have multiple presentations of a concept, each with unique advantages, which should 

we use for instruction? Instead of forcing ourselves to choose one and lose the benefits of the 

other, we suggest “choosing both” (Schwartz & Goldstone, 2015) by presenting both to students 

and explaining the connections between them. In this way, students may be able to achieve the 

benefits of both. 

The idea that this might be beneficial has roots in the work of Gick and Holyoak (1983), 

who showed among other things that seeing multiple analogs of an idea was more likely to lead to 

transfer, and dissimilar analogs were beneficial in some cases, although they did not address 

independent and complementary advantages of distinct presentations. Furthermore, as we noted 

above, Schwartz and Goldstone (2015) have argued that we should try to “coordinate learning 

processes so they can do more together than they can alone.” The idea that multiple presentations 
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can sometimes be beneficial has also been explored more specifically in educational contexts, for 

example Ainsworth (2006) has created a theoretical framework for taxonomizing multiple 

external representations1, and Rau (2016) has considered specifically when multiple visual 

representations may be useful. These authors have suggested that multiple presentations often have 

both benefits (such as increased generalizability of knowledge) and costs (such as increased 

cognitive load that may impair learning). Thus it is interesting to investigate whether presenting 

multiple presentations that support different aspects of understanding is beneficial or detrimental. 

General Experimental Overview 

We conducted a series of experiments investigating the effects of two isomorphic 

presentations of cyclic groups. The two presentations are not easily classified as “concrete” or 

“abstract.” Instead, they relate the cyclic group to different types of reasoning that students have 

some experience with. Specifically, we either ground the group in a visuospatial presentation, or in 

a non-visual presentation that relates it more closely to familiar arithmetic operations. The 

visuospatial presentation is based on counting around the vertices of a polygon (we call this the 

“polygon presentation”), and the non-visual presentation is based on simple arithmetic 

relationships and is closely related to modular arithmetic (the “modular presentation”). See the 

Materials & Methods section below for more detail. 

We show that these different presentations produce equal performance on the base concept 

(the group operation), but produce differential learning of later concepts. We used the group 

theoretic concepts of identities, inverses, and generators, as well as generalization f r o m  a cyclic 

group of one order to a cyclic group of another order, and from these groups to the general case of 

a cyclic group of unspecified order n, to investigate the effects of these presentations on different 

aspects of understanding. We found that while both presentations were very successful at allowing 

                                                 
1Note that several of the authors in this section use the term “external representations” to refer to a more 
limited s u b s e t  of what we term presentations, see above. 
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students to learn to correctly apply the group operation and extend it to a group of a new order, 

the presentations produced differential success with related concepts. Furthermore, neither was 

clearly superior, each had advantages and disadvantages relative to the other, and these advantages 

and disadvantages transferred to a group of a new order. Is there a way to obtain the benefits of 

both? Indeed, we combine our two presentations into a single hybrid presentation, and 

demonstrate that the benefits of combining multiple presentations may be more general than ideas 

like concreteness fading. We show that even over the short time of an experimental session, many 

subjects develop the ability to exploit the advantageous features of two distinct presentations with 

complementary advantages. 

Experiments 

Introduction 

In this paper, we present the results from three closely related experiments. (These 

experiments were performed sequentially, but the methods and results are interleaved here for the 

sake of brevity and coherence.) The goals of the experiments we re  as follows: 

Experiment 1: In our first experiment we explored whether the polygon and modular 

presentations produced differential performance, and if so, for which aspects of understanding. 

Experiment 2: In our second experiment, we had two goals. First, we wished to replicate 

the results of our first experiment with a planned analysis (to ensure that the effects were not just 

chance variation, since we didn’t have a priori hypotheses  about which presentation would be 

superior for which types of questions). Second, we wished to explore whether we could improve 

overall performance by teaching the participants a hybrid presentation that included both the 

polygon and modular presentations (while keeping total instruction time approximately the 

same), and encouraged the participants to integrate them. 
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Experiment 3: In our third experiment, we wished to further increase our confidence in 

the results from the first two experiments, and to further explore the thought processes of hybrid-

group participants. In order to examine this, we added questions for the hybrid group (presented 

after the main experiment had been completed), which asked them to rate the extent to which 

they had used each presentation when answering a question. 

Materials & Methods 

All materials are available on our GitHub2, including complete versions of our 

experiments that can be downloaded and run, or viewed using GitHub’s html preview. 

The experimental layout was as follows: 

1. Training on group operation (order 6 group) 

2. Training on concepts of identity, inverses, and generators 

3. Test of ability to transfer concepts to a new cyclic group (order 9) 

4. Test of ability to formulate concepts at a general level about a family of groups 

(order n) 

5. (Representation-use questions, only for hybrid group and only in Experiment 3) 

6. Demographic and background questions 

We taught the participants to perform the group operation on a cyclic group of order 6 

(using the polygon, modular, or hybrid presentation, between participants), and then taught them 

the concepts of identities, inverses, and generators using this operation. The explanations of 

identities, inverses, and generators were the same between experimental groups (we did not need to 

refer to the specifics of the underlying operation), to ensure that any effects we observed were due 

to the different presentations of the underlying concept. For example, for inverses we explained 

that “the inverse of a number is the element that you combine with i t  to produce the identity.” 

                                                 
2 https:/github.com/lampinen/cyclic_group_presentations 
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We then tested participants’ transfer of these concepts to a cyclic group of order 9. (We 

chose groups of order 6 and order 9 so that each group would have enough elements for 

demonstrations of concepts like inverses, and sufficiently many generating and non-generating 

elements to make the generator questions interesting). Finally, we tested participants for 

understanding of the general case by using a cyclic group with an unspecified order n. 

This design addresses a variety of concepts and aspects of understanding. The learning of 

each group operation corresponds to learning the basic concept/procedure. The concepts of 

identities, inverses and generators, are built upon this operation. The transfer of these concepts to a 

cyclic group of a different order requires transfer of procedures for finding inverses, identifying 

generators, etc. The subsequent questions about the generic cyclic group of order n require the 

ability to understand and formulate general (and usually formal) statements about the procedures 

and concepts learned. 

Group presentations. In all three experiments, participants in one group received a 

presentation based on modular arithmetic (which is easily explained as a slight variation on 

regular arithmetic), while participants in another group received a visuospatial presentation based 

on counting around a polygon (which allows participants to develop a visual intuition, but which 

is not as directly familiar as standard arithmetic, although participants may find analogies, e.g. to 

clocks). For experiments 2 and 3, we added a hybrid group, where participants were presented with 

both presentations and asked to integrate them. 

For the modular presentation, we presented the group operation as +6, and we explained to 

participants that to compute +6 you add the two numbers, and then subtract 6 if your result is 6 

or larger. We gave examples such as 4 +6 4 = 2, because 4 + 4 = 8 and 8 − 6 = 2. 
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For the polygon presentation, we presented the group operation in the form of rotating an 

arrow around a polygon. We wrote the group operation as, a hexagon containing the numeral 6, 

and provided the participants with the diagram shown in Figure 2. The diagram that participants 

were provided was interactive, so that they could click or click and drag to move the arrow 

around the polygon. The arrow would “snap” to the nearest vertex when released. (The diagram 

for the currently relevant group order was provided on each problem in the experiment.) 

 

   
Figure 2. Order 6 polygon figure 
 

We explained to participants that to compute you point the arrow in the hexagon to the 

first number, and then move it the second number of spaces clockwise.  The number that the arrow 

points at is your result. We gave examples such as 4 (image of hexagon containing the numeral 6) 

4 = 2, because 4 steps clockwise from 4 makes the arrow point at 2. 

After seeing several examples, participants practiced the operation on 10 problems, and if 

their accuracy was below 80%, they were given an additional 10 practice problems. On all of these 

problems, the participants received feedback on their answers and an explanation of the correct 

answer. 
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For the hybrid group participants, we presented both presentations, calling them 

respectively the “arithmetic method” and “polygon method.” (We used “arithmetic method” 

because we felt that some participants would find the term “modular method” to be confusing, 

since they could associate it with meanings other than the intended mathematical meaning.) We 

alternated asking the participants to use the polygon and arithmetic methods on six of the initial 

operation practice problems, to encourage them to develop a familiarity with both presentations, 

which is an important part of learning to reason with multiple presentations (Ainsworth, 2006). 

The answer explanations on these questions were presented in accordance with the operation we 

had asked them to use; on the questions where we did not specify an operation we provided both 

types of feedback. Like participants in the other groups, hybrid group participants did 10 

practice problems, plus an additional 10 if their accuracy on the first 10 was below 80%. 

Because they were presented with both operations, the participants who saw the hybrid 

presentation received two more sentences of instruction on the operation than subjects in other 

groups, and saw both types of operation feedback on four of the subsequent operation practice 

problems. However, they received the same number of practice problems as the other subjects for 

the operation, and their instruction on all subsequent concepts was identical. We also added one 

additional page after presentation of the hybrid operation (but before the practice) asking the 

hybrid group participants to reflect on how the different methods corresponded; participants in 

other groups were asked to reflect on how the operation worked to control for the effect of the 

additional prompt. We did not attempt to control for the few extra sentences about the operation 

that the hybrid group received, but (as shown below) we saw no improvement from 

the hybrid presentation on the operation, where they had this additional instruction.  We 

only observed improvement on the concepts where instruction was identical. 

Identities & inverses. Next, we explained the concept of identity by stating that 0 is the 

identity because when you combine it with anything, you get the same thing back. We gave two 
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examples to illustrate this. (This, and all subsequent concepts, were explained to the different 

experimental groups using exactly the same text, except for the differences in the operation 

symbols used. For the remainder of the article, when presenting material that both experimental 

groups saw, we will use either of the operation symbols.) 

Similarly, we explained the concept of inverses by saying something’s inverse is what you 

need to combine with that thing to produce the identity.  For example, the inverse of 1 is 5, 

because 1 (image of hexagon containing the numeral 6) 5 = 0 and 5 (image of hexagon containing 

the numeral 6) 1 = 0. We then allowed participants to find inverses for all other group elements as 

practice, and participants received feedback on their answers and an explanation of the correct 

answer. 

Generators.  Finally, we taught the participants the idea of generators, by explaining 

that a generator can make every other element of the group by combining with i t self. For 

example, 1 is a generator under +6, because 1 = 1, 2 = 1 +6 1, etc. However, 2 is not a generator 

under +6 , because 2 = 2, 4 = 2 +6 2, 0 = 2 +6 2 +6 2, but there is no way to make 1, 3, or 5. 

We then asked participants to find whether each of the remaining elements generates the group, 

and provided them with feedback on their answers and an explanation of the correct answer. 

Order 9 group test. We next tested the participants’ transfer of concepts to the cyclic 

group of order 9, presented to the modular group as +9, or to the polygon group as an image of a 

polygon containing the numeral 9 as with a visual aid analogous to that in 2, except with nine 

vertices labeled with the numbers 0 through 8. We allowed the participants one practice problem 

(with feedback) on the new operation, to ensure that they understood it. We then asked the 

participants questions to test their knowledge of the concepts outlined in each section above, 

namely: 
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• A set of seven problems with the group operation, e.g. 6 (image of a polygon 

containing the numeral 9) 4 = ?, with participants asked to provide an explanation of 

their answers for two of them. 

• One problem asking participants to identify the identity under the operation, and to 

explain their answer. 

• Three problems asking subjects to identify the inverse of an element; one of these also 

asked them to explain their answer. 

• Four problems asking subjects to identify whether an element was or was not a 

generator. Two generators and two non-generators were presented, and participants 

were asked to explain their answer for one of each. 

Test of reasoning about the general case. Finally, we told participants we were now 

considering an order n cyclic group, presented to the modular group participants as +n , and to 

the polygon group participants as an image of a polygon containing the letter n with the visual 

aid shown in figure 3. (Unlike the other visual aids, in this one the arrow would rotate freely, and 

would not “snap” to the vertices, to avoid implicitly indicating a specific number of vertices to 

participants.) 
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Figure 3. Order n polygon figure 
 

We then asked them the following questions: 

• What is the identity under +n ? 

• Two questions on giving formulas for inverses under (image of a polygon containing 

the letter n) +n, for 1 and for an arbitrary element x. 

• Two free-response questions on which elements are generators. 

• Four true/false questions on which elements are generators, successively narrowing in 

on a correct statement about non-generators (If an element x is not a generator under 

+n , x must be a multiple of a divisor of n.) 

• Three always/sometimes/never questions about generators. (E.g. If an element x 

is a generator under (image of a polygon containing the letter n) + n, is its 

inverse a generator always, sometimes, or, never?) 

(The exact T/F and A/S/N questions are listed along with the presentation of the results from 

them in the supplemental material.) 

Representation-use questions (experiment 3). (As a reminder, we will use the term 

representation to refer to the mental model hybrid group participants were using to think about 

the problem.) In experiment 3, we added four questions for the hybrid participants. On these 

questions, they answered a question analogous to one earlier in the experiment, and then 

subsequently indicated on 5-item Likert scales ("Not at all" to "Very much") for each 

representation the  degree to which they had used it on that question. After this, they were 

presented a text box and asked to describe in as much detail as possible how they had used each 

representation in  solving the question. We added one question for each of the four question types 
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where we previously observed an effect: inverse of zero, inverse of non-zero elements, identifying 

generators, and answering T/F questions about generators. 

Participants. We recruited participants using Amazon’s Mechanical Turk (c.f. 

Buhrmester, Kwang, & Gosling, 2011), using high-reputation participants (over 85% approval 

rate), and using participant tracking (so we could run follow-up and replication studies on 

Mechanical Turk without having the same participants participate and contaminate the results). 

Our experimental design was approved by our IRB, and all subjects gave informed consent to 

participate in the experiments. Experiment 1 had n = 50 participants per group, N = 100 total 

(gender: 50 female, 49 male, 1 decline to state/other; age range: 20-64; education: 21 high school 

diploma or less, 38 some college – associates degree or no degree, 32 bachelor’s degree, 9 higher 

than bachelor’s degree); experiment 2 had n = 50, N = 150 (gender: 75 female, 75 male; age 

range: 19-67; education: 41 high school diploma or less, 44 some college – associates degree or no 

degree, 52 bachelor’s degree, 14 higher than bachelor’s degree); and experiment 3 had n = 100, N = 

300, (gender: 133 female, 165 male, 1 decline to state/other; age range: 19-69; education: 38 high 

school diploma or less, 94 some college – associates degree or no degree, 106 bachelor’s degree, 34 

higher than bachelor’s degree). 

Hypotheses 

For experiment 1, our hypothesis was that there would be a difference in learning between 

the subject groups in several of the aspects of understanding, and a presentation that is beneficial 

for one concept or aspect may be deleterious for another. This was inspired by the work of (De 

Bock et al., 2011), discussed above, which showed that there might be some effect on the inferences 

students draw from presentations. We hypothesized these inferences might affect their ability to 

learn related concepts. (We had no a priori theory  to predict which concepts would be more 
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easily learned from which presentation, so part of the purpose of experiments 2 & 3 was to verify 

our results.) 

For experiments 2 & 3, we hypothesized that we would replicate the differences we found 

in our first experiment, namely: 

• The modular and polygon groups would not differ significantly in their learning of the 

operation. 

• The modular group would be significantly better than the polygon group at finding 

the inverse of non-zero elements. 

• The polygon group would be significantly better than the modular group at finding 

the inverse of zero. 

• The polygon group would be significantly better than the modular group at identifying 

elements that are generators in the specific groups. 

• The modular group would be significantly better than the polygon group at answering 

T/F questions about generators in the order n group. 

Furthermore, we hypothesized that the hybrid group would achieve approximately the 

maximum performance of the two groups, i.e.: 

• The hybrid group would perform like the better of the polygon and modular groups on 

each question type. 

This can be contrasted with other possible predictions for hybrid group performance.  One 

possibility is that seeing both presentations would simply confuse or overload the participants, and 

they would perform worse on all questions, resulting in them being significantly worse overall. 

For example, Rau (2016) has suggested that multiple presentations must contain relevant and new 

information, while still overlapping sufficiently with the other presentations. Another possibility 

is that participants would just pick one presentation and use i t  exclusively, and perform as though 



 

32 
 

they were participants in that presentation group. This, and possibilities such as participants 

randomly picking a presentation to use on each question, would result in patterns of data where 

the hybrid group appeared to perform at the average of the other two groups. (Of course, there 

may be individual differences, and some participants may achieve maximal performance while 

others are simply confused. These possibilities could also produce a similar pattern of results.) 

Finally, for the experiment 3 questions where we had the hybrid participants describe 

which representation they used, we hypothesized that where the polygon participants performed 

better, using the polygon representation would be significantly predictive of success or using the 

modular representation would be significantly predictive of failure, and vice versa for the 

questions where the modular participants performed better. 

Measures.  We used a variety of measures in our analyses of these data. For the operation 

questions and inverse questions, performance was assessed by whether a numerical answer given was 

correct. For questions identifying whether an element was a generator, and for T/F and A/S/N 

questions responses were multiple choice, and performance was assessed by whether the response was 

the correct option. For inverse formula questions, performance was assessed by whether the 

response was “n − x” for3 the inverse of x and “n − 1” for the inverse of 1, no other answers were 

accepted and no partial credit was given.  

We collected typed explanations on some problems, and attempted to build naïve Bayes 

classifiers (see e.g. Ng and Jordan (2002)) to classify the representation participants in the 

modular and polygon groups were using based on the occurrence of particular words in these 

explanations. The goal was to then use these classifiers to classify the explanations of hybrid 

                                                 
3 This answer is not quite correct – it fails for the case x = 0, as noted below.  However, we accepted them as 
finding the correct answer was quite difficult.  Only one subject gave a fully c o r r e c t  answer that 
a d d r e s s e d  both cases, and we had to exclude this subject’s data anyway as they had prior experience with 
group theory. group 
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group participants, in order to gain insight into their thought processes. We observed that some 

words (e.g. subtract, plus) were sometimes used by modular group participants but very rarely 

used by polygon participants, while other words (e.g. polygon, count, point) were sometimes used 

by polygon participants but very rarely by modular participants. However, many participants 

used none of these words, and classifiers trained to predict group membership based on word use 

were not very sensitive (see explanation word use analyses in results for further discussion), so we 

discarded use of these explanations in favor of the representation use  questions. 

For the representation  use questions, we used two five-item Likert scales (“Not  at all”, “-

”, “Somewhat”, “-”,  “Very much”) that allowed subjects to rate for each representation  to what 

extent they had used it on the previous problem. Results were coded from 0 to 4 based on which 

item they had selected. For our analysis evaluating effects of diagram use (see below), as our 

measure of interaction with the diagram we used whether they had clicked on the diagram at least 

once. 

Analysis.  For experiment 1, we chose to analyze the data via a mixed-effects linear 

regression on the question-by-question scores of the participants, with the fixed effects being 

question type, including the group order (6, 9, or n) where it occurred; presentation, polygon or 

modular; the interaction of those two; the effect of having a high math background, defined as 

algebra II, trigonometry, statistics, or above; and a random effect of subject.  The results presented 

are taken from this analysis. (We did not compute multiple comparisons correction in our analyses 

for experiment 1, we instead validated them in the subsequent experiments. These results must be 

interpreted with this in mind.) 

For experiment 2, we used the same analysis as in experiment 1, except that we added the 

hybrid, and our comparisons were specified a priori in accordance with the above hypotheses. We 
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excluded participants who reported in the background section that they had used modular 

arithmetic or mathematical groups before. 

For experiment 3, we decided to alter our analyses because we were concerned about 

violating the normality assumptions of the standard linear regression, and analyzed the data via a 

planned logistic regression on the question-by-question scores of the participants bootstrapped 

across 10,000 resamples of the participants, with the predictors being as in experiments 1 and 2. 

Bootstrapping provides accurate estimates of uncertainty for logistic regression (Wasserman, 2006; 

Gong, 1986). We used the inclusion of zero in the percentile bootstrap 95% confidence intervals 

for the predictors to test the significance of our results. This analysis for experiment 3 was pre-

registered on the Open Science Framework. (We also retrospectively ran this bootstrapped logistic 

regression on the data from experiments 1 & 2, in order to have a uniform set of results for our 

meta-analysis.) For the hypotheses about the representation-use questions, we used logistic 

regression predicting score on the question by the ratings of representation used. Forty-eight 

participants were excluded for having too much background knowledge. 

To present our results in a more coherent and meaningful format, we performed a meta-

analysis across our three experiments, using the approach for estimating effect sizes described by 

Chinn (2000). We present the results of this analysis here. Including within-paper meta-analyses 

has been suggested as a way to improve the accuracy of conclusions drawn from behavioral science 

research (McShane & Böckenholt, 2017). 

Implementation details.  The tasks were developed using the jsPsych framework (de 

Leeuw, 2015) with a custom plugin to integrate the interactive polygon diagrams where necessary, 

hosted on Stanford’s servers, and embedded in the Mechanical Turk page. In order to ensure that 

participants received the correct version of the experiment, we recorded each page of instructions 
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they were given and each question they were asked along with their response, and verified that 

these matched the intended condition. We made small alterations and typo fixes between 

experiments that we did not think would affect the results. (The only significant change was that 

in experiment 1 we included for half the participants in each condition a prompt after each 

section to reflect on the results. This did not have any significant effect, so we collapsed across it 

in our experiment 1 analyses, and removed i t from experiments 2 and 3.) The final versions of the 

experiments can be compared on our GitHub. 

Results 

 
 

Figure 4. Results aggregated across group orders and experiments 2 & 3 (Exp. 1 had no hybrid 
condition, so we omitted i t  from this graph). Highlighted results are the main findings relevant to 
our hypothesis, stars mark comparisons where the meta-analysis 95% confidence interval did not 
overlap zero (statistics include experiment 1 data for polygon vs. modular comparisons) 

 

Description:  
The above bar graph shows the results of experiments 2 and 3 by question type (i.e., Operation, 
Inverse of Non-zero, Inverse of Zero, Identifying Gen., Identifying Non-gen, Inverse Formula, 
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Generator T/F, Generator A/S/N) and across conditions (i.e., polygon, modular, and hybrid). 
Results are presented as mean of percent correct. 
 
Operation Polygon: Approximately 92% 

Operation Modular: Approximately 93% 

Operation Hybrid: Approximately 91% 

 

Inverse of Non-zero Polygon: Approximately 78% 

Inverse of Non-zero Modular: Approximately 85% 

Inverse of Non-zero Hybrid: Approximately 80% 

 

Inverse of Zero Polygon: Approximately 85% 

Inverse of Zero Modular: Approximately 25% 

Inverse of Zero Hybrid: Approximately 70% 

 

Identifying Gen. Polygon: Approximately 52% 

Identifying Gen. Modular: Approximately 35% 

Identifying Gen. Hybrid: Approximately 48% 

 

Identifying Non-gen Polygon: Approximately 72% 

Identifying Non-gen Modular: Approximately 70% 

Identifying Non-gen Hybrid: Approximately 71% 

 

Inverse Formula Polygon: Approximately 32% 

Inverse Formula Modular: Approximately 37% 

Inverse Formula Hybrid: Approximately 36% 

 

Generator T/F Polygon: Approximately 55% 

Generator T/F Modular: Approximately 57% 

Generator T/F Hybrid: Approximately 56% 

 

Generator A/S/N Polygon: Approximately 42% 

Generator A/S/N Modular: Approximately 40% 



 

37 
 

Generator A/S/N Hybrid: Approximately 39% 
 

Overall, accuracy was quite high on the basic operation questions and declined on the 

questions about inverses and generators. Performance was similar across the order 6 and order 9 

groups, but declined substantially in the order n group. This suggests that, while most 

participants were able to transfer their procedures for solving the questions to a different group 

order, only some participants were able to reason about the general case or express formal 

statements about generic cyclic groups. 

The participants in the polygon and modular groups differed significantly on a number of 

question types, with the polygon group consistently performing better at identifying elements 

that were generators and finding the inverse of zero, while the modular group performed 

significantly better at finding the inverse of non-zero elements. See Figure 4 for a summary of the 

results aggregated across experiments and group orders. Note that after performing some post hoc 

analyses we noticed that these aggregated results may understate the hybrid group’s final level of 

understanding relative to the other two groups, because the hybrid group showed an improvement 

on a number of aspects of understanding between the order 6 and order 9 questions.  (See Figure 6 

for the aggregated results split across group orders showing this pattern of improvement, and the 

Hierarchical modeling section for further discussion of this difference.) For the sake of brevity, we 

present below only the results from our meta-analysis of the logistic regressions performed on 

each experiment. 

Main Results 

In this section we present the result of our meta-analysis of the logistic regressions 

performed on the data from all the experiments. We report significance based on the inclusion of 

zero in the bootstrap percentile 95% confidence intervals for the predictors (Wasserman,  2006; 
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Gong, 1986), which provides robust results even when performance is near ceiling or floor (as in 

the case on some portions of our experiment). We estimated effect sizes using the approach 

described by Chinn (2000). In this approach, performance is thought to depend on a normally 

distributed random variable, and the effect of a manipulation is viewed as shifting the mean 

upward (for a positive effect size) or downward (for a negative effect size) by the indicated units 

of the distribution’s standard deviation across the population of participants. 

Operation. Despite learning different methods for performing the group operation, the 

experimental groups do not differ substantially in their ability to perform it, although the hybrid 

group appears to lag a little at first. Specifically, we estimate any effect of the polygon 

presentation on the ability to perform the group operation to be negligible (order 6: log OR 

(Odds Ratio) = 0.01, effect size = 0.01; order 9: log OR = 0.01, effect size = 0.01). We estimate 

any effect of the hybrid presentation on the ability to perform the group operation to be small or 

negligible (order 6: log OR = -0.40, effect size = -0.22; order 9: log OR = -0.26, effect size = -

0.14). 

Inverses. Overall, it seems that the modular presentation is generally beneficial for 

finding inverses, except in the case of zero, where the polygon presentation participants perform 

much better. (See discussion for a possible explanation of this result.) 

Specifically, we estimated the positive effect of the polygon condition on inverse of zero 

questions to be large for both group orders, although the effect is smaller for order 9, consistent 

with some learning in the modular group (order 6: log OR = 3.01, effect size = 1.66; order 9: log 

OR = 2.56, effect size = 1.41). We estimated the negative effect of the polygon condition on 

inverse of non-zero questions to be small (order 6: log OR = -0.53, effect size = -0.29; order 9: 

log OR = -0.81, effect size = -0.45). We estimated the positive effect of the hybrid condition on 
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inverse of zero questions to be large for both group orders, although it is not as large as that of the 

polygon condition, and the effect is smaller for order 9, consistent with some learning in the 

modular group (order 6: log OR = 1.80, effect size = -0.99; order 9: log OR = 1.40, effect size = 

-0.77). We estimated the negative effect of the hybrid condition on inverse of non-zero questions 

to be small, and negligible after further practice in the order 9 group (order 6: log OR = -0.58, 

effect size= -0.32; order 9: log OR = -0.16, effect size = -0.09). 

Generators.  Overall, it seems that the polygon presentation is beneficial for 

identifying generators, and the hybrid presentation seems to be similarly beneficial for 

identifying generators in the order 9 group, once the participants have had some practice. 

Specifically, we estimated the positive effect of the polygon condition on identifying 

generators to be small (order 6: log OR = 0.68, effect size = 0.38; order 9: log OR = 0.80, effect 

size = 0.44). We estimated the effect of the polygon condition on identifying non-generators to be 

negligible in group of order 6, but trending toward a small positive effect in the group of order 9 

(order 6: log OR = 0.07, effect size = 0.04; order 9: log OR = 0.36, effect size = 0.20). We 

estimated the effect of the hybrid condition on identifying non-generators to be negligible (order 

6: log OR = 0.07, effect size = 0.04; order 9: log OR = -0.01, effect size = -0.01). We estimated 

the positive effect of the hybrid condition on identifying generators to be negligible in the order 6 

group, but increasing in the order 9 group, (order 6: log OR = 0.19, effect size =0.10; order 9: 

log OR = 0.65, effect size =.36). 

Questions assessing reasoning about the general case.   None of the presentations 

seem particularly beneficial for discovering formulas for the inverse, or for answering T/F or 

A/S/N questions about generators; performance was quite low on these questions, especially the 

T/F and A/S/N. 



 

40 
 

Specifically, we estimated the effect of the polygon condition on the inverse formula 

questions to be negligible (log OR = -0.16, effect size = -0.09), and similarly for the effect of the 

hybrid condition on the inverse formula questions (log OR = -0.04, effect size = -0.02). We 

estimated that any effect of the polygon condition on answering True/False questions about 

generators is negligible (log OR = -0.14, effect size =0.08). We estimated that any effect of the 

polygon condition on answering Always/Sometimes/Never questions about generators is 

negligible (log OR = 0.17, effect size = 0.09). We estimated the effect of the hybrid condition on 

answering True/False questions about generators to be negligible (log OR = -0.05, effect size = -

0.03). We estimated the effect of the hybrid condition on answering Always/Sometimes/Never 

questions about generators to be negligible (log OR = -0.11, effect size = -0.06). 

Other Analyses 

We conducted several other analyses to further elucidate the differences in performance 

between the groups, and the cognitive factors underlying them. 

Diagram use. We hypothesized that the polygon group’s superior performance on 

identifying generators might be due to the ability  to use the spatial structure of the polygon to 

more easily visualize the elements generated by an element (see discussion). One possible prediction 

of this hypothesis would be that within the polygon group, interaction with the diagram might 

be predictive of success on these questions. (Of course, we could only record the interactions with 

the mouse, while many participants may have just gazed or pointed at the diagram to use i t  in 

their thinking.  Furthermore, the use of the diagram may be confounded with overall engagement.  

Our results must be interpreted with these qualifications in mind.) 

We performed a mixed-model logistic regression on data from the polygon and hybrid 

participants from Experiments 2 and 3, predicting correct answers by whether or not they used 
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the diagram (and a random effect of subject). We found that using the diagram was significantly 

predictive of success on the questions (Exp. 2: b = 1.90, z = 2.76, p = 0.006; Exp. 3: b = 2.24, z = 

5.12, p < 0.001). Furthermore, this effect was present even when controlling for reaction time 

(Exp. 2: b = 1.62, z = 2.26, p = 0.024; Exp. 3: b = 1.64, z = 3.51, p < 0.001). This might suggest 

that engagement alone wasn’t the driving factor. This effect was significant or trending within 

the polygon and hybrid conditions individually, suggesting that both benefitted. 

Using analogous mixed-model logistic regressions across the full data from the hybrid and 

polygon groups, we found that on all questions in the experiment (not just generator questions) 

that using the diagram was significantly predictive of success (Exp. 2: b = 1.26, z = 6.93, p < 

0.001; Exp. 3: b = 1.19, z = 10.28, p < 0.001), even when controlling for reaction time (Exp. 2: 

b = 1.42, z = 7.53, p < 0.001; Exp. 3: b = 1.25, z = 10.71, p < 0.001). However, the estimated 

effect sizes were smaller than for the generator questions. This suggests that the diagram may have 

been especially helpful on these generator questions, as we hypothesized. 

Explanation word-use analyses. In experiment 2, we attempted to use the explanations 

of answers from the modular and polygon groups to build a naive Bayes model (see e.g. (Ng & 

Jordan, 2002)) of explanations in order to classify hybrid group explanations to investigate their 

thought processes. Unfortunately, although some words were highly specific to condition, the 

classifiers had low sensitivity even on the modular and polygon group explanations (0.24 for 

modular and 0.31 for polygon). This is likely due to the design of the experiment – as noted 

above we attempted to homogenize language as much as possible between groups so that we could 

ensure that differences we observed were due to the differences in the presentations rather than 

differences in wording. This meant that participants in all conditions generally used similar 
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language to describe their thought processes. Because of this we discarded this approach in 

experiment 3 in favor of explicitly asking about representation use  at the end of the experiment. 

Representation-use question results.  For the experiment 3 representation-use questions, 

we performed logistic regressions predicting score on each representation-use question by the 

ratings ("Not at all" - "Very much", 5 point Likert scale) of representation used. We found that 

neither modular nor polygon rating was significantly predictive of success on the inverse of zero 

questions (bmod  = −0.02, z = −0.15, p = 0.88; bpoly  = 0.25, z = 1.37, p = 0.17). We suspect 

this may have been due in part to the fact that this was the third presentation of an inverse of zero 

question, so participants may have simply recalled the answer. Performance was very high in the 

hybrid group overall on this question, the majority (71%) of the participants got the question 

right in the representation-use section, so it had the only positive intercept of any of the 

representation-use regressions. 

Intriguingly, we found that both modular and polygon rating were significantly 

predictive of success on inverse of non-zero questions (bmod  = 1.09, z = 2.95, p = 0.003; bpoly  = 

1.11, z = 2.94, p = 0.003). This, together with the previous finding, may suggest some integration 

occurring in the hybrid condition, such that the advantages of each representation a r e  to some 

extent shared even when the other representation is used. 
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(a) Inverse of non-zero (b) Identifying generators 

 
Figure 5. Experiment 3 – representation-use responses on inverse questions (counts of participants 
giving each rating, split by whether answer was correct) 

 

Description: 
 

Figure 5a shows representation-use responses on inverse of non-zero questions, divided by correct 
and incorrect. Results are presented in a 4 x 4 matrix for correct and a 4 x 4 matrix for incorrect. 
The x-axis of the matrix represents polygon ratings 0-4 and the y-axis represents modular ratings 
0-4. For the “Correct” matrix the numbers read, starting from the top left of the matrix (i.e., 
modular rating:4;  polygon rating: 0), reading left to right: 25, 2, 1, 1, blank; Proceeding to modular 
rating 3 the results are blank, 2, blank, blank, blank. Proceeding to modular rating 2 the results are 
1, blank, 2, 1, 1. Proceeding to modular rating 1, the results are blank, blank, blank, 1, 1. 
Proceeding to modular rating 0 the results are blank, blank, 1, blank, 24. For the “Incorrect” matrix 
the numbers read, starting from the top left of the matrix, reading left to right: 5, blank, blank, 
blank, blank. Proceeding to modular rating 3 the results are blank, blank, 1, blank, blank. 
Proceeding to modular rating 2 the results are: blank, blank, 3, blank, blank. Proceeding to modular 
rating 1 the results are: blank, 2, 1, blank, blank. Proceeding to modular rating 0 the results are: 4, 
blank, 1, blank, 4.  

 

Figure 5b shows representation-use responses on identifying generators questions, divided by 
correct and incorrect. Results are presented in a 4 x 4 matrix for correct and a 4 x 4 matrix for 
incorrect. The x-axis of the matrix represents polygon ratings 0-4 and the y-axis represents 
modular ratings 0-4. For the “Correct” matrix the numbers read, starting from the top left of the 
matrix (i.e., modular rating: 4;  polygon rating: 0), reading left to right: 5, 1, blank, blank, blank. 
Proceeding to modular rating 3 the results are blank, 1, 1, blank, blank. Proceeding to modular 
rating 2 the results are 1, blank, 1, 2, blank. Proceeding to modular rating 1, the results are blank, 2, 
1, 3, blank. Proceeding to modular rating 0 the results are 2, 1, blank, blank, 20. For the “Incorrect” 
matrix the numbers read, starting from the top left of the matrix, reading left to right: 13, blank, 
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blank, blank, blank. Proceeding to modular rating 3 the results are blank, blank, 1, blank, blank. 
Proceeding to modular rating 2 the results are: 4, 1, 4, blank, blank. Proceeding to modular rating 1 
the results are: blank, 2, blank, blank, blank. Proceeding to modular rating 0 the results are: 11, 
blank, 1, 1, 5.  
 

We found that participants polygon rating, but not modular, was significantly predictive 

of success on identifying generators (bmod  = 0.19, z = 0.95, p = 0.34; bpoly  = 0.75, z = 3.86, p 

< 0.001). This corroborates our other data supporting the superiority of the polygon 

representation for these question, but suggests (as much of our earlier data did) that the 

integration in the hybrid condition is far from complete. We found that neither rating was 

significantly predictive of success on the generator True/False questions (bmod  = 0.19, z = 1.28, p 

= 0.20; bpoly  = 0.31, z = 1.38, p = 0.17). This is unsurprising, since we did not observe any 

significant differences between the polygon and modular groups on these questions in the third 

experiment. 

Hierarchical mo d e l ing  of hybrid participants 
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Figure 6. Results aggregated across Experiments 2 & 3 (Exp. 1 had no hybrid condition, so we 
omitted i t  from this graph). This plot shows how the hybrid group participants, while not 
initially achieving best-of-both-worlds performance, appear to be much closer to achieving the 
benefits of both presentations later in the experiment. 

 

Description: This chart shows the Order 6 and Order 9 results by question type (i.e., Inverse of 
Non-zero, Inverse of Zero, Identifying Gen.) and across condition (i.e., polygon, modular, hybrid). 
Results are presented as mean of percent correct. 

 

Order 6 Results: 
Inverse of Non-zero Polygon: Approximately 80% 

Inverse of Non-zero Modular: Approximately 85% 

Inverse of Non-zero Hybrid: Approximately 80% 

 

Inverse of Zero Polygon: Approximately 74% 

Inverse of Zero Modular: Approximately 18% 

Inverse of Zero Hybrid: Approximately 50% 

 

Identifying Gen. Polygon: Approximately 45% 

Identifying Gen. Modular: Approximately 30% 

Identifying Gen. Hybrid: Approximately 35% 

 

Order 9 Results: 
Inverse of Non-zero Polygon: Approximately 73% 

Inverse of Non-zero Modular: Approximately 80% 

Inverse of Non-zero Hybrid: Approximately 75% 

 

Inverse of Zero Polygon: Approximately 85% 

Inverse of Zero Modular: Approximately 43% 

Inverse of Zero Hybrid: Approximately 75% 

 

Identifying Gen. Polygon: Approximately 52% 

Identifying Gen. Modular: Approximately 42% 
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Identifying Gen. Hybrid: Approximately 50% 
 

Although we found that the hybrid group did perform better than either the polygon or 

modular group individually, it did not seem to achieve truly best-of-both-worlds performance. In 

this section, we explore alternative ways of accounting for this finding, using a post-hoc, 

hierarchical modeling (Gelman, 2006) approach. One explanation for the pattern of results might 

be that some participants were just picking one representation and using it consistently, while 

others were really receiving the benefits of both and performing optimally (at the max level of 

the two).  We attempted to model this with a hierarchical model that assumed that the data were 

generated by the following process: 

 
1. With probability θ, the subject would benefit from both presentations, and would 

perform optimally in the sense that their data would be best fit by assuming that on each 

question they picked the optimal representation for that question (or equivalently, that 

their regression coefficients were the element-wise maximum of the regression coefficients 

of the two other groups). 

2. If the participants did not benefit from both presentations (probability 1 − θ), they 

would pick the polygon representation with probability φ, and the modular 

representation with probability 1 − φ, and use i t  for the entire experiment, thus their 

data would be best fit by the coefficients for the respective group. 
 

We used maximum likelihood to fit this model to the experiment 2 data, and estimated 

that θ = 0.41, φ = 0.49, so the data are best fit under this model by assuming that about 40% the 

participants are benefitting from both representations, and those that aren’t are choosing the 

modular representation and polygon almost equally.  We used the Bayesian Information Criterion 

(BIC; Schwarz, 1978) to compare this model (BI C = 1653.1) to models where all participants 

chose modular (BI C = 1829.0), all chose polygon (BI C = 1720.5), where no participants 
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benefitted from both i.e. a fixed θ = 0 and fit φ = 0.56 (BI C = 1681.2), and a model where all 

participants benefitted from both i.e. θ = 1.0 (BI C = 1689.9). 

The BIC comparisons (all differences > 36) provide “very strong” (Kass & Raftery, 

1995) evidence that the full model is significantly better than any of these comparison models. To 

get an intuition for how strong the evidence is, the difference in log-likelihood is 15.97 between 

the full model and the next best model, meaning that the data are e15.97 ≈ 9 million times as 

likely to have occurred under the full model (while this estimate does not include the 

compensation for the extra parameter that is taken into account in the BIC, the effect of the extra 

parameter is relatively small, and is swamped by the difference in log-likelihood). However, there 

are many other possible ways people could use the two representations beyond what we have 

modeled here (such as picking arbitrarily on each question), so further investigation is needed. 

Similarly, with the experiment 3 data we estimated that θ = 0.39, φ = 0.56, so the data are 

best fit under this model by assuming that a little  less than 40% of the participants are 

integrating, and those that aren’t are choosing the polygon representation slightly more frequently 

than the modular. We used the BIC to compare this model (BI C = 3525.9) to models where all 

participants chose modular (BI C = 3826.5), all chose polygon (BI C = 3734.6), where no 

participants integrated, i.e. a fixed θ = 0 and fit φ = 0.56 (BI C = 3584.8), and a model where all 

participants integrated, i.e. θ = 1.0 (BI C = 3700.2). The comparisons again provide very strong 

evidence that the full model is significantly better than any of these comparison models. (Again, 

for intuition, the data are e31.74 ≈ 6.1 · 1013 times as likely under the full model as the next best 

model, again swamping the penalty for extra parameters included in the BIC.) However, as above 

there are other possible ways that the participants could use both representations, so there remain 
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questions to be answered.  Still, the consistent estimates of about 40% integration suggest that the 

hybrid group is increasing the understanding of some participants. 

After running these analyses, we noticed that the hybrid group seems to be achieving much 

closer to best of both worlds performance in the group of order 9 (see Figure 6). This could be 

due to the fact that it takes some practice and/or feedback for the hybrid group to achieve the 

benefits of both presentations, or it could be because they are transferring more successfully than 

the participants in the other group. Either way, this effect might be crucial for evaluating the 

effectiveness of the hybrid presentation. 

Because the change in performance between group orders for the hybrid participants was 

observed post-hoc, it is important to assess i t  carefully – and in particular to make sure that the 

effect is sufficiently strong to reduce the concern that i t  is simply one of many possible patterns 

that might have arisen by chance. Accordingly, we ran an additional post-hoc analysis fitting the 

models described above on the subsets of the data from order 6 and order 9 separately to assess the 

strength of the evidence for greater integration later on. In accordance with Fig. 6, in experiment 

2 we estimated the proportion integrating in the order 6 section to be θ6 = 0.30, and the 

proportion integrating by the order 9 section to be θ9 = 0.58. 

If we compare this model with the best model using a single set of parameters for both 

group orders, we find the new model improves substantially (BI C = 1438.8, very strong evidence 

that the model fitting order 6 and order 9 separately is better; for intuition the data are e118.6 ≈ 

3.4 · 1051 times as likely under this model, which entirely dominates the penalty for the extra 

parameters in the BIC). In experiment 3, we estimated θ6 = 0.22, whereas θ9 = 0.50. As above, 

this substantially improves on the earlier model (BI C = 3317.6, very strong evidence that this 

model is better; for intuition the data are e118.0 ≈ 1.8 · 1051 times as likely under this model as 
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under the full model, which entirely dominates the penalty for the extra parameters in the BIC). 

This corroborates the idea that integration may have increased as the experiment went on, with 

only 20-30% of participants in the hybrid group appearing to acquire the benefits of both 

presentations early on, but 50-60% doing so by the time they reached the order 9 material. 

 
Discussion 

Our results address the issues with which we began this paper. We have shown that 

different presentations of a concept can have effects on learning of later concepts. In particular, we 

have shown that relating a concept to different systems of reasoning can differentially support 

different subsequent types of understanding. Finally, we have shown that combining presentations 

can be beneficial, in that i t  can allow at least some learners to exploit the advantages of both. 

These findings extend the consideration of the effects of different presentations beyond 

previous work in the domain of elementary group theory. Our work (consistent with some 

previous studies in other domains of mathematics learning) supports the following two messages: 

Rather than focusing on a single learning outcome, it is important to consider multiple aspects of 

understanding when assessing a presentation. Rather than focusing on concrete vs. abstract, it is 

important to keep in mind that presentations which connect to different underlying knowledge 

structures may support different types of understanding. Below, we discuss these issues in more 

detail. 

Polygon vs. Modular Presentations 

Despite the fact that the participants in the polygon and modular conditions did not 

significantly differ at learning the initial operation, they did differ in their ability to understand 

the subsequent concepts built upon it.  Furthermore, one presentation was not generally “better” 

than the other; they both had strengths and weaknesses.  The polygon group performed better at 
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identifying generators and finding the inverse of zero; though the effect was somewhat small, the 

modular group performed significantly better at finding the inverse of non-zero elements. Thus 

the presentations of earlier material had differential effects upon learning of later concepts. 

We now consider in more detail how performance with the different presentations measures 

up to the criteria we proposed in the introduction.  Both presentations allowed students to apply 

the directly-instructed concepts correctly in the group of order 6, as well as to transfer these 

concepts to the group of order 9 with little loss. Furthermore, each presentation allowed students 

to answer questions about further concepts that built upon the base concept, and to transfer these 

concepts to the group of order 9. Each presentation had advantages and disadvantages for learning 

different subsequent concepts. When transferring these concepts to the group of order 9, 

performance increased on some types of questions and on others it decreased, but the overall 

advantages of each presentation remained about the same. 

However, neither presentation performed particularly well at allowing participants to 

generalize about cyclic groups or allowing them to express (or evaluate the truth of) 

generalizations using formal mathematical expressions and language. Both groups had fairly low 

success on these portions of the experiment, and there did not appear to be many differences 

between the groups on these questions. 

These heterogeneous results support our claim that i t  is important to assess different types 

of understanding when evaluating a presentation. This continues a long trail of research showing 

that understanding is complex and nuanced rather than simple and monotonic (Greeno & Riley, 

1987; Bisanz & LeFevre, 1992; Nokes & Ohlsson, 2005). Most saliently, our results imply that the 

results of Kaminski et al. (2008) (and other similar work) should be interpreted with caution – 

while their transfer measure showed benefits from an abstract presentation, there are many other 
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learning goals in mathematics education which may be better served by different presentations. 

Our results show that there may not always be a single presentation that is uniformly best. 

Process differences underlying the performance differences. We have some 

hypotheses about the process differences that may underlie the pattern of results we observed, 

based on responses to problems where we asked the participants to explain their answers, and our 

post-hoc analyses of things like explicit use of the diagram: 

Inverses: The modular group performed better at finding the inverses of elements other 

than zero, while the polygon group performed better at finding the inverse of zero. One possible 

explanation is that the modular presentation cued the participants to recognize an algorithm for 

finding most of the inverses: simply subtract the element from the group order. For example, 

under +6, the inverse of 2 is 4, and 6 − 2 = 4. We expect that the modular group participants 

would be more likely to recognize this relationship, since they are already thinking arithmetically 

when computing the group operation.  By contrast, the polygon participants may have been less 

likely to infer this algorithm, using instead the less reliable strategy of counting around to 0. We 

hypothesize that the modular group outperformed the polygon group on computing the inverses of 

non-zero elements because they were more likely to use the more efficient and accurate subtraction 

strategy. 

Why would the modular group participants then do worse at the inverse of zero questions?  

Because this is the only case where the subtraction algorithm fails. The inverse of 0 under the 

operations we have defined is 0, but the subtraction algorithm gives the group order (which is not 

even an element of the group). A large majority (> 75% in all experiments and group orders) of 

the incorrect responses to the inverse of zero questions were the group order. (Note that this means 

that if we consider these answers to be correct, this particular advantage for the polygon group 
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would go away, but this would reflect a different interpretation of what the elements of a cyclic 

group are.) It is interesting that this result is robust even after participants receive feedback on 

this question in the order 6 group explaining the correct answer; about half the participants who 

got the inverse of zero question wrong in the order 6 group persisted in their error in the order 9 

group. This may suggest that the effect was sufficiently strong that one piece of feedback was 

insufficient to overcome i t , or that some aspect of the intervening experience (such as using the 

subtraction algorithm on inverse of non-zero questions) may be reinforcing the error. 

Generators: The polygon group performed better at identifying elements that are 

generators. We hypothesize that this is due to a spatial structure to the generator questions in the 

polygon case which may assist in solving them. For example, consider evaluating whether 5 is a 

generator on the nonagon. Adding 5 to i tself repeatedly, we get the sequence 5 → 1 → 6 → 2 

→ · · ·. I t  might be more clear to someone seeing the polygon how precisely this sequence would 

fill in the gaps to generate all the numbers. This might even become apparent to some participants 

without stepping through all of the cases; after a few steps the participant might observe that the 

pattern covers successive items on every other step (5, 6, ... on odd steps, 1, 2, ... on even steps). 

This hypothesis is corroborated by our post-hoc analysis demonstrating that diagram use was 

predictive of success on these questions (more so than in the experiment overall). 

Hybrid Group 

The results of our meta-analysis suggest that by the time they reached the order 9 group, 

the hybrid group as a whole performed at a level that approaches the hoped-for “best of both 

worlds” performance. However, they did not all appear to be achieving the full advantages of 

each presentation, especially initially. Our hierarchical modeling results suggest that this 

imperfect performance may be explained by some individual variation, with some participants 
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picking just one representation, whi le  others achieved the benefits of both. Encouragingly, it also 

suggests that the number of participants who achieved the benefits of both presentations was 

increasing quite substantially over time (from 20-30% in the order 6 portion of the experiment up 

to 50-60% in the order 9 portion). Thus overall, the results suggest that given sufficient practice 

with i t , the hybrid presentation might be beneficial for most participants. 

Why might the hybrid presentation be beneficial, and why might these benefits emerge 

more slowly than in the single presentation experimental groups? i t  has been suggested in previous 

research on multiple representations that, in addition to benefits, there are costs associated with the 

additional cognitive load of understanding multiple sources of input (Ainsworth, 2006), 

especially in the initial  learning process when students must both learn from and about the 

representations used (Rau, 2016). Another perspective on this is that the benefits of the hybrid 

group come from a slower process of integration or coordination (Schwartz & Goldstone, 2015) of 

the different ways of thinking about the problem. There are a number of possible forms of 

integration that might occur: 

• Learning which of the representations is best used for which types of problems. 

• Transferring concepts learned using one representation to  the other. 

• Creating a unified single representation that incorporates aspects and benefits of the 

individual presentations, a s  well as the relationships between them. 

These possibilities are neither exhaustive nor mutually exclusive. We find it likely that 

the unified representation could be beneficial in at least some circumstances, and could possibly 

give even better than best-of-both-worlds performance. (For example, consider for the 

identifying generator questions combining the spatial intuitions of the polygon presentation with 

the computational reliability of the modular presentation.) Thus we attempted to encourage 
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unification of the representations through the question where we asked participants to reflect on 

the relationship between the different ways of thinking about the operation. However, our data do 

not provide the ability to fully dissociate which types of integration were occurring for our 

participants. 

Furthermore, in practice, there may be some heterogeneity in  the type of integration that 

occurs even within one experiment, depending on the type of representations being integrated; 

consider the pattern of effects of representation use  on performance we observed in the 

representation-use questions. On some question types, such as finding the inverse of non-zero 

elements, i t  appears that most hybrid group participants have transferred or unified their 

understanding between presentations sufficiently so that using either representation is equally 

beneficial. On other questions, such as identifying generators, one representation is still much 

more beneficial than the other. This may reflect the underlying nature of the knowledge we think 

is being used for each of these scenarios. We hypothesized above that the modular formulation cues 

a process for finding the inverse of non-zero elements based on subtraction, which might be easily 

transferable between representations.  However, we posited that the advantages of the polygon 

group on the identifying generator questions were based on a visuospatial reasoning process, which 

could not as easily be transferred to the modular representation. 

Along these lines, we note that between the polygon and modular presentation, the 

polygon presentation seems overall more advantageous. I t  is possible that this is due to the hybrid 

elements inherent in the polygon presentation. By including both the visuospatial presentation 

and numbers as symbols, it may cue participants to recognize some of the arithmetical patterns 

that are more explicitly explained in the modular presentation. This might explain why the 
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polygon presentation group did not perform too much worse than the modular presentation group 

even when thinking in an arithmetic way seemed more useful. 

It remains a question for future research how the choice of presentations affects what type 

of integration occurs. Hopefully exploring this would shed light on how the hybrid presentation 

could be altered to encourage more uniform improvement across all question types and 

participants. Nevertheless, our results suggest that teaching multiple presentations may be 

beneficial to students’ overall understanding. 

“Hybrid” presentations in previous work.  The reader might notice that some of the 

experimental groups in the work of Kaminski and colleagues could be viewed as having hybrid-

like elements. Specifically, some groups of participants saw multiple distinct presentations (e.g. 

both fractional cups of liquid and fractional slices of pizza), and had their attention implicitly or 

explicitly drawn to the connections between them. We hypothesize that a hybrid presentation 

must be constructed from distinct presentations with distinct advantages to be beneficial. That is, 

the benefits of distinct presentations will generally be increased when they support complementary 

aspects of understanding. This idea is rooted in the literature on multiple representations 

(Ainsworth, 2006). The different concrete presentations in the work of Kaminski et al., though 

different in superficial details, can be seen as drawing on the same numerical intuitions that we 

argue are unhelpful when participants are confronted with one of the non-numeric presentations. 

We would expect that by combining one of the numeric and one of the non-numeric presentations 

used by Kaminski and colleagues, one might be able to achieve better transfer performance more 

broadly (for example, seeing the “generic” presentation might allow participants to transfer to 

Kaminski and colleagues’ original transfer task, while seeing one of the “concrete” presentations 
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might give better ability to generalize to a new group order or a new concrete instantiation that 

shares the numerical structure of the taught concrete presentations). 

Beyond Concrete & Abstract 

Our results highlight the limitations of organizing presentations into a single concrete-

abstract continuum, as they have been in previous work. While Belenky and Schalk (2014) noted 

that there are concrete details that can be added to a presentation that are irrelevant and do not 

improve understanding or transfer, and De Bock et al. (2011); Fyfe et al. (2014) and others 

pointed out that concrete presentations could be advantageous a s  well, we suggest that the most 

important features may be how presentations connect to previous types of understanding. Neither 

of our presentations was clearly more concrete than the other, instead they related the cyclic group 

to different ways of thinking.  The polygon presentation related the group operation to a 

visuospatial manipulation and counting, while the modular presentation related it more directly 

to arithmetic operations that the subjects knew. The connections made to prior knowledge in both 

presentations likely make the group operation easier for students to understand, but they do not 

do so in the same way. Furthermore, this is not just a superficial difference – our results suggest 

that these different presentations altered the way participants were able to learn related concepts 

later, and we have argued that this was due to specific connections that were supported by the 

different presentations. We suggest that future research should move beyond concrete and abstract 

to a fuller evaluation of the relationships to other types of understanding given by a presentation. 

Formalization & Generalization 

None of the presentations seemed to encourage formal or general understanding particularly 

well, as evidenced by the low overall performance on the order n questions. For example, despite 

the fact that performance on the inverse questions was around 75% on average, only about one 
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third of the participants were able to articulate the general formula for computing an inverse in a 

cyclic group of unspecified order n. This may reflect the fact that this study was too short for 

participants understanding of specific groups to develop into a more general understanding, or it 

may be because the processes of reasoning explicitly or formally and the processes of reasoning 

implicitly and/or procedurally are not perfectly linked, and some effort is needed to go from one 

to the other (e.g. Anderson, 1996; Reber, 1967; Davidson, Eng, & Barner 2012). This may also 

explain why the advantages of the presentations didn’t transfer to the order n questions – it may 

be difficult for many participants without formal mathematical training to give an explicit 

formula using the group order as a variable even if they can apply the subtraction procedure to 

find the inverse of an element in a cyclic group of arbitrary order n. Similarly, i t  may be difficult 

to use spatial intuitions that support detecting that a particular element is a generator on a 

polygon of specific size when thinking about all possible polygons. 

Indeed, the process of learning to make the mapping between procedures that generalize 

and a formal understanding of the generalization i t self may be a skill that is generally acquired 

through experience working with and evaluating formal mathematical reasoning. Our subjects 

general failure to formalize is reminiscent of the results of Burger and Shaughnessy (1986), 

showing that (in their small sample) nobody without college mathematical training was able to 

reason in a formal way about geometry, and the results of Hazzan (1999), showing that even if 

students can state theorems, they may not be able to draw upon them when reasoning. This relates 

to the idea that representations that support certain kinds of reasoning must be learned (Greeno & 

Riley, 1987), and relates more generally to the idea that students are often failing to understand 

the broader structures underlying the specific examples they work with (Richland et al., 2012). 
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Because of the complexity of these issues, it is difficult to say how our presentations 

impact generalization and formalization performance. I t  is very likely that people who are more 

experienced with mathematics would perform better at formalization, and that more explicit 

practice with formalizing concepts within the experiment would lead to better performance on 

these types of questions. Once these factors are accounted for, are there other aspects of the 

presentations that could be manipulated to encourage formalization? For example, attaching labels 

to concepts like the group order might better prepare participants to think of them as variables (as 

in the generic order n group case). Perhaps using more formulas in the presentation of the 

operation, rather than the procedural description we gave, would help participants to produce 

formulas on their own later on. There is already some work addressing formalization and ways to 

encourage it, (e.g. Nathan, 2012). However, there is ample room for further development, and for 

research that examines how formalization interacts with presentations. 

One question such research will have to confront more closely is the relationship between 

formalization and explicit general understanding. Although in this study these factors were 

confounded in many of the order n questions, it is possible to disentangle them. For example, we 

might ask participants to formalize their understanding of inverses in the cyclic group of order 6, 

and then later ask participants to give an explanation in words of how to find inverses in a general 

cyclic group of arbitrary order, before asking them to unite generalization and formalization in a 

single formula for the inverse of an element in an arbitrary cyclic group. Indeed, Nathan (2012) 

suggests that plain language descriptions may be very beneficial in encouraging understanding of 

more formal representations of an idea. Further research should explore the relationship between 

these different types of formalization, and how presentations may affect each of them. 
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Time & Practice 

As alluded to above, there is at least one other important pedagogical element lacking in 

this study (and the work by Kaminski and others): time and repeated practice over days or 

months. It has been suggested that across many domains, the brain relies on complementary 

learning systems which learn at different rates, and in particular that cortex must assimilate 

knowledge slowly to avoid catastrophic interference (Kumaran, Hassabis, & McClelland, 2016). 

Because the progression from concept introduction to final assessment of understanding occurs in 

about an hour in our experiment, we may be short-changing the presentations by not allowing the 

participants enough practice to develop a sufficiently elaborated understanding. Indeed the hybrid 

group seemed to achieve much better performance by the order 9 section of the experiment than 

earlier on, and it’s possible that the hybrid group would continue to improve faster than the other 

groups with further practice. In an abstract algebra class, these concepts would probably be 

encountered repeatedly across the course of a semester, and the students would only have a thorough 

understanding of them at the end. (In addition, students taking such a course would have greater 

mathematical literacy and a set of relevant examples to build upon, which might accelerate 

learning from the beginning.) 

It is interesting to ask whether simple practice with a concept can lead to formalization, 

and if so, under what circumstances. What sort of introspection about the processes they are 

performing is necessary for this insight to arise? Do students acquire these insights suddenly after 

practicing for a while, or does formal understanding  emerge by a more gradual learning process, 

moving from an inarticuable intuition  to an understanding that can be explained in words and 

finally to a formal expression of an idea? It has been suggested previously that this sort of graded 

transition from implicit to conscious knowledge can occur (Cleeremans & Jiménez, 2002). How 
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does this transition depend on prior mathematical experience? How does i t  depend on the 

presentation of the concepts in question? Can hybrid presentations help by encouraging more 

abstract thought about the concept?  Does the learner need to be a seeking a formal rule in order to 

become aware of one? These questions provide a fascinating direction for future research. 

Limitations &  Future Direct ions 

There are a number of limitations of our current study. First, although we have 

highlighted the fact that presentations which connect a concept to different types of reasoning 

may support different types of understanding, we have not delineated fully the different ways that 

a concept can be related to prior knowledge, and how this will impact future learning. We have 

suggested that concrete vs. abstract may not capture the most interesting features of presentations, 

but we have not articulated in full a set of dimensions which do suffice to describe the space of 

presentations. This is a difficult problem, because both the axes and their impacts may depend on 

the details of the concepts in question and the prior experiences of the students.  Thus exploring 

these issues is an important direction for future work. 

Due to our focus on complete presentations of material rather than single representations, 

there were aspects of our experimental materials (the operation symbol and the presence of the 

polygon) which were different for the two experimental groups throughout the experiment. This 

is a realistic model of certain learning environments in which concepts build on others; in 

mathematics education notation is often repeated even when it has semantically broadened from 

how it was originally used or taught, and differences in notation may propagate the influence of 

different pedagogical choices. However, we would hypothesize that persistent aspects of the 

presentations are not necessary to observe effects on later concepts, and future research should 

explore this. 
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Furthermore, as noted above, the short period of time does not allow for full assimilation 

of the material or significant practice with the concepts, which limits our conclusions about the 

long-term effects of different presentations. The fact that the subjects mostly lack training with 

formal mathematical reasoning and proofs likely contributed to the very low performance on the 

formalization questions in this experiment, and limits our ability to draw conclusions about the 

effects of presentations on formalization. Our work shows that presentations can have an effect on 

later related concepts in the short-term, but future work should explore how these impacts 

propagate over a longer period of time and in more formal settings. 

This also relates to the impact of expertise – because group theory concepts are fairly 

elementary in advanced mathematics, we had to exclude most subjects who had a background in 

advanced mathematics. This limits the inferences we can make about the impact of mathematical 

background. However, the question of how expertise changes the effects of presentation of a 

concept is very interesting. Are mathematical experts more readily able to reason without 

resorting to the details of the presentation and how it relates to other knowledge? The work of 

Hazzan (1999) suggests that students new to a concept may rely on the details more than those 

who are experts with the concept, but i t  does not explore the differences in how experts and 

novices reason about a concept which is new to both groups. This would also be an exciting 

direction for future work. 

Conclusion 

We explored the way presentation of concepts in math instruction affects understanding of 

the concept being presented, and of concepts related to i t , using elementary group theory as our 

test domain. We found that presentations which ground a concept in different ways can produce 

differential understanding of related concepts learned later. Furthermore, it does not appear that 
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there is always a clear advantage of one presentation over another, instead a presentation may be 

more useful for learning some related concepts or some aspects of reasoning, and less useful for 

others. 

These findings contribute to the ongoing exploration of the effects of presentations in 

math cognition, illustrating that even presentations which are not clearly more “abstract” or 

“concrete” than one another may have different advantages and disadvantages. Thus we suggest 

that “abstract” vs. “concrete” may not be the best way to characterize the functionally important 

differences among presentations, and that instead the relevant features are the way a presentation 

connects the concept to students’ prior systems of knowledge. Our results show that presentations 

which connect to different systems of knowledge may support different aspects of understanding. 

Because of this, trying to find a single best type of presentation may be futile. 

Instead, we have highlighted an alternative strategy for improving performance: teaching 

multiple complementary presentations while encouraging participants to develop an integrated 

understanding of them. Our results suggest that this may have positive effects even if the total 

instruction time is the same. By the end of the experiment, participants in our hybrid condition 

appeared to have achieved a more complete understanding, and to perform better overall than 

those instructed with one presentation alone. However, i t  remains to be seen whether they could 

truly achieve best-of-both-worlds performance over a longer time period, and whether this or 

another approach could better encourage participants to generalize and formalize their 

understanding. These questions provide exciting new directions for research in both math 

cognition and math pedagogy. 

.
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Appendix A: A Brief, Selective Introduction to Group Theory 

Groups are mathematical structures that provide us with a nice way of doing something like 

arithmetic with objects besides the ordinary numbers, like symmetries of an object or permutations, 

or with smaller sets of ordinary numbers (as in the experiments presented in this paper). They have 

applications throughout mathematics, physics, chemistry, and computer science. Here I present the 

formal definition of a group with informal intuitions in italics. A group consists of a set G (some 

objects) and a binary operation ∗ : G × G → G (a way of combining two objects to get another 

object, analogous to addition or multiplication) such that: 

 
• G is closed under ∗, that is a ∗ b ∈ G for all a, b ∈ G. (Combining two of the objects you 

started with gives you another of the objects you started with.) 
 

• ∗ is associative, a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G. (It doesn’t matter how you 

parenthesize the operation, just like addition or multiplication.) 
 

• There is an identity element e ∈ G such that ∀x ∈ G, e ∗ x = x ∗ e = x. (There’s something 

that when you combine i t  with anything else has no effect, just like multiplying by one gives 

you the same number back.) 
 

• Each element x ∈ G has an inverse element x−1  ∈ G such that x ∗ x−1  = x−1 ∗ x = 

e. (There’s something you can combine with each element to get back to the identity, 

just like 2 × 0.5 = 1.) 
 

For example, if we take G to be the numbers less than 4, G = {0, 1, 2, 3}, and define a new 
operation ∗ by 

 
 a + b if a + b <4

a ∗ b =  
a + b − 4        if a + b ≥ 4 
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G and ∗ form a group, called the cyclic group of order 4 (the order of a group is the number of 

elements in it).  For example, in this group 1 ∗ 1 = 2, 2 ∗ 3 = 5 − 4 = 1 because 5 ≥ 4, 3 ∗ 1 = 4 − 4 

= 0, etc. 0 is the identity in this group, because 0 ∗ x = x ∗ 0 = x for any of 0, 1, 2, 3. Furthermore, 

the inverse of 1 in the group is 3, because 1 ∗ 3 = 4 − 4 = 0, the inverse of 2 is 2, and so on. 

There is a great deal of structure to groups, far more than there is space to explain here. 

The only topic of interest for us beyond these simple properties will be the concept of 

generators. An element x generates a group if every other element of the group can be written 

as x ∗ x ∗ · · · ∗ x for some number of xs. For example, in our cyclic group of order 4, defined 

above, 1 is a generator of the group because 1 = 1, 2 = 1 ∗ 1, 3 = 1 ∗ 1 ∗ 1, 0 = 1 ∗ 1 ∗ 1 ∗ 1. 

Similarly, 3 is a generator because 3 = 3, 2 = 3 ∗ 3, 1 = 3 ∗ 3 ∗ 3, 0 = 3 ∗ 3 ∗ 3 ∗ 3. However, 2 is not 

a generator because 2 = 2, 0 = 2 ∗ 2, but there is no way to generate 1 or 3 using 2. This illustrates 

the only theorem we will give here: 

Cyclic Group Generators Theorem:  In a cyclic group of order n, written as the 

integers 0 to n − 1, x < n generates the group if and only if x and n are relatively prime (i.e. 

have no common factors except 1). 

For more information on groups and group theory, see e.g. (Lang, 2002). 
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