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ABSTRACT  

This paper explores the concept of mutual (reciprocal) learning as an enabler of the emergence of a collective  
human-machine intelligence across a smart factory. The interlinking of digital profiles of humans and machines permits 
the identification and measurement of learning outcomes through participating in and performing of (shared) tasks. To 
achieve this goal and ultimately to transform today’s smart factory into a self-learning factory, the concept model of 
AUTODIDACT, underlying objectives and research questions related to mutual (reciprocal) learning are outlined.  
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1. INTRODUCTION  

A trendy topic in the research area of human-technology interaction at the workplace is job automation. 

Modern factories and the vision of Industry 4.0 inevitably lead to higher automation and a decreasing number 

of direct personnel in factories. However, the recent European skills and jobs survey (Cedefop, 2018), which 

comprises a large body of studies, doubts the significance of the predictions with regard to the robotization of 

the labor market. The main reason for imperfect predictions is grounded in the market, industry sector or 

technology specificity of the hypotheses, which affects the formulation of theory and accordingly proper 

explanation and interpretation of a set of phenomena. At the same time, the survey reveals that the march of 
technological progress may widen inequality, e.g. with regard to wages and contribute to the polarization of 

jobs in the labor market (Cedefop, 2018). Evidently, the automation of jobs and firms reliance on robots are 

highly correlated (Acemoglu & Restrepo, 2017).  

Over the past decades, the reliance of European companies on robots has been increasing from 0.6 robots 

per 1,000 workers in 1990s to 2.6 robots per 1,000 workers in the late 2000s (Acemoglu & Restrepo, 2017), 

where robots have primarily replaced low-medium skilled workers carrying out manual and repetitive tasks 

rather than critical, non-routine or decision-making tasks. As a result, there is less opportunity for human 

learning, in particular for low-medium skilled workers, resulting in decreasing tacit knowledge about 

processes and systems. This effect was described 35 years ago as one of the “ironies of automation” 

(Bainbridge, 1983) and “recent technological developments may have some new ironies in store for us” 

(Baxter et al., 2012). Such recent technological developments include robotics and (intelligent) assistance 

systems as well as the possibilities of distributed Internet of Things (IoT)-applications, artificial intelligence 
and machine learning, which are some of the driving forces behind Industry 4.0. However, in all the 

excitement about the new technological potential with respect to automation and digitalization, human 

capabilities are often considered as a given, almost static variable. In an extension of the  

“human-in-the-loop” approach, this paper presents a mutual (reciprocal) learning methodology to  

human-machine learning with the goal, to improve the capabilities of both humans and machines 

simultaneously in order to raise their “Collective Intelligence” (Levy, 1994; Glenn, 2013).  
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Reframing the risks of automation as an opportunity, the key research question is “How to build an 

integrated human-machine collaboration framework for mutual learning in smart factories?”, based on the 

definition of mutual learning (also known as human-machine reciprocal learning) given by (Ansari et. al., 

2018a). Foresight involves future-oriented awareness in order to enable today’s smart factories to transform 
into human-centered self-learning factories. To this end, Section 2 discusses learning in smart factories under 

consideration of background terminologies, challenges and requirements from both technological and  

non-technological perspectives. Furthermore, it discusses the concept of mutual learning and introduces 

related terms such as “human and machine as a learner” in smart factories. Accordingly, Section 3 presents 

the AUTODIDACT concept for building a mutual learning platform in TU Wien’s Pilot Factory Industry 4.0. 

Finally, Section 4 concludes the discussion and elaborates on a future research agenda.   

2. REQUIREMENTS AND CHALLENGES FOR LEARNING IN SMART 

FACTORIES 

2.1 Smart Factories: Terminology and Background  

Advances in collaborative robotics and data science are expected to lift factory automation to a new level 

(IFR, 2017; Bauer et al. 2016; Monostori et al. 2016). Together with the widespread use of IoT technologies 

within manufacturing facilities, their implementation is widely referred to as “smart factory” (Zühlke 2008, 

Kagermann et al. 2013; Wagner et al., 2017). The vision of Industry 4.0 advocates the realization of smart 
factory technologies to connect humans, machines and intelligent objects in order to create high-performance 

processes and products (Spath, 2013; Liao et al., 2017).  

Traditionally, automation and Industry 4.0 tend to emphasize technological opportunities and focus less 

on the organizational setting and socio-technical environment. In order to tap the full potential of Industry 4.0 

and to create a conducive environment to test new approaches in human-machine learning, it is necessary to 

employ a comprehensive approach that takes well-known interdependencies of factories, as socio-technical 

entities with strong interdependencies between technological and organizational changes, into account. 

It is already visible, that the transformation with regard to the integration of new technologies will have 

significant effects on the way manufacturing is organized. The increasing degree of autonomy of intelligent 

robots and assistance systems poses a major challenge to the traditional organization of factories. 

Collaborative and mobile robotics will carry out manual routine tasks, while digital assistance systems take 
over cognitive routine tasks and provide support in non-routine situations. Consequently, the organization of 

work will inevitably change and autonomous systems increasingly require human work that is more flexible. 

The required competences of factory workers as well as those of support functions such as maintenance and 

quality assurance staff, are expected to change significantly (Jaeger et al. 2012; Erol et al. 2016; Lanza et al. 

2016). 

2.2 Learning Matters in Smart Factories 

As the expected changes in competency development due to Industry 4.0 are widely discussed, there is a 

need to establish processes to adapt learning in a factory environment to those changes, in order to retain and 

improve learning curves for blue-collar and white-collar employees. Due to increased automation in smart 

factories, the challenges of learning grow on various levels. The barriers (challenges) to learning in smart 

factories comprise the following: 

 Larger scope: Due to higher automation and increasingly autonomous technical systems, the 

average staffing per machine decreases. Hence, the number of processes, to be mastered by the 

remaining employees, is increasing. 

 Fewer learning opportunities: Due to the fact, that machines take over routine tasks and the 

resulting focus of humans is put on non-routine tasks, less learning opportunities with respect to 
routine processes exist for human operators (Baxter et al., 2012). 

 Uncertain role of human work in hybrid (human-machine) settings: Due to collaborative tasks 

with machines and algorithms, additional requirements in terms of learning emerge. Especially the 
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“reciprocal learning approach” will become necessary in hybrid (man-machine) settings in a smart 

factory. This approach uses human experience and tacit knowledge to train machine data sets 

(machines learn from humans) and on the other hand employs data-based learning that is guided by 

smart algorithms  (humans learn from machines) (Goldberg, 2017). 
Besides the challenges mentioned above, learning in a smart factory also changes its perspective with 

regard to different periodicity.  

 Short-term: The need for process optimization, operational excellence and quick results usually 

drives learning in the short-term. To learn how to carry out one or several work tasks more 

efficiently, usually follows a learning curve (Zangwill, 1998) and short-term learning goals translate 

into a steepening of the learning curve during the ramp-up phase. 

 Mid-term: With the emergence of hybrid settings of mixed man-machine teams, there is a need for 

an optimal assignment of tasks in order to guarantee a good fit with the team members. The 

assignment of tasks depends on the individual capabilities and the needed effort to train each team 

member for a specific task. Moreover, task assignment is most likely not static and will change over 

time as the capability level of workers and machines evolves. Hence, there will be a constant need for 
training and retraining and task assignment will be evaluated with respect to relevant parameters such 

as economic and organizational goals, but also regarding competency development and learning. 

 Long-term: Learning about and gaining an understanding of a manufacturing process usually 

contributes to process and product innovations. Mistakes, mishandling and unplanned events 

regularly offer room for small improvements or even novel ideas. Furthermore, the tacit knowledge 

of processes and their interconnections and eventual impacts provide a competitive advantage that is 

often hard to copy. Therefore, the optimal ratio of automated and human decision-making is essential 

in maintaining an organization’s ability to improve and adapt to unplanned and to some extent 

unforeseeable changes. 

2.3 Human and (Intelligent) Machines as a Learner in Smart Factories 

Considering the technological advancements in smart factories, the division of tasks between human 

workforces and machines is changing from distinctive roles and tasks into hybrid (collaborative) roles and 

task schemes. The latter divides the entire pool of tasks into three clusters, namely; i) tasks assigned to the 

human workforce, ii) tasks assigned to (intelligent) machines, and iii) shared tasks assigned to both human 

workforce and intelligent machines (including robots in particular collaborative robots (cobots), virtual 

assistance systems, etc.) (cf. Figure 1).   

 

Figure 1. Division of tasks and its impact on human-machine learning  

Participation in the shared tasks necessitates the learning capabilities of human workforce and machines 

(i.e. humans and machines as a learner) and further combines them into a new boundary system in which 

mutual learning takes place. Here, we slightly modify the definition of human-machine mutual learning given 

15th International Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2018)

63



earlier by (Ansari et al., 2018a) as follows: «Mutual learning is a bidirectional process involving reciprocal 

exchange, dependence, action or influence within human and machine collaboration on performing shared 

tasks, which results in creating a new meaning or concept, enriching the existing ones or improving skills 

and abilities in (symmetric or asymmetric) associated with each group of learners».  
Creating digital profile of the aforementioned group of learners facilitates modeling, estimating and 

evaluating the exact magnitude and significance of the learning effectiveness and outcomes resulting from 

mutual learning in smart factories. Furthermore, digital profiles of human workforces and machines provide 

possibilities to collect data, construct distinct learning profiles and identify mutual learning in a consistent, 

dynamic and realistic way. A digital profile typically comprises all basic information, i.e. personal or 

professional information of a human workforce or technical specifications of a machine. It also contains  

on-the-job performance data collected by means of sensors and condition monitoring systems for the target 

human workforce or machine as well as feedback collected e.g. via a 360º-feedback (multi-source feedback) 

approach, or via a customer or end-user questionnaire survey. Such a continuously growing database 

provides opportunities for identification and prediction of learning trajectories for both human and machine 

workforces over time. 
The machine’s digital profile can be quantified based upon the determination of the degree of autonomy 

of the individual machine functions. The degree of autonomy of a machine specifies its technical ability to 

autonomously adapt to dynamically changing production conditions, without endangering the efficiency and 

effectiveness of the production process. In order to define the degree of autonomy of a machine, a descriptive 

basis for a corresponding comparison must first be determined. There are various possibilities for this 

corresponding comparison, e.g. as proposed by (Gronau & H. Theuer, 2016):  

i) [Number of autonomous functions / number of all functions],  

ii) [Number of autonomous controlling systems / number of all controlling systems],  

iii) [Number of autonomous actuator systems / number of all controlling actuators],  

iv) [Number of autonomous resource supply systems / number of all resource supply systems],  

v) [Number of autonomous mobility systems / number of all mobility systems], and  

vi) [Autonomous quantity of data / total quantity of data].  
The degree of autonomy shall be determined for each machine function. A summation of the 

corresponding quantified degrees via Likert scaling enables the definition of a specific machine’s digital 

profile, which can be described in the form of a vector representation.  

Furthermore, the concept of machine’s digital profile may resemble the virtual representation, monitoring 

and configuration of a machine’s components and functions in a dynamic manner. Therefore, the term Digital 

Twin is defined as an evolving digital profile of a production system (Brenner & Hummel, 2017). It 

establishes an interface between the physical and digital world through streaming and linking the status data 

of all physical objects in the production system to their virtual models (Uhlemann et al., 2017). Using 

intelligent data analytic methods, learning accomplishments can be recorded and corresponding 

implementation decisions can be directed to operators and technical systems (Mussomeli et al., 2017). In the 

proposed concept of AUTODIDACT, the term Machine Digital Twin is used to address the digital profile of 
a machine workforce (cf. Section 3).  

The definition and characteristics of the Human Digital Profile are based on descriptive parameters 

consisting of different determinants, which enable a human workforce to perform a task in a work system. 

According to (Schlick et al., 2010) these determinants include i) human constituent characteristics, ii) human 

disposition characteristics, iii) human qualification and competency characteristics, and iv) human adaptation 

characteristics. Employing “Performance Shape Factors 3” (PSF 3) introduced by (Bubb, 2005), it is possible 

to build a quantified human digital profile as discussed in (Ansari et al., 2018b).   

Human- and machine’s digital profiles are the core building blocks for realizing an integrated  

human-machine collaborative framework for mutual learning in smart factories, which is discussed in Section 

3. 
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3. AUTODIDACT - TOWARDS MUTUAL LEARNING IN TU WIEN’S 

PILOT FACTORY INDUSTRY 4.0 

The TU Wien Pilot Factory Industry 4.0 (PFI4.0) is a research lab and demonstration factory for promoting 
the realization of smart factory technologies – tailored to the future-oriented solutions for manufacturing 
industries (PFI40, 2018; Ansari et al., 2018a). Human-technology collaboration is one of the main problem 
areas in which the current focus is on realizing innovative solutions for human and technology interactions, 
including human-robot collaboration, digital assistance systems, etc. Such solutions aim at enhancing 
workplace productivity and efficiency, and improving working conditions and safety. As discussed earlier, 
learning is the key to innovation. In particular, mutual learning is essential to develop and enhance 
synergistic innovation capability in the PFI4.0. Hence, the concept of “AUTODIDACT” envisages an 
integrated human-machine collaboration framework for mutual learning in the PFI4.0 (cf. Figure 2).  

 

Figure 2. AUTODIDACT – An integrated human-machine collaboration framework for mutual learning 

From a design perspective, AUTODIDACT consists of four functional layers, excluding the factory layer, 
consisting of representative use-cases in manufacturing and assembly units. These layers are introduced in 
the followings:    

 Digital infrastructure consists of human workforces and machine’s digital profiles, known as 
HR Digital Profile and Machine Digital Twin, respectively. In addition, it features taxonomies of 
tasks, domain ontologies, and associated statistical models and indicators for estimating learning 
curves and measuring learning outcomes. The entire digital profiles are semantically linked to 
the existing cyber physical production systems (CPPS) for dynamic acquisition and exchange of 
knowledge.      

 Learning model is a control-loop model that assists in building learning profiles and trajectories 
for each group of learners as well as identifying and measuring the mutual learning outcomes. It 
includes a learning performance radar and rule engine to facilitate monitoring and assessing the 
learning outcomes. 

 Learning strategies refer to experience-based, experimental and data-driven strategies enhanced 
by machine learning and statistical learning methods for both groups of learners, i.e. human or 
cobots in various competency and autonomy level, respectively. It mainly deals with various 
learning strategies to improve not only unidirectional learning (Humani→ Machinej, Machinej → 
Humani, Humani → Humanh, Machinej → Machinek) but also bidirectional (Humani ↔ Humanh, 
Machinej ↔ Machinek, Humani ↔ Machinej).   
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 Learning goals feature the target function that should link productivity to learning outcomes 

under certain constraints and boundary conditions such as security, privacy, scalability, etc.. The 

outcome is used for progressing towards the factory goals, i.e. i) short-term: optimization of 

tasks and processes, ii) mid-term: new division of works between human and machine 
workforce, and iii) long-term: innovation in products and services.   

Human-robot collaboration (cf. Figure 3) is one of the typical use-cases in smart factories, which 

represents certain characteristics of mutual learning, i.e. participation of two groups of learners in performing 

tasks, including shared tasks, and at the same time the acquisition of (new) knowledge within a dynamic and 

changeable environment. In this case, the teacher and learner role (i.e. senior and junior) can be identified 

depending on the human competences and performance determinants (e.g. constitutional, disposition, 

adaptation, qualification and competence characteristics) as well as the machine’s (robot’s) intelligence and 

technical functions/conditions represented by the associated digital profiles, respectively (Hold et al., 2016; 

Ansari et al., 2018b).  

Figure 3 schematically represents the human-robot collaboration in an assembly cell, consisting of two 

human workforces and two cobots. The mutual learning between human workforce (e.g. operator) and cobot 
occurs by fulfilling the four steps of a so-called questioning, controlling and summarizing, clarification, and 

prediction, as originally proposed by (Hacker and Tenent, 2002) in the context of reciprocal teaching. The 

four steps are as follows:  

a) To check the counterpart with regard to learning success (questioning),  

b) To change the execution of the activity among them (controlling and summarizing),  

c) To experimentally transfer the performance of a similar activity to each other (clarification); and 

d) To allow the other party to make a prediction for the execution of a new task and finally to perform 

the predicted task execution (prediction)  

 

Figure 3. Schematic Representation of Human-Robot Collaboration  

For this purpose, the control loop model of mutual learning illustrated in Figure 2 is set into direct 

interaction with the human workforces and cobots. Based on a fundamental and prospectively planned task 

distribution between the human workforces and cobots, the success of a corresponding task execution along a 

learning process is measured (questioning) via different sensor systems. The task execution between human 

workforces and cobots is changeable and comparable with regard to the learning success (summarizing) via 

different control logics. Corresponding decisions for a new distribution of activities between them can be 
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carried out by means of data analysis (clarification). This provides possibilities to dynamically switch 

between human workforces and cobots in relation to comparable activities (prediction). In this way, new 

types of learning logic are identified and will be taken into account with regard to an improved distribution of 

tasks in the forthcoming planning period. 

4. FUTURE RESEARCH AGENDA  

Naturally, the proposed concept of mutual learning has a dual character affected by human cognitive 

capabilities and machine’s intelligence (i.e. cognitive computing capabilities). Hence, building 

AUTODIDACT in various smart factories is tied to theoretical and application-oriented research in both 
human- and machine specific learning domains. In particular, the following steps should be foreseen:  

1) To define learning profiles and trajectories for both human and machine workforce e.g. in TU Wien’s 

Pilot Factory Industry 4.0, considering specific use-cases in three areas of human-robot collaboration, 

maintenance and assembly.   

2) To define AUTODIDACT’s system specifications for modeling and measuring mutual learning, 

including technological and non-technological requirements and constraints.  

3) To build up AUTODIDACT’s ontological knowledge-base, which specifies the shared 

conceptualization of tasks and associated domain knowledge between human and machine workforce.   

4) To define AUTODIDACT’s control-loop, consisting a rule-engine (set of rules) for inferring optimal 

task sharing and measuring learning outcomes in relation to key performance indicators (KPIs) used 

in production management. 
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