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Amongst important and under-researched questions are how introductory lessons can 
be designed for teaching initial proofs to junior high school students, and how such 
lessons enrich students’ understanding of proofs. With a view to improving the 
learning situation in the classroom, in this paper we report on the various functions of 
introductory flow-chart proofs that use ‘open problems’ that have multiple possible 
solutions. Through an analysis of a teaching experiment in Grade 8, and by using a 
model of levels of understanding of proof structure, we identify the functions as 
enhancing the transition towards a relational understanding of the structure of formal 
proof, and encouraging forms of forward/backward thinking interactively that 
accompany such a relational understanding of the structure of proofs in mathematics. 

INTRODUCTION 

With proving and reasoning universally recognized as key competencies of 
mathematics education, it remains the case that students at the lower secondary school 
level can experience difficulties in understanding formal proofs (eg: Hanna & de 
Villiers, 2012; Mariotti, 2006). In order to enhance the capabilities of junior high 
school students with formal proving (from around the age of 14), it is important to have 
a clear framework to inform the design of introductory proof lessons. This is because 
such lessons aim to initiate inexperienced students into understanding the meaning of 
formal proofs fruitfully so that they can develop the competencies to construct proofs 
for themselves. We have previously reported that students who have experienced such 
introductory lessons can score around 10% better than expected on a question that 
involved choosing reasons to deduce a conclusion (see Miyazaki, Fujita and Jones, 
2012). In this paper we report a further qualitative analysis that focuses on why the 
students did well in such mathematical proofs. Our research questions are as follows: 
how can introductory lessons for formal proofs be designed, and how do such lessons 
enrich students’ understanding of proofs?  
In order to enrich the introductory lessons of formal proving, our research study 
focuses on the students learning to use flow-chart proofs in ‘open problem’ situations 
where they can construct multiple solutions for congruent triangle tasks by deciding 
the assumptions and intermediate propositions necessary to deduce a given conclusion 
in a flow-chart format. Such proofs involve using the conditions for triangle 
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congruency as these are often used to introduce formal proofs in geometry in Japanese 
lower secondary schools (Jones & Fujita, 2013), and our discussions and analyses are 
related to this topic. The aim of this paper is to evaluate the introductory lessons 
designed on the basis of our theoretical framework by identifying their pedagogical 
functions and implications. 

THEORETICAL FRAMEWORK: UNDERSTANDING PROOF STRUCTURE  

We take as our starting point that a formal proof generally consists of deductive 
reasoning between assumptions and conclusions. Within this reasoning process at least 
two types of deductive reasoning are employed: universal instantiation (which deduces 
a singular proposition from a universal proposition) and hypothetical syllogism (where 
the conclusion necessarily results from the premises).  
In order to understand the structure of proof, students need to pay attention to the 
elements of the proof and their inter-relationships. Research studies by Heinze and 
Reiss (2004) and by McCrone and Martin (2009) have identified that an appreciation 
of proof structure is an important component of learner competence with proof. In this 
paper we use the following levels of learner’s understanding of proof structure initially 
elaborated by Miyazaki and Fujita (2010): Pre-, Partial- and Holistic structural levels. 
These levels are described in Table 1 and the overall framework illustrated in Figure 1. 
Level Description 
Pre-structural The basic status in terms of an understanding of proof structure where learners 

regard proof as a kind of ‘cluster’ of possibly symbolic objects. 
Partial-structural Once learners have begun paying attention to each element, then we consider 

they are at the Partial-structural Elemental sub-level. To reach the next level, 
learners need to recognize some relationships between these elements (such as 
universal instantiations and syllogism). If learners have started paying attention 
to each relationship, then we consider them to be at the Partial-structural 
Relational sub-level, with this sub-level being further sub-divided into a) 
universal instantiation and b) syllogism (see Figure 1). 

Holistic-structural At this level, learners understand the relationships between singular and 
universal propositions, and see a proof as ‘whole’ in which premises and 
conclusions are logically connected through universal instantiations and 
hypothetical syllogism. 

Table 1: Levels of learner understanding of proof structure 

 
Figure 1: Framework of learner understanding of the structure of proof  

To date we have utilized this framework to demonstrate students’ explorative activity 
to overcome logical circularity in a proof problem (Fujita, Jones, & Miyazaki, 2011), 
and considered how a hypothetical learning trajectory for introductory lessons of 
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formal proving could be designed so that students can be helped to develop their 
understanding of the structure of proof (Miyazaki, Fujita, & Jones, 2012). In this paper 
we focus on the design of introductory lessons of formal proofs. 

INTRODUCTORY LESSONS USING OPEN FLOW-CHART PROVING 

To design introductory proof lessons we used the following two pedagogical ideas: 
flow-chart proof format and ‘open problem’ tasks. A flow-chart proof shows a ‘story 
line’ of the proof. McMurray (1978) and others have provided accounts of the value of 
using flow-chart proofs prior to the use of formats such as the ‘two column proof’. 
Given the evidence that flow-chart proofs can help students to visualize the structure of 
proofs, in our research we are investigating how the power of flow-chart proofs might 
be enhanced at the introductory stage of proof learning by using ‘open problem’ 
situations where students can construct multiple solutions by deciding the assumptions 
and intermediate propositions necessary to deduce a given conclusion.  
For example, the problem in Figure 2 is intentionally designed so that students can 
freely choose which assumptions they use to show the conclusion that �B=�C. After 
drawing a line AO, for instance, students might decide ∆ABO and ∆ACO should be 
congruent to show �B=�C by using the theorems “If two figures are congruent, then 
corresponding angles are equal.” Based on AO=AO as a same line, ∆ABO{∆ACO can 
be shown by assuming AB=AC and �BAO=�CAO using the SAS condition. 
However, other solutions are also possible. One approach might be to use the fact that 
∆ABO{∆ACO can be shown by assuming AO=AO, AB=AC and BO=CO, using the 
SSS condition. As students can construct more than one suitable proof, we refer to this 
type of problem situation as ‘open’.  

 
Figure 2: An example of flow-chart proving in an ‘open-problem’ situation 

In accordance with our theoretical framework, in the introductory proof lessons it is 
particularly important to support transitions from the Partial-Structural to the 
Holistic-Structural level. The flow-chart format aims to help students to visualize that a 
formal proof consists of two kinds of propositional layers, one of which contains 
universal propositions (theorems) and the other contains the chain of singular 
propositions. Also, the flow-chart format can show clearly that a singular proposition 
is deduced by the universal instantiation of universal proposition, and that the chain of 
singular propositions between assumptions and conclusions would be established by 
hypothetical syllogism. Moreover, in order to show a given conclusion in the ‘open 
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problem’ situation, students would be encouraged to seek out the necessary 
assumptions and intermediate propositions diversely. Then, they have a chance to 
originate alternative proofs by replacing the used theorems into others, and so on. 

METHODOLOGY 

To investigate the functions of open flow-chart proving in the introductory lessons of 
formal proving in Grade 8 (aged 14), we developed nine lessons based on the learning 
progression with three phases as follows (Miyazaki, Fujita, & Jones, 2012). 

x Constructing flow-chart proofs in an ‘open problem’ situation (four lessons) 
x Constructing a formal proof by reference to a flow-chart proof in a ‘closed 

problem’ situation (two lessons) 
x Refining formal proofs by placing them into flow-chart proof format in a 

‘closed problem’ situation (three lessons). 
During the first phase of lessons, students constructed flow-chart proofs in ‘open 
problem’ situations. Through these tasks, the students were expected to learn how to 
think forward/backward between assumptions/conclusions and how to organize their 
thinking in order to connect assumptions and conclusions. Thus this phase aimed at 
supporting them to understand how to ‘assemble’ a proof as a structural entity. Note 
that they study proof in ‘closed-problem’ situations after the first phase.  
Our main data are taken from one of our lesson implementations in which a teacher 
with 18 years of teaching experience conducted the set of the nine Grade 8 lessons in a 
junior high school in Japan during October 2013. The lessons were video-recorded and 
then transcribed. In the next section we report selected scenes from the fourth lesson in 
which students undertook the problem in Figure 2. By this data analysis, we identify 
the functions of open flow-chart proving during the introductory lessons designed 
using our theoretical framework of the understanding of structure of proof. 

DATA ANALYSIS AND DISCUSSION  

In reporting our findings from the fourth lesson, first we show the students’ levels of 
thinking at this stage; in particular their incomplete understanding of universal 
instantiations. Then, we show how learning with ‘open problem’ proof tasks helped 
them to start to see proofs from a more structural point of view.  
Enhancing the structural understanding of formal proof: universal instantiations 

While prior to the lesson the students had used a one-step flow-chart proof to prove that 
two given triangles are congruent, during this lesson they tackled the problem in Figure 
2. This has two steps; first deducing the congruence of triangles, and second, 
concluding the equivalence of angles. As one purpose of the lesson was to make 
students aware of the importance of universal instantiation (which deduces a singular 
proposition from a universal proposition), the teacher oriented the students to confirm 
the necessity of supplementary line AC to deduce �B=�C by using the congruency of 
∆ABO and ∆ACO, and wrote “∆ABO{∆ACO” into the flow-chart on the board. 
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Thereafter, the students started to complete the flow-chart proof by themselves. After a 
suitable time the teacher asked student SA to say what he would put in the flow-chart 
box for the properties of congruent figures. SA answered “because of ∆ABO{∆ACO” 
(see line 6 SA in the transcript below); the teacher wrote this answer on the blackboard. 
Next, the teacher directed two other students to show their answer. One of them said, 
“Due to congruent triangles, angles are congruent”, and another said, “In congruent 
triangles the corresponding angles are equivalent.” The teacher also wrote these 
answers on the blackboard. At this time the teacher compared these three answers, and 
asked SA to explain more; their dialogue is shown as follows. 

1 T: SA, can you tell us why you wrote this? 
2 SA:  Umm, I considered why the angles are equal; then I found an arrow is 

drawn.   
3 T: OK, because the arrow can be drawn (pointing the corresponding part of 

flow-chart on the blackboard). 
4 SA:  I put ‘it’.  
5 T: What is ‘it’? 
6 SA:  ∆ABO and ∆ACO are congruent.  
7 T: OK, if we can say these two are congruent, then we can use the arrow. So, 

SA, if two triangles are congruent, what can we show? 
8 SA:  Angles are also equal.  
9 T: Good, angles are also equal? Anything else?  
10 SA:  Sides are equal, too.   
11 T: Yes, sides are equal too. So, umm, in this case our conclusion is to say the 

angles are equal, so it is OK. But in general if two triangles are congruent, it 
can be angles but also sides as well, so we should add information generally 
about angles such as ‘because angles are congruent or equal’. 

Given that prior to this lesson the students could find the appropriate conditions of 
triangle congruency, and write them into the theorem box (universal proposition) given 
in the one-step flow-chart proof. It was expected that they would reach the 
partial-structural elemental sub-level (by paying attention to elements of proofs) 
during this lesson. Beyond this, some students might start reaching the relational 
sub-level (by understanding both universal instantiation and hypothetical syllogism) 
through examining the properties of congruent figures. 
Nevertheless, during the early parts of this lesson it was evident that only a small 
proportion of the students could reach the relational sub-level. In fact, about half the 
students could not correctly write two boxes of flow-chart, each of which requested the 
condition of congruent triangles and the properties of congruent figures. Others just 
wrote a singular proposition “because of ∆ABO{∆ACO” into the theorem box (like 
student SA said). This singular proposition is not precise enough from a universal 
instantiation point of view. It is clear that such students remained at the elemental 
sub-level, and could not reach the relational one. In particular, the students who wrote 
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the singular proposition could not understand that a singular proposition should be 
deduced by the universal instantiation of a universal proposition. 
In order to resolve the student’ lack of understanding, the teacher compared SA’s 
answer with others answer in which universal propositions were correctly used (the 
relational sub-level), and pointed out that it was necessary to express the property of 
congruent figures generally because it was being used to deduce the equivalence of 
angles in this case (although it could be used to deduce the equivalence of both angles 
and sides). This resolution managed by the teacher might have supported the students 
to enhance their understanding of the universal instantiation that deduces a singular 
proposition with a universal proposition. This, in turn, could promote the transition 
from the elemental sub-level to the relational one. 
From the above we can identify as the functions of ‘open problem’ flow-chart proving 
that it can enhance the transition towards a relational understanding of the structure of 
formal proof by helping student to visualize the connection of singular proposition to 
hypothetical syllogism and the connection with universal instantiation between a 
singular proposition and the necessary universal proposition. This ‘open problem’ 
flow-chart format can help visualize not only the connection of singular propositions 
by hypothetical syllogism but also the connections of a singular proposition with a 
universal one by universal instantiation. With this visualized format, students could be 
supported effectively to focus on the characteristics of the two kinds of deductive 
reasoning, by checking the expression of theorems and confirming their meaning 
and/or roles. 
Encouraging thinking forward/backward interactively by using open proof 

situations 

After most of the students made their own flow-chart proofs, the teacher picked up 
three answers, each of which used different conditions of congruent triangles (this was 
possible because of the ‘open problem’ situation). The teacher checked with the class if 
three pairs of angle/sides were necessary to deduce ∆ABO{∆ACO with each 
congruent condition, and then also checked the reason why they chose these pairs on 
the basis of the words written in the box below each of the three pairs. 
For example, student KA used the ASA condition and the teacher asked him why he 
chose the followings; ‘AO=AO’, ‘�BAO=�CAO’, ‘�AOB=�AOC’.  
The student’s explanation was as follows: 

1 KA: Because we can see AO=AO from the given figure. 
2 T:  Can see it from the given figure? 
3 KA: And it is an assumption. I assumed by myself �BAO＝�CAO, and also 

�AOB＝�AOC as well. And then we can show ∆AOB{∆AOC, and the 
condition is ‘Two pairs of corresponding angles are equal and the included 
sides equal’. Due to congruent triangles, corresponding angles are equal 
and therefore �B＝�C. 
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Figure 3: One of the flow-chart proofs by KA on the blackboard 

As can be seen from the dialogue and the flow-chart proofs by KA shown in Figure 3, 
for the reason why “AO=AO”, KA wrote “Assumption” in the box and explained that 
this equivalence was apparent by means of the given figure (see line 3 KA). In contrast, 
for the reasons why “�BAO=�CAO” and “�AOB=�AOC” KA wrote “By myself” 
and explained that they were decided by himself (see line 3 KA). In this thinking 
process, there were the two ways of approach. One way is thinking forward, i.e. in 
order to find the conditions for ∆ABO{∆ACO, KA focused on the corresponding 
angles/sides of these triangles and judged that “AO=AO” could be one of the 
conditions. A second way is thinking backward, i.e. KA chose ASA as a condition and 
then looked for the other conditions (in this case “�BAO=�CAO” and 
“�AOB=�AOC”) which were necessary to satisfy this condition. It is the ‘open 
problem’ situation that made it possible for KA to use these two ways of thinking 
interactively. Furthermore, KA actually wrote in his worksheet two types of flow-chart 
proof. Each of these used different conditions: SSS and SAS. To complete these proofs 
he similarly determined the assumptions that were necessary to deduce the congruent 
triangles. Likewise, most other students in the class constructed three different proofs 
using similar thinking processes.  
From the above we can identify as the functions of ‘open problem’ flow-chart proving 
that it can encourage thinking forward/backward interactively, accompanied by 
relational understanding of the structure of proof. The amplification of thinking 
backward, in particular, can be triggered by the ‘open problem’ situation. Moreover, 
the flow-chart proof format can support students to associate two modes of 
forward/backward thinking visually. This systematic learning with thinking 
forward/backward interactively is useful for the planning of formal proof that usually 
precedes its construction (Tsujiyama, 2012). Thus the learning of ‘open problem’ 
flow-chart proving in the first phase of introductory lessons of formal proving can be 
preparatory to the planning of formal proof in a ‘closed problem’ situation. 

CONCLUSIONS 

Within our focus on students understanding of the structure of proof, we can identify 
two functions of ‘open problem’ flow-chart proving. One is that it can enhance the 
transition towards the relational understanding of the structure of formal proof by 
visualizing both the connection of singular proposition by hypothetical syllogism and 
the connection with universal instantiation between a singular proposition and the 
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necessary universal proposition. A second function is that ‘open problem’ flow-chart 
proving can encourage thinking forward/backward interactively, accompanied by 
relational understanding of the structure of proof. In particular, this study illustrates 
that ‘open problem’ flow-chart proving can give students a chance to find necessary 
conditions and combine them in order to connect assumptions with conclusions. This 
systematic learning with thinking forward/backward interactively is required to make 
the planning of formal proofs. We suggest that it is these functions that contribute to 
developing students’ understanding of proofs, and that is why the students who 
experienced our introductory lessons scored 10% better than the national average of 
proof problems in general (Miyazaki, Fujita & Jones, 2012).  
Due to page limitation we cannot show that some students, after finishing solving the 
assigned task, attempted to ‘expand’ and/or ‘break’ the given flow-chart proof format 
so that they could show their own way of proving. This further illustrates that the 
innovative use of ‘open problem’ flow-chart proving, as in our project, can cultivate 
students’ productive thinking about formal proofs even in introductory proof lessons. 
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