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In a developmental research approach, from a sociocultural position, we address the 
meanings students make of mathematics in teaching sessions and how this relates to 
the intentions of the teacher and approaches to teaching. Analyses of data come from 
small group tutorials of one tutor with first year university mathematics students 
(n=5). We exemplify using data from one tutorial which addressed concepts in 
calculus that first year students encounter in their lectures. We explain teaching design 
and an approach to implementing it, and address issues that arise in practice and how 
these are related to students' meaning-making of mathematical concepts. Development 
of ‘knowledge in practice’ is seen alongside that of knowledge in the public domain. 

INTRODUCTION  

In one UK university, first year mathematics students are expected to attend lectures in 
calculus and linear algebra. Each student is also a member of a small tutor group (of 
from 5 to 8 students) that works on the material of these lectures. Lecturers in the 
modules set problem sheets each week for students to tackle. In small group tutorials 
(one hour per week), the tutor works with students on material relating to the two 
modules, often taking questions from the problem sheets. We focus here on the activity 
of one tutor with her group of 5 students who are in a joint programme of Mathematics 
and Sport Science. Her main aim for tutorials is to support students to understand, or to 
make meaning of the mathematics of the lectures. In each tutorial the tutor makes a 
judgement as to which questions to focus on in the tutorial (other tutors might do things 
differently). For her, these questions should satisfy two conditions: 

a. they should reveal key concepts in the mathematics of the lectures – to some 
extent, all questions set by the lecturer do this, but the tutor chooses particular 
ones to highlight key concepts in her judgment; 

b. they should be questions with which students struggle or have difficulties. 
A general expectation is that students will work on the problem sheets in their own 
time and come to a tutorial with their questions. Therefore, in every tutorial the tutor 
asks students to inform her of questions with which they struggle or would like help. 
They respond occasionally but largely they do not respond. It often seems as if they 
have not addressed any of the questions before coming to the tutorial. The tutor does 
not want to exercise too much pressure on what they have to do before coming, since 
they are then likely not to come. She would rather they came, so that (she hopes) some 
‘useful’ work can be done. The tutor decides what is ‘useful’ based on her knowledge 
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of the mathematics and of her students and what they find difficult.  After the tutorial, 
the tutor reflects on what has occurred, whether her earlier judgments were 
appropriate, and what alternatives there could have been. 

RESEARCH QUESTIONS 

The aim of this research is to study how the practical manifestations of teaching in a 
tutorial satisfy the aims of teaching for students’ learning (Jaworski, 1994; 2003b). We 
wish to discern as far as possible the associated meaning making of the students in a 
tutorial and how this is (or not) linked to the style of teaching, taking into account the 
wider social factors of the setting. We have three basic research questions: 

1. What is the nature of the teaching manifested in the tutorials?  
2. What student meanings can we discern and in what ways?  
3. In what ways can we link (1) and (2) and what issues does this raise? 

Through this research, we seek also to redress the scarcity of research into the “actual 
classroom teaching practice” of university teachers (Speer, Smith and Horvath, 2010, 
p. 99) and extend knowledge of teaching in small group tutorials (Jaworski 2003b). 

MEANING-MAKING IN MATHEMATICS 

There is a considerable literature on mathematical meaning making at a range of levels 
(e.g., Kilpatrick, Hoyles, & Skovsmose, 2005). We set the scene here by drawing on 
three perspectives. The first links meaning making to making connections, both within 
mathematics and to the world beyond mathematics. 

[M]athematical meanings derive from connections: intra-mathematical connections which 
link new mathematical knowledge with old and extra-mathematical meaning derived from 
contexts and settings which include – though not uniquely – the experiential world” (Noss, 
Healey, & Hoyles, 1997, p. 203). 

The second suggests that making meaning in mathematics is a process of 
“socialisation” into the culture and values of “doing mathematics” (Ben-Zvi & Arcavi, 
2001). In the third, Nardi (2008, p. 111) refers to students “mediating mathematical 
meaning through symbolisation, verbalisation and visualisation” suggesting that 
students experience the tension between the need to appear to be, or to be 
mathematical. Thus, making connections, the worlds of mathematics and beyond, and 
processes of socialisation into culture and values are all central to making meaning in 
mathematics. Further, students have to get beyond the instrumental use of key 
processes in learning mathematics to become mathematical, to make meanings at a 
conceptual level. We draw on all these perspectives in our analyses. 

METHODOLOGY 

We take a sociocultural perspective in which knowledge is seen to develop in social 
settings as part of which individual sense-making develops (e.g., Wertsch, 1991). 
Teaching and teaching resources are seen to have a central mediating role in the 
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development of mathematical meanings by students. People make sense of 
mathematics in relation to the worlds of which they are a part; these ‘worlds’ capture 
local and more global situations and contexts surrounding human activity (Holland, 
Lachicott, & Skinner, 2001), the wider social issues mentioned above. 
Our methodology is developmental: we use research as a tool to promote development 
as well as a tool to observe and analyse development (Jaworski, 2003a). We are two 
researchers: one researcher is also the tutor, whose job is to teach the students – to 
enable their mathematical understanding. She wants to promote meaning making and, 
at the same time, to discern meaning making: related aims which might potentially be 
in tension. The other researcher observes activity and collects data through audio 
recording1 and note taking. In discussion with the tutor, she enables the tutor to reflect 
critically on the teaching process and together they seek evidence of students’ meaning 
making (audio-recorded). An expectation of this relationship is that the tutor, through 
acting as a researcher, develops knowledge in practice which feeds back into the 
design of teaching. Thus two kinds of knowledge are generated – knowledge in 
practice which informs the teaching process, and knowledge which can be 
communicated in the wider research community (for example through this paper). 
We collected data from a series of tutorials (10 in all) in Semester 2 of the academic 
year. At the time of writing, analysis is in its early stages; we expect findings to 
develop as analysis proceeds. Briefly, the data from a tutorial is first split into episodes 
in which an episode is a section of the tutorial which has some completeness in itself 
(e.g., the work of the group on a given problem). We undertake a grounded analysis of 
the data, episode by episode, coding and categorising (Corbin & Strauss, 2008). 
We demonstrate our analytical process through a case of one episode taken from a 
tutorial from Week 6 (of 12 weeks). Four (out of 5) students are present plus the tutor, 
and the co-researcher as observer. Lectures are currently focusing on multivariable 
calculus. The group works on questions from the lecturer’s problem sheet involving 
differentiation of functions of two variables. We focus on an episode of 10 minutes 
from close to the beginning of the tutorial. Our analysis is both particular to this 
episode and also related to analysis of other tutorials and episodes. Codes emerge 
continually and it is necessary to keep revisiting earlier codes in order to rationalise 
them with new insights. In particular we recognise the emergence of tensions in the 
process of teaching development. Analysis is ongoing and we expect to set these 
observations against those emerging from other data.  

ANALYSIS OF TEACHING 

The tutor needs to find out as quickly as possible what the students already know and 
can do: if basic questions are answered quickly/readily, they can move on to more 
demanding questions. Students are usually able to tackle procedural questions, but 

                                           
1 Although video data would be valuable it is considered that use of a video camera would be too 
disturbing for the students.   
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those demanding conceptual insight cause more difficulty. She chose her first question 
to encourage students to make sense of connections between symbolisation of partial 
derivatives and their graphical representations, as follows: 

The three graphs below show a function f and its partial derivatives fx and fy  
Which is which and why 

 
As also recognised in analysis of other tutorials, the tutor employs a questioning style. 
Analytical codes used previously have included ‘TQ-probing’ and ‘TQ-prompting’ to 
identify ‘tutor questions’ which “probe” (seek out students’ meanings) or “prompt” 
(suggest particular meanings). In this episode, almost every ‘turn’ of the tutor includes 
a question or questions to the students, so this has required a finer coding of questions. 
The tutor says that she is trying to find out what students know and can express, which 
she believes will give her insight to their understanding (or meaning-making) in 
mathematics. In addition she expects their responses to prompt their fellow students to 
think about the concepts and provide alternative or clearer answers to the questions. 
Thus, she hopes to encourage students’ engagement both individually and with each 
other. Her probes/prompts are designed to provide opportunities for students to think, 
express and articulate what they see and understand, and to reveal what they are not 
clear about. Such revealing of students’ lack of clarity or inability to express clearly, 
leads to the successive questions that she asks. Analysis shows the following kinds of 
questions being asked most frequently as prompting or probing questions: 
Meaning Questions (Qm) or (Qmw) – overtly seeking students’ expression/  
articulation of meaning, often in response to the question “why?” 
Inviting Questions (Qi) – asking students to respond; (Qig) – offering the question 
generally (to all students) or (Qid) directly to one student (named). The question can be 
a specific question (Qigs or Qids) or non-specific question (Qig or Qid) where 
‘specific’ means that it refers to a specific mathematical item. Often these questions 
also seek meaning, but more implicitly. 
Do the students make sense of the particular notation? 

3: T: So, first of all what are these things fx and fy? Alun. What is, what do you 
mean, if you write fx and fy? [Qm] [Qids] 

4: S:(Alun) df/dx  
5: T: And how would you write it? [Qid]  
6:  [He indicates with his hand the partial derivative symbol, ∂] 
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7: T:  Yes partial df/dx and similarly fy is partial df/dy. When you say df/dx 
it’s not clear, so you want to be clear. We would say here partial df/dx 
and partial df/dy [She writes on the board ∂f/∂x and ∂f/∂y] 

8: T: So in the question then, we have three graphs; one of them is a function f 
and the other two are the partial derivatives df/dx and df/dy. Now, which 
is which? [Qig] 

At turns 3 and 5 we see direct and specific questions to Alun, who responds. At turn 8, 
there is a general question to the group as a whole. As well as the tutor’s questions 
here, we draw attention to her emphasis on terminology and symbolism [7]. Previous 
tutorials have revealed the importance of ensuring that students are clear about terms 
and their meanings. From this interchange she sees that Alun is aware of the meanings 
of fx and fy as shown by his words and gestures. Her reiteration, at turn 7, can be seen as 
emphasis for the other students. 
What sense are the students making of what they see? 

12: T: … OK, how about you Erik? [Qid]  
13: S: (Erik)  not really sure but I guess that, er, f will be the middle one.  
14: T: OK, why do you think that?   [Qmw] [Qid]  
15: S: (Erik) because it is got the, er, the slants of the first one, and the… 
16; T: so you’re seeing a relationship between the one in the middle and the 

other two. What do you mean by the slants? [Qm] [Qids]  
17:  S: (Erik) er, I don’t know, just the, the gradient there.  
18: T:  if you’re right and the function is the middle one, erm, before we go any 

further, Alun, do you think the function is the middle one or would you 
say one of the others? [Qids]  

19:  S: (Alun) it looks like the more complex 

Here we see direct questions to Erik and Alun [12 & 18] and a why question to Erik 
[14]. Erik offers the key word ‘slants’ which the tutor asks him to clarify. It is ‘key’ 
because it is suggestive of meaning, which the tutor seeks to clarify so that it gains 
more general meaning for the group. As result of further questions, Alun offers the 
term ‘complex’, which the tutor goes on to pursue, in a similar style in turns 20 to 32. 
We pick up the dialogue again at turn 33 where the questioning continues. 

33: S: (Brian): Well, I guess when you differentiate, you’re almost simplifying it to your 
next .[inaudible]  

34: T: OK, so if what we have got is, in some sense a polynomial, then when we 
differentiate a polynomial we get a lower degree. [Pause – looking at 
students] So is that what you meant by ‘simplifying’? So is everybody 
agreed then that the middle one is the function? OK. It is!! It is. So look 
to the one on the right, Erik, and tell me how the one on the right fits with 
what you see in the middle. Is that going to be the partial derivative fx or 
is it going to be the partial derivative fy? [Qids]  

35: S: (Erik) erm, derivative of x [inaudible] 
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36:  T: Can you say why? [Qmw]  
37:  S: (Erik) aah.. because, I dunno, it looks as if [inaudible] along x and the other as if 

it kind of moving up and down y [inaudible] 
38: T: so you are changing your mind? [they laugh] How about you Alun? 

[Qid]  
39: S: (Alun) erm [long pause] I dunno.  
40: T:  Well, let’s suppose that is fx as Erik said. What does it mean for it to be fx. 

I mean, if I have a function such as this [points to the middle graph], and 
I am looking to find fx. What do I do?. It is as if what? [Qig]  

41: S: (Alun) You fix y  

ADDRESSING RESEARCH QUESTIONS 

Question 1 has been addressed (briefly) above. In relation to Question 2, analysis 
points to lines 6, 15, 17, 37 and 41 as indicative of student meaning. The articulation 
(or gesturing) gave clues to students’ insights in relation to the problem. Students’ 
difficulties to express their thinking in articulate forms meant that meanings were 
hinted at rather than uttered with clarity. We might say there is evidence of students 
linking the nature of the first and third graphs to the one in the middle and using 
informal language to express meaning (e.g., 16: slants; 37: as if it kind of moving up 
and down y); the need to “fix y” in order to find fx. At this stage in the process of 
meaning-making, nothing formal was expressed or written down.  
In a presentation of the above data in a seminar in the UK, it was suggested that the 
tutor is funnelling the discussion (Bauersfeld, 1988), prompting students so that they 
are giving her what they perceive she wants, and that in fact the students have little 
understanding of the concepts involved. Such interpretation points to the Topaz Effect 
(Brousseau, 1985) or Didactic Tension (Jaworski, 1994; Mason, 2002) in which a 
teacher’s questions lead students to give correct answers without the understanding the 
teacher wants. Thus, discerning meanings is important to judging such interpretation. 
By conducting a finer (discourse) analysis (of the third short extract above, taking it 
turn by turn), we show how we try to address such issues concerning meaning making 
and the influence of the teaching style. After Alun’s statement at 19, the tutor pressed 
the students to say what it means for the function to appear ‘more complex’, to say 
“WHY” it would be more complex. The other students agreed with Alun’s statement 
about complexity, but could not say why. At 33, Brian offers a new idea, that 
differentiation simplifies a function, resulting in a function simpler at the next stage. 
The tutor picks up and extends this idea [34] recognising that such simplification could 
happen in differentiating a polynomial function to obtain a function of lower degree. 
This is tutor input; she knows that the students are familiar with these concepts and 
seeks to remind and consolidate. Her question “So is that what you meant by 
‘simplifying’?” is somewhat rhetorical: she looks at them all and judges their response 
to it through body language and facial expressions which the audio data cannot 
capture. This leads to her acknowledgement that they are right about the middle graph 
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representing the required function. There is also a sense of pace, and of needing to 
move on. Her next question is a direct prompt to Erik, challenging him to declare 
which derivative the right hand graph represents. He suggests fx, and the tutor again 
asks ‘why?’. He struggles to answer, but speaks of ‘movement’ along x or ‘up and 
down’ y. These words suggest meaning to the tutor. She asks another student (Alun) to 
comment, and he is unable to do so. She then follows up [40] with more direct 
questions, building on Erik’s suggestion. This might be seen as ‘funnelling’. However, 
there is an issue of what to do at this point – she could just tell them the answer, giving 
her own explanation; instead she pursues the questioning approach. Alun’s response, 
“You fix y”, seems to be prompted by her “What do I do”. The use of pronouns, I and 
you, makes the situation more personal. They have talked about fixing x or y in order to 
get partial derivatives on an earlier occasion, so there are shared meanings. She knows 
that he knows about fixing a variable, so the fact that he brings in the idea at this point 
(albeit in response to her prompt) suggests to the tutor that he is starting to make sense 
of the various ideas (we see elements of verbalisation and visualisation although not 
yet the formal stage of symbolisation – Nardi, 2008). 
There are dangers in a teacher analysing her own discourse with students, it being 
tempting to read more into events than was actually evident. However, meaning 
making for the tutor, trying to make sense of her students’ meanings, is informed by the 
wider social setting: nuances of tone, gesture and body language more generally as 
well as historical common experiences and wider social perception. She has had 
conversations with individual students (for whom she is personal tutor) about their 
work, progress and social activity. The fact that these students are sport scientists as 
well as mathematicians brings additional factors to consider – they have less time to 
give to their mathematics than students who study only mathematics, and have given 
many indications previously of struggling with mathematical concepts. 

THE NATURE OF KNOWLEDGE 

The case explored above offers some early insights into a relationship between 
students’ meaning making and the teaching approach. Students respond only 
tentatively to the tutor’s questions; responses are not articulate; it is hard to gain insight 
to what they understand. It is important for students to be able to explain not only what 
they see, but why it is so. Repeatedly asking ‘why’ is a form of socialisation: in 
mathematics we need to be able to explain what we do in conceptual terms. However, 
we need words to explain difficult ideas – expressing informally can lead to more 
formal articulation. Students are unused to such expressing. Creating opportunity for 
them to think and express is an important part of the questioning approach. In this 
episode, unlike some others, there was little dialogue between students. Analysis 
shows the tutor where such dialogue would be valuable and prompts consideration of 
where and how it could have been achieved. The tutor recognises tensions: in some 
cases it might seem more appropriate to offer her own explanations from which 
students can gain insights; however, students’ reliance on the tutor giving explanations 
may inhibit further their willingness to try for themselves. Such growth of awareness 
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for the tutor is the basis of knowledge in practice which informs future action. As we 
analyse further we expect to be able to crystalize elements of, for example, the 
questioning approach and its relations to meaning-making. This can contribute to a 
broader awareness of how we encourage students’ meaning-making and the issues and 
tensions involved. Such shared knowledge can lead to more informed practice widely. 
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