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Student understanding of integration has become a topic of recent interest in calculus 
research. Studies have shown that certain interpretations of the definite integral, such 
as the area under a curve or the values of an anti-derivative, are less productive in 
making sense of contextualized integrals, while on the other hand understanding the 
integral as a Riemann sum or as “adding up pieces” is highly productive for 
contextualized integrals. This report investigates the frequency of these three 
conceptualizations in a general calculus student population. Data from student 
responses show a high prevalence of area and anti-derivative ideas and a very low 
occurrence of summation ideas. This distribution held even for students whose 
calculus instructors focused on Riemann sums while introducing the definite integral. 

INTRODUCTION 

First-year calculus has received much attention in mathematics education in recent 
years due to its significance in science, technology, engineering, and mathematics 
(STEM) fields. In particular, the calculus concept of the definite integral has become a 
current topic of interest among mathematics education researchers (e.g. Black & 
Wittmann, 2007; Hall, 2010; Jones, 2013; Sealey & Oehrtman, 2007; Thompson & 
Silverman, 2008). The integral is an important topic to investigate because it is 
commonly used in subsequent mathematics courses (see Brown & Churchill, 2008; 
Fitzpatrick, 2006) and provides the foundation for many concepts in science and 
engineering coursework (see Hibbeler, 2012; Serway & Jewett, 2008). 
However, several studies demonstrate that students are struggling to apply their 
knowledge of integration to subsequent courses (e.g. Beichner, 1994; Christensen & 
Thompson, 2010; Grundmeier, Hansen, & Sousa, 2006; Pollock, Thompson, & 
Mountcastle, 2007). This finding has led some researchers to begin to examine why 
students are having this difficulty. Sealey (2006) and Jones (2013) suggest that the 
“area under a curve” notion alone is not sufficient for understanding definite integrals. 
Thompson and Silverman (2008) promote the development of an “accumulation” 
conception of the integral in order to help students. 
Jones (under review) subsequently conducted a more thorough analysis of the 
anti-derivative, area under a curve, and summation interpretations of the definite 
integral by students in both mathematics and science contexts. The results demonstrate 
that the “summation” conception proved highly productive for understanding definite 
integrals that are either situated in a larger context or that contain variables 
representing physical quantities. By contrast, the study confirms that the “area under a 
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curve” and “values of an anti-derivative” conceptions are less productive in making 
sense of these types of contextualized definite integrals. While the findings do not 
imply that the area and anti-derivative ideas are not important (nor that they should not 
be learned) they do suggest that it is critical for students to have a robust and accessible 
summation conception of integration in their cognitive repertoire. 
Based on these results, it is important to ask the question: Are calculus students 
generally constructing their knowledge of the integral in a way that promotes the 
beneficial summation conception? This paper seeks to answer this question by 
investigating (a) how common each of the three conceptualizations are when a large 
sample of calculus students are asked to think about integration, and (b) whether 
standard ways of introducing Riemann sums are sufficient for a general student 
population to internalize the summation conception. 

THEORETICAL PERSPECTIVE 

Symbolic forms 

For this study, the manner in which students hold their knowledge of the integral is 
characterized through the lens of symbolic forms (Sherin, 2001). A symbolic form is a 
blend (Fauconnier & Turner, 2002) between a symbol template and a conceptual 
schema. The symbol template refers to the arrangement of the symbols in an equation 
or expression, such as 

[]

[]
[] []d³ , where each “box” can be filled in with symbols. The 

conceptual schema is the meaning that underlies the symbols in the template. Jones 
(2013) documents students’ symbolic forms of the definite integral that are associated 
with the notions of area under a curve, values of an anti-derivative, and summations. 
Note that the students in the study regularly ascribed “anti-derivative” meanings to 
both indefinite and definite integrals. Furthermore, Jones describes a “deviant” of the 
typical Riemann sum conception that was dominant in some students’ thinking. These 
four symbolic forms aided the analysis of the student data by helping determine when 
students were drawing on each the area, anti-derivative, or summation 
conceptualizations of the integral. A brief description of each form is provided here. 
Area and perimeter: This symbolic form interprets each “box” in the symbol template 
as being one part of the perimeter of a shape in the (x-y) plane. The differential, “d[],” 
represents the “bottom” of the shape by dictating the variable that resides on the 
horizontal axis. This symbolic form is associated with the “area under a curve” notion. 
Function matching: This symbolic form interprets the integrand as having come from 
some “original function.” The original function became the integrand through a 
derivative, and the differential “d[]” indicates the variable with respect to which the 
derivative was taken. This form is associated with the “anti-derivative” conception. 
Adding up pieces: This form casts the differential as being a tiny piece of the domain, 
given by the limits of integration. Within each tiny piece, the quantities represented by 
the integrand and differential are multiplied to create a small amount of the resultant 
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quantity. The integral symbol dictates an “infinite” summation that ranges over the 
domain. This form is related to the Riemann sum idea. 
Adding up the integrand: This is a “deviant” of the adding up pieces form. The key 
difference is that within each tiny piece, only the quantity represented by the integrand 
is added up. This resulting “total” from the integrand is then multiplied by the entire 
domain (length, area, or volume) to get the resulting quantity. This form fails to 
adequately describe the Riemann sum process, but is rooted in ideas of summations. 
Manifold view of knowledge 

Symbolic forms can be considered a subset of “cognitive resources” (Hammer, 2000), 
which are any piece of cognition that can be drawn on and employed as a unit, whether 
large or small. The main idea from cognitive resources that is used for this paper is the 
push away from a “unitary view” of concepts to a “manifold view” of knowledge 
(Hammer, Elby, Scherr, & Redish, 2005). The theory of resources argues that a 
“concept” such as the integral is comprised of many small and large elements—like 
rectangles, graphs, functions, ideas about summation, areas, limits, anti-derivative 
rules, and so forth—that are too complex to be considered a single entity. 
Thus, this study assumes that students can think about the integral by drawing on 
certain aspects of their “integral knowledge” while other aspects remain dormant. For 
example, a student may look at an integral and immediately think “area under a curve” 
without ever thinking about Riemann sums. This does not necessarily mean that the 
student does not have a Riemann sum conception in their cognition, but rather that the 
area conception is much more familiar and readily accessible to them. This has 
implications for learning integrals, since students need not only to “assimilate” a 
summation conception somewhere in their cognition, but that that conception needs to 
be created in a way that it is prevalent in their thinking to capitalize on its usefulness. 

METHODS 

Initial survey 

In order to investigate the prevalence of the area, anti-derivative, and summation 
conceptions of the definite integral, 150 students at two major colleges in the Western 
United States, who had successfully completed first-semester calculus, were recruited 
to participate in a survey that asked them open-ended questions about definite 
integrals. A χ2-test revealed no significant difference between the students at these two 
schools, in terms of the frequencies of the responses that were coded as belonging to 
the each conception of the integral used in this study (see below for more detail). This 
allows for the assumption that these students may be considered representative of the 
general calculus student population. The choice to use successful first-semester 
students is based on the fact that many key aspects of the integral are explored during 
the first semester: areas under curves, the Riemann integral definition, the 
Fundamental Theorem of Calculus (FTC), the Net Change Theorem, velocity/position 
applications, and anti-derivative techniques (including u-substitution). 
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To recruit students, several second-semester calculus courses were visited within the 
first two days of the semester in order to administer the survey. Students who had 
already taken second semester calculus (or the equivalent in high school) were asked 
not to complete the survey, to keep the focus of the study on students who had only 
successfully finished first-semester calculus. The students who participated were given 
fifteen minutes to complete the survey. 
Two of the four items from the survey form the focus for this paper. The first item 
reads, “Explain in detail what ( )

b

a
f x dx³  means. If you think of more than one way to 

describe it, please describe it in multiple ways. Please use words, or draw pictures, or 
write formulas, or anything else you want to explain what it means.” The item clearly 
asks the students to express any and all ways that they conceive of the integral and this 
instruction was reiterated to the students when the surveys were administered. The 
second item reads, “Why does an integral need a ‘dx’ on it? For example, why can’t it 
just be 

1 3

0
x³  instead of 

1 3

0
x dx³ ? Explain in as much detail as you can.” The main 

purpose of this question was to give the students a second context to discuss their ideas 
about integrals as well as to ask them to mentally break apart the integral symbol 
template, in order to discuss the integral in more detail. The way in which they 
explained the existence of “dx” was also compared to the symbolic forms of the 
integral described in the previous section, to see if the students were possibly invoking 
other conceptualization beyond what they used for their responses to item 1. 
Responses to the items were coded into the “area,” “anti-derivative,” “summation,” or 
“weak summation” categories. Many responses were coded into multiple categories if 
the students expressed more than one idea in their answer. Responses were coded 
based either on (a) an explicit statement regarding one of the three main 
conceptualizations, or (b) the inferences made by the correlation of a response to one of 
the symbolic forms of the integral. The “weak summation” category was included 
since several responses hinted at a summation notion, but were not articulated enough 
to be conclusive. Also, responses along the lines of the adding up the integrand 
symbolic form were placed in “weak summation.” Confidence intervals (95%-level) 
were used to estimate the percentages of the overall calculus student population that 
might respond similarly to these survey items (see Triola, 2010). 
Classroom observations and second survey 

In order to investigate whether standard classroom instruction can adequately support 
the creation of a robust summation conception, two veteran instructors of 
first-semester calculus from one of the schools were recruited for observation. Both 
instructors taught large sections (200+ students) and the first five of their one-hour 
lessons on integration were observed and videotaped. Both instructors had taught 
calculus many times and used standard templates for their lesson schedule. A sample 
of students from their courses were surveyed (n = 55), using a “cluster sample” 
technique on the individual lab sections. This occurred during the same semester as the 
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previous survey, ensuring that there was no overlap between the two samples. A χ2-test 
was conducted for both survey items (α = .05) to compare the frequencies of responses 
of these instructors’ students to the responses of the general sample (see Triola, 2010). 

RESULTS 

General population sample 

Table 1 illustrates the frequency of responses that fit under each conceptualization of 
the integral for items 1 and 2. Note that since many students provided elaborated 
answers that fit into more than one category, the frequencies add up to more than the 
sample size. Confidence intervals (95%-level) have been included as estimates for the 
percentage of the overall calculus student population that might respond similarly. 

Conceptualization Responses from item 1 Reponses from item 2 
Area 131 (82.0% < p < 92.7%) 7 (1.3% < p < 8.0%) 

Anti-derivative 60 (32.2% < p < 47.8%) 114 (69.2% < p < 82.8%) 
Summation 

Weak summation 
10 (2.7% < p < 10.7%) 

7 (1.3% < p < 8.0%) 
11 (3.2% < p < 11.5%) 
2 (n/a, low frequency) 

Table 1: Frequencies of responses (n = 150), with confidence intervals 
The data show a high prevalence of area and anti-derivative conceptions when students 
think about the integral. This in and of itself is not bad, since these two notions are 
helpful, useful ideas. However, what is surprising is the low frequency of students who 
invoked any type of summation conception. Even taking “summation” and “weak 
summation” together, only 17 out of 150 students  (6.3% < p < 16.4%) made any kind 
of statement dealing with summations on item 1. Further, 117 out of 150 students 
(71.4% < p < 84.6%) made no mention of anything related to summations whatsoever 
on either item 1 or item 2. With confidence, I can assert that roughly three-fourths of 
successful first-semester calculus students leave their first-semester course without a 
familiar, accessible conception of the Riemann sum or any related “adding up pieces” 
idea. This, of course, is not to say that these students have no summation conception in 
their cognition; they may express something along these lines if pressed. Yet, given the 
important nature of the summation conception (Jones, under review), it is striking that 
so few students “choose” to activate that knowledge when asked to explain what a 
definite integral is or what it means. This has important ramifications for 
understanding integrals in further coursework where a Riemann sum conception is 
critical for making sense of a contextualized integral expression or equation. 
Observed instructors and their students 

Both observed instructors used Riemann sums to introduce integration, as a way to 
approximate the area underneath the graph of a function. They drew the familiar 
rectangles under the curve and walked through examples of calculating left-hand, 
right-hand, and midpoint approximations. Both instructors regularly discussed 
Riemann sums throughout the first two one-hour class sessions. During the third lesson 
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both instructors moved to the Fundamental Theorem of Calculus and then, for the 
remainder of the observed lessons, the instructors focused on calculating 
anti-derivatives and discussing a variety of integral properties. In short, their 
instruction reflected how many textbooks present integration (e.g. Stewart, 2012; 
Thomas, Weir, & Hass, 2009). These observations show that Riemann sums were a 
significant portion of the early instruction regarding integration. 
Based on these observations, one might hope that these students showed a stronger 
tendency to interpret integrals through a summation interpretation, in addition to the 
area and anti-derivative conceptualizations. Unfortunately, however, in essentially 
every way these students reflected the general population sample. Table 2 shows the 
breakdown of responses from these instructors’ students (n = 55), including p-values 
from the χ2-tests (α = .05) that were done on the frequencies of responses from these 
students versus the frequencies of responses from the general population sample. 

Conceptualization Responses from item 1 Responses from item 2 
Area 47 1 

Anti-derivative 14 38 
Summation 

Weak summation 
(χ2-test) 

8 
4 

p = .13 

9 
3 

p = .07 
Table 2: Frequencies of responses (n = 55) and p-values from χ2-tests 

Neither p-value was below the threshold for statistical significance. The p-value for 
item 2 was close to the “.05” mark, but since neither test was significant, the results 
suggest that there is no important difference between these instructors’ students and 
the overall population described previously. This outcome leaves us with the 
conclusion that the attention the instructors gave to the Riemann sum throughout their 
first two lessons did not make an impact in supporting the students’ creation of a robust 
summation conception. Therefore, merely having Riemann sums present during 
instruction is not sufficient for accomplishing this goal. More, apparently, is needed. 

DISCUSSION AND FUTURE DIRECTIONS 

The results of this study suggest that simply giving attention to Riemann sums is not 
enough to help students construct a viable summation conception in regards to 
integration. By examining the manner in which these two instructors introduce 
integration, we see a common theme that may contribute to this issue. 
Both instructors began their introductory lesson on integration by using the “area under 
the graph of a function” as the primary motivation for the study of integrals. Riemann 
sums were invoked only as a way to calculate the irregular shapes created by the 
graphs, since basic geometry could not be used. For example, one instructor began the 
lesson by saying, “We’re going to draw a graph… And I want to find the area under 
this [graph], between the x-axis and this [graph].” The instructor then created 
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rectangles underneath the graph to approximate the area. Similarly, the second 
instructor introduced integration by saying that areas under curves was the second 
“main idea” of calculus. “Second is integrals. Integrals can be thought of as area under 
a curve.” He then drew a generic graph, with vertical lines at x = a and x = b, and 
shaded in the area of the shape created by the graph and the vertical lines. “This area 
between the curve and the x-axis, that’s represented by the idea of an integral.” This 
instructor then also used Riemann sums to approximate these irregularly shaped areas. 
It appears from these lessons that, even though Riemann sums are used, the central 
concept portrayed to the students is still that of “area under a curve.” In fact, Riemann 
sums are used only as a “tool” for getting at these areas. By doing this, instructors may 
inadvertently be reducing Riemann sums to a procedure for calculating areas under 
curves—the more salient goal of the lesson. The summation conception does not have 
the chance to stand on its own as an important idea. Thus, when students encounter the 
FTC, they might decide that anti-derivatives are a better/easier “tool” for calculating 
areas, and the Riemann sum conception takes a cognitive “backseat” to the 
anti-derivative notion. This may, in part, explain the students’ prevalent use of areas 
and anti-derivatives to explain integrals, while rarely appealing to summations. 
In order to investigate this problem further, the author is currently involved in a design 
experiment that seeks to examine other ways of introducing the integral, in order to 
highlight the summation conception as the basis of the integral. This is done through 
several activities, based off those described in Jones (2013/14), that use Riemann sums 
without discussing areas under curves. For example, the accumulation of water spilled 
from a pipe can be estimated, using Riemann sums, from discrete data points. Or the 
mass of an object with non-uniform density can be estimated by selecting density data 
points and multiplying them to each small piece of volume. Preliminary results of the 
study are showing promising outcomes for conveying to students that the Riemann 
sum is the central, underlying conception (and definition) of definite integrals. 
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