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This paper presents preliminary results of longitudinal study on the development of 
children’s geometric thinking in dynamic geometry environments. Here we investigate 
young children’s (age 7-8, grade 2/3) interactions, in a whole classroom setting with 
an Interactive Whiteboard, with Sketchpad-based tasks involving the use of different 
types of constructed triangles (scalene, isosceles, equilateral). We use Sfard’s 
discursive approach to show how the children developed a reified discourse on these 
different types of triangles and how they described the behaviour of these triangles in 
terms of their invariances (side lengths and angles). 

INTRODUCTION 

In this paper, we report on an exploratory study conducted with a split class of grade 
2/3 children (ages 7-8) working with various types of triangle sketches using The 
Geometer’s Sketchpad. The focus of this research is to study how the use of Sketchpad 
affects the children’s thinking about triangles, including how they attend to various 
aspects of the dynamic sketches, how they talk and gesture about the moving objects 
on the screen, and how they reason about the behaviour of different types of triangles 
(i.e. scalene, isosceles and equilateral triangle). 

CHILDREN’S UNDERSTANDING OF CLASSIFICATION OF SHAPES 

Research shows that children have difficulty working with definition when classifying 
and identifying shapes (Gal & Linchevski, 2010). de Villiers (1994) suggests that 
classifying is closely related to defining (and vice versa) and classifications can be 
hierarchical (by using inclusive definitions, such as a trapezium or trapezoid is a 
quadrilateral with at least one pair of sides parallel – which means that a parallelogram 
is a special form of trapezium) or partitional (by using exclusive definitions, such as a 
trapezium is a quadrilateral with only one pair of sides parallel, which excludes 
parallelograms from being classified as a special form of trapezium). In general, in 
mathematics, inclusive definitions are preferred. A number of studies have reported on 
students’ problems with the hierarchical classification of quadrilaterals (Fuys, Geddes 
& Tischer, 1988; Clements & Battista, 1992; Jones, 2000). However, Battista (2008) 
designed the Sketchpad-based Shape Makers microworld that provides grade 5 
students with screen manipulable shape-making objects. For instance, the 
Parallelogram Maker can be used to make any desired parallelogram that fits on the 
screen, no matter what its shape, size or orientation—but only parallelograms. This 
motivated our research on children’s identifying and classifying of different types of 
triangles.  
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THEORETICAL PERSPECTIVE 

In previous research, we have found Sfard’s (2008) ‘commognition’ approach is 
suitable for analysing the geometric learning of students interacting with DGEs 
(dynamic geometry environments) (see Sinclair & Moss, 2012). For Sfard, thinking is 
a type of discursive activity. Sfard’s approach is based on a participationist vision of 
learning, in which learning mathematics involves initiation into the well-defined 
discourse of the mathematical community. The mathematical discourse has four 
characteristic features: word use (vocabulary), visual mediators (the visual means with 
which the communication is mediated), routines (the meta-discursive rules that 
navigate the flow of communication) and narratives (any text that can be accepted as 
true such as axioms, definitions and theorems in mathematics). Learning geometry can 
thus be defined as the process through which a learner changes her ways of 
communicating through these four characteristic features. In the context of identifying 
shapes, Sfard has proposed the following three levels of discourse characterised by 
different types of routines and word uses, which Sinclair & Moss (2012) use in their 
study of children’s interactions with DG triangles: 

x 1st level: the word ‘triangle’ is used as a proper noun. The routine of 
identification involves visual object recognition.  

x 2nd level: the word ‘triangle’ is used as a family name, that is, the name of a 
category of elementary objects; identification is made according to visual 
family recognition as well as through an informal properties check.  

x 3rd level: the word ‘triangle’ is used as the name of a category of objects, and 
identification is made through visual family resemblance first, and then 
verification/refinement of properties.  

At the 3rd level, since the condition specified by one definition (i.e. of equilateral) may 
be an extension of the condition in another (i.e. of isosceles triangle), children can 
make use of inclusive definitions (term suggested by de Villiers, 1994). We are 
particularly interested in investigating how the children might move between different 
word uses, routines, narratives and progress to higher levels of discourse.  

METHOD OF RESEARCH 

Participants and data collection 

This teaching experiment is part of a larger project that involves the study of children’s 
geometric thinking in the primary grades. We worked with grade 2/3 split classroom 
children from a pre-K-6 school in an urban middle SES district. There were 24 children 
in the class from diverse ethnic backgrounds and with a wide range of academic 
abilities. We worked with the children on a bi-weekly basis on a variety of geometric 
concepts for seven months. Three lessons were conducted on the topic of triangles. 
Each lesson lasted approximately 60 minutes and was conducted with the children 
seated on a carpet in front of an interactive whiteboard. Two researchers, and the 
classroom teacher, were present for each lesson. One researcher (second author) took 
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the role of the teacher for these interventions. Lessons were videotaped and 
transcribed. This paper is focused on the first and second of the three lessons. Previous 
lessons involved the concepts of symmetry and angles, but they had never received 
formal instruction about classification of triangles before.  
Dynamic triangle sketches  

Along the lines of work of Battista (2008), we developed the Triangle ShapeMakers 
sketches (see Figure 1) for different types of triangles (scalene, isosceles, equilateral 
triangles, right triangle). Each triangle type had a different colour (pink for scalene, red 
for equilateral, blue for isosceles and green for right). 

(a) 

 

(b) 

 
(c) 

 

Figure 1(a, b, c): Three different Triangles ShapeMaker sketches 
In the sketch shown in figure 1(a) all look like equilateral triangles, but only the middle 
one is constructed to be so; the bottom right one is an isosceles triangle and the top left 
is scalene. Students were asked to explore the similarities and differences between the 
three triangles. For the sketch in figure 1(b), the students were asked to explore which 
coloured triangles could fit in the given triangle outlines. Note that the equilateral 
triangles cannot be used, and only the right triangles will fit into the two left-most 
outlines. The sketch in figure 1(c) focused on exploring whether an equilateral triangle 
can fit into the given isosceles triangle (top) and whether an isosceles triangle can fit 
into a given equilateral triangle (bottom). 
Behaviour of dynamic scalene, isosceles and equilateral triangles  

Although no vertex was labelled in the sketches, we have done so in Figure 1a in order 
to explain the dragging behaviour of different triangles. In the scalene (pink) triangle, 
dragging any one vertex (A, B or C) does not move the other two vertices, whereas in 
equilateral (red) triangle, dragging vertex E or F (which determine the size of the 
triangle) moves the entire triangle except the vertex F or E respectively; dragging 
vertex D simply translates the triangle from one place to another. In the isosceles (blue) 
triangle, dragging vertex (I) does not move the other two vertices, dragging vertex H or 
G moves the entire triangle except the vertex G or H respectively. 
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EXPLORING STUDENTS’ LEARNING ABOUT TYPES OF TRIANGLES 

To begin, the teacher (second author) appointed three children to drag each of the 
coloured triangles in the sketch (figure 1a). The children seated on the floor were asked 
to be “detectives” and to “describe what kinds of triangles can be made”, “what can 
change and what stays the same” in each of the triangles. 
Comparing the dragging of scalene and equilateral triangle 

The first child Neva dragged the pink (scalene) triangle into various sizes and 
orientations i.e. skinny and long, small and big triangles. Then Adil dragged the red 
(equilateral) triangle and the teacher asked if he could make it long and skinny. 
Observing the dragging patterns, some students said no. The teacher asked the students 
that why is it not possible to make the red triangle long and skinny. 

Egan: Because the red one, it’s different than that (pointing to the pink triangle) 
and I think it can only go by a perfect triangle. 

The teacher asked what Egan meant by “perfect triangle”, to which Rabia responded: 
Rabia: Because the other triangle (pointing to the pink triangle) can move at a 

point but this one (red triangle) can move bigger or smaller differently. 

Another student described the behaviour of a perfect triangle as below: 
Jace: Everything moves with it except one point. 
Teacher: (Dragging the equilateral triangle). Even when it is getting bigger and 

smaller, is there anything that stays the same as I make it bigger and 
smaller? (Many children put their hands up) Neva? 

Neva: The angles. 

The children started to notice the changes in the red triangle as Adil dragged one of the 
vertices. Egan’s statement “it’s different than that” shows that he started to notice the 
differences between the red and pink triangles, even though they initially looked the 
same in their static configurations. Egan’s response ‘only go by a perfect triangle’ is 
based on his visual recognition of similarity to previously seen prototypical triangles, 
thus using a first level of discourse. Further, in Rabia’s description “other triangle can 
move at a point” and in Jace’s statement “everything moves with it except one point”, 
the action words ‘move at a point’, ‘everything moves’ shows that the students are 
paying attention to the particular kinds of movement depicted by each triangle. The 
dragging tool initiated this kind of reasoning, so that the transforming triangles 
functioned as new visual mediators. Rabia’s statement “move bigger or smaller 
differently” shows that she was noticing the different kind of size changing behaviour 
of the equilateral triangle as compared to the scalene triangle. The use of words ‘red 
one’, ‘it’, ‘the other triangle’, ‘this one’ to address the triangles show that the children 
are talking about one particular triangle as opposed to the family of those triangles. In 
addition, Neva noticed that ‘angles are staying’ the same under dragging. Thus, the 
children started to notice the informal properties (based on dragging behaviour) as well 
as formal properties (invariance of angles in red triangle) of the different triangles. 
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This shows that many of them are using a mixture of 1st and 2nd level discourse around 
types of triangles. 
Exploring the overlapping of one triangle over the other fixed triangle  

After the students explored the dragging of different triangles, the teacher asked them 
if they could fit the blue (isosceles) triangle over the pink (scalene) triangle (without 
touching the pink triangle). Rabia first matched the two vertices of the blue triangle to 
one side of the pink triangle (fig 2a) and then tried to drag third vertex (shown by green 
dot in fig 2b) in upward direction and concluded that she couldn’t fit the blue triangle 
onto the pink one. 

2a, 2b: Matching 
of two vertices  
by Rabia 

                    

2c: Jory’s  
stretching  
gesture 

 

Figure 2a, 2b, 2c: Snapshots of Rabia’s overlapping attempt & Jory’s gesture 
Teacher:  You think you can’t? How come you can’t?    
Rabia: Because I think if I move that one (placing marker at vertex  <black dot> in 

fig 2b), that one also moves (placing marker at green dot in fig 2b) 

The teacher asked for other arguments, and called on Dale and then Jory: 
Dale: Because the blue one can only move symmetrical.  
Jory: So, this one (placing right index finger at green dot (fig 2b)) wherever you 

move it, then this one (placing right index finger at black dot (fig 2b)) 
moves with this (placing left index finger at green dot (fig 2b)), so when 
you move, it will go that way (stretching his arms upwards along the two 
longer sides (figure 2c)).  

Rabia’s statement “if I move that one, that one also moves” shows that she is paying 
attention to the causal type of movement relationship between the different parts of the 
triangle. While Dale’s explanation “it can only move symmetrical,” suggests that he 
has noticed invariance in the isosceles triangle, either holistically, or as a function of 
the movement of the congruent sides. The systematic dragging of the vertex of one of 
the longer sides of the isosceles (blue) triangle by Rabia acted as a visual mediator and 
seemed to help Dale see the property of symmetry. Jory’s use of the words “wherever 
you move it, then this one moves with this” and “so when you move, it will go that 
way” along with the stretching arms gesture shows that he is also thinking about the 
simultaneous change in length of two arms of the isosceles triangle. The teacher 
labelled Dale’s reasoning “a symmetry argument” and Jory’s a “stretching argument”. 
Most of the students agreed with these arguments by raising their hands or nodding 
their heads. Overall, the students came up with three arguments: (1) dragging vertex 
argument (dragging one point moves the other point) (2) symmetry argument (blue one 
can only move symmetrical) (3) Stretching side argument (with arm stretching gesture 
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where two arms act as two sides of triangle). These arguments show a 2nd level of 
discourse because they refer to informal/formal properties of the isosceles triangle. 
Through teacher-led discussion, the students identified the properties of different sides 
staying the same or changing length in different triangles. After these invariances were 
stated explicitly, the teacher introduced the “special names” equilateral, isosceles and 
scalene for the red, blue and pink triangles, respectively. 
In the second lesson, the children worked on the sketch in Figure 1(b). An attempt to fit 
the equilateral (red) triangle into the right-angled isosceles outline (figure 1b) was 
unsuccessful, whereas the scalene (pink) triangle fit in that outline without any 
difficulty. When asked why the equilateral triangle could not fit, Thom said: 

Thom: It’s because mostly that won’t work because that one of them is seemed to 
be paralysed or something and doesn’t want to move from its seat. But the 
pink one... the scalene …can move anywhere it wants and the only one. I 
think it’s the only one that can get inside the shape. I think it’s only the 
green and pink that can make that shape, but the others are just paralysed. 

Thom used the words ‘paralysed’, ‘doesn’t want to move’ for equilateral and isosceles 
triangles, whereas for scalene triangle he used the words ‘can move anywhere’, ‘can 
get inside the shape’. Clearly, this vocabulary emerged after observing the free and 
restricted movements of different dynamic triangles and prompted him to make 
connections with real life experiences of the restrictive mobility of humans. Later, 
during the exploration of the third sketch (figure 1(c)), after the students had 
successfully placed an isosceles triangle into an equilateral outline, but not an 
equilateral triangle into an isosceles outline, the teacher asked: 

Teacher:  Why can we turn isosceles into equilateral, but we can’t turn equilateral 
into the isosceles, Lida? 

Lida:  Isosceles can be turned into equilateral because two sides have to be the 
same, but that doesn’t mean that all three sides can’t be the same. At least 
two sides should be same. 

In another overlapping task of scalene and equilateral triangle, the teacher asked   
Teacher: How come scalene can make equilateral triangle? 
Jory: Because scalene…um…they can create any shape of triangles. 

Lida’s statements “At least two sides should be same” and “that doesn’t mean that all 
three sides can’t be the same” give evidence of her use of inclusive definitions. Jory’s 
statement “they can create any shape of triangles” for scalene triangles shows his 
description of the behaviour of all scalene triangles as opposed to one particular 
scalene triangle. Also this description of scalene being able to create any shape of 
triangles makes inclusion of isosceles and equilateral triangles evident. Thus, Lida and 
Jory’s arguments show 3rd level of discourse. 
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DISCUSSION AND CONCLUSION 

Our preliminary analysis shows that, during the teacher-led explorations and 
discussions with dynamic sketches, children’s routines moved from description of 
tool-based informal properties to formal properties as well as from particular (1st order) 
to more general (2nd order) discourse about ‘triangle’. Children’s reasoning started 
with describing the movement patterns like “Everything moves with it except one 
point”, “If I move that one, that one also moves”, “wherever you move it, then this one 
moves with this” and then eventually shifted to formal properties “angles are staying 
same”, “moves symmetrical”. Dragging the vertices acted as a visual mediator and 
helped the children to develop the routine of looking at movement behaviour and 
eventually shifting towards formal geometrical properties. Jory used the embodied 
visual mediators (arms as sides of isosceles triangle) for justifying why isosceles 
triangle can’t fit into the outline of a triangle whose sides are different. The use of 
action verbs “go”, “moves”, “staying”, “paralysed”, “getting bigger or smaller” and 
‘if-then’ statements shows children’s propensity to reason in terms of motion in case of 
classification of triangles, which was clearly initiated by the dynamic and temporal 
elements of DGE. Thom’s use of word ‘paralysed’ for isosceles and equilateral triangle 
is quite interesting, and clearly emerged after looking at the restrictive type of 
movement shown by these triangles, which reaffirms Healy and Sinclair’s (2007) 
claim that the temporality of dynamic mathematical presentations offers striking 
opportunities for narrative thinking. 
Also, Lida and Jory’s use of inclusive definitions (Villiers, 1994) emerged as a result 
of dynamic actions of dragging during an attempt to superimpose one triangle over 
another. This study reaffirms the results of Sinclair & Moss (2012) by providing the 
evidence of how dynamic environment can help students to move to higher levels of 
discourse. This study also provides initial evidence that the teaching of concepts like 
symmetry and angles in early years can lead to whole set of new possibilities of 
geometric reasoning about shape and space for young children.  
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