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The application to rational numbers of the procedures and intuitions proper of natural 
numbers is known as Natural Number Bias. Research on the cognitive foundations of 
this bias suggests that it stems not from a lack of understanding of rational numbers, 
but from the way the human mind represents them. In this work, we presented a 
fraction comparison questionnaire to 502 school children from 5th to 7th grade to 
investigate if the Natural Number Bias succeeds in explaining their error patterns. 
About 25% of children responded in a way perfectly consistent with the Bias, but good 
students committed many errors in items that the Bias predicts to be easy. We propose 
an explanation based on comparison strategies and wrong generalizations of a 
common remark used for teaching fraction magnitude. 

INTRODUCTION 

Learning fractions is an important challenge within the middle school curriculum. 
Fractions are typically the very first approach of school children to number systems 
beyond that of natural numbers. To master fractions, students must learn new concepts, 
procedures, and intuitions that often contradict their accumulated knowledge of the 
natural number system. For instance, the multiplication of two fractions may be 
smaller than the intervening factors (e.g. 1/2 × 1/4 = 1/8), and any fraction can be 
written in infinitely many equivalent ways (e.g. 1/2 = 2/4 = 3/6 = …). Many students 
fail to understand fractions even at the most basic levels, something problematic under 
the light of recent evidence linking successful learning of fractions to advanced topics 
like algebra (Booth & Newton, 2012). Although the lack of appropriate mathematical 
knowledge by many teachers is a very important factor contributing to this failure (e.g. 
Valdemoros Alvarez, 2010), other less evident factors may also play a relevant role. 
Ni and Zhou (2005) presented a review about a particular type of frequent errors linked 
to the understanding of fractions. These errors seemed to stem from the generalization 
to fractional contexts of the concepts, procedures, and intuitions proper of natural 
numbers. The authors used for them the umbrella term Natural Number Bias. Typical 
examples associated to this bias are reasoning that 2/3 < 2/5 because 3 < 5, as well as 
computing 1/2 + 1/3 = 2/5, thinking that processing separately both fraction 
components (numerators and denominators) is enough for obtaining the desired result. 
Errors due to reasoning on the basis of natural number knowledge are not limited to 
calculation procedures: school children from 7th to 11th grade may state that there is a 
finite number of rationals between 1/5 and 4/5, as if rational numbers possessed a 
successor (Vamvakoussi & Vosniadou, 2010). It is important to underline, as Ni and 
Zhou do, that these errors are not simply the result of a failed learning experience but 
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reflections of the deep, intuitive way in that the human mind deals with fractions even 
in adults who work proficiently with rational numbers. Recent investigations have 
demonstrated this by presenting questionnaires in which pairs of fractions such as 2/7 
and 5/7, or 3/5 and 3/8, must be compared. These two fractions pairs may be called 
congruent and incongruent respectively because of the relation between the magnitude 
of the fractions and the magnitude of the natural numbers composing them. In this 
sense, in the former pair the greatest fraction has the greatest numerator so that 
fractional and natural magnitudes point in the same direction, whereas in the latter pair 
the greatest fraction has the least denominator and hence fractional and natural 
magnitudes point in opposite directions. When using these types of items, adults 
(Vamvakoussi, Van Dooren, & Verschaffel, 2012) and even expert mathematicians 
(Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013) respond more slowly to 
incongruent fraction pairs. 
The present work explores the extent to which the Natural Number Bias provides a 
useful account of the errors committed by a sample of 5th- to 7th-grade children in a 
fraction comparison questionnaire. To do this, we selected fraction pairs that allowed 
us to contrast explicitly the congruent/incongruent dimension. In addition, based on 
research on the neural processing of fractions (e.g. Barraza, Gómez, Oyarzún, & 
Dartnell, under review; Ischebeck, Schocke, & Delazer, 2009), we selected fraction 
pairs that either have or have no common components. Pairs with common 
components (e.g. 2/7 and 5/7) tend to be compared by just looking at the non-common 
component (see also Bonato, Fabbri, Umiltà, & Zorzi, 2007), whereas pairs lacking 
common components (e.g. 2/3 and 1/4) require different strategies such as computing 
cross multiplications or estimating the numerical magnitude of each fraction. 

METHODS 

Participants 

Five hundred and two school children of 5th (n = 165), 6th (n = 181), and 7th (n = 156) 
grade classes from five schools located in different areas of Santiago, Chile, 
participated in this study. All children were authorized by their parents’ signature of an 
informed consent form. 
Questionnaire 

We selected 24 fraction pairs grouped according to two factors: the presence or lack of 
common components, and congruency/incongruency (see Table 1). We classified a 
fraction pair a/b and c/d as congruent if a ≤ c, b ≤ d, and a/b ≤ c/d (or vice versa); or as 
incongruent if a ≤ c, b ≤ d, and a/b ≥ c/d (or vice versa). In other words, congruent pairs 
are those in which the greatest numerator and the greatest denominator both belong to 
the greatest fraction, whereas in incongruent pairs the greatest numerator and the 
greatest denominator both belong to the least fraction. 
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 With common components Without common components 

Congruent pairs 4/9, 8/9 9/11, 4/11 5/7, 1/3 5/16, 12/17 

7/19, 15/19 15/17, 6/17 3/14, 9/17 10/17, 3/9 

2/11, 3/11 7/8, 4/8 2/5, 11/18 17/19, 4/9 

Incongruent pairs 4/15, 4/6 1/9, ¼ 5/6, 8/19 2/4, 3/13 

5/8, 5/17 3/7, 3/14 6/13, 4/5 6/18, 5/6 

7/15, 7/10 6/14, 6/8 2/3, 5/17 4/15, 2/5 

Table 1: Full item list of the fraction comparison questionnaire. 

 

Figure 1: Screen capture of an item of the questionnaire. On top, a colored bar indicates 
time left for answering. At the bottom, the fraction pair to be compared. 

Mathematics achievement 

We measured children’s general mathematics knowledge by means of tests that their 
schools apply every year. As the five selected schools share a common curriculum and 
instructional design, these tests were the same for all schools but differed for each 
grade. Because of this, we normalized children’s scores on a grade-by-grade basis by 
subtracting the average score and dividing for their standard deviation. We were only 
able to obtain these test scores for 451 children out of the total sample. 
Procedure 

Each class was tested in the Computer Science classroom of their school. The 
questionnaire was presented by computer and programmed in Python+PyGame. Each 
child worked individually. All items presented the question “Which of these fractions 
is the greatest?” (“¿Cuál de estas fracciones es la mayor?”) at the middle of the screen, 
whereas the fractions to be compared were displayed at the bottom (Figure 1). Children 
pressed the keys Q or P to select the left or right fraction as the greatest, respectively. 
Items not answered within 10 seconds of presentation were considered as omitted, and 
the next item was then presented. A color-changing bar on top of the screen displayed 
the time left for answering. 



Gómez, Jiménez, Bobadilla, Reyes, Dartnell 

3 - 188 PME 2014 

Children were aware that their outcome in this questionnaire would not have effect on 
their school grades. We asked them to answer each item carefully, and to follow their 
intuition in case of doubt. 

RESULTS 

Overall mean accuracy, computed as the ratio of correct responses to non-omitted 
items, was 59.0% (SD = 17.6). Differences among the three grades were negligible (5th 
grade: 58.7%, 6th grade: 60.0%, 7th grade: 58.1%; F(2,499) = 0.51, p = .60). Accuracy 
scores correlated significantly with general mathematics knowledge, with a weaker 
effect in 7th grade than in 5th and 6th grades (5th grade: r=.37, t(127)=4.5, p<.001; 6th 
grade: r=.40, t(175)=5.7, p<.001; 7th grade: r=.26, t(143)=3.2, p=.002). Cronbach’s α 
was .76, suggesting a good (though not excellent) degree of internal consistency. 
Table 2 presents accuracy rates per item types. A 2-way ANOVA showed a 
statistically significant effect of the presence or absence of common components: 
fraction pairs with common components were answered in average 5% better than 
pairs without common components (F(1,1503)=11.1, p<.001). Congruency has a much 
larger effect, with congruent items being answered in average 36.7% better than 
incongruent items (F(1,1503)=505.3, p<.001). There was a statistically significant 
interaction between these factors as well, indicating that the difference in accuracy of 
congruent over incongruent items was larger in fraction pairs with common 
components (difference for items with common components: 41.0%; without: 32.3%; 
F(1,1503)=7.0, p=.008). 
 With common components Without common components Mean 

Congruent 82.2% 72.4% 77.3% 

Incongruent 41.2% 40.1% 40.6% 

Mean 61.7% 56.3% 59.0% 

Table 2: Average scores in the fraction comparison questionnaire. 
An item-per-item analysis of accuracy rates shows that this pattern of results is 
consistent across all 24 items of the questionnaire (Figure 2A), in close agreement with 
the predictions of the Natural Number Bias. 
Children who were 100% accurate in congruent items and 0% in incongruent items 
represent extreme cases of the Bias. We observed 126 children (25.1% of the sample) 
that answered the questionnaire in this way: 46 in 5th grade (27.9%), 40 in 6th grade 
(22.1%), and 40 in 7th grade (25.6%). 
To further explore our different item types, we computed item-total correlations. 
Figure 2B depicts correlations of all 24 individual items and the total questionnaire 
scores. High correlations indicate that children who answered those items correctly 
tend to have high overall scores, and vice versa. That is, items with high item-total 
correlation are considered as measuring in an appropriate way overall knowledge of 
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fraction comparison. Figure 2B shows several interesting features. First, all 
incongruent items present the highest correlations (ranging from .61 to .73) regardless 
of the presence of common components. This is in line with the predictions of the 
Natural Number Bias, which implies that incongruent items are the hardest for 
children. Second, congruent items with common components, that is to say fraction 
pairs that share a common denominator, are also positively correlated but to a smaller 
degree (ranging from .20 to .32). This may be due to the fact that these items are 
answered correctly by the vast majority of children (the average score being 82.2%), 
thus being unable to discriminate between children with good and bad overall scores. 
The final and most intriguing feature of Figure 2B is that congruent items without 
common components display very low or even negative correlations (ranging from 
-.35 to .09), signalling that these items do not align well with the rest of the 
questionnaire. To some extent, this reflects the large share of extremely biased children 
who get scores lower than average (they have overall scores about 50%) but all 
congruent items correct. Removing these children from the sample, however, does not 
alter the overall pattern (Table 3). This suggests that students with better general 
mathematics knowledge might be doing worse than average in these items, which 
indeed turns out to be the case: Students who were 1.5 standard deviations or more 
above average in an independent test (this amounts to 27 children out of the 451 for 
whom it was possible to obtain test scores) have an average score in comparing 
congruent items without common components of 58.0%, lower than the general 
average of 72.1%. Thus, top students behaved in a way opposite to the predictions of 
the Natural Number Bias for the case of items with no common components (their 
average scores in all other item types are above 80%). 

A B  

Figure 2: (A) Average scores per item. (B) Item-total correlations. 
Vertical bars depict 95% confidence intervals. 
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Item 
Correlation 

(full sample) 
Correlation 
(subsample) 

Are the two greatest naturals 
part of the same fraction? 

5/7, 1/3 -.15 -.05 Yes 

5/16, 12/17 .09 .21 No 

3/14, 9/17 .09 .21 No 

10/17, 3/9 -.24 -.13 Yes 

2/5, 11/18 -.35 -.27 Yes 

17/19, 4/9 -.12 -.02 Yes 

Table 3: Low and negative item-total correlations for congruent items without 
common components are observed both in the full sample and after remotion of the 

126 extremely biased children. The rightmost column classifies items according to the 
location of the two largest natural numbers in the item. 

DISCUSSION 

We presented a fraction comparison questionnaire to 5th-, 6th-, and 7th-grade children in 
order to explore their pattern of responses and contrast it with the predictions of the 
Natural Number Bias. To do this, we included fraction pairs classified as congruent or 
incongruent according to the relation between their correct answers and the answers 
that would be obtained by focusing only on the natural numbers composing them. The 
Natural Number Bias predicts that congruent items get higher scores systematically. 
Our results present both support and challenges for the Natural Number Bias account. 
On the full sample average, congruent items had scores substantially higher than those 
of incongruent items (average difference of 36.7%). Moreover, a group of about 25% 
of the sample and approximately equally distributed among the different grades, 
answered the questionnaire in total agreement with the Bias. Although our data do not 
allow us to distinguish whether these extreme cases are due to failures in learning 
fraction comparison or in retaining this knowledge, they do suggest that a sizable 
number of children will rely on their natural number knowledge and intuitions when 
facing uncertainty. 
Beyond the good value of Cronbach’s α for our questionnaire, item-total correlations 
contribute importantly towards a clearer picture of children’s thought processes. As 
expected according to the Natural Number Bias, incongruent items are highly 
predictive of total scores. Congruent items in general present lower correlations, even 
close to zero or negative in the case of items with no common components. These 
negative correlations are not simply due to that 25% of the sample who responded in 
complete agreement with the Bias, since the pattern of correlations still appears when 
looking at the other 75%. In an intriguing finding, we discovered that the top 6% 
students obtain lower than average scores in these items. Careful observation of the 
fraction pairs in these items shows that pairs with negative item-total correlations share 
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a common feature: The greatest fraction of each pair not only contains the greatest 
numerator and the greatest denominator, but also these two numbers were the two 
greatest among all naturals present in the item (Table 3). Such fraction pairs may be 
called “strongly congruent”, as they are a subset of congruent pairs. Our questionnaire 
was not designed to study them in detail, a gap that future research should explore. 
How are top students thinking, that they end up performing worse than average 
specifically in congruent items with no common components? A first observation is 
that they are not applying a single method such as cross multiplication to all items 
without common components, because they fail in congruent items but answer 
correctly incongruent ones. Alternatively, they might be aware that natural numbers 
may be misleading in a fractional context and answering incorrectly because of an 
excess of caution. This account, however, also fails to explain why they do well in 
incongruent items without common components. Another possibility that does explain 
this difference is that top students might be applying a heuristic method, namely that 
the greatest fraction tends to be the one with the least denominator. Given our selection 
of fraction pairs without common components, such heuristic leads exactly to good 
results in incongruent items and to bad results in congruent ones. This can be seen as an 
overgeneralization of the common remark made by teachers that the magnitude of a 
fraction grows if its denominator shrinks, and vice versa. This reasoning, which is 
perfect when referring to a single fraction, becomes a heuristic when applied to a 
fraction comparison item because in this new context it may systematically lead to 
wrong answers. 
Understanding the patterns of reasoning behind children’s answers in a test is a 
powerful aid for the design of pedagogical interventions. Understanding common 
mistakes also allows providing appropriate corrective feedback. Our work thus 
highlights the importance of taking into account the Natural Number Bias and its 
strong influence in 5th-, 6th-, and 7th-grade children. Our quantitative approach, and the 
large sample size considered, did not allow us to focus on subtle factors such as the 
variety of strategies that each child may use to solve each item (e.g. Clarke & Roche, 
2009). In this sense, qualitative data would make a great complement to the data here 
presented and may shed light on the thinking processes of top students that lead them to 
perform worse than average in a specific item type. 
To what extent it is possible to overcome the Natural Number Bias by means of 
pedagogical interventions is an open question, although recent research suggests that it 
is not possible to do it perfectly: Remnants of biased thinking remain in adulthood 
(Vamvakoussi et al., 2012) and even in expert mathematicians (Obersteiner et al., 
2013). Furthermore, other researchers suggest that this Bias partly stems from the way 
of writing fractions and its use of natural numbers (such as “2” and “3” in “2/3”; see 
Kallai & Tzelgov, 2012; Mena-Carrasco, Gómez, Araya, & Dartnell, under review), a 
conclusion that, if true, states that the effects of the Natural Number Bias in fractional 
tasks is unavoidable. Pedagogical intervention could still, in this case, aim at making 
students aware of the faulty reasoning behind the Bias. 
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