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This paper addresses the role of learning progressions in informing many 
international standards documents, discussing the affordances and limitations of 
building standards and curricula from a learning progression model. An alternate 
model, the hypothetical learning trajectory, is introduced and contrasted with learning 
progressions. Using the example of exponential functions, learning progressions are 
compared to learning trajectories in terms of their theoretical origins and practical 
implications. Recommendations for further work building learning trajectories in 
secondary mathematics are discussed. 

INTRODUCTION 

Curriculum development increasingly relies on guidance from national content 
standards or benchmarks, with standards-based accountability growing as a movement 
internationally (e.g., Australian Ministerial Council on Education, Employment, 
Training and Youth Affairs, 2006; Ministry of Education of the People’s Republic of 
China, 2003; National Governor’s Association Center for Best Practices, 2010; UK 
Department of Education, 2009). Given the proliferation of content standards and their 
influence on curriculum development, the quality of such standards and their 
adherence to research on students’ learning is a key concern. However, evidence 
suggests that mathematics content standards typically approach learning goals from the 
perspective of sophisticated mathematical expertise, failing to address students’ 
conceptual development (Olive & Lobato, 2008). Lobato et al. (2012) conducted a 
survey of the mathematics content standards for seven countries focusing on quadratic 
functions and found that nearly all of the standards emphasized procedural knowledge 
and lacked specificity addressing conceptual knowledge. 
This paper discusses a typical approach guiding the development of many standards 
documents, that of a learning progression, and considers some of the limitations of 
learning progressions for informing standards and curricula. Using the example of 
exponential functions, we contrast the theoretical underpinnings of learning 
progressions with an alternate construct, the learning trajectory, and argue for the 
merits of learning trajectory research for developing content standards. 

BACKGROUND AND THEORETICAL FRAMEWORK: LEARNING 

PROGRESSIONS AND LEARNING TRAJECTORIES 

A learning progression is a sequence of successively more complex ways of reasoning 
about a set of ideas (National Assessment Governing Board, 2008). This definition 
situates a learning progression as a tool for curriculum design; the progression is a 
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construct for organizing mathematical content in order to provide a potential path 
through which students can traverse as they develop competence in the domain. Recent 
years have seen an increased focus on the development and elaboration of learning 
progressions, and in the use of learning progressions to inform standards documents. 
For instance, the American Institute for Research (2009) released a report calling for 
the development of standards based on learning progressions gleaned from analysing 
the content standards of three high-performing countries, Hong Kong, Korea, and 
Singapore. This study produced a set of composite standards guided by “learning 
progressions of specific competencies within each topic across grades” (p. 2). 
Similarly, Fuhrman, Resnick, and Shepard (2009) made the case for incorporating 
learning progressions into content standards documents by referencing 
high-performing countries such as Singapore, Japan, South Korea, and the Czech 
Republic, emphasizing the importance of building curricula “based on sequences, or 
progressions, of increasingly sophisticated concepts and knowledge applications” (p. 
28). A learning progression characterizes movement from novice to expert through the 
acquisition of relevant facts, skills, and concepts (National Assessment Governing 
Board, 2008). 
Learning progressions have at times been treated as interchangeable with learning 
trajectories, but the two constructs have significantly different theoretical origins 
(Empson, 2011). The notion of a hypothetical learning trajectory has different 
meanings among mathematics education researchers. Simon’s (1995) original 
discussion offered a description of a hypothetical learning trajectory consisting of “the 
learning goal, the learning activities, and the thinking and learning in which students 
might engage” (p. 133). Clements and Sarama (2004) expand on this definition, 
describing a learning trajectory as an elaboration of children’s thinking and learning in 
a specific mathematical domain, connected to a conjectured route through a set of tasks 
designed to support movement through a progression of levels of thinking. These 
definitions emphasize the construct as a teacher-researcher’s model, a tool for 
hypothesizing what students might understand about a particular mathematical topic 
and how students’ understanding may change over time in interaction with 
carefully-designed tasks and teaching actions. 
A learning trajectory is an account of changes in a student’s schemes and operations; as 
such, it is a tool that seeks to explain learning that occurs over time, specifying the 
particular schemes and operations in play and elaborating how accommodation occurs 
to build up knowledge. This view of a learning trajectory differs significantly from 
learning progression frameworks emphasizing strategies or skills.  
Challenges with Basing Standards Documents on Learning Progressions 

Learning progressions are based on the researcher’s knowledge of the field of 
mathematics. Steffe and Olive (2010) describe this as first-order knowledge, “the 
models an individual constructs to organize, comprehend, and control his or her 
experience, i.e., their own mathematical knowledge” (p. 16). Much of the organization 
of international content standards is based on first-order knowledge. Critiques of the 
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learning progression approach to standards documents emphasize, however, that the 
development of a progression cannot be based on an analysis of the discipline alone. In 
particular, content learning cannot be separated from activity and context; what 
students learn is intricately connected to the types of instructional tasks they encounter, 
the manner in which teachers foster students’ thinking with those tasks, and the ways in 
which students interact with one another and with their teachers (Empson, 2011). 
Mathematical learning occurs in interaction, with teachers’ actions profoundly 
influencing student thinking. One of the most difficult issues facing researchers 
constructing learning progressions, then, is the need to attend more explicitly to the 
role played by teaching interactions and to determine how instructional variation 
affects these progressions (Simon et al., 2010). 
These concerns are borne out by the meticulous research base demonstrating the 
non-convergence of children’s learning in some areas of mathematics, such as number, 
fractions, and ratio and proportion (e.g., Steffe & Olive, 2010). In addition, standards 
based on learning progressions may fail to account for how different students approach 
the same mathematical idea from different conceptual bases. A more efficacious 
approach may be one that attends to the variation in students’ conceptual development, 
building trajectories of student understanding over time. 

LEARNING TRAJECTORIES AS AN ALTERNATE MODEL 

While learning progressions are typically based on first-order knowledge, learning 
trajectories are an elaboration of researchers’ second-order mathematical knowledge, 
“the models observers may construct of the observed person’s knowledge” (Steffe & 
Olive, 2010, p. 16). As such learning trajectories are concerned with identifying the 
mathematics of students, elaborating models of students’ mathematical concepts and 
operations. Lobato et al. (2012) noted that an analysis of students’ constructions can 
also inform the way researchers conceive of the mathematics itself; a construction of 
second-order models can inform our first-order knowledge of the domain. 
A learning progression typically presents a target construct or skill, an associated 
learning goal, evidence for achievement of the learning goal, and tasks designed to 
foster that achievement. Table 1 contrasts the ways in which learning progressions and 
learning trajectories address each of these four categories in general. Using the specific 
example of exponential functions, we then compiled typical statements of 
mathematical constructs, learning goals, and evidence from international standards 
documents that included exponential functions, particularly Chinese Taipei (Ministry 
of Education of Taiwan, 2003), China (Ministry of Education of the People’s Republic 
of China, 2003), and the United States (National Governor’s Association Center for 
Best Practices, 2010) (see Table 2). Table 2 contrasts a learning progression approach 
with a learning trajectory approach for one sample construct/concept about exponential 
functions; due to space constraints, one example rather than an entire progression and 
trajectory is provided. 
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Learning Progression Learning Trajectory 

Construct x Based on 1st-order knowledge 
x Define levels in terms of 

subject-matter competencies 
x Constructs elaborated as formal 

mathematics 

Concept x Based on 2nd-order knowledge 
x Define stages of student thinking 
x Concepts elaborated in terms of 

students’ mental activity 

Learning 
Goals 

x Description of skills and 
procedures 

x Specifies target performances 

Character- 
ization 

x Description of the nature of 
student’s thinking  

x Identifies relevant schemes  
Evidence x Describes the necessary 

performance; focus on external 
performance 

x Identifies external strategies 
x Based on mathematical domain 

Examples x Describes conceptions based on 
strategies, language, activity 

x Identifies mental activity 
x Based on evidence of student 

activity 
Tasks x Developed from content 

analysis 
x Goal is to elicit target 

performances 
x Provided as stand-alone 

problems 

Activities x Developed from retrospective 
analysis of teaching experiments 

x Goal is to support emerging 
concept development 

x Provided with context and 
pedagogical connections 

Table 1: Learning progressions contrasted with learning trajectories 
Construct versus Concept 

Constructs arise from adults’ first-order knowledge of mathematics, and thus are 
developed according to the logic of the discipline. It is typical for constructs to describe 
formal mathematical ideas, strategies, or procedures. For instance, consider the case of 
exponential functions. A learning progression might describe a construct for 
exponential functions in terms of the desired subject matter competency without regard 
to the qualitative difference in thinking at different stages. The construct describes the 
mathematical idea, for instance, “Express a situation in which a quantity grows by a 
constant per-cent rate as y = abx.” Rather than specifying a mental operation, the 
construct specifies a particular algebraic representation, as conceived by the 
researcher. This type of progression is concerned with identifying instructional goals 
framed in terms of target performances rather than target concepts. 
We can contrast this approach with a learning trajectory approach, drawing on a 
learning trajectory describing middle-school students’ initial understanding of 
exponential growth (see Ellis et al., 2013). A learning trajectory will define a concept 
in terms of student understanding, and would base concept definitions on existing 
knowledge of students’ ways of operating. For instance, one conceptual stage students 
achieve when developing ideas of exponential growth is that they can coordinate 
multiplicative change in y with additive change in x. A concept at this stage would 
include the understanding “that the ratio of y2 to y1 for a corresponding change in x 
holds for any 'x value, even when 'x is < 1.” 



Ellis, Weber, Lockwood 

PME 2014 3 - 5 

Learning Progression Learning Trajectory 

Construct  Express situations in which a 
quantity grows by a constant 
per-cent rate per unit interval 
relative to another as y = abx 
where b is a whole number and x 
is non-negative. 

Concept Coordinate change in y for any-value 
change in x: Understand that the ratio 
of y2 to y1 for a corresponding change 
in x holds for any 'x value, even when 
'x is < 1. 

Learning 
Goals 

x Understand the meanings of 
the power in an exponential 
expression 

x Comprehend the calculations 
involving base numbers as 
whole numbers and exponents 
as non negatives 

x Interpret the parameters a and 
b in terms of a context 

Character- 
ization 

x One can coordinate the ratio of any 
two y-values for any-time gaps in 
corresponding x values. 

x Imagery is reliant on constant ratios, 
and is no longer grounded in images 
of repeated multiplication. 

x Understanding that the expression bx 
can represent both a static height 
value and a measure of growth for 
two values x time units apart. 

Evidence x Use repeated multiplication to 
find missing table values  

x Write correct equations in the 
form y = bx and y = abx 

x Perform correct calculations 
such as 32 × 34 = 36  

x Recognize a non-zero a-value 
as the functions’ initial value  

Examples 

 

Tasks x Missing-value tables and 
far-prediction problems 

x Cell growth, population 
growth, and compound 
interest modelling problems 

Activities x First provide tasks with only two 
data points with large-time gaps in 
which students must determine the 
growth factor. Large gaps will 
encourage shifts away from repeated 
multiplication. 

x Next, provide tasks in which 
students must determine amounts of 
growth for a half-unit or other 
fractional amount of time. 

Table 2: Contrasting a progression with a trajectory for exponential functions 
Imagine two students who are at two different stages in their developing understanding 
of exponential growth. The first student can coordinate the ratio of two y-values for 
corresponding x-values when 'x t 1, but his mental imagery is grounded in repeated 
multiplication. For instance, this student may compare the height of an 
exponentially-growing plant at two different time points: After 2 weeks, the plant is 4 
inches tall, and after 5 weeks, the plant is 32 inches tall. This student can conceive of 
the plant at 5 weeks as 8 times as tall is it was at 2 weeks by taking the 4 inches at 2 
weeks and doubling it three times: 8 inches, 16 inches, 32 inches. This student may 
even be able to express this idea as 23, but that expression is grounded in a mental 
operation of doubling the height three times. This student’s ability to imagine a process 
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of repeated multiplication has some limitations; because he must mentally go through 
the process of doubling in order to compare two values, he cannot extend that process 
for very large-week gaps, or make sense of gaps smaller than 1. 
Imagine a second student whose imagery is no longer grounded in a process of 
repeated multiplication. This student has mentally truncated the process to the point at 
which she can think about multiplicatively comparing two heights for large-week gaps 
and does not have to go through the operation of doubling for each and every week 
between x1 and x2. This student can express the ratio R of two height values as bx = R 
for the growth factor b. This expression no longer represents a process of multiplying 
by the growth factor b x times, but instead is grounded in an image of a constant ratio 
change in y for any constant additive change in x. This student may use language and 
gestures to indicate a notion of continuous scaling or magnification, and her imagery 
enables her to make sense of growth even when 'x is not a whole number. In both 
cases, the students may write the same algebraic expression bx, but the expression is a 
result of different ways of operating and means different things to the two students. A 
learning trajectory should account for these differences in students’ thinking and aim 
to capture them in its description of conceptual stages. 
Learning Goals versus Concept Characterization 

In order to develop a learning progression one might engage in task analysis (Gagné, 
1977) to identify the capabilities one must possess in order to perform a specific 
mathematical task. For exponential functions this may include using repeated 
multiplication to determine missing table values, writing correct equations and 
performing correct calculations with exponents, and identifying the parameter “a” as 
the initial value of a function when x = 0. Note that these learning goals are framed in 
terms of target performances. 
In contrast, learning trajectories are built on empirical evidence from working with 
students. The exponential functions learning trajectory emerged from repeated cycles 
of retrospective analysis of two teaching experiments with groups of middle-school 
students (see Ellis et al., 2013). Each teaching experiment lasted approximately 15 
1-hour sessions and was videotaped and transcribed. Rather than describing target 
performances, the learning trajectory characterizes the nature of students’ thinking at a 
particular stage, for instance, by specifying that a students’ imagery is grounded in 
constant ratios rather than repeated multiplication. One aim of these characterizations 
is to explain how students’ ways of thinking, schemes, and operations provide an 
explanation for how they solve problems. 
Evidence versus Examples 

Learning progressions focus on elaborating the necessary strategies, performances, 
and other observable behaviour for determining whether a student has met the learning 
goals. Evidence of this nature does not address how students’ conceptions will change 
as they progress from one level to the next. Rather than providing an account of 
learning that makes performance possible, the emphasis is on the performance itself, 
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which is taken as evidence of learning. While much can be gained from a careful 
analysis of students’ strategies, a focus on strategies to the exclusion of mental activity 
leaves much unknown about how learning progresses over time. In contrast, a learning 
trajectory builds evidence from students’ actions in teaching-experiment settings. 
Ongoing and retrospective analysis informs the construction of models of students’ 
thinking. Here the example evidence from Table 2 is from a task in which students had 
to predict, for a plant that tripled in height each week, how much larger it would grow 
in 1 day. One student wrote the expression “314 = 1.17”, explaining, “I divided 1 week 
into 7 parts, which represents 1 day each and it’s .14 of a week.” This is evidence that 
the student could make sense of a non-integer exponent and could conceive of the 
expression 314 as a measure of growth, an important feature of coordinating the ratio of 
y-values for time gaps smaller than 1 week. 
Tasks versus Activities 

Tasks for learning progressions, like activities for learning trajectories, may come from 
empirical evidence with large or small groups of students. Such tasks may also be 
developed, however, from a curricular analysis or other investigations focusing more 
on the content domain than on students’ thinking. One advantage of the learning 
trajectory approach is its empirical origins; descriptions of students’ conceptions 
evolve in relationship to their interactions with activities. Thus a learning trajectory 
could provide a way to include instructional moves or other contextual suggestions 
along with related activities. In Table 2, the two sample problem types are briefly 
provided with explanations about their ordering and justification. 

DISCUSSION 

Building learning trajectories requires a great deal of work in identifying a precise set 
of schemes and operations to serve as a model for informing how a student might be 
operating at a particular stage. Some of this work has already been done, particularly in 
the work of early number, fractions, and measurement (e.g., Clements & Sarama, 
2004; Steffe & Olive, 2010), but few models of this type exist for algebra and beyond. 
While there are promising steps in this direction, much work remains to develop tools 
to a) characterize qualitative distinctions in students’ thinking at different stages of 
development, and b) identify mechanisms of learning driving students’ transitions 
from one stage to the next (Simon et al., 2010). A stronger emphasis on learning 
trajectories research moving forward could support the development of standards and 
topic sequences that account for research-based findings on students’ conceptual 
development over time, thus leading to more useful guides for teachers at all grade 
levels. 
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