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Teacher beliefs about mathematics teaching and
learning: Identifying and clarifying three
constructs
Robert C. Schoen1* and Mark LaVenia2

Abstract: Scholars have long argued that individuals’ beliefs influence their
behaviors and the decisions they make throughout their lives. Focusing on beliefs
as a cognitive construct, the purpose of this study was to identify several key
beliefs about mathematics teaching and learning held by practicing elementary
mathematics teachers. An iterative process of literature review, item development
and adaptation, expert review of items, and cognitive interviews resulted in 55
items and 5 hypothesized belief constructs. After using the items in
a questionnaire completed by more than 200 practicing teachers in two waves of
data collection, we modeled the response data using a multiphase process in
pursuit of parsimony and a clear factor structure. The resulting 21-item ques-
tionnaire provides an alternative measure of Transmissionist beliefs about teach-
ing and a first way to measure two new constructs in teacher beliefs research:
Facts First and Fixed Instructional Plan.

Subjects: Mathematics Education; Education; Teachers & Teacher Education; Teaching &
Learning
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Scholars have long argued that teachers’ knowledge and beliefs influence their instructional
practice (Ball, Thames, & Phelps, 2008; Bandura, 1986; Campbell et al., 2014; Dewey, 1933;
Ernest, 1989; Fennema & Franke, 1992; Nisbett & Ross, 1980; Pajares, 1992; Pintrich, 1990;
Rokeach, 1968; Shulman, 1986; Wilkins, 2008). In the wake of a shift from the production-
function paradigm toward a process-product paradigm, considerable progress has been made
over the past 15 years in the development of measures of teachers’ mathematical knowledge for
teaching, which is thought to influence instructional practice and student learning (Campbell et al.,
2014; Hill, Schilling, & Ball, 2004; Saderholm, Ronau, Brown, & Collins, 2010; Schoen, Bray, Wolfe,
Nielsen, & Tazaz, 2017). Most of these assessment tools are designed to measure generalizable
facets of mathematical knowledge, but a growing body of research is also beginning to focus on
teachers’ real-time, specific knowledge of their individual students’ knowledge and abilities
(Gabriele, Joram, & Park, 2016; Hill, Charalambous, & Chin, 2018; Macht, Kaiser, Schmidt,
& Möller, 2016; Schoen & Iuhasz-Velez, 2017; SüDkamp, Kaiser, & Möller, 2012). Specific knowledge
of individual students is thought to be integral to the process of formative assessment, a process
demonstrated to affect student learning significantly (Bennett, 2011; Briggs, Ruiz-Primo, Furtak, &
Shepard, 2012; Kingston & Nash, 2011). Some empirical results indicate that teacher knowledge
influences instructional practice and student learning, but empirical support for the theorized
relation is modest at best (Baumert et al., 2010; Hill, Rowan, & Ball, 2005; Kersting, Givvin,
Thompson, Santagata, & Stigler, 2012; Mohr-Schroeder, Ronau, Peters, Lee, & Bush, 2017;
Rockoff, Jacob, Kane, & Staiger, 2011; Schoen, Kisa, & Tazaz, 2019).

While much of the focus in published literature on teacher education and professional develop-
ment in mathematics rests on teachers knowledge of subject matter and how to teach it, many
scholars have also acknowledge the importance of teacher beliefs and the relation between
knowledge and beliefs (Campbell et al., 2014; Fennema & Franke, 1992; Staub & Stern, 2002;
Stipek, Givvin, Salmon, & MacGyvers, 2001). Nespor (1987) posited that beliefs are likely to be far
more influential than knowledge in determining how individuals make sense of their world and are
likely to be stronger predictors of individuals’ behavior. Pintrich (1990) asserted that both “knowl-
edge and beliefs … influence a wide variety of cognitive processes including memory, comprehen-
sion, deduction and induction, problem representation, and problem solution” (p. 836), and he
predicted that beliefs would ultimately prove to be the most valuable construct for studying
teacher education.

In his review of research on teacher beliefs, Philipp (2007) observed that most of the published
studies of teacher beliefs involved qualitative analysis or relatively small samples, and almost all of
them involved prospective teachers, not practicing teachers. Although prior work in this area has
been invaluable in theory building, the steady work of clarification of teacher belief constructs and
development of valid and reliable instruments to measure these constructs efficiently and objec-
tively is needed to allow researchers to test theories about associations between beliefs and
behavior (Adler, Ball, Krainer, Lin, & Novatna, 2005; Handal, 2003; Kuntze, 2012; Pajares, 1992;
Philipp, 2007).

1.1. Statement of purpose
The dual purposes of the study reported here were to clarify several belief constructs related to
mathematics teaching and learning and to create an instrument that can be used efficiently and
at a large scale to measure those beliefs in practicing (i.e., in-service) teachers. Because the work
was done in the context of an efficacy study of a teacher professional-development program
based on Cognitively Guided Instruction (CGI; Carpenter, Fennema, Franke, Levi, & Empson, 1999;
Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Fennema et al., 1996), we aimed to identify
beliefs that might be affected by the CGI program or might moderate or mediate the effect of the
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program on teachers’ instructional practice and, in turn, their students’ learning. In deciding what
belief constructs to pursue, we prioritized topics that are relevant to both (a) questions of
theoretical interest in scholarly research in mathematics teaching and learning and (b) dilemmas
encountered by many or all teachers in the practice of teaching mathematics.

1.2. Defining beliefs
Many scholars have included attitudes, values, dispositions, and other affective constructs in their
definitions of beliefs. In attempts to tease these ideas apart, some scholars have offered distinc-
tions among various cognitive or affective components (Goldin, 2002; Jong, Hodges, Royal, &
Welder, 2015; McLeod, 1992; Philipp, 2007; Wilkins, 2008). Richardson (1996) defined beliefs as
“psychologically held understandings, premises, or propositions about the world that are felt to be
true” (p. 103). Other scholars have used phrases such as “belief with certainty” or “justified true
belief” in attempts to distinguish knowledge from beliefs (Furinghetti & Pehkonen, 2002; Pajares,
1992; Philipp, 2007; Thompson, 1992). Philipp (2007) provided a useful, albeit general, definition of
beliefs when he stated simply that an individual’s belief system provides the framework through
which he or she perceives and interprets the world.

Drawing upon the work of Green (1971) and Rokeach (1960, 1968)), Thompson (1992) drew
attention to the notion of a belief system as a metaphor for making sense of the complex network
of interrelated beliefs that a person may hold. Lewis (1990) argued that knowledge and beliefs are
synonymous and that even knowledge derived from the most fundamental perceptual observation
is inextricable from evaluative judgment or beliefs.

Bandura (1986) argued that belief constructs and subconstructs are generally too broad and
context-free to be useful in research. Pajares (1992) wrote that belief constructs “must be context
specific and relevant to the behavior under investigation to be useful to researchers and appro-
priate for empirical study” (p. 315).

For our immediate purposes, we were particularly interested in identifying beliefs that might
influence mathematics teachers’ decision making in the course of their instructional practice.
We focused on the cognitive rather than the emotional, affective, or attitudinal facets of
beliefs, although we acknowledge the potential importance and influence of emotions, atti-
tudes, and feelings of self-efficacy on instructional practice and student learning (Enochs,
Smith, & Huinker, 2000; Ernest, 1989; Ganley, Schoen, LaVenia, & Tazaz, 2019; Hill et al.,
2018; Skaalvik & Skaalvik, 2007; Tschannen-Moran & Hoy, 2001). We focused our search for
the pedagogical content beliefs that individuals use to create working theories about under-
lying mechanisms of mathematics teaching and learning that cannot be easily observed or
verified. We posit that these beliefs form a default perspective put to use by an individual for
the purpose of making decisions when complete information is not (or cannot be) available to
the teacher at that time.

1.3. Prior measurement of pedagogical content beliefs in mathematics
Over the past two decades, research involving measurement of teacher beliefs has trended toward
specificity with respect to subject matter and context in teaching and learning. In mathematics,
several researchers have developed measures of teachers’ pedagogical content beliefs with
respect to epistemological beliefs in mathematics, both in general and with respect to specific
topics such as algebra or solving word problems (Peterson, Fennema, Carpenter, & Loef, 1989;
Nathan, Koedinger, & Tabachneck, 1997). Although most of the extant research focusing on beliefs
about mathematics teaching and learning focus on the beliefs held by preservice teachers, some
important progress has been made in such investigations focusing on practicing teachers
(Campbell et al., 2014; Capraro, 2005; Clark et al., 2014; Collier, 1972; Peterson, Fennema,
Carpenter, & Loef, 1989; Philipp et al., 2007; Staub & Stern, 2002; Stipek et al., 2001; Tatto, 2013;
Wilkins, 2008; Woolley, Benjamin, & Woolley, 2004).
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Many researchers have published questionnaires designed to measure practicing teachers’
beliefs about teaching and learning. Most of the items ask teachers to report on their subject-
neutral beliefs about teaching and learning, but some specifically ask teachers about their beliefs
about teaching and learning of mathematics or specific topics within mathematics (e.g., Clark
et al., 2014; Kuntze, 2012; Nathan et al., 1997; Peterson et al., 1989; Schmidt & Kennedy, 1990;
Stipek et al., 2001; Tatto, 2013). We reviewed these questionnaires with the intention of using
them, in whole or in part, and found those developed by Peterson et al. to be most closely aligned
with our purpose and goals.

Peterson et al. (1989) developed a 48-item questionnaire designed to measure primary-
grades teachers’ beliefs related to fundamental components of a program they developed
called Cognitively Guided Instruction (CGI). The questionnaire contained four hypothesized
constructs. Two of the constructs (Role of the Learner; Role of the Teacher) address general
aspects of teaching and learning, and two (Sequencing of Mathematics Instruction;
Relationship between Skills, Understanding, and Problem Solving) were specific to the teaching
and learning of mathematics. The language in the items on the questionnaire focused speci-
fically on numerical computation and problem solving. Peterson and colleagues administered
the questionnaire to 39 first-grade teachers in a midwestern state in the United States in the
1980s, half of whom were participants in the very first group of teachers participating in CGI-
based professional development. On the basis of this sample, they reported reliability estimates
for of each of the four constructs ranging from .75 to .86 and an overall Cronbach’s α reliability
of .93. A modified version of the scale was subsequently developed (Fennema, Carpenter, &
Loef, 1990), wherein one of the four subscales was replaced with a set of items developed by
Cobb et al. (1991).

The developers of the CGI Beliefs Scale—as the Fennema et al. (1990) survey has come to be
known—provided a convincing argument for the interpretation of the resulting scales. They also
provided evidence of validity for its intended use in detecting differences among teachers in their
sample who had participated in the CGI program (Fennema et al., 1996). They stopped short of
conducting a critical investigation of the underlying constructs through factor analysis or other
methods.

Several researchers have investigated the factorial validity of the CGI Beliefs Scale. Using
a principal-components approach to model data generated from a sample of 123 practicing
teachers and 54 prospective teachers in the United States, Capraro (2001, 2005) recommended
a more parsimonious set of 18 of the original 48 items. On the basis of findings from her sample,
Capraro identified three scales rather than the original four. She identified the items that loaded
onto those three scales, but she did not name the factors. On the basis of a sample of German
teachers who completed a version of the CGI Beliefs scale translated into German, Staub and Stern
(2002) recommended a single underlying factor they called cognitive constructivist—named after
the end of the spectrum currently favored by most university-based researchers in mathematics
education.

Because the study was conducted within the context of an evaluation of the effect of a CGI-
based professional development program on teachers’ beliefs and the role of teacher beliefs as
potential mediators of the effect of the CGI program on classroom instruction and student
learning, we initially planned to measure teacher beliefs using the CGI Beliefs Scale question-
naire. We thought the primary decision would be whether to use the full set of 48 items or to
use the more parsimonious sets of items suggested by Capraro (2005) or by Staub and Stern
(2002). We conducted several cognitive interviews with experienced elementary-level teachers
in preparation for using the questionnaire and found that the teachers were not interpreting
words in the questionnaire in the way in which we thought they were intended by the
developers.
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1.4. Three emergent constructs: transmissionist, facts first, and fixed instructional plan
We focused our investigation on attempting to identify situations that create dilemmas for
teachers as they decide how to teach mathematics in their daily practice. We reviewed items in
extant questionnaires designed to measure teacher beliefs in mathematics (Fennema et al., 1990;
Philipp et al., 2007; Schmidt & Kennedy, 1990; Stipek et al., 2001; Wilkins, 2008).1 We selected
items, adapted items, and wrote original items. After internal review of the set of new items as
well as review by several mathematics teacher-education researchers and elementary teachers,
we conducted six cognitive interviews with practicing (i.e., in-service) elementary teachers as they
responded to the items in the questionnaire. The cognitive interviews were designed to provide
insight into teachers’ interpretation of the items.

One thing we learned from these interviews was the importance of writing the items so that they
cause teachers to choose sides. All teachers easily agreed, for example, that students should be
allowed to solve mathematics problems in any way that makes sense to them. On the other hand,
items written in a way that asked teachers whether they agreed that refraining from showing
students how to solve problems is more effective than showing them how resulted in more
polarized responses, which yielded considerably more insight into teachers’ beliefs about the topic.

1.4.1. Five initially hypothesized constructs
The item review, item revision, expert review, and interview process yielded a set of 55 items and 5
hypothesized constructs. One set of items was intended to measure a construct related to the
relative importance teachers placed on student production of correct answers and on student
reasoning processes. The items (and the hypothesized latent construct) for Favoring Correct
Answers were dropped from the questionnaire as part of our evaluation and respecification of
the measurement model. (See the Results section for further explanation.)

Following the lead of Staub and Stern (2002), we attempted to write items aligned with the
Cognitive Constructivist and Direct Transmissionist perspectives as two distinct constructs. These
were initially specified to constitute separate (but probably correlated) factors. Subsequent data
analyses revealed these factors to be highly, and negatively, correlated. After consideration of
model fit and content similarity, we collapsed the items from the two hypothesized constructs into
a single factor called Transmissionist. (See the Results section for further explanation.)

We named the other two hypothesized constructs Facts First and Fixed Instructional Plan. These
two constructs had empirical support based on participants’ responses to the questionnaire, and
they were retained in the final set of items.

At the risk of misrepresenting the chronology of our work, we structure the following sections
around the resulting facets of teacher beliefs that we think are measured by the B-MTL ques-
tionnaire. After describing those constructs, we will describe the methods of data analysis used to
clarify these constructs. Before continuing, we remind the reader of Freudenthal’s famous quote
about mathematics. “No mathematical idea has ever been published in the way it was discovered”
(Freudenthal, 1983, p. ix). The present article and the findings within it should be interpreted
similarly. The sequence of the sections in this article suggests the characterization of these three
constructs preceded the field testing of the B-MTL questionnaire, but the actual chronology of the
work involved an iterative process.

1.4.2. Transmissionist
One decision teachers must perpetually make is whether—and under what conditions—to tell
students how to solve mathematics problems. The mathematics education research literature is
replete with examples of researchers imploring teachers to refrain from telling students how to
solve mathematics problems, while the mainstream practice of mathematics instruction in the
United States involves teachers’ doing just that (Gage, 2009; Stigler & Hiebert, 1999).
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Teachers with high levels of Transmissionist beliefs endorse statements consistent with a top-
down approach to teaching, whereas those with low levels endorse statements more consistent
with a bottom-up approach to teaching and learning (Hiebert & Carpenter, 1992). The top-down
approach is the modal form of U.S. mathematics instruction at all levels of formal schooling, and it
is generally consistent with what Gage (2009) described as the Conventional-Direct-Recitation
(CDR) approach.

Through the work described here, we have come to believe the Transmissionist perspective is the
opposite end of the continuum of the scale described by Staub and Stern (2002) as Cognitive
Constructivist. Staub and Stern found that students of teachers with a higher self-reported Cognitive
Constructivist orientation had higher performance on what they termed structure-oriented tasks.
Although they hypothesized that students of teachers with a higher self-reported Transmissionist
orientation would perform higher on performance-oriented mathematics tasks, their data failed to
confirm that hypothesis. Notably, Peterson et al. (1989) reported similar findings; students of teachers
with beliefs that were more aligned the CGI principles had higher scores on a problem-solving test,
whereas teachers’ beliefs were not related to students’ abilities to recall number facts. Rather than
deferring to the name Cognitive Constructivist, as several scholars before us have done, we name this
construct to align with the predominant view of the teachers in our baseline sample.

Teachers with high levels of Transmissionist beliefs endorsed statements that effective teaching
involves teachers’ first showing students how to solve problems and students’ then solving
problems using the method the teacher presented. Conversely, teachers with low levels of
Transmissionist beliefs endorsed statements indicating that effective instruction involves teachers’
encouraging students to solve problems in their own ways and to discuss their solutions with their
peers. Teachers with high levels of Transmissionist beliefs agreed that asking students to solve
problems in their own way is risky, whereas teachers with low levels agreed with the importance of
allowing students to discover how to solve problems in their own, invented ways.

Appendix A displays all the items in this scale that remained after our evaluation of the
measurement model and removal of items that did not meet inclusion criteria. The following
two items are provided here as examples of items that are consistent with a Transmissionist
orientation: “Most students cannot figure out how to solve math problems by themselves and
must be explicitly taught,” and “Students should be instructed to solve problems the way the
teacher has taught them.”

The sign of the factor loadings reported in Appendix A indicates whether items were positively or
negatively associated with the Transmissionist factor. Items in the Transmissionist scale with
negative factor loadings were originally written to be aligned positively with the Cognitive
Constructivist orientation, which was ultimately combined with the items written for the
Transmissionist orientation into a single scale. An example of an item in the Transmissionist
scale that was negatively related to the Transmissionist latent trait is “Students can figure out
ways to solve many math problems prior to formal instruction.” Agreement with these items with
negative factor loadings was associated with low levels of Transmissionist beliefs.

1.4.3. Facts first
Another topic we explored is teachers’ beliefs about the relation and primacy of developing (a)
students’ solving word problems and (b) students’ ability to recall number facts and computational
procedures. Both of these topics are recurring themes in the items comprising the CGI Beliefs Scale
(Fennema et al., 1990) as well as fundamental principles of CGI-based professional development
programs (Carpenter et al., 1989; Carpenter & Franke, 2004).

Researchers studying children’s cognition in mathematics have developed two seemingly oppo-
site schools of thought regarding the sequencing of learning of basic facts and solving word
problems. One school of thought is based on the assumption that performance in solving of
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word problems depends upon knowledge of basic facts, where an ability to recall number facts
easily is thought to reduce cognitive demand during the solving of word problems (see, e.g., Fuchs
et al., 2006). Another school of thought is that students can successfully solve word problems
before being able to recall basic facts (Brownell & Chazal, 1935; Carpenter et al., 1999; Kilpatrick,
Swafford, & Findell, 2001; Verschaffel & De Corte, 1997). In the latter perspective, children’s
understanding of number facts and operations and ability to recall these facts is a consequence
of experiences solving word problems rather than a prerequisite.

We provide a simplification of the two assumptions here. The facts-before-word problems
approach posits that fact recall provides a basis for solving word problems, because the ability
to quickly recall facts reduces the cognitive demand in the complex task of solving word problems.
The word-problems-before-facts approach posits that word problems can be successfully solved by
students through counting and concrete modeling strategies before they have developed their
abilities to recall basic facts, and early experiences solving word problems create opportunities for
students to learn about number and operations with a deeper understanding (Hiebert & Carpenter,
1992). Once again, our decision on what to name this construct (i.e., Facts First) was made out of
deference to the predominant belief reported by teachers in our sample.

The Facts First scale identifies aspects of teachers’ belief concerning the role of student knowl-
edge of number facts and sequencing topics in instruction for optimal learning. Teachers with high
levels of Facts First beliefs endorsed statements indicating that they viewed student knowledge of
number facts as fundamentally important. In the Facts First perspective, quick recall of basic
number facts is considered a prerequisite to procedural fluency, understanding of the four basic
operations, and success in solving of word problems. Teachers who subscribe to the Facts First
perspective agree that limited knowledge of basic facts is likely to be the root cause of poor
performance in mathematics.

Drawn from the final questionnaire (see Appendix A), the following two items are provided here
as examples of statements that are consistent with a Facts First orientation: “Students should
master some basic facts before they are expected to solve word problems,” and “Students should
master carrying out computational procedures before they are expected to understand why those
procedures work.” The original item set included several items designed to be negatively correlated
with the latent trait. After eliminating items as part of our evaluation of the measurement model,
the only item with a negative factor loading remaining in the Facts First scale is “Even students
who have not learned the basic facts can have efficient methods for solving word problems.”

1.4.4. Fixed instructional plan
The third topic we explored and attempted to measure involves an existential problem faced by
nearly all mathematics teachers at every level: the omnipresent dilemma about whether to adhere
to an externally established scope, sequence, and pacing of the curriculum. Responding to the
needs and interests of students is also a fundamental principle in the CGI program, and a strict
adherence to an externally imposed, predetermined set of problems and pacing can be antithetical
to the formative-assessment practices promoted by the CGI program.

Researchers have found that teachers and instructional leaders view strict adherence to the
scope and sequence in the textbook as important features of instruction, particularly in
mathematics (Burch & Spillane, 2003; Grossman, P, 1996; Spillane, 2005). After observing
both formal and informal conversations among teachers and teacher leaders in both literacy
and mathematics, Spillane (2005) reported that conversations about literacy instruction were
likely to include detailed discussions of student thinking, flexible use of teaching strategies, and
examples of teachers’ gaining substantive knowledge about teaching. In contrast, conversa-
tions about teaching mathematics were largely limited to discussions of curricular sequencing
and coverage.
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These findings suggest that mathematics teachers typically emphasize the sequencing and
pacing of topics when they plan for instruction. This point of view has been attributed to beliefs
that mathematics must be taught and learned sequentially and in accordance with certain logical
assumptions about the hierarchy of topics in mathematics (Thompson, 1992).

Teachers perform their craft as part of a larger social organization, and students take courses
that fit into a sequence of mathematics courses. As a result of this system, students are expected
to understand a specified set of ideas upon completion of each course. As previous scholars have
discussed (e.g., Burch & Spillane, 2003), this expectation is frequently interpreted to mean that
teachers must adhere to a fixed, predetermined sequence of topics that does not vary with respect
to the individual differences in students’ prior understanding or pace of learning. As a result,
teachers must make decisions every day about whether to adhere to a predetermined scope
and sequence of topics and activities or to adapt the scope and sequence based upon, for
example, students’ understanding and readiness to learn.

The Fixed Instructional Plan beliefs scale represents the extent to which a teacher agrees that
teachers should follow the scope and sequence of topics and activities in the mathematics text-
book or the school- or district-determined pacing guide. Teachers with high levels of Fixed
Instructional Plan beliefs about sequencing topics in instruction agree that students will eventually
understand the mathematics if the predetermined, externally imposed scope and sequence in
a printed textbook is followed with fidelity. Teachers with low levels of Fixed Instructional Plan
beliefs agree that teachers are more effective at helping students to learn when they make
adaptations to the prescribed scope and sequence in the textbook or pacing guide based upon
their assessment of students’ understanding and instructional needs.

2. Method

2.1. Participants
The analytic sample includes data gathered between summer 2013 and spring 2014 from 207
teacher participants working in 22 schools in two public school districts in Florida. These teachers
consented to participate in a cluster-randomized trial of a teacher professional-development pro-
gram for teachers of primary-grades mathematics students. Eleven of the schools were randomly
assigned to the intervention; teacher workshops began in summer 2013. The other 11 schools were
assigned to a business-as-usual control condition. The teachers completed our Beliefs about
Mathematics Teaching and Learning (B-MTL) questionnaire at the beginning of summer 2013 (Time
1) and at the end of spring 2014 (Time 2). Among the 207 participating teachers, 206 completed the
questionnaire at Time 1, 200 completed it at Time 2, and 199 completed it at both times.

Table 1 presents demographic characteristics for the sample at each wave of data collection.
Because some analyses were conducted on the control group only, Table 1 provides sample
characteristics for the total sample and the control-group subsample. The 207 participants in
our study included 95 first-grade teachers, 89 second-grade teachers, and 23 nonclassroom
teachers, such as math coaches. All participants were employed in public schools in the state of
Florida. The sample mean years of teaching experiences is 11.4 (SD = 8.8), ranging from 0 to
48 years. Each participant held a teaching certificate in either elementary education K–6, primary
education PreK–3, special education, or English for speakers of other languages.

2.2. Instrumentation
At Time 1, the B-MTL questionnaire was administered in hardcopy by project staff and completed
on site by participants in the treatment and control conditions. At Time 2, all participants com-
pleted the B-MTL questionnaire through the Qualtrics (2005–2014) on-line survey platform at times
and places of their choosing. The form for the questionnaire included 55 items. The sequence of
items was determined by random selection, but the sequence was identical for every respondent.
The same set of items and same order was used at Time 1 and Time 2. After scale refinement
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based on analyses of data from both time points, the final questionnaire contained 21 of the
original 55 items. The psychometric properties of the final form are presented in the Results
section. (See Appendix A for the set of items retained in the respecified questionnaire.)

2.3. Analytic strategy

2.3.1. Overview of phases of data analysis
Analysis of the data from our two field tests of the B-MTL questionnaire consisted of six sequentially
linked phases. The analyses involved investigation of evidence of factorial validity, differential item
functioning, model parsimony, longitudinal measurement and structural invariance, and scale relia-
bility, providing a comprehensive array of evidence for evaluation of the structural aspects of con-
struct validity (Flake, Pek, & Hehman, 2017). Our aim for Phases 1 through 4 was to identify the best
specification for the measurement model and determine whether preliminary validity evidence was
present in support of the proposed interpretive argument for the questionnaire. Consistent with the
goal of model selection declared by Preacher and Merkle (2012), the purpose of this development
stage of investigation was to “find a useful approximating model that (a) fits well, (b) has easily

Table 1. Sample demographic characteristics at Time 1 and Time 2

Time 1 Time 2

Control
(n = 105)

Total
(N = 206)

Control
(n = 105)

Total
(N = 200)

n % n % n % n %

Gender

Male 0 0.0 3 1.5 0 0.0 3 1.5

Female 105 100.0 203 98.5 105 100.0 197 98.5

Race/Ethnicitya

Asian 1 1.0 2 1.0 1 1.0 2 1.0

Black 6 5.7 19 9.2 7 6.7 20 10.0

Hispanic 15 14.3 23 11.2 15 14.3 23 11.5

Multiracial 0 0.0 2 1.0 0 0.0 2 1.0

White 82 78.1 159 77.2 81 77.1 152 76.0

Decline to answer 1 1.0 1 0.5 1 1.0 1 0.5

Grade role

1 48 45.7 94 45.6 49 46.7 95 47.5

2 44 41.9 89 43.2 43 41.0 83 41.5

Support 13 12.4 23 11.2 13 12.4 22 11.0

Years of teaching experience

Three or fewer 17 16.2 42 20.4 18 17.1 43 21.5

Four or more 88 83.8 164 79.6 87 82.9 157 78.5

Highest degree earned

Bachelor’s degree 65 61.9 139 67.5 66 62.9 137 68.5

Master’s degree 37 35.2 63 30.6 36 34.3 59 29.5

Professional diploma 2 1.9 3 1.5 2 1.9 3 1.5

Professional degree 1 1.0 1 0.5 1 1.0 1 0.5

Note. Asian = Asian/Pacific Islander, non-Hispanic; Black = Black/African American, non-Hispanic; Hispanic = Hispanic/
Latino ethnicity, any racial group; Multiracial = Multiracial or American Indian/Alaskan Native, non-Hispanic;
White = White, non-Hispanic; Support = Nonclassroom teachers, such as math coaches.
aRace and ethnicity are reported here as mutually exclusive categories, consistent with the current reporting methods
used in the state of Florida. Teachers self-identified their race and ethnicity.
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interpretable parameters, (c) approximates reality in as parsimonious a fashion as possible, and (d)
can be used as a basis for inference and prediction” (p. 1). Phases 5 and 6 formed an appraisal stage,
the aim of which was to assess the psychometric properties of the respecified questionnaire.

In the first phase of analysis, we fit the data to our a priori five-factor model using item factor
analysis (IFA; confirmatory factor analysis with ordered-categorical indicators). The aim of Phase 1
was to identify a measurement model that met conventional criteria for factorial validity. In
the second phase, we inspected for item bias attributable to treatment condition. In the third, we
fit the respecified model to an IFA at two time points to inspect items for longitudinal factor-loading
noninvariance. In the fourth, we inspected the structure of the model to ensure that it was as
parsimonious as possible without significant reduction inmodel fit. We followed an iterative approach
to model respecification throughout Phases 1 through 4, applying respecifications suggested by one
phase before going on to the next. In each phase, both empirical findings and item content were
taken under consideration before the model was respecified.

In the fifth phase, we assessed reliability of the respecified scales by calculating conventional and
ordinal forms of Cronbach’s α, Revelle’s β, and McDonald’sωh (omega hierarchical; Gadermann, Guhn,
& Zumbo, 2012; Zinbarg, Revelle, Yovel, & Li, 2005). In the sixth, we fit the measurement model to an
IFA at two time points. The Phase 6 modeling technique was the same as that employed in Phase 3,
except that in Phase 6 we inspected for all aspects of longitudinal measurement and structural
invariance. All analyses were performed with Mplus Version 7.11 (L. K. Muthén & Muthén, 1998–2012),
with the exception of the calculation of the reliability coefficients, which were performed in R 3.1.2 (R
Development Core Team, 2014) with the psych package (Revelle, 2016) alpha, splithalf, omega, and
polychoric functions. Unless stated otherwise, models fit in Mplus used the WLSMV robust weighted
least squares estimator.

2.3.2. Criteria used in determining the best specification for the measurement model
Following guidelines outlined by Brown (2015), we evaluated model fit on the basis of overall
goodness of fit; presence of localized areas of strain in the solution; and interpretability, size, and
statistical significance of the parameter estimates.

2.3.3. Overall goodness of fit
We used the model chi-square (χ2), root mean square error of approximation (RMSEA), compara-
tive fit index (CFI), and Tucker-Lewis index (TLI) to evaluate overall goodness of fit. The χ2 statistic
is an absolute measure of fit that provides a test of exact fit: a hypothesis test that was argued by
Hu and Bentler (1998) to be “too strong to be realistic” (p. 425). A χ2 p value < .05 confers an
assumption that the model covariance matrix does not match the data perfectly. In keeping with
convention, we report the χ2 index but devote most of our interest to the other, more practical,
indices—which indicate whether the model provides not an exact but a reasonable fit to the data.
Although also an absolute measure of fit, the RMSEA differs from the χ2 in that the RMSEA is
a parsimony-adjusted index and the statistical test is against a hypothesis not of exact fit (i.e.,
RMSEA = 0) but of close fit. Following guidelines in the structural equation modeling literature
(Browne & Cudeck, 1992; MacCallum, Browne, & Sugawara, 1996), we interpreted RMSEA values of
.05, .08, and .10 as thresholds of close, reasonable, and mediocre model fit, respectively, and
interpreted values > .10 to indicate poor model fit. The CFI and TLI are incremental measures of fit
that compare against a baseline, more parsimonious model. Drawing from findings and observa-
tions noted in the literature (Bentler & Bonett, 1980; Hu & Bentler, 1999), we interpreted CFI and
TLI values of .95 and .90 as thresholds of close and reasonable fit, respectively, and interpreted
values < .90 to indicate poor model fit. Although we recognize cautions associated with universal
cutoff values to determine model adequacy (from, e.g., Chen, Curran, Bollen, Kirby, & Paxton, 2008;
Marsh, Hau, & Wen, 2004), the need for decision rules compelled us to follow conventions of
practice and the guidance available in related literature (Lance, Butts, & Michels, 2006). We note
findings from simulation studies (Chen et al., 2008; Hu & Bentler, 1999) that tests of RMSEA > .05
and TLI < .95 tended to overreject with small sample sizes (N < 250). Given the size of our sample,
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therefore, we remain cognizant that the RMSEA and TLI indices may be conservative indicators of
model fit and therefore regard the CFI index as perhaps the most trustworthy measure of model
adequacy for our sample.

2.3.4. Presence of localized areas of strain in the solution
We inspected for model misspecification by using the combination of modification indices (MI) and
expected parameter change (EPC) associated with freeing cross-loadings or error covariance. We
constructed 95% confidence for the EPCs using the formula provided by Saris, Satorra, and van der
Veld (2009) and applied their suggested factor loading and error covariance critical cutoff values of
.4 and .1, respectively, as substantively important deviations indicating model misspecification.

2.3.5. Interpretability, size, and statistical significance of the parameter estimates
Factor analysis models with standardized factor loadings >.7 in absolute value are optimal, as they
ensure that at least 50% of the variance in responses is explained by the specified latent trait. In
practice, however, this criterion can be too stringent to allow the content representativeness
intended for many scales. Researchers working with applied measurement (e.g., Reise, Horan, &
Blanchard, 2011) have used standardized factor loadings as low as .5 in absolute value as
a threshold for item salience. In accordance with this practice, with scaling set by fixing the
variance for each factor to 1, we only retained items that had standardized factor loading
estimates ≥ .5 in absolute value with unstandardized factor loading p values < .05.

2.3.6. Item bias
Given our immediate objective of developing a measure to be used in the evaluation of
a particular professional-development program, we wanted to identify and remove any item
with bias associated with treatment condition. We employed Wang and Shih (2010) pure anchor
multiple indicators–multiple causes (MIMIC) method for assessing uniform differential item
functioning (DIF) in polytomous items. This process involved a first step of identifying a pure
anchor of DIF-free items and a second step of evaluating the nonanchor items for DIF, termed
the DIF-free-then-DIF strategy. The first step involved fitting a single-level factor model for as
many items as were specified in the model, each model differing from the others in which items
were specified as DIF-free. Controlling for the effect of the latent trait, the direct effect of
treatment on each item indicated the magnitude and direction of DIF; the absolute value of the
direct effect is termed the DIF index. Referencing the mean of each item’s DIF index from
across all runs, we identified the item within each scale with the lowest mean DIF to serve as
the pure anchor. In the second step, therefore, a subset of items served as the pure anchor: one
item from each scale. In the second step, where nonanchor items were evaluated for DIF, the
model was specified as a two-level doubly-latent model (Marsh et al., 2009), with random
thresholds and slopes that varied across schools and the mean for each within-level slope
held equal to the corresponding between-level slope. We used the Educational Testing Service
DIF classification (Zwick, 2012) to identify items with moderate to large DIF (i.e., p < .05, odds
ratio < 0.528 or > 1.893). Items identified as having moderate to large DIF were removed from
the model.

Because the sample size was small relative to the number of parameters to estimate, we used
a Bayesian estimator for all DIF analyses. All models were specified with noninformative priors and
zero cross-loadings. Model convergence was determined on the basis of satisfaction of the
Gelman-Rubin potential scale reduction (PSR) < 1.05 criterion and failure to be rejected in the
Kolmogorov-Smirnov distribution test (Kaplan & Depaoli, 2012; L. K. Muthén & Muthén,
1998–2012). Because we were investigating the potential bias introduced by participating in the
intervention, DIF analyses were conducted only with data from Time 2 and included data from the
project treatment and control group.
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2.3.7. Model parsimony
After evaluating the measurement specifications of the model, we evaluated the model’s struc-
tural specification. With the objective of specifying a model that was no more complex than
empirically and theoretically justified, we inspected the latent variable intercorrelations for indica-
tion of collinearity. We fit an alternate specification of the model that combined plausibly collinear
factors and used the Bayesian information criterion (BIC; Schwarz, 1978) approximation of the
Bayes factor to assess the strength of evidence in favor of the more parsimonious model. Using the
formulation specified by Masyn (2013), we calculated the Bayes factor (BF) as

BFH0;H1 ¼ exp SICH0 � SICH1½ �; (1)

where SIC is the Schwarz information criterion, given by

SIC ¼ � 0:5BIC: (2)

To interpret the strength of evidence, we applied Jeffrey’s scale of evidence (Wasserman, 2000),
which denotes BFH0,H1 < 1/10, 1/10 < BFH0,H1 < 1/3, and 1/3 < BFH0,H1 < 1 as strong, moderate, and
weak evidence, respectively, in favor of the H1 less constrained model and 1 < BFH0,H1 < 3, 3
< BFH0,H1 < 10, and BFH0,H1 > 10 as weak, moderate, and strong evidence, respectively, in favor of
the H0 more parsimonious model. Models were fit by means of the Mplus MLR maximum likelihood
with robust standard errors estimator. Model parsimony was assessed on the basis of data from
the treatment and control groups combined, generating factor correlation estimates for Time 1
and Time 2.

2.3.8. Criteria used for evaluating the psychometric properties of the questionnaire
2.3.8.1. Scale reliability. Caution against the routine use of Cronbach’s α over other reliability coeffi-
cients has been the subject of much discussion in recent literature (e.g., Sijtsma, 2009). Zumbo,
Gadermann, and Zeisser (2007) demonstrated that Cronbach’s α can be downwardly biased when
applied to ordinal data, because of its use of a Pearson correlationmatrix and corresponding assump-
tion of continuity. Zumbo et al. found ordinal coefficients (hereafter, nonlinear coefficients), calculated
with the use of polychoric correlation matrices, to be suitable alternatives to the conventional
Cronbach’s α (i.e., linear α) when researchers are working with Likert-type data. Also inherent to
Cronbach’s α is the assumption of essential tau equivalence. Zinbarg et al. (2005) demonstrated
that comparisons among coefficients α, β, and ωh can be used to reveal scale properties, such as
unidimensionality and equality of factor loadings, that remain unreported when researchers calculate
only the α reliability.
Cronbach’s α is mathematically equivalent to the mean of all possible split half reliabilities

and conveys how strongly a measure will be correlated with another measure comprising items
sampled from the same domain. Revelle’s β is the lowest split half reliability and conveys
a measure’s homogeneity. Only when essential Tau equivalence is achieved (i.e., unidimension-
ality and equality of factor loadings) will α equal β; otherwise, α will always be greater than β,
the magnitude of the discrepancy indicating the extent of factor-loading heterogeneity.
Variability in factor loadings can be attributable to microstructures in the data, what Revelle
(1979) termed lumpiness. McDonald’s ωh models lumpiness in the data through a bifactor
structure and indicates (a) the extent to which all the indicators forming the scale measure
a latent variable in common and (b) the extent to which the proportion of variance in the scale
scores accounted for by the latent variable is common to all the indicators (Zinbarg, Yovel,
Revelle, & McDonald, 2006). The relation between α and ωh is more dynamic than that between
α and β, as α can be greater than, equal to, or less than ωh, as a result of the particular
combination of scale dimensionality and factor-loading variability. We investigated these scale
properties by examining the relation among coefficients α, β, and ωh through the four-type
heuristic proposed by Zinbarg et al. (2005). To evaluate reliability coefficients, we apply the
conventional values of .7 and .8 as the minimum and target thresholds for scale reliability,
respectively (Nunnally & Bernstein, 1994; Streiner, 2003). Reliability was assessed on the basis
of data from the project treatment and control groups combined, generating estimates for
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Time 1 and Time 2. For the reliability analyses, we rekeyed items so that all items were going in
the same conceptual direction, and thus all items were positively correlated with the latent
trait.

2.3.8.2. Longitudinal measurement and structural invariance. For all tests of longitudinal invar-
iance (performed during Phases 3 and 6 of the investigation), we fit an IFA at two time points
with correlated residuals for the same indicators across time. For Phase 3, the test was of
invariance of factor loadings only. For Phase 6, the test was of factor loadings, item thresh-
olds, residual variances, factor variances, factor covariances, and factor means. We used
a bottom-up (or forward) approach, which starts with noninvariance and compares with
models with invariance constraints imposed. Accordingly, a statistically significant test sta-
tistic indicates the given constraint resulted in a significantly worse fitting model. Where full
invariance was not established, partial invariance was investigated. Our testing procedure
followed guidelines suggested by Millsap and colleagues (Millsap, 2011; Millsap & Yun-Tein,
2004; Yoon & Millsap, 2007) and Mplus syntax developed by Lesa Hoffman (http://www.
lesahoffman.com/).
Appendix B delineates the model specification for each step in our invariance testing procedure.

All invariance models were fit by means of the Mplus WLSMV estimator. In addition to referencing
the Mplus DIFFTEST option for model comparison, we applied Chen’s (2007) ΔRMSEA and ΔCFI
cutoffs of ≥ .010 and ≤—.005, respectively, for indicating noninvariance of loadings, intercepts
(here, thresholds), and residual variance. Longitudinal measurement and structural invariance was
assessed on the basis of data from the project control group only; data from Time 1 and Time 2
were modeled jointly.

3. Results

3.1. Phase 1: factorial validity

3.1.1. Evaluation of the a priori measurement model
Model fit statistics for the a priori model were mixed; the RMSEA indicated reasonable fit, but the
CFI and TLI indicated poor fit. Time 1 (N = 206) fit statistics for the a priori model were χ2

(1420) = 2178.580, p < .001; RMSEA = .051, 90% CI [.047, .055], CFI = .878; and TLI = .873. At
Time 2 (N = 200), they were χ2(1420) = 2775.122, p < .001; RMSEA = .069, 90% CI [.065, .073];
CFI = .899; and TLI = .895. Roughly half of the items had low standardized factor loadings (<.5 in
absolute value), so half of the items were not salient to the constructs being modeled.

3.1.2. Model fit after phase 1 respecification
Following the criteria to remove items with standardized factor loadings <.5 in absolute value
or unstandardized factor loading p values ≥.05 at either Time 1 or Time 2 resulted in dropping
27 of the original 55 items. Dropped items included all 9 items from the proposed Favoring
Correct Answers scale, 6 of the 11 from the Cognitive Constructivist scale, 4 of the 14 from the
Direct Transmissionist scale, 4 of the 11 from the Facts First scale, and 4 of the 10 from the
Fixed Instructional Plan scale. The respecified four-factor model was fit to each wave of data.
Time 1 fit statistics after the Phase 1 respecification were χ2(344) = 637.340, p < .001;
RMSEA = .064; 90% CI [.057, .072]; CFI = .938; and TLI = .932. Time 2 fit statistics for the
respecified model were χ2(344) = 798.088, p < .001; RMSEA = .081; 90% CI [.074, .089];
CFI = .947; and TLI = .942. Model fit statistics after Phase 1 respecification indicated a reason-
able fit to the data, providing sufficient evidence of factorial validity to proceed with subse-
quent phases of investigation.

3.2. Phase 2: differential item functioning
Using the 28-item four-factor model respecified in Phase 1, we investigated the data for item bias.
Applying the Wang and Shih (2010) DIF-free-then-DIF strategy, we identified four items with
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moderate to large DIF: two from the Direct Transmissionist scale and two from the Facts First
scale. The two Transmissionist DIF items were both biased toward the control group (OR = .43,
p = .016, and OR = 0.40, p = .023, respectively), indicating that odds of endorsing these statements
were higher for the control group than for the treatment group, when their level of Transmissionist
belief was controlled for. Stated differently, a control group participant had higher odds of endor-
sing these statements than a treatment group participant of the same Transmissionist beliefs. The
two Facts First DIF items were both biased toward the Treatment group (OR = 1.91, p = .032, and
OR = 2.53, p = .045, respectively), indicating that odds of endorsing these statements were higher
for the treatment group than for the control group, controlling for their level of Facts First belief.
The four DIF items were subsequently removed from their respective scales. For all models at Step
1 and Step 2 of the DIF-free-then-DIF procedure, model convergence was achieved, indicated by
satisfaction of the PSR < 1.05 criterion and failure to reject the equality of posterior distributions in
the Markov chain Monte Carlo (MCMC) chains by the Kolmogorov-Smirnov distribution test. Models
were specified with two MCMC chains and a maximum of 200,000 iterations.

3.3. Phase 3: longitudinal metric invariance
Using the 24-item four-factor model respecified in Phase 2, we then investigated the data for
longitudinal noninvariance of factor loadings. We identified three items to be metrically noninvar-
iant across time. After conducting nested model comparisons, we found a significant decrease in
model fit when all factor loadings were constrained to be equal across time: DIFFTEST (20) = 44.57,
p = .002. We successively freed the equality constraint for three items with modification indices
that suggested areas of localized strain in the model. DIFFTEST results for each successively freed
equality constraint were as follows: 34.82 (19), p = .015; 29.12 (18), p = .047; and 22.63 (17),
p = .162. The three metrically noninvariant items (one item from each of the Cognitive
Constructivist, Direct Transmissionist, and Fixed Instructional Plan scales) were subsequently
removed from the model.

3.4. Phase 4: model parsimony
Using the 21-item, four-factor model respecified in Phase 3, we inspected the structure of the
model to ensure that it was as parsimonious as possible without significant reduction in model fit.
Table 2 shows factor correlations at Time 1 and Time 2. Although all factors had moderate to high
correlations, the factors for Cognitive Constructivist and Direct Transmissionist were notably high,
albeit negatively related: Time 1 r = –.89, 95% CI [–.82, –.97]; Time 2 r = –.94, 95% CI [–.89, –1.00].
From inspection of the item content for the remaining items for these scales, we concluded it
plausible that the respecified Cognitive Constructivist and Direct Transmissionist scales repre-
sented opposing sides of a single construct. Accordingly, we fit separate models, comparing
three- and four-factor models at both time points, to determine which provided the best relative
fit to the data—collapsing the Cognitive Constructivist and Direct Transmissionist scales or model-
ing them as separate but correlated factors. High correlations were also observed between the
Facts First factor and the Cognitive Constructivist and Direct Transmissionist factors, but we
determined the item content for the Facts First scale to be distinct and refrained from model
comparisons on collapsing Facts First into one or both of these scales.

Fitting the data to the H0 more parsimonious three-factor model and the H1 less constrained
four-factor model produced fit estimates of BICH0 = 8491.17 and BICH1 = 8483.97 for data at Time 1
and BICH0 = 7733.08 and BICH1 = 7736.44 for data at Time 2. The approximate Bayes factor was
BF = 0.03 at Time 1, providing strong evidence in favor of the four-factor model, and BF = 5.38 at
Time 2, providing moderate evidence in favor of the three-factor model. Although the strength of
evidence at Time 1 in favor of the four-factor model is compelling, given (a) our preference for
parsimony where justified, (b) a moderate strength of evidence at Time 2 in favor of the more
parsimonious three-factor model, (c) the correlation between the factors of concern approximating
or exceeding an absolute value of .9 at both time points, and (d) similarity of item content across
the respective factors, we adopted the more parsimonious three-factor specification to constitute
the final configuration for the B-MTL measurement model.
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3.5. Model evaluation of the final configuration
Our inspection of overall goodness of fit, localized areas of strain, and interpretability of parameter
estimates found evidence of factorial validity for the final model configuration. The Time 1 RMSEA
and TLI indicated reasonable fit and the CFI indicated close fit: χ2(186) = 347.157, p < .001;
RMSEA = .065; 90% CI [.054, .075]; CFI = .954; and TLI = .948. The Time 2 RMSEA indicated mediocre
fit and the CFI and TLI indicated reasonable fit: χ2(186) = 515.796, p < .001; RMSEA = .094; 90% CI
[.085, .104]; CFI = .948; and TLI = .941. Placing greater weight on the CFI index (given research
findings of bias with the RMSEA and TLI for sample sizes < 250) suggested an overall reasonable fit
to the data. We note that, with the inclusion of school fixed effects controlling for school mean
differences in the latent traits, all fit indices at both time points indicated close fit to the data,
including failure to reject the χ2 test.2

Our inspection for localized areas of strain for the final configuration found no cross-loadings or
error covariances that were present at both Time 1 and Time 2. Specifically, using a critical-
deviation value of .4 for factor loadings and 95% CIs for the EPCs, no cross-loadings were
suggested at Time 1 and only one cross-loading was suggested at Time 2. The same procedure
for error covariances, except with a critical deviation value of .1, suggested nine error covariances
for Time 1 and 11 error covariances for Time 2. No same-pairing of items was suggested for both
time points. With the absence of any indication of systematic misspecification across time and an
interest in avoiding overfitting of the model, we refrained from specifying any of the suggested
time-specific cross-loadings or error covariances.

Our inspection of the size and statistical significance of the parameter estimates for the final
configuration found all items at both time points to have unstandardized factor loading with
p-values < .001. Standardized loadings for the Transmissionist factor ranged from .60 to .88 in
absolute value (M|λ| = .69, SD = .09) at Time 1 and from .61 to .83 in absolute value (M|λ| = .73,
SD = .06) at Time 2. Standardized loadings for the Facts First factor ranged from .53 to .67 in
absolute value (M|λ| = .60, SD = .06) at Time 1 and from .68 to .82 in absolute value (M|λ| = .75,
SD = .06) at Time 2. Standardized loadings for the Fixed Instructional Plan factor ranged from
.65 to .77 (M|λ| = .72, SD = .06) at Time 1 and from .56 to .84 (M|λ| = .70, SD = .10) at Time 2.
Appendix A displays all of the items retained in the final model and the respective standardized

Table 2. Beliefs about Mathematics Teaching and Learning Questionnaire Factor Correlations
at Times 1 and 2

Cognitive
constructivist

Direct transmissionist Facts first

r 95% CI r 95% CI r 95% CI
Time 1 (n = 206)

Cognitive
constructivist

— —

Direct transmissionist –.89 [–.82–.97] — —

Facts first –.63 [–.48–.78] .82 [.71, .94] — —

Fixed instructional
plan

–.47 [–.31,–63] .60 [.46, .75] .56 [.40, .73]

Time 2 (n = 200)

Cognitive
constructivist

— —

Direct transmissionist –.94 [–.89,—1.00] — —

Facts first –.88 [–.81,–.95] .87 [.81, .93] — —

Fixed instructional
plan

–.57 [–.43–.71] .69 [.58, .81] .59 [.45, .73]

Note. Confidence interval lower and upper bounds are ordered by absolute value.
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factor loadings at each time point. The factor correlations ranged from .59 to .78 at Time 1 and
from .62 to .91 at Time 2. At both time points, the lowest correlation was between the Facts
First and Fixed Instructional Plan factors and the highest correlation was between the Facts
First and Transmissionist factors.

3.6. Phase 5: scale reliability
Using the 21-item three-factor model respecified in Phase 4, constituting the final configuration,
we assessed scale reliability by calculating linear and nonlinear forms of Cronbach’s α, Revelle’s β,
and McDonald’s ωh. Table 3 displays the reliability coefficients for each scale at Time 1 and Time 2.
Consistent with findings by Zumbo et al. (2007), the nonlinear α coefficients, which are calculated
by means of a polychoric correlation matrix, produced larger estimates than those of the conven-
tional Cronbach’s α (i.e., linear α). Nevertheless, the disparity between the linear and nonlinear αs
was not large (range .01 to .04), suggesting that the data produced by the five-category Likert
response scale did not differ drastically from what would have been produced by an interval
response scale. The nonlinear α coefficients were generally in the acceptable range; estimates
were as follows: Transmissionist (Time 1 α = .88; Time 2 α = .92), Facts First (Time 1 α = .68; Time 2
α = .83), and Fixed Instructional Plan (Time 1 α = .79; Time 2 α = .80). For only one scale and at one
time point (Facts First at Time 1) did the estimated nonlinear α not exceed the conventional
minimum threshold of .7.

Comparison between the nonlinear αs and βs revealed moderate differences (range .03–.07),
indicating heterogeneity among factor loadings, challenging an assumption of essential tau
equivalence. Comparison between the α and ωh nonlinear coefficients revealed moderate to
large differences (range .04–.14); coefficient α had the larger value in every case. These discre-
pancies indicate the presence of microstructures within the scales, so coefficient α should be
interpreted as an overestimate of the true reliability. Nevertheless, the nonlinear ωh exceeded the
conventional minimum threshold of .7, except for the one scale and at one time point noted above.
Accordingly, as demonstrated by Gustafsson and Åberg-Bengtsson (2010), high values of ωh

indicate that composite scores can be interpreted as reflecting a single, common source of
variance in spite of evidence of within-scale multidimensionality. The relation among the coeffi-
cients was ωh ≤ β < α in every case. In cases where ωh = β or ωh ≈ β, the equality of loadings on the
general factor was supported.

Table 3. Comparison of reliability coefficients for each scale at Times 1 and 2

Coefficient Time 1 (N = 206) Time 2 (N = 200)

Linear Nonlinear Linear Nonlinear
Transmissionist

Cronbach’s α .86 .88 .88 .92

Revelle’s β .80 .84 .82 .88

McDonald’s ωh .70 .74 .80 .88

Facts first

Cronbach’s α .67 .68 .80 .83

Revelle’s β .60 .61 .77 .79

McDonald’s ωh .59 .60 .73 .78

Fixed instructional plan

Cronbach’s α .77 .79 .76 .80

Revelle’s β .70 .73 .72 .77

McDonald’s ωh .65 .70 .71 .74
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3.7. Phase 6: longitudinal measurement and structural invariance
In the sixth phase of the investigation, we inspected measurement and structural aspects of
longitudinal invariance, including invariance of factor loadings, item thresholds, residual variances,
factor variances, factor covariances, and factor means. Analyses demonstrated full measurement
invariance and partial structural invariance. Table 4 presents the results of the succession of
parameter constraints conducted to examine potential decreases in fit resulting from the imposing
of invariance constraints between Time 1 and Time 2.

Fit indices for the baseline longitudinal model indicated reasonable fit, suggesting its configural
invariance across time: χ2 (783) = 1065.12, p < .001; RMSEA = .058, 90% CI [.047, .058]; CFI = .926;
and TLI = .918. Using chi-square difference tests, we found the loadings, thresholds, and residual
variances to be invariant across time, with test statistics of DIFFTEST (18) = 27.50, p = .070, for the
loadings; DIFFTEST (66) = 66.25, p = .468, for the thresholds; and DIFFTEST (21) = 30.07, p = .091, for
the residual variances. These finding were corroborated by means of Chen’s (2007) cutoffs for
changes in fit statistics, where corresponding ΔRMSEA and ΔCFI were < .010 and >–.005, respec-
tively, for all tests of loading, threshold, and residual variance invariance. With regard to structural
invariance, the constraint of factor variances across time did result in a significant reduction in fit,
DIFFTEST (3) = 18.85, p < .001. Modification indices suggested localized strain for the
Transmissionist factor, with parameter estimates from the unconstrained model indicating that
variance was less at Time 2 than at Time 1 for the Transmissionist factor. We established partial
factor variance invariance by constraining the variances for the Facts First and Fixed Instructional
Plan factors but allowing the variance for the Transmissionist factor to be freely estimated across
time: DIFFTEST (2) = 2.25, p = .325. Notwithstanding factor variances being only partially invariant,
the structural invariance of the model was supported by findings of full invariances of the factor
covariances, DIFFTEST (9) = 11.24, p = .260, and full invariances of the factor means, DIFFTEST
(3) = 3.25, p = .355. Figure 1 displays the diagram for the B-MTL longitudinal measurement and
structural invariance model with unstandardized parameter estimates presented.

4. Discussion
Our aim was to clarify the constructs for mathematics-specific, epistemological beliefs that are likely
to drive teachers’ instructional decisions. This focus guided us to identify theories involving competing

Table 4. Tests of longitudinal measurement and structural invariance

Model χ2 (df) Δχ2 (Δdf) Δχ2 p RMSEA ΔRMSEA CFI ΔCFI

Configural baseline 1065.12 (783) .058 .926

Full factor loading
invariance

1058.03 (801) 27.50 (18) .070 .055 –.003 .932 .006

Full item threshold
invariance

1120.06 (867) 66.25 (66) .468 .052 –.003 .933 .001

Residual variance
baseline

1117.48 (846) .055 .928

Full residual variance
invariance

1120.06 (867) 30.07 (21) .091 .052 –.003 .933 .005

Full factor variance
invariance

1142.52 (870) 18.85 (3) < .001 .054 .002 .928 –.005

Partial factor variance
invariance

1120.38 (869) 2.25 (2) .325 .052 .000 .934 .006

Full factor covariance
invariance

1118.65 (878) 11.24 (9) .260 .051 –.001 .937 .003

Full factor mean
invariance

1120.73 (881) 3.25 (3) .355 .051 .000 .937 .000

Note. N = 106. RMSEA = root mean square error of approximation. CFI = comparative fit index. The Δχ2 and Δdf are
computed from the derivatives from the H0 and H1 analyses and is not simply the difference in values between the
nested models being compared.
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views or priorities concerning the mathematics teaching and learning process. The factorial validity of
the B-MTL questionnaire was supported by the results of our model-comparison analyses, intended to
ensure that the measurement model was no more complex than empirically warranted. The final
model, a three-factor solution, had reasonable fit at both time points, supporting the configural
invariance of themodel across time. At both time points, all items appeared salient to their respective
latent traits. No localized areas of strain were found to be present across time points.

Given our immediate objective to develop a measure to be used in the evaluation of a particular
professional-development program, we investigated for the presence of and subsequently
removed any items with bias associated with treatment condition. The resulting metric invariance
between intervention conditions indicated that the items were related to the latent factor equiva-
lently across groups—ensuring the same latent factors are being measured in each group is
a minimum criterion for valid comparisons between groups.

Similarly, our inspection of invariance across time indicated not only metric longitudinal invar-
iance but also scalar longitudinal invariance (invariance of thresholds). The substantiation of scalar
invariance indicated that items had the same expected response at the same absolute level of the
trait, meaning the observed differences in the proportion of responses at each time point was due
to factor mean differences only. Further, we found the model to have full residual variance
longitudinal invariance, indicating that the amount of item variance not accounted for by the
factor was the same across time. Meredith (1993) used the term strict factorial invariance to
describe an instrument that had metric, scalar, and residual variance invariances. Having strict
factorial invariance across time indicates that comparisons across time of differences between
pre- and post-intervention tests could be considered fair and equitable estimates of change. In
addition, the partial invariance of factor variances held, as did the full invariance of the factor
covariances and factor means. Because the longitudinal invariance analyses were conducted on
the control-group data only, these results indicate that the constructs as measured by the B-MTL
questionnaire have stable means and distributions across time.3

As part of the development of the B-MTL questionnaire, we conducted cognitive interviews on a pilot
sample of teachers whowere not involved in the field test of the questionnaire. The primary aim of the
cognitive interviewswas to ensure that respondents understood the prompts and response options as
intended. Problematic items were subsequently removed or revised. We think this procedure resulted
in an important reduction of construct-irrelevant variance in the response data.

Our evaluation of scale reliability revealed several interesting properties of the questionnaire
scales. First, comparison of linear and nonlinear forms of coefficient α revealed only small

Figure 1. Beliefs about mathe-
matics teaching and learning
longitudinal measurement and
structural invariance model
with unstandardized parameter
estimates.
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discrepancies, suggesting a tenable assumption of continuity with these data despite their being
produced by Likert-type response categories. Second, comparison of coefficients α, β, and ωh

suggested the presence of heterogeneity in factor loadings and within-scale multidimensionality,
indicating that coefficient α may be an overestimate of the true scale reliability for these data.
Nevertheless, even the lower-bound coefficients generally met conventional thresholds for accep-
table reliability. Further, even where within-scale multidimensionality was suggested, the presence
of a single common source of variance and the equality of loadings on the general factor was
frequently supported.

Notwithstanding the requirements for unidimensionality inherent in some measurement mod-
els, Reise, Moore, and Haviland (2010) question the soundness of holding unidimensionality as
a measurement ideal, noting that, to achieve a unidimensional model, “one essentially has to write
a set of items with very narrow conceptual bandwidth (i.e., the same item written over and over in
slightly different ways), which results in poor predictive power or theoretical usefulness” (p. 557).
Streiner (2003) argued a similar point, noting “αs over .90 most likely indicate unnecessary
redundancy rather than a desirable level of internal consistency” (p. 103). Understanding that
some lumpiness should be expected, particularly for data drawn from measures of complex
psychological processes, we believe the range of moderately sized reliability coefficients estimated
for the sample is suitable, given the nature of the constructs.

4.1. Limitations
Given the self-report feature of the B-MTL questionnaire, the extent to which the teachers’ report is
consistent with actual behavior is not yet known. Some findings indicate that teachers’ self-report
data in similar domains can be consistent with observer data (Mayer, 1999; Ross, McDougall,
Hogaboam-Gray, & LeSage, 2003). Additional work is warranted to determine whether teachers’
behaviors are consistent with their reported beliefs and to explore relations among teachers’
reported beliefs and student learning in mathematics.

We view the Fixed Instructional Plan scale as a belief that is created and shaped by practical
problems encountered in the practice of teaching and working in school organizations. That is,
although it may be measuring a belief among teachers that the sequence in the book reflects
the sequence that students must learn, this particular scale is probably measuring a belief that
is influenced by a more complex set of factors than, say, that of the Transmissionist scale. For
example, teachers may score high on the Fixed Instructional Plan scale for a variety of
reasons, including beliefs about the role of the teacher in carrying out the plan of the larger
school organization, which may include perceptions of pressure from principals, parents, or
other teachers. These contextual factors have a strong influence on the interactions among
teachers’ knowledge, beliefs, and instructional practice in the theoretical model proposed by
Ernest (1989). Other reasons for adhering to the scope and sequence prescribed in a textbook
might be low teacher confidence in the subject area or limited efficacy with deviating from the
textbook in a way that will result in a better outcome. Therefore, although the Fixed
Instructional Plan scale intends to measure the extent to which teachers believe that they
should either adhere closely to the scope and sequence in the mathematics textbook or make
adaptations to it, we recognize that the construct underlying teachers’ responses is probably
multifaceted, comprising sources of variation that are context and situation dependent. Should
further investigation demonstrate the Fixed Instructional Plan factor to be predictive of
student achievement or otherwise an important moderating factor, further scale development
would be warranted to allow these dependencies in the data to be studied and better
understood.

Further, we note that the Fixed Instructional Plan construct may require respecification as
curricula advance technologically and adaptive functionality becomes more prevalent. To the
extent that the construct proves to merit further inquiry, we anticipate its operationalization will
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need to undergo some drift in accordance with the evolving nature of how students interact with
content and curricula.

Another potential limitation is the subtle connotation of language. Researchers using the ques-
tionnaire with teachers in future policy environments, in other parts of the United States, or in
other English-speaking countries where the same words may be used differently, or researchers
translating the B-MTL to languages other than English must carefully consider the word choice in
order to avoid the potential influence of terms or ideas that may influence teachers to respond in
socially preferred ways.

4.2. Future directions
Valuable future work investigating concurrent or discriminant validity may include a comparison of
data gathered through this instrument and that from other existing instruments attempting to
measure teachers’ pedagogical content beliefs, such as the questionnaires developed by Peterson
et al. (1989), Staub and Stern (2002), or Campbell et al. (2014). Before the respecification of the set
of items in the Facts First scale, the working name for the construct was Incremental Mastery. We
suspect that the Facts First scale and the Mastery orientation described by Campbell, Clark, and
colleagues (Campbell et al., 2014; Clark et al., 2014) may be converging to a similar belief
construct. The work of Campbell et al. (2014) and Clark et al. (2014) was not known to us until
after the second wave of field-testing of the B-MTL questionnaire, but we think their Mastery
orientation scale could be used to investigate concurrent validity or to further clarify the under-
lying construct being measured by these items.

The B-MTL questionnaire does not attempt to measure teacher beliefs about the nature mathe-
matics directly. Thompson (1992) stated a clear opinion that beliefs about the nature of mathe-
matics probably undergird all other beliefs about mathematics teaching and learning. We made
some attempt to write items designed to measure teachers’ beliefs about the nature of mathe-
matics, but we were not confident in them after conducting the cognitive interviews. With respect
to beliefs about the nature of mathematics, the Facts First orientation and the Fixed Instructional
Plan orientation both seem to be consistent with a view that mathematics instruction should be
sequenced according to a hierarchy based upon logical assumptions about the structure of the
subject matter (Ernest, 1989; Thompson, 1992). For an interesting discussion and conceptual
framework on the topic of the nature of mathematics, we recommend Ernest (1991). An important
future direction for this work may be to see how teachers’ views about the nature of mathematics
might be associated with their beliefs about teaching and learning of mathematics.

There is considerable work to be done to support the validity argument for the B-MTL. We
encourage prospective users of the questions and scales in the B-MTL to explore their use in
combination with other extent and not-yet-developed measures for further development, refine-
ment, and validation. If the interplay between teachers’ knowledge, beliefs, and instructional
practice can be better understood, future efforts to improve teaching and learning may be more
productive (Bray, 2011; Fennema & Franke, 1992)

In its current form, the B-MTL questionnaire canmeasure three facets of beliefs about teaching and
learning of mathematics. We don’t set any expectation the B-MTL must be used in its entire form. We
hope to grow the scope of the questionnaire over time and use it in combination with other measures
so that it can be more inclusive and can encompass other clearly defined facets of beliefs.

Some scholars have argued that the types of beliefs we identify here are durable and more
resistant to change than other facets of beliefs, such as attitudes (Jong et al., 2015; Thompson,
1992). We remain agnostic and open to the possibility that these beliefs are malleable. Directions
for future work will include tests of the effect of interventions such as CGI-based professional-
development programs designed to affect these aspects of teacher beliefs about mathematics
teaching and learning. Ernest (1989) acknowledged that teachers in the same school have similar
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instructional practice, and the structure of the organization may supersede their individual beliefs
with respect to the effect on their instructional behaviors. Any future studies using the Fixed
Instructional Plan scale should consider the intraclass correlation of teachers and account for
the nested structure of the data if they include multiple teachers from the same school building.

4.3. Conclusions
At this time, the B-MTL questionnaire provides a refined, efficient way to measure where a teacher
falls on the spectrum of transmissionist and constructivist views of teaching and learning. The
B-MTL questionnaire also comprises a tool to measure two constructs that are new to the
literature on pedagogical content beliefs in mathematics: facts first, and fixed instructional plan.
These constructs represent only part of the full scope of teacher beliefs, and more work is needed
in order to map the landscape of teacher beliefs about mathematics teaching and learning and to
provide further validation of the questionnaire and the constructs.

The iterative procedure we followed to evaluate and respecify the B-MTL questionnaire resulted
in a structurally valid measurement model that (a) was free of moderate to large differential item
functioning associated with treatment status, (b) had full measurement invariance and partial
structural invariance across time, and (c) had scales that were reliable for the current sample. The
resulting questionnaire appears to demonstrate sufficient validity and reliability to meet standards
in educational and psychological measurement.

As many scholars working in the field of teacher beliefs before us have argued (e.g., Adler et al.,
2005; Philipp, 2007; Wilkins, 2008), large-scale studies are needed to test and further establish
theories about the relations among teacher beliefs, instructional practice, and student learning. The
relatively short B-MTL questionnaire lends itself to large-scale, empirical study. We therefore hope the
B-MTL will permit further implementation of large-scale empirical tests of the theorized relations
among teacher beliefs, knowledge of subject matter, instructional practice, and student learning.
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Notes
1. The Clark et al. (2014) questionnaire had not yet been

published at the time we were doing this work, and we
were not yet aware of it.

2. Time 1 (N = 206) with school fixed effects:
χ2(564) = 521.595, p = .899; RMSEA = .000; 90% CI
[.000, .011]; CFI = 1.000; and TLI = 1.215. Time 2
(N = 200) with school fixed effects: χ2(564) = 586.344,
p = .249; RMSEA = .014; 90% CI [.000, .027]; CFI = .978;
and TLI = .974.

3. Control group model-based correlations between Time
1 and Time 2, indicating the 9-month-lag test-retest
reliability of the scales, were r = .88, p < .001
(Transmissionist); r = 1.00, p < .001 (Facts First); and
r = .72, p < .001 (Fixed Instructional Plan).
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Appendices

Appendix A

Standardized
loading (SE)

Item Order Beliefs about mathematics
teaching and learning
questionnaire items by

subscale

Time 1 Time 2

Transmissionist

2a. 48 Effective math teachers consistently
create opportunities for students to
solve problems in their own ways
before the teacher has already
shown them a good way to solve
that type of problem.

–.76 (.03) –.68 (.04)

2c. 19 Before showing students how to
solve math problems, teachers
should encourage students to create
their own ways to solve them.

–.71 (.04) –.76 (.03)

2e. 46 It is very important for students to
discover how to solve math
problems in their own ways.

–.61 (.05) –.61 (.04)

2k. 28 Students can figure out ways to
solve many math problems prior to
formal instruction.

–.62 (.05) –.79 (.03)

3f. 25 The teacher should demonstrate
how to solve word problems before
students are expected to solve word
problems on their own.

.65 (.05) .80 (.03)

3g. 6 Most students cannot figure out how
to solve math problems by
themselves and must be explicitly
taught.

.60 (.05) .68 (.04)

3h. 8 Asking students to solve problems in
their own way causes too much
frustration.

.74 (.04) .67 (.04)

3j. 52 Allowing students to develop their
own strategies for solving math
problems creates too much risk that
students will learn to solve problems
incorrectly.

.88 (.03) .72 (.03)

3k. 38 Students should be instructed to
solve problems the way the teacher
has taught them.

.61 (.05) .76 (.04)

3l. 42 Teachers should not focus too much
on expecting students to solve
problems in their own way, because
that leads to student frustration.

.69 (.04) .83 (.03)

3n. 50 It is more effective to show students
how to solve problems than to let
them solve problems in their own
way.

.78 (.03) .78 (.03)

(Continued)
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Standardized
loading (SE)

Item Order Beliefs about mathematics
teaching and learning
questionnaire items by

subscale

Time 1 Time 2

Facts first

4a. 1 Students should master some basic
facts before they are expected to
solve word problems.

.53 (.07) .77 (.04)

4c. 39 Students should master carrying out
computational procedures before
they are expected to understand
why those procedures work.

.60 (.06) .69 (.04)

4d. 44 Students must know the basic facts
before they can understand the
meaning of the four operations
(addition, subtraction, multiplication,
and division).

.65 (.06) .82 (.03)

4f. 51 The ideal way to teach problem
solving is to have a student
repeatedly solve one kind of
problem at a time until he or she has
mastered that type of problem.

.67 (.05) .68 (.05)

4h. 13 Even students who have not learned
the basic facts can have efficient
methods for solving word problems.

–.58 (.07) –.79 (.03)

Fixed instructional plan

5a. 30 If the teacher deviates from the
sequence in the textbook, students
will not learn the mathematics they
are supposed to learn.

.75 (.05) .84 (.04)

5b. 27 Following the textbook closely
ensures that the teacher is focused
on the right sequence of
mathematical topics.

.77 (.04) .75 (.04)

5d. 20 It is important to follow the textbook
and/or pacing guide with fidelity,
even if it seems that students do not
yet understand a mathematical
concept.

.75 (.05) .65 (.06)

5e. 32 If the scope and sequence in the
math textbook is followed carefully,
most students will eventually
understand the mathematics they
are supposed to learn.

.70 (.05) .56 (.06)

5g. 35 Teachers should follow the
sequence in the textbook rather
than sequence instruction on their
own.

.63 (.05) .72 (.05)

Note. Time 1 N = 206. Time 2 N = 200. Order indicates the order presented on the original 55-item questionnaire.
Standardized factor loadings are based on models with the scaling set by fixing the variance for each factor to 1.

Schoen & LaVenia, Cogent Education (2019), 6: 1599488
https://doi.org/10.1080/2331186X.2019.1599488

Page 27 of 29



Appendix B

Model specification

Test of
invariance

Less restrictive model Analysis model

Factor loadings Factor loadings all estimated
Item thresholds all free
Item residual variances all fixed = 1
Factor variances all fixed = 1
Factor covariances all free
Factor means all fixed = 0

Factor loadings held equal across time
Item thresholds all free
Item residual variances all fixed = 1
Factor variances fixed = 1 at Time 1 and
free at Time 2
Factor covariances all free
Factor means all fixed = 0

Item thresholds Factor loadings held equal across time
Item thresholds all free
Item residual variances all fixed = 1
Factor variances fixed = 1 at Time 1 and
free at Time 2
Factor covariances all free;
Factor means all fixed = 0

Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances fixed = 1 at Time 1 and
free at Time 2
Factor covariances all free
Factor means fixed = 0 at Time 1 and free
at Time 2

Residual variances Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances fixed = 1 at Time 1
and free at Time 2
Factor variances fixed = 1 at Time 1 and
free at Time 2
Factor covariances all free
Factor means fixed = 0 at Time 1 and free
at Time 2

Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances fixed = 1 at Time 1 and
free at Time 2
Factor covariances all free
Factor means fixed = 0 at Time 1 and free
at Time 2

Factor variances Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances fixed = 1 at Time 1 and
free at Time 2
Factor covariances all free
Factor means fixed = 0 at Time 1 and free
at Time 2

Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances all fixed = 1;
Factor covariances all free
Factor means fixed = 0 at Time 1 and free
at Time 2

Factor covariances Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances all fixed = 1
Factor covariances all free
Factor means fixed = 0 at Time 1 and free
at Time 2

Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances all fixed = 1
Factor covariances held equal across time
Factor means fixed = 0 at Time 1 and free
at Time 2

Factor means Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances all fixed = 1
Factor covariances held equal across time
Factor means fixed = 0 at Time 1 and free
at Time 2

Factor loadings held equal across time
Item thresholds held equal across time
Item residual variances all fixed = 1
Factor variances all fixed = 1
Factor covariances held equal across time
Factor means all fixed = 0
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