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Abstract 

 Despite the broad appeal of missing data handling approaches that assume a missing at 

random (MAR) mechanism (e.g., multiple imputation and maximum likelihood estimation), 

some very common analysis models in the behavioral science literature are known to cause bias-

inducing problems for these approaches. Regression models with incomplete interactive or 

polynomial effects are a particularly important example because they are among the most 

common analyses in behavioral science research applications. In the context of single-level 

regression, fully Bayesian (model-based) imputation approaches have shown great promise with 

these popular analysis models. The purpose of this paper is to extend model-based imputation to 

multilevel models with up to three levels, including functionality for mixtures of categorical and 

continuous variables. Computer simulation results suggest that this new approach can be quite 

effective when applied to multilevel models with random coefficients and interaction effects. In 

most scenarios that we examined, imputation-based parameter estimates were quite accurate and 

tracked closely with those of the complete data. The new procedure is available in the Blimp 

software application for macOS, Windows, and Linux, and the paper includes a data analysis 

example illustrating its use. 
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A good deal of methodological literature supports missing data handling methods that 

assume a missing at random (MAR) mechanism whereby the probability of missingness is 

unrelated to an incomplete variable’s scores after conditioning on the observed data (Little & 

Rubin, 2002; Rubin, 1976). Full information maximum likelihood estimation and multiple 

imputation are MAR-based methods that enjoy widespread use in behavioral science 

applications. When missing values are restricted to the outcome variable, maximum likelihood 

solutions abound in popular software packages (e.g., mixed modeling packages in SPSS, Stata, 

R, etc.) and are probably preferable because valid estimates are obtained by simply fitting the 

analysis model to the observed data (Little, 1992; von Hippel, 2007). For additive analysis 

models with incomplete explanatory variables (e.g., multiple regression, multilevel models with 

random intercepts), classic multiple imputation routines are similarly plentiful and effective 

(Schafer, 1997; Schafer & Yucel, 2002; van Buuren, 2012; Van Buuren, Brand, Groothuis-

Oudshoorn, & Rubin, 2006), and maximum likelihood estimation can be implemented by 

specifying the predictors as random normal variables in structural equation modeling software 

such as Mplus (Muthén & Muthén, 1998–2017).  

Despite their widespread appeal and availability, classic missing data handling 

procedures are known to induce bias when applied to a broad class of single-level and multilevel 

regression models featuring interactive effects, polynomial terms, or random coefficients. For 

example, conventional imputation approaches typically invoke reverse regressions where the 

outcome variable predicts incomplete covariates. This specification is appropriate for additive 

models with normally distributed variables, but reverse regressions are often statistically 

incompatible with analyses that include interactive or non-linear terms because they may define 

an implausible distribution of missing values (Bartlett, Seaman, White, & Carpenter, 2015; Kim, 

Sugar, & Belin, 2015; Liu, Gelman, Hill, Su, & Kropko, 2014). This incompatibility is the 

source of biases reported in the literature (Bartlett et al., 2015; Enders, Baraldi, & Cham, 2014; 

Enders, Hayes, & Du, 2019; Grund, Ludtke, & Robitzsch, 2018; Seaman, Bartlett, & White, 

2012; Zhang & Wang, 2017). Although our focus is multiple imputation, it is important to note 

that problems associated with non-linearities are also germane to maximum likelihood estimation 

(Enders et al., 2014; Yuan & Savalei, 2014). 

A growing body of recent missing data research has on Bayesian approaches that tailor 

multiple imputation to a particular analysis model (Bartlett et al., 2015; Erler, Rizopoulos, 
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Jaddoe, Franco, & Lesaffre, 2017; Erler et al., 2016; Goldstein, Carpenter, & Browne, 2014; 

Kim, Belin, & Sugar, 2018; Kim et al., 2015; Zhang & Wang, 2017). Roughly speaking, these 

methods specify a distribution for the explanatory variables (e.g., a normal distribution), then 

selectively choose imputations from this distribution that fit well (i.e., produce a high likelihood) 

when evaluated in an analysis model with interactive or non-linear terms. Simulation results 

from the aforementioned studies suggest that Bayesian approaches to imputation offer substantial 

improvement over older missing data handling methods for interactive and non-linear effects 

(e.g., just-another-variable imputation, passive imputation). Because the Bayesian estimation 

explicitly incorporates the substantive analysis model, we refer to this approach simply as model-

based imputation.  

Building on recent developments, the purpose of our paper is to outline and evaluate a 

model-based imputation procedure that correctly handles incomplete predictor variables in a 

wide range of single-level and multilevel regression models with non-linear effects (e.g., 

interactions, polynomial terms, random coefficients). Our approach is related to other Bayesian 

imputation methods (e.g., substantive model-compatible imputation the sequential Bayesian 

approach) described in the literature (Bartlett et al., 2015; Grund et al., 2018; Ibrahim, Chen, & 

Lipsitz, 2002; Kim et al., 2018; Kim et al., 2015; Zhang & Wang, 2017)1. In particular, we 

extend recent work by Erler and colleagues (Erler et al., 2017; Erler et al., 2016) and Goldstein et 

al. (2014)2 to accommodate general missing data patterns in data sets with up to three levels, 

including functionality for incomplete categorical variables.  

The structure of the paper is as follows. First, we discuss the issue of compatibility, as 

this helps clarify why conventional imputation approaches fail when applied to analysis models 

with interactive or non-linear effects. Second, we provide an overview of model-based 

imputation in the context of a single-level moderated regression analysis. Third, we outline an 

extension of model-based imputation that accommodates data structures with up to three levels, 

and we then show how to accommodate categorical variables in the procedure. Fourth, we report 

 
1 Model-based imputation for single-level regression models is available in the R packages ‘smcfcs’ (Bartlett & 
Keogh, 2018) and ‘mdmb’ (Robitzsch & Lüdke, 2018) and in dedicated Bayesian analysis packages such as 
OpenBUGS (Zhang & Wang, 2017) and JAGS , among others. 
2 The two-level imputation procedure from Goldstein et al. (2014) is available in the REALCOM (Carpenter, 
Goldstein, & Kenward, 2011) software and the R packages ‘jomo’ (Quartagno & Carpenter, 2018) and ‘mdmb’ 
(Robitzsch & Lüdke, 2018). 
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the results from three simulation studies that evaluate the proposed procedure. Finally, we use 

the Blimp application to apply model-based imputation to a real data analysis. 

Compatibility of the Analysis and Imputation Models 

An important concern with multiple imputation is whether the distributions implied by an 

imputation procedure match those induced by the analysis model. This issue, known as 

compatibility, has roots in mathematical statistics (Arnold, Castillo, & Sarabia, 1999, 2001; 

Arnold & Press, 1989) and is a topic of recent interest in the missing data literature (Bartlett et 

al., 2015; Carpenter & Kenward, 2013; Hughes et al., 2014; Liu et al., 2014).  

To illustrate the concept of compatibility, consider a linear regression analysis model 

with an incomplete predictor X.  

 

 
!" = $% + $'()") + +" 

+"	~	.(0, 123) 
(1) 

 

A typical application of multiple imputation uses a reverse linear regression that to define a 

distribution of missing values, given the outcome variable. 

 

 
)" = 4% + 4'(!") + 5" 

)"(6"7)	~	.(4% + 4'(!"), 183) 
(2) 

 

Together, analysis and imputation form a set of conditional models, and these conditional models 

imply a set of conditional distributions – the analysis model assumes that Y is normal given X, 

and the imputation model assumes that X is normal given Y. Compatibility is concerned with 

whether a set of conditional models and their corresponding distributions relate to one another in 

a coherent way. 

The formal definition of compatibility given by Arnold and colleagues (Arnold et al., 

1999, 2001; Arnold & Press, 1989) and more recently by Liu et al. (2014)3 and Bartlett et al. 

 
3 Definition 1 of Liu et al., 2014, p. 160) states the following: “A set of conditional models 9:;<);|)>;, ?;@: ?; ∈
Θ;, D = 1,… , GH is said to be compatible if there exists a joint model I{()|?): ? ∈ Θ} and a collection of surjective 
maps 9L;: Θ → Θ;:	D = 1,… , GH such that for each j, ?; ∈ Θ; and ? ∈ L;>'<?;@ = 9?: L;(?) = ?;H, we have 
:;<);|)>;, ?;@ = I;<);|)>;, ?@. Otherwise, 9:;:	D = 1,… , GH is said to be incompatible.”  
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(2015) is complex, so we sketch the basic ideas here and refer interested readers to these sources 

for additional details. Distilled at a basic level, the definition of compatibility says that a joint 

distribution exists, and the conditional distributions induced by this joint distribution are exactly 

the same as those we specify in our analyses. Returning to the previous example, the bivariate 

normal distribution has the property that its corresponding conditional distributions are also 

normal with constant variance. Thus, analysis and imputation models from Equations 1 and 2 are 

compatible because they are identical to those induced by a bivariate normal joint distribution. 

The practical implication of compatibility is that the imputation model should generate 

appropriate imputations for the analysis because the two models are functionally linked to a 

common joint distribution.  

Next, consider a moderated regression model (Aiken & West, 1991; Cohen, Cohen, 

West, & Aiken, 2002), examples of which abound in the applied literature. 

 

 
!" = $% + $'()'") + $3()3") + $N()'")()3") + +" 

+"	~	.(0, 123) 
(3) 

 

Further, assume that O' and the product are incomplete. The moderated regression analysis 

assumes the outcome variable is conditionally normal, given the covariates and their interaction. 

However, the interactive effect in the analysis model precludes the possibility that O' is normal 

when conditioning on Y (Arnold et al., 1999, 2001; Arnold & Press, 1989; Bartlett et al., 2015; 

Liu et al., 2014; Sarabia, Castillo, & Arnold, 2001; Seaman et al., 2012). As such, an imputation 

model based on reverse linear regression is incompatible with the moderated regression because 

it specifies a distribution of missing values that is implausible given the interaction term in the 

analysis model. This incompatibility is the source of the biases noted in the literature (Bartlett et 

al., 2015; Enders et al., 2014; Kim et al., 2015; Seaman et al., 2012; Zhang & Wang, 2017). 

Model-based imputation attempts to remedy this problem by sampling imputations from a set of 

compatible models. 

Model-Based Imputation for Single-Level Regression 

So that readers can better understand our multilevel imputation scheme, this section 

summarizes model-based imputation for a single-level moderated regression analysis such as that 

in Equation 3. The methodology we describe here is closely related to substantive model-
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compatible imputation and the sequential Bayesian approach from the literature (Bartlett et al., 

2015; Goldstein et al., 2014; Grund et al., 2018; Ibrahim et al., 2002; Kim et al., 2018; Kim et 

al., 2015; Lüdke, Robitzsch, & West, 2019; Zhang & Wang, 2017)4. Note that imputation relies 

on a set of regression models, the parameters of which are obtained via an iterative Bayesian 

estimation algorithm (the Gibbs sampler). We discuss the estimation steps later in the 

manuscript, but for now assume that the necessary quantities have been estimated. 

A variety of older imputation methods can be applied to the moderated regression 

analysis (Grund et al., 2018; Kim et al., 2018; Kim et al., 2015; Seaman et al., 2012; van Buuren, 

2012; van Buuren et al., 2018; Vink & van Buuren, 2013; von Hippel, 2009), including passive 

imputation (e.g., impute O' conditional on P and O3, then compute the product term 

deterministically) and just-another-variable imputation (e.g., treat the product of O' and O3 as 

variable to be imputed). The limitations of these approaches are well documented, so we refer 

interested readers to the literature for additional information (e.g., recent work by Kim and 

colleagues provides a comprehensive evaluation of several imputation strategies; Kim et al., 

2018; Kim et al., 2015).  

 The idea behind model-based imputation is to parameterize the imputation problem as a 

set of compatible univariate distributions, one of which aligns with the analysis model. To frame 

the procedure that we adopt throughout the manuscript, consider the analysis model from 

Equation 3. We motivate our procedure by applying the conditional probability rule to factor the 

joint distribution of the analysis variables as 

 

G(P, O', O3) = G(P|O', O3) × G(O', O3) (4) 
 

where G(P, O', O3) is the joint distribution, G(P|O', O3) is the distribution of Y induced by the 

analysis model (i.e., a normal distribution, conditional on the covariates and their interaction), 

and G(O', O3) is the joint distribution of the covariates. The above expression readily generalizes 

to a scenario with R covariates, in which case the factorization is G(P, O', … , OS) =
G(P|O', … , OS) × G(O', … , OS). 

 
4 The key differences among these procedures are how they partition the covariate distribution and whether they 
treat complete covariates as random variables. Our approach specifies all predictor variables as normally distributed 
variables, regardless of whether they are incomplete. 
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Although it is not the only way to do so, we assure that imputation models arising from 

Equation 4 are mutually compatible by specifying a multivariate normal distribution for the 

explanatory variables. That is, we do not allow non-linear relations among covariates. Although 

conceptually similar to what we are doing, the so-called “sequential” parameterization of the 

joint distribution (Erler et al., 2017; Erler et al., 2016; Ibrahim et al., 2002; Lüdke et al., 2019) is 

somewhat more flexible in that it can accommodate non-linear relations among covariates. In our 

view, specifying linear relations among the covariates is not a substantial practical limitation 

because most substantive researchers would not have a theoretical basis for specifying non-linear 

relations among variables that would otherwise have been treated as fixed in a complete-data 

analysis. 

 To impute O', we must derive its conditional distribution given the other analysis 

variables. Applying Bayes theorem gives the expression from Bartlett et al. (2015) and Kim et al. 

(2015), among others. 

 

G(O'|P, O3) ∝ G(P|O', O3) × G(O'|O3) (5) 
 

A benefit of assuming multivariate normality for the covariates is that the joint distribution of 

dependent variable and covariates must exist (a critical component of compatibility) when the 

analysis model is specified as a linear regression with normal errors and constant variance, as 

follows (Arnold et al., 1999, 2001; Arnold & Press, 1989; Liu et al., 2014). 

 

 
)'" = 4% + 4'()3") + 5" 

5"	~	.(0, 183) 
(6) 

 

Because O' appears in both terms on the right side of Equation 5 – once as a covariate 

and once as an outcome – the posterior distribution of missing values has a complex form that 

depends on the product of two normal distributions. 

 

G(O'|P, O3) ∝ .($% + $'()'") + $3()3") + $N()'")()3"), 123) × .(4% + 4'()3"), 183) (7) 
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We can derive the exact distribution of missing values by comparing the product of the two 

normal kernels to the form of a univariate normal distribution and matching powers of O', which 

gives an expression algebraically equivalent to the one in Kim et al. (2015, p. 1878). 

 

G(O'|P, O3) =   

.W
18X3 ($' + $N)3")(!" − $% − $3)3") + 123(4% + 4')3")

183($' + $N)3")3 + 123
, 123183
183($' + $N)3")3 + 123

Z. 
(8) 

 

Equation 8 shows that the mean and variance of the incomplete variable are non-linear functions 

of the other variables and two sets of model parameters. Comparing the correct conditional 

distribution to the misspecified one implied by a linear model with constant error variance (e.g., 

one similar to Equation 2) underscores the problem with standard imputation schemes. 

To perform imputation, a Bayesian estimation sequence (discussed later) generates the 

coefficients and residual variances for the regression models (i.e., \, 123, ], and 183), after which 

the algorithm samples O' imputations from the distribution in Equation 8. The product is then 

computed by multiplying the resulting imputations by the corresponding observed values of O3. 

Kim et al. (2015) show that computing the product in this manner is equivalent to drawing O' 

and its interaction term as a pair. In the general situation with more than one missing covariate, a 

comparable distribution can be derived for G(O3|P, O') – all that is needed are the model 

parameters from the regression of O3 on O'. Finally, missing outcome scores do not require a 

special procedure, as an imputation model with the same form as the analysis model generates 

replacement values (i.e., replacement values are drawn from a normal distribution with mean and 

variance equal to $% + $')'" + $3)3" + $N)'")3" and 123, respectively). 

 

Model-Based Imputation for Multilevel Regression Analyses 

Having illustrated model-based imputation in the context of a familiar single-level 

regression analysis, we now extend the procedure to multilevel regression models with missing 

values at any level. To keep the ensuing discussion as simple as possible, we describe the 

procedure for a two-level analysis, but the extension to three levels is straightforward. To 

provide an analytic context, consider a two-level random coefficient analysis with a pair of level-

1 covariates and a single level-2 explanatory variable 
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!"; = $% + $'<)'";@ + $3<)3";@ + $N<)N;@ + ^%; + ^';<)'";@ + +"; 

W
^%;
^';
Z	~	_.(0, `a)   +";	~	.(0, 123) 

(9) 

 

where the $’s are fixed effects, ^%; and ^'; are random intercept and random slope residuals, 

respectively, for level-2 cluster j, and +"; is a within-cluster residual for observation i in cluster j. 

For simplicity, we do not center predictor variables in the analysis model, but the resulting 

imputations can be grand or group mean centered in the subsequent analysis (Enders & Tofighi, 

2007; Kreft, de Leeuw, & Aiken, 1995). 

 This model, which features an interaction between a manifest variable and a random 

effect (i.e., latent slope variable), has been the focus of recent missing data research (Enders et 

al., 2019; Enders, Keller, & Levy, 2018; Grund, Ludtke, & Robitzsch, 2016; Grund et al., 2018; 

Kunkle & Kaizer, 2017; Lüdke, Robitzsch, & Grund, 2017). A standard method for imputing O' 

is to specify a “reverse random coefficient model” that features Y as a random slope predictor of 

O'. 

 

 

 

)'"; = 4% + 4'<!";@ + 43<)3";@ + 4N<)N;@ + b%; + b';<!";@ + 5"; 

c
b%;
b';d	~	_.(0, `e)   5";	~	.(0, 18

3) 

)'";(6"7)	~	.(4% + 4'<!";@ + 43<)3";@ + 4N<)N;@ + b%; + b';<!";@, 183) 

(10) 

 

Consistent with the moderated regression analysis, this reverse regression model is incompatible 

with the analysis model because it incorrectly assumes that the conditional distribution of O' 

given Y is normal. As such, it gives imputations that are implausible given the random 

coefficient in the analysis model. Later in this section we show that the correct (compatible) 

conditional distribution is a complex non-linear function similar to that in Equation 8. 

To begin, we specify a multivariate normal distribution for the explanatory variables 

because this ensures that we can derive a set of mutually compatible imputation models using 

pairs of regression models, e.g., G(P|O', … , OS) × G(Of|O', … , Of>', Ofg', … , OS). Further, we 
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divide the R covariates into a set of P predictors at level-1 and a second set of Q covariates at 

level-2. Note that auxiliary variables enter both conditional models in the same way as the 

substantive covariates, so we do not differentiate substantively-motivated predictor variables 

from auxiliary variables. The joint distribution for a two-level analysis model is 

 

 h"
(')	~	_.(i;, `')   h;

(3)	~	_.(i, `3)    (11) 

 

where h"
(') is a P-element vector of level-1 scores for observation i, i; is the corresponding a P-

element vector of latent cluster means (i.e., random intercepts) for group j, h;
(3) is an R-element 

between-cluster score vector that includes the P latent group means in i; and the Q level-2 

covariate scores, i contains the R grand means, `' is a P by P within-cluster covariance matrix, 

and `3 is an R by R between-cluster covariance matrix. For simplicity, we focus on two-level 

analyses, but the extension to three levels is straightforward. In this case, the covariate 

distribution becomes 

 

 h"
(')	~	_.(i;j, `')   h;

(3)	~	_.(ij, `3)    hj
(N)	~	_.(i, `N)    (12) 

  

where k indexes the third level. The online supplemental document gives a description of the 

three-level procedure. Note that Equations 11 and 12 are slightly different from recent related 

work that treats complete covariates as fixed (Erler et al., 2017; Erler et al., 2016). 

 Returning to the random coefficient analysis from Equation 9, the predictors follow a 

multivariate normal distribution 

 

 c
)'";
)3";d	~	_.(i;, `')   k

l';
l3;
)N;

m	~	_.(i, `3)    (13) 

 

where h"
(') = <)'";, )3";@, i; = <l';, l3;@, h;

(3) = <l';, l3;, )N;@, i = (l', l3, lN), `' is a 2 by 2 

within-cluster covariance matrix, and `3 is a 3 by 3 between-cluster covariance matrix. 

Importantly, the cluster means in i; can be represented as arithmetic averages of the level-1 
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scores, or they can be modeled as normally distributed latent variables (Lüdke, Marsh, 

Robitzsch, & Trautwein, 2011; Lüdke et al., 2008; Shin & Raudenbush, 2010). In this context, 

latent group means are just random intercepts from a multilevel model and should not be 

confused with latent means from a factor analysis model. Following the recommendation of 

Grund, Lüdke, and Robitzsch (2017), we use latent cluster means because these quantities 

readily accommodate unequal group sizes, whereas taking arithmetic average of level-1 scores 

assumes balanced data (Carpenter & Kenward, 2013; Grund et al., 2017; Resche-Rigon & White, 

2018)5. The online supplement gives the full conditional distribution of the latent cluster means 

for our two-level example, and we point interested readers to Keller, Du, and Enders (2019) for a 

detailed treatment of fully conditional specification imputation with latent means. 

 Next, we must derive the conditional distribution of Of given all other predictors, O>f =
(O', … , Of>', Ofg', … , OS). Applying Bayes’ theorem gives G(Of|P, O>f) ∝ G(P|Of, O>f) ×
G(Of|O>f), which is a more general expression for Equation 5. The multivariate normality 

assumption for the covariates again ensures that specifying each G(Of|O>f) as a linear regression 

with normal errors and constant variance yields mutually compatible imputation models (Arnold 

et al., 1999, 2001; Arnold & Press, 1989; Liu et al., 2014). Returning to the random coefficient 

analysis example, the within-cluster associations in `' can equivalently be expressed as a pair of 

regression models 

 

 
)'"; = l'; + 4''<)3"; − l3;@ + 5'"; 

5'";	~	.(0, 18X3 ) 
(14) 

 
)3"; = l3; + 43'<)'"; − l';@ + 53"; 

53";	~	.(0, 18n3 ) 
(15) 

 

where the leading subscript on the slope coefficient indexes the outcome variable. Three points 

are worth noting. First, because predictor variables are centered at their latent group means, 4'' 

and 43' are “pure” within-cluster regression slopes (Kreft et al., 1995; Raudenbush & Bryk, 

2002). Second, the group means, l'; and l3;, are normally distributed latent variables that are 

 
5 The Blimp application described later can implement latent or manifest group means, with latent cluster means set 
by default. In our extensive test simulations, we have rarely observed meaningful differences between the two 
methods. 
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identical to random intercepts (i.e., random effects). Finally, although neither equation appears to 

condition on ON, this variable does in fact influence O' and O3 indirectly via their cluster means, 

l'; and l3;. The equations below illustrate this point. 

 Next, the between-cluster variances and covariances in `3 can be modeled with the 

following set of level-2 regression models. 

 

 
l'; = l' + o''<l3; − l3@ + o'3<)N; − lN@ + p'; 

p';	~	.(0, 1qX
3 ) 

(16) 

 
l3; = l3 + o3'<l'; − l'@ + o33<)N; − lN@ + p3; 

p3;	~	.(0, 1qn
3 ) 

(17) 

 
)N; = lN + oN'<l'; − l'@ + oN3<l3; − l3@ + pN; 

pN;	~	.(0, 1qr
3 ) 

(18) 

 

Two points are worth noting. First, we include regressions for the latent group means (i.e., 

random intercepts) because these quantities are integral to level-1 and level-2 imputation and 

must be estimated at every iteration of estimation. Second, the explanatory variables in each 

equation are again centered, such that the grand means function as fixed intercepts. Here again, 

our procedure is different from previous work (Erler et al., 2017; Erler et al., 2016; Goldstein et 

al., 2014) because we explicitly model the level-1 and level-2 parts of all predictors, treating the 

latter terms as normally distributed latent variables.  

 Having defined the necessary regressions, we can now derive the posterior distribution of 

the missing values in the same manner as we did for a single-level analysis. To illustrate, 

consider the random slope predictor O'. As before, O'’s distribution has a complex form that 

depends on the product of two normal distributions (and two sets of model parameters)6. 

 
 

G(O'|P, O3, ON) ∝ G(P|O', O3, ON) × G(O'|O3, ON)	

∝ . c<$% + ^%;@ + <$' + ^';@)'"; + $3<)3";@ + $N<)N;@, 123d	

(19) 

 
6 The generic probability notation may not convey the fact that O' conditions on ON via its latent group mean in the 
between-cluster part of the model (see Equation 16). We could instead write the conditional distribution as 
G<O'|P, O3, ON, O'(s), O3(s)@ ∝ G<P	|O', O3, ON, O'(s), O3(s)@ × G<O'|O3, ON, O'(s), O3(s)@, where O'(s) and O3(s) are 
the between-cluster parts of the covariate. 
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× .<l'; + 4''<)3"; − l3;@, 18X3 @ 
 

Because )'"; is conditionally normal given the other predictors, we can derive the exact 

distribution of the missing values by comparing the product of the two normal kernels to the 

form of a univariate normal distribution and matching powers of O', as follows. 

 

)'";(6"7) = .

⎝

⎜⎜
⎛
18X3 <$' + ^' + $w)N;@<!" − $% − ^% − $3)3"; − $N)N;@ + 123 cl'; + <)3,"; + l3,;@d

18X3 <$' + ^' + $w)N;@
3 + 123

,

12318X3

18X3 <$' + ^' + $w)N;@
3 + 123 ⎠

⎟⎟
⎞

(20) 

 

Examining the correct conditional distribution highlights the fact that the reverse random 

coefficient imputation model from Equation 10 is incompatible with the analysis model (e.g., 

because it assumes constant variance, whereas the correct variance is a non-linear function). 

Also, the previous expression highlights that missing values condition on all variables in the 

analysis, not just the covariates. For this reason, we would expect the procedure to accommodate 

a range of MAR processes that depend on the analysis variables (e.g., missingness induced by 

the outcome). 

 Analogous distributions can be derived for the other explanatory variables, although the 

form of each distribution will generally depend on the level at which a covariate is measured as 

well as its role in the analysis. For example, consider the level-2 predictor ON. Because this 

variable is constant for all observations in level-2 cluster j, its conditional distribution features a 

product over all observations in that group. 

 

 

G(ON|P, O', O3) ∝ G(P	|O', O3, ON) × G(ON|O', O3)	

∝|.c<$% + ^%;@ + <$' + ^';@)'"; + $3<)3";@ + $N<)N;@, 123d
}~

"�'
	

× .<lN + oN'<l'; − l'@ + oN3<l3; − l3@, 1qr
3 @ 

(21) 

 

In practice, it is more straightforward to use a Metropolis sampling step (Hastings, 1970) to draw 

imputations from G(P|Of, O>f) × G(Of|O>f) because this approach can approximate a target 
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distribution such as Equation 20 by simply evaluating candidate imputations in both normal 

likelihood functions. This eliminates the need to derive exact distributions for every unique 

application. As described in the next section, the Metropolis algorithm is one computational step 

in the Gibbs sampler that generates parameter values, random effects, and latent group means. 

Interested readers can find the technical details for the Metropolis sampler in the online 

supplemental material. 

 A brief sidebar about centering is warranted given its important role in multilevel 

analyses. We use latent group mean centering in the covariate models to partition explanatory 

variables into within- and between-cluster components, and we do not impose any structure on 

their covariance matrices (e.g., the association between )'"; − l'; and )3"; − l3; need not be the 

same as that between l'; and l3;). For simplicity, we did not center predictors in the analysis 

model. If the substantive goal seeks to disentangle within- and between-cluster influences of a 

level-1 covariate, latent group means can also be added to the P part of the imputation model 

(e.g., l'; and l3; could be specified as level-2 predictors of P) and the resulting imputations can 

then be centered at their grand or group means (Enders & Tofighi, 2007; Kreft et al., 1995). 

Gibbs Sampler Algorithm for Bayesian Estimation 

Model-based imputation requires parameter values and random effect estimates for the 

substantive model and a set of parameter values and latent group means (i.e., random intercepts) 

for each explanatory variable. We use an iterative Bayesian estimation algorithm known as the 

Gibbs sampler to generate these quantities at each computational cycle, and a final Metropolis 

within Gibbs step draws incomplete covariate scores from their target distributions. The 

Bayesian paradigm views the model parameters, random effects, latent group means, and 

missing values as random variables that have a joint distribution, and the Gibbs sampler 

estimates one quantity at a time, drawing values from a probability distribution that conditions 

on a prior distribution and the current values of all other variables. In the interest of space, we 

sketch the major algorithmic steps here and refer interested readers to the online supplemental 

material for a technical exposition of full conditional distributions (e.g., the form and parameters 

of each distribution, default and user-specifiable priors).  

The full cadre of estimation steps for a two-level model with continuous variables is 

given below. The first five steps generate estimates for the substantive analysis model, and the 

remaining steps target explanatory variables. To simplify the presentation, we index the entire set 
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of covariates as r = 1, …, R, such that r ≤ P corresponds to either a level-1 observation or its 

corresponding level-2 group mean, and r > P refers to a manifest level-2 variable. The 

computational steps for a single iteration t are as follows. 

 

1. Draw regression coefficients in \(Å) from G(\| ∙) 

2. Draw the residual variance 123(Å) from G(123| ∙) 

3. Draw random effects É;
(Å) from G<É;| ∙@ 

4. Draw the random effect covariance matrix `a
(Å) from G(`a| ∙) 

5. Draw missing outcome scores !(6"7)
(Å)  from G(P	|Of, O>f) 

6. Draw latent cluster means if;
(Å) from G<lf;| ∙@ for r = 1 to P 

7. Draw the grand mean lf(Å) from G(lf| ∙) for r = 1 to R 

8. Draw within-cluster regression coefficients in ]f(Å) from G(]f| ∙) for r = 1 to P 

9. Draw the within-cluster residual variance 18Ñ
3(Å) from G<18Ñ3 | ∙@ for r = 1 to P 

10. Draw between-cluster regression coefficients Öf(Å) from G(Öf| ∙) for r = 1 to R 

11. Draw the between-cluster residual variance 1qÑ
3(Å) from G<1qÑ

3 | ∙@ for r = 1 to R 

12. Using a Metropolis sampler, draw missing covariates Of(6"7)
(Å)  from G(P|Of, O>f) ×

G(Of|O>f) for r = 1 to R 

 

The dot after the vertical pipe conveys the idea that the entire set of variables being conditioned 

on are fixed at their current values (e.g., the first step draws the substantive model’s regression 

coefficients from a distribution that conditions on random effects, variance components, and 

imputed data from the previous iteration). Finally, note that a given model or variable may only 

require a subset of these steps. For example, if the outcome variable is complete, steps 1 through 

4 are needed for the posterior distributions of the covariates, but imputation step 5 is omitted. 

Categorical Variables 

 Thus far we have focused on continuous explanatory variables, but model-based 

imputation readily accommodates incomplete ordinal and nominal variables. We use a 

cumulative probit model for ordinal variables and a multinomial probit model for nominal 



MODEL-BASED IMPUTATION 

 17 

responses (Agresti, 2012; Albert & Chib, 1993; Carpenter & Kenward, 2013; Jiao & van Dyk, 

2015; Johnson & Albert, 1999; Mcculloch & Rossi, 1994). In the interest of space, we describe 

the procedure for binary and ordered responses here and take up the multinomial probit model in 

a separate work. Additional details on probit imputation schemes (also known as latent variable 

imputation) are widely available in the literature (Asparouhov & Muthén, 2010; Carpenter & 

Kenward, 2013; Enders et al., 2018; Goldstein, Bonnet, & Rocher, 2007; Goldstein, Carpenter, 

Kenward, & Levin, 2009). 

Probit regression imagines discrete responses arising from an underlying normal latent 

variable distribution (Agresti, 2012; Albert & Chib, 1993; Johnson & Albert, 1999). We denote 

the discrete and latent versions of covariate r as Of and Of∗, respectively. The probit model 

defines the underlying latent variable as a z-score, with the linear predictor from a regression 

model defining the center of the distribution and the variance fixed to establish a scale. For a 

binary covariate, the model additionally incorporates a threshold parameter, á, that divides the 

latent distribution into two segments, such that Of∗ is below the threshold when Of equals zero 

and above the threshold when Of equals one. This threshold parameter, which is typically fixed 

at zero to avoid redundancy with the fixed regression intercept, can be viewed as the z-score 

cutoff, above which the discrete score changes from zero to one. The probit model for ordinal 

variables has an identical formulation but incorporates additional threshold parameters. For 

example, an ordered categorical variable with à = 1, …, â response options requires â − 1 

threshold parameters, such that Of = à	if	áå>' < Of∗ ≤ áå. In this situation, the first threshold is 

still fixed at zero, but the remaining thresholds are updated at each iteration of the Gibbs 

sampler. We use the Metropolis-Hastings step described by Cowles (1996) for this purpose 

because it converges more quickly than other algorithms (Albert & Chib, 1993). 

To illustrate imputation for categorical explanatory variables, reconsider the random 

coefficient analysis from Equation 9, this time treating the level-1 covariate O3 as binary. We 

previously motivated model-based imputation by assuming a multivariate normal distribution for 

the explanatory variables because this ensures that we can derive mutually compatible 

imputation models. For categorical covariates, the normality assumption applies to the 

underlying latent scores. This necessitates a change to the level-1 normal distribution, where 

diagonal elements corresponding to the categorical variables are fixed at unity, as follows. 
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 é
)'";
)3";∗ è	~	_.(i;, `')   `' = W 1êX3 1êXên∗

1ên∗êX 1 Z (22) 

 

Introducing latent variables changes the within-cluster regressions, which now model 

associations on the latent metric. 

 

 
)'"; = l'; + 4''<)3";∗ − l3;@ + 5'"; 

5'";	~	.(0, 18X3 ) 
(23) 

 
)3";∗ = l3; + 43'<)'"; − l';@ + 53"; 

53";	~	.(0, 1 − 43'3 1êX3 ) 
(24) 

 

Importantly, the residual variance in O3∗’s equation is no longer a free parameter but is a 

deterministic subtraction of explained variance from the total within-cluster variance7, which is 

fixed at unity in the joint distribution of the covariates (Equation 22). An alternate 

parameterization fixes the residual variance in Equation 24 to unity, which then defines total 

variance as 1 + 43'3 1êX3 . No changes are needed for the between-cluster part of the model, so 

Equations 16 to 18 also apply to this example. 

Given a full sample of latent variable scores, standard Bayesian estimation steps generate 

the parameter values, random effects, and latent group means required for imputation. The Gibbs 

sampler algorithm outlined in the previous section is augmented with an additional step that 

draws latent variable scores for each case, after which it performs the estimation steps treating 

the synthetic scores as real data. For cases with observed data, latent variable scores are drawn 

from a truncated normal distribution, such that observed scores of zero and one have latent 

scores below and above the threshold, respectively (e.g., )3";∗ < á if )3"; = 0, and )3";∗ ≥ á when 

)3"; = 1). Robert (1995) describes an efficient approach for sampling from tails of a truncated 

normal distribution, but synthetic values can also be generated by repeatedly drawing values 

from a normal distribution until obtaining a score in the desired range. 

 
7 In Equation 28, 1êX3  is the within-cluster variance of O' because latent group mean centering removes all between-
cluster variance from the level-1 predictors. In the case of a level-2 or level-3 categorical variable, 1êX3  would reflect 
the total between-cluster variation at that level. With two or more predictors in a covariate model, 43'3 1êX3  is replaced 
by the analogous matrix expression, íì`êí, where `ê is the relevant within- or between-cluster covariance matrix. 
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For cases with missing data, the final Metropolis sampling step generates latent variable 

imputations from an unrestricted normal distribution, and it subsequently creates discrete 

imputes for the analysis model by comparing the continuous values to the threshold(s). As such, 

the posterior distribution of the missing values has a complex form that now depends on the 

product of two normal distributions and a function that reflects this categorization process. To 

illustrate, the posterior distribution of O3 is 

 

 

G(O3|P, O', ON) ∝ G(P|O', O3, ON) × G(O3∗|O', ON) × G(O3|O3∗)	

∝ . c<$% + ^%;@ + <$' + ^';@)'"; + $3)3"; + $N)N;, 123d	

× .<l3; + 43'<)'"; − l';@, 1 − 43'3 1êX3 @	

× cî<)3";∗ ≥ 0@î<)3"; = 1@ + î<)3";∗ < 0@î<)3"; = 0@d 

(25) 

 

where G(O3∗|O', ON) is the distribution induced by the probit model from Equation 24, and the 

indicator functions that comprise the final term reflect the link between the latent and discrete 

imputes (i.e., Of = 1 if Of∗ ≥ á and Of = 0 if Of∗ < á). Consistent with the procedure for 

continuous variables, we use a Metropolis sampler to draw candidate pairs of latent and discrete 

imputations, retaining those that are likely to originate from the distribution in Equation 25. The 

technical details for the Metropolis step are given in the online supplemental materials. 

Simulation Study 1: 

Two-Level Random Coefficient Analysis 

This section describes the first of three Monte Carlo simulation studies used to evaluate 

model-based imputation. For this simulation, a random coefficient model with a single covariate 

at each level served as the population model. 

 

!"; = $% + $'<)'";@ + $3<)3;@ + ^%; + ^';<)'";@ + +"; (26) 
 

We generated 1000 artificial data sets within each cell of a design that varied five between-

subjects factors: the intraclass correlation of the level-1 variables (ICC = .10 and .50), number of 

level-2 clusters (J = 30 and 100), within-cluster sample size (nj = 10 and 30), missing data rate 

(15% or 25% missing data on each predictor), and distribution shape of the level-2 predictor 
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(normally distributed versus a single-degree of freedom chi-square). These conditions routinely 

arise in behavioral science research (e.g., the low and high ICCs are typical of cross-sectional 

and longitudinal data, respectively; the sample size combinations are distributed around the 

30/30 rule-of-thumb from the literature), and the missing data rates are high enough to reveal 

biases for a reverse random coefficient imputation strategy (Enders et al., 2019; Enders et al., 

2018; Grund et al., 2016). 

 We derived population parameters following variance decompositions given in Snijders 

and Bosker (2012, p. 116-117) and Rights and Sterba (2018). In particular, Rights and Sterba 

(2018) define variance-explained effect size measures that we used to derive meaningful 

parameter values for the simulation. In line with our treatment of explanatory variables (e.g., the 

normal distributions from Equation 11), these authors treat covariates as random variables that 

have within-cluster and between-cluster (i.e., level-1 and level-2) covariance matrices. This is 

convenient for modifying the intraclass correlations and defining variance explained effect sizes 

for the fixed and random parts of the model at each level. To establish a metric for the covariates, 

we constrained the within-cluster variance of O' at one and solved for the between-cluster 

variance that gives the desired ICC. The total variance of the level-2 predictor O3 was also set to 

one, and its correlation with the between-cluster part of O' was r = .30. Finally, we set the total 

variance of P to 100 and solved for the within- and between-cluster variances that gave the same 

ICC as O'. These arbitrary constraints on the variances allowed us to specify effect sizes and 

solve for the corresponding model parameters. 

 Applying expressions from Rights and Sterba (2018), we chose a value for the slope 

variance that explained 10% of the within-cluster variance in the outcome, and we derived the 

fixed level-1 regression slope that accounted for an additional 10% of this variance. Given these 

parameters, the residual within-cluster variance is fully determined. Moving to the level-2 

parameters, the slope variance and between-cluster variance of O' determine a portion of the 

between-cluster variance (this is a consequence of grand mean centering). Similarly, the $' 

coefficient and the between-cluster variance of O' determine part the variance attributable to the 

fixed effects. Next, we solved for the $3 coefficient that explained an additional 10% of the 

level-2 variance, and we computed the residual (intercept) variance by subtracting out explained 

variance due to the fixed and random effects. Finally, we set the correlation between the random 

intercepts and slopes at r = .30. Our goal for the simulation was to implement effect sizes that are 
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meaningful to substantive researchers and large enough to expose potential problems with the 

imputation procedures. Equations 27 and 28 give the resulting population parameters for the ICC 

= .10 and .50 conditions, respectively. 

 

 
!"; = 50 + 3.162<)'";@ + .744<)3";@ + ^%; + ^';<)'";@ + +"; 

W
^%;
^';
Z	~	_.(0, c7.000 2.510

2.510 10.000d)   +";	~	.(0,72) 
(27) 

 

 
!"; = 50 + 3.162<)'";@ + 1.664<)3";@ + ^%; + ^';<)'";@ + +"; 

W
^%;
^';
Z	~	_.(0, c35.000 5.612

5.612 10.000d)   +";	~	.(0,40) 
(28) 

 

All variables or terms on the right side of the population regression equation were first 

generated by sampling deviation scores from univariate or multivariate normal distributions with 

the desired variances and covariances. To simulate nonnormal data, we created a chi-square 

variate by squaring O3 and rescaling it to have a zero mean and unit variance (on average) prior 

to inducing its between-cluster correlation with O'. This resulted in a variable with skewness and 

excess kurtosis values of approximately 2.0 and 9.0, respectively. After generating the predictor 

variables and residual terms, the outcome variable was computed as the weighted sum in 

Equation 27 or 28. 

We imposed a 15% or 25% missing data rate on both explanatory variables, such that 

missing values on O' and O3 were generated as a function of P and the P group means, 

respectively8. We used a logistic regression equation to link missingness probabilities to the 

outcome variable. Using a latent variable formulation for logistic regression (Agresti, 2012; 

Johnson & Albert, 1999), we derived intercept and slope coefficients that produced the desired 

missing data rate and a pseudo ó3 (McKelvey & Zavoina, 1975) value equal to .50 between the 

cause of missingness and the latent propensities. Finally, we sampled a missing data indicator for 

each observation (0 = observed, 1 = missing) from a binomial distribution with success rate 

 
8 In a second set of simulations not reported here, we created level-1 and level-2 auxiliary variables, ò' and ò3, that 
were responsible for missingness on O' and O3, respectively. We set the correlation between each covariate-
auxiliary pair at approximately .50. The model-based imputation results were similar to those presented here, 
although listwise deletion performed much better since the MAR selection mechanism was much weaker. 



MODEL-BASED IMPUTATION 

 22 

equal to that observation’s missingness probability from the logistic regression model, and we 

deleted scores with indicator values of one. 

 We used the Blimp 2.0 application (Enders et al., 2018; Keller & Enders, 2019) to apply 

reverse random coefficient imputation (i.e., conventional fully conditional specification) and 

model-based imputation9. The reverse random coefficient approach uses a model similar to that 

in Equation 10 to impute O', and it uses the P and O' cluster means (computed as arithmetic 

averages) as predictors of the missing O3 scores. The algorithmic steps for this version of fully 

conditional specification (Blimp offers others) are identical to invoking the mice.impute.2l.pan 

and mice.impute.2lonly.norm functions in the R package MICE (van Buuren, 2011; van Buuren 

et al., 2018). The model-based approach is identical to the procedure described earlier except that 

the simulation model includes a single level-1 covariate rather than two. Similar model-based 

procedures for this particular random coefficient model can be implemented in specialized 

Bayesian analysis programs such as JAGS (Erler et al., 2017; Erler et al., 2016; Grund et al., 

2018; Plummer, 2016) and in the R packages jomo (Quartagno & Carpenter, 2018) and mdmb 

(Robitzsch & Lüdke, 2018). 

After examining potential scale reduction factors (Gelman et al., 2014; Gelman & Rubin, 

1992) from several artificial data sets, we generated 10 imputations from a Gibbs sampler 

algorithm with 1000 burn-in and thinning iterations (i.e., imputed data sets were saved at 1000-

iteration increments). We used the complete-data maximum likelihood estimator in Mplus 8 

(Muthén & Muthén, 1998–2017) to fit the random slope model to the multiply imputed data sets, 

and we wrote a custom R program to pool estimates and standard errors. To provide additional 

comparisons, we also report the complete-data (pre-deletion) and listwise deletion results. The 

online supplemental material also presents limited simulation results for the full information 

maximum likelihood estimator for missing data in Mplus, which can accommodate incomplete 

covariates with numerical integration. Computational tasks were executed on UCLA’s Hoffman2 

supercomputer, and we used a Linux shell script to coordinate simulation tasks. All simulation 

code is available upon request. 

Simulation Study 1 Results 

 
9 We implemented the PRIOR2 options for the substantive analysis and the XPRIOR3 option for the covariate 
models. The technical appendix from the online supplement describes these priors in detail. 
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 Although not part of our main simulation design, we began by examining the large-

sample behavior of the imputation methods in data sets with 1000 level-2 clusters and 50 

observations per cluster. Figure 1 gives trellis plots displaying relative bias values (the difference 

between an average estimate and its true value expressed as a percent of the true value) for each 

combination of intraclass correlation, distribution shape, and missing data rate. As a rough 

heuristic, published simulations often define bias values less than 10% in absolute value as 

acceptable (Finch, West, & MacKinnon, 1997; Kaplan, 1988), so the figures display these 

thresholds as dashed lines. As seen in the figure, model-based imputation estimates were 

effectively indistinguishable from those of the complete data. Perhaps somewhat surprisingly, 

violating normality by including a skewed level-2 predictor had no material impact on parameter 

recovery. In contrast, there was no situation where fully conditional specification (reverse 

random coefficient imputation) produced uniformly accurate estimates, as the random slope 

variance was consistently underestimated by 10% to 20% (the covariance was also biased). 

Previous studies have also noted this bias (Enders et al., 2018; Grund et al., 2016), which is a 

consequence of incompatibility. Finally, listwise deletion estimates were uniformly and 

substantially biased. Because there is no reason to expect deletion to improve with smaller 

samples, we omit this approach from further discussion.  

 Turning to the full simulation design, Figures 2 and 3 give trellis plots displaying relative 

bias values with normally distributed predictors and 15% and 25% missing data, respectively. 

The online supplemental material gives a full set of graphical and tabular displays of the model-

based estimates and their bias values. Considered as a whole, model-based imputation estimates 

tracked closely with those of the complete data, and the procedure was clearly preferable to 

reverse random coefficient imputation (fully conditional specification). The combination of ICC 

= .10, small sample size (30 clusters with 10 observations per group), and 25% missing data 

produced the largest bias values, but performance was still quite good for most parameters. For 

comparison, Figure 4 displays the relative bias values from the simulation conditions with a 

skewed level-2 predictor and 25% missing data rate (see the online supplemental material for a 

few set of graphical displays). Consistent with the large-sample simulation, violating normality 

at level-2 had little to no impact on parameter recovery. Because the results did not materially 

differ from those in Figures 2 and 3, no further discussion is warranted. Although imputation is 

our main focus, we also applied the full information maximum likelihood estimator in Mplus to 
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the normally distributed simulation data because this option would be widely available to 

substantive researchers. The maximum likelihood estimates were prone to large biases, 

particularly in the ICC = .50 conditions. These results, which appear in the online supplement, 

underscore that problems related to non-linear terms are not restricted to multiple imputation. 

 The trellis plot in Figure 5 displays frequentist confidence interval coverage values for 

the 25% missing data rate condition. Because the other conditions were quite similar, we give the 

full set of plots in the online supplemental material. Coverage is the proportion of estimates 

where the 95% symmetric confidence interval included the true parameter, and the dashed lines 

at .925 and .975 correspond to Bradley’s (1978) so-called liberal criterion. Coverage values 

lower than the nominal 95% rate reflect Type I error inflation (e.g., a coverage value of 90% 

suggests a twofold increase in Type I errors), whereas values greater than 95% reflect 

conservative inference. We restrict our attention to the fixed effects because the literature argues 

that symmetric confidence intervals are inappropriate for variance estimates (Maas & Hox, 2005; 

Snijders & Bosker, 2012). As seen in the figure, coverage values for the level-2 slope coefficient 

were often too low (about 90%) in conditions with only 30 clusters, but the complete-data 

coverage rates exhibited the same pattern. 

Simulation Study 2: 

Two-Level Random Coefficient Analysis with a Categorical Predictor 

The second simulation study evaluated model-based imputation with a categorical 

explanatory variable. The random coefficient analysis from Equation 26 again served as the 

population model, but the level-2 covariate O3 was a dichotomous variable with equal category 

proportions, on average. Creating the binary variable required two small changes to the data-

generating process, but the simulation design and procedures were otherwise identical. First, to 

derive the true population parameters, we set the variance of the underlying continuous O3∗ scores 

at .25, which is the same value we would expect from the binary variable. Second, after deriving 

the true parameter values, we generated continuous data and subsequently dichotomized O3 by 

splitting the underlying continuous distribution at zero (the population mean). We again used 

Blimp 2 to implement conventional fully conditional specification and model-based 

imputation10, respectively, and we used listwise deletion as an additional comparison. 

 
10 We implemented the PRIOR2 options for the substantive analysis and the XPRIOR3 option for the covariate 
models. The technical appendix from the online supplement describes these priors in detail. 
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Simulation Study 2 Results 

As a precursor to the full simulation study, we again examined the large-sample behavior 

of the imputation methods in data sets with 1000 level-2 clusters and 50 observations per cluster. 

The trellis plots in Figure 6 show that model-based imputation estimates were virtually unbiased, 

whereas reverse random coefficient imputation (fully conditional specification) consistently 

underestimated the slope variance by 10% to 20% of its true value. Because the full simulation 

produced results that were virtually identical to those from the first simulation study, we give the 

graphical summaries in the online supplement. The results can be summarized as follows: (a) 

model-based estimates largely tracked with those of the complete data, (b) the combination of 

small within-cluster sample size and low intraclass correlation produced the largest bias values 

(similar to those from Figures 2 and 3), and (c) parameter recovery for fully conditional 

specification was meaningfully worse. Finally, coverage values were comparable to those from 

Figure 5 (e.g., complete-data and imputation-based estimates of the level-2 slope coefficient 

were often too low). 

Simulation Study 3: 

Three-Level Analysis with a Cross-Level Interaction 

 Thus far we have considered random coefficient models because they have been the 

focus of recent multilevel imputation literature. However, model-based imputation can 

accommodate a much broader range of interactive and non-linear effects. To illustrate its 

performance in a different context, the final simulation examined a three-level random 

coefficient analysis with a covariate at each level and a cross-level interaction involving a level-1 

and level-3 predictor. 

 

!";j = $% + $'<)'";j@ + $3<)3;j@ + $N()Nj) + $w<)'";j@()Nj)	

+	^%j + ^'j<)'";j@ +	^%;j + ^';j<)'";j@ + +";j (29) 
 

For this analysis, the imputation procedure applies the multivariate normal distribution from 

Equation 12 to the covariates, which again induces a set of linear regression models at each level. 

The analysis model functions in the same way as it did before (i.e., defining the distribution of P 

given the predictors and interaction). In the interest of space, the online supplement gives the 

posterior distributions of the missing data for this problem.  
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The simulation generated 1000 artificial data sets within each cell of a design that varied 

four between-subjects factors: the distribution of variance across levels (20% and 50% of the 

variation distributed across level-2 and level-3), number of level-3 clusters (K = 30 and 100), 

level-1 within-cluster sample size (nj = 10 and 50), and missing data rate for the covariates (15% 

or 25%). The two variability configurations featured 80% or 50% of P and O'’s variance at 

level-1, with between-cluster variability distributed evenly across the two higher levels (we refer 

to these as the ICC = .20 and .50 conditions, respectively). In these same conditions, 80% or 

50% of O3’s variance was assigned to level-2 with the rest at level-3. The number of level-2 

clusters within each level-3 cluster was held constant at 5, resulting in a range of sample sizes 

between 1500 (30 level-3 clusters and 10 level-1 observations per level-2 group) and 25,000 

(100 level-3 clusters and 50 level-1 observations per level-2 group). As before, missingness on 

the covariates was imposed as a function of the within- and between-cluster parts of the outcome 

variable. Because this simulation is meant as a proof of concept under ideal circumstances, we 

do not investigate the impact of nonnormality. It was somewhat surprising that imputing a 

skewed predictor did not impact parameter recovery, but we would be hesitant to assume that the 

same holds true when the nonnormal variable is part of an interaction. Keller (2019) provides a 

thorough investigation of model-based imputation for multilevel interactive effects, and his work 

examines this issue. 

The effect size measures from Rights and Sterba (2018) readily extend to three-level 

models, so our data-generating process largely mimicked the previous simulations. As before, we 

set the covariate correlations to r = .30, and we specified fixed effects hierarchically, such that 

each coefficient incremented the explained variance at a particular level by 10%. Because 

interaction effects tend to be smaller in magnitude (Chaplin, 1991), we set the cross-level 

interaction coefficient to explain an additional 5% of the within-cluster variance. Finally, we 

identified random slope variances that explained 10% of the outcome’s variance at level-1, and 

we determined the residual variance at each level by subtracting out the explained portions of 

variance due to the fixed and random effects. Equations 30 and 31 give the resulting population 

parameters for the ICC = .20 and .50 conditions, respectively. 

 

 !";j = 49.836 + 3.098<)'";j@ + .724<)3;j@ + .654()Nj) + 1.549<)'";j@()Nj) (30) 
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+	^%j + ^'j<)'";j@ +	^%;j + ^';j<)'";j@ + +";j 

é^%j^'j
è	~	_.(0, c5.104 1.917

1.917 8.000d) W
^%;j
^';j

Z	~	_.(0, c5.500 1.990
1.990 8.000d)  

+";j	~	.(0,52.000) 
 

 

 

!";j = 49.740 + 2.449<)'";j@ + 1.445<)3;j@ + .938()Nj) + 1.225<)'";j@()Nj) 

+	^%j + ^'j<)'";j@ +	^%;j + ^';j<)'";j@ + +";j 

é^%j^'j
è	~	_.(0, c11.183 2.243

2.243 5 d) W
^%;j
^';j

Z	~	_.(0, c13.750 2.487
2.487 5.000d)  

+";j	~	.(0,32.500) 

(31) 

 

We again used Blimp 2 to apply just-another-variable imputation (i.e., conventional fully 

conditional specification that treats the cross-level product as a variable to be imputed) and 

model-based imputation11. We are unaware of other software packages that apply these 

approaches to three-level data. After examining potential scale reduction factors (Gelman et al., 

2014; Gelman & Rubin, 1992) from several artificial data sets, we generated 10 imputations 

from a Gibbs sampler algorithm with 1000 burn-in and thinning iterations (i.e., imputed data sets 

were saved at 1000-iteration increments). As before, we used Mplus’s complete-data maximum 

likelihood estimator to fit the analysis model to the multiply imputed data sets, and we wrote a 

custom R program to pool estimates and standard errors. Computational tasks were executed on 

UCLA’s Shared Hoffman2 Cluster, and we used a Linux shell script to coordinate simulation 

tasks. All simulation code is available upon request. 

Simulation Study 3 Results 

Figures 7 and 8 display average relative bias values for the fixed effects and variance 

components, respectively. In the interest of space, we focus on the 25% missing data rate and 

point readers to the online supplement for a full set of graphical displays. For clarity we omit 

listwise deletion from Figures 7 and 8, but these results are in the supplement. As seen in the 

figures, imputing the incomplete product term with fully conditional specification (i.e., just-

 
11 We implemented the PRIOR2 options for the substantive analysis and the XPRIOR3 option for the covariate 
models. The technical appendix from the online supplement describes these priors in detail. 
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another-variable imputation) introduced substantial biases that did not dissipate as sample size 

increased (e.g., the interaction and level-3 slope coefficients were 20% to 40% lower than their 

true values, and a number of variance estimates were also distorted). In contrast, model-based 

imputation estimates were generally quite accurate, with most bias values well below 10%. 

Estimating this model with only 30 level-3 units gave negatively biased estimates of the level-3 

slope and the interaction coefficient, but increasing the number of groups to 100 effectively 

eliminated this issue. Variance estimates were generally quite accurate, and increasing either the 

within-cluster sample size at level-1 (e.g., from 10 to 50) or the number of level-3 groups 

improved parameter recovery. Not surprisingly, listwise deletion estimates were uniformly and 

severely biased (see the online supplement). 

 Finally, Figure 9 displays frequentist confidence interval coverage values for the 25% 

missing data rate condition, and the online supplemental material gives a full set of plots. Model-

based coverage values were almost always within Bradley’s liberal bounds. The complete-data 

coverage values for the level-3 slope coefficient and the interaction coefficient were lower 

(worse) in some cases (e.g., with 30 level-3 groups), which presumably occurred because 

missing data uncertainty widened confidence intervals and counteracted the complete-data 

estimator’s natural tendency for under-coverage. 

Real Data Example 

This section illustrates model-based imputation in the context of a cluster-randomized 

trial of a novel math problem-solving intervention (Montague, Krawec, Enders, & Dietz, 2014). 

The data set, which is available on the Blimp website, features three levels: 6874 repeated 

measurements at level-1 nested in 982 students at level-2, and students nested in 29 schools at 

level-3. Schools were randomly assigned to an intervention (novel curriculum) or control 

(standard curriculum) condition, such that all students within a given school received the same 

treatment. To keep the example relatively simple, we ignore nesting at the school level and focus 

on a two-level model (in fact, there was a relatively small proportion of variation at the school 

level). The analysis is a two-level growth curve model with a cross-level interaction involving 

condition and months (i.e., the group-by-time interaction). In addition to an intervention dummy 

code and its interaction with the temporal predictor, the substantive analysis model features a 

time-varying math self-efficacy rating scale and a lunch assistance dummy code as covariates.  
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Gõú^ùúûüÅ" = $% + $'(†°Lℎ5IIÅ") + $3(†ú£Lℎ0Å") + $N(Iõûb£àℎ")
+ 	$w(àú£§•L•ú£") + 	$¶(†ú£Lℎ0Å")(àú£§•L•ú£") +	^%"
+ ^'"(†°Lℎ5IIÅ") + ^3"(†ú£Lℎ0Å") + 5Å" 

(32) 

 

The percentage of missing observations for each incomplete variable were as follows: problem-

solving (11.5%), self-efficacy (11.45%), lunch assistance status (4.7%). A substantial proportion 

of problem-solving and self-efficacy scores resulted from planned missingness where the control 

group was assessed bimonthly instead of monthly. Regardless of mechanism, time-varying 

variables were imputed by fixing the corresponding temporal predictor at the planned assessment 

dates.  

 Appendix A gives the Blimp 2 script for model-based imputation. To add the third level 

of nesting, one would simply list the school-level identifier on the CLUSTERID line (to our 

knowledge, Blimp is the only application that can apply this procedure to three-level data 

structures). The Blimp 2 user guide (Keller & Enders, 2019) provides a detailed description of 

the scripting language, including a number of new conventions and commands that differ from 

its predecessor. A byproduct of our procedure is that the software also gives Bayesian estimates 

(e.g., posterior means and standard deviations) as optional output, so we provide these results as 

a comparison to illustrate a simple sensitivity analysis. We also used Blimp to implement a 

second model-based imputation procedure that incorporates gender (complete), standardized 

math scores (4.7% missing), and the school-level percentage of non-native English speakers 

(complete) as auxiliary variables (these additional variables are added to the MODEL line, and 

gender must be declared as ORDINAL). Finally, although theoretical and computer simulation 

results generally argue against it, we also included fully conditional specification. The procedure 

should achieve near-optimal performance in this example because the interacting variables are 

complete. The software is available as a free download for macOS, Windows, and Linux at 

www.appliedmissingdata.com/multilevel-imputation, and the full set of analysis scripts and the 

data are available from the same URL. 

As a starting point, it is important to recall that Blimp specifies a multivariate normal 

joint distribution for the explanatory variables (or their latent scores, in the case of discrete 

predictors), and the software does not allow users to specify non-linear relations (e.g., quadratic 

terms or random coefficients) among pairs of covariates. The so-called sequential version of 
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model-based imputation outlined by Ibrahim et al. (2002) and more recently by Erler and 

colleagues (Erler et al., 2017; Erler et al., 2016) offers this flexibility, but this approach is not yet 

available for three-level data structures. Assuming normality for explanatory variables simplifies 

imputation because the user need only specify the substantive analysis on the MODEL line, and 

the software automatically constructs the appropriate covariate models. The cross-level product 

term in the analysis model is specified by joining the interacting variables with an asterisk (e.g., 

month0*condition), and the random coefficients are specified by listing the random 

predictors to the right of the vertical pipe (e.g., MODEL: … | matheff month0;). In a 

three-level model, Blimp would automatically include random coefficients at level-2 and level-3.  

Executing the script in Appendix A generates imputations for the lower-order variables 

that are consistent with the specified interaction effect, but the product term is not added to the 

filled-in data sets. Rather, Blimp saves uncentered lower-order variables so that users can apply 

group mean or grand mean centering (or leave variables uncentered) prior to computing 

interactions. This is in contrast to fully conditional specification, which treats the interaction as a 

variable to be imputed. In this framework, it may be necessary to work with uncentered variables 

then rescale the imputed product term to approximate a centered solution (Enders et al., 2014). In 

addition to its theoretical and empirical benefits, model-based imputation is highly convenient 

because it allows researchers to apply familiar procedures for probing interaction effects (Aiken 

& West, 1991; Bauer & Curran, 2005). 

Blimp can print a table of potential scale reduction factor diagnostics (Gelman & Rubin, 

1992), and it optionally saves parameter values that can readily be converted to trace plots in 

other software (e.g., an R plotting script is provided with the other files for this example). The 

potential scale reduction factors suggest that the Gibbs sampler converges in approximately 2000 

iterations (i.e., across all models and all parameters, the highest potential scale reduction factor is 

approximately 1.05). Based on this information, we requested 20 imputations from a Gibbs 

sampler with 4000 burn-in and 2000 thinning iterations (i.e., we saved the first data set after 

4000 computational cycles and saved additional data sets every 2000 iterations thereafter). The 

job takes approximately one minute on a 2018 10-core iMac Pro and about two minutes on a 

2017 two-core Macbook Pro. The resulting imputations are compatible with all major analysis 

packages (the SAVE command outputs imputations in stacked format or as separate files), and 

the set of files for this example includes analysis scripts for Mplus, R, SPSS, and Stata. 
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Table 1 gives the parameter estimates from the analysis, with random effect covariances 

omitted from the table for brevity. The key finding is that the intervention-by-time interaction 

coefficient is positive and significant, meaning that students in the intervention schools exhibited 

more rapid problem-solving gains than students in control schools. The Bayesian slope variance 

estimates are slightly larger than those of the imputation procedures (these quantities can be 

viewed as estimates taken across more than 30,000 imputations), but differences were generally 

slight. In particular, fully conditional specification estimates were not dramatically different from 

those of model-based imputation. As noted previously, fully conditional specification should 

achieve its optimal performance in this example because the random predictor (months since 

baseline) and the interacting variables are complete. Theoretical and simulation results suggest 

that this would not be true in general. 

Discussion 

Despite the broad appeal of multiple imputation and other MAR-based approaches, a 

broad class of regression models featuring interactive effects, polynomial terms, or random 

coefficients are known to cause bias-inducing problems for popular missing data handling 

procedures (Bartlett et al., 2015; Enders et al., 2014; Seaman et al., 2012; Zhang & Wang, 2017). 

A growing body of recent missing data research has focused on fully Bayesian multiple 

imputation methods that are appropriate for interactive and non-linear effects (Bartlett et al., 

2015; Erler et al., 2017; Erler et al., 2016; Goldstein et al., 2014; Kim et al., 2018; Kim et al., 

2015; Zhang & Wang, 2017). Building on these recent developments, this paper outlined a 

model-based multiple imputation methodology designed to handle a wide range of interactive 

and non-linear effects in single-level and multilevel regression models with up to three levels. 

This procedure offers a number of compelling advantages: it (a) has a strong theoretical 

foundation in the Bayesian framework, (b) readily extends to three-level data structures, (c) uses 

latent variables (i.e., random effects) to model between-cluster variation and covariation, (d) 

readily accommodates categorical variables, and (e) produces Bayesian analysis results (e.g., 

posterior means and standard deviations) as a byproduct of estimation. The primary downside of 

the procedure is that covariates can exert non-linear or random influences on the outcome but not 

each other. The so-called sequential approach to fully Bayesian imputation (Erler et al., 2017; 

Erler et al., 2016; Ibrahim et al., 2002) can accommodate certain patterns of non-linearities, but 
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this approach has not been extended to the range of applications that we consider here (e.g., 

three-level models, categorical variables). 

Computer simulation results suggest that model-based imputation is quite effective when 

applied to multilevel models with random coefficients and interaction effects. In most scenarios 

that we examined, estimates tracked closely with those of a complete data analysis and either 

reduced or eliminated biases associated with conventional approaches such as fully conditional 

specification imputation (and maximum likelihood estimation, although our investigation of this 

procedure was quite limited). These improvements were particularly salient for a model with a 

cross-level interaction term.  

Importantly, model-based imputation in Blimp assumes that covariates are multivariate 

normal. It was somewhat surprising that imputing a skewed predictor did not impact parameter 

recovery, but we are hesitant to assume that the same holds true when the nonnormal variable is 

part of an interaction. Further, an obvious avenue for future research is to examine the impact of 

non-normal level-1 covariates. Keller (2019) provides a thorough investigation of model-based 

imputation for multilevel interactive effects, and his work examines these cases. Second, the 

normality assumption implies that covariates are linearly related, and we did not investigate 

scenarios where covariates are non-linearly related. At least for two-level models, it is possible to 

implement a comparable sequential decomposition of the covariate distribution (Ibrahim et al., 

2002) in dedicated Bayesian analysis software such as JAGS (Erler et al., 2017; Erler et al., 

2016; Grund et al., 2018). Because that approach allows some covariates to be non-linear 

functions of others, it could be more robust to normality violations than our method (Lüdke et 

al., 2019). In practice, we suspect that researchers would rarely have the information needed to 

correctly specify such non-linearities, but this alternative is important to consider. 

This paper was an initial foray and is necessarily limited in scope and generalizability. 

First, we investigated a small subset of non-linear effects that are possible. The framework can 

readily accommodate three-way and higher interactions, polynomial effects, and combinations of 

interactive and polynomial terms. Virtually nothing is known about the application of model-

based imputation to these models, and a great deal of research is needed to clarify the 

procedure’s limitations. Second, our paper offered a very limited glimpse into categorical 

variable imputation. Simulations conducted while developing Blimp suggest that latent variable 

imputation can work well in a wide range of situations, but the procedure is almost certainly 
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sensitive to the number and type of categorical variables, the distribution of response options, 

and sample size, to name a few. Finally, the simulation conditions we examined were necessarily 

limited in scope, and multilevel models offer myriad possibilities for manipulating sample sizes, 

intraclass correlations, effect sizes, and number of random effects. 

 In sum, our paper outlined a new imputation approach for multilevel models with 

interactive or non-linear effects. Limited computer simulations suggest that model-based 

imputation can offer substantial improvement over conventional imputation methods and 

maximum likelihood estimation. The Blimp application offers a user-friendly environment for 

implementing model-based imputation, and the software’s website has a number of resource 

materials, including analysis scripts for all major software platforms. 
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Appendix A 

Blimp Syntax for Applying Bayesian Estimation and  

Model-Based Imputation with the Real Data Example 

 
DATA: ~/desktop/example.dat; 

VARIABLES: school student wave condition eslpct 

   ethnic male frlunch achgroup stanmath month0 

   month7 probsolv matheff condbymonth;  

ORDINAL: frlunch condition; 

CLUSTERID: student; 

MISSING: 999; 

MODEL: probsolv ~ matheff month0 frlunch condition 

   month0*condition | matheff month0; 

SEED: 90291; 

NIMPS: 20; 

BURN: 4000; 

THIN: 2000; 

CHAINS: 10 processors 10; 

OPTIONS: estimates latent psr; 

SAVE: stacked = ~/desktop/imps.csv; 
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Figure 1. Average relative bias values from the large-sample simulation featuring a random 

coefficient model with either a normal or skewed level-2 predictor. The dashes represent bias 

values of ± 0.10. FCS = fully conditional specification (“reverse random coefficient” 

imputation), MBI = model-based imputation, LWD = listwise deletion. 
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Figure 2. Average relative bias values from the simulation featuring a random coefficient model 

with normally distributed predictors and 15% missing data. The dashes represent bias values of ± 

0.10. FCS = fully conditional specification (“reverse random coefficient” imputation), MBI = 

model-based imputation. 



 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI

Simulation 1 
 Relative Bias: Normal Distribution, 15% Missingness



Figure 3. Average relative bias values from the simulation featuring a random coefficient model 

with normally distributed predictors and 25% missing data. The dashes represent bias values of ± 

0.10. FCS = fully conditional specification (“reverse random coefficient” imputation), MBI = 

model-based imputation. 
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Figure 4. Average relative bias values from the simulation featuring a random coefficient model 

with a skewed level-2 predictor and 25% missing data. The dashes represent bias values of ± 

0.10. FCS = fully conditional specification (“reverse random coefficient” imputation), MBI = 

model-based imputation. 
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Figure 5. Confidence interval coverage for the fixed effects from a random coefficient model 

with 25% missing data. The dashes at .925 and .975 represent Bradley’s (1978) so-called liberal 

criterion. FCS = fully conditional specification (“reverse random coefficient” imputation), MBI 

= model-based imputation. 
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Figure 6. Average relative bias values from the large-sample simulation featuring a random 

coefficient model with an incomplete binary level-2 predictor. The dashes represent bias values 

of ± 0.10. FCS = fully conditional specification (“reverse random coefficient” imputation), MBI 

= model-based imputation, LWD = listwise deletion. 
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Figure 7. Average relative bias values for the fixed effects from the three-level simulation 

featuring random coefficients, a cross-level interaction, and 25% missing data. The dashes 

represent bias values of ± 0.10. FCS = fully conditional specification (“just another variable” 

imputation), MBI = model-based imputation. 
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Figure 8. Average relative bias values for the variance components from the three-level 

simulation featuring random coefficients, a cross-level interaction, and 25% missing data. The 

dashes represent bias values of ± 0.10. FCS = fully conditional specification (“just another 

variable” imputation), MBI = model-based imputation. 
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Figure 9. Confidence interval coverage for the fixed effects from the three-level simulation 

featuring random coefficients, a cross-level interaction, and 25% missing data. The dashes at 

.925 and .975 represent Bradley’s (1978) so-called liberal criterion. FCS = fully conditional 

specification (“just another variable” imputation), MBI = model-based imputation. 
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Online Supplemental Material 

 

Craig K. Enders, Han Du, and Brian T. Keller 

 

• Section A: Bayesian estimation steps and full conditional distributions for model-

based imputation 

• Section B: Description of model-based imputation for 3-level computer simulation 

model 

• Section C: Trellis plots displaying relative bias and confidence interval coverage 

from all conditions of the computer simulation. 
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A. MCMC Sampling Steps and Distributions for Two-Level Imputation 

This document gives technical details of the two-level Gibbs sampler, 

specifically the full conditional distributions used to draw model parameters, random 

effects, latent means, and missing values for model-based imputation in Blimp. 

Gibbs Sampler Steps for the Analysis Model 

In this section we abandon the scalar notation from the manuscript in favor of 

a more succinct matrix representation of the multilevel model 

 !" = #"$ + %"&" + '" (SA1) 
 

where !" is the vector of outcome scores for cluster j, #" is the corresponding matrix 

of predictor variables (level-1 or level-2), including a unit vector for the intercept, %" 
is a subset of the level-1 variables in #" that have a random influence on the outcome 

(e.g., a unit vector and any random coefficient predictors), &" is the column vector of 

level-2 residuals for cluster j, and '" is a vector of within-cluster residuals. A variety 

of sources give the full conditional distributions for this model (Browne, 1998; Browne 

& Draper, 2000; Enders et al., 2018; Lynch, 2007; Schafer & Yucel, 2002; Yucel, 

2008), which we summarize here for completeness. 

 To illustrate the following steps more concretely, we will refer to the following 

substantive model, which includes within-cluster and cross-level interaction effects. 

Between-cluster interactions involving pairs of level-2 variables are also possible, but 

it should become evident that the composition of the analysis model has no bearing 

on the covariate models. 
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 ()" = *0 + *1(.1)") + *2(.2)") + *3(.3)") + *4(.1)")(.2)") + *5(.4")+ *6(.5") + *7(.3)")(.5") + 60" + 61"(.1)") + 7)" (60"61") ~ :;(0, <=)   7)" ~ ;(0, >?2) (SA2) 
 

Step 1: Draw regression coefficients from @($| ∙) ∝ @(B |$, &", <=, >?2, C)@($). 
Assuming a uniform prior, @($) ∝ 1, the full conditional distribution is a multivariate 

normal distribution. 

 $ ∼ :;($,̂ <Ĝ) 
$̂ = (∑ #"′#"L

"=1 )−1 ∑ #"′(!" − %"&")L
"=1 (SA3) 

<Ĝ = >?2 (∑ #"′#"L
"=1 )−1 

 

Applied to the model from Equation SA2, the # matrix includes a unit vector for the 

intercept and a column for each explanatory variable and interaction term, the % 

matrix is comprised of a unit vector and C1. 
Step 2: Draw random effects for cluster j from a multivariate normal 

distribution. 

 &" ∼ :;(&̂", OPQ) OPQ = (>?−2 %"′%" + <=−1)−1 (SA4) &̂" = >?−2 OPQ%"′(!" − #"$) 
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Step 3: Draw the residual variance from @(>?2| ∙) ∝ @(B |$, &", <=, >?2, C)@(>?2). 
We define 1 >?2⁄  as a gamma random variable and draw the reciprocal of the residual 

variance (i.e., the precision) from a gamma distribution 

 1 >?2⁄ ∼ G (; + RST2 , U + UT2 ) U = ∑ V"′V"L
"=1 (SA5) '" = !" − #"$ − %"&" 

 

with hyperparameters RST and UT for the prior distribution. The default setting in 

Blimp specifies UT = 1 and RST = 2, which corresponds to a gamma(1,.5) prior. Two 

other options are to set UT = 0 and RST = −2 (the PRIOR2 keyword of the OPTIONS 

command) and UT = 0 and RST = 0 (the PRIOR3 keyword), a Jeffreys prior. 

Step 4: Draw the between-cluster covariance matrix variance from @(<=| ∙) ∝@(B |$, &", <=, >?2, C)@(<=). We define the inverse of the covariance matrix (i.e., the 

precision matrix, <=−1) as a Wishart random variable. The level-2 precision matrix is 

sampled from a Wishart distribution, conditional on the current parameter estimates, 

level-2 residuals, and imputations. 

 <=−1 ∼ W((W + WT−1)−1, X + RST) (SA6) W = ∑ &"′&"L
"=1   WT can be viewed as the inverse of the prior sums of squares matrix based on RST 

degrees of freedom (i.e., prior observations). As such, W + WT−1 is a sums of squares 
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and cross products matrix based on X + RST observations. The default prior sets WT−1 
= I and RST = @ + 1, where p is the dimension of <=. This prior corresponds to 

marginal uniform priors between -1 and 1 for all correlations and a marginal inverse 

gamma prior IG(1,.5) for variance elements. Specifying the PRIOR2 keyword of the 

OPTIONS command sets WT−1 = 0 and RST = −@ − 1, which is equivalent to a uniform 

prior on the elements in <=. Finally, the PRIOR3 keyword sets WT−1 = 0 and RST = 0. 
For random intercept models with a single level-2 variance component, we draw the 

reciprocal of the variance, 1 >=2⁄ , from a gamma random variable with analogous 

univariate priors based on @ = 1. 

Step 5: Draw the imputation for observation i in cluster j from a univariate 

normal posterior distribution. 

 ()"(Y)Z) = ;([)"$ + \)"&", >?2) (SA7) 
 
Gibbs Sampler Steps for the Covariate Model r 

 To convey the estimation steps in the most general way possible, we introduce 

new notation that differs from that in the manuscript. To begin, index the P level-1 

predictors as p = 1, …, P, and index the Q level-2 predictors as q = 1, …, Q. As 

explained in the paper, each level-1 variable has a regression model for the 

observations and a regression model for its latent cluster means. Thus, level-1 

estimation involves P computational cycles, and level-2 estimation requires R = P + 

Q computational cycles. To simplify the notation, we index the entire set of variables 

as r = 1, …, R, such that r ≤ P corresponds to either a level-1 observation or its 

corresponding level-2 group mean, and r > P refers to a manifest level-2 variable. 
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Using generic notation, the level-1 and level-2 regression models are given 

below. 

 

 
.^,)" = `^," + [̃−^,)"b^ + c^,)" c^,)" ~ ;(0, >de2 ) (SA8) 

 
.^," = `^ + [̃−^,"f^ + g^," g^," ~ ;(0, >he2 ) (SA9) 

 

where .^,)" is the level-1 score for covariate r, [̃−^,)" denotes the P – 1 row vector of 

all other level-1 predictor variables except r, centered at their latent group means. 

Turning to the between-cluster regression, the outcome, .^,", is either a latent group 

mean (e.g., .^," = `^,") when r ≤ P or a manifest level-2 variable when r > P, and [̃−^," is a R – 1 row vector of grand-mean centered level-2 variables other than r. For 

some of the Gibbs sampling steps, it is convenient to concatenate observation-level 

quantities into matrices. For example, the N-row vector of level-1 outcome scores is [^,)" and the corresponding N by P – 1 matrix of centered level-1 predictors is ĩ−^,)". 
Similarly, the J-row vector of level-2 outcome scores is [^," and the J by R matrix of 

mean-centered predictors is ĩ−^,". 
 To make the notation more concrete, consider the analysis model from 

Equation SA2. The multivariate normality assumption induces the following level-1 

regression models. 

 .1)" = `1" + k11(.2)" − `2") + k12(.3)" − `3") + c1)"  .2)" = `2" + k21(.1)" − `1") + k22(.3)" − `3") + c2)" (SA10) .3)" = `3" + k31(.1)" − `1") + k32(.2)" − `2") + c3)"  
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For any given model, [^,)" is N-row vector of outcome scores, b^ is a 2-element vector 

of level-1 regression coefficients, and ĩ−^,)" is the N by 2 matrix of latent group mean 

centered predictors on the right side of each equation. The multivariate normality 

assumption also induces the following level-2 regression models. 

 `1" = `1 + l11(`2" − `2) + l12(`3" − `3) + l13(.4" − `4) + l14(.5" − `5) + g1"          `2" = `2 + l21(`1" − `1) + l22(`3" − `3) + l23(.4" − `4) + l24(.5" − `5) + g2"          `3" = `3 + l31(`1" − `1) + l32(`2" − `2) + l33(.4" − `4) + l34(.5" − `5) + g3"         .4" = `4 + l41(`1" − `1) + l42(`2" − `2) + l43(.3" − `3) + l44(.5" − `5) + g4"													 .5" = `5 + l51(`1" − `1) + l52(`2" − `2) + l53(.3" − `3) + l54(.4" − `4) + g5"         
(SA11) 

 

For any given model, [^," is the J-row vector of outcome scores (latent means or 

manifest variables), f^ is a 4-element vector of level-2 regression coefficients, and ĩ−^," is the J by 4 matrix of grand mean centered predictors on the right side of each 

equation. 

 

Step 6. If variable r is measured at level-1 (i.e., r ≤ P), draw its latent cluster 

means from @(`^,"| ∙) ∝ @(C^|`^, `^,", b^, >de2 , C−^)@(`^,"|, [−^,", f^, >he2 ), which is the 

univariate normal distribution below. 

 @(`^,"| ∙) = ; (>he2 ∑ (.^,)" − [̃−^,)"b^)pQ)=1 + >de2 (`^ + [̃−^,"f^)>de2 + q">he2 , >de2 >he2>de2 + q">he2 ) (SA12) 
 

Note that >de2  and >he2  residual variance for covariate r’s observations and latent 

means, respectively. 
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Step 7: Draw the grand mean of variable r from @(`^| ∙) ∝@(C^|`^, f^, >he2 , `^,", b^, >de2 , C−^)@(`^). Assuming a uniform prior, @(`^) ∝ 1, the full 

conditional distribution is a univariate normal distribution. 

 @(`^| ∙) = ; (∑ (.^," − [̃−^,"f^)L"=1 X , >he2X ) (SA13) 
 

where J the number of level-2 units. As noted previously, .^," is a latent cluster mean 

when variable r is measured at level-1, and it is a score when r is at level-2. 

Step 8: If variable r is measured at level-1 (i.e., r ≤ P), draw its within-cluster 

regression slopes from @(b^| ∙) ∝ @(C^|`^, f^, >he2 , `^,", b^, >de2 , C−^)@(b^). Because latent 

group means replace the regression intercept, the level-1 regression requires that the 

outcome (i.e., a level-1 score) is centered at its current group mean from step 9. In 

line with our previous notation, we denote the N-row vector of centered outcome 

scores as [̃^,)". Assuming independent uniform priors, @(b^) ∝ 1, the full conditional 

distribution is a multivariate normal distribution. 

 @(b^| ∙) = :;(b̂^, <r̂e ) (SA14) b̂^ = (ĩ−^,)"′ ĩ−^,)")−1ĩ−^,)"′ [̃^,)" (SA15) <r̂e = >de2 (ĩ−^,)"′ ĩ−^,)")−1 (SA16) 
 

Note that it is not necessary to account for clustering here because all scores are 

centered at their latent group means.  
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Step 9: If variable r is measured at level-1 (i.e., r ≤ P), draw the within-cluster 

residual variance from @(>de2 | ∙) ∝ @(C^|`^, f^, >he2 , `^,", b^, >de2 , C−^)@(>de2 ). First, define 

a level-1 residual as follows 

 c ̂̂ ,)" = .^,)" − `^," − [̃−^,)"b^ (SA17) 
 

and stack these residuals into an N-row vector define a N-row vector t̂̂ ,)". We define 1 >d2⁄  as a gamma random variable and draw the reciprocal of the residual variance 

(i.e., precision) from a gamma distribution 

 1 >d2⁄ ∼ G (; + RST2 , t̂̂ ,"′ t̂̂ ," + UT2 ) (SA18) 
 

with hyperparameters RST and UT for the prior distribution. The default setting in 

Blimp (XPRIOR1) specifies UT = 1 and RST = 2, which corresponds to a gamma(1,.5) 

prior. Two other options are to set UT = 0 and RST = −2 (the XPRIOR2 keyword of 

the OPTIONS command) and UT = 0 and RST = 0 (the XPRIOR3 keyword), a 

Jeffreys prior. Our simulation used a Jeffreys prior, but we have found that the 

default setting prevents between-cluster variances from collapsing when covariates 

have very low intraclass correlations.  

Step 10: Draw between-cluster regression slopes for covariate r from @(f^| ∙) ∝@(C^|`^, f^, >he2 , `^,", b^, >de2 , C−^)@(f^). Because the grand mean replaces the fixed 

regression intercept, the level-2 regression requires the outcome (i.e., a latent group 

mean or level-2 score) to be centered at its grand mean from step 6. In line with our 

previous notation, we denote the J-row vector of centered outcome scores as [̃^,". 



MODEL-BASED IMPUTATION 

 9 

Assuming independent uniform priors, @(f^) ∝ 1, the full conditional distribution is a 

multivariate normal distribution 

 @(f^| ∙) = :;(f̂^, <ŵe) (SA19) f̂^ = (ĩ−^,"′ ĩ−^,")−1ĩ−^,"′ [̃^," (SA20) <ŵe = >he2 (ĩ−^,"′ ĩ−^,")−1 (SA21) 
 

Step 11: Draw the between-cluster residual variance for covariate r 

from @(>he2 | ∙) ∝ @(C^|`^, f^, >he2 , `^,", b^, >de2 , C−^)@(>he2 ). First, define a J-row vector of 

level-2 residuals as  

 x ̂̂ ," = [^," − y`^ − ĩ−^,"f^ (SA22) 
 

where y is a J-row unit vector. To reiterate, [^," contains latent group means (r ≤ P) 

or manifest level-2 variables (r > P). We define 1 >he2⁄  as a gamma random variable 

and draw the reciprocal of the residual variance (i.e., the precision) from a gamma 

distribution 

 1 >he2⁄ ∼ G (X + RST2 , x ̂̂ ,"′ x ̂̂ ,"+UT2 ) (SA23) 
 

with hyperparameters RST and UT for the prior distribution. The default setting in 

Blimp (XPRIOR1) specifies UT = 1 and RST = 2, which corresponds to a gamma(1,.5) 

prior. Two other options are to set UT = 0 and RST = −2 (the XPRIOR2 keyword of 

the OPTIONS command) and UT = 0 and RST = 0 (the XPRIOR3 keyword), a 
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Jeffreys prior. Note keywords induce the same priors at all levels of the data 

hierarchy. 

Step 12: Draw missing values from @(C^) ∝ @(B |C^, C−^) × @(C^|C−^). For 

each missing score, the Metropolis algorithm draws a candidate imputation C^({|p})}|~d) from a normal proposal distribution 

 C^({|p})}|~d)(~) = ;(C^({�^^dp~)(~) , >(T^�T�Z|�)2 ) (SA24) 
 

where the mean C^,)({�^^dp~)(~)  is the current imputation i at iteration t, and the variance >(T^�T�Z|�)2  is chosen to optimize the acceptance rate of the candidate imputations. We 

have found that setting >(T^�T�Z|�)2 = 9(>de2 ) for level-1 variables and >(T^�T�Z|�)2 =2.25(>he2 ) for level-2 variables tends to give optimal acceptance rates, although the 

Blimp application adaptively tunes the spread of the proposal distribution by 

increasing or decreasing the constant multiplier at regular intervals during the burn-

in phase in an attempt to achieve an acceptance rate for the imputations between 

0.25 and 0.45 (Gelman et al., 2014; Johnson & Albert, 1999; Lynch, 2007). For each 

incomplete variable, Blimp checks the acceptance rate every 50 iterations by 

computing the proportion of accepted imputations for a particular variable across all 

incomplete observations during the 50-iteration interval (e.g., for 10 incomplete cases, 

the acceptance rate for a particular variable is the proportion of the 500 draws that 

are accepted). If the acceptance rate does not fall between 0.25 and 0.45, the program 

increases (if the acceptance rate is too high) or decreases (if the acceptance rate is too 

low) the variance multiplier. Once the burn-in iterations are complete, tuning checks 

are turned off. Normal proposal distributions are routinely used in Bayesian analysis 

texts (Gelman et al., 2014; Lynch, 2007), but a strong rationale for adopting this 
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distribution in our context is that the correct conditional distribution is, in fact, 

normal (see manuscript Equations 8 and 20). Thus, the Metropolis algorithm provides 

a way to model the true distribution of missing values without deriving the complex 

non-linear functions that define its mean and variance.  

After drawing a candidate imputation from the proposal distribution, the 

Metropolis algorithm calculates the natural logarithm of an importance ratio (IR) 

that quantifies the height of the target density evaluated at the candidate imputation 

proportional to its height when evaluated at the current imputation.  

 

 
�q(IR) = [�q[@(B  |C1, … , C^({|p})|~d), … , C�)] + �q[@(C^({|p})|~d)|C−^)]] − [�q[@(B  |C1, … , C^({�^^dp~), … , C�)] + �q[@(C^({�^^dp~)|C−^)]] (SA25) 

 

Note that @(B  |C1, … , C^({|p})|~d), … , C�) and (B  |C1, … , C^({�^^dp~), … , C�) involve 

the product of likelihoods (or the sum of log likelihoods) when C^ is at level-2; @(C^({|p})|~d)|C−^) and @(C^({�^^dp~)|C−^) always evaluate a single observation. The 

importance ratio defines the probability of a Bernoulli random variable that 

determines whether the candidate value is retained as the current imputation for the 

next iteration. If the importance ratio exceeds unity, the candidate imputation is 

automatically accepted. If the ratio is large but less than one, the candidate 

imputation is likely to be accepted because it has a high probability of originating 

from @(B |C�) × @(C^|C−^). As the ratio decreases, so too does the chance of retaining 

the candidate value because it is unlikely to originate from the target density. To 

account for the natural logarithm, the Metropolis sampler draws a random number �) 
from a uniform distribution �(0,1) and accepts C^({|p})}|~d)(~)   as the new current 

imputation for the next iteration t + 1 if �q(IR) > �q(�) ).  
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 For incomplete categorical variables, the Metropolis sampler computes the 

importance ratio as follows 

 IR = @(B |C1, … , C^({|p})|~d), … , C�)@(C^({|p})|~d)∗ |C−^)@(B |C1, … , C^({�^^dp~), … , C�)@(C^({�^^dp~)∗ |C−^) . (SA26) 
 

where C^({|p})|~d)∗  is a candidate imputation on the underlying latent variable metric. 

Consistent with the procedure for continuous variables, the algorithm draws a 

candidate latent variable score from a normal proposal distribution, and the current 

and candidate synthetic scores, C^({�^^dp~)∗  and C^({|p})|~d)∗ , respectively, are then 

evaluated in the @(C∗̂|C−^) components of the ratio. The corresponding discrete 

candidate C^({|p})|~d) for the first component of the numerator product is generated 

by comparing the latent candidate to the threshold parameter, such that C^({|p})|~d) 
= 0 if C^({|p})|~d)∗ < � and C^({|p})|~d) = 1 if C^({|p})|~d)∗ ≥ �. 

 

B.  
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Model-Based Imputation for a Three-Level Model 

The three-level analysis model for the third computer simulation is as follows. 

 ()"� = *0 + *1(.1)"�) + *2(.2"�) + *3(.3�) + *4(.1)"�)(.3�) + 60� + 61�(.1)"�) + 60"� + 61"�(.1)"�) + 7)"� (SB1) (60�61�) ~ :;(0, <=�) (60"�61"�) ~ :;(0, <=Q�)  7)"� ~ ;(0, >?2) 
 

Auxiliary variables enter the model as additional explanatory variables.  

The covariate distribution is multivariate normal 

 [(1) ~ :;(�"�, <1)  [(2) ~ :;(��, <2)   [(3) ~ :;(�, <3) (SB2) 
 

where [(1) = (.1)"�), �"� = (`1"�), [(2) = (`1"�, .2"�), �� = (`1�, `2�), [(3) =(`1�, `2�, .3�) � = (`1, `2, `3), <1 is a scalar within-cluster variance, <2 is a 2 by 2 

between-cluster covariance matrix at level-2, and <3 is a 3 by 3 between-cluster 

covariance matrix at level-3.  

The covariate regression models are as follows, and analogous regressions are 

constructed for the latent variable cluster means. 

 .1)"� = `1"� + c1)"� c1)"� ~ ;(0, >d12 ) .2"� = `2� + (`1"� − `1�)l21 + g2"� (SB3) g2"� ~ ;(0, >h22 ) .3� = `3 + (`1� − `1)�31 + (`2� − `2)�32 + �3� �3� ~ ;(0, >^32 ) 
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To make the following expressions more succinct, define ()̂"� as the linear 

predictor (i.e., predictor value) of B  for observation i in level-2 and level-3 clusters j 

and k, respectively. 

 ()̂"� = *0 + *1(.1)"�) + *2(.2"�) + *3(.3�) + *4(.1)"�)(.3�) + 60� + 61�(.1)"�) + 60"� + 61"�(.1)"�) (SB4) 
 

The Metropolis-Hasting algorithm samples imputations from the following functions 

  @(C1|B , C2, C3) ∝ @(B  |C1, C2, C3) × @(C1|C2, C3) ∝ ;(()̂"�, >?2) × ;(`1"�, >d12 ) (SB5) 
 

 @(C2|B , C1, C3) ∝ @(B  |C1, C2, C3) × @(C2|C1, C3) ∝ ∏ ;(()̂"�, >?2)p�|Q
)=1 × ;(`2� + (`1"� − `1�)l21, >h22 ) (SB6) 

 

 @(C3|B , C1, C2) ∝ @(B  |C1, C2, C3) × @(C3|C1, C2) ∝ ∏ ;(()̂"�, >?2)p�Q|�
)=1× ;(`3 + (`1� − `1)�31 + (`2� − `2)�32, >^32 ) (SB7) 

 

where q)|" denotes all level-1 observations in a given cluster j (i.e., all observations 

with a particular C2 score in common), and q)"|� represents the number of 

observations in a given level-3 cluster k (i.e., all observations with a particular C3 
score in common). 
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C. Full Results from Computer Simulation Studies 
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C. Full Results from Computer Simulation Studies 

 

 



ICC Missing % Distribution Parameter True Value Avg. Est. Bias
0.1 15% Normal Intercept 50.000 50.002 0.003
0.1 15% Normal Level-1 Slope 3.162 3.163 0.020
0.1 15% Normal Level-2 Slope 0.744 0.746 0.271
0.1 15% Normal Intercept Var. 7.000 6.978 -0.308
0.1 15% Normal Icept-Slope Cov. 2.510 2.509 -0.055
0.1 15% Normal Slope Var. 10.000 9.988 -0.116
0.1 15% Normal Residual Var. 72.000 72.019 0.027
0.1 15% Skewed Intercept 50.000 50.006 0.011
0.1 15% Skewed Level-1 Slope 3.162 3.158 -0.120
0.1 15% Skewed Level-2 Slope 0.744 0.716 -3.767
0.1 15% Skewed Intercept Var. 7.000 7.068 0.977
0.1 15% Skewed Icept-Slope Cov. 2.510 2.508 -0.090
0.1 15% Skewed Slope Var. 10.000 9.983 -0.168
0.1 15% Skewed Residual Var. 72.000 71.984 -0.023
0.5 15% Normal Intercept 50.000 49.994 -0.012
0.5 15% Normal Level-1 Slope 3.162 3.169 0.205
0.5 15% Normal Level-2 Slope 1.664 1.673 0.533
0.5 15% Normal Intercept Var. 35.000 35.004 0.012
0.5 15% Normal Icept-Slope Cov. 5.612 5.546 -1.182
0.5 15% Normal Slope Var. 10.000 10.027 0.271
0.5 15% Normal Residual Var. 40.000 40.015 0.039
0.5 15% Skewed Intercept 50.000 50.020 0.040
0.5 15% Skewed Level-1 Slope 3.162 3.149 -0.406
0.5 15% Skewed Level-2 Slope 1.664 1.633 -1.822
0.5 15% Skewed Intercept Var. 35.000 35.405 1.158
0.5 15% Skewed Icept-Slope Cov. 5.612 5.621 0.158
0.5 15% Skewed Slope Var. 10.000 10.003 0.034
0.5 15% Skewed Residual Var. 40.000 39.989 -0.027
0.1 25% Normal Intercept 50.000 49.999 -0.001
0.1 25% Normal Level-1 Slope 3.162 3.157 -0.175
0.1 25% Normal Level-2 Slope 0.744 0.731 -1.797
0.1 25% Normal Intercept Var. 7.000 6.975 -0.353
0.1 25% Normal Icept-Slope Cov. 2.510 2.494 -0.653
0.1 25% Normal Slope Var. 10.000 9.993 -0.070
0.1 25% Normal Residual Var. 72.000 71.996 -0.005
0.1 25% Skewed Intercept 50.000 50.011 0.022
0.1 25% Skewed Level-1 Slope 3.162 3.161 -0.039
0.1 25% Skewed Level-2 Slope 0.744 0.726 -2.470
0.1 25% Skewed Intercept Var. 7.000 7.076 1.084
0.1 25% Skewed Icept-Slope Cov. 2.510 2.509 -0.038
0.1 25% Skewed Slope Var. 10.000 9.995 -0.049

Large Sample Simulation 1: Average Estimates and Bias Values for Model-Based Imputation



0.1 25% Skewed Residual Var. 72.000 71.987 -0.018
0.5 25% Normal Intercept 50.000 50.000 0.001
0.5 25% Normal Level-1 Slope 3.162 3.151 -0.359
0.5 25% Normal Level-2 Slope 1.664 1.646 -1.085
0.5 25% Normal Intercept Var. 35.000 35.040 0.114
0.5 25% Normal Icept-Slope Cov. 5.612 5.529 -1.480
0.5 25% Normal Slope Var. 10.000 10.016 0.164
0.5 25% Normal Residual Var. 40.000 40.009 0.022
0.5 25% Skewed Intercept 50.000 50.024 0.049
0.5 25% Skewed Level-1 Slope 3.162 3.157 -0.183
0.5 25% Skewed Level-2 Slope 1.664 1.625 -2.343
0.5 25% Skewed Intercept Var. 35.000 35.375 1.071
0.5 25% Skewed Icept-Slope Cov. 5.612 5.564 -0.866
0.5 25% Skewed Slope Var. 10.000 10.006 0.063
0.5 25% Skewed Residual Var. 40.000 39.993 -0.016



N ICC Missing % Distribution Parameter True Value Avg. Est. Bias
J = 30, n = 10 0.1 15% Normal Intercept 50.000 49.987 -0.025
J = 30, n = 30 0.1 15% Normal Intercept 50.000 49.971 -0.059
J = 100, n = 10 0.1 15% Normal Intercept 50.000 49.991 -0.018
J = 100, n = 30 0.1 15% Normal Intercept 50.000 49.993 -0.014
J = 30, n = 10 0.1 15% Normal Level-1 Slope 3.162 3.064 -3.096
J = 30, n = 30 0.1 15% Normal Level-1 Slope 3.162 3.142 -0.657
J = 100, n = 10 0.1 15% Normal Level-1 Slope 3.162 3.119 -1.358
J = 100, n = 30 0.1 15% Normal Level-1 Slope 3.162 3.144 -0.569
J = 30, n = 10 0.1 15% Normal Level-2 Slope 0.744 0.680 -8.639
J = 30, n = 30 0.1 15% Normal Level-2 Slope 0.744 0.674 -9.382
J = 100, n = 10 0.1 15% Normal Level-2 Slope 0.744 0.732 -1.565
J = 100, n = 30 0.1 15% Normal Level-2 Slope 0.744 0.727 -2.317
J = 30, n = 10 0.1 15% Normal Intercept Var. 7.000 6.203 -11.388
J = 30, n = 30 0.1 15% Normal Intercept Var. 7.000 6.459 -7.730
J = 100, n = 10 0.1 15% Normal Intercept Var. 7.000 6.792 -2.971
J = 100, n = 30 0.1 15% Normal Intercept Var. 7.000 6.798 -2.883
J = 30, n = 10 0.1 15% Normal Icept-Slope Cov. 2.510 2.162 -13.859
J = 30, n = 30 0.1 15% Normal Icept-Slope Cov. 2.510 2.512 0.081
J = 100, n = 10 0.1 15% Normal Icept-Slope Cov. 2.510 2.358 -6.057
J = 100, n = 30 0.1 15% Normal Icept-Slope Cov. 2.510 2.474 -1.414
J = 30, n = 10 0.1 15% Normal Slope Var. 10.000 9.931 -0.686
J = 30, n = 30 0.1 15% Normal Slope Var. 10.000 9.761 -2.389
J = 100, n = 10 0.1 15% Normal Slope Var. 10.000 9.853 -1.465
J = 100, n = 30 0.1 15% Normal Slope Var. 10.000 10.008 0.075
J = 30, n = 10 0.1 15% Normal Residual Var. 72.000 71.334 -0.925
J = 30, n = 30 0.1 15% Normal Residual Var. 72.000 71.853 -0.204
J = 100, n = 10 0.1 15% Normal Residual Var. 72.000 72.124 0.172
J = 100, n = 30 0.1 15% Normal Residual Var. 72.000 71.880 -0.167
J = 30, n = 10 0.1 25% Normal Intercept 50.000 49.918 -0.164
J = 30, n = 30 0.1 25% Normal Intercept 50.000 49.960 -0.079
J = 100, n = 10 0.1 25% Normal Intercept 50.000 49.980 -0.041
J = 100, n = 30 0.1 25% Normal Intercept 50.000 49.963 -0.073
J = 30, n = 10 0.1 25% Normal Level-1 Slope 3.162 2.969 -6.098
J = 30, n = 30 0.1 25% Normal Level-1 Slope 3.162 3.116 -1.450
J = 100, n = 10 0.1 25% Normal Level-1 Slope 3.162 3.120 -1.322
J = 100, n = 30 0.1 25% Normal Level-1 Slope 3.162 3.170 0.245
J = 30, n = 10 0.1 25% Normal Level-2 Slope 0.744 0.604 -18.871
J = 30, n = 30 0.1 25% Normal Level-2 Slope 0.744 0.668 -10.216
J = 100, n = 10 0.1 25% Normal Level-2 Slope 0.744 0.727 -2.286
J = 100, n = 30 0.1 25% Normal Level-2 Slope 0.744 0.711 -4.410
J = 30, n = 10 0.1 25% Normal Intercept Var. 7.000 6.355 -9.218

 Simulation 1: Average Estimates and Bias Values for Model-Based Imputation



J = 30, n = 30 0.1 25% Normal Intercept Var. 7.000 6.278 -10.311
J = 100, n = 10 0.1 25% Normal Intercept Var. 7.000 6.772 -3.255
J = 100, n = 30 0.1 25% Normal Intercept Var. 7.000 6.723 -3.959
J = 30, n = 10 0.1 25% Normal Icept-Slope Cov. 2.510 1.731 -31.027
J = 30, n = 30 0.1 25% Normal Icept-Slope Cov. 2.510 2.391 -4.745
J = 100, n = 10 0.1 25% Normal Icept-Slope Cov. 2.510 2.328 -7.255
J = 100, n = 30 0.1 25% Normal Icept-Slope Cov. 2.510 2.466 -1.772
J = 30, n = 10 0.1 25% Normal Slope Var. 10.000 10.197 1.975
J = 30, n = 30 0.1 25% Normal Slope Var. 10.000 9.782 -2.177
J = 100, n = 10 0.1 25% Normal Slope Var. 10.000 10.187 1.869
J = 100, n = 30 0.1 25% Normal Slope Var. 10.000 10.042 0.423
J = 30, n = 10 0.1 25% Normal Residual Var. 72.000 71.709 -0.404
J = 30, n = 30 0.1 25% Normal Residual Var. 72.000 71.959 -0.057
J = 100, n = 10 0.1 25% Normal Residual Var. 72.000 71.767 -0.323
J = 100, n = 30 0.1 25% Normal Residual Var. 72.000 72.022 0.030
J = 30, n = 10 0.5 15% Normal Intercept 50.000 49.908 -0.184
J = 30, n = 30 0.5 15% Normal Intercept 50.000 49.967 -0.066
J = 100, n = 10 0.5 15% Normal Intercept 50.000 49.975 -0.050
J = 100, n = 30 0.5 15% Normal Intercept 50.000 49.946 -0.107
J = 30, n = 10 0.5 15% Normal Level-1 Slope 3.162 3.068 -2.987
J = 30, n = 30 0.5 15% Normal Level-1 Slope 3.162 3.147 -0.472
J = 100, n = 10 0.5 15% Normal Level-1 Slope 3.162 3.137 -0.803
J = 100, n = 30 0.5 15% Normal Level-1 Slope 3.162 3.157 -0.164
J = 30, n = 10 0.5 15% Normal Level-2 Slope 1.664 1.547 -7.041
J = 30, n = 30 0.5 15% Normal Level-2 Slope 1.664 1.566 -5.881
J = 100, n = 10 0.5 15% Normal Level-2 Slope 1.664 1.617 -2.779
J = 100, n = 30 0.5 15% Normal Level-2 Slope 1.664 1.590 -4.403
J = 30, n = 10 0.5 15% Normal Intercept Var. 35.000 32.774 -6.359
J = 30, n = 30 0.5 15% Normal Intercept Var. 35.000 32.426 -7.354
J = 100, n = 10 0.5 15% Normal Intercept Var. 35.000 34.396 -1.726
J = 100, n = 30 0.5 15% Normal Intercept Var. 35.000 34.264 -2.102
J = 30, n = 10 0.5 15% Normal Icept-Slope Cov. 5.612 4.946 -11.883
J = 30, n = 30 0.5 15% Normal Icept-Slope Cov. 5.612 5.183 -7.657
J = 100, n = 10 0.5 15% Normal Icept-Slope Cov. 5.612 5.383 -4.090
J = 100, n = 30 0.5 15% Normal Icept-Slope Cov. 5.612 5.487 -2.242
J = 30, n = 10 0.5 15% Normal Slope Var. 10.000 9.540 -4.597
J = 30, n = 30 0.5 15% Normal Slope Var. 10.000 9.825 -1.755
J = 100, n = 10 0.5 15% Normal Slope Var. 10.000 9.905 -0.950
J = 100, n = 30 0.5 15% Normal Slope Var. 10.000 10.036 0.356
J = 30, n = 10 0.5 15% Normal Residual Var. 40.000 40.105 0.262
J = 30, n = 30 0.5 15% Normal Residual Var. 40.000 39.977 -0.058
J = 100, n = 10 0.5 15% Normal Residual Var. 40.000 39.975 -0.061
J = 100, n = 30 0.5 15% Normal Residual Var. 40.000 39.962 -0.094



J = 30, n = 10 0.5 25% Normal Intercept 50.000 49.931 -0.138
J = 30, n = 30 0.5 25% Normal Intercept 50.000 49.900 -0.200
J = 100, n = 10 0.5 25% Normal Intercept 50.000 49.974 -0.052
J = 100, n = 30 0.5 25% Normal Intercept 50.000 49.971 -0.057
J = 30, n = 10 0.5 25% Normal Level-1 Slope 3.162 2.995 -5.278
J = 30, n = 30 0.5 25% Normal Level-1 Slope 3.162 3.147 -0.468
J = 100, n = 10 0.5 25% Normal Level-1 Slope 3.162 3.086 -2.413
J = 100, n = 30 0.5 25% Normal Level-1 Slope 3.162 3.148 -0.457
J = 30, n = 10 0.5 25% Normal Level-2 Slope 1.664 1.488 -10.585
J = 30, n = 30 0.5 25% Normal Level-2 Slope 1.664 1.365 -17.924
J = 100, n = 10 0.5 25% Normal Level-2 Slope 1.664 1.561 -6.181
J = 100, n = 30 0.5 25% Normal Level-2 Slope 1.664 1.559 -6.322
J = 30, n = 10 0.5 25% Normal Intercept Var. 35.000 32.569 -6.945
J = 30, n = 30 0.5 25% Normal Intercept Var. 35.000 32.632 -6.765
J = 100, n = 10 0.5 25% Normal Intercept Var. 35.000 34.156 -2.413
J = 100, n = 30 0.5 25% Normal Intercept Var. 35.000 34.105 -2.557
J = 30, n = 10 0.5 25% Normal Icept-Slope Cov. 5.612 4.898 -12.724
J = 30, n = 30 0.5 25% Normal Icept-Slope Cov. 5.612 4.926 -12.228
J = 100, n = 10 0.5 25% Normal Icept-Slope Cov. 5.612 5.244 -6.572
J = 100, n = 30 0.5 25% Normal Icept-Slope Cov. 5.612 5.452 -2.851
J = 30, n = 10 0.5 25% Normal Slope Var. 10.000 10.187 1.871
J = 30, n = 30 0.5 25% Normal Slope Var. 10.000 9.699 -3.014
J = 100, n = 10 0.5 25% Normal Slope Var. 10.000 10.202 2.022
J = 100, n = 30 0.5 25% Normal Slope Var. 10.000 10.050 0.501
J = 30, n = 10 0.5 25% Normal Residual Var. 40.000 39.954 -0.116
J = 30, n = 30 0.5 25% Normal Residual Var. 40.000 39.990 -0.025
J = 100, n = 10 0.5 25% Normal Residual Var. 40.000 39.986 -0.035
J = 100, n = 30 0.5 25% Normal Residual Var. 40.000 40.005 0.013
J = 30, n = 10 0.1 15% Skewed Intercept 50.000 49.954 -0.092
J = 30, n = 30 0.1 15% Skewed Intercept 50.000 49.972 -0.056
J = 100, n = 10 0.1 15% Skewed Intercept 50.000 49.988 -0.024
J = 100, n = 30 0.1 15% Skewed Intercept 50.000 50.002 0.005
J = 30, n = 10 0.1 15% Skewed Level-1 Slope 3.162 3.095 -2.142
J = 30, n = 30 0.1 15% Skewed Level-1 Slope 3.162 3.145 -0.547
J = 100, n = 10 0.1 15% Skewed Level-1 Slope 3.162 3.150 -0.396
J = 100, n = 30 0.1 15% Skewed Level-1 Slope 3.162 3.165 0.090
J = 30, n = 10 0.1 15% Skewed Level-2 Slope 0.744 0.714 -3.995
J = 30, n = 30 0.1 15% Skewed Level-2 Slope 0.744 0.681 -8.427
J = 100, n = 10 0.1 15% Skewed Level-2 Slope 0.744 0.719 -3.371
J = 100, n = 30 0.1 15% Skewed Level-2 Slope 0.744 0.722 -3.001
J = 30, n = 10 0.1 15% Skewed Intercept Var. 7.000 6.481 -7.420
J = 30, n = 30 0.1 15% Skewed Intercept Var. 7.000 6.506 -7.051
J = 100, n = 10 0.1 15% Skewed Intercept Var. 7.000 6.695 -4.351



J = 100, n = 30 0.1 15% Skewed Intercept Var. 7.000 6.860 -2.005
J = 30, n = 10 0.1 15% Skewed Icept-Slope Cov. 2.510 2.220 -11.551
J = 30, n = 30 0.1 15% Skewed Icept-Slope Cov. 2.510 2.400 -4.376
J = 100, n = 10 0.1 15% Skewed Icept-Slope Cov. 2.510 2.512 0.094
J = 100, n = 30 0.1 15% Skewed Icept-Slope Cov. 2.510 2.449 -2.443
J = 30, n = 10 0.1 15% Skewed Slope Var. 10.000 9.936 -0.645
J = 30, n = 30 0.1 15% Skewed Slope Var. 10.000 9.727 -2.733
J = 100, n = 10 0.1 15% Skewed Slope Var. 10.000 10.136 1.357
J = 100, n = 30 0.1 15% Skewed Slope Var. 10.000 9.826 -1.744
J = 30, n = 10 0.1 15% Skewed Residual Var. 72.000 71.119 -1.224
J = 30, n = 30 0.1 15% Skewed Residual Var. 72.000 72.040 0.055
J = 100, n = 10 0.1 15% Skewed Residual Var. 72.000 71.994 -0.009
J = 100, n = 30 0.1 15% Skewed Residual Var. 72.000 72.156 0.217
J = 30, n = 10 0.1 25% Skewed Intercept 50.000 50.003 0.007
J = 30, n = 30 0.1 25% Skewed Intercept 50.000 49.950 -0.100
J = 100, n = 10 0.1 25% Skewed Intercept 50.000 49.954 -0.091
J = 100, n = 30 0.1 25% Skewed Intercept 50.000 50.008 0.015
J = 30, n = 10 0.1 25% Skewed Level-1 Slope 3.162 3.024 -4.358
J = 30, n = 30 0.1 25% Skewed Level-1 Slope 3.162 3.157 -0.157
J = 100, n = 10 0.1 25% Skewed Level-1 Slope 3.162 3.132 -0.949
J = 100, n = 30 0.1 25% Skewed Level-1 Slope 3.162 3.169 0.207
J = 30, n = 10 0.1 25% Skewed Level-2 Slope 0.744 0.606 -18.528
J = 30, n = 30 0.1 25% Skewed Level-2 Slope 0.744 0.615 -17.334
J = 100, n = 10 0.1 25% Skewed Level-2 Slope 0.744 0.663 -10.841
J = 100, n = 30 0.1 25% Skewed Level-2 Slope 0.744 0.689 -7.381
J = 30, n = 10 0.1 25% Skewed Intercept Var. 7.000 6.418 -8.309
J = 30, n = 30 0.1 25% Skewed Intercept Var. 7.000 6.443 -7.963
J = 100, n = 10 0.1 25% Skewed Intercept Var. 7.000 6.690 -4.434
J = 100, n = 30 0.1 25% Skewed Intercept Var. 7.000 6.783 -3.107
J = 30, n = 10 0.1 25% Skewed Icept-Slope Cov. 2.510 2.076 -17.299
J = 30, n = 30 0.1 25% Skewed Icept-Slope Cov. 2.510 2.402 -4.321
J = 100, n = 10 0.1 25% Skewed Icept-Slope Cov. 2.510 2.380 -5.166
J = 100, n = 30 0.1 25% Skewed Icept-Slope Cov. 2.510 2.496 -0.549
J = 30, n = 10 0.1 25% Skewed Slope Var. 10.000 10.390 3.900
J = 30, n = 30 0.1 25% Skewed Slope Var. 10.000 9.723 -2.767
J = 100, n = 10 0.1 25% Skewed Slope Var. 10.000 10.016 0.161
J = 100, n = 30 0.1 25% Skewed Slope Var. 10.000 9.853 -1.465
J = 30, n = 10 0.1 25% Skewed Residual Var. 72.000 71.625 -0.521
J = 30, n = 30 0.1 25% Skewed Residual Var. 72.000 71.989 -0.016
J = 100, n = 10 0.1 25% Skewed Residual Var. 72.000 72.067 0.094
J = 100, n = 30 0.1 25% Skewed Residual Var. 72.000 71.985 -0.020
J = 30, n = 10 0.5 15% Skewed Intercept 50.000 49.946 -0.108
J = 30, n = 30 0.5 15% Skewed Intercept 50.000 49.972 -0.057



J = 100, n = 10 0.5 15% Skewed Intercept 50.000 49.976 -0.048
J = 100, n = 30 0.5 15% Skewed Intercept 50.000 50.028 0.057
J = 30, n = 10 0.5 15% Skewed Level-1 Slope 3.162 3.092 -2.217
J = 30, n = 30 0.5 15% Skewed Level-1 Slope 3.162 3.136 -0.818
J = 100, n = 10 0.5 15% Skewed Level-1 Slope 3.162 3.123 -1.229
J = 100, n = 30 0.5 15% Skewed Level-1 Slope 3.162 3.161 -0.055
J = 30, n = 10 0.5 15% Skewed Level-2 Slope 1.664 1.547 -7.000
J = 30, n = 30 0.5 15% Skewed Level-2 Slope 1.664 1.539 -7.523
J = 100, n = 10 0.5 15% Skewed Level-2 Slope 1.664 1.539 -7.473
J = 100, n = 30 0.5 15% Skewed Level-2 Slope 1.664 1.629 -2.071
J = 30, n = 10 0.5 15% Skewed Intercept Var. 35.000 32.958 -5.835
J = 30, n = 30 0.5 15% Skewed Intercept Var. 35.000 33.120 -5.372
J = 100, n = 10 0.5 15% Skewed Intercept Var. 35.000 34.516 -1.383
J = 100, n = 30 0.5 15% Skewed Intercept Var. 35.000 34.600 -1.142
J = 30, n = 10 0.5 15% Skewed Icept-Slope Cov. 5.612 4.952 -11.771
J = 30, n = 30 0.5 15% Skewed Icept-Slope Cov. 5.612 5.426 -3.317
J = 100, n = 10 0.5 15% Skewed Icept-Slope Cov. 5.612 5.356 -4.572
J = 100, n = 30 0.5 15% Skewed Icept-Slope Cov. 5.612 5.508 -1.863
J = 30, n = 10 0.5 15% Skewed Slope Var. 10.000 9.946 -0.545
J = 30, n = 30 0.5 15% Skewed Slope Var. 10.000 9.868 -1.319
J = 100, n = 10 0.5 15% Skewed Slope Var. 10.000 9.700 -2.999
J = 100, n = 30 0.5 15% Skewed Slope Var. 10.000 9.899 -1.013
J = 30, n = 10 0.5 15% Skewed Residual Var. 40.000 39.917 -0.208
J = 30, n = 30 0.5 15% Skewed Residual Var. 40.000 39.902 -0.246
J = 100, n = 10 0.5 15% Skewed Residual Var. 40.000 39.964 -0.090
J = 100, n = 30 0.5 15% Skewed Residual Var. 40.000 40.029 0.072
J = 30, n = 10 0.5 25% Skewed Intercept 50.000 49.905 -0.189
J = 30, n = 30 0.5 25% Skewed Intercept 50.000 49.981 -0.038
J = 100, n = 10 0.5 25% Skewed Intercept 50.000 50.010 0.020
J = 100, n = 30 0.5 25% Skewed Intercept 50.000 49.997 -0.005
J = 30, n = 10 0.5 25% Skewed Level-1 Slope 3.162 3.037 -3.964
J = 30, n = 30 0.5 25% Skewed Level-1 Slope 3.162 3.139 -0.742
J = 100, n = 10 0.5 25% Skewed Level-1 Slope 3.162 3.106 -1.764
J = 100, n = 30 0.5 25% Skewed Level-1 Slope 3.162 3.175 0.390
J = 30, n = 10 0.5 25% Skewed Level-2 Slope 1.664 1.444 -13.215
J = 30, n = 30 0.5 25% Skewed Level-2 Slope 1.664 1.470 -11.620
J = 100, n = 10 0.5 25% Skewed Level-2 Slope 1.664 1.577 -5.215
J = 100, n = 30 0.5 25% Skewed Level-2 Slope 1.664 1.554 -6.585
J = 30, n = 10 0.5 25% Skewed Intercept Var. 35.000 33.290 -4.887
J = 30, n = 30 0.5 25% Skewed Intercept Var. 35.000 32.789 -6.318
J = 100, n = 10 0.5 25% Skewed Intercept Var. 35.000 34.758 -0.692
J = 100, n = 30 0.5 25% Skewed Intercept Var. 35.000 34.776 -0.639
J = 30, n = 10 0.5 25% Skewed Icept-Slope Cov. 5.612 4.649 -17.173



J = 30, n = 30 0.5 25% Skewed Icept-Slope Cov. 5.612 5.119 -8.789
J = 100, n = 10 0.5 25% Skewed Icept-Slope Cov. 5.612 5.254 -6.384
J = 100, n = 30 0.5 25% Skewed Icept-Slope Cov. 5.612 5.413 -3.555
J = 30, n = 10 0.5 25% Skewed Slope Var. 10.000 10.455 4.549
J = 30, n = 30 0.5 25% Skewed Slope Var. 10.000 10.021 0.212
J = 100, n = 10 0.5 25% Skewed Slope Var. 10.000 10.010 0.102
J = 100, n = 30 0.5 25% Skewed Slope Var. 10.000 9.833 -1.665
J = 30, n = 10 0.5 25% Skewed Residual Var. 40.000 39.811 -0.472
J = 30, n = 30 0.5 25% Skewed Residual Var. 40.000 39.910 -0.224
J = 100, n = 10 0.5 25% Skewed Residual Var. 40.000 39.915 -0.213
J = 100, n = 30 0.5 25% Skewed Residual Var. 40.000 39.967 -0.083



N ICC Missing % ParameterTrue Value Avg. Est. Bias
J = 30, n = 10 0.1 15% Intercept 50.000 50.073 0.147
J = 30, n = 30 0.1 15% Intercept 50.000 50.044 0.088
J = 100, n = 10 0.1 15% Intercept 50.000 50.034 0.068
J = 100, n = 30 0.1 15% Intercept 50.000 50.006 0.012
J = 30, n = 10 0.1 15% Level-1 Slope 3.162 3.052 -3.481
J = 30, n = 30 0.1 15% Level-1 Slope 3.162 3.111 -1.611
J = 100, n = 10 0.1 15% Level-1 Slope 3.162 3.108 -1.710
J = 100, n = 30 0.1 15% Level-1 Slope 3.162 3.153 -0.296
J = 30, n = 10 0.1 15% Level-2 Slope 0.861 0.711 -17.403
J = 30, n = 30 0.1 15% Level-2 Slope 0.861 0.739 -14.163
J = 100, n = 10 0.1 15% Level-2 Slope 0.861 0.797 -7.487
J = 100, n = 30 0.1 15% Level-2 Slope 0.861 0.816 -5.265
J = 30, n = 10 0.1 15% Intercept Var. 7.556 6.839 -9.495
J = 30, n = 30 0.1 15% Intercept Var. 7.556 6.942 -8.130
J = 100, n = 10 0.1 15% Intercept Var. 7.556 7.238 -4.207
J = 100, n = 30 0.1 15% Intercept Var. 7.556 7.421 -1.783
J = 30, n = 10 0.1 15% Icept-Slope Cov. 2.608 2.071 -20.583
J = 30, n = 30 0.1 15% Icept-Slope Cov. 2.608 2.476 -5.073
J = 100, n = 10 0.1 15% Icept-Slope Cov. 2.608 2.498 -4.223
J = 100, n = 30 0.1 15% Icept-Slope Cov. 2.608 2.599 -0.333
J = 30, n = 10 0.1 15% Slope Var. 10.000 9.824 -1.761
J = 30, n = 30 0.1 15% Slope Var. 10.000 9.734 -2.660
J = 100, n = 10 0.1 15% Slope Var. 10.000 9.921 -0.785
J = 100, n = 30 0.1 15% Slope Var. 10.000 9.778 -2.222
J = 30, n = 10 0.1 15% Residual Var. 72.000 71.452 -0.761
J = 30, n = 30 0.1 15% Residual Var. 72.000 71.900 -0.139
J = 100, n = 10 0.1 15% Residual Var. 72.000 72.016 0.022
J = 100, n = 30 0.1 15% Residual Var. 72.000 71.873 -0.176
J = 30, n = 10 0.1 25% Intercept 50.000 50.045 0.090
J = 30, n = 30 0.1 25% Intercept 50.000 50.008 0.016
J = 100, n = 10 0.1 25% Intercept 50.000 50.001 0.002
J = 100, n = 30 0.1 25% Intercept 50.000 50.015 0.030
J = 30, n = 10 0.1 25% Level-1 Slope 3.162 3.084 -2.475
J = 30, n = 30 0.1 25% Level-1 Slope 3.162 3.137 -0.788
J = 100, n = 10 0.1 25% Level-1 Slope 3.162 3.099 -1.989
J = 100, n = 30 0.1 25% Level-1 Slope 3.162 3.162 -0.002
J = 30, n = 10 0.1 25% Level-2 Slope 0.861 0.704 -18.248
J = 30, n = 30 0.1 25% Level-2 Slope 0.861 0.759 -11.823
J = 100, n = 10 0.1 25% Level-2 Slope 0.861 0.840 -2.514
J = 100, n = 30 0.1 25% Level-2 Slope 0.861 0.815 -5.358
J = 30, n = 10 0.1 25% Intercept Var. 7.556 6.756 -10.593

 Simulation 2: Average Estimates and Bias Values for Model-Based Imputation



J = 30, n = 30 0.1 25% Intercept Var. 7.556 6.822 -9.718
J = 100, n = 10 0.1 25% Intercept Var. 7.556 7.160 -5.245
J = 100, n = 30 0.1 25% Intercept Var. 7.556 7.338 -2.886
J = 30, n = 10 0.1 25% Icept-Slope Cov. 2.608 2.260 -13.340
J = 30, n = 30 0.1 25% Icept-Slope Cov. 2.608 2.523 -3.256
J = 100, n = 10 0.1 25% Icept-Slope Cov. 2.608 2.438 -6.501
J = 100, n = 30 0.1 25% Icept-Slope Cov. 2.608 2.587 -0.809
J = 30, n = 10 0.1 25% Slope Var. 10.000 10.530 5.300
J = 30, n = 30 0.1 25% Slope Var. 10.000 9.860 -1.404
J = 100, n = 10 0.1 25% Slope Var. 10.000 9.960 -0.396
J = 100, n = 30 0.1 25% Slope Var. 10.000 10.077 0.774
J = 30, n = 10 0.1 25% Residual Var. 72.000 71.558 -0.613
J = 30, n = 30 0.1 25% Residual Var. 72.000 71.715 -0.396
J = 100, n = 10 0.1 25% Residual Var. 72.000 71.942 -0.081
J = 100, n = 30 0.1 25% Residual Var. 72.000 71.920 -0.112
J = 30, n = 10 0.5 15% Intercept 50.000 49.956 -0.088
J = 30, n = 30 0.5 15% Intercept 50.000 50.009 0.017
J = 100, n = 10 0.5 15% Intercept 50.000 50.043 0.085
J = 100, n = 30 0.5 15% Intercept 50.000 50.041 0.083
J = 30, n = 10 0.5 15% Level-1 Slope 3.162 3.071 -2.880
J = 30, n = 30 0.5 15% Level-1 Slope 3.162 3.174 0.362
J = 100, n = 10 0.5 15% Level-1 Slope 3.162 3.148 -0.448
J = 100, n = 30 0.5 15% Level-1 Slope 3.162 3.169 0.224
J = 30, n = 10 0.5 15% Level-2 Slope 1.926 1.865 -3.162
J = 30, n = 30 0.5 15% Level-2 Slope 1.926 1.845 -4.207
J = 100, n = 10 0.5 15% Level-2 Slope 1.926 1.816 -5.686
J = 100, n = 30 0.5 15% Level-2 Slope 1.926 1.799 -6.596
J = 30, n = 10 0.5 15% Intercept Var. 37.781 34.949 -7.495
J = 30, n = 30 0.5 15% Intercept Var. 37.781 35.002 -7.355
J = 100, n = 10 0.5 15% Intercept Var. 37.781 36.671 -2.939
J = 100, n = 30 0.5 15% Intercept Var. 37.781 36.730 -2.784
J = 30, n = 10 0.5 15% Icept-Slope Cov. 5.831 4.883 -16.255
J = 30, n = 30 0.5 15% Icept-Slope Cov. 5.831 5.555 -4.736
J = 100, n = 10 0.5 15% Icept-Slope Cov. 5.831 5.619 -3.635
J = 100, n = 30 0.5 15% Icept-Slope Cov. 5.831 5.713 -2.020
J = 30, n = 10 0.5 15% Slope Var. 10.000 9.847 -1.535
J = 30, n = 30 0.5 15% Slope Var. 10.000 9.691 -3.091
J = 100, n = 10 0.5 15% Slope Var. 10.000 9.998 -0.020
J = 100, n = 30 0.5 15% Slope Var. 10.000 9.979 -0.210
J = 30, n = 10 0.5 15% Residual Var. 40.000 40.050 0.125
J = 30, n = 30 0.5 15% Residual Var. 40.000 39.824 -0.441
J = 100, n = 10 0.5 15% Residual Var. 40.000 39.987 -0.032
J = 100, n = 30 0.5 15% Residual Var. 40.000 40.015 0.038



J = 30, n = 10 0.5 25% Intercept 50.000 50.068 0.135
J = 30, n = 30 0.5 25% Intercept 50.000 50.045 0.090
J = 100, n = 10 0.5 25% Intercept 50.000 50.052 0.105
J = 100, n = 30 0.5 25% Intercept 50.000 49.984 -0.031
J = 30, n = 10 0.5 25% Level-1 Slope 3.162 3.061 -3.216
J = 30, n = 30 0.5 25% Level-1 Slope 3.162 3.119 -1.358
J = 100, n = 10 0.5 25% Level-1 Slope 3.162 3.123 -1.241
J = 100, n = 30 0.5 25% Level-1 Slope 3.162 3.107 -1.741
J = 30, n = 10 0.5 25% Level-2 Slope 1.926 1.568 -18.571
J = 30, n = 30 0.5 25% Level-2 Slope 1.926 1.581 -17.917
J = 100, n = 10 0.5 25% Level-2 Slope 1.926 1.756 -8.829
J = 100, n = 30 0.5 25% Level-2 Slope 1.926 1.832 -4.865
J = 30, n = 10 0.5 25% Intercept Var. 37.781 34.805 -7.877
J = 30, n = 30 0.5 25% Intercept Var. 37.781 34.800 -7.890
J = 100, n = 10 0.5 25% Intercept Var. 37.781 36.606 -3.110
J = 100, n = 30 0.5 25% Intercept Var. 37.781 37.031 -1.984
J = 30, n = 10 0.5 25% Icept-Slope Cov. 5.831 4.736 -18.778
J = 30, n = 30 0.5 25% Icept-Slope Cov. 5.831 5.327 -8.647
J = 100, n = 10 0.5 25% Icept-Slope Cov. 5.831 5.582 -4.269
J = 100, n = 30 0.5 25% Icept-Slope Cov. 5.831 5.624 -3.561
J = 30, n = 10 0.5 25% Slope Var. 10.000 10.240 2.400
J = 30, n = 30 0.5 25% Slope Var. 10.000 9.891 -1.088
J = 100, n = 10 0.5 25% Slope Var. 10.000 10.004 0.037
J = 100, n = 30 0.5 25% Slope Var. 10.000 9.936 -0.639
J = 30, n = 10 0.5 25% Residual Var. 40.000 40.025 0.062
J = 30, n = 30 0.5 25% Residual Var. 40.000 39.928 -0.181
J = 100, n = 10 0.5 25% Residual Var. 40.000 40.076 0.190
J = 100, n = 30 0.5 25% Residual Var. 40.000 40.026 0.064



N ICC Missing % Parameter True Value Avg. Est. Bias
J = 30, n = 10 0.1 15% Intercept 49.836 49.819 -0.033
J = 30, n = 10 0.1 15% Level-1 Slope 3.098 3.099 0.023
J = 30, n = 10 0.1 15% Level-2 Slope 0.724 0.706 -2.495
J = 30, n = 10 0.1 15% Level-3 Slope 0.654 0.630 -3.644
J = 30, n = 10 0.1 15% Interaction Slope 1.549 1.436 -7.276
J = 30, n = 10 0.1 15% Level-3 Intercept Var. 5.104 4.557 -10.711
J = 30, n = 10 0.1 15% Level-3 Icept-Slope Cov. 1.917 1.893 -1.231
J = 30, n = 10 0.1 15% Level-3 Slope Var. 8.000 7.436 -7.055
J = 30, n = 10 0.1 15% Level-2 Intercept Var. 5.500 5.487 -0.236
J = 30, n = 10 0.1 15% Level-2 Icept-Slope Cov. 1.990 2.015 1.271
J = 30, n = 10 0.1 15% Level-2 Slope Var. 8.000 8.096 1.205
J = 30, n = 10 0.1 15% Residual Var. 52.000 51.989 -0.020
J = 30, n = 10 0.5 15% Intercept 49.740 49.723 -0.034
J = 30, n = 10 0.5 15% Level-1 Slope 2.449 2.437 -0.505
J = 30, n = 10 0.5 15% Level-2 Slope 1.145 1.132 -1.098
J = 30, n = 10 0.5 15% Level-3 Slope 0.938 0.857 -8.628
J = 30, n = 10 0.5 15% Interaction Slope 1.225 1.138 -7.066
J = 30, n = 10 0.5 15% Level-3 Intercept Var. 11.183 10.208 -8.718
J = 30, n = 10 0.5 15% Level-3 Icept-Slope Cov. 2.243 1.985 -11.523
J = 30, n = 10 0.5 15% Level-3 Slope Var. 5.000 4.618 -7.641
J = 30, n = 10 0.5 15% Level-2 Intercept Var. 13.750 13.649 -0.732
J = 30, n = 10 0.5 15% Level-2 Icept-Slope Cov. 2.487 2.353 -5.418
J = 30, n = 10 0.5 15% Level-2 Slope Var. 5.000 5.113 2.261
J = 30, n = 10 0.5 15% Residual Var. 32.500 32.548 0.148
J = 30, n = 10 0.1 25% Intercept 49.836 49.818 -0.036
J = 30, n = 10 0.1 25% Level-1 Slope 3.098 3.089 -0.297
J = 30, n = 10 0.1 25% Level-2 Slope 0.724 0.700 -3.341
J = 30, n = 10 0.1 25% Level-3 Slope 0.654 0.513 -21.541
J = 30, n = 10 0.1 25% Interaction Slope 1.549 1.367 -11.749
J = 30, n = 10 0.1 25% Level-3 Intercept Var. 5.104 4.647 -8.962
J = 30, n = 10 0.1 25% Level-3 Icept-Slope Cov. 1.917 1.933 0.828
J = 30, n = 10 0.1 25% Level-3 Slope Var. 8.000 7.560 -5.503
J = 30, n = 10 0.1 25% Level-2 Intercept Var. 5.500 5.450 -0.908
J = 30, n = 10 0.1 25% Level-2 Icept-Slope Cov. 1.990 1.983 -0.358
J = 30, n = 10 0.1 25% Level-2 Slope Var. 8.000 8.219 2.738
J = 30, n = 10 0.1 25% Residual Var. 52.000 51.964 -0.070
J = 30, n = 10 0.5 25% Intercept 49.740 49.694 -0.092
J = 30, n = 10 0.5 25% Level-1 Slope 2.449 2.403 -1.886
J = 30, n = 10 0.5 25% Level-2 Slope 1.145 1.116 -2.517
J = 30, n = 10 0.5 25% Level-3 Slope 0.938 0.745 -20.550
J = 30, n = 10 0.5 25% Interaction Slope 1.225 1.057 -13.668

 Simulation 3: Average Estimates and Bias Values for Model-Based Imputation



J = 30, n = 10 0.5 25% Level-3 Intercept Var. 11.183 10.546 -5.694
J = 30, n = 10 0.5 25% Level-3 Icept-Slope Cov. 2.243 2.157 -3.832
J = 30, n = 10 0.5 25% Level-3 Slope Var. 5.000 4.748 -5.038
J = 30, n = 10 0.5 25% Level-2 Intercept Var. 13.750 13.852 0.739
J = 30, n = 10 0.5 25% Level-2 Icept-Slope Cov. 2.487 2.273 -8.625
J = 30, n = 10 0.5 25% Level-2 Slope Var. 5.000 5.124 2.473
J = 30, n = 10 0.5 25% Residual Var. 32.500 32.570 0.217
J = 100, n = 10 0.1 15% Intercept 49.836 49.835 -0.002
J = 100, n = 10 0.1 15% Level-1 Slope 3.098 3.099 0.017
J = 100, n = 10 0.1 15% Level-2 Slope 0.724 0.726 0.322
J = 100, n = 10 0.1 15% Level-3 Slope 0.654 0.620 -5.249
J = 100, n = 10 0.1 15% Interaction Slope 1.549 1.490 -3.808
J = 100, n = 10 0.1 15% Level-3 Intercept Var. 5.104 4.914 -3.714
J = 100, n = 10 0.1 15% Level-3 Icept-Slope Cov. 1.917 1.903 -0.730
J = 100, n = 10 0.1 15% Level-3 Slope Var. 8.000 7.817 -2.286
J = 100, n = 10 0.1 15% Level-2 Intercept Var. 5.500 5.453 -0.863
J = 100, n = 10 0.1 15% Level-2 Icept-Slope Cov. 1.990 1.981 -0.432
J = 100, n = 10 0.1 15% Level-2 Slope Var. 8.000 7.970 -0.370
J = 100, n = 10 0.1 15% Residual Var. 52.000 52.039 0.075
J = 100, n = 10 0.5 15% Intercept 49.740 49.754 0.027
J = 100, n = 10 0.5 15% Level-1 Slope 2.449 2.463 0.550
J = 100, n = 10 0.5 15% Level-2 Slope 1.145 1.143 -0.154
J = 100, n = 10 0.5 15% Level-3 Slope 0.938 0.876 -6.664
J = 100, n = 10 0.5 15% Interaction Slope 1.225 1.179 -3.723
J = 100, n = 10 0.5 15% Level-3 Intercept Var. 11.183 10.995 -1.674
J = 100, n = 10 0.5 15% Level-3 Icept-Slope Cov. 2.243 2.230 -0.605
J = 100, n = 10 0.5 15% Level-3 Slope Var. 5.000 4.922 -1.552
J = 100, n = 10 0.5 15% Level-2 Intercept Var. 13.750 13.697 -0.383
J = 100, n = 10 0.5 15% Level-2 Icept-Slope Cov. 2.487 2.440 -1.919
J = 100, n = 10 0.5 15% Level-2 Slope Var. 5.000 5.076 1.516
J = 100, n = 10 0.5 15% Residual Var. 32.500 32.497 -0.008
J = 100, n = 10 0.1 25% Intercept 49.836 49.836 0.001
J = 100, n = 10 0.1 25% Level-1 Slope 3.098 3.096 -0.080
J = 100, n = 10 0.1 25% Level-2 Slope 0.724 0.709 -2.116
J = 100, n = 10 0.1 25% Level-3 Slope 0.654 0.608 -7.039
J = 100, n = 10 0.1 25% Interaction Slope 1.549 1.462 -5.605
J = 100, n = 10 0.1 25% Level-3 Intercept Var. 5.104 4.985 -2.342
J = 100, n = 10 0.1 25% Level-3 Icept-Slope Cov. 1.917 2.002 4.454
J = 100, n = 10 0.1 25% Level-3 Slope Var. 8.000 8.017 0.208
J = 100, n = 10 0.1 25% Level-2 Intercept Var. 5.500 5.500 0.002
J = 100, n = 10 0.1 25% Level-2 Icept-Slope Cov. 1.990 1.941 -2.459
J = 100, n = 10 0.1 25% Level-2 Slope Var. 8.000 8.065 0.818
J = 100, n = 10 0.1 25% Residual Var. 52.000 52.030 0.058



J = 100, n = 10 0.5 25% Intercept 49.740 49.749 0.018
J = 100, n = 10 0.5 25% Level-1 Slope 2.449 2.430 -0.777
J = 100, n = 10 0.5 25% Level-2 Slope 1.145 1.121 -2.058
J = 100, n = 10 0.5 25% Level-3 Slope 0.938 0.850 -9.458
J = 100, n = 10 0.5 25% Interaction Slope 1.225 1.136 -7.220
J = 100, n = 10 0.5 25% Level-3 Intercept Var. 11.183 11.137 -0.408
J = 100, n = 10 0.5 25% Level-3 Icept-Slope Cov. 2.243 2.198 -2.010
J = 100, n = 10 0.5 25% Level-3 Slope Var. 5.000 5.038 0.769
J = 100, n = 10 0.5 25% Level-2 Intercept Var. 13.750 13.850 0.729
J = 100, n = 10 0.5 25% Level-2 Icept-Slope Cov. 2.487 2.413 -2.999
J = 100, n = 10 0.5 25% Level-2 Slope Var. 5.000 5.119 2.381
J = 100, n = 10 0.5 25% Residual Var. 32.500 32.508 0.026
J = 30, n = 30 0.1 15% Intercept 49.836 49.837 0.002
J = 30, n = 30 0.1 15% Level-1 Slope 3.098 3.102 0.123
J = 30, n = 30 0.1 15% Level-2 Slope 0.724 0.713 -1.575
J = 30, n = 30 0.1 15% Level-3 Slope 0.654 0.591 -9.673
J = 30, n = 30 0.1 15% Interaction Slope 1.549 1.449 -6.463
J = 30, n = 30 0.1 15% Level-3 Intercept Var. 5.104 4.629 -9.300
J = 30, n = 30 0.1 15% Level-3 Icept-Slope Cov. 1.917 1.843 -3.881
J = 30, n = 30 0.1 15% Level-3 Slope Var. 8.000 7.447 -6.908
J = 30, n = 30 0.1 15% Level-2 Intercept Var. 5.500 5.498 -0.035
J = 30, n = 30 0.1 15% Level-2 Icept-Slope Cov. 1.990 2.001 0.550
J = 30, n = 30 0.1 15% Level-2 Slope Var. 8.000 7.995 -0.057
J = 30, n = 30 0.1 15% Residual Var. 52.000 52.053 0.101
J = 30, n = 30 0.5 15% Intercept 49.740 49.798 0.117
J = 30, n = 30 0.5 15% Level-1 Slope 2.449 2.439 -0.432
J = 30, n = 30 0.5 15% Level-2 Slope 1.145 1.139 -0.499
J = 30, n = 30 0.5 15% Level-3 Slope 0.938 0.880 -6.174
J = 30, n = 30 0.5 0.15 Interaction Slope 1.225 1.083 -11.542
J = 30, n = 30 0.5 0.15 Level-3 Intercept Var. 11.183 10.421 -6.811
J = 30, n = 30 0.5 0.15 Level-3 Icept-Slope Cov. 2.243 2.148 -4.266
J = 30, n = 30 0.5 0.15 Level-3 Slope Var. 5.000 4.444 -11.113
J = 30, n = 30 0.5 0.15 Level-2 Intercept Var. 13.750 14.550 5.815
J = 30, n = 30 0.5 0.15 Level-2 Icept-Slope Cov. 2.487 2.053 -17.481
J = 30, n = 30 0.5 0.15 Level-2 Slope Var. 5.000 5.323 6.451
J = 30, n = 30 0.5 0.15 Residual Var. 32.500 32.533 0.100
J = 30, n = 30 0.1 0.25 Intercept 49.836 49.813 -0.046
J = 30, n = 30 0.1 0.25 Level-1 Slope 3.098 3.116 0.579
J = 30, n = 30 0.1 0.25 Level-2 Slope 0.724 0.695 -4.040
J = 30, n = 30 0.1 0.25 Level-3 Slope 0.654 0.565 -13.637
J = 30, n = 30 0.1 0.25 Interaction Slope 1.549 1.347 -13.034
J = 30, n = 30 0.1 0.25 Level-3 Intercept Var. 5.104 4.630 -9.280
J = 30, n = 30 0.1 0.25 Level-3 Icept-Slope Cov. 1.917 1.870 -2.436



J = 30, n = 30 0.1 0.25 Level-3 Slope Var. 8.000 7.383 -7.716
J = 30, n = 30 0.1 0.25 Level-2 Intercept Var. 5.500 5.482 -0.327
J = 30, n = 30 0.1 0.25 Level-2 Icept-Slope Cov. 1.990 1.974 -0.793
J = 30, n = 30 0.1 0.25 Level-2 Slope Var. 8.000 8.055 0.692
J = 30, n = 30 0.1 0.25 Residual Var. 52.000 52.030 0.057
J = 30, n = 30 0.5 0.25 Intercept 49.740 49.759 0.038
J = 30, n = 30 0.5 0.25 Level-1 Slope 2.449 2.378 -2.926
J = 30, n = 30 0.5 0.25 Level-2 Slope 1.145 1.140 -0.395
J = 30, n = 30 0.5 0.25 Level-3 Slope 0.938 0.798 -14.907
J = 30, n = 30 0.5 0.25 Interaction Slope 1.225 1.065 -13.029
J = 30, n = 30 0.5 0.25 Level-3 Intercept Var. 11.183 10.593 -5.269
J = 30, n = 30 0.5 0.25 Level-3 Icept-Slope Cov. 2.243 2.175 -3.044
J = 30, n = 30 0.5 0.25 Level-3 Slope Var. 5.000 4.524 -9.525
J = 30, n = 30 0.5 0.25 Level-2 Intercept Var. 13.750 14.683 6.786
J = 30, n = 30 0.5 0.25 Level-2 Icept-Slope Cov. 2.487 1.777 -28.552
J = 30, n = 30 0.5 0.25 Level-2 Slope Var. 5.000 5.519 10.390
J = 30, n = 30 0.5 0.25 Residual Var. 32.500 32.659 0.490
J = 100, n = 30 0.1 0.15 Intercept 49.836 49.841 0.010
J = 100, n = 30 0.1 0.15 Level-1 Slope 3.098 3.092 -0.203
J = 100, n = 30 0.1 0.15 Level-2 Slope 0.724 0.717 -0.999
J = 100, n = 30 0.1 0.15 Level-3 Slope 0.654 0.615 -6.022
J = 100, n = 30 0.1 0.15 Interaction Slope 1.549 1.527 -1.459
J = 100, n = 30 0.1 0.15 Level-3 Intercept Var. 5.104 4.977 -2.487
J = 100, n = 30 0.1 0.15 Level-3 Icept-Slope Cov. 1.917 1.899 -0.914
J = 100, n = 30 0.1 0.15 Level-3 Slope Var. 8.000 7.819 -2.265
J = 100, n = 30 0.1 0.15 Level-2 Intercept Var. 5.500 5.486 -0.246
J = 100, n = 30 0.1 0.15 Level-2 Icept-Slope Cov. 1.990 1.957 -1.652
J = 100, n = 30 0.1 0.15 Level-2 Slope Var. 8.000 8.031 0.384
J = 100, n = 30 0.1 0.15 Residual Var. 52.000 51.981 -0.037
J = 100, n = 30 0.5 0.15 Intercept 49.740 49.778 0.076
J = 100, n = 30 0.5 0.15 Level-1 Slope 2.449 2.426 -0.939
J = 100, n = 30 0.5 0.15 Level-2 Slope 1.145 1.178 2.866
J = 100, n = 30 0.5 0.15 Level-3 Slope 0.938 0.907 -3.370
J = 100, n = 30 0.5 0.15 Interaction Slope 1.225 1.168 -4.645
J = 100, n = 30 0.5 0.15 Level-3 Intercept Var. 11.183 11.219 0.324
J = 100, n = 30 0.5 0.15 Level-3 Icept-Slope Cov. 2.243 2.189 -2.408
J = 100, n = 30 0.5 0.15 Level-3 Slope Var. 5.000 4.759 -4.829
J = 100, n = 30 0.5 0.15 Level-2 Intercept Var. 13.750 14.419 4.869
J = 100, n = 30 0.5 0.15 Level-2 Icept-Slope Cov. 2.487 2.029 -18.428
J = 100, n = 30 0.5 0.15 Level-2 Slope Var. 5.000 5.295 5.904
J = 100, n = 30 0.5 0.15 Residual Var. 32.500 32.578 0.239
J = 100, n = 30 0.1 0.25 Intercept 49.836 49.838 0.004
J = 100, n = 30 0.1 0.25 Level-1 Slope 3.098 3.109 0.357



J = 100, n = 30 0.1 0.25 Level-2 Slope 0.724 0.702 -3.018
J = 100, n = 30 0.1 0.25 Level-3 Slope 0.654 0.635 -2.960
J = 100, n = 30 0.1 0.25 Interaction Slope 1.549 1.483 -4.295
J = 100, n = 30 0.1 0.25 Level-3 Intercept Var. 5.104 4.967 -2.691
J = 100, n = 30 0.1 0.25 Level-3 Icept-Slope Cov. 1.917 1.929 0.604
J = 100, n = 30 0.1 0.25 Level-3 Slope Var. 8.000 7.861 -1.739
J = 100, n = 30 0.1 0.25 Level-2 Intercept Var. 5.500 5.517 0.305
J = 100, n = 30 0.1 0.25 Level-2 Icept-Slope Cov. 1.990 1.937 -2.675
J = 100, n = 30 0.1 0.25 Level-2 Slope Var. 8.000 8.098 1.227
J = 100, n = 30 0.1 0.25 Residual Var. 52.000 52.046 0.089
J = 100, n = 30 0.5 0.25 Intercept 49.740 49.784 0.088
J = 100, n = 30 0.5 0.25 Level-1 Slope 2.449 2.396 -2.200
J = 100, n = 30 0.5 0.25 Level-2 Slope 1.145 1.150 0.444
J = 100, n = 30 0.5 0.25 Level-3 Slope 0.938 0.896 -4.458
J = 100, n = 30 0.5 0.25 Interaction Slope 1.225 1.138 -7.122
J = 100, n = 30 0.5 0.25 Level-3 Intercept Var. 11.183 11.405 1.994
J = 100, n = 30 0.5 0.25 Level-3 Icept-Slope Cov. 2.243 2.156 -3.879
J = 100, n = 30 0.5 0.25 Level-3 Slope Var. 5.000 4.737 -5.261
J = 100, n = 30 0.5 0.25 Level-2 Intercept Var. 13.750 14.586 6.077
J = 100, n = 30 0.5 0.25 Level-2 Icept-Slope Cov. 2.487 1.833 -26.306
J = 100, n = 30 0.5 0.25 Level-2 Slope Var. 5.000 5.555 11.091
J = 100, n = 30 0.5 0.25 Residual Var. 32.500 32.598 0.303
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 Relative Bias: Normal Distribution, 15% Missingness
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 Relative Bias: Normal Distribution, 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI

Simulation 1 
 Relative Bias: Skewed Distribution, 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI

Simulation 1 
 Relative Bias: Skewed Distribution, 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 1 
 Interval Coverage: Normal Distribution, 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 1 
 Interval Coverage: Normal Distribution, 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 1 
 Interval Coverage: Skewed Distribution, 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 1 
 Interval Coverage: Skewed Distribution, 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

15%
 M

issing
25%

 M
issing

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI LWD

RSC Large NRandom Slope with Categorical Level-2 Predictor (Large N = 50,000)



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI

Simulation 2 
 Relative Bias: 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Icept−Slope Cov.

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI

Simulation 2 
 Relative Bias: 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 2 
 Interval Coverage: 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Clusters 
 10 O

bs. per Cluster
30 Clusters 

 30 O
bs. per Cluster

100 Clusters 
 10 O

bs. per Cluster
100 Clusters 

 30 O
bs. per Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 2 
 Interval Coverage: 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
30 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

100 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
100 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI

Simulation 3 
 Relative Bias: 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
30 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

100 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
100 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete FCS MBI

Simulation 3 
 Relative Bias: 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
30 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

100 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
100 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Percent Relative Bias

● Complete FCS MBI

Simulation 3 
 Relative Bias: 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
30 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

100 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
100 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Residual Var.

Level−2 Slope Var.

Level−2 Icept−Slope Cov.

Level−2 Intercept Var.

Level−3 Slope Var.

Level−3 Icept−Slope Cov.

Level−3 Intercept Var.

Percent Relative Bias

● Complete FCS MBI

Simulation 3 
 Relative Bias: 25% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
30 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

100 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
100 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 3 
 Interval Coverage: 15% Missingness



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ICC = .10 ICC = .50

30 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
30 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

100 Level−3 Clusters 
 10 O

bs. per Level−2 Cluster
100 Level−3 Clusters 

 50 O
bs. per Level−2 Cluster

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Interaction Slope

Level−3 Slope

Level−2 Slope

Level−1 Slope

Intercept

Confidence Interval Coverage

● Complete FCS MBI

Simulation 3 
 Interval Coverage: 25% Missingness


