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Abstract 

Varying methods for evaluating the outcomes of single case research designs (SCD) are 

currently used in reviews and meta-analyses of interventions. Quantitative effect size measures 

are often presented alongside visual analysis conclusions. Six measures across two classes—

overlap measures (percentage non-overlapping data, improvement rate difference, and Tau) and 

parametric within-case effect sizes (standardized mean difference and log response ratio 

[increasing and decreasing])—were compared to determine if choice of synthesis method within 

and across classes impacts conclusions regarding effectiveness. The effectiveness of sensory-

based interventions (SBI), a commonly used class of treatments for young children, was 

evaluated. Separately from evaluations of rigor and quality, authors evaluated behavior change 

between baseline and SBI conditions. SBI were unlikely to result in positive behavior change 

across all measures except IRD. However, subgroup analyses resulted in variable conclusions, 

indicating that the choice of measures for SCD meta-analyses can impact conclusions. 

Suggestions for using the log response ratio in SCD meta-analyses and considerations for 

understanding variability in SCD meta-analysis conclusions are discussed.  

Keywords: single case research design; meta-analysis; overlap measures; within-case effect 

sizes 
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Single-Case Synthesis Tools II: Comparing Quantitative Outcome Measures  

Federal law requires special education practitioners to implement evidence-based 

practices (EBPs) identified through rigorous, experimental research including single case 

research designs (SCD; Individuals with Disabilities Education Act [IDEA], 2004). Identifying 

EBPs may increase the likelihood that children with disabilities receive effective treatments, thus 

improving long-term academic and social outcomes. Classifying interventions based on their 

evidence of effectiveness may facilitate the selection of appropriate, effective treatments. This 

can help families avoid the unnecessary stress, financial strains, or resource burden associated 

with ineffective, popular treatments.   

Antecedent Sensory-Based Interventions 

  Antecedent sensory-based interventions (SBI; e.g., weighted vests, weighted blankets, 

therapy balls, therapy cushions, multi-sensory environments) are a popular treatment for young 

children with autism spectrum disorders (ASD) to improve engagement and problem behaviors 

(May-Benson & Koomar, 2010). Based on the theory of sensory integration (Ayres, 1979), 

antecedent SBI are interventions implemented before children interact with their environment, 

which are intended to aide in processing sensory input in the environment (Blanche, Chang, 

Guiterrez, & Gunter, 2016). However, conclusions regarding their effectiveness vary across 

existing syntheses (Barton, Reichow, Schnitz, Smith, & Sherlock, 2015; Case-Smith, Weaver, & 

Fristad, 2015; Lang et al., 2012; Leong, Carter, & Stephenson, 2015; May-Benson & Koomar, 

2010; Watling & Hauer, 2015; Yunnus et al., 2015). Investigating sources of variability in 

intervention reviews—particularly for frequently used interventions with mixed results such as 

antecedent SBI—may improve and advance the methods used to identify EBPs.  

Synthesizing Evidence 



EVALUATING OUTCOMES   4 

Visual analysis is the traditional method for assessing study outcomes in SCD (Ledford, 

Wolery, & Gast, 2014). Systematic procedures for conducting visual analysis exist (cf. Ledford, 

Lane, & Severini, 2017), but visual analysis does not produce a single summary measure to 

quantify the magnitude of behavior change. The lack of a numerical index of effectiveness 

makes it difficult for researchers to quantitatively summarize outcomes across multiple SCD 

studies. In contrast, quantitative measures of effectiveness allow SCD researchers to use 

statistical procedures such as meta-analysis to more clearly synthesize evidence from SCD 

studies.  

Meta-analysis is a set of statistical procedures for summarizing and studying patterns of 

evidence from multiple studies on a single topic or intervention (Borenstein, Hedges, Higgins, & 

Rothstein, 2009). When meta-analysis is used, the average magnitude and distribution of 

intervention effects are estimated by combining results—typically in the form of effect size 

estimates—from each study (Borenstein et al., 2009). Meta-analytic techniques for synthesizing 

group design research are now well established and used extensively throughout the social and 

behavioral sciences (Beretvas, 2010; Borenstein et al., 2009; Kavale, 2007). Findings from meta-

analyses of group design studies are considered one of the highest standards for determining the 

overall effectiveness of an intervention (Cook et al., 2015; Shadish, Rindskopf, & Hedges, 

2007). However, meta-analytic techniques for synthesizing evidence from SCD have not yet 

achieved the same degree of consensus. Existing systematic reviews and syntheses of SCD have 

most frequently used measures representing the degree of overlap in data level between adjacent 

conditions (i.e., overlap measures; Heyvaert et al., 2015; Maggin et al., 2011), but several other 

types of effect size measures and synthesis techniques are available, including some that have 

only recently been introduced.  
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To be useful for purposes of meta-analysis, an effect size index should “describe the 

magnitude of an effect on a common scale” for a body of research on a common topic or 

intervention (Shadish, Hedges, Horner, & Odom, 2015, p. 27). When conducting systematic 

reviews of studies using SCD, standardized effect sizes facilitate reviewers’ ability to (a) 

combine results across SCD using a common scale of magnitude and (b) combine results across 

multiple SCD that investigate a common intervention (Shadish et al., 2015). However, it is not 

yet clear which effect size indices are well suited to describe SCD data.  

Overlap Measures 

Overlap measures (Chen et al., 2016; Parker, Vannest, & Davis, 2011; Vannest & Ninci, 

2015) are numerical indices used to quantify the extent to which data overlap in level between 

adjacent conditions. Percentage of non-overlapping data (PND) was one of the first quantitative 

tools used to synthesize SCD (Scruggs, Mastropieri, & Casto, 1987; Scruggs & Mastropieri, 

1998). Since the introduction of PND, several additional overlap measures have been proposed 

and applied, including the improvement rate difference (IRD; Parker, Vannest, & Brown, 2009), 

non-overlap of all pairs (NAP; Parker & Vannest, 2009), Kendall’s Tau for non-overlap between 

groups (Taunovlap or Tau; Parker, Vannest, Davis, & Sauber, 2011), and Tau-U (Parker et al., 

2011b). Each measure quantifies the amount of overlap between adjacent conditions differently 

(Parker, Vannest, & Davis, 2011), although some evidence indicates various overlap measures 

are highly inter-correlated (Chen et al., 2016). 

Several studies have been conducted comparing overlap measures with visual analysis 

(Barton et al., 2016; Chen et al., 2016; Ma, 2006; Parker & Hagan-Burke, 2007; Parker & 

Vannest, 2009; Parker et al., 2011a; Rakap, Snyder, & Pasia, 2014; Wolery et al., 2010). One 

study found visual analysis and overlap measures lead to similar conclusions (Parker et al., 
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2011a). However, comparison studies have not led to convergent conclusions regarding which 

overlap measures most closely align with visual analysis. When visual analysis suggests an effect 

is present, overlap measures have produced variable conclusions (Ma, 2006; Rakap et al., 2014; 

Wolery et al., 2010). This may not be a critical flaw, given that visual analysis is designed to 

determine whether a functional relation exists, whereas overlap measures are designed to 

describe overlap of data. Conclusions may also be variable because decisions about functional 

relations are based on six different data characteristics (trend, level, variability, overlap, 

immediacy of change, consistency), whereas overlap measures solely examine one (overlap). 

However, some reviews have reported overlap measures in the absence of functional relation 

conclusions (e.g., Dart, Collins, Klingbeil, & McKinley, 2014), suggesting authors interpret 

overlap measures either as an indicator of the presence of a functional relation or as an estimate 

of magnitude of effect. 

Multiple general limitations of overlap measures have been noted (Pustejovsky, 2016b; 

Pustejovsky, 2016c; Ledford et al., 2016; Rakap et al, 2014; Wolery et al., 2010). Overlap 

measures fail to measure the magnitude of an effect; rather they measure the degree of overlap in 

the level of data points between adjacent conditions (see Authors, in press for a detailed 

discussion including illustrative examples). Overlap measures do not address replication logic 

(Wolery et al., 2010), a critical feature of SCD that determines if results are interpretable 

(Ledford et al., 2014; Wolery et al., 2010). Limited sensitivity of overlap measures may make 

them unsuitable for quantifying intervention effects (Barton et al., 2016; Chen et al., 2016). The 

magnitude of overlap measures is also influenced by procedural factors such as design type 

(Chen et al., 2016), the number of data points in a condition (Pustejovsky, 2016c; Tarlow, 2016), 

the length of observation sessions, and the type of recording system (Pustejovsky, 2016b). 
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Consequently, overlap measures do not provide a fair basis for comparing multiple SCD that 

vary on one or more of these procedural dimensions (Pustejovsky, 2016b). Furthermore, data 

patterns such as outliers, extinction bursts, and delayed change, even when predicted, also 

influence the magnitude of overlap measures (Barton et al., 2016; Ledford et al., 2016; Rakap et 

al., 2014). Despite a growing body of evidence suggesting caution when using overlap measures 

as quantitative synthesis tools for SCD (cf. Pustejovsky, 2016b), they remain widely used in 

SCD research (Ledford et al., 2016; Maggin, O’Keefe, & Johnson, 2011). No studies to date 

have compared the utility of overlap measures to within-case parametric effect size estimates.  

Within-Case Parametric Effect Sizes  

In contrast to overlap measures, which are defined without reference to distributional 

assumptions, parametric effect size indices are defined in terms of parametric models for the 

data. Two types of parametric effect sizes have been proposed for SCD: within-case and 

between-case. Within-case parametric effect sizes quantify the magnitude of intervention effects 

for each case (or tier) within an SCD study, whereas between-case effect sizes quantify the 

magnitude of average intervention effects across multiple cases in a study. Because they are 

case-specific, within-case SCD effect sizes can only be applied to data from SCD. In contrast, 

between-case effect sizes are constructed so as to be comparable to effect size estimates from 

group design studies, at least under certain theoretical assumptions about the data-generating 

process (Shadish et al., 2015). However, even the simplest forms of between-case effect sizes 

cannot always be calculated from SCD studies because they require data from at least three 

participants across at least two conditions. Furthermore, because they quantify average effects—

rather than examining results for each replication—between-case effect sizes address a 

somewhat different goal than traditional methods of visual analysis (i.e., average magnitude may 
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not have a direct relationship with functional relation determination) and non-overlap measures.  

 Multiple within-case effect size indices have been proposed for use with SCD. Gingerich 

(1984) and Busk and Serlin (1992) introduced a within-case standardized mean difference 

(SMD) index, defined as the difference in average outcomes between intervention and baseline 

conditions, scaled by the pooled standard deviation of the outcomes within each condition. 

Although its mathematical form is similar to the SMD used in group designs, the scaling factor 

of the within-case SMD captures only within-case variability and so is not comparable to SMD 

estimates from group designs (Van den Noortgate & Onghena, 2008; Shadish, Hedges, & 

Pustejovsky, 2014). More recently, Pustejovsky (2014) proposed a family of within-case, 

parametric effect sizes that quantify intervention effects in terms of proportional change (i.e., 

percentage change from baseline to intervention). These log response ratio effect size measures 

may be particularly well suited for studies that use behavioral outcomes assessed through direct 

observation (Pustejovsky, 2014; Pustejovsky & Ferron, 2017). Although this class of effect size 

measures has not yet been widely used, conceptualizing effect magnitude in proportional terms 

has precedents in previous systematic reviews of SCD (e.g., Campbell, 2003; Kahng, Iwata, & 

Lewin, 2002; Marquis et al., 2000) and, more informally, as a way to convey results of SCD to 

clinicians (Campbell & Herzinger, 2010). 

Purpose and Research Questions 

 The purpose of this review is to evaluate the extent to which the measure used to estimate 

the magnitude of treatment effects (overlap measures and within-case effect sizes) impacts 

conclusions about the effectiveness of antecedent SBI. Three overlap measures (PND, IRD, and 

Tau), and three parametric, within-case effect sizes (standardized mean difference [SMD], log 

response ratio-decreasing [LRRd], and log response ratio-increasing [LRRi]) were used to 
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evaluate the effectiveness of antecedent SBI for children in early childhood settings. The overlap 

measures were selected based on current recommendations for use and correlations between 

groups of measures (Chen et al., 2016; Rakap et al., 2014; Wolery et al., 2010). The parametric 

effect sizes were selected based on our evaluation of the within-case effect sizes suitable for use 

with the types of outcome measures employed in this body of literature (e.g., designs evaluating 

outcomes for a single case [participant] using interval-scale measurements [e.g., interval-based 

measures]; see Pustejovsky & Ferron, 2017 for a detailed discussion). Between-case parametric 

effect sizes were not included because (a) most designs evaluated in this review failed to meet 

criteria to use between-case effect sizes (only 3 out of 8 articles met criteria; Hodgetts, 2011; 

Krombach, 2016; Leew, 2010) and (b) between-case effect sizes are not directly comparable to 

overlap measures, the most commonly used metric in the current SCD literature.  

The following research questions guided the review: (1) To what extent do meta-analytic 

summaries using overlap measures and parametric effect sizes indicate that antecedent SBI result 

in positive behavior change for young children? (2) To what extent do meta-analytic summaries 

align with visual analysis conclusions regarding the effectiveness of antecedent SBI? and (3) Do 

conclusions regarding antecedent SBI differ across and within classes of effect size measures? 

Method  

Included Studies 

 Search procedures, article eligibility, and article selection can be found in the companion 

document to this outcome review (Synthesis Tools Part I). Eleven articles (69 designs) were 

included in a two-part hierarchical review of antecedent SBI. Designs refer to single SCD (e.g., 

A-B-A-B, multiple baseline designs). For alternating treatment designs that included three 

ongoing conditions, three comparisons were present (condition A to B, condition A to C, and 
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condition B to C). First, the quality and rigor of included designs were evaluated (see Synthesis 

Tools Part I). Then, outcomes were evaluated for studies with at least three potential 

demonstrations of effect using procedures described below. Eight articles including 21 cases 

across 17 total outcomes met inclusion criteria (see Table 1). 

Data Extraction  

 Three graduate students in special education (including the first author) used an 

electronic software program, Version 2.0 of Plot Digitizer (2015), to extract values from each 

graph to calculate overlap measures and effect sizes. Some obvious extraction errors were 

adjusted. This includes: (a) Negative values were adjusted to 0 and values over 100 adjusted to 

100 for continuous outcomes with a 0-100 scale. (b) Non-integer values were adjusted to the 

closest whole number for categorical outcomes coded as whole numbers (i.e., alertness states, 

Tunson & Candler, 2010). (c) Values expressed as rate (count per minute) were rounded to the 

nearest possible value given the session length and total count. For example, in a 5-min session 

during which problem behaviors were counted, an extracted 1.19 behaviors per min corresponds 

to 5.95 behaviors, an impossible value. However, an adjusted value of 1.2 behaviors per min 

corresponds with a total of 6 behaviors. Values for count and percentage outcomes were not 

changed after data extraction.  

Reliability data were collected for at least 33% of designs during the data extraction 

process for the purposes of calculating inter-observer agreement (IOA) using point-by-point 

agreement: (number of agreements/total number of data points) multiplied by 100 (Ayres & 

Ledford, 2014). The agreement window was 2% (for outcomes on a percentage or rate scale), 1 

integer (for counts), and exact agreement (for categorical outcomes). Average overall agreement 

between data extraction coders was 97% (range across designs: 78-100%). A data collector 
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erroneously skipped two data points when extracting data from a single comparison in a design 

that resulted in the 78% agreement calculation. Disagreements were resolved via consensus. 

Visual Analysis Procedures 

 Visual analysis of the level, trend, variability, immediacy, overlap, and consistency of 

data was conducted for each design based on the guidelines outlined in the Single Case Analysis 

and Review Framework (SCARF; Authors, 2016). These guidelines for visual analysis were 

selected because they provided a comprehensive evaluation of SCD quality in a previous review 

of the same body of literature evaluated in this review. The first author served as the primary 

analyst for visual analysis; a special education graduate student trained in visual analysis served 

as a reliability coder for at least 33% of designs and an SCD expert (third author) served as a 

disagreement mediator (see Synthesis Tools Part I). Coders reached 100% exact agreement on 

the presence/absence of a functional relation and had one disagreement on the 4-point rating for 

one outcome in one design, which was resolved via consensus.  

Calculation Procedures using Extracted Data 

 Overlap measures and parametric effect sizes were calculated for each A-B comparison 

across all designs. For multiple baseline designs across participants (MBPs), indices were 

calculated separately for each tier. For A-B-A-B designs with two A-B comparisons, indices 

were calculated for each pair (e.g., A1, B1 and A2, B2) and averaged, yielding a single effect 

size estimate per case. Simple averages were calculated for IRD, SMD with a Hedges’ g small 

sample correction, LRRd, and LRRi. For the remaining overlap measures, weighting schemes 

were used to calculate averages, with m representing the number of points in condition A and n 

representing the number of points in condition B. Each index was weighted by n when 

calculating PND and by the total number of pairs across conditions (m x n) for Tau.  
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In studies using ATDs, indices were calculated for each comparison with the ongoing 

baseline condition denoted as A and the intervention condition denoted as B. Only comparisons 

of ongoing baseline versus the treatment were included in meta-analysis calculations; 

comparisons of weighted as compared to unweighted vests were not included, as neither 

condition reflected ‘baseline’ condition in which the intervention was absent.  

For each design, overlap measures and parametric effect size estimates were calculated 

using the R statistical computing environment (R Core Team, 2016). Complete data and 

computer syntax for replicating all of the calculations is available on the Open Science 

Framework at (website redacted for peer review). 

The second author served as the primary analyst for all overlap measure and effect size 

calculations; the first author served as the reliability analyst. The first author used a beta version 

of an online SCD effect size calculator tool to calculate reliability data for the overlap measures 

and parametric effect sizes (Pustejovsky, 2016d). IOA was calculated using point-by-point 

agreement to four decimal places (number of agreements/total number of data points) multiplied 

by 100 (Ayres & Ledford, 2014). Average agreement was 100% for PND, IRD, Tau, SMD, 

LRRd, and LRRi estimates. A coding error yielded an initial overall agreement of 0% for Tau, 

SMD, LRRd/LRRi standard error estimates. After correcting the error, agreement for Tau, SMD, 

LRRd, and LRRi standard error estimates was 100%.  

Overlap Metrics 

 PND. PND quantifies overlap in data from two conditions (e.g., baseline and treatment; 

Scruggs et al., 1987; Scruggs & Mastropieri, 1998). For outcomes in which an increase is 

desirable, PND is defined as the percentage of data points in the second condition (treatment) 

that exceed the highest data point from the first condition; for outcomes in which a decrease is 
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desirable, it is the percentage of data points in the second condition that are below the lowest 

data point from the first condition (Scruggs et al., 1987). PND is bound to values between 0-

100% and is calculated for each A-B comparison in a single design. Scruggs and Mastropieri 

(1998) suggested PND values less than 50% denote an ineffective intervention, values between 

50-70% denote unclear effects, values between 70-90% denote an intervention is effective, and 

values above 90% denote an intervention is very effective. No standard errors are available. 

 IRD. IRD (Parker et al., 2009) is a non-overlap measure defined as the number of 

“improved data points” divided by the total number of data points in a condition in each A-B 

comparison (Parker et al., 2009, p. 139). For outcomes in which an increase is desirable, an 

improved data point is one in the intervention condition that meets or exceeds any data point in 

the baseline condition. For outcomes in which a decrease is desirable, an improved data point is 

one in the intervention condition that meets or is less than any data point in the baseline 

condition. IRD can be expressed as a percentage or as a positive or negative number, but the 

range of possible values depends on the number of data points (Pustejovsky, 2016b). A score of 

1.0 IRD indicates all data in the intervention condition are higher than scores in the baseline 

condition (Parker et al., 2009). As tentative benchmarks for IRD, Parker et al. (2009, p. 147) 

proposed that values below .50 correspond to “questionable” effects, values between .50 and .70 

correspond to “medium” effects, and values above .70 correspond to “large” effects. No standard 

errors are available.  

 Tau. Kendall’s tau for non-overlap between groups (Taunovlap or Tau; Parker et al., 2011) 

was calculated rather than Tau-U because the calculation for Tau-U is unclear and has been 

noted to change across papers written by the creators of the measure (Pustejovsky, 2016c; 

Tarlow, 2016). Tau is a non-overlap measure defined in terms of comparisons between pairs of 
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data points, including one data point from a baseline condition and one data point from a 

treatment condition. Tau is an analysis of pairwise comparisons in which each pair of data points 

is coded as “(a) positive or improving over time, (b) negative or decreasing, or (c) tied” (Parker 

et al., 2011, p. 288). The difference between the number of positive and negative comparisons is 

divided by the total number of pairs. Scores further from zero indicate fewer overlapping data 

points. Standard errors for Tau were calculated using a formula that is valid when the outcomes 

are mutually independent (Pustejovsky, 2016a); in the presence of positive auto-correlation, the 

formula will tend to under-state the true standard error. Tau is related to another overlap metric, 

non-overlap of all pairs (NAP; Parker & Vannest, 2009), by a simple linear transformation. 

Results for Tau therefore apply directly to NAP as well. Furthermore, due to the direct 

correspondence between the metrics, benchmark values for NAP can be used to derive 

benchmarks for Tau. Based on guidelines for NAP proposed by Parker and Vannest (2009), Tau 

values of less than .30 might be characterized as “weak,” values between .30 and .84 as 

“medium,” and values larger than .84 as “large.” 

Within-Case Effect Sizes 

 Within-Case SMD. A within-case SMD with a Hedges’ g small sample correction was 

calculated. For a single A-B comparison, the within-case SMD is calculated as the difference 

between the average outcomes in the B phase versus the A phase, scaled by the standard 

deviation of the A phase; a small-sample correction is then applied to reduce bias from short A 

phases (Pustejovsky & Ferron, 2017). Because it involves standardizing by a measure of 

variability in the baseline condition, it cannot be calculated if the outcome series is constant in 

the baseline condition. Consequently, several data series with outcomes of zero throughout the 

baseline condition were excluded when calculating within-case SMDs. Standard errors were 
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calculated based on the assumption that the outcomes are mutually independent (Pustejovsky & 

Ferron, 2017). It is important to note that this will tend to under-state the true standard error if 

there is positive auto-correlation. Harrington and Velicer (2015) proposed values between 0 and 

1 as “small,” 1 and 2.5 as “medium,” and greater than 2.5 as “large.” 

 Within-Case LRRd and LRRi. LRR (Pustejovsky, 2014) effect size indices provide 

quantitative measures of the proportional change in behavior between conditions (Pustejovsky & 

Ferron, 2017). For outcomes measured as counts or rates, the two forms of the index, LRRd and 

LRRi, differ only in sign. However, for outcomes measured as proportions or percentages—

which comprised the majority of outcomes in identified studies—LRRd and LRRi can differ not 

only in sign but also in magnitude, making it necessary to distinguish between them 

(Pustejovsky, 2017). For a single A-B comparison and an outcome where an increase is 

desirable, LRRi is calculated by taking the natural logarithm of the ratio of the average outcome 

in the B phase to the average outcome in the A phase. The natural logarithm transformation is 

used so that the range of possible values is less restricted (Pustejovsky, 2017). LRR indices are 

appropriate for dependent variables measured using a ratio scale, where a score of zero indicates 

the absence of a measured outcome (e.g., percentage correct responding; Pustejovsky & Ferron, 

2017). The indices cannot be calculated if the mean in one or both conditions is equal to zero. 

Because of this requirement, analysis of LRRd and LRRi excluded several data series. 

After LRR values are synthesized, the average effect size estimates can be translated into 

a percentage change for purposes of interpretation (Pustejovsky & Ferron, 2017). LRR 

decreasing (LRRd) was developed to evaluate interventions designed to decrease behavior 

occurrence whereas LRR increasing (LRRi) was developed to evaluate interventions designed to 

increase behavior occurrence over time; both can be used if interventions evaluate increasing and 
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decreasing behavior (Pustejovsky & Ferron, 2017). As with Tau and the within-case SMD, 

standard errors for LRRd and LRRi were calculated based on the assumption that the outcome 

data were mutually independent; limitations in the presence of auto-correlation are similar. There 

is not yet a known scale to quantify values. 

Meta-analysis 

 Overall average effect sizes were calculated for the indices with known standard errors, 

including one overlap measure (Tau) and the three effect sizes (SMD, LRRd, and LRRi). 

Average effects were estimated based on a multi-level meta-analysis model including between-

study and within-study variation in true effect sizes. The overall meta-analytic model was: 

𝑇𝑖𝑗 = 𝜇 + 𝜂𝑗 +  𝜖𝑖𝑗 +  𝜈𝑖𝑗 

where 𝑇𝑖𝑗 is the effect size estimate for case i in study j; 𝜈𝑖𝑗 is the sampling variance of 𝑇𝑖𝑗 (i.e., 

the squared standard error), which is treated as known; 𝜇 is the overall average effect size; 𝜂𝑗 is a 

random effect for study j; and 𝜖𝑖𝑗is a random effect for case i in study j. Study-specific random 

effects were assumed to be normally distributed with mean zero and standard deviation 𝜏; case-

specific random effects were assumed to be normally distributed with mean zero and standard 

deviation 𝜔. The model was estimated using restricted maximum likelihood. Standard errors and 

confidence intervals for overall average effect sizes were calculated using robust variance 

estimation (clustering by study, with small sample adjustments; Hedges, Tipton, & Johnson, 

2010; Tipton, 2015; Tipton & Pustejovsky, 2015) to account for the possibility of inaccurate 

sampling variances, as could occur if the outcomes were auto-correlated. Calculations were 

conducted in R using the metafor (Viechtbauer, 2010) and clubSandwich (Pustejovsky, 2016e) 

packages. Subgroup analyses of effects by intervention and outcome type were conducted using 

the aforementioned model with separate intercepts for each category. For PND and IRD, which 



EVALUATING OUTCOMES   17 

do not have known sampling variances, overall average effect sizes were calculated using 

simple, un-weighted averages. Robust variance estimation methods (clustering by study, with 

small-sample corrections) were again used to account for the unknown sampling variances of the 

estimates, as well as the possible dependence among effect sizes from a given study.   

Results 

Visual Analysis 

Among the included designs, visual analysis using the SCARF (Authors, 2016) yielded 

zero designs with positive outcomes. In short, visual analysis indicated functional relations were 

not present between antecedent SBI and targeted behaviors.   

Meta-Analysis  

 The sample distributions for each overlap measure and parametric effect size estimate can 

be found in Table 2. Outcomes were calculated for all possible comparisons that met the criteria 

for each measure (e.g., ratio scale for LRRd and LRRi). Individual estimates for each included 

design can be found in the supplementary materials. 

 Random effects analysis. Table 3 reports the results from the random effects meta-

analysis, including estimates of between-study and within-study heterogeneity. An omnibus 

effect size was calculated using each measure, along with effect sizes by dependent and 

independent variables (see Table 3). Overall average effectiveness was not statistically 

significant for Tau, SMD, LRRd, or LRRi, with confidence intervals crossing zero for each 

measure (see Table 3). The estimated average magnitude of effect was small using Tau (0.281, 

95% CI [-0.025, 0.587]) and SMD (0.340, 95% CI [-0.044, 0.725]). The magnitude of effects for 

LRRd and LRRi were interpreted as percentage change (Pustejovsky & Ferron, 2017). The 

average estimated effect using LRRd (-0.269) was equivalent to a -23% change (reduction) in 
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behavior (95% CI [-50%, 19%]). The average estimated effect using LRRi (0.027) was 

equivalent to a 3% change (increase) in behavior (95% CI [-11%, 19%]).  

When designs were grouped by whether dependent variables were desirable (intended to 

increase) or undesirable (intended to decrease), overall effect sizes for each group were not 

distinguishable from zero for Tau, SMD, LRRd, or LRRi. Intervention effectiveness also was 

evaluated with designs grouped by independent variable type: weighted vests (Cox et al., 2009; 

Hodgetts et al., 2011; Leew et al., 2010; Reichow et al., 2010), sensory seating (Krombach, 

2016; Olson, 2015; Umeda & Deitz, 2011), and multi-sensory environment (Tunson & Candler, 

2010). Tau and SMD produced statistically significant results for weighted vest interventions 

(Tau = 0.281, 95% CI [0.094, 0.468]; SMD 0.314, 95% CI [0.063, 0.565]). LRRd and LRRi 

found outcomes for weighted vests interventions were not distinguishable from zero. Outcomes 

were not significantly different from zero for sensory seating interventions across any measures. 

The statistical significance of results for multi-sensory environment interventions could not be 

assessed because only one study provided relevant data. LRRd and LRRi could not be calculated 

for multi-sensory environments because the dependent variable used in the study was categorical 

rather than ratio scale, and thus did not meet statistical assumptions.  

Estimated between- and within-study variance components indicated a large amount of 

heterogeneity across cases, suggesting that interventions may have harmful effects for some 

participants and positive effects for others (Tau, SMD, LRRd; Table 3). Compared to the other 

effect size measures, there was less between-study heterogeneity in LRRi. Furthermore, SMD 

and LRRi had a smaller estimated degree of within-study heterogeneity than Tau or LRRd.  

 Simple un-weighted analysis. Overall average effect sizes were calculated using un-

weighted averages and robust variance estimation methods for measures without known 
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sampling variances (PND and IRD; see Table 4). PND indicated antecedent SBI resulted in small 

positive effects that were not statistically significant (average PND = 0.223, 95% CI [-0.005, 

0.451]), whereas IRD indicated antecedent SBI produced moderate, positive and statistically 

significant effects (average IRD = 0.430, p<0.05, 95% CI [0.261, 0.598]). When designs were 

grouped by dependent or independent variable type, the overall effectiveness of each group was 

not distinguishable from zero using PND. However, subgroup analyses using IRD did yield 

positive results that were distinguishable from zero when designs were grouped by dependent 

and independent variable type following the same method as in the random effects analysis. 

Antecedent SBI produced moderate, positive changes in desirable (average IRD = .438, 95% CI 

[0.154, 0.721]) and undesirable (average IRD = 0.416, 95% CI [0.221, 0.610]) behaviors. IRD 

also yielded moderate positive effects for weighted vest interventions (average IRD = 0.408, 

95% CI [0.383, 0.434]); outcomes were indistinguishable from zero for sensory seating 

interventions. Estimates could not be calculated for multi-sensory environments due to an 

insufficient sample size for robust variance estimation.  

Comparisons Across Effect Size Measures  

Overlap measures. Conclusions differed among overlap measures (Tables 3 and 4). 

PND (average PND = 0.223, 95% CI [-0.0005, 0.451]) and Tau (average Tau = 0.281, 95% CI [-

0.025, 0.587]) resulted in non-significant overall effects for antecedent SBI improving child 

behaviors, whereas IRD (average IRD = 0.430, 95% CI [0.261, 0.598]) resulted in moderate 

positive outcomes. Subgroup analyses also yielded variable conclusions across measures. Using 

IRD, antecedent SBI resulted in moderate, positive outcomes for desirable (average IRD = 0.438, 

95% CI [0.154, 0.721]) and undesirable (average IRD = 0.416, 95% CI [0.154, 0.721]) 

behaviors. PND and Tau did not result in significant outcomes across either behavior type. Tau 
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(average Tau = 0.281, 95% CI [0.383, 0.434]) and IRD (average IRD = 0.408, 95% CI [0.383, 

0.434]) yielded positive outcomes for weighted vest interventions whereas PND values were not 

distinguishable from zero. Sensory seating interventions did not result in significant positive 

outcomes using any overlap measure. 

 Parametric within-case effect sizes.  The sample distributions for each parametric 

within-case effect size can be found in Table 2. Due to differing requirements across measures, 

outcomes were not calculated for all comparisons using each parametric effect size; thus, 

comparisons across measures do not include the same A-B comparisons. Values by comparison 

can be found in the supplemental materials. All three parametric effect sizes pointed towards the 

conclusion that antecedent SBI do not result in overall outcomes distinguishable from zero 

(Table 3). Evaluation of the confidence intervals (CI), however, suggests variability in possible 

outcomes for single studies. The CI for LRRd included many values indicating improvements 

(reduction) in behavior, thus the possibility of an average 50% improvement in behavior is not 

ruled out. LRRi has a tight CI around zero that rules out large effects (positive or negative).  

Conclusions from subgroup analyses also varied across measures. All measures yielded 

outcomes not distinguishable from zero for all dependent variable subgroups and sensory seating 

interventions. SMD resulted in conclusions of significant, small positive outcomes for weighted 

vest interventions (average SMD = 0.314, 95% CI [0.063, 0.565]). With each of the parametric 

effect sizes, heterogeneity statistics suggested variability in outcomes were present across all 

subgroup analyses, although the LRRi appeared to be more homogeneous than other measures.   

Discussion 

 The current review provided the first comparison of overlap measures and parametric 

within-case effect sizes as indices to quantify intervention effectiveness in the context of SCD 
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meta-analyses. These results have important implications for the use of antecedent SBI and SCD 

outcome synthesis. Meta-analytic statistics calculated with five of the six measures (PND, Tau, 

SMD, LRRd, LRRi) and visual analyses concluded that antecedent SBI are not an effective 

intervention. These results are consistent with previous reviews in special education journals 

(Barton et al., 2015; Lang et al., 2012; Leong et al., 2015). 

Implications for Researchers  

Conclusions regarding the consistency and helpfulness of quantitative measures are 

important given the widespread use of varying measures and the recent emphasis of use of these 

measures by federal funding agencies (Shadish et al., 2015). Differences across measures can 

lead to differences in conclusions regarding intervention effectiveness. Meta-analyses conducted 

with PND, Tau, and within-case parametric effect sizes resulted in omnibus effect sizes that were 

not significantly different than zero. However, PND, LRRd, and LRRi were the only measures 

that detected non-significant results for the omnibus effect size and for subgroup analyses, 

suggesting these measures may be more conservative estimates of effectiveness that may be less 

likely to increase Type I error rates.  

The applicability of the measures also varied across tools. PND could be calculated for 

more A-B comparisons than LRRd or LRRi, and may have been particularly applicable to this 

body of literature because visual analysis concluded most designs had no effect (Rakap, Snyder, 

& Pasia, 2014; Wolery et al., 2010). However, previous studies have found overlap measures 

may fail to detect a range of effects present in a body of literature (Rakap, Snyder, & Pasia, 

2014; Ledford, Wolery, & Gast, 2014; Wolery et al., 2010; Parker et al., 2011a). Furthermore, 

methodological research indicates that the magnitude of PND—and particularly it’s magnitude 

when the true effect is null—is affected by the number of observations in the baseline condition 
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(Allison & Gorman, 1994; Pustejovsky, 2016b). Similarly, the value of IRD depends on the 

number of observations in the baseline and treatment conditions (Pustejovsky, 2016b). These 

properties make interpretation of PND and IRD results difficult, particularly considering that 

baseline condition lengths ranged from 4 to 20 observations across included A-B comparisons.   

Application of the LRRd and LRRi effect sizes was limited to dependent variables 

measured using a ratio scale and where the average level of the outcome was greater than zero 

during the baseline condition (Pustejovsky & Ferron, 2017). Although this resulted in the 

exclusion of some A-B comparisons, most of the exclusions were for comparisons that were not 

relevant to the ultimate synthesis (i.e., comparisons between no treatment and unweighted vests).  

Recommendations for Synthesis Method Selection 

Selecting an appropriate quantitative measure to use should occur in conjunction with 

outcome evaluation using visual analysis (Authors, in press). Meta-analyses conducted with 

PND and IRD are difficult to interpret since the null values of each index are not zero. The 

values produced by these overlap measures are also influenced by procedural variations in 

designs (see Pustejovsky, 2016b; Authors, in press), thus decreasing the confidence one may 

have that outcome values are a reflection of behavioral changes rather than procedural features 

(e.g., number of data points in a condition). Given this limitation, coupled with numerous well-

established limitations of overlap measures in extant literature (Chen et al., 2010; Wolery et al., 

2010), we do not recommend the use of PND or IRD in meta-analytic summaries of SCD 

interventions as an estimate of magnitude of effect.  

A third non-overlap measure, Tau, does not have the same shortcomings in terms of 

sample-size dependence. However, simulation evidence suggests that its magnitude can be 

influenced by other procedural features such as the choice of observational recording system and 
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length of observation session for behavior outcomes. Methods for estimating the standard error 

of Tau are also available (Pustejovsky & Ferron, 2017), but these rely on the assumption that the 

outcomes are not auto-correlated. We therefore recommend considering use of Tau, or the 

directly equivalent NAP measure, instead of other overlap metrics. In particular, Tau may be 

useful for SCD that use outcome measurements that do not satisfy the assumptions necessary for 

parametric within-case effect size indices (i.e., ratio scale measurements). 

Parametric within-case effect size selection should be considered in conjunction with 

guidelines presented by Pustejovsky and Ferron (2017) such as design type, dependent variable, 

and observational measurement system. If dependent variables are not measured using a ratio 

scale (e.g., percentage change), LRRd and LRRi cannot be calculated. If outcomes are measured 

using a ratio scale, LRRd and/or LRRi may be the most useful magnitude estimators. Results of 

LRRd and LRRi can be compared to determine which measure produces more homogeneous 

results (LRRi in this review) and outcomes can be reported using that measure. For comparisons 

included in this review, LRRi was applicable to more designs than SMD or LRRd, and was least 

likely to potentially over-estimate positive effects. However, due to the limited applications of 

LRRi, it should be used cautiously until further studies examine LRRi in the context of other 

types of interventions, dependent variables, and SCD designs (e.g., multiple baseline across 

contexts, when trends are present in data). 

Limitations and Future Research 

As noted in Synthesis Tools Part I, the sample size of the present review is relatively 

small and results must therefore be considered in the context of some limitations. First, the A-B 

comparisons included in each meta-analysis varied across tools due to the applicative limitations 

of each parametric effect size (Pustejovsky & Ferron, 2017). Variability in outcomes between 
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methods may be due in part to the inclusion of different A-B comparisons in addition to 

differences in the measures themselves. Additionally, decisions regarding parametric within-case 

effect size selection and meta-analysis calculations were conducted by a statistician with 

expertise in SCD meta-analysis. Although guidelines for conducting SCD meta-analyses exist 

(cf. Pustejovsky & Ferron, 2017), the feasibility of completing an SCD meta-analysis without the 

assistance of an expert in the procedures cannot be determined.  

Interpretability of outcomes may also be limited when discussing overlap measures and 

within-case parametric effect sizes because results of SCD are typically visually analyzed and 

discussed by design rather than each adjacent comparison. Both classes (overlap measures and 

parametric effect sizes) were calculated using simple A-B comparisons. Thus, they should be 

interpreted as estimates of magnitude of behavior change between baseline and intervention 

conditions. Because data patterns and characteristics were not considered with respect to 

determining whether experimental control was demonstrated, neither overlap measures nor 

parametric effect sizes should be interpreted as indicative of absence or presence of a functional 

relation. For example, an A-B-A-B design with mean values of 10, 20, 20, and 40 (per condition, 

respectively) might indicate large effects with both types of measures due to differences in level 

between A and B conditions. However, given the likelihood of maturation and lack of behavior 

change between intervention and the second baseline condition, visual analysis would suggest a 

functional relation is not present. Additionally, interpretability may be impacted by reporting 

outcomes by each simple A-B comparison rather than design. Calculating and reporting 

aggregated overlap measures and within-case parametric effect sizes by design in future reviews 

may assist consumers’ interpretation of results. Future research is needed to investigate how 

methods of aggregating A-B comparisons to design-level statistics (e.g., weighted or unweighted 
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averages) may impact conclusions regarding outcome magnitude or intervention effectiveness. 

Future research is also needed to investigate how to aggregate results across studies with and 

without experimental control. 

Finally, antecedent SBI included few positive outcomes as determined via visual 

analysis. Comparisons of synthesis tools may produce different results for bodies of literature 

with predominantly positive effects or bodies of literature with greater heterogeneity of effects 

across individuals. The homogeneous outcomes in this body of literature may limit the 

generalizability of conclusions regarding the agreement between synthesis methods. The lack of 

positive outcomes also could have prevented us from detecting potential under-estimation of 

effects. While results of this review may be limited to bodies of literature that have few positive 

outcomes, our conclusions may be better understood as additional reviews compare types of 

synthesis methods across intervention literatures with diverse outcomes. Specifically, future 

research should compare synthesis methods using bodies of literature with mostly positive 

outcomes (e.g., differential reinforcement) and mixed outcomes (e.g., social stories) to develop 

broadly relevant guidelines for selecting an appropriate synthesis method. 

Conclusions from this review suggest evaluations of the effectiveness of interventions 

examined in the context of SCD can be influenced by the synthesis method selected. 

Recommendations for methods to evaluate design quality (Synthesis Tools Part I) and outcomes 

(Synthesis Tools Part II), in relation to the methods evaluated in this review, may also assist 

researchers in selecting an appropriate method to synthesize SCD when evaluating interventions 

to identify evidence-based practices.  



EVALUATING OUTCOMES   26 

References  

References marked with an asterisk (*) indicate studies included in the review. 

Allison, D. B., & Gorman, B. S. (1994). “Make things as simple as possible, but no simpler.” A 

rejoinder to Scruggs and Mastropieri. Behaviour Research and Therapy, 32, 885-890.  

Authors (2016, April). Single case analysis and review framework (SCARF). Retrieved from 

(website redacted for blind peer review).  

Authors (in press). Synthesis and meta-analysis of single case research. In J. R. Ledford & D. L. 

Gast (Eds.), Single Case Research Methodology, New York, New York: Routledge.  

Ayres, A. J. (1979). Sensory integration and the child. Los Angeles, CA: Western Psychological 

Services.  

Ayres, K., & Ledford, J. R. (2014). Dependent measures and measurement systems. In D. L. Gast 

& J. R. Ledford (Eds.), Single case research methodology: Applications in special 

education and behavioral sciences (pp. 124-153). New York, NY: Routledge.  

Barton, E. E., Meadan, H., Fettig, A., & Pokorski, B. (2016, February). Evaluating and comparing 

visual analysis procedures to non-overlap indices using the parent implemented functional 

assessment based intervention research. Poster presented at the Conference on Research 

Innovations in Early Intervention, San Diego, CA. 

Barton, E. E., Reichow, B., Schnitz, A., Smith, I. C., & Sherlock, D. (2015). A systematic review 

of sensory-based treatments for children with disabilities. Research in Developmental 

Disabilities, 37, 64-80. 

Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S. A., Engel-Yeger, B., & Gal, E. (2009). A meta-

analysis of sensory modulation symptoms in individuals with autism spectrum disorders. 

Journal of Autism and Developmental Disorders, 39, 1–11. 



EVALUATING OUTCOMES   27 

Beretvas, S. N. (2010). Meta-Analysis. In G. R. Hancock & R. O. Mueller (Eds.), The Reviewer’s 

Guide to Quantitative Methods in the Social Sciences, (pp. 255-263). New York, New 

York: Routledge. 

Blanche, E. I., Chang, M. C., Gutierrez, J., & Gunter, J. S. (2016). Effectiveness of a sensory-

enriched early intervention group program for children with developmental disabilities. 

American Journal of Occupational Therapy, 70, 1-8.  

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-

analysis. West Sussex, England: John Wiley & Sons.  

Burns, M. K., Zaslofsky, A. F., Kanive, R., & Parker, D. C. (2012). Meta-analysis of incremental 

rehearsal using phi coefficients to compare single-case and group designs. Journal of 

Behavioral Education, 21, 185-202.  

Busk, P., & Serlin, R. (1992). Meta-analysis for single-case research. In T. Kratochwill & J. Levin 

(Eds.), Single-Case Research Design and Analysis: New Directions for Psychology and 

Education (pp. 187–212). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

Campbell, J. M. (2003). Efficacy of behavioral interventions for reducing problem behavior in 

persons with autism: A quantitative synthesis of single-subject research. Research in 

Developmental Disabilities, 24, 120–138. 

Campbell, J. M., & Herzinger, C. V. (2010). Statistics and single subject research methodology. In 

D. L. Gast (Ed.), Single subject research methodology in behavioral sciences (pp. 417–

450). New York, NY: Routledge. 

Case-Smith, J., Weaver, L. & Fristad, M. (2015). A systematic review of sensory processing 

interventions for children with autism spectrum disorders. Autism, 19, 133-148.  

Chen, M., Hyppa-Martin, J. K., Reichle, J. E., & Symons, F. J. (2016). Comparing single case 



EVALUATING OUTCOMES   28 

design overlap-based effect metrics from studies examining speech generating device 

interventions. American Journal on Intellectual and Developmental Disabilities, 121, 169-

193.  

Cohen. J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.) Hillsdale,  NJ 

Erlbaum Associates.  

*Cox, A., Gast, D., Luscre, D., & Ayres, K. (2009). The effects of weighted vests on appropriate 

in-seat behaviors of elementary-age students with autism and severe to profound 

intellectual disabilities. Focus on Autism and Other Developmental Disabilities, 24, 17-26.  

Dart, E. H., Collins, T. A., Klingbeil, D. A., & McKinley, L. E. (2014). Peer management 

interventions: A meta-analytic review of single-case research. School Psychology Review, 

43, 367-384. 

Gingerich, W. J. (1984). Meta-analysis of applied time-series data. The Journal of Applied 

Behavioral Science, 20, 71-79. 

Harrington, M. & Velicer, W. F. (2015). Comparing visual and statistical analysis in single-case 

studies using published studies. Multivariate Behavioral Research, 50, 162-183. 

Hedges, L. V, Pustejovsky, J. E., & Shadish, W. R. (2012). A standardized mean difference effect 

size for single case designs. Research Synthesis Methods, 3, 224-239. 

Hedges, L. V, Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression 

with dependent effect size estimates. Research Synthesis Methods, 1, 39-65.  

Heyvaert, M. Wendt, O., Van den Noortgate, M., & Onghena, P. (2015). Randomization and data-

analysis items in quality standards for single-case experimental studies. The Journal of 

Special Education, 49, 146-156.  

*Hodgetts, S., Magill-Evans, J., & Misiaszek, J. E. (2011). Weighted vests, stereotyped behaviors 



EVALUATING OUTCOMES   29 

and arousal in children with autism. Journal of Autism and Developmental Disorders, 41, 

805-14. 

Individuals with Disabilities Education Act Pub. L. No. 108-446, 1400 Stat. (2004).   

Kahng, S., Iwata, B. A, & Lewin, A. B. (2002). Behavioral treatment of self-injury, 1964 to 

2000. American Journal of Mental Retardation : AJMR, 107, 212-221. 

*Krombach, P. A. (2016). The effects of stability ball seating on children with autism spectrum 

disorder. Available from ProQuest Dissertations & Theses Global. (1781592012). 

Lang, R., O’Reilly, M., Healy, O., Rispoli, M., Lydon, H., Streusand, W., Davis, T., Kang, S., 

…Sigafoos, J. (2012). Sensory integration therapy for autism spectrum disorders: A 

systematic review. Research in Autism Spectrum Disorders, 6, 1004-1018.  

Ledford, J. R., Lane, J. D., & Severini, K. E. (2017). Systematic use of visual analysis for 

assessing outcomes. Manuscript in preparation.  

Ledford, J. R., Lane, J. D., Zimmerman, K. N., & Shepley, C. (2016, February). Bigger, better, & 

more complex: To what extent do newer overlap-based metrics adequately describe single 

case data? Poster presented at the Conference on Research Innovations in Early 

Intervention. San Diego, CA. 

Ledford, J. R., Wolery, M., & Gast, D. L. (2014). Controversial and critical issues in single case 

research. In D. L. Gast & J. R. Ledford (Eds.), Single Case Research Methodology, (pp. 

377-396). New York, New York: Routledge. 

*Leew, S. V., Stein, N. G., & Gibbard, W. B. (2010). Weighted vests' effect on social attention for 

toddlers with autism spectrum disorders. The Canadian Journal of Occupational Therapy, 

77, 113-24. 



EVALUATING OUTCOMES   30 

Leong, H. M., Carter, M., & Stephenson, J. (2015). Systematic review of sensory integration 

therapy for individuals with disabilities: Single case design studies. Research in 

Developmental Disabilities, 47, 334-351.  

Ma, H. H. (2006). An alternative method for quantitative synthesis of single-subject researches: 

Percentage of data points exceeding the median. Behavior Modification, 30, 598-617.  

Maggin, D. M., Briesch, A. M., Chafouleas, S. M., Ferguson, T. D., & Clark, C. (2014). A 

comparison of rubrics for identifying empirically supported practices with single-case 

research. Journal of Behavioral Education, 23, 287-311. 

Maggin, D. M., O’Keefe, B. V., & Johnson, A. H. (2011). A quantitative synthesis of 

methodology in meta-analysis of single-subject research for students with disabilities: 

1985-2009. Exceptionality, 19, 109-135.  

Marquis, J. G., Horner, R. H., Carr, E. G., Turnbull, A. P., Thompson, M., Behrens, G. A., … 

Doolabh, A. (2000). A meta-analysis of positive behavior support. In R. Gersten, E. P. 

Schiller, & S. Vaughan (Eds.), Contemporary Special Education Research: Syntheses of 

the Knowledge Base on Critical Instructional Issues (pp. 137-178). Mahwah, NJ: 

Lawrence Erlbaum Associates. 

May-Benson, T. A., & Koomar, J. A. (2010). Systematic review of the research evidence 

examining the effectiveness of interventions using a sensory integrative approach for 

children. American Journal of Occupational Therapy, 64, 403-414.  

O’Keefe, B. V., Slocum, T. A., Burlingame, C., Snyder, K., & Bundock, K. (2012). Comparing 

results of systematic reviews: Parallel reviews of research on repeated reading. Education 

and Treatment of Children, 35, 333-366.  

*Olson, N. A. (2015). Investigating stability balls in the classroom: Effects on student behavior 



EVALUATING OUTCOMES   31 

and academic productivity. Available from ProQuest Dissertations & Theses Global. 

(1686537353). 

Parker, R. I., Hagan-Burke, S., & Vannest, S. (2007). Percentage of all nonoverlapping data 

(PAND): An alternative to PND. Journal of Special Education, 40, 194-204.  

Parker, R. I., & Vannest, K. J. (2009). An improved effect size for single case research: 

Nonoverlap of all pairs (NAP). Behavior Therapy, 40, 357-367.  

Parker, R. I., Vannest, K. J., & Brown, L. (2009). The improvement rate differences for single-

case research. Exceptional Children, 75, 133-150.  

Parker, R. I., Vannest, K. J., & Davis, J. L. (2011a). Effect size in single-case research: A review 

of nine nonoverlap techniques. Behavior Modification, 35, 303-322.  

Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011b). Combining nonoverlap and 

trend for single-case research: Tau-U. Behavior Therapy, 42, 284-299.  

Plot Digitizer (2015). Retrieved from http://plotdigitizer.sourceforge.net. 

Pustejovsky, J. E. (2016a). Standard errors and confidence intervals for NAP. Retrieved from: 

http://jepusto.github.io/NAP-SEs-and-Cis.   

Pustejovsky, J. E. (2016b). Procedural sensitivities of effect sizes for single-case designs with 

behavioral outcome measures. Retrieved from: http://jepusto.github.io/working_papers/.  

Pustejovsky, J. E. (2016c). Tau-U. Retrieved from http://jepusto.github.io/Tau-U.  

Pustejovsky, J. E. (2016d). SCD-effect-sizes: A web application for calculating effect size indices 

for single-case designs (Version 0.1) [Web application]. Retrieved from: 

https://jepusto.shinyapps.io/SCD-effect-sizes 

Pustejovsky, J. E. (2016e). clubSandwich: Cluster-Robust (Sandwich) Variance Estimators with 

Small-Sample Corrections. R package version 0.2.1. https://cran.r-

http://plotdigitizer.sourceforge.net/
http://jepusto.github.io/NAP-SEs-and-Cis
http://jepusto.github.io/working_papers/
http://jepusto.github.io/Tau-U
https://jepusto.shinyapps.io/SCD-effect-sizes/
https://cran.r-project.org/package=clubSandwich


EVALUATING OUTCOMES   32 

project.org/package=clubSandwich  

Pustejovsky, J. E. (2014). Measurement-comparable effect sizes for single-case studies of free-

operant behavior. Psychological Methods, 20, 342-359. 

Pustejovsky, J. E. (2017). Using response ratios for meta-analyzing single-case designs with 

behavioral outcomes. http://doi.org/10.17605/OSF.IO/RX5WF  

Pustejovsky, J. E., & Ferron, J. M. (2017). Research synthesis and meta-analysis of single-case 

designs. In J. M. Kauffman, D. P. Hallahan, & P. C. Pullen (Eds.), Handbook of Special 

Education, 2nd Edition. New York, NY: Routledge. 

Pustejovsky, J. E., Hedges, L. V., & Shadish, W. R. (2014). Design-comparable effect sizes in 

multiple baseline designs: A general modeling framework. Journal of Educational and 

Behavioral Statistics, 39, 368-393. 

Pustejovsky, J., & Swan, D. (2015). Four methods for analyzing partial interval recording data, 

with application to single-case research. Multivariate Behavioral Research, 50, 365-380.  

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 

Rakap, S., Snyder, P., & Pasia, C. (2014). Comparison of nonoverlap methods for identifying 

treatment effect in single-subject experimental research. Behavioral Disorders, 39, 128-

145.  

*Reichow, B., Barton, E. E., Sewell, J. N., Good, L., & Wolery, M. (2010). Effects of weighted 

vests on the engagement of children with developmental delays and autism. Focus on 

Autism and Other Developmental Disabilities, 25, 3-11.  

Scruggs, T. E., Mastropieri, M. A., & Castro, G. (1987). The quantitative synthesis of single-

subject research: Methodology and validation. Remedial and Special Education, 8, 24-33.  

https://cran.r-project.org/package=clubSandwich
http://doi.org/10.17605/OSF.IO/RX5WF


EVALUATING OUTCOMES   33 

Shadish, W. R., Hedges, L. V., Horner, R. H., & Odom, S. L. (2015). The role of between-case 

effect sizes in conducting, interpreting, and summarizing single-case research. (NCER 

2015-002) Washington, DC: National Center for Education Research, Institute of 

Education Sciences, U.S. Department of Education.  

Shadish, W. R., Hedges, L. V, & Pustejovsky, J. E. (2014). Analysis and meta-analysis of single-

case designs with a standardized mean difference statistic: A primer and applications. 

Journal of School Psychology, 52, 123-147. 

Shadish, W. R., & Rindskopf, D. M. (2007). Methods for evidence-based practice: Quantitative 

synthesis of single-subject designs. New Directions for Evaluation,113, 95-109. 

Shadish, W. R., Rindskopf, D. M., & Hedges, L. V. (2008). The state of the science in the meta-

analysis of single-case experimental designs. Evidence-Based Communication Assessment 

and Intervention, 2, 188-196.  

Tarlow, K. R. (2016). An improved rank correlation effect size statistic for single-case designs: 

Baseline corrected tau. Behavior Modification. Advanced online publication.  

Tipton, E. (2015). Small sample adjustments for robust variance estimation with meta- regression. 

Psychological Methods, 20, 375–393.  

Tipton, E., & Pustejovsky, J. E. (2015). Small-sample adjustments for tests of moderators and 

model fit using robust variance estimation in meta-regression. Journal of Educational and 

Behavioral Statistics, 40, 604-634. 

*Tunson, J., & Candler, C. (2010). Behavioral states of children with severe disabilities in the 

multisensory environment. Physical & Occupational Therapy in Pediatrics, 30, 101-110. 

*Umeda, C., & Deitz, J. (2011). Effects of therapy cushions on classroom behaviors of children 

with autism spectrum disorder. American Journal of Occupational Therapy, 65, 152-9. 



EVALUATING OUTCOMES   34 

Van den Noortgate, W., & Onghena, P. (2008). A multilevel meta-analysis of single-subject 

experimental design studies. Evidence-Based Communication Assessment and 

Intervention, 2, 142-151. 

Vannest, K. J., & Ninci, J. (2015). Evaluating intervention effects in single-case designs. Journal 

of Counseling & Development, 93, 403-411. 

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of 

Statistical Software, 36, 1-48. 

Watling, R. & Hauer, S. (2015). Effectiveness of Ayres Sensory Integration and sensory-based 

interventions for people with autism spectrum disorder: A systematic review. American 

Journal of Occupational Therapy, 69, 1-8.  

Wendt, O., & Miller, B. (2012). Quality appraisal of single-subject experimental designs: An 

overview and comparison of different appraisal tools. Education and Treatment of 

Children, 35, 235-268.  

Wolery, M. (2013). A commentary: Single-case design technical document of the what works 

clearinghouse. Remedial and Special Education, 43, 39-43.   

Wolery, M., Busick, M., Reichow, B., & Barton, E. (2010). Comparison of overlap methods for 

quantitatively synthesizing single-subject data. Journal of Special Education, 44, 18-28. 

Yunus, F. W., Liu, K. P. Y., Bissett, M., & Penkala, S. (2015). Sensory-based intervention for 

children with behavioral problems: A systematic review. Journal of Autism and 

Developmental Disorders, 45, 3565-3579.  

  



EVALUATING OUTCOMES   35 

Table 1 

 

Summary of Included Studies 

 Year Design Intervention Cases Outcomes 

Cox 2009 ATD WV 2 1 

Hodgetts 2011 ABAB WV 3 1 

Krombach 2016 MBP SS 4 2 

Leew 2010 MBP WV 4 2 

Olson 2015 ABAB SS 1 5 

Reichow 2010 ATD WV 3 3 

Tunson 2010 ABAB MSE 2 1 

Umeda 2011 ABAB SS 2 2 

Note. Articles are indicated by first author. ATD=alternating 

treatments design. MBP=multiple baseline across participants 

design. WV=weighted vest. SS=sensory seating. MSE=multi-

sensory environment. Cases=total number of cases included in meta-

analytic summaries. Outcomes=total number of outcome variables 

included in meta-analytic summaries. 
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Table 2 

 

Sample Distribution Summary Statistics 

ES n Min Q1 Q2 Q3 Max Mean  

PND 63 0.00 0.00 0.04 0.33 1.00 0.22 

IRD 63 0.00 0.19 0.33 0.60 1.00 0.41 

Tau 63 -1.00 -0.25 0.16 0.55 1.00 0.15 

SMD 55 -4.02 -0.15 0.30 0.89 6.78 0.31 

LRRd 49 -4.23 -0.68 -0.07 0.16 1.82 -0.30 

LRRi 60 -0.72 -0.06 0.01 0.13 1.00 0.05 

Note. ES=effect size. n=number of included cases. Min=minimum. 

Q=quartile. Max=maximum. PND=percentage of non-overlapping data. 

IRD=improvement rate difference. SMD=standardized mean difference. 

LRRd=log response ratio decreasing. LRRi=log response ratio increasing. 
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Table 3 

 

Random Effects Meta-Analysis of Indices with Known Sampling Variances 

Category n Est. SE DF 95% CI Between SD Within SD 

Tau 

Overall 41 0.281 0.128 6.7 [-0.025, 0.587] 0.279 0.301 

DV Type     0.311 0.289 

Desirable 26 0.191 0.153 6.5 [-0.176, 0.559]   

Undesirable 15 0.434 0.196 4.5 [-0.085, 0.953]   

IV Type     0.339 0.303 

Weighted Vest 22 0.281 0.058 2.9 [0.094, 0.468]   

Sensory Seating 17 0.294 0.370 1.9 [-1.377, 1.964]   

MSE 2 0.162 - - -   

SMD 

Overall 38 0.340 0.161 6.7 [-0.044, 0.725] 0.377 0.000 

DV Type     0.407 0.000 

Desirable 25 0.259 0.211 6.2 [-0.252, 0.770]   

Undesirable 13 0.508 0.244 3.4 [-0.220, 1.236]   

IV Type     0.445 0.000 

Weighted Vest 19 0.314 0.077 2.9 [0.063, 0.565]   

Sensory Seating 17 0.410 0.467 2.0 [-1.616, 2.436]   

MSE 2 0.198 - - -   

LRRd 

Overall 36 -0.269 0.181 6.0 [-0.711, 0.173] 0.417 0.241 

DV Type      0.440 0.224 

Desirable 23 -0.212 0.217 5.7 [-0.750, 0.327]   

Undesirable 13 -0.429 0.389 4.4 [-1.472, 0.613]   

IV Type      0.439 0.244 

Weighted Vest 19 -0.175 0.063 3.0 [-0.375, 0.024]   

Sensory Seating 17 -0.385 0.453 2.0 [-2.343, 1.573]   

LRRi 

Overall 38 0.027 0.060 5.6 [-0.122, 0.177] 0.132 0.076 

DV Type     0.128 0.076 

Desirable 23 0.052 0.061 5.5 [-0.100, 0.205]   

Undesirable 15 0.000 0.070 5.0 [-0.179, 0.180]   

IV Type     0.142 0.078 

Weighted Vest 21 -0.023 0.065 2.8 [-2.40, 0.194]   

Sensory Seating 17 0.079 0.118 2.0 [-0.431, 0.589]   
Note. n=total number of cases. SE=standard error. DF=degrees of freedom. CI=confidence interval. Tau=Kendall’s 

tau for non-overlap between groups. SMD=between-case standardized mean difference with a Hedges’ g small 

sample correction. LRRd=log response ratio decreasing. LRRi=log response ratio increasing. DV=dependent 

variable. IV=independent variable. MSE=multi-sensory environment. - =  computation unavailable because only one 

article is included. 
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Table 4 

 

Simple Un-Weighted Averages for Indices without Known Sampling Variances 

Category n Estimate SE DF 95% CI 

PND 

Overall 41 0.223 0.090 5.3 [-0.005, 0.451] 

DV Type     

Desirable 26 0.257 0.129 4.6 [-0.082, 0.595] 

Undesirable 15 0.164 0.088 2.5 [-0.148, 0.476] 

IV Type     

Weighted Vest 22 0.143 0.074 2.1 [-0.159, 0.446] 

Sensory Seating 17 0.352 0.167 1.8 [-0.433, 1.136] 

MSE 2 -0.000 - - - 

IRD 

Overall 41 0.430 0.067 5.3 [0.261, 0.598] 

DV Type      

Desirable 26 0.438 0.108 4.6 [0.154, 0.721] 

Undesirable 15 0.416 0.055 2.5 [0.221, 0.610] 

IV Type     

Weighted Vest 22 0.408 0.006 2.1 [0.383, 0.434] 

Sensory Seating 17 0.486 0.168 1.8 [-0.304, 1.276] 

MSE 2 0.187 - - - 
Note. n=total number of cases. SE=standard error. DF=degrees of freedom. CI=confidence interval 

PND=percentage of non-overlapping data. IRD=improvement rate difference. DV=dependent 

variable. IV=independent variable. MSE=multi-sensory environment. - =  computation unavailable 

because only one article is included. 

 


