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Correction for Item Response Theory Latent Trait Measurement Error in Linear Mixed Effects 
Models 

 
 

Abstract 
 

When latent variables are used as outcomes in regression analysis, a common approach that is 

used to solve the ignored measurement error issue is to take a multilevel perspective on item 

response modeling (IRT). Although recent computational advancement allow efficient and 

accurate estimation of multilevel IRT models, we argue that a two-stage divide-and-conquer 

strategy still has its unique advantages. Within the two-stage framework, three methods that take 

into account heteroscedastic measurement errors of the dependent variable in stage II analysis 

are introduced, they are the closed-form marginal MLE (MMLE), the Expectation Maximization 

(EM) algorithm, and the moment estimation method. They are compared to the naïve two-stage 

estimation and the one-stage MCMC estimation. A simulation study is conducted to compare the 

five methods in terms of model parameter recovery and their standard error estimation. The pros 

and cons of each method are also discussed to provide guidelines for practitioners. Finally, a real 

data example is given to illustrate the applications of various methods using the National 

Educational Longitudinal Survey data (NELS 88). 
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It is not uncommon to have latent variables as dependent variables in regression analysis. 

For instance, the item response theory (IRT) scaled θ score is often used as an outcome measure 

to make high-stakes decisions such as evaluating performance of individual teachers or schools. 

However, there exist potential errors in estimating the latent θ scores (or any other latent 

variables from factor analysis perspective), and ignoring the measurement errors will adversely 

bias the subsequent statistical inferences (Fox & Glas, 2001, 2003). In particular, measurement 

error can diminish the statistical power of impact studies, yield inconsistent or biased estimates 

of model parameters (Lu, Thomas, & Zumbo, 2005), and weaken the ability of researchers to 

identify relationships among different variables affecting outcomes (Rabe-Hesketh & Skrondal, 

2004). The consequence can be especially severe when the sample size is small, the hierarchical 

structure is sparsely populated, or when the number of items is small (e.g., Zwinderman, 1991).  

When measurement error follows a normal distribution with a constant variance, 

correcting for the error can be easily handled via reliability adjustment (e.g., Bollen, 1989; 

Hsiao, Kwok, & Lai, 2018). The main challenge of having IRT θ score as dependent variable is 

that the measurement error in 𝜃෠ is heteroscedastic with its variance depending on true θ. With the 

growing computational power nowadays, a recommended approach to address the measurement 

error challenge is to use an integrated multilevel IRT model (Adams et al., 1997; Fox & Glas, 

2001, 2003; Kamata, 2001; Pastor & Beretvas, 2006; Wang, Kohli, & Henn, 2016) such that all 

model parameters are estimated simultaneously. This unified one-stage approach incorporates 

the standard errors of the latent trait estimates into the total variance of the model, avoiding the 

possible bias when using the estimated 𝜃 as the dependent variable in subsequent analysis.  

Despite the statistical appeal of the one-stage approach, we advocate that a “divide-and-

conquer” two-stage approach has its practical advantages. In the two-stage approach, an 
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appropriate measurement model is first fitted to the data, and the resulting 𝜃෠ scores are used in 

subsequent analysis. This idea is in the same spirit as “factor score regression” proposed decades 

ago (Skrondal & Laake, 2001). The benefit of this approach includes clearer definition of 

factors, convenience for secondary data analysis, convenience for model calibration and fit 

evaluation, and avoidance of improper solutions. Indeed, it is known that unless an adequate 

number of good indicators of each latent factor are available, improper solutions (a.k.a., 

Heywood cases, negative variance estimates) can occur.  Anderson and Gerbing (1984) found 

that with correct models, their simulation showed 24.9% of replications had improper solutions. 

With improper solutions, test statistics no longer have their assumed distributions, and 

consequently statistical inference and model evaluation become difficult (e.g., Stoel, Garre, 

Dolan, & van den Wittenboer, 2006).  

Moreover, it has been known that partial misspecification in a model causes large bias in 

the estimates of other free parameters in structural equation modeling (SEM). In the presence of 

misspecification, a one-step approach will suffer from interpretational confounding (Burt, 1973, 

1976), which refers to the inconsistency between the empirical meaning assigned to an 

unobserved construct and the a priori meaning of the construct. The potential for interpretation 

confounding is minimized when the two-step estimation approach is employed (Anderson & 

Gerbing, 1988). Furthermore, the specification errors in particular parts of an integrated model 

can be isolated by using the separate estimation approach.  

Another compelling argument in support of two-stage estimation is the convenience for 

secondary data analysis. In a large-scale survey such as NAEP or NELS88, usually hundreds of 

test items and educational, demographic, and attitudinal variables are included, such that droves 

of descriptive statistics, multiple regression analyses, and SEM models might be entertained.  In 
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this case, neither carrying out all of these analyses nor providing sufficient statistics for them is 

feasible. Oftentimes, these survey data provide either item parameters, or estimated 𝜃’s along 

with their standard errors. Hence, the methods introduced in this paper will come in handy to 

handle secondary data analysis with limited available information. 

In this paper, we investigate different methods of addressing the measurement error 

challenge within a two-stage framework. These methods will be compared to the naïve two-stage 

method and an integrative one-stage Markov chain Monte Carlo (MCMC) method (Fox & Glas, 

2001, 2003; Wang & Nydick, 2015) in a simulation study. We intend to show that the proposed 

two stage methods outperform the naïve method and they produce comparable results to the 

MCMC method.  

 

1. Literature Review 

With the advent and popularity of Item Response Theory (IRT), the IRT-based scaled 

scores (i.e., θ) has been widely used as an indicator of different latent traits, such as academic 

achievement in education. Hence, θ is treated as a dependent variable in various statistical 

analysis, including simple descriptive statistics (Fan, Chen, & Matsumoto, 1997), two sample t-

test (Jeynes,1999), multiple regression (Goldhaber & Brewer, 1997;  Nussbaum, Hamilton, & 

Snow, 1997), analysis of variance (ANOVA, Cohen, Bottge, & Wells, 2001), linear mixed 

models (Hill, Rowan, & Ball, 2005), hierarchical linear modeling (Bacharach, Baumeister, & 

Furr, 2003), and latent growth curve modeling (Fraine, Damme, & Onghena, 2007). In all these 

cited studies, θ scores were first obtained from separate IRT model fitting, and then they were 

used as variables in different statistical models as if they were “true” values without 

measurement errors.  Complications arise, however, if the latent θ scores were estimated with 

non-ignorable measurement errors. 
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If a linear test when a fixed number of items is given to students, the resulting 

measurement error (or standard error, SE) typically follows a bowl shape with SE being smaller 

when the true latent trait is in the middle (e.g., Kolen, Hanson, & Brennan, 1992; Wang, 2015) of 

the θ scale. When an adaptive test is given to students, the resulting SE is more of a uniform 

shape (e.g., Thompson & Weiss, 2011; van der Linden & Glas, 2010). The differential SE, 

depending on the true θ level and test mode, complicates the treatment of measurement error 

issue in the subsequent statistical analysis. 

There are quite a few studies that have accounted for the measurement errors in 𝜃෠ 

assuming a constant measurement error term.  In other words, simple measurement error models 

precipitate corrections to estimate “true” variances and correlations from their “observed” 

counterparts. For instance, Hong and Yu (2007) analyzed the Early Childhood Longitudinal 

Study Kindergarten Cohort (ECLS-K) data using a multivariate hierarchical model to study the 

relationship between early-grade retention and children’s reading and math learning. Let tijY  

denote child i’s T-score 1in school j in Year t, then the level-1 model in their analysis is 

generically expressed as  

2,     ~ (0, )tij tij tij tij tY T e e N   .                                               (1) 

The test reliability was then used to compute the error variance 2
t  in each year. Although 

correctly accounting for measurement error improves the estimation precision, this treatment 

overlooks the fact that the measurement error of IRT θ scores is not constant across the θ scale.  

A statistically sound approach that follows through the assumption of IRT is to let 

2~ (0, )tij tije N  , however, the relaxation of the common variance assumption in Equation (1) 

                                                            
1 The T-score is a standardized score, which was in fact a transformation of an IRT θ score. 
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imposes computational complexity to the model. The objective of this paper, therefore, is to 

investigate methods for addressing challenging measurement error issues in the two-stage 

approach. We need to acknowledge that this paper only focuses on the measurement errors 

occurred on the dependent variables, whereas there is extensive literature on dealing with 

measurement errors in covariates (i.e., independent variables). Methods for the latter scenario 

may include the method-of-moment (Carroll, et al., 2006; Fuller, 2006), simulation-extrapolation 

(Carroll et al., 2006; Devanarayan & Stefanski, 2002), and latent regression (Bianconcini & 

Cagnone, 2012; Bollen, 1989; Skrondal & Rabe-Hesketh, 2004).  For a comparison of methods, 

please refer to Lockwood and McCaffrey (2014). 

 The rest of the paper is organized as follows. First, we will introduce the multilevel 

model that is considered throughout the study. In other applications, both the measurement 

model and the structural model can take other forms as long as the latter is a linear mixed effects 

model, and all methods introduced in the paper still apply. Second, four different methods are 

introduced within the two-stage framework, including a naïve method. Then, a simulation study 

is designed to evaluate and compare the performance of different methods, followed by a real 

data example. A discussion is given in the end that summarizes the pros and cons of each 

method. 

 

2. Models 

The model is comprised of two main levels, the measurement model and structural 

model. In this paper, we will focus specifically on the linear mixed effects model (LME) as the 

structural model in stage II inference. In particular, we will base the discussion on the scenario of 

longitudinal assessment, i.e., modeling individual and group level growth trajectories of student 

latent abilities over time via the latent growth curve model (LGC). Because the LGC model 
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belongs to the family of LME models, the methods introduced in this paper can be easily applied 

in all specific types of LME models for different nested structures.  

At the measurement model level, the three-parameter logistic (3PL) model (Baker & 

Kim, 2004) is considered. The probability for a correct response 𝑦௜௝௧ at time t (t = 1,..., T) for 

item j (j = 1,..., J) and person i (i = 1,..., N) can be written as 

1
( 1 , , , ) (1 )

1 exp ( )
ijt it jt jt jt jt jt

jt it jt

P y a b c c c
D a b




   
    

,                        (2) 

where D is a scaling constant that usually set to be 1.7. 𝑎௝௧, 𝑏௝௧, and 𝑐௝௧ are the discrimination, 

difficulty, and pseudo-guessing parameter of item j at time t , and 𝜃௜௧ is the ability of person i at 

time t . In longitudinal assessment, although the item parameters could differ across time (i.e., 

the subscript t is embedded for item parameters in (2)), anchor items need to be in place to link 

the scale across years (e.g., Wang, Kohli, Henn, 2016). 

In the structural model level, we have a LME model with 𝜽௜ as dependent variables 

written as follows 

𝜽௜ ൌ 𝑿௜𝜷 ൅ 𝒁𝒖௜ ൅ 𝒆௜ .        (3) 

Considering the LGC model as a special case of (3), if assuming a unidimensional 𝜃௜ is measured 

per time point, then both 𝜽௜ and 𝒆௜ are T-by-1 vectors. 𝑿௜ and 𝒁 are the T-by-p and T-by-q design 

matrices, and β and 𝒖௜ are p-by-1 and q-by-1 vectors denoting fixed and random effects 

respectively. T is the total number of time points. In a more general case, 𝒁 can also differ across 

individuals (𝒁௜). 
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For the rest of the paper, we consider a simplest linear growth pattern, i.e., X ≡ 𝒁 ൌ 

1 0

1 1

1 1T

 
 
 
 
  

 
. But the methods discussed can be easily generalized to the conditions when X and 𝒁 

differ. For instance, if one is interested in the treatment effect, and let 𝑔௜ denote the observed 

covariate of treatment, with 𝑔௜ ൌ 1 indicating person i belongs to the treatment group, and 0 

otherwise. Then 𝑿௜ is updated as 𝑿௜ ൌ ሺ𝒁,𝑔௜ ൈ 𝟏ଵൈସሻ  whereas Z stays the same. Similarly, if 

one is interested in the treatment by time interaction, then 𝑿௜ ൌ ሺ𝒁,𝑔௜ ൈ ሾ0, 1, … ,𝑇 െ 1ሿ୲ሻ where 

the superscript “t” denotes the transpose throughout the paper.  

  The random effects, 𝒖௜, are typically assumed to follow multivariate normal 

distribution,    

𝒖௜ ൌ ቀ
𝑢଴௜
𝑢ଵ௜

ቁ~𝑀𝑉𝑁 ቀ𝝁 ൌ ቀ0
0
ቁ ,∑௨ ൌ ቂ

𝜏଴଴ 𝜏଴ଵ
𝜏ଵ଴ 𝜏ଵଵ

ቃቁ, 

and for simplicity, we assume an independent error structure, i.e., 2~ (0, )ite N  . 

 If a multivariate  latent trait  (i.e., D dimensions) is measured at each time point, let 𝜽௜ ൌ

ሾ𝜃௜ଵଵ, … , 𝜃௜ଵ், … ,𝜃௜஽ଵ, … ,𝜃௜஽்ሿ௧ with the first T elements refer to the latent trait at dimension 1 

across T time points, Equation (3) still holds. But X becomes a (D×T) -by-(D×2) matrix taking 

the form of  𝑰஽⨂

1 0

1 1

1 1T

 
 
 
 
  

 
,  where 𝑰஽ is an identity matrix of size D-by-D, and ⨂ is the 

kronecker product. β ൌ ሺ𝛽଴ଵ, … ,𝛽଴஽,𝛽ଵଵ, … ,𝛽ଵ஽ሻ௧ and 𝒖௜ ൌ ሺ𝑢௜଴ଵ, … ,𝑢௜଴஽,𝑢௜ଵଵ, … ,𝑢௜ଵ஽ሻ௧  both 

become (D×2) -by-1 vectors of fixed and random effects respectively.  
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3. Model Estimation 

3.1 Unified One-stage Estimation 

To estimate the multilevel IRT model simultaneously, the current available estimation 

methods include, but are not limited to, the generalized linear and nonlinear methodologies 

described in De Boeck and Wilson (2004), the generalized linear latent and mixed model 

framework of Skrondal and Rabe-Hesketh (2004), Bayesian methodology of Lee and Song 

(2003) including the Gibbs sampler and Markov chain Monte Carlo (MCMC, Fox & Glas, 2001, 

2003; Fox, 2010). These methods are suitable for a general family of models allowing 

linear/nonlinear relations among normal latent variables and a variety of indicator types (e.g., 

ordinal, binary). 

Among them, the first two approaches require numerical integration and calculation of 

the likelihood, which becomes computationally prohibitive or even impossible when the model is 

complex or the number of variables is large. Rabe-Hesketh and Skrondal (2008) admitted that 

“estimation can be quite slow, especially if there are several random effects”. The Bayesian 

approach requires careful selection of prior distributions for each parameter, which might not 

come naturally for researchers who are unfamiliar with Bayesian methods. Other methods that 

supposedly alleviate the high-dimensional challenge (von Davier & Sinharay, 2007) include: 

adaptive Gaussian quadrature (Pinheiro & Bates, 1995), limited-information weighted least 

squares (WLS), and graphical models approach (Rijmen, Vansteelandt, & De Boeck, 2008). All 

of these methods have proven to work well in respective studies. Even so, a divide-and-conquer 

two-stage estimation approach still has its own advantages (e.g., reasons presented at the 

beginning) and it is the main focus of this paper. Given the flexibility MCMC offers to deal with 

the 3PL model, we will use it as a comparison to the two-stage estimation methods.  
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3.2 Two-stage Estimation 

Let Ψ = (β, ∑௨, 𝜎ଶ) denote the set of structural parameters of interest, and let 

( , , )M  a b c  denote the set of item parameters pertaining only to the measurement part of the 

integrated model (Skrondal & Kuha, 2012).  Throughout this paper, we assume the item 

parameters ( , , )M  a b c  are known to alleviate any propagation of errors (such as sampling 

error) from item parameter calibration. For readers who are concerned about item calibration 

errors, please refer to the method proposed in Liu and Yang (2018), namely, the Bootstrap-

calibrated interval estimation approach.  

Within the divide-and-conquer two-stage estimation scheme, because the latent outcome 

variable 𝜽௜  (for person i) is measured with error, instead of observing 𝜽௜, one only observes 𝜽෡௜ 

from stage-one IRT calibration, and   

𝜽෡௜ ൌ 𝜽௜ ൅ 𝜺௜,                                                                  (4) 

where  𝜺௜ is the vector of measurement errors with a mean 0 and covariance matrix, 𝚺ఏ೔.  𝚺ఏ೔ is 

also known as the error covariance matrix, the magnitude of which depends on many factors, 

including (1) test information at 𝜽௜, which also depends on whether the test is delivered via 

linear mode or adaptive mode; and (2) IRT model data fit. In the first stage, both 𝜽෡௜ and 𝜺ො௜ are 

estimated.  Either the Maximum a Posteriori (MAP) or the Expected a Posteriori (EAP) is used 

to obtain the point estimate of  𝜽෡௜ along with the error covariance matrix estimate, 𝚺෡ఏ೔, for each 

person separately. Chang and Staut (1993) have shown that when test length is sufficiently long 

and when MLE is used, 𝜀௜ will follow normal distribution with mean 0 and variance proportional 

to the inverse of the Fisher information evaluated at true 𝜃௜, i.e., 1( )
i iI  . Their results can 

be generalized to multidimensional θ’s and to MAP (e.g., Wang, 2015).  Even though true 𝜃௜ is 
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unknown in practice, we have Ʃ෠ఏ೔ ൎ 𝑰ିଵሺ𝜽෡௜ሻ by plugging in 𝜽෡௜  instead of 𝜽௜. That is, using 

𝑰ିଵሺ𝜽෡௜ሻ  as a proxy to the error variance of 𝜽෡௜ is still viable as long as 𝜽෡௜ is close to the true 

value (e.g., Koedel, Leatherman, & Parons, 2012; Shang, 2012). Although Lockwood and 

McCaffrey (2014) argued that 𝐸ൣ𝑰ିଵሺ𝜽෡௜ሻ  ൧ is likely an overestimate of 𝐸ሾ𝑰ିଵሺ𝜽௜ሻ  ሿ, and such a 

positive bias can lead to systematic errors in measurement error correction based on test 

reliability, this bias is no longer problematic in our methods because we treat each  𝜽෡௜ and 𝚺෡ఏ೔ 

individually, and we do not need a reliability estimate from 𝐸ൣ𝑰ିଵሺ𝜽෡௜ሻ  ൧ to correct for 

measurement error.  

Given the linear mixed effects model defined in Equation (3), the likelihood of both 

random and fixed effects is therefore  

2

1

( ; , ) ( ; , )
N

i i i T i u
i

  


   0X Zu I u   ,                                        (5) 

where N denotes sample size and (.)  denotes the multivariate normal density. The likelihood in 

Equation (5) assumes that the random effect follows a multivariate normal distribution with a 

covariance matrix of ∑௨. A non-normal distribution of the random effect is also allowed if 

needed. Maximum likelihood estimation proceeds with integrating out the random effects first, 

leading to a marginal likelihood of  

2

1

( ; , ) ( ; , )
N

i i i T i u
i

d  


   0X Zu I u u    ,                                    (6) 

which needs to be maximized to find the solution of 2 ˆˆ ˆ, , u  . Then the individual coefficient 𝒖௜ 

will be predicted via the best linear unbiased predictor (BLUP).  

 Combining the linear mixed effects model in Equation (3) with the measurement error 

model in (4), the likelihood in Equation (5) is updated as  
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2

1

ˆˆ( , ) = ( ; , ) ( ; , ) ( ; , )
i

N

i i i T i u i i
i

L     


   0u X Zu I u       ,                     (7) 

in which case both random coefficient 𝒖௜ and latent factors 𝜽௜ need to be integrated to obtain the 

marginal likelihood. In Equation (7), (.) denotes the density of the measurement error 

distribution. Therefore, the joint log-likelihood of Ψ= (β, ∑௨, 𝜎ଶ) based off (7) is written as 

 2

1 1

ˆˆ( , ) ( , ) log ( ; , ) log ( ; , ) log ( ; , )
i

N N

i i i i i T i u i i
i i

l l      
 

        0u u X Zu I u         .  

(8) 

This equation will be used throughout the following explication.  

We need to emphasize that the discussion hereafter is based on the assumption that the 

measurement error follows normal or multivariate normal distribution with error covariance 

matrix  𝚺෡ఏ೔. Diakow (2013) suggested using Warm (1989)’s weighted maximum likelihood in 

stage I along with a more precise version of the asymptotic standard error (Magis & Raiche, 

2012).  As the paper unfolds below, the non-normal measurement error distribution is also 

allowed in the method described in section 3.2.3. In fact, both methods provided in sections 3.2.2 

and 3.2.3 are suitable for a level-1 variance-known problem (Raudenbush & Bryk, 2002, chapter 

7), and our goal is to provide an accurate method for secondary data analysis that is convenient 

and understandable for applied research (Diakow, 2013).  

3.2.1 Method I: Marginalized MLE (MMLE) 

When both (.)  and (.)  in Equation (8) follow or can be well approximated by a normal 

distribution (or multivariate normal), it can be derived that the marginal likelihood of the 

combined model, after integrating out both random coefficient 𝒖௜ and latent factors 𝜽௜ in (8), has 

a closed form up to a certain constant (for detailed derivations, please see Appendix A) 
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expressed below. To be specific, given the joint likelihood in Equation (7), the marginal log-

likelihood of the target model parameters can be shown to be  

2 * 2 1
2

1

2 21 2 1/2 1 2 * 1/2 *

1

ˆ( ) log ( ) log (log log )

ˆ ˆ ˆ          ( ) ( ) ( )

i i

i i i i

N

u i u T
i

N

T i i u u
i

N
l L N 

 




 





    



      

     
 





  

  

X I

I X

  

  
           (9) 

where 

* 1 1 2 4 2 1 1ˆ( )
i i

t t
u u T              Z Z Z I Z ,  and                        (10) 

                       * 2 2 1 1 1 2ˆ ˆ ˆ( ) ( ) ( )
i i i

t t
u i T i i           Z X Z I X       .                           (11) 

In above equations, �  denotes the determinant of a matrix, and 
2
 denotes an inner product of 

a vector. The closed form marginal likelihood for the longitudinal MIRT model is also presented 

in the Appendix A.  

 The MMLE proceeds with maximizing the closed-form marginal log-likelihood in (9). 

The ‘optim’ function in ‘stats’ library of R is used for solving the maximization problem. This 

function provides general purpose optimization based on Nelder-Mead, quasi-Newton, and 

conjugate-gradient algorithms. It allows for user-specified box constraints on parameters. Instead 

of using the default Nelder-Mead method (Nelder & Mead, 1965) which tends to be slow, we 

choose to use “L-BGFS-B” method available in the function because our objective function in 

(9) is differentiable. In particular, BGFS is the quasi-Newton method proposed by Broyden 

(1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970), which uses both function values 

and gradients to construct a surface to be optimized. L-BGFS-B is then an extension of BGFS 

(Byrd et al., 1995) that allows box constraints in which each variable is given a lower and/or 

upper bound as long as the initial values satisfy the constraints. In our application, the constraints 
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include -1000< 𝛽଴, 𝛽ଵ<1000, 0.001<𝜎௨బ, 𝜎௨భ<5, -.99<ρ<0.99, and 0.001<𝜎ଶ<10002. The initial 

values for all parameters are set at 0.1. Both the parameter point estimates and their standard 

errors are output from the function, with the former being the final estimates upon convergence, 

and the latter obtained from the Hessian matrix. In some extreme cases when Hessian matrix is 

not available, we use numeric differentiation available in the ‘numDeriv’ package instead.  

3.2.2 Method II: Expectation-Maximization (EM) 

In this section, we will describe an alternative method to resolve the challenge of high-

dimensional integration involved in the marginal likelihood. It is complementary to Method I 

when the closed-form marginal likelihood is not available, or when the numeric optimization 

fails to converge properly. 

In particular, when treating the random effects and latent variables, 𝒖௜ and 𝜽௜, as missing 

data, this method proceeds iteratively between the expectation (E) and maximization (M) steps 

until convergence. At the (m+1)th iteration, in the E-step, take the expectation of log-likelihood 

with respect to the posterior distribution of 𝒖௜ and 𝜽௜ as 

( ) ( )

1

ˆˆˆ ˆ( | ) ( , , ) ( , | , , )
i

N
m m

i i i i i i i
i

E l f d d


        u u u ,                     (12) 

where ( )ˆˆ ˆ( , | , , )
i

m
i i if u     denotes the posterior distribution, and ( , , )i il   u takes the form in 

Equation (8). The integration in (12) can be obtained easily when one samples directly from the 

posterior distribution, such that  

( )

1 1

1
ˆ( | ) ( , )

QN
m q q

i i
i q

E l
Q 

 
  

 
  u   ,                                         (13) 

                                                            
2 Originally, 𝚺௨ needs to be constrained to be non-negative definite. However, this is not a box-constraint 
that ‘optim’ function can handle. We therefore impose constraints on the variance and correlation terms.  
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where ( , )q q
i iu is the qth draw from the posterior distribution, and Q is the total number of Monte 

Carlo draws. This Monte Carlo based integration is appropriate even if the measurement error or 

random effects does not follow normal distributions, and hence we consider this approach more 

general than the MMLE method.  

If both the measurement error and random effects are indeed normal, then the conditional 

expectation in (12) has a closed form which can be directly computed without resorting to 

numeric integration. That is, given  𝜽෡௜ and ∑෡ఏ೔
ିଵ from Stage I estimation and  ( )ˆ m from the mth 

EM cycle, the joint posterior distribution of (𝜽௜,𝒖௜) follows a multivariate normal, with a 

variance of 

∑෡ሺ௠ሻ ൌ ቈ
ሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ ൅ ∑෡ఏ೔

ିଵ െሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ𝒁

െ𝒁௧ሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ ሺ∑෡௨
ሺ௠ሻሻିଵ ൅ 𝒁௧ሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ𝒁

቉

ିଵ

≡ ൤
∑ଵଵ ∑ଵଶ

∑ଶଵ ∑ଶଶ൨
ିଵ

.        (14) 

and a mean of 

൥
𝝁ෝఏ
ሺ௠ሻ

𝝁ෝ௨
ሺ௠ሻ൩

ൌ ቈ
ሺ∑ଵଵ െ ∑ଵଶሺ∑ଶଶሻିଵ∑ଶଵሻିଵൣ∑෡ఏ೔

ିଵ𝜽෡௜ ൅ ሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ𝑿𝒊𝜷෡ሺ௠ሻ ൅ ∑ଵଶሺ∑ଶଶሻିଵ𝒁௧ሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ𝑿𝒊𝜷෡ሺ௠ሻ൧

ሺ∑ଶଶ െ ∑ଶଵሺ∑ଵଵሻିଵ∑ଵଶሻିଵൣെ𝒁௧ሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ𝑿𝒊𝜷෡ሺ௠ሻ െ ∑ଶଵሺ∑ଵଵሻିଵ൫∑෡ఏ೔
ିଵ𝜽෡௜ ൅ ሺ𝜎ොଶሺ௠ሻ𝑰ሻିଵ𝑿𝒊𝜷෡ሺ௠ሻ൯൧

቉ 

    (15) 

 M-step proceeds with maximizing the conditional expectation in (12) with respect to  . 

Given the form of ( , , )i il   u  in Equation (8), β, ∑௨, 𝜎ଶ all have the closed form solution as 

follows, which greatly simplifies the maximization step, 

1

( 1) ( ) ( )

1 1

ˆ ( ) ( )
N N

m t t m t m
i i i i i

i i

E E




 

         
  X X X Z u ,                               (16) 
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 ( ) ( 1) ( 1)

12( 1)
ˆ ˆ( ) ( )

ˆ

N m m t m
i i i i i iim

E

N T


 


   



    X Zu X Zu

,                         (17) 

( )
( 1) 1

( )ˆ
N m t

i im i
u

E

N
   u u

 .                                               (18) 

The notation of 𝐸ሺ௠ሻ indicates that, at the (m+1)th EM cycle, the expected values in (16)~(18) 

are obtained from the first and second moments of the posterior multivariate normal distribution 

( )ˆˆ ˆ( , | , , )
i

m
i i if u    with mean and variance specified in (14) and (15). Equation (17) adopts 

the expectation conditional maximization (ECM) idea in Meng and Rubin (1993) in that the 

closed-form solution for residual variance only exists conditioning on the updated parameter 

( 1)ˆ m . The ECM algorithm shares all the appealing convergence properties of EM. 

 If the measurement model is the multidimensional IRT model with D dimensions, and if 

the residual error covariance matrix is still assumed to be diagonal, then the aforementioned EM 

algorithm only needs to be modified minimally. In particular, in the E-step, one simply needs to 

replace 𝑰்  with 𝑰஽், whereas 𝚺௨ and 𝑿௜ take the updated forms. In the M-step, at the (m+1)th 

iteration, the closed-form update for  𝜷෡ሺ௠ାଵሻ stays exactly the same as in (16). The update for 

2( 1)ˆ m   is modified as  

 ( ) ( 1) ( 1)

12( 1)
ˆ ˆ( ) ( )

ˆ

N m m t m
i i i i i iim

E

N D T


 


   


 
    X Zu X Zu

.                    (19) 

 The standard error of the parameter estimates are obtained using the supplemented EM 

algorithm (Dempster, Laird, & Rubin, 1977; Cai, 2008). The principle idea is reiterated briefly as 

follows. The large sample error covariance matrix of MLE is known to be 

1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( )[ ( )]c d
    I   V Y I Y I  ,                                   (20) 
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where ˆ( )I Y is the Fisher information matrix based on observed response data, Y. ˆ( )c I  is the 

natural by-product of the E-step as it is simply the second derivative of Equation (12) with 

respect to all elements in Ψ.  ˆ( )  is the fraction of missing information, which can be obtained 

via numerical differentiation as  

ˆ

( )
ˆ( )

M





  



 ,                                                    (21) 

where ( )M  defines the vector-valued EM map as ( 1) ( )( )m mM   . Upon convergence,

ˆ ˆ( )M  . For details regarding the calculation of ˆ( ) in general, please refer to Cai (2008) or 

Tian, Cai, and Xin (2013). We use a direct forward difference method (i.e., Eq. 8 and 9 in Tian et 

al., 2013) with a perturbation tuning parameter η=1.  For details with respect to the specific form 

of ˆ( )c I , please see Appendix B.  

3.2.3 Method III: Moment Estimation Method 

If framing the estimation problem from a slightly different perspective, the linear mixed 

effects model in Equation (3) actually leads to the mean and covariance structure as follows, 

µఏ ൌ 𝐸ሺ𝜽௜ሻ ൌ 𝑿௜𝜷 ; 𝚺ఏ ൌ 𝒁𝚺௨𝒁௧ ൅ 𝜎ଶ𝑰்.                                           (22) 

It implies that to recover the structural parameters, Ψ=(β, ∑௨, 𝜎ଶ), only the ˆ  and ˆ
Σ  (i.e., 

estimated population mean and covariance of θ) need to be obtained in Stage I, rather than the 

individual point estimate of 𝜽௜ and Ʃఏ೔. This is consistent with the traditional wisdom in 

structural equation modeling (SEM), in which the inputs can be the mean and covariance matrix 

rather than the raw data. In our application, we assume 𝜃௜௧’s follow multivariate normal in the 

population. When this assumption is satisfied, the mean and covariance contain all information 

(i.e., sufficient statistics), and when this assumption is violated, this method may still provide 

robust, consistent parameter estimates.  
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In stage I, the 𝜽௜ and Ʃఏ೔ are estimated from raw response data via the EM algorithm 

(Mislevy, Beaton, Kaplan, & Sheehan, 1992). In particular, without imposing any particular 

growth pattern on latent traits over time, the full joint likelihood is 

   1

, ,

, | , , , (1 ) , ,ijt ijty y

ijt ijt i
i j t

L p p    μ Σ μ Σy a b c  ,                         (23) 

where 𝜙 ሺ∙ሻ again denotes multivariate normal density. Then in the E-step, for the (m+1)th 

cycle,  the conditional expectation of (µ𝜽,∑𝜽) is 

 ( ) ( ) ( ) ( )ˆ ˆˆ ˆ(log ( , ) | , ) , | , , , ( | , , )m m m mE L l P d        Σ Σ μ Σ Σy a b c y     ,               (24) 

where the integral can be obtained via Monte Carlo integration by drawing Q samples of 𝜽௤’s 

from multivariate normal with mean ( )ˆ m
  and covariance ( )ˆ m

Σ . 

M-step follows with maximizing the conditional expectation in (24) with respect to 

( , ) Σ , using the following closed-form expressions,   

( 1) ( ) ( )

1

( 1) ( ) ( ) ( ) ( )

1

1 ˆˆ ˆ( | , , )

1ˆ ˆˆ ˆ ˆ( ) ( ) ( | , , )
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m m m

i
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i
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P d
N

P d
N

  

    











  





Σ

Σ Σ

y

y

    

      
   .                     (25) 

The estimators in (26) are maximum likelihood estimates of (µ𝜽,∑𝜽), consistent in sample size 

(i.e., N) regardless of test length (Mislevy et al., 1992). 

In stage II, 𝜳෡  can be estimated using any off-the-shelf SEM packages, using ˆ  and ˆ
Σ  

as input. An example is the R package ‘lavaan’ (Rosseel, 2012), from which the MLE estimates 

of  𝜳෡  are provided. Or in essence, the generalized least squares solution to β is 

1 1 1ˆ ( )T T


   X V X X V  and the MLE of ∑෡௨ and 𝜎ොଶ  can be found based on the likelihood 

function  
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 2 2 1ˆ ˆˆ ˆlog ( )T T
u T u TF tr       Z Z I Z Z I   ,                     (26) 

where “tr” denotes the trace of a matrix. As there are no closed form solutions to (26), 

Newton-Raphson method is usually used (e.g., Lindstrom & Bates, 1988).  The only input in 

(26) is ˆ
Σ  from stage I. This method is extremely fast computationally. Because the individual 

latent score 𝜃෠௜ is not needed in stage II estimation, the measurement error challenge vanishes. 

 Please note that this moment estimation method could also apply when 𝑿௜ differs 

across individuals, i.e., when evaluating treatment effect is of interest. In this case, the sample 

mean of  𝑿௜ along with µොఏ estimated from Stage I will be treated as the mean-structure input, 

whereas an expanded covariance matrix including ˆ
Σ  as well as the covariance between 𝑿௜ 

and θ will be put into ‘lavaan’. In this regard, Stage II estimation needs minimum update, 

whereas Stage I estimation (i.e., Equations 25 and 26) need to be updated accordingly.   

In sum, the two-stage methods introduced in sections 3.2.1 and 3.2.2 rely on the 

assumption that 𝜽෡௜ and ∑෡ఏ೔ are asymptotically unbiased. Whereas previous methods might 

suffer from such divide-and-conquer strategy due to finite sample bias in 𝜽෡௜ and ∑෡ఏ೔, the 

third moment estimation method should be fine theoretically. One limitation of the method, 

however, is that sample size needs to be large enough to enable accurate (and consistent) 

recovery of ˆ  and ˆ
Σ  in stage I, especially ˆ

Σ  has to be positive definite. The MMLE and 

EM methods, on the other hand, do not seem to be affected much by small sample size.  

 

4. Simulation Study 

Two simulation studies were conducted to evaluate the performance of five different 

methods, they are: (1) direct maximization of the closed-form marginal likelihood (MMLE), 
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(2) the EM algorithm, (3) the moment estimation method, (4) the naïve two-stage estimation, 

and (5) the one-stage MCMC estimation. The first simulation study focused on the 

unidimensional 3PL model as the measurement model, along with the latent growth curve 

model as the structural model; whereas the second simulation study focused on the two-

dimensional compensatory IRT model along with the associative latent growth curve model. 

Throughout the simulation studies, all item parameters were fixed at known values to 

eliminate any potential contamination of item parameter estimation bias on the other targeted 

parameters. In addition, only dichotomous items were considered, but the 3PL and M3PL 

model could be easily replaced by the polytomous response models if needed.  

4.1 Study I 

4.1.1 Design 

The fixed and manipulated factors in the study were drawn from the previous 

literature. Two factors were manipulated: examinee sample size (200 vs. 2,000), and 

covariance matrix of the random effects (Raudenbush & Liu, 2000; Ye, 2016). The 200 

sample size is typically seen in psychology research whereas the 2,000 sample size is seen in 

education research. The medium and small covariance matrix of  ∑௨ were set as follows 

(Raudenbush & Liu, 2000; Ye, 2016), 

ቂ 0.2 0.05
0.05 0.1

ቃ (medium),   ቂ 0.1 0.025
0.025 0.05

ቃ (small). 

The number of measurement waves was fixed at 4 (Khoo, Wes, Wu, & Kwok, 2006; Ye, 2016), 

and test length was fixed at 25, which is similar to the test length for science subject in NELS 

(National Educational Longitudinal Study).  

 In terms of fixed effects, the mean intercept was set at 0 (i.e., 𝛽଴=0), and mean slope was 

set at 0.15 (i.e., 𝛽ଵ=.15). Given the medium slope variance of .1 specified above, the mean slope 
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of .15 leads to a medium standardized effect size of .5 (see Raudenbush & Liu, 2000). Regarding 

the 3PL item parameters, a-parameters were drawn from Uniform (1.5, 2.5), b-parameters were 

drawn from Normal (0, 1) (Cai, 2010), and c-parameters were drawn from Uniform (0.1, 0.2). 

The scaling factor D was set at 1.7. Residual variance was 𝜎௘ଶ=𝜎ଶ ൌ .15 (Kohli et al., 2015).  

The details of the MCMC method including the priors are presented in the Appendix C. 

As shown in the Appendix C, conjugate priors are used whenever possible to enable direct Gibbs 

sampler. However, because we considered the logistic model throughout the paper, the 

Metropolis-Hastings algorithm is used to construct the Markov chains of certain parameters (i.e., 

θ). Otherwise, when the normal ogive model is considered, the efficiency of MCMC will be 

further improved.  

In stage I estimation, a combination of maximum likelihood estimator (MLE) and 

maximum a posteriori (MAP) estimator was used. That is, MLE was considered first and if 

the absolute value of the estimate was larger than 3, then the estimation method switched to 

MAP with a normal prior 𝑁ሺ0, 5ሻ. The recovery of the structural model parameters is the 

focus of this report, including mean intercept (𝛽଴), slope (𝛽ଵ,), residual variance (𝜎ଶ), and 

covariance matrix of random effects (∑௨). For these parameters, the average bias was 

computed as the mean of all bias estimates from all replications. Taking the mean intercept 

parameter as an example, the relative bias and RMSE were computed as 0 0

1 0

ˆ( )1 rR

rR

 


  and 

2
0 0

1

1 ˆ( )
R

r

rR
 



  . Here, R denotes the total number of replications, and 0
ˆ r  denotes the 

estimate from the rth replication. 50 replications were conducted per condition. In addition, 

the average estimated standard error for every parameter from each replication was 

computed, and the final mean values across replications were reported.  
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4.1.2 Results 

 Table 1 presents the bias and relative bias (in the parentheses) for the structural model 

parameters. Several trends can be spotted from this table. First and consistent with our 

expectation, the naïve two-stage method generated the largest bias for the residual variance 𝜎ଶ, 

and in most cases, the largest bias for the elements in the random effects covariance matrix ∑௨ 

(e.g., 𝜏଴଴). However, not all elements in ∑௨ suffered from high bias, which might be due to the 

unsystematic measurement errors across time (i.e., the measurement error is not in an explicit 

increasing or decreasing order). Second, both MMLE and EM method tended to perform well in 

most conditions by reducing the bias of 𝜎ଶ and elements in  ∑௨. There is no appreciable 

difference between these two methods. Although the MMLE works with the closed-form 

marginal likelihood, hence it circumvents the numerical integration that subjects to Monte Carlo 

error, the optimization in the six dimensional space can still cause numeric error. On the other 

hand, the EM works either with Monte-Carlo based integration or closed-form integration in the 

E-step, but the closed-form solution in M-step avoids numeric optimization. Therefore, numeric 

approximations appear in different steps of these two methods, resulting in slight to no 

differences between them. Third, the moment estimation method generated the most accurate 

parameter recovery among all methods as this method does not depend on the assumption of 

normal measurement error. Hence, when the population distribution is assumed normal, this 

method is recommended. Unsurprisingly, the MCMC method also produced accurate parameter 

estimates, and in the cases when sample size is large, the best parameter estimates among all 

methods. It is only when the sample size is small and when the covariance matrix of random 

effects is small that MCMC yielded slightly higher bias in ∑෡௨. This could be explained by the 

known effect of “regression toward mean” for Bayesian estimates, and such an effect will 

diminish when sample size increases.  
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In terms of the manipulated factors, the true value of the random effects covariance 

matrix did not seem to affect the results much, so did not the sample size. The parameters 

(especially 𝛽଴, 𝛽ଵ, and 𝜎ଶ) from the moment estimation method seemed to improve slightly with 

larger sample size, simply because the mean and covariance matrix of θ recovered better in stage 

I with a larger sample size. The other three methods treated each individual 𝜃௜ from stage I as a 

fallible estimate from its own measurement error model (i.e., Equation 5), so increasing sample 

size does not help reduce the measurement error.  Overall, our observations of results are similar 

to Diakow (2013)’s conclusion where she used gllamm command (Rabe-Hesketh, Skrondal & 

Pickles, 2004) in Stata (StatCorp, 2011) with adaptive Gauss-Hermite quadrature method.  

Table 1. Bias (and relative bias) of structural model parameters for IRT+LGC model 

Covariance N  MCMC Moment 
Estimation 

MMLE EM Naïve  

Medium 200 𝛽଴ .006 -.008 .018 .017 .017 
  𝛽ଵ .006 (.041) -.008 (-.051) .003 (.019) .002 (.013) .007 (.047) 
  𝜎ଶ .008 (.056) -.045 (-.302) .065 (.433) .063 (.420) .141 (.937) 
  𝜏଴଴ .015 (.074) -.015 (-.076) .006 (.032) .011 (.053) .028 (.140) 
  𝜏଴ଵ -.004 (-.083) .003 (.060) -.006 (-.120) -.008 (-.163) -.002 (-.048) 
  𝜏ଵଵ .019 (.194) -.017 (-.168) -.021 (-.213) -.029 (-.201) .021 (-.209) 
 2000 𝛽଴ .003 .001 .027 .025 .029 
  𝛽ଵ .002 (.013) -.006 (-.037) .005 (.034) .003 (.023) .008 (.054) 
  𝜎ଶ .001 (.004) -.022 (-.145) .065 (.437) .065 (.432) .142 (.944) 
  𝜏଴଴ .005 (.025) -.007 (-.033) .012 (.060) .014 (.069) .034 (.170) 
  𝜏଴ଵ -.000 (-.009) .008 (.160) -.005 (.096) -.006 (-.114) -.002 (-.030) 
  𝜏ଵଵ .003 (.032) -.022 (-.217) -.022 (-.218) .021 (-.213) -.021 (-.213) 

Small 200 𝛽଴ .009 -.009 .010 .009 .007 
  𝛽ଵ -.003 (-.021) -.002 (-.013) .009 (.061) .008 (.056) .016 (.105) 
  𝜎ଶ .001 (.006) -.036 (-.237) .050 (.334) .044 (.296) .123 (.820) 
  𝜏଴଴ .030 (.296) -.003 (-.032) -.004 (-.039) .011 (.110) .006 (.060) 
  𝜏଴ଵ -.014 (-.564) .000 (.010) .003 (.124) -.004 (-.177) .007 (.270) 
  𝜏ଵଵ .020 (.405) -.009 (-.189) -.003 (-.053) .001 (.026) -.001 (-.027) 
 2000 𝛽଴ -.002 -.007 .011 .011 .008 
  𝛽ଵ .000 (.002) -.002 (-.015) .008 (.058) .008 (.057) .015 (.099) 
  𝜎ଶ -.003 (-.017) .021 (-.142) .047 (.312) .044 (.295) .119 (.794) 
  𝜏଴଴ .007 (.068) -.007 (-.073) -.006 (-.064) .000 (.003) .003 (.033) 
  𝜏଴ଵ -.003 (-.120) .004 (.144) -.000 (.004) .001 (.037) .008 (.313) 
  𝜏ଵଵ .003 (.070) -.008 (-.159) .004 (.070) .001 (.027) .001 (.028) 
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Note: The relative bias for the mean intercept (i.e., 𝛽଴) is not reported because the true value is 0. 
  

On a separate note, because the accurate estimation of  𝜃෠௜ and Ʃ෠ఏ೔ are pivotal to the 

success of the proposed MMLE and EM methods, Tables 2 and 3 present  𝜃෠௜ and Ʃ෠ఏ೔ recovery 

results. Note that for Table 3, the bias of the measurement error estimate is computed as 

ට𝐼ିଵሺ𝜽෡௜ሻ-ඥ𝐼ିଵሺ𝜽௜ሻ  for person i where 𝜽௜ is the true value for person i. Then the average bias is 

computed across all individuals, and finally the medium value is obtained across replications. 

The medium is used instead of mean because there are a couple of outliers that may severely 

inflate the bias. As shown in Table 2, MCMC produced the smallest absolute bias and RMSE 

simply because it uses information from all time points. The estimation precision from 

MLE/MAP is also acceptable. A clear trend is that the RMSE is evidently larger at later time 

points, which is due to the way we simulated item parameters, resulting in a lack of “difficult” 

items. Regarding the recovery of the measurement error,  Ʃ෠ఏ೔, Table 3 shows that on average, 

there is about 10% bias. Therefore, it is expected that if Warm’s WLE and bias-corrected 

measurement error computation is used (Diakow, 2013, Wang, 2015), the improvement of 

MMLE and EM over naïve method should be more salient.  

Table 2. Average bias and RMSE of 𝜽 estimates for the UIRT+LGC model 
  Bias RMSE 
  Small covariance Medium covariance Small covariance Medium covariance 
  MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP 

200 𝜃ଵ -.001 .011 -.001 -.001 .186 .242 .201 .265 
 𝜃ଶ -.003 .015 -.003 .014 .194 .260 .220 .284 
 𝜃ଷ .007 .019 .007 .014 .222 .293 .279 .338 
 𝜃ସ .005 .019 .011 -.024 .276 .329 .370 .439 

2000 𝜃ଵ .001 .005 -.000 .007 .187 .246 .200 .263 
 𝜃ଶ .001 .017 -.000 .017 .196 .266 .220 .294 
 𝜃ଷ .000 .026 -.000 .016 .225 .297 .277 .338 
 𝜃ସ .002 .017 .002 -.024 .280 .333 .366 .444 
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Table 3. Bias (and relative bias) of  Ʃ෠ఏ೔ for the UIRT+LGC model 

N 200 2000 
Covariance Small  Medium  Small  Medium  

൫Ʃ෠𝜽𝒊൯𝟏𝟏 ≡ 𝝈ෝ𝜽𝟏 .024 (.087) .033 (.117) .029 (.106) .041 (.142) 

൫Ʃ෠𝜽𝒊൯𝟐𝟐 ≡ 𝝈ෝ𝜽𝟐 .031 (.106) .036 (.134) .037 (.135) .038 (.147) 

൫Ʃ෠𝜽𝒊൯𝟑𝟑 ≡ 𝝈ෝ𝜽𝟑 .037 (.135) -.010 (.126) .039 (.156) -.013 (.146) 

൫Ʃ෠𝜽𝒊൯𝟒𝟒 ≡ 𝝈ෝ𝜽𝟒 .016 (.141) -.450 (.092) .013 (.153) -.675 (.094) 

 

Table 4 presents the average standard error (SE) of all structural model parameters for 

different methods under different conditions. Consistent with our expectation, the naïve method 

generated higher SE for all parameters compared to MMLE and EM methods under all 

conditions. The SEs from MCMC was also slightly high because they contained Monte Carlo 

sampling error by nature. Again, the level of covariance (i.e., Ʃ௨) did not affect the magnitude of 

SE much, and EM yielded slightly lower standard error than MMLE, but the difference is 

marginal. The moment estimation method generated slightly higher SE because it did not take 

into account all individual information in stage I but rather only used mean and covariance 

estimates, hence “limited” information. For all methods, SE dropped when sample size 

increased.  
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Table 4. Estimated standard error for structural model parameters for UIRT+LGC model 
  Medium covariance Small covariance 

N  MCMC Moment 
Estimation 

MMLE EM Naïve  MCMC Moment 
Estimation 

MMLE EM Naïve  

200 𝛽଴ .043 .036 .027 .018 .045 .037 .030 .022 .017 .037 
 𝛽ଵ .030 .023 .016 .010 .025 .024 .018 .014 .010 .022 
 𝜎ଶ .016 .007 .010 .006 .018 .014 .008 .009 .005 .017 
 𝜏଴଴ .038 .026 .023 .017 .043 .026 .019 .016 .008 .030 
 𝜏଴ଵ .017 .012 .012 .007 .017 .011 .008 .010 .004 .013 
 𝜏ଵଵ .019 .011 .008 .007 .013 .011 .007 .005 .004 .010 

2000 𝛽଴ .013 .012 .009 .006 .014 .011 .010 .007 .006 .012 
 𝛽ଵ .009 .007 .005 .003 .008 .007 .006 .004 .003 .007 
 𝜎ଶ .005 .003 .003 .002 .005 .005 .003 .003 .002 .005 
 𝜏଴଴ .012 .009 .007 .005 .014 .008 .006 .005 .002 .010 
 𝜏଴ଵ .006 .004 .004 .002 .005 .004 .003 .003 .001 .004 
 𝜏ଵଵ .006 .003 .003 .002 .004 .003 .002 .002 .001 .003 

 

4.2 Study II 

4.2.1 Design 

 In this second simulation study, the two-dimensional simple-structure IRT model was 

used. The test length was fixed at 40 at each measurement wave, hence there were 20 items 

loading on each dimension. The item parameters per domain were simulated the same as in 

Study I. The only difference is, the mean of the difficulty parameter increased over time, which 

were taken to be the average of the mean 𝜃 from the two dimensions at the corresponding time 

point. This way, the items tend to align better with 𝜃 as the respective time points. The number 

of measurement waves were also fixed at 4, and the fixed effects were set at  𝛽 ൌ

ሾ0, 0, 0.15, 0.15ሿ. Here the first two elements refer to the mean intercepts and the last two 

elements refer to the mean slopes. Residual variance was fixed at 𝜎ଶ ൌ 0.15 for simplicity. 

Given that the size of the random effects covariance matrix did not affect the results much from 

study I, we decided to fix the covariance matrix as 
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. 

As shown above, the intercepts and slopes were uncorrelated, whereas the two intercepts 

correlated and the two slopes correlated. This simplification resulted in a reduction of the total 

number of parameters, which, to some extent, benefited the MMLE method. This is because in 

MMLE, larger number of parameters means searching in a high-dimensional space. The EM 

method was not affected, however, because of the closed-form solution in both the E-step and 

the M-step. But similar constraints were still added in the EM estimation to make a fair 

comparison.  

4.2.2 Results 

Table 5 presents the bias and relative bias (in the parenthesis) of the structural model 

parameters. First of all, as expected, the MCMC method produced the most accurate parameter 

estimates for all parameters under both conditions. Second, consistent with the findings from the 

previous simulation study, all methods produced acceptable fixed parameter estimates, and the 

bias for 𝛽଴ଵ and 𝛽଴ଶ are second smallest for the moment estimation method. This may be 

because, with slightly shorter test length (20 per dimension vs. 25 from study I), the individual 𝜃෠ 

and its SE may be prone to larger error, whereas the population mean and covariance estimates 

are less affected. However, the difference is not salient. The naïve method again yielded the 

largest positive bias for residual variance (𝜎ଶ) and intercept variance (𝜎௨బభ
ଶ  and 𝜎௨బమ

ଶ ).  The 

moment estimation method, on the other hand, resulted in slightly large negative bias for residual 

variance but it generated accurate slope variance estimates. In contrast, the other three methods 

resulted in slightly negative bias for slope variance, and naïve method even outperformed the 
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other two by a little margin. These results match both Diakow (2013) and Verhelst (2010), who 

found that in the hierarchical linear modeling, “within-cluster variance is overestimated by the 

naïve method while between-cluster variance is recovered”. 

Table 5. Bias (and relative bias) of structural model parameters for MIRT+LGC model 

N  MCMC Moment 
Estimation 

MMLE EM Naïve 

200 𝛽଴ଵ .004 -.019 .053 .049 .033 
 𝛽଴ଶ .001 -.004 .066 .062 .055 
 𝛽ଵଵ .001 (.008) .002 (.011) .003 (.022) -.002 (-.012) .002 (.015) 
 𝛽ଵଶ .000 (.001) -.003 (-.022) -.001 (-.006) -.006 (-.039) -.007 (-.045) 
 𝜎ଶ .008 (.053) -.083 (-.550) .011 (-.062) .011 (.075) .212 (1.413) 
 𝜎௨బభ

ଶ  .019 (.095) -.021 (-.104) -.012 (-.062) -.011 (-.055) .033 (.164) 
 𝜎௨బభ௨బమ  -.010 (-.103) -.008 (-.078) -.002 (-.018) -.002 (-.016) .016 (.164) 
 𝜎௨బమ

ଶ  .020 (.098) -.022 (-.111) -.006 (-.033) -.007 (-.035) .024 (.118) 
 𝜎௨భభ

ଶ  .012 (.058) -.008 (-.041) -.059 (-.298) -.059 (-.295) -.053 (-.262) 
 𝜎௨భభ௨భమ -.001 (-.011) .001 (.013) -.029 (-.285) -.028 (-.284) -.027 (-.271) 
 𝜎௨భమ

ଶ  .003 (.016) -.008 (-.041) -.056 (-.278) -.056 (-.278) -.054 (-.272) 
2000 𝛽଴ଵ -.001 -.012 .063 .060 .040 
 𝛽଴ଶ -.000 -.0088 .062 .059 .040 
 𝛽ଵଵ .001 (.006) -.004(-.026) -.004(-.026) -.008(-.055) -.003(-.018) 
 𝛽ଵଶ .001 (.005) -.003(-.021) .001(.004) -.004(-.025) -.000(-.000) 
 𝜎ଶ .002 (.011) -.088(-.585) .013(.085) .013(.085) .212(1.409) 
 𝜎௨బభ

ଶ  .003 (.014) -.016(-.080) -.004(-.022) -.004(-.021) .027(.134) 
 𝜎௨బభ௨బమ  -.003 (-.029) -.008(-.079) -.003(-.030) -.003(-.025) .014(.137) 
 𝜎௨బమ

ଶ  .002 (.010) -.016(-.083) -.006(-.032) -.006(-.032) .036(.179) 
 𝜎௨భభ

ଶ  .001 (.007) -.016(-.079) -.059(-.299) -.059(-.298) -.056(-.278) 
 𝜎௨భభ௨భమ .001 (.011) -.006(-.064) -.031(-.310) -.031(-.309) -.029(-.289) 
 𝜎௨భమ

ଶ  .002 (.008) -.017(-.085) -.058(-.294) -.058(-.293) -.054(-.270) 

 

Tables 6 and 7 present the recovery of 𝜽௜ and  𝚺𝜽೔ respectively. In general, the MCMC 

produced more accurate 𝜽෡௜ estimates than the MLE/MAP method unsurprisingly. The RMSE 

increases slightly at a later time also due to lack of suitable items for the certain range of θ. As to 

the recovery of the measurement error, while the relative bias is around 10% for the first three 

time points, which is similar to the results in Table 5, the relative bias drops considerably for the 

last time point and the bias itself increases dramatically. This is again because of the mismatch 
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between the item difficulties and θ at time 4. From the LGC model where true θ’s were 

simulated, the ranges of θ are (-2.5, 2.5), (-2.5, 3), (-3, 4), and (-4, 6) for the four time points 

respectively. However, the variance of item difficulty was fixed at 1 across all time points, so 

there were not enough items with extreme difficulty levels for extreme θ’s at time 4. It is 

anticipated that both the RMSE in Table 6 and the measurement error bias will decrease if items 

with wider difficulty levels are added.  

Table 6. Average bias and RMSE of 𝜽 estimates for the MIRT+LGC model 
 Bias RMSE 
 N=200 N=2000 N=200 N=2000 
 MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP 

𝜽𝟏𝟏 -.002 .033 -.000 .042 .315 .443 .323 .448 
𝜽𝟐𝟏 .005 .044 -.000 .039 .326 .452 .318 .454 
𝜽𝟏𝟐 .001 .046 -.000 .038 .309 .493 .317 .483 
𝜽𝟐𝟐 .002 .042 -.000 .035 .313 .605 .311 .595 
𝜽𝟏𝟑 -.001 .052 -.000 .039 .367 .447 .371 .449 
𝜽𝟐𝟑 .001 .046 .000 .036 .370 .457 .367 .453 
𝜽𝟏𝟒 .000 .041 -.000 .042 .479 .480 .484 .484 
𝜽𝟐𝟒 .000 .022 -.000 .040 .484 .591 .478 .589 

 

Table 7. Bias (and relative bias) of  Ʃ෠ఏ೔ for the MIRT+LGC model 
 𝝈ෝ𝜽𝟏𝟏 𝝈ෝ𝜽𝟏𝟐 𝝈ෝ𝜽𝟏𝟑 𝝈ෝ𝜽𝟏𝟒 𝝈ෝ𝜽𝟐𝟏 𝝈ෝ𝜽𝟐𝟐 𝝈ෝ𝜽𝟐𝟑 𝝈ෝ𝜽𝟐𝟒 

N=200 .037 
(.113) 

.026 
(.081) 

.023 
(.118) 

.031 
(.101) 

-.091 
(.074) 

-.084 
(.083) 

-10.643  
(-.001) 

-6.122 
(-.003) 

N=2000 .034 
(.108) 

.042 
(.120) 

.022 
(.105) 

.025 
(.098) 

-.236 
(.082) 

-.175 
(.089) 

14.367 
(-.008) 

-6.822  
(.001) 

 

Table 8 presented the estimated standard error for structural parameters. Overall, the 

results are consistent with the previous findings that the naïve method generated somewhat larger 

standard error because “the biased estimates of the variance components might affect the 

estimated standard errors of the regression coefficients” (Diakow, 2013). 

Table 8. Estimated standard error of structural model parameter 

 N=200 N=2000 
 MCMC Moment MMLE EM Naïve MCMC Moment MMLE EM Naïve 
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Estimation Estimation 
𝜷𝟎𝟏 .047 .034 .032 .046 .049 .015 .011 .010 .015 .016 

𝜷𝟎𝟐 .048 .033 .032 .046 .049 .015 .011 .010 .015 .016 

𝜷𝟏𝟏 .038 .032 .023 .032 .033 .012 .010 .007 .010 .010 

𝜷𝟏𝟐 .038 .032 .023 .033 .033 .012 .010 .007 .010 .010 
𝝈𝟐 .016 .003 .011 .008 .018 .005 .001 .004 .003 .006 
𝝈𝒖𝟎𝟏
𝟐  .041 .023 .027 .014 .050 .013 .007 .009 .004 .016 

𝝈𝒖𝟎𝟏𝒖𝟎𝟐 .029 .017 .019 .008 .035 .009 .006 .006 .003 .011 

𝝈𝒖𝟎𝟐
𝟐  .042 .023 .027 .014 .049 .013 .007 .009 .004 .016 

𝝈𝒖𝟏𝟏
𝟐  .031 .021 .013 .009 .022 .009 .011 .004 .003 .007 

𝝈𝒖𝟏𝟏𝒖𝟏𝟐 .021 .016 .009 .006 .016 .006 .011 .003 .002 .005 
𝝈𝒖𝟏𝟐
𝟐  .030 .021 .014 .009 .022 .009 .010 .004 .003 .007 

 

5. A Real Data Illustration 

In this section, we briefly compared the performance of five methods using a real data 

example from the National Educational Longitudinal Study 88 (NELS 88).  A nationally 

representative sample of approximately 24,500 students were tracked via multiple cognitive 

batteries from 8th to 12th grade (the first three studies) in years 1988, 1990, and 1992.  The 

science subject data were used in this section. The sample size was 7,282 after initial data 

cleaning, and we used list-wise deletion to eliminate the effect of missing data3. The data 

contains binary responses to 25 items in each year. The true item parameters were obtained from 

NELS 88 psychometrics report (https://nces.ed.gov/pubs95/95382.pdf). The mean discrimination 

parameters were 0.85, 0.95, and 0.95 for the three measurement occasions, with the standard 

deviation of 0.29, 0.30, and 0.30 respectively. The mean and standard deviation of difficulty 

parameters were (-0.28, 0.10, 0.22) and (0.90, 0.71, 0.96) respectively. The mean and standard 

deviation of guessing parameters were (0.20, 0.19, 0.18) and (0.14, 0.13, 0.12) respectively.  In 

                                                            
3 We used the list-wise deletion because we wanted to create a complete data set for illustration.  Our 
intention was to evaluate the performance of different methods without possible interference of missing 
data. Because we used the NELS provided item parameters and because our structural model is simple, 
the possible bias introduced by list-wise deletion may be ignored. 



32 
 

stage I analysis, the unidimensional 3PL model was considered, both the MLE estimation for 

individual ability (𝜃෠ெ௅ா) and the EM algorithm for population mean and covariance were 

obtained.  The estimated population mean and covariance were µො  = (-.43, .08, .28) and Ʃ෠ ൌ

൥
0.92 0.77 0.77
0.77 0.96 0.84
0.77 0.84 0.96

൩, whereas the sample mean and covariance estimates from 𝜃෠ெ௅ா were  

µො=(-.43, .09, .28) and Ʃ෠ ൌ ൥
1.25 0.89 0.86
0.89 1.31 0.98
0.86 0.98 1.26

൩. The two means are close, whereas the sample 

variances were larger. 

Table 5 presents the parameter estimates and their standard error (in the parenthesis) for 

the five different methods. As reflected in Table 5, the fixed effects estimates from different 

methods were close. The naïve method, as expected, resulted in largest residual variance and 

intercept variance estimates. Both MMLE and EM tended to yield smaller variance estimates, 

which are consistent with the findings in Diakow (2013). This is because the random variances in 

the data can actually be decomposed as measurement error, randomness across individuals 

(random effects), and randomness within individuals (i.e., residual error). By actively 

incorporating the measurement error term in the model, the other two variances were reduced.  

Also of note is that the estimated measurement error obtained in stage 1 for extreme 𝜃෠ெ௅ா 

(i.e., close to -3 or 3) could be over 1 (in particular for measurement waves 2 and 3) due to lack 

of information in the tests for students with extreme abilities. In this case, the imprecision in the 

estimated measurement error could adversely affect the parameter estimates in the MMLE and 

EM methods (Diakow, 2013).  
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Table 5. Parameter estimates and their standard error (in the parenthesis) for NLES 88 Science 
data 

 MCMC  Moment Estimation MMLE EM Naïve 
β0 -.349(.012)  -.376(.011) -.324(.001) -.339(.009) -.371(.013) 
β1 .351(.005)  .353(.004) .350(.002) .350(.003) .354(.005) 
σ2 .054(.003)  .145(.002) .078(.001) .076(.003) .315(.005) 
τ00 .828(.019)  .775(.015) .599(.010) .596(.011) .906(.020) 
τ01  -.006(.006)  .004(.004) -.006(.004) .007(.0004) -.002(.006) 
τ11 .029(.003)  .014(.002) .008(.002) .0231(.0002) .032(.004) 

 

 

6. Discussion 

In this paper, we considered three model estimation methods for (secondary) data analysis when 

the outcome variable in a linear mixed effects model is latent and therefore measured with error. 

All of them fall within the scheme of two-stage estimation that embraces the advantages of 

“divide-and-conquer” strategy. Such advantages include convenience for model calibration and 

fit evaluation, avoidance of improper solutions, and convenience of secondary data analysis. The 

last aspect is especially appealing from a practical perspective because oftentimes, the raw 

response data is considered restricted-use data and not publicly available, whereas 𝜃෠ (or certain 

linear transformation of it) with its SE are publicly available.  

The three methods explored in the study overcome the limitation of the naïve two-stage 

estimation that ignores the measurement errors in latent trait estimates (𝜃෠) when treating them as 

dependent variables. It is known that ignoring the measurement error in 𝜃෠ when 𝜃෠ is treated as a 

dependent variable still yields a consistent and unbiased estimate of fixed effects (i.e., β), but the 

standard error of β will be inflated, and the random effects estimates (i.e., 𝜮෡௨) as well as residual 

variances will be distorted. For the MMLE and EM methods, the point estimate 𝜃෠௜ and its 

corresponding measurement error for each student per time point are obtained in stage I 

measurement model calibration. And these two pieces of information become the key input for 
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stage II estimation. The moment estimation method, on the other hand, only needs population 

estimates of the mean and covariance matrix from stage I as input.  

To elaborate, the MMLE method builds upon the assumption of (multivariate) normal 

measurement errors such that the marginal joint likelihood of the model parameters can be 

written in a closed form. This closed form marginal likelihood is then directly maximized to 

obtain parameter estimates. Neither the known challenge of curse of dimensionality (i.e., 

numerical approximation of a high-dimensional integration) nor the lengthy sampling iterations 

is an issue any more. Comparing to MMLE, the EM method has greater flexibility because it no 

longer requires the (multivariate) normal measurement error, which may not always be satisfied 

in practice especially when there are few items per dimension. Although in this paper and in the 

simulation studies, we still assume the measurement error of 𝜃෠ follows normal/multivariate 

normal just to check the feasibility of the algorithm, it can be modified to incorporate non-

normal measurement error cases.  

The modification can be established based on the importance sampling idea. The critical 

piece to facilitate the entire importance sampling machinery is the change-of-measure sampling 

distribution, 𝐻ሺ𝜽௜ ,𝒖௜ሻ. Regardless of whether or not the multivariate normality assumption is 

satisfied, 𝐻ሺ𝜽௜ ,𝒖௜ሻ can take the form of joint multivariate normal because it serves as a close 

approximation to the actual (and sometimes complicated) joint distribution of ሺ𝜽௜ ,𝒖௜ሻ. 

Moreover, the random values drawn from the sampling distribution of 𝐻ሺ𝜽௜ ,𝒖௜ሻ are all 

independent, as opposed to the correlated draws from Gibbs or Metropolis-Hastings sampler in 

MCMC. The form of 𝐻ሺ𝜽௜ ,𝒖௜ሻ can be derived based on the results from Stage I, and drawing 

samples from multivariate normal distribution is very easy, hence the numerical approximation 

to the expectation in EM becomes quite straightforward.  



35 
 

The proposed MMLE and EM are based on the measurement error model that is 

essentially a random-effects meta-regression (Raudenbush & Bryk, 1985; Raudenbush & Bryk, 

2002, chapter 7), and it is in the broader framework for considering second-stage estimates in the 

presence of heteroscedasticity (Buonaccorsi, 1996). In particular, Buonaccorsi (1996) derived 

unbiased estimates of the structural model parameters (i.e., Ʃ௨) under different specific forms of 

heteroscedasticity. Because the conditional standard error of measurement from the 3PL model is 

a nonlinear function of both item parameters and θ, Buonaccorsi’s (1996) derived results may not 

directly apply. However, the take-away message is the analytic results hold under the assumption 

of conditionally unbiased estimators and conditionally unbiased standard errors in stage I. 

Therefore, it is of paramount importance to obtain reliable 𝜃෠ estimates in stage I. Diakow (2013) 

suggested using weighted maximum likelihood (WLE, Warm, 1989), and it is promising to 

check in the future for both unidimensional models and multidimensional models (Wang, 2015). 

The plausible value multiple-imputation method is another method of addressing 

measurement error issues in large-scale educational statistical inference. The statistical theory of 

this method is that, as long as the plausible values are constructed from the results of a 

comprehensive extensive marginal analysis, population characteristics can be estimated 

accurately without attempting to produce accurate point estimates for individual students 

(Sirotnik & Wellington, 1977; Mislevy, et al., 1992). Because most imputation procedures 

available in standard statistical software packages (e.g., SAS, Stata, and SPSS) assume that 

observations are independent, research on imputation strategies in the context of linear mixed 

effects models (or multilevel models) is still limited. From a theoretical perspective, using a 

multilevel model at the imputation stage is recommended to ensure congeniality between the 

imputation model and the model used by the analyst (Meng, 1994; Drechsler, 2015).  Several 
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researches have demonstrated plausible values drawn from a simplified model without 

accounting for higher level dependency yielded substantial bias for random effects and negligible 

bias for fixed effects in secondary analysis (Monseur & Adams, 2009; Diakow, 2010; Drechsler, 

2015). Future research could compare the proposed methods with the plausible value approach.  

The two methods considered in the paper (MMLE and EM) account for the potentially 

non-constant error variance in the dependent variable by including a measurement error model 

with heteroskedastic variance at the lowest level of the multilevel model. We consider these two 

methods convenient and useful alternative to the well-studied multiple imputation method. One 

profound advantage of the proposed methods is that is does not require a correct conditioning 

model, which is required in the multiple imputation method. This is important because it is 

almost infeasible to find, and to sample from, a correct conditioning model that is exhaustive of 

all possible nesting structures and secondary analyses are impossible to predict. However, these 

two proposed methods do rely on the precision of 𝜃෠ and its SE estimates.  

In this paper, we provide technical details for the three two-stage methods for interested 

readers to replicate and extend our study for other types of linear or nonlinear mixed effects 

models. The source code of all methods will also made available to readers upon request. On the 

other hand, the combined model (e.g., Equation 7) could potentially be fitted using off-the-shelf 

specialized software packages that can handle heteroskedastic variance at the lowest level, such 

as the gllamm command (Rabe-Hesketh, et al., 2004) in Stata (StatCorp, 2011) and HLM 

(Raudenbush, Bryk & Congdon, 2004).  

There are two limitations of the study that worth mentioning. First, the IRT item 

parameters are assumed known throughout the study.  If in case the calibration sample size is 

small that the sampling error can no longer be ignored, the Bootstrap–calibrated interval 
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estimates for 𝜃 (Liu & Yang, 2018) could be applied in stage I of the proposed two-stage 

framework. Second, while we focused only on the model parameters’ point estimates and 

standard error estimates, future studies could go one step further to evaluate the power of 

detecting significant covariates (Ye, 2015).  For that purpose, the simulation design will focus on 

manipulating the effect size of the covariate (treatment effect) and the amount of measurement 

error (which could be manipulated by test length). 
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