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ABSTRACT
Peer assessment is a promising solution for scaling up the
grading of a large number of submissions. The reliability of
evaluations is one of the critical issues in peer assessment;
several probabilistic models have been proposed for obtain-
ing reliable grades from peers. Peer correction is a similar
framework, in which students are instructed to correct the
errors in submissions from other students. Peer correction
is typically performed simultaneously with peer assessment;
a reviewer is instructed to correct the errors in a submission
and to provide a grade to it. We observe the occasional in-
consistency between a grade and the correction; for example,
a reviewer provides a high grade for a submission but she
corrects many errors in it. Such inconsistencies can point to
unreliable reviewers. In this paper, we propose probabilistic
models for peer correction, and the combination of the peer
correction models and the existing peer assessment mod-
els for capturing the inconsistency to accurately estimate
the reviewer reliability and the student ability. We conduct
experiments using the dataset of an actual peer correction
platform for language translation, and the results demon-
strate that the combination of peer correction models and
peer assessment models improves the accuracy of the student
ability estimation.
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1. INTRODUCTION
MOOCs have changed education by offering open access to
university course materials; however, not everything per-
formed in offline classes is effectively introduced in MOOCs.
An example is the ability assessment; in offline classes,
teachers evaluate the student abilities by examining their
submitted assignments and decide how to improve the ed-
ucational efficiency. In contrast, assessing the abilities of
tens of thousands of students in MOOCs is not feasible for
teachers.

A promising solution for large-scale ability assessment is to
allow students themselves to be involved in the evaluation;
instead of teachers, students grade the submissions from
other students. Such peer assessment approach is beneficial
for scaling-up the ability assessment and it has been applied
to several MOOCs courses [7]. However, the reliability of
evaluations is one of the critical issues in peer assessment
because some students may provide unreliable evaluations
owing to laziness or lack of evaluation skills. Several prob-
abilistic models have been proposed for estimating the re-
liabilities of the reviewers in order to accurately assess the
student abilities in peer assessment [7, 4, 11, 8, 13, 6]. These
models are based on the assumption that students with high
ability are likely to provide reliable grades. The models are
used to estimate the ability of a student as a test taker and
the reliability as a reviewer.

In a similar framework of peer assessment, called peer cor-
rection, students correct the errors in the submissions from
other students. Peer correction is helpful for teachers to
reduce their efforts for providing feedback to the students.
Typically, peer correction is performed simultaneously with
peer assessment; a student is instructed to grade a submis-
sion and to correct its errors.

Although the outcomes of peer correction are naturally as-
sumed to be informative for estimating the student abilities,
probabilistic models for peer correction have not yet been
investigated. Based on a natural assumption that a student
who receives fewer corrections are likely to have a higher
ability, we propose probabilistic models for peer correction
that capture the relationship between the student abilities
and the correction outcomes.

Additionally, we noticed an inconsistency between the out-
comes of peer correction and those of peer assessment. In
one case, a reviewer provides a high grade to a submission
but she corrects many errors in it; in another case, a reviewer
assigns a low grade but she does not make any corrections.
Our idea is that such inconsistencies are beneficial in deter-
mining unreliable reviewers; thus, we propose to combine
peer assessment models with our peer correction models.
This combination allows us to capture the inconsistency and
to incorporate it into the estimation of the reviewer reliabil-
ity and the student ability.

We conduct experiments using a peer correction dataset
about language translation. The results of the experiments
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show that our probabilistic models for peer correction are ca-
pable of estimating the student abilities, and the combined
models of peer correction and peer assessment demonstrate
a better performance in determining high-ability students
than the peer assessment models.

The contributions of this paper are twofold: (i) we propose
novel probabilistic models for peer correction that enable us
to estimate the student abilities from the received correc-
tions (Section 4), and (ii) we propose to combine our peer
correction models and peer assessment models to exploit the
inconsistencies among the outcomes of corrections and as-
sessments (Section 6); the results of the experiments show
that the combined models are efficient in accurately estimat-
ing the student abilities.

2. PROBLEM DEFINITION
We begin with the formulation of peer assessment and peer
correction. We assume there is a set of students S. When
a student creates a submission for an assignment, other stu-
dents (that we call reviewers) evaluate it and assign grades.
The grade for the student u ∈ S assigned by the reviewer
v ∈ S is denoted by zuv ∈ R. Each reviewer is additionally
instructed to correct the errors in a submission. A correc-
tion result is denoted by yuv. If a reviewer does not provide
any correction for a submission, such information is also em-
bedded in yuv. The representation of yuv is discussed in the
next section.

Given a set of peer assessment and peer correction outcomes,
D, each of which is represented by a tuple (u, v, zuv, yuv), our
goal is to estimate the true abilities of the students {su}u∈S ,
where su ∈ R.

3. DATASET
In this work, we use a peer assessment and peer correction
dataset collected from Conyac1, which is a crowdsourcing
language translation platform. This platform employs peer
correction and peer assessment between translators for col-
laboratively improving their skills; thus, a translator on this
platform can be considered as a student. When a student
submits a translation, other students evaluate its quality on
a five-point scale (zero (low) to four (high)) and correct the
errors in it. Students are invited to high-reward jobs if they
have reviewed several submissions.

Students on Conyac can take a qualification test to demon-
strate their skills. On this test, a student is instructed to
translate the given sentences and then the translations are
evaluated by experts employed by the service provider. Ac-
cording to the score, a student is assigned one of five exper-
tise levels (D, C, B, A, and A+). This level is used for the
job assignment and the default level is set to one. We con-
sider the assigned levels as the ground truth of the student
abilities, that we aim to estimate from the outcomes of peer
assessment and peer correction.

We target the peer assessment and peer correction for
Japanese to English translations on Conyac. Our dataset
contains 5,008 reviews for 413 students, and 135 students

1https://conyac.cc/

provide at least one review. Figure 1(a) shows the distribu-
tion of the grades assigned to translations and Figure 1(b)
illustrates the distribution of the students’ true expertise
levels.

We conduct exploratory data analysis to investigate how
the outcomes of peer correction can be used for estimating
student expertise levels. A natural expectation is that a stu-
dent whose submissions are likely to be corrected would have
lower ability. We calculate the correction ratio of each stu-
dent, which is the number of corrected submissions divided
by the number of submissions. Figure 1(c) shows the aver-
age correction ratio of the students in each expertise level.
We observe that students with the highest level are likely to
have lower correction ratios than the others.

Additionally, we consider that students who have more er-
rors in their submissions would be have lower ability. We cal-
culate the number of corrected parts in each submission by
applying the Gestalt pattern matching [10]. We first obtain
the matched patterns in pre-correction and post-correction
submissions, and then count the number of unmatched pat-
terns in the post-correction submissions. The examples of
the calculated numbers are shown in Table 1 and Figure 1(d)
shows the distribution of the number of corrected parts in
each submission. We calculated the average number of cor-
rected parts of each student and Figure 1(e) presents the
average of the values at each level. We found that the stu-
dents with higher levels are likely to have a lower number of
corrected parts.

From these observations, we decide to use the following bi-
nary and numerical variables to represent a correction out-

come: (1) y
(b)
uv ∈ {0, 1}, which indicates whether the corre-

sponding submission is corrected by the grader (y
(b)
uv = 0) or

not (y
(b)
uv = 1), (2) y

(n)
uv ∈ {0, 1, 2, . . . , }, which indicates the

number of parts corrected by the grader.

4. PEER CORRECTION MODELS
We propose two peer correction models, PCb and PCn, for
estimating the student true abilities. The models are illus-
trated in Figure 2(a).

4.1 PCb model
We first present a generative model for y

(b)
uv ∈ {0, 1}, which

is a binary indicator whether the submission has been cor-
rected by the reviewer or not. We have two latent parame-
ters into our model, that is, student true ability and reviewer
bias; each student is associated with the latent true ability,
su ∈ R, which we aim to estimate, and each reviewer has a
different bias parameter, bv ∈ R, presuming that a reviewer
with a lower bias tends to review a submission negatively.

Following the observations, we assume that a submission
from a student is likely to be not corrected by a reviewer
if the student has high ability. In addition, a reviewer is
not likely to correct a submission if he/she has a higher
bias. These assumptions are represented as the following
generative model:

y(b)
uv ∼ Bern

(
y(b)
uv

∣∣∣σ (su + bv + r)
)
, (1)

where σ(x) = 1/ (1 + exp(−x)), Bern(·) is the Bernoulli dis-
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Figure 1: Statistics of our dataset

Table 1: Examples of the calculated number of corrected parts. The corrected parts are highlighted (modified parts are
highlighted in yellow, added parts are highlighted in pink, and removed parts are highlighted in blue). There were seven
corrected parts in the last example because there were three modified parts (“Current members,”“are” and “was working on
the”), two added parts (“female” and “,”), and two removed parts (“girls” and “the”).

Pre-correction Post-correction
Num. of
corrected
parts

Please enter the title. Please enter the
application conditions .

Please enter the title. Please enter the
eligibility requirements .

1

41 people from major travel agencies of Japan and land
operators participated and had the business meetings with
suppliers about latest Thailand MICE circumstances.

41 people from major travel agencies of Japan and land
operators participated and had the business meetings with

suppliers about the latest Thailand MICE circumstances.

1

Kalafina is the vocal girls band produced by Yuki Ka-

jiura. Currently the member of Kalafina is WAKANA,

KEIKO and HIKARU. The group was formed in order

to produce the main song when the composer Yuki Ka-

jimura produced music for the film “Boundary of Empti-

ness”.

Kalafina is the female vocal band produced by Yuki Ka-

jiura. Current members of Kalafina are WAKANA,
KEIKO , and HIKARU. The group was formed in or-

der to produce the main song when composer Yuki Ka-

jimura was working on the music for the film “Boundary

of Emptiness”.

7

tribution, and r is a noise. Note that y
(b)
uv = 1 indicates

that the corresponding submission is not corrected by the
reviewer. We denote this generative model by PCb model.
We can interpret su + bv + r as an apparent ability of the
student u for the reviewer v at the time. The model indi-
cates that a submission is likely to be not corrected when
the apparent ability is high.

In the same way as the existing peer assessment models that
will be reviewed in the next section, we use normal distri-
butions as priors for su, bv, and r:

(Student ability) su ∼ N (su|µ0, 1/γ0) (2)

(Reviewer bias) bv ∼ N (bv|0, 1/η0) (3)

(Noise) r ∼ N (r|0, 1/κ0), (4)

where µ0, γ0, η0, and κ0 are hyperparameters.

4.2 PCn model
Our second model targets the number of corrected parts in

each correction, y
(n)
uv ∈ {0, 1, 2, . . . , }. Following the obser-

vations from the actual dataset, we assume that a reviewer
corrects more parts of a submission when the student has a
lower ability. We use the Poisson distribution to represent
this assumption:

y(n)
uv ∼ Poisson

(
y(n)
uv

∣∣∣∣ 1

exp (su + bv + r)

)
.

Similar to the PCb model, su + bv + r is considered as the
apparent ability of the student u to the reviewer v, and this
model indicates that more parts of the submission is likely
to be corrected by the reviewer if the apparent ability of
the student is lower. We call this model PCn. The priors
given in Eqs. (2), (3), and (4) are incorporated into the PCn

model as well.
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(a) PCb and PCn (b) PG1

(PG3)
(PG4)

(PG5)

(c) PG3, PG4, and PG5 (d) PG1+PCb

Figure 2: Peer correction and peer assessment models, and combined models

5. PEER ASSESSMENT MODELS
We next review the existing peer assessment models, which
are combined with our peer correction models in the next
section. In particular, we summarize the PG1 [7], PG3 [7],
PG4 [6], and PG5 [6] models2. These are the generative
models for grades, zuv ∈ R. The peer assessment models
are illustrated in Figures 2(b) and 2(c).

The student ability and the reviewer bias parameters are
also incorporated in the peer assessment models. All the
models use the same priors given in Eqs. (2) and (3).

5.1 PG1 and PG3 models
In addition to the latent parameters incorporated in the peer
correction models (su and bv), the peer assessment models
contain the reviewer reliability τv ∈ R+. This parameter
indicates how likely a grade given by the reviewer contains
a noise. PG1 is defined as follows:

(Reviewer reliability) τv ∼ Gamma(τv|α0, β0)

(Outcome) zuv ∼ N (zuv|su + bv, 1/τv) ,

where α0 and β0 are hyper parameters. PG3 is an exten-
sion of PG1, which incorporates the relationship between
the reviewer reliability and the ability of the reviewer (as a
student). PG3 is given as follows:

(Reviewer reliability) τv = θ1sv + θ0

(Outcome) zuv ∼ N (zuv|su + bv, 1/τv) ,

where θ0 and θ1 are hyperparameters.

5.2 PG4 and PG5 models
PG4 and PG5 are variations of PG3 and they incorporate
the relationship between the reviewer reliability and the re-
viewer ability into the priors of the reliability parameter.
The generative models of the reviewer reliability and out-
come in PG4 are given as follows:

(Reviewer reliability) τv ∼ Gamma(τv|sv, β0)

(Outcome) zuv ∼ N (zuv|su + bv, 1/τv) ,

and those in PG5 are given as follows:

(Reviewer reliability) τv ∼ N (τv|sv, 1/β0)

(Outcome) zuv ∼ N (zuv|su + bv, λ/τv) ,

where β0 and λ are hyperparameters.

2We do not include PG2 [7], which is almost similar to PG1

except it incorporates time-series factors.

6. COMBINED MODELS FOR PEER COR-
RECTION AND PEER ASSESSMENT

We finally combine our peer correction models and the exist-
ing peer assessment models. By combining these two types
of models, we expect to capture an inconsistency between
the outcome of peer correction and that of peer assessment;
the inconsistency can be informative for estimating the re-
viewer reliabilities.

We use PG1 and PCb to explain the model combining and we
term the combined model as PG1+PCb. We simply consider
that su and bv are shared between these two models; namely,
the generative model for PG1+PCb is given as:

(Student ability) su ∼ N (su|µ0, 1/γ0)

(Reviewer reliability) τv ∼ Gamma(τv|α0, β0)

(Reviewer bias) bv ∼ N (bv|0, 1/η0)
(Noise) r ∼ N (r|0, 1/κ0)

(Outcomes) zuv ∼ N (zuv|su + bv, 1/τv) , and

y(b)
uv ∼ Bern

(
y(b)
uv

∣∣∣σ (su + bv + r)
)
.

The PG1+PCb model is illustrated in Figure 2(d). Other
combined models are defined similarly as PG1+PCb.

When an inconsistency occurs between corrections and
grades, i.e., a reviewer provides a high grade to a submission
but makes many corrections in it, we consider that a large
noise occurs on the grade (zuv) and thus the reliability of
the reviewer (τv) is estimated as low. The combination of
peer assessment models and peer correction models allows
us to leverage such inconsistencies to estimate the reviewer
reliabilities and the student abilities.

7. EXPERIMENTS
We conduct experiments using the actual peer assessment
and peer correction dataset about language translation. We
investigate the effectiveness of the proposed methods to es-
timate the student abilities.

7.1 Baselines
We compare the proposed models (PCb, PCn, and
PG{1,3,4,5}+PC{b,n}) with the following baselines: (a) Cor-

rection ratio (PC♯
b): this is a näıve version of PCb

and considers the correction ratio of each student as the
ability. Specifically, the correction ratio is defined as

−
∑

y
(b)
uv ∈Y(b)

u
δ
(
y
(b)
uv = 0

)
/|Y(b)

u |, where Y(b)
u is the set of

correction outcomes for the student u, and δ (·) is the in-
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Table 2: Average and standard deviation of AUC scores of each method on various classification boundaries. Each column
indicates the results for each classification boundary; for example, (D,C,B,A | A+) represents the results for classifying the
students at A+ and the others. The winner for each boundary is bold-faced. The cases where a combined model outperforms
the corresponding peer assessment model (PG1, PG3, PG4, or PG5) are underlined.

AUC
(D,C,B,A | A+) (D,C,B | A,A+) (D,C | B,A,A+) (D | C,B,A,A+)

PC♯
b 0.713± 0.020 0.584± 0.015 0.580± 0.013 0.498± 0.025

PCb 0.805± 0.037 0.628± 0.008 0.604± 0.013 0.483± 0.034

PC♯
n 0.714± 0.045 0.627± 0.013 0.598± 0.010 0.611± 0.041

PCn 0.832± 0.050 0.710± 0.012 0.690± 0.008 0.602± 0.046

PG♯ 0.794± 0.023 0.723± 0.015 0.697± 0.013 0.810± 0.011
PG1 0.845± 0.016 0.739± 0.025 0.742± 0.013 0.801± 0.015
PG3 0.751± 0.193 0.756± 0.033 0.725± 0.020 0.786± 0.020
PG4 0.862± 0.069 0.774± 0.012 0.743± 0.015 0.791± 0.011
PG5 0.842± 0.115 0.775± 0.029 0.731± 0.015 0.759± 0.043
PG1+PCb 0.821± 0.020 0.755± 0.016 0.736± 0.010 0.792± 0.011
PG3+PCb 0.841± 0.137 0.779± 0.026 0.736± 0.011 0.789± 0.030
PG4+PCb 0.870± 0.019 0.764± 0.008 0.730± 0.021 0.800± 0.016
PG5+PCb 0.914± 0.018 0.782± 0.016 0.719± 0.026 0.782± 0.032
PG1+PCn 0.846± 0.019 0.737± 0.017 0.726± 0.009 0.661± 0.047
PG3+PCn 0.788± 0.153 0.705± 0.044 0.704± 0.022 0.710± 0.060
PG4+PCn 0.844± 0.038 0.753± 0.017 0.724± 0.018 0.646± 0.054
PG5+PCn 0.888± 0.024 0.746± 0.033 0.731± 0.012 0.686± 0.066

dicator function. For assigning a higher ability for a stu-
dent with less corrections, we multiply the value with −1.
(b) Mean number of corrected parts (PC♯

n): this is
a näıve version of PCn and considers the mean number of
the corrected parts of each student as the ability. Specifi-
cally, the mean number of the corrected parts of the student

u is defined as −
∑

y
(n)
uv ∈Y(n)

u
y
(n)
uv /|Y(n)

u |, where Y(n)
u is the

set of correction outcomes for the student u. For assigning
a higher ability for a student with less corrected parts, we
multiply with −1. (c) Mean grades (PG♯): this is a näıve
version of PG1 and considers the mean assigned grades of
each student as the ability. The mean grade is defined as∑

zuv∈Zu
zuv/|Zu|, where Zu is the set of grades assigned to

the student u. (d) PG1, PG3, PG4, and PG5: existing
peer assessment models.

7.2 Experimental setup
We implemented the models using the No-U-Turn Sam-
pler (NUTS) [3], which is a variation of the Hamiltonian
Monte Carlo. We executed four chains and they produce
5,000 samples in total. The initial 500 samples were ignored
and the average of the rest samples were used as the esti-
mated parameters.

We randomly generated 150 sets of candidate hyperparam-
eters for each method. A method with a set of candidate
hyperparameters produces the estimated student abilities.
Their performance was evaluated using the groundtruth of
20% of the students. We then decided the best set of hy-
perparameters for the method and the final result for each
method was evaluated by the remaining students. We per-
formed this procedure five times and calculated the average.

Each method outputs the estimated ability of each student.
We use the expertise levels assessed by the experts as the
ground truth, and investigate how accurately each method

classifies the students with high expertise and those with
low expertise. We specifically use the area under the ROC
curve (AUC) as an evaluation metric.

7.3 Results
Table 2 shows the AUC scores of each method on different
classification boundaries. Our peer correction models (PCb

and PCn) demonstrate better or comparative performance
to the existing peer grading models in detecting the students
at the highest level; this supports the effectiveness of the
peer correction results for estimating student abilities. We
see that the “no-correction” cases only occur for high-ability
students and the correction information is helpful for distin-
guishing between the “perfect students” and “almost perfect
students”, both are likely to obtain the highest grades from
the reviewers and the correction outcomes are required to
classify them.

In contrast, the performance of peer correction models be-
comes inferior for detecting the students at lower levels, and
PG♯ achieves the best performance for detecting the stu-
dents at the lowest level; the average of the obtained grades
is sufficiently informative for detecting low-ability students.
Our methods would be beneficial for a situation where teach-
ers aim to detect students who require advanced course ma-
terials or assignments.

The combined models of PG{1,3,4,5}+PCb outperform the
corresponding PG{1,3,4,5} in most cases; the outcomes of
peer correction are useful for improving the student abil-
ity estimation. It is noteworthy that PG5+PCb achieves an
AUC of 0.914 for classifying the students at A+ and the
others. This result is brought by the capability of the com-
bined models for capturing the inconsistencies between the
outcomes of assessments and those of corrections.
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The number of corrected parts can be more informa-
tive than simply considering whether a submission is cor-
rected; in fact, PCn is better than PCb and PC♯

n performs
better than PC♯

b; however, PG{1,3,4,5}+PCb outperforms
PG{1,3,4,5}+PCn in our experiments. Because there are
more model variations in PCn than PCb, a more meticu-
lous modeling for combining the PG models and the PCn

model would be required.

8. RELATED WORK
Peer assessment models are categorized into two groups:
models for cardinal peer assessment and models for ordinal
peer assessment. The former models target a situation where
the outcomes are assigned in explicit numerical scores, such
as five-point scores. In addition to the probabilistic models
reviewed in Section 5, Walsh proposed PeerRank [13], an
extension of PageRank for peer assessment. In ordinal peer
assessment, each grader is shown multiple submissions and
instructed to rank them. The Bradley–Terry model [2] has
been applied for ordinal peer assessment [11, 8] and Mi et
al. proposed to use the cardinal peer assessment models for
ordinal peer assessment [6]. Although several probabilistic
models for peer assessment have been studied, peer correc-
tion has not yet been investigated.

The design of peer assessment frameworks has been at-
tempted to improve the reliability of evaluation. Kulkarni
et al. ([4]) reported that the feedback about the grading bias
to graders was beneficial for improving the reliability. An-
other work proposed to design peer assessment as a multiple
choice task where a grader is instructed to choice the best
submission [5]. Peer assessment mechanisms based on game
theory have been introduced to derive accurate evaluations
from peers [14].

Our peer correction models are very related to the models
studied in the item response theory, which are for quantify-
ing student abilities and item characteristics in educational
tests. One of the simple item response theory model is the
Rasch model [9] and our PCb (given in Eq.(1)) model has a
similar formulation to the Rasch model.

Besides peer assessment, probabilistic models for estimat-
ing grader reliability have been studied in crowdsourcing
as well. Specifically, a two-stage framework was proposed
where crowdsourcing workers in the first stage produce out-
puts, such as translations or logo designs, and another set of
workers in the second stage evaluates the outputs [1]. Prob-
abilistic models for estimating the reliability of each grader
and the quality of each output in this two-stage framework
have been proposed [1, 12]. Unlike peer assessment, the over-
lap between students (i.e., creators of outputs) and graders
is not assumed in crowdsourcing.

9. CONCLUSIONS
We presented probabilistic models for peer correction, which
are used for estimating the student abilities. We proposed
two models: one considering whether a grader has corrected
a submission, and the other utilizing the number of corrected
parts in each submission. We also combined the peer cor-
rection models with the peer assessment models; this com-
bination allows us to estimate the reliability of graders from
the outcomes of peer corrections and those of peer assess-

ment by considering the consistency between the corrections
and assessments. The experiments using the actual dataset
of peer correction showed that the combination of peer cor-
rection models and peer assessment models was particularly
effective in detecting high ability students.

In our models, we did not consider the importance of each
corrected part; however, the importance levels differ among
corrected parts in which minor corrections (e.g., adding a
punctuation mark) and major corrections (e.g., paraphras-
ing) exist. A major correction would indicate the low quality
of a submission and considering such factors is a promising
direction to improve the ability estimation accuracy.

10. ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Num-
ber 15H01704 and 18K18105.

11. REFERENCES
[1] Y. Baba and H. Kashima. Statistical quality

estimation for general crowdsourcing tasks. In ACM
SIGKDD, pages 554–562, 2013.

[2] R. A. Bradley and M. Terry. The rank analysis of
incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3):324–345, 1952.

[3] M. D. Hoffman and A. Gelman. The No-U-turn
sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. J. Mach. Learn. Res.,
15(1):1593–1623, 2014.

[4] C. Kulkarni, K. P. Wei, H. Le, D. Chia,
K. Papadopoulos, J. Cheng, D. Koller, and S. R.
Klemmer. Peer and self assessment in massive online
classes. ACM Trans. Comput.-Hum. Interact.,
20(6):33:1–33:31, 2013.

[5] I. Labutov and C. Studer. JAG: a crowdsourcing
framework for joint assessment and peer grading. In
AAAI, pages 1010–1016, 2017.

[6] F. Mi and D.-Y. Yeung. Probabilistic graphical models
for boosting cardinal and ordinal peer grading in
MOOCs. In AAAI, pages 454–460, 2015.

[7] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and
D. Koller. Tuned models of peer assessment in
MOOCs. In EDM, pages 153–160, 2013.

[8] K. Raman and T. Joachims. Methods for ordinal peer
grading. In ACM SIGKDD, pages 1037–1046, 2014.

[9] G. Rasch. Probabilistic Models for Some Intelligence
and Attainment Tests. 1960.

[10] J. W. Ratcliff and D. E. Metzener. Pattern matching:
the Gestalt approach. DDJ, 13(7):46, 1988.

[11] N. B. Shah, J. K. Bradley, A. Parekh, M. Wainwright,
and K. Ramchandran. A case for ordinal
peer-evaluation in MOOCs. In NIPS-DDE, 2013.

[12] T. Sunahase, Y. Baba, and H. Kashima. Pairwise
HITS: quality estimation from pairwise comparisons in
creator-evaluator crowdsourcing process. In AAAI,
pages 977–984, 2017.

[13] T. Walsh. The PeerRank method for peer assessment.
In ECAI, pages 909–914, 2014.

[14] W. Wu, C. Daskalakis, N. Kaashoek, C. Tzamos, and
M. Weinberg. Game theory based peer grading
mechanisms for MOOCs. In L@S, pages 281–286, 2015.

431 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)




