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ABSTRACT
Replication of machine learning experiments can be a useful
tool to evaluate how both modeling and experimental design
contribute to experimental results; however, existing repli-
cation efforts focus almost entirely on modeling alone. In
this work, we conduct a three-part replication case study of
a state-of-the-art LSTM dropout prediction model. In our
first experiment, we replicate the original authors’ method-
ology as precisely as possible in collaboration with the orig-
inal authors. In a second experiment, we demonstrate that
this initial experiment likely overestimates the generaliza-
tion performance of the proposed model due to the design
of its validation. In a third experiment, we attempt to
achieve the previously-reported performance in a more dif-
ficult, but more relevant, hold-out set design by exploring
a large space of model regularization configurations. We
demonstrate that we can reduce overfitting and improve gen-
eralization performance of the model, but cannot achieve the
previously-reported level of performance. This work demon-
strates the importance of replication of predictive model-
ing experiments in education, and demonstrates how exper-
imental design and modeling decisions can impact the extent
to which model performance generalizes beyond the initial
training data.

1. INTRODUCTION
The repeated verification of scientific findings is central to
the construction of robust scientific knowledge, particularly
in a fast-growing field such as educational data mining. This
can take the form of (a) reproduction (reproducibility), us-
ing the original methods applied to the original data to re-
produce the original results, and (b) replication (replicabil-
ity), applying the original methods to new data to assess

the robustness and generalizability of the original findings.
Since reproducibility is a necessary condition for replicability
(an experimental procedure cannot be applied to new data if
the procedure cannot be reproduced), achieving replicability
requires solving the problem of reproducibility.

In this work, we discuss the reproducibility crisis in ma-
chine learning, noting specific challenges faced by applied
researchers in the learning sciences, particularly in the sub-
fields of educational data mining and learning analytics. We
argue that existing frameworks for reproducible machine
learning such as open code-sharing platforms and public
code notebooks are valuable steps, but are insufficient to
fully address the challenges both within our subfield of in-
terest and the broader machine learning community. In par-
ticular, we argue that code-sharing does not address the
breadth of challenges – experimental, methodological, and
data – we face as practitioners, as Section 3 details. In-
stead, we propose a paradigm of end-to-end reproducibility
for machine learning: fully reproducing (or replicating) the
pipeline from raw data to model evaluation. End-to-end
reproducibility is possible with current freely-available com-
puting technologies, namely containerization.

Using an open-source platform for conducting reproducible
end-to-end machine learning experiments on large-scale edu-
cational data, the MOOC Replication Framework (MORF),
we conduct a three-stage replication experiment in Section
4, which is the primary contribution of this work.1 Our case
study evaluates both the experimental design, by comparing
different train-test regimes, as well as the modeling, by repli-
cating the original results and attempting to extend them via
modern neural network regularization methods. We present
practical recommendations based on our results in Section 5.
We describe additional benefits, beyond reproducibility, af-
forded by MORF, and replication in machine learning more
broadly, in Section 6, concluding in Section 7.

1The code to fully replicate these experiments, includ-
ing their execution environments and software depen-
dencies within a Docker environment, is available at
https://github.com/educational-technology-collective/dl-
replication/.
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2. PRIOR WORK
2.1 The Reproducibility Crisis in

Machine Learning
Much has been written about the reproducibility crisis in
science, particularly in fields which conduct human subjects
research such as social psychology. Recent empirical evi-
dence has shown that issues with reproducibility are also
widespread in the field of machine learning. A survey of
400 research papers from leading artificial intelligence venues
shows that none of the works surveyed document all aspects
necessary to fully reproduce the work; only 20-30% of the
factors evaluated were adequately reported in the works sur-
veyed [19]. A replication study of deep reinforcement learn-
ing algorithms [21] show that the variance inherent to sta-
tistical algorithms, the use of different hyperparameter set-
tings, and even different random number generation seeds
contribute to a lack of reproducibility in machine learning
research and have a direct impact on whether experimen-
tal results and baseline model implementations replicate. A
survey of 30 machine learning studies in text mining identi-
fied poor reproducibility due to lack of access to data, soft-
ware environment, randomization control, and implementa-
tion methods [28]. None of the 30 works surveyed provided
source code, and only one of 16 applicable studies provided
an executable to be used to reproduce the experiments.

These reproducibility issues are partly attributable to cul-
ture and convention. A survey of authors published in the
Journal of Machine Learning Research found that roughly
one third intentionally did not make their implementations
available, for reasons including a lack of professional incen-
tives, a reluctance to publish messy code, and the convention
that doing so is optional [33]. [30] observes that only five
of 125 published articles in the journal Biostatistics have
passed the (voluntary) reproducibility review since its in-
ception two years prior, yet considers this effort “successful”
compared to the reproducibility of previous work.

As big data and machine learning permeate disciplines, this
crisis in replication has also affected other fields of study,
including the learning sciences. This is especially relevant
in cases of very large datasets where the majority of learn-
ing is computer-mediated, such as in Massive Open On-
line Courses (MOOCs). For example, [16] showed that a
large-scale replication of machine learning models led to sub-
stantially different conclusions about the optimal modeling
techniques for MOOC dropout, with several findings repli-
cating significantly in the opposite direction of the origi-
nal study (which was conducted on only a single MOOC).
In an attempted replication of the “deep knowledge trac-
ing” method originally introduced in [31], the results showed
that much simpler methods could achieve equivalent perfor-
mance, and that the performance gains demonstrated in the
original work were at least partially due to data leakage [24].
Somewhat more favorably, in [2], the authors find that 12
of 15 experimental findings in MOOCs replicated using a
production-rule framework, but an additional two findings
replicated significantly in the opposite direction.

2.2 Existing Tools for Reproducible
Machine Learning

An exhaustive survey of tools and platforms to support re-
producible machine learning research is beyond the scope of
this paper. However, we include a brief survey of tools most
relevant to reproducible machine learning for predictive an-
alytics in education.

OpenML [35] is “an open, organized, online ecosystem for
machine learning” that allows users to create data science
pipelines to address specific “tasks”, such as classification
and clustering. The OpenAI Gym is an open-source inter-
face for developing and comparing reinforcement learning
algorithms [6]. Its wide use for both teaching and research
serve as an example of how a subfield can create and adopt
shared tools that meet researchers’ needs while enhancing
reproducibility. Recently, several publishing platforms dedi-
cated to reproducible computational research have also formed,
such as ReScience 2, CodaLab 3, and WholeTail [5]. These
platforms unify code, data, computation, and presentation
in a single location. CodaLab and WholeTail also use Docker
containerization to ensure reproducibility.

Each of these platforms is an important step toward repro-
ducible machine learning research, and many of them ad-
dress key barriers. However, these tools are insufficient for
many types of machine learning tasks, including supervised
learning with large-scale behavioral data from MOOCs. In
particular, none of these platforms supports replication where
the underlying data sets are privacy-restricted and cannot
be publicly shared. In some cases, such as WholeTail, the
platform scope is explicitly limited to public (non-restricted)
datasets [5]. However, in educational data, many of the
types of unanonymizable data that are privacy-restricted
are also necessary for analysis (such as the text of discus-
sion forum postings, IP addresses, or student names). Such
restrictions are also likely to drive away machine learning
researchers from working with this data, as gaining access
to unprocessed raw educational data can be difficult or im-
possible without close collaborators and strong institutional
support. Even with institutional support, government regu-
lations such as the Family Educational Rights and Privacy
Act (FERPA) may restrict or complicate data sharing.

3. THE MOOC REPLICATION
FRAMEWORK

The replication crisis is the result of a confluence of forces
which must be collectively addressed in order to achieve
end-to-end reproducibility. Prior work has identified three
groups of challenges: experimental, methodological, and data
challenges [17]. No existing solution discussed in Section 2.2
currently addresses all three barriers. In this section, we
outline three key barriers to reproducibility, and describe
how these barriers are addressed by the MOOC Replication
Framework (MORF), the research tool used to conduct this
experiment.

MORF itself is a Python toolkit, accompanied by a platform-

2http://rescience.github.io/about/
3http://codalab.org/
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Figure 1: End-to-end reproducibility requires addressing data, technical, and methodological issues with re-
producibility. Replication of the computational environment, in particular, is key to replicating this complete
pipeline from raw data to results. Each of the four stages of the supervised learning pipeline executed inside
the computational environment are encapsulated in MORF’s execution model (see Section 3).

as-a-service (the “MORF Platform”), which collectively ad-
dress the challenges faced by researchers studying large-scale
online learning data noted above [17].4

Users submit jobs to the MORF Platform using short, 4-5
line “controller” scripts which guide the execution of each
stage of the end-to-end supervised learning pipeline (ex-
tract, train, test, and evaluate) shown in Figure 1. The
use of controller scripts is a common approach to conduct-
ing reproducible computational research [25]. MORF’s com-
bination of containerization and controller scripts allow the
user to manage low-level experimental details (operating sys-
tem and software dependencies, feature engineering meth-
ods, and statistical modeling) by constructing a Docker con-
tainer which is submitted to MORF for execution. MORF
manages high-level implementation details (parallelization,
data wrangling, caching of results) by “bringing the compu-
tation to the data.” This prevents the download of sensitive
raw data (currently, this includes the complete raw data
exports from over 270 MOOCs offered by two institutions
[17]). The containers used to execute each job are persisted
in MORF’s public Docker Cloud repository, and the con-
figuration file and controller scripts are persisted in Zen-
odo and assigned a unique Digital Object Identifier (DOI).
This yields a reproducible end-to-end pipeline that is flexi-
ble, easy to use, and computationally efficient.

MORF eases the computational expense of conducting such
research at scale by providing nearly an order of magni-
tude greater computational infrastructure than any of the
platforms discussed in Section 2.2, and out-of-the-box par-
allelization to utilize it. See [17] for a more thorough com-
parison to other platforms.

3.1 Experimental Reproducibility via
Containerization

Experimental challenges with reproducibility relate to
reproducing the exact experimental protocol [17]. It has
been noted that code-sharing alone is insufficient to guaran-
tee reproducibility in computational research. For example,
[10] showed that the published code accompanying 20% of
their large sample of 613 published computer systems pa-
pers failed to build or run, and in total, it was not possible
to verify or reproduce 75.1% of studies surveyed using the

4The MORF website, which includes documentation
and short tutorials, is at https://educational-technology-
collective.github.io/morf/

artifacts provided in publication.

Even when code is available, other technical issues can pre-
vent reproducibility in research workflows [25]. These in-
clude code rot, in which code becomes non-functional or its
functionality changes as the underlying dependencies change
over time (for example, an update to a data processing li-
brary which breaks backwards compatibility, or a modified
implementation of an algorithm which changes experimen-
tal results), as well as dependency hell, in which configuring
the software dependencies necessary to install or run code
prevents successful execution [3]. This complex web of inter-
dependencies is rarely described or documented in published
machine learning and computational science work [19, 28],
despite over two decades of evidence that it is a necessary
condition for reproducing computational results [7].

MORF uses containerization to support end-to-end repro-
ducibility (Figure 1). The Docker containers submitted to
MORF fully encapsulate the code, software dependencies,
and execution environment of an end-to-end machine learn-
ing experiment in a single file, ensuring end-to-end repro-
ducibility and enabling sharing of the containerized experi-
ment. Docker containers were developed to resolve many of
the experimental reproducibility challenges described above
in software development contexts [27], and are frequently
used in industrial software applications, computational mod-
eling, and computer systems research [3, 9, 23]. A ma-
jor advantage of containerization over simple code-sharing
is that containers fully reproduce the entire execution en-
vironment of the experiment, including code, software de-
pendencies, and operating system libraries. Docker contain-
ers are more lightweight than a full virtual machine, but
achieve the same level of reproducibility [27, 23]. Build-
ing Docker containers requires only a single Dockerfile (akin
to a makefile) which contains instructions for building the
environment. This imposes minimal additional burden on
researchers relative to configuring, programming, and exe-
cuting an experiment, but achieves a considerable increase
in reproducibility. While other existing machine learning re-
search platforms sometimes utilize Docker“under the hood,”
this limits users’ ability to fully leverage containerization
by configuring or sharing these environments. We are not
aware of any platform which allows users to build and sub-
mit Docker images directly for execution as MORF does.

As part of MORF, we are assembling an open-source library
of pre-built Docker containers to replicate experiments con-
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ducted on MORF to serve as shared baseline implementa-
tions. These containers can be loaded with a single line of
code, allowing the research community to replicate, fork,
interrogate, modify, and extend the results presented here5.

3.2 Methodological Reproducibility via
Platform Architecture

Existing work on reproducibility largely focuses on strictly
technical challenges, but as our experiment in Section 4
shows, methodological issues are at least as important. Method-
ological challenges to reproducibility reflect the methods of
the study, such as its procedure for model tuning or statisti-
cal evaluation. Poor methodological decisions can lead to a
lack of inferential reproducibility [19]. We see such issues in
e.g. the use of biased model evaluation procedures [8, 36];
improperly-calibrated statistical tests for classifier compar-
ison [12]; large-scale hypothesis testing where thousands of
hypotheses or models are tested at once, such as in massive
unreported searches of the hyperparameter space without
statistical evaluation or appropriate corrections, or “random
seed hacking,” wherein the random number generator itself
is systematically searched in order to make a target model’s
performance appear best or a baseline model worse [21].

MORF is designed to provide sensible default methodolog-
ical procedures for many machine learning tasks, such as
model evaluation, in practical terms nudging researchers to
make sound choices. For example, MORF avoids the use of
cross-validation for model evaluation: The prediction tasks
to which most MOOC models aspire are prediction of future
student performance (i.e., in an ongoing course where the
true labels – such as whether a student will drop out – are
unknown at the time of prediction). As such, using cross-
validation within a MOOC session, when the outcome of
interest is accuracy on a future MOOC session, provides an
unrealistic and potentially misleading estimate of model per-
formance. Prior work has demonstrated that within-session
cross-validation in the MOOC domain can produce overly
favorable estimates of classification performance on a future
(unseen) course or future session from the same course [37,
4]. Adopting more effective model evaluation techniques by
default requires no additional work for MORF users, and
ensures that work produced on the MORF platform follows
effective model evaluation procedures. MORF’s large data
repository also prevents users from having to utilize only a
single dataset for both training and testing; with many it-
erations of many unique MOOCs available, users can have
considerable training data available while also conducting
effectively-designed experiments with ample and represen-
tative test data.

3.3 Data Reproducibility via
Execute-Against Access

Data reproducibility concerns the availability of data itself.
In many domains, making raw data available is more an issue
of convention than a true barrier to reproducibility. How-
ever, in the case of educational data mining, data are often
governed by strict privacy regulations which protect the pri-
vacy of student education records. Similar restrictions af-

5The experiment presented below can be loaded by running
docker pull themorf/morf-public:fy2015-replication
in the terminal of any computer with Docker installed.

fect many other fields, from the health sciences to computa-
tional nuclear physics [25]. As a result, researchers are often
legally prohibited from making their data available. Efforts
such as [26] and [20] have attempted to address this prob-
lem in education by only releasing non-identifiable data, but
many analyses require the original, unprocessed data for a
full replication. Indeed, restricted data sharing is one of the
main factors (in our experience) hindering generalizability
analysis in educational data mining: investigators are gen-
erally limited to one or two courses worth of data (e.g. the
courses they instruct or specific publicly available courses),
and models are often overfit to these datasets.

MORF achieves data reproducibility while also meeting data
privacy restrictions by providing strictly “execute-against”
access to underlying data [17]. Most MOOCs are generated
by a small number of platforms (e.g. Coursera, edX), and
all courses from a given platform use publicly-documented
data schemas, e.g. [11]. Thus, users can develop experi-
ments using their own data from a given platform – or even
the public documentation – and then submit these experi-
ments for MORF to execute against any other course from
that platform. This enables MORF to currently provide an
interface to over 270 unique sessions of more than 70 unique
courses offered by two different institutions on the Coursera
platform, and to execute containerized experiments against
this data in a secure, sandboxed environment by utilizing
the shared public schema of the datasets [11]. These shared
public data schemas also ensure that existing experiments in
MORF can be replicated against new data (from the same
MOOC platform) as it becomes available.

4. REPLICATION EXPERIMENT: NEURAL
MOOC DROPOUT MODELS

In the remainder of this paper, we conduct an in-depth
exploration of previously-published MOOC dropout predic-
tion models using MORF. Neural models have demonstrated
the capacity to achieve state-of-the-art performance on a
wide variety of modeling and prediction tasks, from language
modeling to computer vision. Their application to MOOC
research has also demonstrated initial promising results [13,
29] due to their ability to model complex functional relation-
ships between student behavior data and learning outcomes,
but such research has been limited. In this section, we use
MORF to replicate a comparison conducted in [13], which
compares several machine learning algorithms using a set of
seven activity features (e.g. number of lecture videos viewed,
quizzes attempted, and discussion forum posts for each stu-
dent) over each week in a MOOC in order to predict a binary
dropout label indicating whether a user showed activity in
the final week of a course.

This study is an ideal candidate for replication because it
has been highly cited in the field, but compares six models
over five weeks of a MOOC (effectively testing 6·5·5

2
= 75

pairwise hypotheses) using cross-validation on only a single
dataset. This testing of many hypotheses/comparisons, with
only a single observation for each, can lead to poor method-
ological reproducibility and provides no information about
the variability of the estimates, relative to their magnitude
[14]. Particularly because this experiment was concerned
with empirical performance (in order to inform future “early
warning”dropout prediction systems), obtaining an accurate
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estimate of models’ expected performance on future course
sessions across a large, representative dataset can provide
insight into the generalizability of these findings. The use of
within-session cross-validation to draw conclusions about fu-
ture generalization performance remains common in MOOC
prediction research [15].

We present the results of our replication in Section 4.1, which
matches the authors’ original comparisons and their exper-
imental design. The original work evaluated three different
definitions of MOOC dropout; for tractability within this pa-
per, we strictly replicate “Definition 1” of dropout from [13],
which is the most commonly-used definition of dropout in
MOOC research [16]. In Section 4.2, we present the results of
a second experiment, which compares the same models using
a different experimental setup (predicting on future course
sessions) in order to demonstrate that the original experi-
mental design overestimates the generalization performance
of these models, likely due to overfitting. Our experimen-
tal analysis quantifies this overestimation and provides evi-
dence using statistical tests. Finally, in Section 4.3, we use a
comprehensive hyperparameter tuning and model evaluation
procedure to show that we can improve the generalization
performance of the LSTM model using batch normalization,
but that the addition of two other neural network regular-
ization methods does not further improve either the LSTM
or RNN model. We also present detailed information on
a variety of parameterizations examined in order to inform
future work.

4.1 Experiment 1: Full Replication With Orig-
inal Design

In our first experiment, we replicated the original experi-
ment using the original design – estimating model perfor-
mance via cross-validation within a single course – across
45 unique MOOCs using MORF, in consultation with the
original authors. Results are shown in Figure 2.

The original work concluded that a Long Short-Term Mem-
ory (LSTM) neural network model “ beats the ... other
proposed methods by a large margin” [13], pp.1. – a result
which matches the advances that neural models have made
in other domains. Our results in Experiment 1 show, how-
ever, that (1) LSTM is actually one of the lowest-performing
models, with the lowest average performance of any model
tested in weeks 4 and 5; (2) in most cases, the 95% con-
fidence intervals for algorithm performance overlap, and so
we cannot conclude that there is a difference in performance
between any but the very best and worst models evaluated,
even without applying corrections to adjust for the use of
multiple comparisons; and (3) observed performance of all
models is lower than in [13], particularly in later weeks of
the course.

We hypothesize that the relatively poor performance of LSTM
may may be due to overfitting on the dataset used in the
original experiment in [13]. Particularly when using cross-
validation for model selection on a single dataset with a
highly flexible model such as LSTM, the experimental de-
sign of the original work was quite susceptible to overfit-
ting. Overfitting seems particularly likely because no pro-
cedure for selecting hyperparameters was reported in [13],
and some key hyperparameter settings for the LSTM model

(e.g. batch size) were not reported at all. These hyperpa-
rameters were not available even after correspondence with
the authors, who did not record them and no longer had the
original code available (which itself points to the need for
reliable long-term reproducibility solutions such as MORF).
The need for detailed hyperparameter reporting in repro-
ducible research has been noted previously [21].

(2) shows the advantage of using MORF’s large data repos-
itory, which allows us to observe variability in each algo-
rithm’s performance across many MOOCs to form confi-
dence intervals for algorithm performance. Experiment 1
suggests that while differences in average performance may
exist, these are too small to be interpreted as genuine and
not spurious – particularly in light of the results shown in
Figure 3, which shows that the differences due to cross-
validation bias are larger than the observed differences be-
tween algorithms in most comparisons. We note that the
out-of-fold prediction error in each cross-validation iteration
could have been used to provide an estimate of the variabil-
ity in model performance when applied to new data in [13];
however, this was not provided in the original work. In any
case, having more datasets available makes the estimation of
this variability more reliable than would have been possible
with only one course.

Finally, the generally lower observed performance for all
models may may also be due to overfitting, and particularly
due to the experimental design. Experiment 1 uses an identi-
cal design to [13]. However, [13] uses only a single course (in
comparison to the 45 courses used in Experiment 1), which
would have permitted tuning many of the hyperparameters
germane to neural models (e.g. learning rate, activation
functions, number of training epochs, batch size, number of
hidden layers and units) specifically to optimize performance
on this individual course. In contrast, when using the large,
diverse set of courses in MORF, over-tuning such hyperpa-
rameters to an individual course would be disadvantageous
(and extremely difficult, due to the diversity of course sizes
and learner populations represented in MORF [17]). When
fitting multiple courses at once (as in MORF), the incentive
is instead to find a set of hyperparameters which generalizes
to many different types of courses.

The results of this experiment demonstrate the importance
of using large, diverse datasets for machine learning experi-
ments, and of performing multiple experimental replications.
Additionally, these results demonstrate that simpler models
– such as RNN, radial SVM, and logistic regression – may
achieve equivalent or better performance than LSTM for
MOOC dropout prediction. Our results, which are contrary
to the findings of the original study, also suggest that fur-
ther replication is necessary to identify the most effective
algorithms for MOOC dropout prediction, as we perform no
hyperparameter tuning in Experiment 1 and only replicate
the original models and features.

4.2 Experiment 2: Replication With Improved
Experimental Design

The original aim of the dropout prediction model in [13]
was to achieve accurate prediction on future courses. Prior
work has shown considerable differences in prediction re-
sults depending on the prediction and transfer architectures
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Original Results (Fei and Yeung 2015) Experiment 2 Results (Test on Future Course Session)Experiment 1 Results (Cross-Validation Within Course)

Figure 2: Original results from [13] (left) and replication results using the MOOC Replication Framework
evaluated using a held-out future course session (center) and cross-validation (right). 95% confidence intervals
shown. IOHMM not replicated due to lack of an open-source implementation which supported prediction.

used, particularly when predicting on the same couse session
used for model training instead of a future iteration of the
same course [37, 4]. In the case of the original experiment,
the cross-validation design was due to necessity: data from
only a single MOOC was available to the original authors,
and the prediction on out-of-fold data within the same ses-
sion was used. However, MORF makes all sessions of each
course available, with 45 courses having at least two ses-
sions. Therefore, in this section, we conduct an experiment
which uses the same modeling methods as the original ex-
periment, but do so using a true holdout architecture, where
each model is trained on the first n−1 sessions of a MOOC,
and is tested on the final session. We refer to this exper-
iment as Experiment 2. Note that only the design of the
prediction experiment is changed from Experiment 1.

The results of Experiment 2 are shown in the right panel of
Figure 2. The contrast between the center (cross-validation)
and right (holdout) panels demonstrates the optimistic bias
which can be introduced by evaluating generalization per-
formance via within-session cross-validation without the use
of an independent hold-out session [36]. This matches pre-
vious results demonstrating that the bias of performance
estimates when models are optimized over cross-validation
folds can often exceed the difference between learning algo-
rithms [8]. These results are further demonstrated by Figure
3, which shows a persistent positive bias for model evalua-
tion performed by cross-validation versus the “true” perfor-
mance on a future course session. A two-sided Wilcoxon
signed-rank test of a null hypothesis of equivalence between
the holdout and cross-validated experimental results, where
each model-week combination was treated as an observation,
was rejected with p < 2.2× 10−16.

A notable result from Figure 3 is that the observed 2σ̂ upper-
bound on the bias due to cross-validation is around begins
at roughly 0.035 AUC units when predicting after a sin-
gle week, and increases to over 0.08 AUC points in later
weeks. This difference due to design is as large as the dif-
ference between the highest-performing model and the two
next-highest performing models in every week of the origi-
nal experiment (see left panel of Figure 2). This shows that
biases introduced by experimental design can entirely over-
shadow experimental effects, and should be a particularly
strong call to action for the EDM community.

The findings of Experiment 2 are threefold. First, it demon-

strates that using within-course cross-validation to estimate
generalization performance on future course sessions intro-
duces a significant positive bias. This should serve both as a
call for machine learning researchers to dedicate additional
attention to the experimental design of machine learning ex-
periments, as well as a call to practitioners to rigorously eval-
uate models prior to their deployment for prediction. Sec-
ond, we quantify this bias, showing that in practice the bias
roughly falls in the 95% CI [0, 0.05] – where the upper-bound
is larger than the difference between learning algorithms in
the original work. Third, these results provide further ev-
idence that the original results presented in [13] may have
been overfit to the data in that work, and that the gener-
alization performance of such a model may be lower than
what was suggested by the initial results from [13].

4.3 Experiment 3: Improving Model Gener-
alization Performance via Regularization

In the previous two experiments, we presented results which
called into question some findings of the initial study in
[13], that neural models can significantly improve MOOC
dropout prediction. Our observations largely centered on
the problematic potential for overfitting and optimistic bias
due to experimental design in [13]. In this section, we show
that the consequences of overfitting can be at least par-
tially ameliorated by using modern regularization methods
for neural models. This section is intended to explore (a)
whether we can provide further evidence that the original
models were overfit to the data in [13], and (b) whether we
can improve the models’ generalization performance, and
still achieve state-of-the-art dropout prediction performance
with these models, through the use of regularization to re-
duce overfitting. In particular, we explore the recurrent neu-
ral network (“vanilla RNN”) and Long Short-Term Memory
(LSTM) models from the original study, but introduce differ-
ent architectures and explore various configurations of three
regularization methods, none of which were in the original
work. We show that we can approach, but not match, the
performance reported in [13], even when predicting on future
course sessions, by applying and tuning these regularizations
to the RNN and LSTM models.

Regularization is a modification made to a learning algo-
rithm that is intended to reduce its generalization error but
not its training error [18]. We explore three types of regu-
larization in this experiment, which we describe below.
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Comparison of Cross−Validation vs. Holdout Experiment Results

Figure 3: Comparison of AUC estimates from identical experiments using a holdout vs. within-course
cross-validation evaluation architecture. These results show a persistent positive bias when within-course
cross-validation is used to estimate predictive performance on a future, held-out session of a MOOC.

Dropout [34] randomly drops neural network units (along
with their connections) during each training iteration with
probability p. We test models with p = {0, 0.2}

Batch normalization [22] normalizes each feature in ev-
ery minibatch of data during training, which stabilizes model
training by reducing covariate shift (large changes in param-
eter updates due to differences in the distribution across fea-
tures) and preventing small changes to the parameters from
amplifying into larger and suboptimal changes in activations
in gradients. We test models with and without batch nor-
malization for each model.

L2 Regularization perhaps the most common regulariza-
tion method in modern deep learning research [18], L2 regu-
larization adds a penalty term to the loss function based on
the L2 norm of the network weights with the parameter λ
controlling the level of penalization (higher λ yields greater
regularization). We test λ = {0, 0.01, 0.001} for each model.

The study under replication was published in 2015, and since
then, research on the regularization of neural models has ad-
vanced considerably. Dropout was only originally proposed
in 2014, and batch normalization in 2015, so these tech-
niques were still quite new at the time of publication of [13]
and implementations were not widely available as part of
standard neural network software, as they are now. As a
result, the original publication quite reasonably did not ex-
plore these novel methods, despite their potential to improve
their results in practice.

Experiment 3 evaluates dropout prediction after four weeks
of the course (this is the final time point shown in Figure
2). Evaluating the full range of all weekly prediction tasks
was beyond the scope of this experiment, as even the ex-
periment here required testing 72 different hyperparameter
configurations (36 LSTM and 36 RNN models) across 45
courses, resulting in a total of 3, 240 total models trained.
We choose the week 4 prediction task because, after four
weeks, there would be maximal data for models to learn
from – and also, potentially, for models to overfit to. Week
4 prediction therefore provides the best opportunity to sep-
arate models with strong generalization performance from

models which overfit.

Results from Experiment 3 are shown in Figure 4. We statis-
tically evaluate the model comparisons, and visualize the re-
sults, using the Bayesian method of [14]. This method uses a
hierarchical Bayesian model to evaluate all pairwise compar-
isons of a set of k models across N datasets by accounting for
the correlation in performance across models and datasets.
While the original comparison also accounts for fold-level
correlation when applying the testing procedure to the re-
sults of a cross-validation procedure, here we only have a sin-
gle estimate for each dataset, and this simply adds slightly
more uncertainty to our estimation, which will tend to make
the model more conservative (less likely to make a decision).
The procedure estimates three probabilities for each pair
of classifiers X and Y : P(X > Y ),P(ROPE),P(X < Y ),
where ROPE indicates that the difference in performance
between the models is within a “region of practical equiv-
alence”, which in this experiment is set to ROPE = 0.01.
We use a decision threshold of 0.9, which means that the
procedure makes a “decision” (indicated by a colored entry
in the windowpane plot of Figure 4) only when the posterior
probability of one of the events is greater than or equal to
0.9; otherwise, the procedure makes no decision (indicated
by a blank white entry in Figure 4).

The results in Figure 4 demonstrate that batch normaliza-
tion considerably improves the LSTM model – all LSTM
models with batch normalization performed better, on av-
erage, than any LSTM model without batch normalization.
The hierarchical Bayesian model used to compare the mod-
eling results across the 45 course in MORF indicated that al-
most all of the batch-normalized LSTM models were within
the “region of practical equivalence”, or ROPE, indicating a
high posterior probability that these models achieve practi-
cally equivalent predictive performance (in this experiment,
a ROPE of 0.01 was used, meaning that a decision of ROPE
indicates a confident decision that models’ test AUC differed
by less than 0.01). Tuning of the other hyperparameters (L2
regularization λ, and dropout probability p) had little effect
on observed model performance, with almost all hyperpa-
rameter configurations being practically equivalent within a
fixed batch normalization group. These results suggest that
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Figure 4: Windowpane plots for LSTM model tuning experiment (left) and RNN model tuning experiment
(right). Batch normalization considerably improves the LSTM model. Other regularization methods (L2 reg-
ularization, dropout) show little effect. The RNN shows stable performance with a variety of configurations.

the LSTM model, which had considerably more parameters,
was likely overfitting to the data – and that the different
distributions across the different input features (which is
countered by batch normalization) were a strong factor con-
tributing to this overfitting. The LSTM model with the
highest average performance, with p = 0.0, h = 10, λ = 0.0
and batch normalization, achieved a mean AUC of 0.726 on
the MORF dataset – only 0.002 less than the best RNN
model in Experiment 3.

Figure 4 shows a more complicated picture with respect
to the RNN model. Generally, the results show that the
RNN performance is more robust to the hyperparameters:
the RNN achieves practically equivalent performance with a
range of settings. For example, models with both 10 and 20
hidden units, and with every λ value considered, achieve per-
formance practically equivalent to the highest-performing
model. The exception to this robustness is dropout – every
RNN in the “family” of best models (those with performance
equivalent to the highest-performing model , as in [14]) had
no dropout, or p = 0.0. The RNN model with the high-
est average performance, with p = 0.0, h = 20, λ = 0.01,
achieved a mean AUC of 0.728.

Collectively, these results support the hypothesis that the
LSTM model as parameterized in the original experiment
tends to overfit on standard-sized MOOC datasets, while
providing evidence that the RNN model is less prone to over-
fitting. The results also show that the LSTM model can be
improved, with performance to match the best RNN model,
through the use of regularization. For reference, the LSTM
model in the original experiment (with a single layer and
20 hidden units) has 2,261 trainable parameters, while the
RNN model has 581 tunable parameters. Regularization is
less likely to impact a properly-parameterized model when
sufficient data is provided, while its impact can be much
more evident when a model has too many free parameters
for the available data, as we see in the contrast between the
LSTM and RNN results of Figure 4 and the lack of effect on
RNN performance (mean AUC for the original RNN show
in in Experiment 2 was 0.727 at week 5).

5. IMPLICATIONS FOR PRACTICE
5.1 Experimental Design for Predictive Mod-

eling in EDM
The current work demonstrates that experimental design
can have important implications for the conclusions gen-
erated from a machine learning experiment. Our results
show that both researchers and practitioners should clearly
identify the hypotheses to be tested by a machine learning
experiment, or the goals of a deployed model, and then uti-
lize experimental designs which allow for inference about the
types of prediction scenarios to be encountered in the task of
interest. Cross-validation can be useful in evaluating a spe-
cific dataset, e.g. by fitting an explanatory model where the
interpretation of learned parameters is used to understand
the dataset. Cross-validation may also be useful when the
available data is limited. However, in cases where prediction
on a future course or generalization to new data are of inter-
est, using data from a future course or session will provide
more reliable estimates of model performance. For further
discussion of the design of machine learning experiments, see
[1].

5.2 Hyperparameter Tuning for Neural Mod-
els in EDM

The current work provides evidence regarding the impor-
tance of effective model tuning and regularization in edu-
cational data mining. In practice, educational models need
to operate effectively in a wide variety of scenarios. Pre-
dictive models in EDM are often required to obtain reason-
able performance even as the dataset size, target population,
and even data attributes change across course populations,
institutions, or platforms, making model robustness a key
consideration.

This experiment adds to an existing body of evidence (e.g.
[14]) that selecting an appropriate statistical model can af-
fect predictive performance much more than hyperparame-
ter selection (when reasonable hyperparameters are selected).
The introduction of regularization methods can improve mod-
els which are overfit, but has little impact on those which are
not overfit. However, introducing regularization as an addi-
tional experimental factor may be particularly challenging
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as it introduces an additional dimension of model tuning and
can considerably increase the computational cost of experi-
ments.

Our finding that batch normalization, in particular, imr-
poved the generalization performance of the LSTM model
suggests that normalization of counting-based features – which
can be highly skewed and show very different distributions
for different types of actions – is an important tool for use
in educational models.

6. BEYOND VERIFICATION: ADDITIONAL
ADVANTAGES OF REPLICATION IN MA-
CHINE LEARNING

Much prior work on reproducibility has focused on verifi-
cation – ensuring that published results are true and can
be reproduced. However, end-to-end reproducible machine
learning frameworks, such as MORF, provide benefits be-
yond mere verification, including:

“Gold standard” benchmarking: open replication plat-
forms allow for the comparison of results which were pre-
viously not comparable, having been conducted on differ-
ent data. The use of such benchmarking datasets has con-
tributed to the rapid advance of fields such as computer vi-
sion (e.g. MNIST, IMAGENET), natural language process-
ing (Penn Tree Bank, Brown corpus), and computational
neuroscience (openFMRI). These datasets have been partic-
ularly impactful in fields where it is difficult or expensive to
collect, label, or share data (as is the case with MOOC data,
due to legal restrictions on sharing and access). This can
help advance the “state of the art” by providing a common
performance reference which is currently missing in MOOC
research.

Shared baseline implementations: We noted above that
variability in so-called “baseline” or reference implementa-
tions of prior work has contributed to concerns about re-
producibility in the field [21]. By providing fully-executable
versions of existing experiments, MORF ameliorates these
issues, allowing for all future work to properly compare to
the exact previous implementation of a baseline method.

Forkability: containerization produces a ready-made ex-
ecutable which fully encompasses the code and execution
environment of an experiment. These can be readily shared
and “forked” much in the same way code is “forked” from
a git repository. This allows MOOC researchers to build
off of others’ work by modifying part or all of an end-to-
end pipeline (for example, by experimenting with different
statistical algorithms but using the same feature set as a
previous experiment) within the same software ecosystem.

Generalizability analysis: Each successive replication of
an experiment provides information about its generalizabil-
ity. Evaluating the generalizability of experiments has been
a challenge in MOOC research to date, where studies con-
ducted on restricted and often homogeneous datasets are
common [15]. When containerized end-to-end implementa-
tions are available, replicating these analyses on new data
– even data which are not publicly available but share the
schema of the original data – becomes as straightforward as

running the containerized experiment against new data.

Sensitivity Analysis: This technique, used widely in Bayesian
analysis, evaluates how changes to the underlying assump-
tions or hyperparameters affect model fit and performance.
Such an evaluation can provide useful information about a
model’s robustness and potential to generalize to new data.
Without being able to fully reproduce a model on the orig-
inal data, sensitivity analyses are not possible. In MORF,
such analyses can be conducted by simply forking and mod-
ifying the containerized version of the original experiment,
then re-executing it against the same data. These analyses
can also include so-called ablation analyses, wherein indi-
vidual components are removed from a model to observe
their contribution to the results, as well as slicing analyses,
where fine-grained analysis of performance across different
subgroups (e.g. demographic groups) is explored [32].

Full Pipeline Evaluation: Each stage of an end-to-end
machine learning experiment (feature extraction, algorithm
selection, model training, model evaluation) can be done in
many different ways. Each stage also affects the others (for
example, some algorithms might perform best with large fea-
ture spaces; others might perform poorly with many corre-
lated features). However, current research usually evaluates
only one or two components of this pipeline (e.g. training
several algorithms and tuning their hyperparameters on a
fixed feature set). Not only are the remaining stages of-
ten described in poor detail or not at all [19]; such work
also leaves future researchers unable to evaluate the syn-
ergy between different aspects of the end-to-end pipeline in
a published experiment (for example, exploring whether an
algorithm’s performance improves with a different feature
set). MORF fully encapsulates this end-to-end pipeline for
a given experiment and it makes it available for modification
to any other researcher.

Meta-Analysis: While meta-analyses are common in fields
with robust empirical research bases, such analyses have
been less common in the field of machine learning, which
has an emphasis on novelty. The open availability of exe-
cutable machine learning experiments affords detailed meta-
analyses by providing complete results of all modeling stages
for meta-analysis.

7. CONCLUSION
Further attention and analysis should be dedicated to repli-
cation in the field of educational data mining, and specif-
ically to MOOC dropout prediction. This work proposes
a paradigm of end-to-end reproducibility using the MOOC
Replication Framework. Our case study in replication using
MORF demonstrates the insights that can be gained from
replication studies in EDM, and the importance of factors
related to experimental design.
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