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ABSTRACT

Knowledge components (KCs) define the underlying skill
model of intelligent educational software, and they are crit-
ical to understanding and improving the efficacy of learning
technology. In this research, we show how learning curve
analysis is used to fit a KC model - one that was created
after use of the learning technology - which can then be
improved by human-centered data science methods. We an-
alyzed data from 417 middle-school students who used a
digital learning game to learn decimal numbers and decimal
operations. Our initial results showed that problem types
(e.g., ordering decimals, adding decimals) capture students’
performance better than underlying decimal misconceptions
(e.g., longer decimals are larger). Through a process of KC
model refinement and domain knowledge interpretation, we
were able to identify the difficulties that students faced in
learning decimals. Based on this result, we present an in-
structional redesign proposal for our digital learning game
and outline a framework for post-hoc KC modeling in a tu-
toring system. More generally, the method we used in this
work can help guide changes to the type, content and order
of problems in educational software.
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1. INTRODUCTION

In the view of KC modeling, student’s knowledge can be
treated as a set of inter-related KCs, where each KC is “an
acquired unit of cognitive function or structure that can be
inferred from performance on a set of related tasks” [22]. A
KC-based student model (which we refer to as KC model)
has been employed in a wide range of learning tasks, such
as supporting individualized problem selection [11], choos-
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ing examples for analogical comparison [35] and transition-
ing from worked examples to problem solving [43]. A good
KC model is vital to intelligent educational software, par-
ticularly in the design of adaptive feedback, assessment of
student knowledge and prediction of learning outcomes [24].

A new area in educational technology that could potentially
benefit from KC models is digital learning game. While
there has been much enthusiasm about the potential of dig-
ital games to engage students and enhance learning, few
rigorous studies have demonstrated their benefits over more
traditional instructional approaches [32,34]. One possible
reason is that most digital learning games have been de-
signed in a one-size-fits-all approach rather than with per-
sonalized instruction in mind [9]. Adopting KC modeling
techniques could therefore be an important first step in meet-
ing individual students’ learning needs and making digital
learning games a more effective form of instruction. A criti-
cal question in this direction is whether a KC model can be
created after the use of the learning technology, in order to
better understand the targeted learning domain and to help
in improving the technology.

In our study, we explore this question in the context of
a game that teaches decimal numbers and decimal opera-
tions to middle-school students. We started with an initial
KC model based on problem type (e.g., adding decimals,
completing sequences of decimals), then used the human-
machine discovery method [51] to derive new KCs and for-
mulate the best fitting model. From this improved model,
we first discuss findings about students’ learning of decimal
numbers and propose potential changes to the instructional
materials that address a wider range of learning difficulties -
a process known as “closing the loop” [24]. Then, we outline
a general framework for adding KC models to educational
software in a post-hoc manner and discuss its broader im-
plications in digital learning games.

2. BACKGROUND

In this section, we first present background information about
two aspects of student modeling that are relevant to our
work: (1) KC modeling, a technique that represents stu-
dents’ knowledge as latent variables, and (2) the current
state of student modeling in digital learning games. Then,
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we describe the game environment used for data analysis.

2.1 KC Modeling

Traditionally, KC models have been developed by domain
experts, using Cognitive Task Analysis methods such as
structured interviews, think aloud protocols and rational
analysis [45]. These methods result in better instructional
design but are also highly subjective and require substantial
human effort. To address this shortcoming, a wide range of
prior research has focused on creating KC models through
data-driven techniques. Some of the earliest work on iden-
tifying and improving KC models was done by Corbett and
Anderson [11] with the early LISP tutors. In this work,
plotting of learning curves showed “blips” or “peaks” in the
curves which indicated new KCs that were not accounted
for in the initial model. By using a computational model
to fit the data in learning curves, [5] showed how Learning
Factor Analysis (LFA) could automate the process of identi-
fying additional KCs in educational software. LFA takes as
input a space of hypothesized KCs, which can be discovered
through visualization and analysis tools [51]. Once there
are several human-generated KC models, they can be com-
bined by merging and splitting skills using machine learning
techniques that aim to improve the overall fit [23].

It is important to define a good model, but it is not al-
ways clear how to do so. Goodness of fit is best measured
by cross validation, but this technique is time consuming
and computationally expensive for large datasets. Further-
more, there is no consensus on how cross validation should
be performed on educational data [50]. Two related and
easy-to-compute metrics are the Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC), which
address overfit by measuring prediction accuracy while pe-
nalizing complexity. In general, a lower AIC/BIC/cross val-
idation score indicates a better model. In case they do not
agree, [50] showed that AIC correlates with cross validation
better than BIC, through an analysis of 1,943 KC models in
DataShop. However, these scores alone do not portray the
full picture; as pointed out by [3], many student modeling
techniques that aim to predict student learning achieve neg-
ligible accuracy gains, “with differences in the thousandths
place,” suggesting that they are already close to ceiling per-
formance. In response, [28] brought attention to another
important criterion - whether the model is interpretable and
actionable. As the authors argued, even slight improvement
can be meaningful if it reveals insights on student learning
that generalize to a new context and lead to better, empiri-
cally validated instructional designs. For instance, some re-
search has been successful in redesigning tutor units to help
students reach mastery more efficiently, based on analysis of
previous KC models [24,27].

Our analysis follows the established process outlined above,
in which we started with a basic human-generated KC model,
then identified potential improvements using learning curve
analysis, and evaluated the new model by AIC, BIC and
cross validation. We also derived instructional insights from
this model as the first step in closing the loop.

2.2 Student Modeling in Games

As pointed out by [2], knowledge in digital learning games
is harder to represent than knowledge in tutoring systems

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

because the students’ thinking process, as well as learning
objectives, may not be as explicit. The popular student
modeling techniques for learning games are those that can
represent uncertainty, such as Bayesian Networks (BN) [31]
and Dynamic Bayesian Networks (DBN) [8]. For instance,
in Use Your Brainz, by applying BN to each level of the
game to estimate the problem-solving skills of learners, re-
searchers were able to validate their measures of stealth as-
sessment [46]. [10] applied DBN in Prime Climb, a math
game for learning factorization, to build an intelligent peda-
gogical agent that results in more learning gains for students.
Follow-up work by [30] refined and evaluated the existing
DBN, yielding substantial improvement in the model’s test
performance prediction accuracy, which in turn helps bet-
ter estimate students’ learning states in future studies. As
another example, [42] employed DBN to predict responses on
post-test questions in Crystal Island, an immersive narrative-
based environment for learning microbiology.

Recent research has proposed entirely data-driven meth-
ods for discovering KC models in a tutoring system [17,
26]. However, most KC models employed in digital learning
games have been generated manually by domain experts.
For instance, in Zombie Division, the KCs were identified
by math teachers as common prime factors such as “divide
by two” and “divide by three” [2]. Similarly, the designers
of Crystal Island labeled the general categories of knowl-
edge involved in problem-solving as narrative, strategic, sce-
nario solution and content knowledge [42]. The first at-
tempt to refine a human-generated baseline KC model using
data-driven techniques in digital learning games was done
by Harpstead and Aleven [18]. Their approach, which was
applied to Beanstalk, a game that teaches the concept of
physical balance, is based on [51]’s human-machine discov-
ery method, which is very similar to ours; however, there are
notable differences in the learning environments. In particu-
lar, the domain of decimal numbers involves many more rules
and operations than Beanstalk’s domain of beam balancing;
in turn, our digital learning game also incorporates more ac-
tivities (e.g., placing numbers on a number line, completing
sequences, assigning numbers to less-than and greater-than
buckets). Therefore, our KC modeling process takes into ac-
count not just the instructional materials but also elements
of the interface and problem types, which could be more
generalizable to other learning environments.

2.3 A Digital Learning Game for Decimals
Decimal Point is a single-player game that helps middle-
school students learn about decimal numbers and their op-
erations (e.g., adding, ordering, comparing). The game is
based on an amusement park metaphor (Figure 1), where
students travel to various areas of the park, each with a dif-
ferent theme (e.g., Haunted House, Sports World), and play
a variety of mini-games within each theme area, each target-
ing a common decimal misconception: Megz (longer decimals
are larger), Segz (shorter decimals are larger), Pegz (the two
sides of a decimal number are separate and independent)
and Negz (decimals smaller than 1 are treated as negative
numbers) [21,47]. Each mini-game also involves one of the
following problem types:

1. NumberLine - locate the position of a given decimal
number on the number line.
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2. Addition - add two decimal numbers by entering the
carry digits and the result digits.

3. Sequence - fill in the next two numbers of a given se-
quence of decimal numbers.

4. Bucket - compare given decimal numbers to a thresh-
old number and place each decimal in a “less than” or
“greater than” bucket.

5. Sorting - sort a given list of decimal numbers in as-
cending or descending order.

Figure 1: A screenshot of the main map screen.

In each theme area, and across the different theme areas,
the problem types are interleaved to improve mathematics
learning [41] and introduce variety and interest in gameplay.
Figure 2 shows the screenshots of two mini-games - Ancient
Temple (a Sequence game) and Peg Leg Shop (an Addition
game). Each mini-game requires students to solve up to
three problems of the same type (e.g., place three numbers
on a number line, or complete three number sequences). Stu-
dents must answer correctly to move to the next mini-game;
they also receive immediate feedback about their answers.
To further support learning, after a problem has been solved,
students are prompted to self-explain their answer by select-
ing from a multiple-choice list of possible explanations [7].

A prior study by [34] showed that Decimal Point promoted
more learning and enjoyment than a conventional instruc-
tional system with identical decimal content. Follow-up
studies by [37] and [19] then tested the effect of student
agency, where students can choose the order and number
of mini-games they play. These studies revealed no differ-
ences in learning or enjoyment between low- and high-agency
conditions, but [19] found that students in a high-agency
condition had the same learning gains while playing fewer
mini-games than those in low-agency, suggesting that the
high-agency version led to more learning efficiency.

Post-hoc analyses by [52] examined the different mini-game
sequences played by high-agency students and found that,
consistent with the reports in [19], those who stopped early
learned as much as those who played all mini-games. This
result leads to important questions about the right amount
of instructional content to maximize learning efficiency. To
answer these questions, we would need a more fine-grained

measure of student learning using in-game data rather than
external test scores. The KC modeling work presented here
represents the first step in this direction.

(a) Ancient Temple (b) Peg Leg Shop

Figure 2: Screenshots of two mini-games.

2.3.1 Participants and Design

We obtained data from two prior studies of Decimal Point
involving 484 students in 5th and 6th grade, in all study
conditions [19,37], and removed those students who did not
finish all of the required materials, reducing the sample to
417 students (200 males, 216 females, 1 declined to respond).
The students played either some or all of the 24 mini-games
in Figure 1, depending on their assigned agency condition,
as described previously. When selecting a mini-game, stu-
dents would play two instances of that game, with the same
interface and game mechanics but different questions. Stu-
dents in the high-agency condition also had the choice to
play a third instance of each mini-game once. In subsequent
analyses, we use an index of 1, 2 and 3 to denote the in-
stance number, e.g., Ancient Temple 1, Ancient Temple 2
and Ancient Temple 3. For a detailed description of the
experimental design of prior studies, refer to [19,37].

2.4 Dataset

We analyzed students’ in-game performance data, which was
archived in the DataShop repository [49] in dataset number
2906. The dataset covers a total of 613,055 individual trans-
actions, which represent actions taken in the mini-games by
417 students in solving decimal problems.

3. METHODS & RESULTS

We started with the baseline KC models derived from two
sets of features that Decimal Point was built upon. These
initial models were fit using the Additive Factors Model
(AFM) method [6], and the learning curves were visualized
in DataShop. AFM is a specific instance of logistic regres-
sion, with student-correctness (0 or 1) as the dependent vari-
able and with independent variable terms for each student,
each KC, and the KC by opportunity interaction. It is a
generalization of the log-linear test model [54] produced by
adding the KC by opportunity terms. We then chose the
model with better fit and analyzed its learning curves. Each
model was run on 42,637 observations tagged with KCs.

3.1 Baseline Models

Our first baseline model, called DecimalMisc, consists of
four KCs that are the misconceptions targeted by the mini-
games: Megz, Segz, Negz, Pegz [21]. Because each mini-
game was designed based on a single misconception (KC),
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we created a model that maps each mini-game question to its
corresponding KC. The second model, ProblemType, instead
maps each mini-game question to its problem type (one of
NumberLine, Addition, Bucket, Sorting and Sequence).
Table 1 shows the fit statistics results of these two models.

Table 1: Fit statistics results of the two baseline
models. RMSE indicates 10-fold cross-validation
root mean squared error, stratified by item. Val-
ues that indicate best fit are in bold.

Model
AIC BIC RMSE
(# of KCs)
DecimalMisc (4) 30,699.27  34,379.97  0.3292

ProblemType (5) 29,504.09 33,202.12 0.3231

As can be seen, ProblemType outperforms DecimalMisc in
all three metrics - AIC, BIC and RMSE. In other words,
the actual problem types capture students’ learning better
than the underlying misconceptions. In subsequent analyses,
we therefore focused on improving the ProblemType model.
The first step is identifying potential improvements in the
learning curve of each KC. In general, a good learning curve
is smooth and decreasing [51]. Smoothness indicates that no
step is much harder or easier than expected, and a decreasing
curve shows that students were learning well and therefore
made fewer errors at later opportunities [36].

From Figure 3, we observed that the learning curves of Num-
berLine and Bucket are reasonably good. The learning
curve of Addition stays at roughly the same low error rate
throughout (< 10%) , but there are sudden peaks, suggest-
ing that some problems were harder than others and thus
should be represented by a separate KC. The learning curve
of Sequence decreases but not smoothly; the zigzag pattern
indicates that students were alternating between easy and
hard problems. Again, having separate KCs for the lows
and highs of the curve would likely yield a better fit. The
learning curve of Sorting is neither decreasing nor smooth;
therefore, this KC needs to be further decomposed.

3.2 Improved KC Models
3.2.1 KC decomposition

To find possible decompositions, we followed the human-
machine discovery method outlined in [51] and consulted
prior literature on students’ learning of decimal numbers.
Below we present our analysis of each problem type.

NumberLine. As its learning curve is already good, we
turned to related work on the game Battleship Numberline
[29], where students have to place given fraction numbers on
a number line. The authors found that, on a number line
that runs from 0 to 1, students have better understanding
when adjusting from 0 or 1 (e.g., 1/10 or 9/10) than from
1/2 (e.g., 3/7). Since decimal numbers can be translated to
fractions and vice versa, we (tentatively) experimented with
applying the findings of [29] to our model. In particular, we
decomposed the NumberLine KC into NumberLineMid (the
number to locate lies between 0.25-0.75) and NumberLineEnd
(the number to locate lies between 0-0.25 or 0.75-1).

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

Figure 3: Learning curves of the KCs in ProblemType.
The x-axis denotes opportunity number for each KC
and y-axis denotes error rate (%). The red line plots
all of the actual students’ error rate at each oppor-
tunity, while the blue line is the curve fit by AFM.

Addition. There are eight items in an Addition game: four
text boxes for carry digits - carryTens, carryOnes, carry-
Tenths, carryHundredths - and four text boxes for the result
- ansTens, ansOnes, ansTenths, ansHundredths (see Figure
2b for an example). Previously, all of these items had the
same KC label of Addition, but we expected that some dig-
its would be harder to compute than others. For instance,
the carryHundredths digit is always 0, because our prob-
lems only involve numbers with two decimal places. On the
other hand, because the focus of Addition problems is to
test that students can carry from the decimal portion to the
whole number portion (i.e., probing for the Pegz miscon-
ception), the carryOnes digit is always expected to be 1. It
was indeed the case that carryOnes, along with ansOnes, ac-
counts for a large portion of the peaks in Addition’s learning
curve (Figure 3). The most common error in these peaks,
however, comes from carryTens and ansTens in the mini-
game Thirsty Vampire 1. For the majority of students in
our sample (87.5%), Thirsty Vampire 1 was the first Addi-
tion problem they encountered, and its question (7.50 +
3.90) was also the only one with a carry in the tens place;
in other words, it was both the first and hardest question.
For this reason, we decided to decompose the Addition KC
into:

e Addition_Tens_NonZero applies to the carryTens and
ansTens item in Thirsty Vampire 1.

e Addition_Ones applies to carryOnes and ansOnes in
all Addition mini-games.

e Other items (e.g., carryTenths, carryHundreds
ansTenths) retain the KC label Addition.

Sequence. In a Sequence mini-game, students have to
enter the last two numbers in an increasing arithmetic se-
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quence, based on the pattern of the first three given numbers
(e.g., Figure 2a). In the way the questions were designed,
the first number to fill in always requires an addition with
carry, whereas the second does not involve a carry. We
therefore hypothesized that the first number is more diffi-
cult than the second, which was confirmed by inspection
of the learning curve: the alternate up and down patterns
depict students’ error rates as they filled in the first and
second number in each sequence. We further distinguished
between numbers with two decimal digits and those with
one, as the former should be more difficult to work with. In
summary, we decomposed the Sequence KC into four KCs:
Sequence_First_OneDigit (first number, with one decimal
digit), Sequence_First_TwoDigits (first number, with two
decimal digits), Sequence_Second_OneDigit (second num-
ber, with one decimal digit), Sequence_Second_TwoDigits
(second number, with two decimal digits).

Bucket. As the learning curve of Bucket is already good,
we did not further decompose this KC.

Sorting. The learning curve of Sorting remains flat at
around a 25% error rate. Since there are no outstanding
blips or peaks in this curve, we instead used DataShop’s
Performance Profiler tool to plot the predicted and actual
error rates of each mini-game problem (Figure 4). We identi-
fied five mini-game problems in which the actual error rate
was larger than predicted by at least 5%; in other words,
these problems were harder than expected. Therefore, we
labeled five of them - Rocket Science 1, Rocket Science 2,
Jungle Zipline 2, Balloon Pop 2 and Whac A Gopher 1 - by
a separate KC called SortingHard, while other problems re-
mained in Sorting. We will characterize the mathematical
features of these SortingHard problems in Section 4.2.

1. BalloonFop2
2. RockelSciencel
3. ReckelSeience2
4. JungleZiplinez
5. WestErnS hooter |
& WhacAGopher2
7. WhacAGopher!
8. Fealhall2

9. SpaceRaiderz

10. JungleZipline1

Figure 4: Visualization of the Sorting KC’s goodness
of fit with respect to ten Sorting mini-games with
the highest error rates. The bars (shaded from left)
show the actual error rates and the blue line shows
predicted error rates.

3.2.2  New model result & comparison

Table 2 shows the fit scores of the original ProblemType
model, the models resulting from individual KC decompo-
sitions, and the final model combining all decompositions,
called Combined. Apart from ProblemType and Combined,
the name of each other model indicates which original prob-
lem type KC is decomposed. For instance, the Sorting
model has six KCs - SortingHard, Sorting, NumberLine,
Bucket, Addition, Sequence - where the last four are iden-
tical to those in ProblemType. We can therefore see that

decomposing the original Sorting KC alone results in a de-
crease of AIC by 231.91 and BIC by 214.59.

Table 2: Fit statistics results of the original and new
models, sorted by AIC in descending order. Values
that indicate best fit are in bold.

Meodel AIC BIC |RMSE
(# of KCs)

ProblemType (5) | 29,504.09 33,202.12 0.3231
NumberLine (6) 29,492.48 | 33,207.83 | 0.3233
Sorting (6) 29,272.18 | 32,987.53 | 0.3215
Sequence (8) 29,159.27 32,909.25 0.3234
Addition (7) 29,025.77 | 32,758.43 | 0.3235
Combined (12) 28,436.07 | 32,255.34 | 0.3196

Figure 5 shows the resulting learning curves of the above

decompositions. We observed three KCs with issues: (1)
Sequence_First_TwoDigits is a flat curve which indicates
no learning, (2) SortingHard remains at high error rates,
and (3) Addition_Tens_NonZero has too little data (because
it only applies to Thirsty Vampire 1). Three other KCs -
Addition, Addition_Ones, Sequence_Second_Digits - have
low and flat curves, suggesting that students already mas-
tered them early on and did not need as much practice (i.e.,
they were over-practicing with these KCs). The remaining
KCs have smooth and decreasing curves. Most notably, we
were able to fix the zigzag pattern in the original Sequence
curve, reduce the peaks in the Addition curve, and capture
the Sorting problems that do reflect students’ learning.

Other than NumberLine, all of the new models resulted in
better AIC and BIC scores. The Combined model, which
incorporates all decompositions, is the best fit; when com-
pared to ProblemType, its AIC score is lower by 1068.02 and
its BIC is lower by 946.78. Using DataShop’s Performance
Profiler tool, we were also able to visualize the differences be-
tween these models in Figure 6. Here we see that for each of
the new KCs, the Combined model’s prediction, represented
by the blue line (square points), is closer to the actual error
rate than the ProblemType model’s prediction, represented
by the green line (round points). Hence, the combination of
our KC decompositions resulted in a better fit visually.

4. DISCUSSION

4.1 Comparison of Baseline Models

We found that the ProblemType model, which maps mini-
game questions to problem types, is a better fit for student
learning than the DecimalMisc model, which maps mini-
game questions to underlying misconceptions. Here we out-
line two possible interpretations.

First, while each question was designed to test one miscon-
ception, students may demonstrate other misconceptions in
their answers. For example, the mini-game Jungle Zipline 1,
labeled as Segz (shorter decimals are larger), asks students
to sort the decimals 1.333, 1.33, 1.3003, 1.3 from smallest to
largest. An answer of 1.3003, 1.333, 1.33, 1.3 would match
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KCs with issues

Low and flat KCs

Good KCs

Figure 5: Learning curves of the KCs in Combined. The x-axis denotes opportunity number and y-axis error
rate (%). The red line plots the actual students’ error rate at each opportunity, while the blue line is the

curve fit by AFM.

Figure 6: Visualization of the Combined and Problem-
Type models’ goodness of fit with respect to the new
KCs. The bars (shaded from left) show the actual
error rates. The blue and green line show predicted
error rates of Combined and ProblemType respectively.

the Segz misconception, but we observed that 25% of the in-
correct answers were 1.3, 1.33, 1.333, 1.3003, which instead
corresponds to Megz (longer decimals are larger). As another
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example, the mini-game Capture Ghost 1, labeled as Megz,
asks students to decide if each of the following numbers -
0.5, 0.341, 0.213, 0.7, 0.123 - is smaller or larger than 0.51.
14% of the incorrect answers stated that 0.5 > 0.51 and also
0.341 > 0.51, which demonstrates both Segz and Megz, re-
spectively. In general, in a problem solving environment like
Decimal Point, measuring students’ misconceptions should
be based on their actual answers, not the questions alone.
Therefore, a KC model that maps each question to its hy-
pothesized misconception may not capture the students’ full
range of learning difficulties. Two alternative approaches
used by other research for tracking decimal misconceptions
are: (1) measuring them at a larger grain size, such as whole
number, role of zero and fraction [14], and (2) using erro-
neous examples instead of problem solving questions [21]. In
the context of KC modeling, we could apply our process to
an existing dataset of student learning of decimal numbers
from erroneous examples, such as the dataset from [33].

From a cognitive perspective, [44] pointed out that “different
kinds of knowledge and competencies only show up inter-
twined in behavior, making it hard to measure them validly
and independently of each other.” The authors conducted
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a series of studies to test students’ conceptual knowledge of
decimal numbers and procedural knowledge of locating them
on a number line. Each study employed four common hy-
pothetical measures of each kind of knowledge, but revealed
substantial problems with the measures’ validity, suggesting
that it is difficult to reliably separate tests of conceptual
knowledge and procedural knowledge. In our context, the
decimal misconceptions reflect conceptual knowledge while
the problem types require a combination of both conceptual
and procedural knowledge. Therefore, differentiating prob-
lems by their types creates clearer KC distinctions than by
their associated misconceptions, because the former matches
more closely with students’ actual performance.

4.2 Interpretation of the New KCs

Here we discuss the insights from our earlier KC decompo-
sition results, using a combination of learning curve analy-
ses and domain-specific interpretations. While the example
questions we cite are specific to those in Decimal Point, the
findings about student learning are applicable to any other
educational technology system in decimal numbers.

NumberLine. Unlike [29], we did not observe that students
have more difficulty with numbers close to 0.5 than with
numbers close to 0 or 1. Decomposing NumberLine into Num-
berLineEnd and NumberLineMid results in increases in BIC
and RMSE, which are indicative of overfit. Furthermore, the
original learning curve of NumberLine is already smooth and
decreasing (Figure 3), so it is unlikely that any decomposi-
tion would yield significant improvements. More generally,
this result suggests that students could learn to estimate the
magnitude of a given decimal number between 0 and 1 rea-
sonably well, even though they may have difficulty with the
equivalent fraction form in the way [29] reported. To explain
this difference, we should note that students tend not to per-
ceive decimals and fractions as being equivalent [47], hence
difficulties with fractions may not translate to difficulties
with decimal numbers. As [12] pointed out, a fraction a/b
represents both the relation between a and b and the mag-
nitude of the division of a by b, whereas a decimal number,
without the relational structure, more directly expresses a
one-dimensional magnitude. Therefore, students often have
higher accuracy in estimating decimal numbers than frac-
tions on a number line [53]. The findings from our analysis
and [29] further support this distinction.

Addition and Sequence. These problem types both in-
volve computing the sum of two decimal numbers, and as
our decompositions showed, the difficulty factor lies in car-
rying digits to the next highest place value. In the case of
Addition, the first question, which also happens to be the
most challenging, is to add 7.50 and 3.90, which requires
two carries, one to the ones place and one to the tens place.
The error rate is therefore highest for this question (the first
peak in Figure 3), but decreases at later (easier) opportuni-
ties. The original learning curve of Sequence problems has
a zigzag pattern due to the students alternating between
additions with and without carry. Distinguishing between
these two types of operations, and also on the number of
decimal digits, did result in a better model fit. We also
note that the error rates in Sequence problems are generally
higher than in Addition problems. A possible interpretation
is that, while the underlying addition operations are similar,

the Sequence interface does not lay out the carry and result
digits in detail as the Addition interface does (Figure 2). As
pointed out by [25], for adding and subtracting decimals of
different lengths, incorrect alignment of decimal operands is
the most frequent source of error. Since Addition problems
already supported this alignment via the interface, students
were less likely to make mistakes in them.

Bucket and Sorting. These problem types both involve
performing comparisons in a list of five decimal numbers,
but in different manners. Bucket problems require compar-
ing each number to a given threshold value, while Sort-
ing problems require comparing the numbers among them-
selves. According to [40], ordering more than two decimals
(Sorting) could reveal latent erroneous thinking which mere
comparison of pairs (Bucket) cannot. Consistent with this
finding, our results also showed that students were able to
learn Bucket problems well but struggled with Sorting. Our
hypothesis is that a Sorting problem requires two separate
skills: (1) comparing individual pairs of number (in a list
of five numbers, students may perform up to ten compar-
isons), and (2) ordering the numbers once all the compar-
isons have been established. The current interface only asks
for the final sorted list, so it would need to be redesigned
to allow for tracking student mastery of each of these two
skills. Furthermore, by examining the five problems catego-
rized as SortingHard, we identified unique challenges that
were not present elsewhere in Decimal Point. First is the
issue of negative number - the mini-game Balloon Pop 2,
with an error rate close to 60% (Figure 4), asks students
to sort the sequence 8.5071, -8.56, 8.5, -8.517 in descending
order. Given that students may hold misconceptions about
both the length and sign of decimal numbers [21], and that
no other Sorting problems involve negative numbers, it is
clear why students faced significant difficulties in this case.
The second issue is another common misconception - that
a 0 immediately to the right of the decimal point does not
matter (e.g., 0.03 = 0.3) - which [39] referred to as role of
zero. It could be invoked in the mini-game Rocket Science 1,
which asks students to sort 0.14, 0.4, 0.0234, 0.323 in ascend-
ing order; in particular, 19% of the incorrect answers put
0.0234 between 0.14 and 0.323, implying the incorrect be-
lief that 0.0234 = 0.234. Previous studies have also reported
that 9th graders and even pre-service teachers demonstrated
this misconception in similar sorting tasks [20,38]. Further-
more, students may still have this misconception even after
abandoning others [13].

According to [24], there are four steps to redesign a tutor
based on an improved cognitive model: (1) resequencing, (2)
knowledge tracing, (3) creating new tasks, and (4) changing
instructional messages, hint and feedback. Based on this
framework and our analyses, we derived the following lessons
for designing instructional materials in our digital learning
game and other tutoring systems in decimal numbers:

1. Arrange the easy Addition problems (without or with
one carry) at the beginning. The number of these easy
problems can also be reduced, as over practice is al-
ready occurring based on the number of problems stu-
dents are attempting with low error rates.

2. Design more Addition problems with varying difficul-
ties (those with more carries are more difficult) and
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position them in increasing order of difficulty.

3. Leave the operand fields blank in Addition problems
so that students can practice aligning decimal digits.
Getting feedback on this alignment task could in turn
help them solve Sequence problems better.

4. Provide more scaffolding in Sorting problems, by first
asking students to perform pairwise comparisons of the
given numbers, then having them place the numbers
in order. The first task can be used to track miscon-
ceptions and the second to track the skill of ordering.

5. Design questions in other problem types besides Sort-
ing (e.g., NumberLine, Bucket) that address the role of
zero misconception, as it may be stronger and persist
longer than other misconceptions.

4.3 Advantages of Post-hoc KC Modeling

Wihile, in general, KC modeling methods can be applied to
any domain, domain knowledge is still critical for the inter-
pretation of the improved models and an understanding of
the newly discovered KCs. We have shown that we can apply
methods in a post-hoc manner to a dataset in an educational
domain to both achieve a better understanding and create a
better fitting KC model. Our findings also demonstrate that
the type of KC modeling we used can help guide changes to
the types, contents and order of problems that are used in
a decimal learning game (and educational technology more
generally). From a theoretical perspective, the search space
for a KC model in a given domain will be somewhere be-
tween a Single KC model, where every step represents the
same KC, to a Unique Step model, where every step has its
own KC. If we include the option of tagging a single step
with multiple KCs, the space could get infinitely larger, but
in a practical sense multi-coded steps could be combined to
a single KC by concatenating the KCs on a given step. Sev-
eral automated processes have been applied to create KC
models by searching the possible space, such as Q-Matrix
search [48], but they have the limitation of creating models
with unlabeled skills. The methods that we used do not face
this problem because we started with a fully labeled model
and worked from there. Using visual and computational
analyses on the learning curves, we were able to make im-
provements by combining the output of fitting models with
domain knowledge. The original Addition KC is an excel-
lent example of this approach in action. While the overall
curve did show a declining error rate, every four opportu-
nities looked as if the steps were getting harder (see Figure
3). Methodologically, this was a clear opportunity for im-
provement and likely a feature where each successive step in
a problem became harder. Sure enough, this was the case as
each of four problem steps required a carry, and the hardest
problem required two carries. This is one example which
demonstrates that we were able to not only get a better fit-
ting model, but also attain a deeper domain understanding.

4.4 Future Work

In our next study, we will use the best KC model from this
work as a test of how well it performs with a new popula-
tion of students. There is also potential in connecting our
work with earlier studies of student agency in digital learn-
ing games. In particular, [37] and [19] reported that even
though students in the high-agency condition could choose
to play any mini-game in any order, they did not learn more
than those in the low-agency condition, who played a fixed
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number of mini-games in a default order. [19] speculated that
the former might be focused on selecting mini-games based
on their visual themes (e.g., Haunted House, Wild West -
see Figure 1) rather than learning content. To address this
issue, we could employ an open learner model [4] that dis-
plays the estimated mastery level of each decimal skill to the
students, where the skills are the KCs in our best model. In
this scenario, we expect that students who exercise agency
would be able to make informed selections of mini-games
based on an awareness of their learning progress.

At the same time, digital learning games are intended to
engage students and promote learning. Therefore, we want
to explore the interactions between enjoyment and learning,
particularly in how best to balance them. Just as learning
can be modeled by knowledge components, can enjoyment
also be modeled by “fun components,” and how would they
be identified? We believe our digital learning game is an
excellent platform for this exploration, because each mini-
game has a separate learning factor (the decimal question)
and enjoyment factor (the visual theme and game mechan-
ics). It is also possible to track students’ enjoyment either
through in-game surveys or automated affect detectors [1].
As our next step, we will design two study conditions, one
that employs a traditional open learner model and one that
captures and reflects students’ enjoyment, using the five
problem types (worded in a more playful way, e.g., Shooting
instead of Sorting, because all Sorting mini-games involve
shooting objects such as spaceship) as the initial fun compo-
nents. Findings from this follow-up study would then allow
us to refine our enjoyment model and provide insights into
whether a learning-driven or enjoyment-driven game design
yields better outcomes.

In the direction of KC modeling, as mentioned in [19] and
[52], it is possible that the the game contains more learning
materials than required for mastery, or that some students
may have exhibited greater learning efficiency than others.
With the KC model identified in this work, we can then
apply Bayesian Knowledge Tracing [11] to assess students’
mastery of each KC and verify the presence of learning ef-
ficiency or over-practice. Another area we plan to study is
whether individual differences among the students in their
gameplay and learning could lead to further improvement
in predicting skill mastery based on the best-fit KC model,
similar to previous research done in an intelligent tutor for
genetics learning [15]. These individual differences could be
accounted for by other features in the game outside of the
identified cognitive-defined KCs [16].

S. CONCLUSION

Previous work has been done on refining KC models for ed-
ucational systems in the manner we have shown here [51],
although our research focused on the application of the re-
finement techniques to a digital learning game. We found
that modeling KCs by problem types yields a better fit than
modeling by the underlying misconceptions that were being
tested. Furthermore, the refined KC model also showed us
how to improve the original learning materials, in particular
by focusing on the more challenging and persistent miscon-
ceptions, such as those involving multiple carries, role of zero
and negative numbers. More generally, we demonstrated
how learning curve analysis can be employed to perform
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post-hoc KC modeling in a tutoring system with various
types of task. In turn, our work opens up further oppor-
tunities to explore the interaction of student models with
learning, enjoyment and agency, which would ultimately
contribute to the design of a learning game that can adap-
tively balance these aspects.

6.

ACKNOWLEDGEMENTS

This work was supported by NSF Award #DRIL-1238619.
The opinions expressed are those of the authors and do
not represent the views of NSF. Special thanks to J. Eliza-
beth Richey and Erik Harpstead for offering valuable feed-
back. Thanks to Scott Herbst, Craig Ganoe, Darlan Santana
Farias, Rick Henkel, Patrick B. McLaren, Grace Kihumba,
Kim Lister, Kevin Dhou, John Choi, and Jimit Bhalani, for
contributions to the development of the Decimal Point game.

7.
1]

147

REFERENCES

R. Baker, S. Gowda, M. Wixon, J. Kalka, A. Wagner,
A. Salvi, V. Aleven, G. Kusbit, J. Ocumpaugh, and
L. Rossi. Sensor-free automated detection of affect in a
cognitive tutor for algebra. In Fducational Data
Mining 2012, 2012.

R. Baker, M. J. Habgood, S. E. Ainsworth, and A. T.
Corbett. Modeling the acquisition of fluent skill in
educational action games. In International Conference
on User Modeling, pages 17-26. Springer, 2007.

J. Beck and X. Xiong. Limits to accuracy: How well
can we do at student modeling? In Educational Data
Mining 2013. Citeseer, 2013.

S. Bull and T. Nghiem. Helping learners to
understand themselves with a learner model open to
students, peers and instructors. In Proceedings of
workshop on individual and group modelling methods
that help learners understand themselves,
International Conference on Intelligent Tutoring
Systems, volume 2002, pages 5-13. Citeseer, 2002.

H. Cen, K. Koedinger, and B. Junker. Learning
factors analysis—a general method for cognitive model
evaluation and improvement. In International
Conference on Intelligent Tutoring Systems, pages
164-175. Springer, 2006.

H. Cen, K. R. Koedinger, and B. Junker. Is over
practice necessary?-improving learning efficiency with
the cognitive tutor through educational data mining.
Frontiers in artificial intelligence and applications,
158:511, 2007.

M. T. Chi, N. De Leeuw, M.-H. Chiu, and

C. LaVancher. Eliciting self-explanations improves
understanding. Cognitive science, 18(3):439-477, 1994.
C. Conati, A. Gertner, and K. Vanlehn. Using
bayesian networks to manage uncertainty in student
modeling. User modeling and user-adapted interaction,
12(4):371-417, 2002.

C. Conati and M. Manske. Evaluating adaptive
feedback in an educational computer game. In
International workshop on intelligent virtual agents,
pages 146-158. Springer, 2009.

C. Conati and X. Zhao. Building and evaluating an
intelligent pedagogical agent to improve the
effectiveness of an educational game. In Proceedings of
the 9th international conference on Intelligent user

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

21]

(22]

23]

(24]

interfaces, pages 6-13. ACM, 2004.

A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253-278, 1994.

M. DeWolf, M. Bassok, and K. J. Holyoak. From
rational numbers to algebra: Separable contributions
of decimal magnitude and relational understanding of
fractions. Journal of experimental child psychology,
133:72-84, 2015.

K. Durkin and B. Rittle-Johnson. The effectiveness of
using incorrect examples to support learning about
decimal magnitude. Learning and Instruction,
22(3):206-214, 2012.

K. Durkin and B. Rittle-Johnson. Diagnosing
misconceptions: Revealing changing decimal fraction
knowledge. Learning and Instruction, 37:21-29, 2015.
M. Eagle, A. Corbett, J. Stamper, B. M. McLaren,

R. Baker, A. Wagner, B. MacLaren, and A. Mitchell.
Exploring learner model differences between students.
In International Conference on Artificial Intelligence
in Education, pages 494-497. Springer, 2017.

M. Eagle, A. Corbett, J. Stamper, B. M. McLaren,

A. Wagner, B. MacLaren, and A. Mitchell. Estimating
individual differences for student modeling in
intelligent tutors from reading and pretest data. In
International Conference on Intelligent Tutoring
Systems, pages 133—-143. Springer, 2016.

J. P. Gonzélez-Brenes and J. Mostow. Dynamic
cognitive tracing: Towards unified discovery of student
and cognitive models. International Educational Data
Mining Society, 2012.

E. Harpstead and V. Aleven. Using empirical learning
curve analysis to inform design in an educational
game. In Proceedings of the 2015 Annual Symposium
on Computer-Human Interaction in Play, pages
197-207. ACM, 2015.

E. Harpstead, J. E. Richey, H. Nguyen, and B. M.
McLaren. Exploring the subtleties of agency and
indirect control in digital learning games. In
International Learning Analytics & Knowledge
Conference. Springer, 2019.

J. Hiebert and D. Wearne. Procedures over concepts:
The acquisition of decimal number knowledge.
Conceptual and procedural knowledge: The case of
mathematics, pages 199-223, 1986.

S. Isotani, D. Adams, R. E. Mayer, K. Durkin,

B. Rittle-Johnson, and B. M. McLaren. Can erroneous
examples help middle-school students learn decimals?
In European Conference on Technology Enhanced
Learning, pages 181-195. Springer, 2011.

K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning. Cognitive science, 36(5):757-798, 2012.

K. R. Koedinger, E. A. McLaughlin, and J. Stamper.
Automated student model improvement. International
Educational Data Mining Society, 2012.

K. R. Koedinger, J. C. Stamper, E. A. McLaughlin,
and T. Nixon. Using data-driven discovery of better
student models to improve student learning. In
International Conference on Artificial Intelligence in

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



[25]

[26]

[34]

[35]

[36]

[37]

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

Education, pages 421-430. Springer, 2013.

M. Y. Lai and S. Murray. What do error patterns tell
us about hong kong chinese and australian students:
understanding of decimal numbers? 2014.

R. V. Lindsey, M. Khajah, and M. C. Mozer.
Automatic discovery of cognitive skills to improve the
prediction of student learning. In Advances in neural
information processing systems, pages 1386-1394,
2014.

R. Liu and K. R. Koedinger. Closing the loop:
Automated data-driven cognitive model discoveries
lead to improved instruction and learning gains.
Journal of Educational Data Mining, 9(1):25-41, 2017.
R. Liu, E. A. McLaughlin, and K. R. Koedinger.
Interpreting model discovery and testing
generalization to a new dataset. In Educational Data
Mining 2014. Citeseer, 2014.

D. Lomas, D. Ching, E. Stampfer, M. Sandoval, and
K. Koedinger. ” battleship numberline”: A digital
game for improving estimation accuracy on fraction
number lines. Society for Research on Educational
Effectiveness, 2011.

M. Manske and C. Conati. Modelling learning in an
educational game. In AIED, pages 411-418, 2005.

J. Martin and K. VanLehn. Student assessment using
bayesian nets. International Journal of
Human-Computer Studies, 42(6):575-591, 1995.

R. E. Mayer. Computer games for learning: An
evidence-based approach. MIT Press, 2014.

B. M. McLaren, D. M. Adams, and R. E. Mayer.
Delayed learning effects with erroneous examples: a
study of learning decimals with a web-based tutor.
International Journal of Artificial Intelligence in
Education, 25(4):520-542, 2015.

B. M. McLaren, D. M. Adams, R. E. Mayer, and

J. Forlizzi. A computer-based game that promotes
mathematics learning more than a conventional
approach. International Journal of Game-Based
Learning (IJGBL), 7(1):36-56, 2017.

K. Muldner and C. Conati. Evaluating a
decision-theoretic approach to tailored example
selection. In IJCAI, pages 483-488, 2007.

A. Newell and P. S. Rosenbloom. Mechanisms of skill
acquisition and the law of practice. Cognitive skills
and their acquisition, 1(1981):1-55, 1981.

H. Nguyen, E. Harpstead, Y. Wang, and B. M.
McLaren. Student agency and game-based learning: A
study comparing low and high agency. In
International Conference on Artificial Intelligence in
Education, pages 338—351. Springer, 2018.

1. J. Putt. Preservice teachers ordering of decimal
numbers: When more is smaller and less is larger!.
Focus on learning problems in mathematics,
17(3):1-15, 1995.

L. B. Resnick, P. Nesher, F. Leonard, M. Magone,

S. Omanson, and I. Peled. Conceptual bases of
arithmetic errors: The case of decimal fractions.
Journal for research in mathematics education, pages
8-27, 1989.

A. Roche and D. M. Clarke. When does successful
comparison of decimals reflect conceptual

[41]

42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

understanding. Mathematics education for the third
millennium: Towards 2010, pages 486493, 2004.

D. Rohrer, R. F. Dedrick, and K. Burgess. The benefit
of interleaved mathematics practice is not limited to
superficially similar kinds of problems. Psychonomic
bulletin & review, 21(5):1323-1330, 2014.

J. P. Rowe and J. C. Lester. Modeling user knowledge
with dynamic bayesian networks in interactive
narrative environments. In Sizth Al and Interactive
Digital Entertainment Conference, 2010.

R. J. Salden, V. A. Aleven, A. Renkl, and

R. Schwonke. Worked examples and tutored problem
solving: redundant or synergistic forms of support?
Topics in Cognitive Science, 1(1):203-213, 2009.

M. Schneider and E. Stern. The developmental
relations between conceptual and procedural
knowledge: A multimethod approach. Developmental
psychology, 46(1):178, 2010.

J. M. Schraagen, S. F. Chipman, and V. L. Shalin.
Cognitive task analysis. Psychology Press, 2000.

V. J. Shute, L. Wang, S. Greiff, W. Zhao, and

G. Moore. Measuring problem solving skills via stealth
assessment in an engaging video game. Computers in
Human Behavior, 63:106-117, 2016.

K. Stacey, S. Helme, and V. Steinle. Confusions
between decimals, fractions and negative numbers: A
consequence of the mirror as a conceptual metaphor in
three different ways. In PME CONFERENCE,
volume 4, pages 4-217, 2001.

J. Stamper, T. Barnes, and M. Croy. Extracting
student models for intelligent tutoring systems. In
Proceedings of the National Conference on Artificial
Intelligence, volume 22, page 1900. Menlo Park, CA;
Cambridge, MA; London; AAAT Press; MIT Press;
1999, 2007.

J. Stamper, K. Koedinger, R. Baker, A. Skogsholm,
B. Leber, J. Rankin, and S. Demi. Pslc datashop: A
data analysis service for the learning science
community. In International Conference on Intelligent
Tutoring Systems, pages 455-455. Springer, 2010.

J. Stamper, K. Koedinger, and E. Mclaughlin. A
comparison of model selection metrics in datashop. In
Educational Data Mining 2013, 2013.

J. Stamper and K. R. Koedinger. Human-machine
student model discovery and improvement using
datashop. In International Conference on Al in
Education, pages 353-360. Springer, 2011.

Y. Wang, H. Nguyen, E. Harpstead, J. Stamper, and
B. M. McLaren. How does order of gameplay impact
learning and enjoyment in a digital learning game? In
International Conference on Artificial Intelligence in
Education. Springer, 2019.

Y. Wang and R. S. Siegler. Representations of and
translation between common fractions and decimal
fractions. Chinese Science Bulletin, 58(36):4630-4640,
2013.

M. Wilson and P. De Boeck. Descriptive and
explanatory item response models. In Ezplanatory
item response models, pages 43-74. Springer, 2004.

148



