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ABSTRACT
Early prediction of student difficulty during long-duration
learning activities allows a tutoring system to intervene by
providing needed support, such as a hint, or by alerting
an instructor. To be effective, these predictions must come
early and be highly accurate, but such predictions are dif-
ficult for open-ended programming problems. In this work,
Recent Temporal Patterns (RTPs) are used in conjunction
with Support Vector Machine and Logistic Regression to
build robust yet interpretable models for early predictions.
We performed two tasks: to predict student success and dif-
ficulty during one, open-ended novice programming task of
drawing a square-shaped spiral. We compared RTP against
several machine learning models ranging from the classic to
the more recent deep learning models such as Long Short
Term Memory to predict whether students would be able
to complete the programming task. Our results show that
RTP-based models outperformed all others, and could suc-
cessfully classify students after just one minute of a 20-
minute exercise (students can spend more than 1 hour on
it). To determine when a system might intervene to pre-
vent incompleteness or eventual dropout, we applied RTP at
regular intervals to predict whether a student would make
progress within the next five minutes, reflecting that they
may be having difficulty. RTP successfully classified these
students needing interventions over 85% of the time, with in-
creased accuracy using data-driven program features. These
results contribute significantly to the potential to build a
fully data-driven tutoring system for novice programming.

1. INTRODUCTION
Modeling student cognitive processes is highly complex since
it is influenced by many factors such as motivation, apti-

tude, and learning habits. This is especially challenging for
computer-based programming environments, because of the
open-ended nature of programming. In this study, we focus
on two important types of student modeling tasks to im-
prove student experience in computer-based programming
environments: 1) whether students will eventually succeed,
and 2) at any given time, whether students need interven-
tion. The interventions are more effective as we can predict
earlier. Indeed, student modeling has been studied exten-
sively for well-defined domains like algebra or physics [18,
17, 22]. For an ill-defined domain like programming, there
are no pre-defined steps that students must take to complete
a given program. Thus, it is hard to map the observations
from students step by step. This makes the step-aligned
models, like Bayesian Knowledge Tracing (BKT) [10], inap-
propriate for the programming domain.

Analyzing programming data often requires a way to rep-
resent a student’s current state on a given problem. In the
domain of programming, a student’s state is typically repre-
sented by their current code, called a code-state. However,
this representation leads to very large and poorly connected
state spaces [14, 31], which makes it difficult to compare stu-
dents and apply data-driven methods. Thus, in this study,
we transformed student click-like log files into fixed feature
sets. As shown in our prior work [38], this feature-state rep-
resentation dramatically reduces the size of an open-ended
programming state space, while creating semantically mean-
ingful states. In this study, we explore both expert feature
(EF) and data-driven feature (DDF) sets, and further com-
pare their robustness on the two prediction tasks.

In recent years, deep learning models, specifically Recurrent
Neural Networks (RNNs) and RNN-based models such as
Long Short Term Memory (LSTM) [13] and gated recurrent
unit (GRU) [9], have been shown to achieve state-of-the-art
results in many applications with multivariate time series
data including educational data. Such models enjoy sev-
eral nice properties such as strong prediction of performance
through deep hierarchical feature construction as well as the
ability to effectively capture long-term temporal dependen-
cies in time series data. Despite their extensive applications
and great success, the open-ended nature in programming

Ye Mao, Rui Zhi, Farzaneh Khoshnevisan, Thomas Price, Tiffany
Barnes and Min Chi "One minute is enough: Early Prediction of
Student Success and Event-level Difficulty during Novice
Programming Tasks" In: Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019), Collin F.
Lynch, Agathe Merceron, Michel Desmarais, & Roger Nkambou
(eds.) 2019, pp. 119 - 128

119 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



state-space and various time intervals can pose enormous
challenges for deep learning. More importantly, these deep
learning models are often treated as “black box” models be-
cause of the lack of interpretability – they are particularly
difficult to understand because of their non-linear nature.

On the other hand, Temporal Pattern-based approaches are
designed to extract interpretable, meaningful temporal pat-
terns directly from irregularly-sampled multivariate time se-
ries data. Recently, significant efforts have been made to de-
velop and apply various pattern-based approaches to health-
care and shown to be effective. [7, 21]. However, as far as
we know, temporal Pattern-based approaches have not been
extensively investigated in the field of educational data min-
ing especially for programming. In this work, we will di-
rectly compare one Temporal Pattern-based approach, Re-
cent Temporal Patterns (RTPs) [7] against a series of base-
line models including three classic machine learning mod-
els: k-Nearest Neighbors (KNN), support vector machines
(SVM), and Logistic Regression (LR), and a state-of-the-art
deep learning model: LSTM. More specifically, we compare
these approaches on two early prediction tasks. Overall, we
show that RTPs outperform all baseline models including
LSTM on both early prediction tasks and more importantly,
RTPs can generate quite reliable predictions with only the
first one minute data. Additionally, RTPs can discover in-
terpretable, meaningful temporal patterns that would be in-
formative for domain experts or educators.

Our main contributions are summarized as follows: 1) To
the best of our knowledge, this is the first attempt to apply
RTP mining to extract student programming temporal pat-
terns and compare it with several baseline models, including
deep learning. 2) We run extensive experiments evaluating
RTP and various baseline models on both the task of early
prediction for student success and that of early prediction
for student difficulty, while most prior research mainly fo-
cused on one or the other but not both. 3) We explored
their robustness and the effectiveness of using EF vs. DDF
for the programming system on both early prediction tasks.
4) We identify interpretable, meaningful temporal patterns
that can be informative for domain experts.

2. BACKGROUND, CONTEXT, & DATA
2.1 Modeling Student Learning
Student modeling has been extensively explored as a series of
approaches have been proposed [10, 34, 8, 24] to better un-
derstand and model student learning process. Among them,
Bayesian Knowledge Tracing (BKT) [10] is one of the most
widely investigated student modeling approaches. It mod-
els a student’s performance in solving problems related to
a given concept using a binary variable (i.e., correct, incor-
rect) and continually updates its estimation of the student’s
learning state for that concept. BKT and BKT-based mod-
els have been shown to be effective in many student modeling
tasks, such as predicting students’ overall competence [22],
predicting the students’ next-step responses [37, 6, 23, 18],
and the prediction of post-test scores [16, 19]. However, in
this study, BKT-based models cannot be directly applied to
our open-ended programming tasks, because of the adversity
of mapping students’ time-various actions step by step.

In recent years, extensive research has been conducted on

deep learning models, especially Recurrent Neural Network
(RNN) or RNN-based models such as LSTM in the field of
educational data mining [25, 33, 15, 35, 36, 17]. In our prior
work, we have shown that LSTM has superior performance
on the early prediction of student learning gain compared
with classic BKT-based models [19]. For the task of pre-
dicting students’ responses to exercises, LSTM was shown
to outperform conventional BKT [25] and Performance Fac-
tors Analysis [24]. However, RNN and LSTM did not al-
ways have better performance when the simple, conventional
models incorporated other parameters [15, 35].

While most of the previous studies on student modeling fo-
cus on predicting students’ success and failure in the next-
step attempt, some research has used student-tutor interac-
tion data to predict student post-test scores [11, 30]. In this
work, we explore the early prediction of both student success
and difficulty. As far as we know, none of the previous stud-
ies have explored both prediction tasks for computer-based
programming systems.

2.2 Programming and Help-seeking in iSnap
In this work, we analyze data from iSnap, a block-based
novice programming environment [26]. iSnap is an exten-
sion of Snap! [12], which allows students to easily create
interactive, 2D applications, such as apps and games. iSnap
provides students with on-demand, next-step programming
hints, which are generated automatically from student data
with the SourceCheck algorithm [28]. In addition, iSnap
collects detailed interaction data as students work, includ-
ing complete snapshots of all student code, allowing us to
perform detailed time series analysis. iSnap’s data-driven
hints also offer a useful motivation for this work. Prior anal-
ysis of student help-seeking behavior in iSnap suggests that
few students ask for help when they need it, especially lower-
performing students [29]. This is consistent with help avoid-
ance reported in other tutoring systems [2, 4]. Prior works
suggest that a number of factors lead to this help avoidance
in iSnap, including lack of trust in the system, a desire for
independence, and a lack of awareness of their own need for
help [27]. Effective help-seeking is a metacognitive skill that
many students need additional training to develop [3]. A
system that could detect or predict student difficulty times
could offer interventions such as automated help or instruc-
tor alerts. However, prior work suggests that such proactive
intervention is most effective when systems assess the stu-
dent’s likelihood to succeed [20], rather than responding to
all errors with help messages [1]. In this work, we present a
data-driven approach capable of making early and accurate
predictions of student success, which can enable a variety of
interventions, such as iSnap hints.

2.3 Dataset
Our datasets were collected from students using iSnap in an
“introduction to computers” course for non-majors, held at
a research university, from the Spring 2016 (S16), Fall 2016
(F16), Spring 2017 (S17), and Fall 2017 (F17) semesters.
We excluded students who requested hints since hints may
alter students’ problem-solving patterns, and our remaining
data contained code traces from 65, 38, 29, and 39 students
from S16, F16, S17, and F17 respectively. Each code trace
consisted of a sequence of timestamped snapshots of stu-
dent code. We chose one “Squiral” assignment to explore
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in-depth, where students must write a procedure to draw
a spiral with square corners. Common solutions contain 7-
10 lines of code and use procedures, loops, variables, and
arithmetic operators. In our previous work, we presented
a feature-state representation that defines a student’s state
by the presence or absence of specific features of a correct
solution [38]. Each feature describes a distinct property of
correct solution code and may specify a necessary code struc-
ture or required program output. We defined feature-state
as the presence or absence of each feature in a student’s
code (e.g. the feature-state “1101000” indicates Features 1,
2 and 4 are complete, while Features 3,5,6, and 7 are miss-
ing). In the same work, we implemented an algorithm to
identify data-driven code features directly from student so-
lutions, extracting 11 data-driven features (DDF). We also
had experts systematically define 7 expert features (EF) for
the Spiral assignment. Using the expert feature definitions,
we manually tagged each student’s snapshot and had 6,339
tagged snapshots from 38 traces in F16. Our work showed
that the data-driven features and expert features had mod-
erate agreement on whether a student is in the same feature
state or different states for F16. Additionally, we imple-
mented an automated expert feature detector to detect the
7 expert features automatically. We used the detector to tag
S16, S17, and F17 student snapshots with expert feature-
states. On the F16 dataset, the expert feature detector had
an agreement of 0.861 with the manually-tagged expert fea-
tures. In all, we have 31,064 tagged snapshots from 171
traces from S16, F16, S17, and F17 semesters. Finally, we
used a smoothing function to the tagged traces in which pe-
riods of rapid feature-state changes, defined as transitioning
back and forth between two features within a 5 snapshot
window, to set the values of a subsequent period after the
variance. This process aims to reduce noise generated by
actions in Snap! that do not represent meaningful feature-
state changes (e.g. a student drags the code to a different
position in the environment).

3. TWO EARLY PREDICTION TASKS
In this work, we explore two different early prediction tasks:
the trajectory-level early prediction for student success and
the event-level early prediction for student difficulty.

3.1 Trajectory-Level: Student Success
We classify the students who finished the programming as-
signment in one hour or less and got full credit as successful,
and those who either failed to complete the assignment or
submitted it within one hour as unsuccessful. Thus, each tra-
jectory is assigned one ground truth label based on whether
the student finished the assignment successfully or unsuc-
cessfully. As a result, we refer to this task as trajectory-level
early prediction task for student success. Based on this def-
inition, 59 of 171 students are in the successful group, and
the remaining 112 are in the unsuccessful group.

To predict student success, we are given the first up to n
minutes of a student’s sequence data and our goal is to pre-
dict whether the student will successfully complete the pro-
gramming assignment at any given point in the remaining
of the sequence. To conduct this task, we left-aligned all the
students’ trajectories by their starting times and our obser-
vation window (the part of data used to train and test dif-
ferent machine learning models) includes the sequences from

the very beginning to the first n minutes. If a student’s tra-
jectory is less than n minutes, our observation window will
include his/her entire sequence except the last one.

3.2 Event-Level: Student Difficulty
We define that a student is experiencing some sort of diffi-
culty if at any given moment, a student fails to make any
progress on his/her incomplete or imperfect answer in the
next five minutes. Failure to make any progress in five min-
utes (on a supposed-to-be 20-minute programming task) re-
flects that the student may be experiencing some difficulty.
Identifying the moment that a student is experiencing dif-
ficulty would allow us to determine when a system could
intervene to address difficulty or prevent eventual dropout.

Because we predict whether a student is experiencing diffi-
culty moment by moment, we refer to this early prediction
task as event-level early prediction. More specifically, for
a given moment, n minutes after starting time, we classify
the students who failed to make any progress in the next
five minutes as the intervention group, and those who made
some progress as the non-intervention group. Note that we
are not considering students who have already completed
the training in n minutes and they are not assigned to ei-
ther group. In short, for the event-level early prediction for
student difficulty, our observation window contains the first
up to n minutes of a student’s sequence data and our goal is
to predict whether the student will experience any difficulty
and need intervention in the next five minutes.

4. RTP MINING
Our dataset can be represented as a set of trajectories, X =
{x1, x2, ..., xN} where N = 171 is the total number of tra-
jectories, one per student. It is composed of multivariate
irregular time series data in that a student i’s trajectory xi
consists of a sequence of events: xi = {x1i , ..., xTi

i }, where
xti represents the student’s code-records at time step t. We
have xti ∈ RD, where D is the number of predefined at-
tributes/features and each attribute is a binary variable in-
dicating whether a feature is present or not: R ∈ {0, 1}.
Ti is the length of the trajectory xi; for different students,
Ti varies. Each xi is associated with a trajectory-level la-
bel (e.g. student success) or a series of moment by mo-
ment event-level labels (eg. student difficulty), denoted as
Y = {y1, y2, ..., yTi}, where yi ∈ {0, 1}. It is important to
note that in the trajectory-level student success prediction,
we treat students who are unsuccessful as the task of inter-
est; thus, they are assigned to be 1 because it is more impor-
tant for our model to classify and recognize the unsuccessful
students as soon as possible. Similarly, for the event-level
student difficulty task, we treat students who need interven-
tion as the task of interest, and thus are assigned as 1.

Generally speaking, our RTP mining is conducted by fol-
lowing four steps: 1) Convert binary time-series variables
into time interval sequences using Knowledge-based Tempo-
ral Abstraction, as described in the next section. 2)Extract
frequent recent temporal patterns from different classes of
data (i.e. 0 and 1). 3) Transform each xi into a fixed-size bi-
nary feature vector vi, where the size of vector corresponds
to the number of frequent RTPs from Step 2. 4) Build the
model on the binary matrix generated in Step 3 to predict
the outcomes.
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Figure 1: An example of conversion from the original data into a Multivariate State Sequence with three
temporal features.

Typically, temporal abstraction involves defining 1) discretized
data, 2) multivariate state sequences, 3) temporal relations,
and 4) temporal patterns [32]. Our binary data are already
discretized, so we describe the remaining three steps.

4.1 Knowledge-based Temporal Abstraction
Multivariate State Sequences: The middle table in Fig.
1 demonstrates how binary data can be converted into Mul-
tivariate State Sequences (MSS), zi where each row presents
a state interval, E, extracted from the student’s trajectory.
We denote a State S as (F, V ), where F is a temporal fea-
ture and V is the value for feature F at a given time and
the State Interval E is denoted as (F, V, s, e), where s and
e refer to the start and end times of the state (F, V ). Thus,
we can convert each student’s data xi into a corresponding
MSS zi by sorting all the state intervals by their start times:

zi = 〈E1, E2, ..., En〉 : Ej .s ≤ Ej+1.s, j ∈ {1, ..., n− 1}

Note that we also define zi.end as the end of the last state
interval in the MSS, i.e. En.e. For example, the right figure
of Fig. 1 is a visualization of the MSS zi, and zi.end is 241.
Applying this method on all xi ∈ X transforms X into a set
of MSSs: Z = {z1, z2, ..., zN}.

Figure 2: Allen’s 7 basic temporal relations, grouped
as before, or co-occurs.

Temporal Relations: We define two temporal relations,
based on Allen’s 7 basic temporal relations between states[5],
grouping the last six into one co-occurs relation as shown in

Figure 3: A temporal pattern P with 5 states
〈S1 = (F1, 0), S2 = (F2, 0), S3 = (F3, 0), S4 = (F4, 1), S5 =
(F2, 1)〉 and temporal relations presented by half ma-
trix R

Fig. 2. Thus, the two temporal relations, before (b) and co-
occurs (c), between two instantaneous events Ei and Ej , are
defined as :

• Ei before (b) Ej : When Ei ends before the start of
Ej (Ei.e < Ej .s).

• Ei co-occurs (c) with Ej : When Ei and Ej have some
overlap (Ei.s ≤ Ej .s ≤ Ei.e).

Temporal Patterns: Temporal patterns are generated by
combining states and temporal relations (before (b) and co-
occurs (c)) to describe temporal dependencies in data. More
specifically, for n states 〈S1, ..., Sn〉, we define the corre-
sponding temporal pattern: P = (〈S1, ..., Sn〉, R), where R
is an upper triangular matrix of relations, with Ri,j ∈ b, c
corresponding to the relation between Si and Sj . The size of
temporal pattern P is determined by the number of states
S it contains. For example, a 5-pattern with three tem-
poral features is shown in Fig. 3, where each state is an
abstraction of a variable and the half matrix on the right
shows the temporal relations between each pair of states.
For example, since S2 = (Feature 2, 0) happens before S4 =
(Feature 2, 0), R2,4 = b. In the next step, we describe a
method to find the recent temporal patterns (RTPs) from
MSSs in Z.

RTP Mining: We selected the RTP mining algorithm pro-
posed by Batal et al. [7], because it incorporates a maximum
gap parameter to consider the recency of patterns, it is effi-
cient, and it prevents incoherent patterns. Next, we define
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Figure 4: An example of generating 3-patterns out
of a single 2-RTP, by appending a new state.

Recent Temporal Patterns (RTP) and briefly explain how
they are applied in our work.

Recent Temporal Patterns: First, we call state interval
E = (F, V, s, e) a Recent State Interval of MSS zi if: 1)
E is the last state interval for feature F ; that is, for all

E
′

= (F, V
′
, s

′
, e

′
), we have E

′
.e ≤ E.e; or 2) E is less

than g time units away from the end time of the last state
interval: zi.end; that is, zi.end− E.e ≤ g.

Given an MSS zi, a temporal pattern P = (〈S1, ..., Sn〉, R),
and a maximum gap parameter g, we say P is a recent tem-
poral pattern (RTP) in zi, denoted as Rg(P, zi), if all 3 of
the following conditions hold: 1) zi contains P , where P ∈ zi
if: (a) zi contains all k states of P , and (b) all temporal re-
lations of P are satisfied in zi; 2) Sn = (Fn, Vn) matches a
recent state interval in zi; and 3) Every consecutive pair of
states in P maps to a state interval less than g time units
apart. That is, each pair of temporal sequences should not
be g time units apart. In short, parameter g forces pat-
terns to be close to the end of the sequence zi, and forces
consecutive states to be close to each other.

Mining Algorithm: For each MSS zi, its outcome yi = 1
when the zi sequence is unsuccessful/needs intervention, and
yi = 0 otherwise. Taking student success classification as an
example, we will have two sets of labeled MSSs: Z1 = {zi :
yi = 1} for all unsuccessful sequences and Z0 = {zj : yi = 0}
for all successful ones. Given Z1, the mining algorithm ap-
plies a level-wise search to find frequent RTPs. More specif-
ically, it first starts with all frequent 1-RTPs, and then ex-
tends the patterns by adding a new state to each sequence,
one at a time, until no new patterns are discovered. That is,
at each level k, the algorithm finds frequent (k+1)-RTPs by
repeatedly extending k-RTPs through Backward candidate
generation, and the Counting phase, as described below.

Backward (k + 1)-pattern candidates are generated from a
k-pattern P = (〈S1, ..., Sk〉, R), by adding a new frequent

state, Snew, to the beginning of the sequence to create P
′

=

(〈Snew, S1, ..., Sk〉,R
′
). Then we specify the new before (b)

or co-occurs (c) relations R
′

between Snew and all original
k states, restricted by the following two criteria: 1) Two
state intervals of the same temporal feature cannot co-occur.
That is, if Snew.F = Si.F for i ∈ {1, ..., k}, then R′

new,i 6=
c. 2) Since the state sequence in pattern P is sorted by
the start time of the states, once a relation becomes before:
R′

new,i = b for any i ∈ {1, ..., k}, all the following relations
have to be before, so R′

new,j = b for j ∈ {i+ 1, ..., k}.

In the Counting phase, candidate (k + 1)-patterns are re-
moved if they do not meet the minimum support threshold
by occurring at least σ times as RTP in Z1. The same pro-
cedure is carried out for Z0. Finally, we combine all the
frequent RTPs into a final Ω set of RTPs.

Binary Matrix Transformation: We transform each MSS
zi ∈ Z into a binary vector vi of size |Ω|, such that each 0
and 1 indicates whether the pattern Pj ∈ Ω is a recent tem-
poral pattern in Zi or not. This will result in a binary matrix
of size N × |Ω|, which represents our original dataset.

Learning Models: Once the binary matrix is built, we
apply different machine learning models including KNN, lo-
gistic regression (LR), and SVM to perform each target task.

5. EXPERIMENTS
5.1 Seven models in Three Categories
To evaluate the RTP-based models for early prediction of
student success and student difficulty, we conducted a series
of experiments. For each task, we used grid search to in-
vestigate the optimum value for the maximum gap (g) and
minimum support (σ) parameters and we have g = 60 min-
utes and σ0 = 0.2 for both prediction tasks. For each task,
we compared RTP against two categories of baselines: the
three Classic ML models and LSTM. Thus in total, we ex-
plored seven classification models in three categories.

Three Classic Machine Learning Models: We explore
three classic machine learning models: KNN, LR, and SVM.
Since these models do not handle sequence data directly, we
used a “Last Value” approach to treat the last measurement
of each attribute within the given observation window as the
input to train models. Note that “Last Value” approach is
also the baseline approach in [7] and many student modeling
research. For early prediction settings, we truncated all the
sequences in the training dataset in the same fashion as the
testing dataset and then applied the Last Value approach
on the truncated training dataset. For example, when our
observation window is 1 minute, we apply the last value
before 1 minute for each sequence and treat them as inputs
for each model. For each of the three models, we explored
different parameters to obtain the best results, in that, for
KNN, we have k = 10, for LR we used L1 regularization,
and for SVM we used linear kernel.

One Deep Learning Model: LSTM LSTM is a vari-
ation of Recurrent Neural Networks (RNNs) that prevents
the vanishing gradient problem among other forms of RNNs
[13]. LSTM has a chain-like structure, which enables in-
formation to flow among different blocks at different time
points. Each block of the LSTM consists of a memory cell
state and three gates: Forget, Input, and Output. These
three gates interact with each other to control the flow of
information. More specifically, the Forget gate determines
what information from the previous memory cell state is
expired and should be removed; the Input gate selects infor-
mation from the candidate memory cell state for updating;
the Output gate filters the information from the memory
cell so that the model only considers information relevant
to the prediction task. Therefore, the memory cell plays a
crucial role in memorizing previous experiences. In our task,
the input is a multivariate temporal sequence from student
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work, and the output from the last step is used to make a
prediction. We implemented LSTM in Keras with Tensor-
flow as the back-end engine, and we used one hidden layer
with 100 hidden neurons and set the maximum length to
accommodate the longest sequence in our data. Typically
for LSTM, the whole multivariate time series from student
sequence data is used as input data. However, for early
prediction, only those events happening within our obser-
vation window from each sequence were used. We applied
5-fold cross-validation in order to tune the parameters of
the model, including the optimizer, initializer, number of
epochs, and number of batches.

Three RTP-based Models: The RTP-based models would
first generate the binary matrix through RTP mining and
then applied the classical machine learning models, KNN,
LR, and SVM, (the same parameter settings as used in clas-
sic machine learning models described above) and thus, they
are referred as RTP KNN, RTP LR, and RTP SVM, respec-
tively. Prior research on RTPs for prediction have all used
entire sequences to extract meaningful temporal patterns.
In this work, we explored the effectiveness of RTP for early
prediction, by applying the truncated training sequences in-
cluded in observation window to find RTPs. For example,
when our observation window is 1 minute, only the first 1
minute of sequences were used for pattern extraction.

5.2 Evaluation Metrics
We evaluated our models using Accuracy, and Recall, F1
Score, and AUC (Area Under ROC curve). Accuracy repre-
sents the proportion of students whose labels were correctly
identified. Recall tells us what proportion of students who
will actually be unsuccessful (or need intervention) were cor-
rectly recognized by the model. F1 Score is the harmonic
mean of Precision and Recall that sets their trade-off. AUC
measures the ability of models to discriminate groups with
different labels. Given the nature of the taks, we mainly use
Accuracy and AUC to compare different models. All models
were evaluated using 5-fold cross validation.

6. RESULTS
We present our results in three parts. First, we compare the
effectiveness of the three categories of models on trajectory-
level early prediction of student success. Second, we explore
their performance on event-level early prediction of student
difficulty. Finally, we discuss the extracted interpretable and
meaningful temporal patterns discovered by RTP mining.
For both early prediction tasks, we analyze two feature sets:
expert-based features (EF) and data-drive features (DDF).

6.1 Trajectory-Level: Student Success
[Observation Window = 1 min] Table 1 shows the per-
formance of all models using the first-1-minute training se-
quences to predict students’ success. The first row is the
baseline model using simple Majority vote; note that we
ignored the Recall and F1-measure of the simple Majority
baseline. For the three main categories of models, we re-
ported their performance on both EF and DDF. For Classic
ML, KNN with DDF generates the highest scores on Re-
call (0.955) and F1-measure (0.793), SVM with DDF has
the best AUC (0.563), and LR with EF contributes the best
Accuracy (0.678). Thus, there is no clear winner among the

Table 1: Student success classification performance
for the one-minute observation window

Model Feature Accuracy Recall F1 AUC
Majority Baseline EF/DDF 0.655 - - 0.5

Classic ML

KNN
EF 0.667 0.946 0.788 0.541

DDF 0.673 0.955 0.793 0.545

SVM
EF 0.661 0.946 0.785 0.533

DDF 0.673 0.920 0.786 0.563

LR
EF 0.678 0.938 0.792 0.562

DDF 0.520 0.464 0.559 0.546

Deep Learning LSTM
EF 0.649 0.991** 0.787 0.496

DDF 0.655 0.991** 0.790 0.504

RTP

RTP KNN
EF 0.965 0.973 0.973 0.961

DDF 0.906 0.902 0.927 0.909

RTP SVM
EF 0.971** 0.955 0.977 0.978**

DDF 0.965 0.955 0.973 0.969

RTP LR
EF 0.971** 0.973 0.978** 0.970

DDF 0.959 0.964 0.969 0.957

Note: best model for each group in bold, overall best model marked **

three models here. Between the two types of features, it
seems that DDF is slightly better or as good as EF for KNN
and SVM, but much worse than EF for LR. Between the two
LSTM models, LSTM with DDF works better than LSTM
with EF. For RTP-based models, the best Accuracy (0.971)
is from RTP SVM and RTP LR and both with EF, the
best Recall (0.973) is generated by RTP KNN and RTP LR
and both with EF, the best F1-measure (0.978) comes from
RTP LR with EF again, and the best AUC (0.978) is gener-
ated by RTP SVM with EF. So for RTP-based models, EF
generally works better than DDF. However, for RTP LR and
RTP SVM, the performance of the EF and DDF are very
close and competitive.

Finally, across the three categories, RTP-based models have
the highest score on every measure except that LSTM has
the highest Recall. While all the highest measurements come
from using EF, the performance of DDF is very close to
EF especially when using LSTM, RTP LR and RTP SVM.
More importantly, the performance of all the RTP-based
models are very high, above 95% on every measure.

[Observation Window = 1 ∼ 20 mins] Fig. 5 and Fig.
6 report Accuracy and AUC performance for all models us-
ing EF and DDF respectively. For each graph, we vary the
observation window from the first 1 minute up to the first
20 minutes. Both Fig. 5 and Fig. 6 show that RTP LR and
RTP SVM were the best models for both using EF and DDF
as they stay on the top across all sizes of the observation win-
dow. It is not surprising that for the three classic models
and LSTM, the longer the observation windows, the better
performance they achieve. This is because the training data
includes more and more information and closer to their fi-
nal state. For RTP KNN, both EF and DDF first decrease
dramatically from 1 to 5 minutes and then increase slightly
but still, the best performance comes from using only the
first one minute. For RTP LR and RTP SVM, their perfor-
mances are not only the best but also very steady. The fact
that the best prediction comes from using just the first one
minute of the sequences and using RTP-based models really
suggest that how students try to solve the problem, what
actions they take and in what order in that minute really
matters for determining their final success. However, this
is only observation from one programming task and more
research is needed for further investigation.
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(a) Accuracy performance

(b) Area under ROC performance

Figure 5: Student success early prediction on ex-
pert feature set

(a) Accuracy performance

(b) Area under ROC performance

Figure 6: Student success early prediction on
data-driven feature set

When comparing using EF and DDF, Fig. 5 and Fig. 6
shows that the general patterns of performance of differ-
ent machine learning models are very similar between using
EF and DDF with a few exceptions. In general, using EF
seems working better than using DDF and the exceptions
are: for RTP LR, and RTP SVM, the best two models, the
performance of using EF and using DDF are very close and
sometimes using DDF is even better than using EF.

6.2 Event-Level: Student Difficulty

Table 2: Student difficulty classification perfor-
mance for one-minute observation window

Model Feature Accuracy Recall F1 AUC
Majority Baseline EF/DDF 0.753 - - 0.5

Classic ML

KNN
EF 0.806 0.238 0.377 0.615

DDF 0.800 0.214 0.346 0.603

SVM
EF 0.806 0.214 0.353 0.607

DDF 0.800 0.238 0.370 0.611

LR
EF 0.765 0.238 0.333 0.588

DDF 0.771 0.238 0.339 0.592

Deep Learning LSTM
EF 0.753 0.224 0.344 0.596

DDF 0.871 0.269 0.389 0.624

RTP

RTP KNN
EF 0.994** 1** 0.988** 0.996**

DDF 0.971 0.976 0.943 0.972

RTP SVM
EF 0.988 0.976 0.976 0.984

DDF 0.971 0.952 0.941 0.964

RTP LR
EF 0.994** 1** 0.988** 0.996**

DDF 0.988 1** 0.976 0.992

Note: best model for each group in bold, overall best model marked **

[Observation Window = 1 min] Table 2 shows the per-
formance of all models using the first-1-minute-training se-
quences to predict students’ difficulty in the next five min-

utes. As with Table 1, it is not very meaningful to present
the Recall and F1-measure of the simple Majority baseline
(row 1). For Classic ML models, KNN using EF generates
the highest scores on every measure but not much better
than the other two. In fact, all three models perform very
closely regardless of using EF or DDF, and they all per-
formed pretty poorly in that their performances on recall, F1
and AUC are all below 62%. Again for this task, the LSTM
models outperform the classic models but not by much. Al-
though LSTM with DDF works better than EF, the resulted
models are still not very effective. Finally, for RTP-based
models, RTP KNN and RTP LR reach the highest scores
on every measure. Both of them have the best Accuracy
(0.994), the best Recall (1), the best F1-measure (0.988),
and the best AUC (0.996). RTP SVM can make compara-
ble predictions with over 97% on every measure.

In general, the best model among all the seven models uses
RTP, which has the highest score on every measure. Com-
paring the models on different feature sets, we can find that
the models with DDF are able to generate very similar re-
sults as those with EF. And sometimes, models with DDF
had better performance on the first 1 minute, such as LR
and LSTM.

[Observation Window = 1 ∼ 20 mins] Fig. 7 and Fig. 8
show the results from EF and DDF respectively. We mainly
reported the performance of Accuracy and AUC on the ob-
servation sets {1m, 5m, 10m, 15m, 20m}. Note that different
from trajectory-level early prediction, our majority baseline
for event-level early prediction on student difficulty is chang-
ing moment by moment and for an observation window n,
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(a) Accuracy performance

(b) Area under ROC performance

Figure 7: Student difficulty early prediction on
expert feature set

(a) Accuracy performance

(b) Area under ROC performance

Figure 8: Student difficulty early prediction for
data-driven feature set

all the students whose trajectories are shorter than n are
excluded from the evaluation. So we have different baseline
majority accuracy for different observation window (shown
in black bar). For AUC, majority vote would give us a base-
line of 0.5. Both Fig. 7 and Fig. 8 show that RTP LR is the
best one among all the models no matter which feature sets
were used, with the highest scores on both Accuracy and
AUC for all observation windows. Additionally, when com-
paring RTP LR with EF and RTP LR with DDF, we can
see that RTP LR with DDF generally perform much bet-
ter than RTP LR with EF. By comparing the results from
Fig. 7 and Fig. 8, RTP LR and RTP SVM really benefit
from using DDF instead of EF in that while RTP LR and
RTP SVM with DDF perform very closely with RTP LR
and RTP SVM with EF when the observation window =
1m, the RTP LR and RTP SVM with DDF performed much
better and more stable than RTP LR and RTP SVM with
EF on all the following observation windows and the dif-
ference are large. For the rest of machine learning mod-
els, the difference between using DDF and using EF is not
noticeable. Finally, note that Fig. 7 shows when the ob-
servation window = 5m, the best performance using EF is
65% accuracy and < 70% of AUC achieved through RTP LR
(x − axis = 5m); however, when we use the same observa-
tion window, RTP LR with DDF can achieve the accuracy
close to 95% and AUC above 90% (shown in Fig. 8). So
overall, for the task of event level early prediction for stu-
dent difficulty, RTP LR with DDF consistently achieve the
best performance and its performance is pretty steady across
different observation windows.

6.3 Knowledge Discovery
One substantial advantage of pattern-based classification over
deep learning models is the interpretability of the discovered

patterns. In RTP, the patterns need to be representative of
the original time series data while predictive of the future
outcomes. In this study, most of the patterns extracted us-
ing RTP mining are in accordance with the student classifi-
cation tasks and some of them reveal latent patterns towards
the progression of student success or difficulty. Table 3 and
4 present a number of interesting patterns and their corre-
sponding support among the training group from the first
20 minutes, where the support of pattern P is calculated as
the proportion of students in the dataset which contains P .

Table 3 shows some patterns related to student success.
P1 − P4 describe the frequent patterns found among unsuc-
cessful students, and most of them are related to the feature
MoveVariably. P1, P2 and P3 illustrate that students did not
complete feature CreateUseParameterCorrectly, RepeatCor-
rectNumberOfTimes, or MoveSquirally when feature Move-
Variably has been completed. In P1, students may start
to work on DrawAnything and MoveSquarelikeThing, which
is observable among 29.5% of unsuccessful students from
their sequences in the first 20 minutes. Different from P1,
students with pattern P2 and P3 were probably working on
CustomBlock before they finished feature MoveSquirally. P4

indicates that students had finished features MoveVariably
and MoveSquarelikeThing but failed at the end, which might
be the case that they had done some movements but did not
have pen down. And still, neither CreateUseParameterCor-
rectly nor RepeatCorrectNumberOfTimes was finished. P5−
P8 describes the frequent patterns found among successful
students, and most of them are related to the feature Repeat-
CorrectNumberOfTimes. For example, P5 shows that stu-
dents had finished feature CustomBlock, CreateUseParame-
terCorrectly and RepeatCorrectNumberOfTimes at some point,
and before that, within 20 minutes, they should be working
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Table 3: Recent temporal patterns for student success, with observation window = 20m
RTP If Then Support
P1 (CreateUseParameterCorrectly,0) c (((DrawAnything, 0) c (MoveSquarelikeThing,0)) b (MoveVariably,1)) Unsuccessful 0.295
P2 ((CustomBlock,0) b (MoveVariably,1)) c (CreateUseParameterCorrectly,0) c (RepeatCorrectNumberOfTimes,0) Unsuccessful 0.286
P3 ((CustomBlock,0) b (CreateUseParameterCorrectly,0)) c (RepeatCorrectNumberOfTimes,0) c (MoveSquirally,0) c (MoveVariably,1) Unsuccessful 0.233
P4 ((DrawAnything,0) b ((MoveSquarelikeThing,1) c (MoveVariably,1))) c (CreateUseParameterCorrectly,0) c (RepeatCorrectNumberOfTimes,0) Unsuccessful 0.205
P5 (CustomBlock,0) b (CustomBlock,1) c (CreateUseParameterCorrectly,1) c (RepeatCorrectNumberOfTimes,1) Successful 0.729
P6 (CustomBlock,0) c (MoveSquarelikeThing,0) b (MoveSquarelikeThing,1) c (RepeatCorrectNumberOfTimes,1) Successful 0.542
P7 (DrawAnything,0) b (CreateUseParameterCorrectly,0) b (CreateUseParameterCorrectly,1) c (MoveVariably,1) Successful 0.423

Table 4: Recent temporal patterns for student difficulty, with observation window = 20m

RTP If Then Support
P1 (((DrawAnything,0) c (MoveSquarelikeThing,0)) b (CustomBlock,1)) c (RepeatCorrectNumberOfTimes,0) c (MoveSquirally,0) Intervention 0.372
P2 (((CustomBlock,0) c (DrawAnything,0)) b ((CustomBlock,1) c (MoveVariably,1))) c (MoveSquirally,0) Intervention 0.302
P3 ((DrawAnything,0) c (MoveSquarelikeThing,0)) b ((CustomBlock,1) c(DrawAnything,1) ) c (MoveSquirally,0) Intervention 0.279
P4 ((MoveSquarelikeThing,0) b ((MoveSquarelikeThing,1) c (MoveSquirally,1))) c (RepeatCorrectNumberOfTimes,0) Non-intervention 0.461
P5 (((DrawAnything,0) c (MoveSquarelikeThing,0)) b (MoveSquirally,1)) c (RepeatCorrectNumberOfTimes,0) Non-intervention 0.422
P6 (DrawAnything,0) c (MoveSquarelikeThing,0) c (CreateUseParameterCorrectly,0) c (RepeatCorrectNumberOfTimes,0) c (CustomBlock,1) Non-intervention 0.320

on CustomBlock. Actually, for the students in successfully
group, they should be able to finish all the features in one
hour. Glancing over the extracted patterns among the suc-
cessful group, we can see that most of the students ended up
completing at least two important features, like patterns P6

and P7 in the Table 3, in the first 20 minutes. It is impor-
tant to note that these patterns are only discovered among
the successful group.

Table 4 shows some patterns related to student difficulty.
P1 − P3 describe the frequent patterns found among the
intervention group, and most of them are related to the
feature CustomBlock. P1 describes a pattern that discov-
ered among 37.2% of students who need intervention in the
next five minutes. In this case, students had not completed
the DrawAnything or MoveSquarelikeThing features at first,
but, within 20 minutes, they completed the CustomBlock
feature. And at the same time, they did not complete fea-
ture RepeatCorrectNumberOfTimes or MoveSquirally. P2

and P3 are quite similar, they indicate that students fin-
ished CustomBlock along with DrawAnything or MoveVari-
ably when the feature MoveSquirally had not been finished.
P4 to P6 describe the frequent patterns found among stu-
dents who do not need intervention, and most of them are
related to the feature MoveSquirally. P4 − P5 show that
students successfully completed feature MoveSquirally and
before that, they may work on MoveSquarelikeThing. As
in P1, they have ‘0’ on the feature RepeatCorrectNumberOf-
Times. Comparing P1 with P5, we can find that instead of
having incomplete DrawAnything and MoveSquarelikeThing
before completing CustomBlock, students who have incom-
plete DrawAnything, incomplete MoveSquarelikeThing, and
complete CustomBlock at the same time will not need inter-
vention in the next five minutes. Again, these patterns are
uniquely inferred among the non-intervention group.

7. CONCLUSIONS
Early prediction of trajectory-level student success and the
event-level difficulty during long-term activities are chal-
lenging tasks due to the open-ended nature of programming
tasks. In this study, we explored the EF identified by domain
experts, as well as DDF identified automatically, to build a
model that is able to predict student success/difficulty with

high accuracy, and to provide valuable insights for educators.
We employed an RTP-based classification framework and
compared it with various baselines including classic and deep
learning models, in two different tasks including trajectory-
level early diagnosis and event-level early prediction. Our
results suggest that the RTP-based models consistently out-
perform the non-temporal classic baselines as well as LSTM
in both tasks, at all observation windows from first 1 minute
to 20 minutes. Moreover, with only the first-1-minute se-
quences, RTP-based models can make strong predictions on
both tasks. Additionally, by applying the data-driven fea-
tures, RTP-based models are able to achieve comparable
performance on the task of predicting student success. For
the task of predicting event-level student difficulty, data-
driven features can even improve their predictions further.

As future work, we plan to apply progressive features with
multiple values (eg. not started, in progress, complete) to
discover more definitive patterns and obtain more advanta-
geous knowledge discovery as well as improved prediction
performance. And we are planning to employ different fea-
ture transformations other than binary, such as vertical sup-
port (i.e. the number of times a pattern occurred in a se-
quence) or recency measure (i.e. how distant a pattern oc-
curred from the prediction time). Also, this work will be
applied to larger groups of students and longer program-
ming tasks, along with integration of more informative fea-
tures such as intervention and demographic features to de-
velop more robust models. Additionally, we plan to expand
our evaluations to longer programs with more complex con-
structs from both text-based and block-based programming
languages.
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