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ABSTRACT 
With the advent of new data collection techniques, there has been 
a growing interest in studying co-located groups of students using 
Multimodal Learning Analytics [3] to automatically identify 
collaborative learning states. In this paper, we analyze a multimodal 
dataset (N=84) made of eye-tracking, physiological and motion 
sensing data. We leverage unsupervised machine learning 
algorithms to find (un)productive collaborative states. We found a 
three-states solution where different states (and transitions between 
them) were significantly correlated with task performance, 
collaboration quality and learning gains. We interpret these 
findings in light of collaborative learning theories and discuss their 
implications for studying groups of students using MMLA.  

Keywords 

Multimodal Learning Analytics; Eye-tracking; Physiological 
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1. INTRODUCTION 
The last decade has seen educational researchers go beyond the 
study of conceptual learning to understand non-cognitive skills. 
These skills are considered central for preparing students for the 
challenges of the 21st century and turning them into resilient, 
creative, curious and collaborative individuals. Additionally, new 
learning environments are becoming popular to foster those skills, 
such as makerspace and digital fabrication labs. While there has 
been some important progress made in the study of 21st century 
skills, measuring and assessing them remains a challenge. Most 
educational researchers and practitioners still rely on traditional  
collection tools such as participant observations and in-depth 
interviewing. While research strategies provide valuable insight 
into learning and development, they are no longer the most efficient 
way of collecting data. 
With the advent of new data collection techniques, however, there 
has been a growing interest in capturing 21st century skills using 
Multimodal Learning Analytics (MMLA; [3]). MMLA is about 
using high frequency sensors, such as eye-trackers, motion sensors, 
physiological devices and brain sensors to capture students’ 
learning trajectories. Additionally, by combining multiple sensors 

it is possible to study collaborative learning groups and capture 
various aspects of productive collaborations. Traditionally, these 
sensors have been studied in isolation. The promise of MMLA is to 
combine multimodal data sources to capture a more holistic picture 
of students’ learning. Being able to capture 21st century skills [6] 
(such as collaboration) in real time opens new opportunities for 
providing feedback and designing new kinds of interventions to 
teach these skills.  
The paper is organized as follows. First, we review the literature on 
several constructs related to collaborative skills that can be captured 
using high frequency sensors (e.g., Joint Visual Attention, 
Physiological Synchrony, body postures). We then describe the 
study that generated our dataset and detail how these constructs 
were measured. Finally, we present findings where we identified 
collaborative states using unsupervised machine learning 
algorithms and discuss their implications. 

2. Literature Review 
For decades, socio-constructivist theories have emphasized the 
importance of social interactions for learning (e.g., [12]). Among 
other things, collaborative learning can help students develop 
critical thinking skills, increase their motivation, provide a support 
system and facilitate assessment by making learning visible [10]. 
Capturing collaborative processes, however, remains a challenge – 
even though researchers have argued for almost a century that we 
need more rigorous ways to capture learning processes [23]. In the 
study of collaborative learning, Dillenbourg [8] argues that 
“empirical studies have started to focus less on establishing 
parameters for effective collaboration and more on trying to 
understand the role which such variables play in mediating 
interaction. This shift to a more process-oriented account requires 
new tools for analyzing and modelling interactions”. Below we 
review how Multimodal Learning Analytics (MMLA; [3]) can help 
us make a first step in this direction. More specifically, we describe 
how dual eye-tracking, motion sensors and physiological sensors 
can provide fine-grained indicators of collaboration.  

2.1 Joint Visual Attention and Dual Eye-tracking 
Joint Visual Attention (JVA; [4]) is the most fundamental building 
block by which human beings coordinate their actions, establish a 
common ground, advance toward a common goal, solve problems, 
and learn together. It is a construct that encompasses numerous 
visual processes, and is observed as important for learning to 
socialize [4], engaging collaboratively [22], and developing social 
motivation [16] for diverse populations in varying collaborative 
conditions. The last decade has seen a small but growing number 
of researchers take advantage of synchronized eye-trackers to 
quantitatively measure gaze alignment in various collaborative 
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situations interpersonal communication [14]. With the emergence 
of MMLA, quantifying gaze synchronization in remote learning 
and problem-solving environments has similarly popularized. In 
video lectures, projecting the professor’s gaze onto the screen (as a 
substitute for the use of deictic gestures in co-located teaching 
environments) while making explicit references to information on 
slides can be useful for students and increase learning gains [20].  
In co-located collaborative problem-solving situations, students’ 
level of JVA has been found to be positively correlated to behaviors 
such as managing group dialogue, reaching consensus, and equally 
dividing work between members of the group [18]. Regardless of 
the context, JVA measurement and visualization tools are 
providing new ways to allow for objective inferences to be drawn 
about gaze synchronization as it relates to various collaborative 
states. 
2.2. Body Postures and Motion Sensing 
Students’ use of their bodies has received a great deal of attention 
from learning scientists over the last decades. Numerous studies 
have unraveled links between students’ understanding of various 
topics [1, 5] and specific gestures [15]. More generally, there has 
been a plethora of studies linking people’s intuitive representations 
of everyday situations and bodily language (e.g., embodied 
cognition [2]). Recently, researchers have started using motion 
sensors to provide more fine-grained analyses of body postures in 
collaborative learning settings. For example, [19] found that hand 
movement could distinguish between students who were more 
dominant (called “drivers”) and those who were more passive 
(called “passengers”).  

2.3 Physiological Sensors and Group Synchrony  
Researchers have recently started to use EDA sensors 
(Electrodermal Activity) to look at collaborative learning 
interactions. [13] describes four measures of physiological 
synchrony in small groups of students: Signal Matching (SM), 
Instantaneous Derivative Matching (IDM), Directional Agreement 
(DA), and Pearson’s correlation coefficient (PC). They found that 
IDM was related to collaboration quality and task performance, and 
DA with learning gains. In a separate publication, we applied the 
same methodology to the dataset described in this paper and found 
that those indices provided significant predictors for collaborative 
learning [7]. DA was significantly correlated with collaboration 
quality, IDM with task performance, and PC with learning gains. 
In a different study, [9] found that DA was the best predictor for 
task performance. It is interesting to note the discrepancy between 
the findings above, which is likely due to the nature of the task and 
the way we operationalized our constructs. But overall, researchers 
have found that physiological synchrony seems to be sensitive to 
social interactions in a variety of contexts.  
In summary, there is significant evidence that collaborative 
learning processes can be captured using multimodal sensors. This 
paper goes one step further by combining modalities together, 
instead of studying them in isolation. 

3. METHODS 
3.1. The Study 
The dataset used in this paper was collected as a part of a Multi-
Modal Learning Analytics study [21]. 84 participants (Male = 40%; 
Female = 60%) with no prior programming experiences were 
randomly assigned to dyads (Ndyad = 42) and programmed a robot 
to solve a series of mazes during 30-minute sessions (Fig. 1). Each 
dyad was randomly assigned to one, both, or neither of two 

designed interventions: 1) a verbal explanation of the benefits of 
collaboration (e.g. past research findings using equity of speech 
time as indication of collaboration quality), and 2) real-time 
visualizations showing relative verbal contributions of each 
participant. The number of dyads was evenly distributed among 
four experimental conditions. For the analyses reported below, we 
analyze the aggregated data and did not consider the four 
experimental conditions.  
During each session, we used two Empatica E4 wrist sensors to 
track participants’ physiological activities, two Tobii Pro Glasses 2 
eye-trackers to capture eye gaze, and one Kinect sensor to record 
movement as well as facial expressions. Participants were given a 
survey before and after the study for assessment of their 
computational thinking and collaboration experiences. A dyad’s 
collaboration, task performance, and learning outcomes were 
assessed by the researcher responsible for running the session; 
ratings were given on nine scales based on prior work by Meier, 
Spada, and Rummel [11] (inter-rater reliability of 0.65 – i.e., 75% 
agreement). Analyses of learning gains, coding schemes, inter-
judge reliability scores and individual sensor data have been 
reported in [21]. The current analysis aimed to combine all sensor 
data in order to identify collaborative states.  

 
Figure 1. Two participants from the study. The top images 
show the video feed from the mobile eye-trackers (with a 
participant’s gaze shown on the top right image). The bottom 
left image shows a 3rd person perspective. The bottom right 
image shows the programming environment.  

3.2. Data Collection 
3.2.1. Empatica 
The Empatica E4 wristbands collected participants’ accelerometer, 
blood volume pulse (BVP), interbeat intervals (IBI), electrodermal 
activities (EDA), and heart variability (HR). The current study 
focused on the EDA data, which is a measure of skin potential, 
resistance, conductance, admittance and impedance. Participants 
were asked to tag the wristbands before and after each step during 
the sessions (i.e. before and after completing the maze task). We 
synchronized the dyadic data according to the tags and timestamps 
of the sessions. The resulting data frame per dyad contained 
timestamp, four aggregated measures of physiological synchrony 
described in the Measures section below, and EDA values of each 
participant. Five dyads were removed from the current analysis 
because the sensor data was missing, too noisy, or identified as 
outliers (see [21]). 
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3.2.2.Tobii Pro Glasses 2 
The Tobii eye-trackers generated data at 50Hz per second and 
recorded the x and y coordinates of each participant’s eye-gaze 
relative to its point of view. The resulting data frame per dyad 
contained time indicated by second (ranging from roughly 1s to 
1800s), the x and y coordinates of each participant’s eye gaze and 
counts of joint visual attention (JVA) by pixel distance. The eye-
tracking data was synchronized with the EDA data by briefly 
presenting a fiducial marker on the computer screen between each 
step of the session; participants were asked to tag this event on their 
wristband as accurately as possible. While we were able to clean 
and synchronize most dyadic data by seconds, two groups were 
excluded from the current study due to missing data. 

3.2.3. Kinect 
The Kinect motion sensor captured around 100 variables related to 
a participant’s body joints and skeleton. The sensor generated data 
at 30 Hz per second, resulting in about 3,000 observations per 
second per participant. Noisy data (e.g. when the session facilitator 
entered the Kinect frame) were removed for each group, after which 
data were aggregated by second according to timestamps generated 
by the Kinect sensor. Researchers manually trimmed the Kinect 
data for each 30-minute session based on video records and aligned 
them with the eye-tracking and EDA data. Nine dyads were 
removed from the current study due to missing data.   

3.2.4. Synchronizing All Data 
The Empatica and Kinect data were synchronized by trimming each 
session to exactly 30 minutes and outer-joining sessions’ data on 
the timestamp column. Per-dyad eye-tracking data were 
synchronized by matching the “second” column (i.e. from 1s to 
1800s during a 30-minute session; see Fig. 2) generated based on 
timestamps of the EDA data. For analysis purpose, we 
concatenated all per-dyad data into a master data frame, with an 
additional column indicating to which session the data belonged to. 
Due to an unequal amount of data loss between sensors, two 
datasets were created for analysis: 1) Combined EDA and JVA 
(Ndyad = 35), and 2) Combined EDA, JVA and Kinect (Ndyad = 31). 
The current analysis used the second dataset, including 67,656 rows 
and 19 columns of by-second original and scaled data from all 
sessions investigated (Fig. 2).  

 
Figure 2. A snapshot of the final data frame. Note that the 
scaled column measures are excluded for legible visualization. 

3.3. Data Processing 
3.3.1. Electrodermal Activities (EDA) 
Four measures of physiological synchrony were computed based 
on participants’ electrodermal activities (refer to [7] for an 
exhaustive description of these measures and related analyses): 1) 
Pearsons’s Correlation (PC) represented the linear relationship 
between the EDA level of each participant in a dyad; a strong, 
positive correlation indicated that the dyad was physiologically 
activated at similar times. 2) Directional Agreement (DA) captured 
whether the EDA level of each participant in a dyad increased or 
decreased at the same time steps; an increase in DA value in the 
positive direction indicated higher physiological synchrony. 3) 
Signal Matching (SM) was computed as the area between data 
curves of each dyad. A greater SM value indicated lower 

physiological synchrony. 4) Instantaneous Derivative Matching 
(IDM) computes, for each dyad, the level of signal matching 
between slopes of participants’ signal curves. A higher IDM value 
indicated lower physiological synchrony between participants. 

3.3.2. Joint Visual Attention (JVA) 
JVA was qualified by looking at participants’ location of eye gaze 
after mapping these coordinates into a common plane (Fig. 3; see 
[17] for the complete procedure of computing JVA). The current 
analysis looked at the number of JVA per second where a dyad’s 
eye gazes were within 100 pixels of each other.  

 
Figure 3. The procedure used to compute Joint Visual 
Attention (the left side shows the data from the mobile eye-
trackers, and the right side shows how the participants’ gaze 
were mapped onto a common plane using a homography). 

3.3.3. Kinect 
We explored various collaborative measures based on prior work 
[18, 23]. The current analysis aggregated three measures of 
movement differences per dyad: 1) Total difference in movement 
(MoveDiff), 2) Vertical difference in head orientation (HeadDiff), 
and 3) Horizontal difference in shoulder orientation (ShoulderDiff). 
Total movement was computed by taking the Euclidean distance of 
all joint coordinates; difference in movement within dyad was the 
absolute difference in the participants’ total movements. Vertical 
difference in head orientation was the absolute difference in the y 
coordinates of participants’ heads. Horizontal difference in 
shoulder orientation was calculated by taking the absolute value of 
the difference between 1) the absolute difference in x coordinate of 
the left shoulder of the left participant and the x coordinate of the 
right shoulder of the right participant, and 2) the absolute difference 
in the x coordinate of the right shoulder of the left participant and 
the x coordinate of the left shoulder of the right participant.  

3.3.4. Outcomes Measures 
The study generated three types of outcome measures: 
collaboration quality [11] (sustaining mutual understanding, 
dialogue management, information pooling, reaching consensus, 
task division, time management, technical coordination, reciprocal 
interaction, individual task orientation, and Collaboration – the sum 
of those scores), overall task performance (task performance, task 
understanding, improvement over time) and learning gains. 
Collaboration and Task performance of each dyad was hand-coded 
by the experimenter at the end of the session. The dyad’s learning 
gain was assessed through a pre-test and post-test. For more 
information, please refer to [21]. 

3.4. Analysis Strategy 
We used K-Means Clustering with Euclidean distance to identify 
different collaborative states. In particular we attempted clustering 
using all sensor data simultaneously. All data were transformed into 
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session second DA PC IDM SM Jva100 moveOiff headDiff shoulderDiff 

1 0.233333 -0.447563 0.177397 0.208709 

2 0.232708 -0.445837 0.177548 0.207804 

3 0.233125 -0.442(X)() 0.177468 0.206289 

4 0.234583 -0.439776 0.176532 0.205172 

5 0.234375 -0.438995 0.175948 0.204015 

24.0 1.941329 0.047057 

7 .0 2.013969 0.040868 

18.0 1.825878 0.048828 

23.0 1.675585 0.037022 

6.0 1.967405 0.042931 

0.658437 

0.654975 

0.642805 

0.648898 

0.646596 



 

 

z-scores before clustering; the scaled values reported in results refer 
to the z-scores. Note that the clustering assignment was performed 
on the aggregated data with per-second data from all dyads. The 
collaborative states were identified regardless of group and time. 
We used the elbow curve to identify the optimal number of clusters 
for each clustering strategy; the current analysis used within-cluster 
sum of squared as the indication of distortion. We proceeded our 
analysis using K = 3.  
Upon assigning per-second data to clusters, we computed 1) time 
spent in each cluster, and 2) transition probabilities between 
clusters for each session. Correlations between time in cluster, 
transition probabilities, and each qualitative outcome measure were 
then investigated and visualized. The results section below 
summarizes our findings by outcome measures. 

4. RESULTS 
4.1. Correlation Check 
To check for underlying relationships between our sensor data 
aggregated at the second level and the qualitative outcomes, we first 
checked for correlations between each sensor and qualitative 
measure. Significant correlations were observed between SM and 
Learning (r = -0.4, p = 0.025), and between JVA and sustaining 
mutual understanding (r = 0.41, p = 0.027). In accordance with 
previous analysis [7], no other significant correlation was observed.  

4.2. Cluster Centroids 
Centroid 1 values were the highest in all movement variables, 
suggesting cluster 1 as a state where dyads exhibited the most total 
movement difference, vertical difference in head orientation (e.g. a 
person standing up versus the other seated), and horizontal 
difference in shoulder orientation (when dyads were far apart from 
each other). Centroid 2 values were the highest in DA, PC, JVA, 
and the lowest in IDM, and SM; cluster 2 indicated a state where 
dyads were physiologically synchronized and actively sharing eye 
gaze. In contrast, cluster 3 appeared to be a state where dyads were 
the most desynchronized. Centroid 3 had the highest SM, IDM, and 
the lowest DA, PC values. Table 1 provides a summary of the 3 
clusters identified by K-means Clustering, we will use the 
identified states to address the clusters in the following sections. 

Cluster Physiological 
Synchrony 

Joint 
Visual 

Attention 

Movement 
Difference State 

1 Average Average Highest Neutral 

2 Highest Highest Low Collaborative 

3 Lowest Lowest Low Non-
Collaborative 

Table 1. Summary of clusters by sensor data. 

4.3. Collaboration 
Figure 5 represents the scaled and unscaled sensor data values by 
cluster centroid. The overall collaboration measure (r = 0.50, p = 
0.009) was significantly correlated with time spent in the 
collaborative state. Time spent in the collaborative state was 
significantly correlated with sustaining mutual understanding (r = 
0.42, p = 0.031), dialogue management (r = 0.51, p = 0.008), 
reaching consensus (r = 0.48, p = 0.013), task division (r = 0.49, p 
= 0.012), and reciprocal interaction (r = 0.47, p = 0.015). By 
interpretation of the EDA measure, dyads were highly, 
physiologically synchronized in the collaborative state. In contrast, 
dyads were highly desynchronized in the non-collaborative state, 

as the state corresponds to the lowest DA, PC and highest SM, IDM 
values by clustering. Time spent in the non-collaborative state was 
significantly, negatively correlated with dialogue management (r = 
-0.49, p = 0.008), task division (r = -0.45, p = 0.015) and 
collaboration (r = -0.42, p = 0.030).  

 
Figure 4. Sensor data mean values by cluster. 

Correlations between state transition probabilities and qualitative 
outcomes rendered the same interpretation: the higher the 
probability that a dyad would transition into a desynchronized, or 
non-collaborative state, the lower the rating in collaboration (r = -
0.41, p = 0.027).  

 
Figure 5. Correlations (left) and p-values (right) between time 
spent in cluster and qualitative outcome variables (* p < 0.05). 

4.4. Task Performance  
As shown in Fig. 6, time spent in the non-collaborative state was 
significantly correlated with improvement over time (r = -0.47, p = 
0.018). The more likely a dyad were to transition into the 
desynchronized state, the lower the rating for task understanding (r 
= -0.47, p = 0.01, See Figure 6), and improvement over time (r = -
0.53, p = 0.005). Furthermore, there was a marginally significant 
correlation between the probability of remaining in the neutral state 
and code quality (r = -0.37, p = 0.042); the more a dyad was 
different in movement, the lower the code quality as evaluated by 
the session facilitator. 

 
Figure 6. Correlations (top) and p-values (down) between 
transition probabilities and qualitative outcome variables (* p 
< 0.05, ** p < 0.01). 
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4.5. Learning Gain 
We did not observe any significant correlations between learning 
and time spent in any of the collaborative state identified. 
However, learning was significantly and negatively correlated 
with the probability of remaining in the non-collaborative state (r 
= -0.47, p = 0.008). The more likely a dyad were to stay 
desynchronized, the lower the rating in learning gain. 

5. DISCUSSION 
Overall, our results suggest that K-Means Clustering is an effective 
method for identifying collaborative states. In accordance with 
previous findings, higher JVA in the current analysis significantly 
correlated with higher ratings of collaboration, more specifically in 
sustaining mutual understanding. This implies that sharing gaze 
facilitates collaboration by making aware the object, or the intent, 
of communication. In comparison with previous correlation 
findings [7], we were able to draw connections between the EDA 
measures and collaborative outcomes using clustering analysis. 
Specifically, physiological synchrony within dyads correlated with 
higher ratings in quality of collaboration, including sustaining 
mutual understanding, dialogue management, reaching consensus, 
and task division. This indicates, intuitively, that when participants 
in a dyad were in sync with each other, they were more likely to 
agree, understand, and coordinate in task with each other. 
Moreover, the larger the difference in movement and position 
within a dyad, the lower the code quality. One interpretation could 
be that the longer a dyad spent apart from each other, the less 
collaborative they were, or were deemed to be, and therefore, the 
lower the resulting code quality.  
In a case study that compared the most collaborative (Group 11) 
and most non-collaborative (Group 5) groups, we observed that 
desirable collaborative qualities support the narrative, and the 
disaggregated graphs (Fig. 7) we created to depict them, that 
collaborative states are closely associated with levels of JVA and 
DA value. 

 
Figure 7. Progression of collaborative states by DA and JVA 
value in group 5 and group 11. 
 

Though Groups 11 and 5 displayed collaborative (Group 11) and 
non-collaborative (Group 5) qualities rather consistently across the 
activity, each group mirrored qualities of the other. For example, 
while thinking aloud was a consistent quality exhibited by Group 
11 across the activity, the participant on the left almost always 
remained in an observational role, which could have led to low 
learning gains. However, Group 11 achieved the highest learning 
gains of all groups in the study. One reason for this outcome could 
be the intent of the observer. High learning gains and consistent 
observation seemed to be a mode of learning for the participant on 
the left. This explanation supports an interpretation of observation 
not as a culprit of poor collaboration, but an assistant to learning, 
given a particular learning context. On the other hand, Group 5 also 
showed behaviors that were contrary to main themes that arose 
from their interactions. Take for instance their dialog that occurred 
in the middle of the activity. There, they exhibited seemingly 
desirable qualities in collaborative learning such as asking for help, 
asking clarifying questions, using demonstrative actions such as re-
running code to convey conception of problem, and a continuous 
interactive dialog; however, demonstration of these qualities was 
more of an abnormality than a change in behavior. Furthermore, 
each participant steadfastly performed their roles. One 
interpretation of why this temporary change in mode of operation 
did not stick goes back to the very definition of collaboration: a 
result of continuous attempts to construct and maintain a shared 
problem space. This means that establishing a collaborative state 
two thirds of the way through the activity is perhaps too difficult of 
a cognitive shift when working modes have been established.  

Main Results Interpretation Implication 

Time spent in cluster 
2 is sig. correlated 
with collaboration 
quality 

Productive collaboration is 
characterized by increased 
levels of JVA and 
physiological synchrony 

combining JVA values with PCIs 
provide better predictors for 
collaboration quality than just 
individual JVA or PCI 

Staying in cluster 1 or 
3 is neg. correlated 
with learning 

The more participants stay 
in a state where they are 
not looking at the same 
place and are 
physiologically 
desynchronized prevents 
them from learning 

we could potentially detect when 
people are in this state in real-time and 
offer suggestions for getting 
participants back on track. 

Time spent in cluster 
3 is neg. correlated 
with task 
performance 

Non-collaborative states 
are associated with less 
task understanding and 
improvement over time. 

*we didn’t observe a positive 
significance with cluster 1, perhaps 
that while being highly synchronized 
and actively sharing eye gaze doesn’t 
necessarily leads to more task 
understanding / improvement overtime; 
there’s a reverse effect when 
participants were not at all 
collaborative by EDA/JVA measures. 

Staying in cluster 1 is 
neg. correlated with 
code quality 

The more time participants 
spent apart from one 
another, the lower the code 
quality. 

Spending time apart from one another 
may indicate individual exploration, 
which in learning settings, may imply 
that participants were in need of 
guidance in order to proceed with task. 

Table 2. Summary of results. 
Finally, we found learning gains to be significantly associated with 
EDA measures. Particularly, the more likely a dyad were to remain 
desynchronized physiologically, the less likely that they had 
learned, or were evaluated to have learned from the task. Overall, 
we found that combining multimodal measures of collaboration 
together (e.g., eye-tracking, physiological, motion data) provides 
us with richer results: we found more (and stronger) significant 
correlations with our dependent measures. Table 2 summarizes the 
main results of this paper.  
Nonetheless, it is important to note the limitations of the current 
analysis. For one, the aggregated Kinect measures utilized in the 
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current analysis might not have best captured motor differences 
between collaborative and non-collaborative dyads. The current 
analysis only examined dyad’s motor differences on single 
dimensions, future work should aggregate movement measures 
based on multiple dimensions (e.g. movement angle) in order to 
better capture (non-)collaboration in motion. As we identified the 
number of collaborative states (K = 3) using distortions computed 
with the current dataset, it is possible that this number is not 
definitive and is unique to the current study. We concluded from 
exploratory analysis that the implications differed as we increased 
the number of clusters, and/or reduced our variable dimensions. 
Moving forward, it is of our interest to find the optimal combination 
of measures, and the optimal number of states that best characterize 
the (un)productive collaboration.  

5. CONCLUSION 
The current study used unsupervised machine learning algorithms 
to effectively identify different states of collaboration. Combining 
eye-tracking and physiological-activity data better predicted 
collaboration quality than the two types of sensor data apart. The 
longer two partners were not sharing gaze, and were 
desynchronized from one another, the worse their task performance 
and the less they learned. Identification of collaborative states and 
their characteristics through sensor data potentially allows us to 
monitor collaboration in real-time, detect ineffective cooperation, 
and keep partnership intact. Future work should explore movement 
measures of various dimensions to best capture participants’ 
postures and motions. 
In summary, this paper contributes to the application of MMLA in 
open-ended learning environments for capturing 21st century skills. 
We argue that multimodal sensors can capture different aspect of 
productive collaboration, and that combining them can provide us 
with a more complete picture of productive social interactions. 
Because we tend to “teach what we can measure”, developing tools 
that can capture 21st century skills is a crucial step toward studying 
and fostering them. This paper makes a first step in this direction 
by leveraging multimodal sensor data. 
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