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ABSTRACT 
Recent work in predictive modeling has called for increased 
scrutiny of how models generalize between different populations 
within the training data. Using interaction data from 69,174 
students who used an online mathematics platform over an entire 
school year, we trained a sensor-free affect detection model and 
studied its generalizability to clusters of students based on typical 
platform use and demographic features. We show that models 
trained on one group perform similarly well when tested on the 
other groups, although there was a small advantage obtained by 
training individual subpopulation models compared to a general 
(all-population) model. Lastly, we perform a series of simulations 
to show how generalizability is affected by sample size. These 
results agree with our initial analysis that individual subpopulation 
models yield a small advantage over all-population models. 
Additionally, we show that training sizes smaller than 1,500 yield 
unstable models which make generalizability difficult to interpret. 
We discuss applications of this work in the context of developing 
large-scale affect detection models for diverse populations. 
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1. INTRODUCTION 
Computer-enabled classrooms and online learning environments 
are becoming increasingly common methods of learning [12, 25]. 
Compared to traditional classroom settings, students must be more 
self-regulated when interacting with online platforms [15]. In [20], 
Pekrun discusses how emotion and its regulation are key factors in 
educational achievement. It is then important to consider student 
affect when developing intelligent tutors and educational platforms. 
A review of affect-sensitive instructional strategies, particularly for 
intelligent tutors [5], discusses how affect- and motivation-
sensitive strategies can promote student engagement. However, the 
authors found that a “one-size-fits-all approach, where variants of 
the same strategy are indiscriminately used for all learners and in 
all situations” limits the overall effectiveness of these tutors in 
targeting individual student needs. This observation motivates a 
more detailed analysis of how affect detectors trained on a general 
population generalize across different subpopulations. 

In this work, we extend previous research exploring the 
generalizability of sensor-free affect detectors. We trained models 

predicting positive and negative affective states using interaction 
data from an online algebra learning platform along with self-
reported affect. A novel component of our work compared to 
previous work (e.g., [2]) is the scope of our dataset, which 
encompasses 69,714 students across a nine-month period. We 
extend the previous work in [9]. This enables a more detailed 
exploration of generalizability than was previously achievable. 

1.1 Related Work 
Reviews of issues and methods of sensor-free affect detection are 
covered in other work, which we summarize here. Baker and 
Ocumpaugh review work in sensor-free affect detection in 
educational software and discuss methods for collecting ground-
truth labels [3]. Specific to this work, they note that student-
generated responses are likely more accurate than labels from 
external coders. Second, [9] reviews a representative collection of 
sensor-free affect detection models developed in authentic 
classroom environments. The authors conclude that the studies 
show the potential success for sensor-free affect detection models 
in authentic environments but are limited by small sample sizes 
(20-646 students) from mostly homogenous samples, which limits 
claims or tests of generalizability. 

Recent work in machine learning and prediction calls for increased 
awareness of how models perform for individual subpopulations in 
addition to overall accuracy. In [10], Kusner et al. introduce 
counterfactual fairness, where models should be unaware of 
protected attributes such as gender and race. Fair models should 
generalize by generating similar predictions for individuals with 
similar features, regardless of their protected attributes. In [26], 
Sculley et al. suggest slicing analysis as a method to evaluate 
fairness, where predictive model performance is evaluated by 
“slicing” along subpopulations or protected attributes. This is an 
alternative to measuring overall model accuracy, which can ignore 
disadvantaged subpopulations. In response, Gardner et al. present a 
framework for using slicing analysis in predictive modeling [7].  

Related to this discussion on generalizability, several studies have 
measured how models generalize across cultural contexts. Ogan et 
al. [18] found differences in collaboration, engagement, and student 
needs between cultural groups. In [24], San Pedro et al. trained 
models detecting student carelessness in Philippines. They showed 
generalizability by testing these models on previously collected 
data from students in the USA. In [27], Soriano et al. compared 
models of help-seeking behavior. By training models on each group 
and testing on the other groups, they showed that models for 
Philippines and USA generalize to each other but not to Costa Rica. 

Besides cross-country generalization, several studies investigated 
how predictive models generalize over demographic attributes. In 
[17], Ocumpaugh et al. trained affect detection models on rural, 
suburban, and urban students. By training models on each group 
and testing on the other groups, they found that models for urban 
and suburban students generalized to each other but not to rural 
students. In [23], Samei et al. trained models of teacher question 
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asking behavior using data from urban and non-urban classrooms. 
They showed generalizability using the methods from [17]. 

Other studies measured the generalizability of predictive models 
over time. In [1], Baker et al. trained models detecting gaming the 
system behavior in a cognitive tutor. They showed generalizability 
by training models on data from three sessions and testing on the 
remaining session. In [4], Bosch et al. trained face-based affect 
detection models. They showed generalizability by training models 
on data from one day and testing on the other day. 

Finally, some studies measured generalizability between different 
tasks or subjects. In [28], Stewart et al. compared models of mind 
wandering trained on students reading a scientific text or watching 
a narrative film. They found models trained on the narrative film 
dataset generalized to the scientific text dataset, but models trained 
on the scientific text dataset only generalized to the narrative film 
dataset after adjusting the predicted mind wandering rate. In [9], 
Hutt et al. found that models trained on data from students enrolled 
in Algebra 1 generalized to students enrolled in Geometry using 
“generic activity features” specifically designed for generalization.  

1.2 Contribution of Current Study 
This work contributes to the field of generalizability in sensor-free 
affect detection in three important ways. First, we extend beyond 
previous work by using data from a large, heterogeneous sample of 
students. Besides the noted studies that compare country-wide 
cultural differences, previous work relies on homogeneous samples 
such as individual schools, which yield sample sizes of hundreds of 
students. As discussed in [2], these sample sizes do not allow 
researchers to draw conclusions about the studied categories as a 
whole, so generalizability can only be tested in a minimal sense. In 
this study, we collected affect data from 69,174 students at 1,898 
schools in the state of Florida. Because Florida closely represents 
the demographic composition of the United States in terms of race 
and ethnicity [29, 30], this allows us to study the generalizability of 
our models to other students in the country. 

Second, we measure the generalizability of our models in terms of 
usage characteristics over an entire school year. In previous studies, 
data are collected during one or a few sessions, which overlooks 
long-term student behavior. This work uses interaction logs from 
an entire school year and measures student use over several 
sessions. We use clustering analysis to identify common usage 
patterns and show that our models generalize across these clusters.  

Lastly, we provide simulation experiments to inform the number of 
instances needed in order to construct generalizable models. 
Specifically, we estimate the advantage obtained by training 
models on individual groups across different sample sizes.  

2. DATA 
We used a previously published dataset [9] but all analyses reported 
here are new. 

2.1 Algebra Nation 
Data was collected through Algebra Nation, an online math 
learning platform developed by Study Edge. Algebra Nation 
supports over 150,000 students studying Algebra 1, Algebra 2, and 
Geometry each semester. Students can use Algebra Nation in a 
variety of contexts; some teachers integrate the platform into their 
regular classroom time while some students only use it to study or 
help with homework. Students can access Algebra Nation using a 
mobile app or on the internet (https://www.algebranation.com/). 
For this study, we used data from students enrolled in Algebra 1. 

In Algebra Nation, course material is organized according to state 
mathematics standards. Although the topics are ordered according 

to the curriculum, students are free to skip topics as necessary or 
learn the material in a different order. 

For each topic, students can watch a video lecture from one of 
several tutors. In addition to watching videos, students can use the 
Test Yourself quiz feature for each topic, which randomly selects 
10 questions aligned with state standards. After attempting a quiz, 
students can review feedback on their answers or watch solution 
videos. Lastly, students can get more help through the Discussion 
Wall where they can interact with other students and study experts 
hired by Algebra Nation. Students can earn karma points by 
answering questions posted by other students. However, students 
primarily spend time watching videos and taking quizzes rather 
than engaging in the social functions of the platform. 

2.2 Affect Surveys 
Due to the large number of students in the study and because 
students can use the platform in multiple contexts, we collected 
ground-truth affect labels using a self-report survey rather than 
through expert coders or human observers (see [16, 22]). These 
surveys were pseudo-randomly triggered based on student activity 
on the platform. Specifically, we manually assigned probabilities to 
each action so that triggered surveys were not overly intrusive and 
there was an adequate sampling of infrequent actions (e.g., wall 
posts) compared to highly frequent ones (e.g., seeking in videos).  

The survey was displayed in a pop-up window. Students had the 
option to ignore surveys. To decrease the prevalence of the surveys, 
once a survey was triggered for a student, the student was removed 
from the survey pool for two weeks. Our dataset includes surveys 
from the 2017-2018 school year (September through May). In this 
time, 69,174 students responded to at least one survey. The mean 
number of survey responses per student was 1.94 (median = 1). Of 
the students that responded, the minimum number of responses was 
1 and the maximum number of responses by any student was 14. 

Each survey targeted one affective state, randomly selected, from 
the following: Anxiety, Boredom, Confusion, Contentment, 
Curiosity, Disappointment, Engagement, Frustration, Happiness, 
Hopefulness, Interest, Pride, Relief, Sadness, Surprise, Mind 
Wandering, Pleasantness, and Wakefulness. We chose several 
states because they closely relate to learning [21] while others 
address core dimensions of affect such as valence and arousal [11]. 
Mind Wandering, Pleasantness, and Wakefulness represent bipolar 
concepts, so we used a seven-point scale with contrasting options 
and presented prompts for each polarity (e.g., sleepy/awake). The 
other states used a five-point scale ranging from “Not at all __” to 
“Very __”. In our analysis, we linearly scaled all survey responses 
to lie in a five-point range so that all states are represented equally. 

2.3 Generic Activity Features 
We recorded student activity on Algebra Nation using 22 features 
that did not depend on specific content (e.g. which video was 
watched or a particular quiz question). These activity features 
included attempting quizzes, watching videos, and interacting with 
the wall or discussion board. Based on our prior work [9], we 
counted the number of occurrences of each feature over 30-second 
chunks and summed the counts for each action across 5-minute 
window lengths preceding an affect survey. In some cases, the 
platform measured an unnaturally high amount of activity (e.g. 
playing/pausing a video 100 times within 30 seconds). We 
addressed these outliers by limiting each 30-second chunk to 10 
recorded activities.  

2.4 Usage Features 
In addition to session-specific generic activity features, which were 
used to train the models, we were interested in investigating 
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generalizability to differences in how students interact with the 
platform over an entire school year. To do this, we defined five 
usage features. First, we calculated the proportion of sessions 
students use their mobile device compared to a desktop computer 
as this may indicate the context in which students are using the 
platform (e.g., at home or while commuting). Second, we 
calculated the proportion of sessions in the spring semester 
compared to the fall semester. We were interested in this feature 
because students must pass the algebra standardized exam that is 
offered in the spring semester in order to graduate from high school. 
To model how much students use the platform, we calculated the 
number of sessions and the average length of each session. Students 
may leave an active session open for long session times in their 
browser while switching to another task or repeatedly log into the 
platform without recording any meaningful interactions. We 
replaced these outliers with the 99th percentile value for the average 
length and number of logins. Finally, we calculated the mean time 
of day that students use the platform, which can indicate whether 
students primarily use the platform during the school day or at 
home. Usage data was available for 235,756 individual students, 
including those who did not receive or respond to any surveys. 

2.5 Demographics 
We also obtained records of demographic data of 118,177 students 
from the Florida Department of Education. This dataset includes 
students from grade 6 through grade 12, from which we defined 
three groups. We defined the first group as Middle School (54%), 
which includes grades 6 through 8. These students are often 
advanced and are enrolled in the Algebra course earlier than is 
typically expected by state standards [6]. The second group is 
Grade 9 (37%). We chose to keep this grade separate because it has 
one of the largest enrollment numbers and grade 9 is when students 
are enrolled in the course during the typical mathematics sequence. 
Lastly, we defined High School (9%) as grades 10 through 12. 
These students are often behind in the typical mathematics 
sequence and struggle to pass the course before they graduate. For 
gender, the available data classifies students as Male (49%) or 
Female (51%), which we took at face value. 

This dataset records student eligibility for free or reduced-price 
(F/R) school lunch, which is one indicator of socioeconomic status 
(but see Harwell & LeBeau [8]). We defined the groups as F/R 
(53%) and Other (47%), with the latter reflecting those who did not 
qualify or did not apply. We combined free and reduced because 
there were so few students that qualified for a reduced-price lunch. 

Finally, this dataset includes data on race and ethnicity. We defined 
these groups to approximately balance group size: White (72%), 
Black (23%), Hispanic (32%), and Other (13%; Asian, Native 
American, Pacific Islander, and Mixed). 

3. CLUSTERING 
We clustered participants based on usage characteristics and 
demographics to investigate the generalizability of the affect 
models across clusters. To determine the number of clusters, we 
inspected the dendrogram generated with Ward hierarchical 
clustering [31] using the SciPy library (http://www.scipy.org/). For 
efficient clustering, we randomly sampled 1,000 instances. We then 
used the k-means algorithm [14] to construct the clusters using 
scikit-learn [19]. We chose to use all available students regardless 
of their participation in the surveys since our goal was to generalize 
over as many students as possible. 

We constructed usage clusters using the five features described in 
Section 2.4. We first scaled each of these features to [0, 1]. The 
above procedure yielded five clusters (Table 1). One group (U1) 
showed heavy usage patterns (signified by long sessions and 
numerous log-ins). Two groups were defined by primarily mobile 
sessions and were further differentiated by sessions focused in 
either the fall (U4) or spring (U5) semester. Finally, two groups 
showed particularly light usage patterns and were differentiated by 
sessions focused in either the fall (U3) or spring (U2) semester.  

Next, we constructed clusters using the demographic features 
described in Section 2.5. We dummy encoded our variables 
resulting in seven features indicating grade level, three features 
indicating lunch status, seven features indicating race/ethnicity, and 
one feature indicating gender. The above procedures yielded seven 
clusters (Table 2). Grade level largely differentiated clusters. Only 

Table 1. K-means cluster centers based on typical usage. Distinguishing features are bolded. 

ID Cluster Description 
Session 

Time (min) 
Num. 

Sessions 
Prop. 

Spring Use 
Prop. 

Desktop Use 
Time of 

Day (hour) 
Prop. of 

Users 

U1 Spring semester, heavy use 45.46 25.44 0.75 0.90 14.19 0.20 

U2 Spring semester, light use 14.26 3.53 0.96 0.99 14.86 0.35 

U3 Fall semester, light use 13.81 3.46 0.11 0.99 14.81 0.28 

U4 Fall semester, mobile use 21.38 9.54 0.19 0.30 13.25 0.07 

U5 Spring semester, mobile use 29.66 10.95 0.93 0.27 13.21 0.10 

Table 2. Demographic cluster centers. For clarity, only distinguishing features are displayed and are bolded. 

ID 
Cluster Description 

Grade 
7 

Grade 
8 

Grade 
9 

Grade 
10 

F/R 
Lunch 

White Black Asian 
Prop. of 

Users 

D1 Split grades, F/R lunch, Black 0.08 0.29 0.44 0.17 0.99 0.03 1.00 0.01 0.16 

D2 Grade 7, not F/R lunch, White/Asian 1.00 0.00 0.00 0.00 0.20 0.80 0.06 0.16 0.10 

D3 Grade 8, not F/R lunch, White 0.00 0.99 0.00 0.00 0.00 0.87 0.09 0.07 0.22 

D4 Grade 8, F/R lunch, White 0.00 1.00 0.00 0.00 1.00 0.90 0.03 0.06 0.15 

D5 Grade 9, F/R lunch, White 0.11 0.00 0.87 0.00 1.00 0.91 0.01 0.03 0.16 

D6 Grade 9, not F/R lunch, White/Black 0.00 0.00 0.99 0.00 0.04 0.81 0.16 0.04 0.16 

D7 Grade 10, split F/R lunch, White/Black 0.00 0.00 0.00 1.00 0.52 0.76 0.20 0.03 0.05 
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cluster D1 had a significant distribution of students across grade 
levels. Another differentiating feature was lunch status, where three 
clusters (D1, D4, D5) were largely comprised of students on F/R 
lunch. Four clusters were differentiated by race (D1, D2, D6, D7).  

4. AFFECT DETECTION MODELS 
4.1 Model-building Procedure 
We used scikit-learn [19] to implement a supervised learning 
pipeline. We chose to use the Bayesian Ridge Regression algorithm 
[13] since it produced good overall results in previous work on the 
same data [9] compared to several more complicated alternatives. 

We trained regression models using 10-fold student-level cross 
validation. For each fold, instances for each student were included 
in either the training or testing set. This practice reduces overfitting 
and increases the likelihood that the model will generalize to new 
students. In each fold, we trained a model using the generic activity 
features and generated predicted survey responses on the test data. 
We evaluated the performance of the model using the Spearman 
correlation as it assumes ordinal and continuous values. We then 
averaged these scores across folds to obtain a final accuracy score. 

We trained prediction models for positive and negative affective 
valence rather than the original 18 states measured in the surveys. 
We initially trained a model for each state and calculated the 
correlation between the predicted survey responses for each state. 
These predictions were strongly correlated within positive and 
negative valence. We then trained positive and negative valence 
models using the combined set of states and generated predictions 
for the individual states. The mean performance of the valence 
models was similar to training individual affective models, so we 
chose to use the valence models for parsimony. For the positive 
valence models, we included the following states: Arousal, 
Contentment, Engagement, Happiness, Hopefulness, Interest, 
Pleasantness, Pride, and Relief. For the negative valence models, 
we included the following states: Anxiety, Boredom, Confusion, 
Disappointment, Frustration, Mind Wandering, and Sadness. We 
did not include Curiosity and Surprise since their valence does not 
clearly align on either direction. 

4.2 Preliminary Models on Cluster 
Membership 
We first investigated whether our models discriminated using 
group features rather than the generic activity features. To test this, 
we trained models using cluster membership as the training data 
instead of activity features. We expected these models to perform 
poorly since they are not simply reflecting group differences. 
Indeed, we found that the average Spearman correlations were low 
(between 0.02 and 0.05) for both cluster models.  

4.3 Generalizability 
Our main analysis focused on investigating how our models, 
trained on activity features, generalize across different clusters. 
First, we considered a general model trained on the entire dataset 
using 10-fold student-level cross validation. We then built cluster-
specific models. For each cluster, we trained and tested a model on 
data from that cluster. We also tested this model on the other cluster 
data. For example, we trained a model on U1 and tested  on each of 
the other clusters (U2 – U5) as well as the entire dataset (All). We 
performed this procedure separately for the positive and negative 
valence states as well as for the usage and demographic clusters1.  

                                                                 
1 Similar results for other slices can be found using this code (link).  

4.4 Results 
We examined the generalizability of our models using the 
procedure in Section 4.3. If our models generalized well, we expect 
to see a model trained on one group perform similarly well when 
applied to other groups (Table 3). This was the case for the usage 
clusters, where the maximum difference between testing on one 
cluster and testing on another is 0.05. The demographic clusters 
were more varied. In this case, the greatest difference between 
testing on the one cluster and testing on another was 0.09.  

Recent metrics proposed in slicing analysis, such as [7], apply to 
classification problems and not the regression task considered here. 
To better quantify model generalizability, we defined an individual 
advantage metric. Using the procedure from Section 4.1, we trained 
a model using the training set X and tested the model using the 
testing set Y. We represented the performance of the model, which 
is the average Spearman correlation, as PX,Y. For a target group T, 
we defined the individual advantage metric as (PT,T – PAll,T)/PAll,T. 
This describes the proportion improvement over using a general 
model for the target group T. Therefore, a perfectly generalizable 
model would have an individual advantage of 0 since an individual 
model and general group model will have the same accuracy. 

We used this metric to quantify the generalizability of our models. 
Both positive and negative models showed small, positive 
individual advantage values (mean usage 0.04; mean demographics 
0.02), which indicates a small advantage to training cluster-specific 
models compared to a general model.  

5. SAMPLE SIZE SIMULATIONS 
We then investigated whether sample size affects the advantage for 
using individual models. Specifically, are individual advantages 
mitigated when more data is available? To address this question, 
we computed the average individual advantage metric over 10 cross 
validation folds for a range of sample sizes starting at 500. For each 
sample size, we randomly selected the appropriate number of 
instances from the training sets. We incrementally increased the 
sample size by 200 until we reached the actual group size, which 
varied between 1,500 and 7,100. We repeated this simulation 1,000 
times and calculated the 95% confidence interval of the mean 
individual advantage metric at each sample size (Figure 1). 

Table 3. Mean correlation of positive valence models 
(negative in parentheses) for usage clusters.  

 Test U1 Test U2 Test U3 Test U4 Test U5 Test All 

Train 
U1 

0.25 

(0.19) 

0.23 

(0.22) 

0.21 

(0.19) 

0.19 

(0.19) 

0.21 

(0.18) 

0.21 

(0.20) 

Train 
U2 

0.21 

(0.18) 

0.26 

(0.23) 

0.22 

(0.19) 

0.21 

(0.20) 

0.22 

(0.19) 

0.22 

(0.20) 

Train 
U3 

0.21 

(0.17) 

0.24 

(0.21) 

0.23 

(0.20) 

0.20 

(0.19) 

0.20 

(0.17) 

0.22 

(0.19) 

Train 
U4 

0.20 

(0.17) 

0.25 

(0.22) 

0.21 

(0.19) 

0.21 

(0.20) 

0.21 

(0.19) 

0.22 

(0.21) 

Train 
U5 

0.23 

(0.17) 

0.25 

(0.22) 

0.21 

(0.18) 

0.20 

(0.19) 

0.24 

(0.21) 

0.22 

(0.20) 

Train 
All 

0.22 

(0.18) 

0.25 

(0.22) 

0.22 

(0.20) 

0.21 

(0.20) 

0.22 

(0.19) 

0.22 

(0.21) 
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We first noted that the scores for models using sample sizes less 
than 1,500 varied wildly, as indicated by the width of the 
confidence intervals in this region. As such, we can only conclude 
that results obtained from small samples might not be reliable. This 
is concerning since previous work used sample sizes ranging from 
20 to 646 students [9]. As expected, for larger sample sizes, the 
models quickly stabilized and produced more reliable scores. 

For most clusters, the individual advantage scores stabilized to a 
value of 0.10 or less, which indicates a small advantage of training 
cluster-specific models. The scores for clusters D1 and U1 seemed 
to increase as the sample size increased, but we cannot make strong 
conclusions since the sample size of these clusters was small. 

6. DISCUSSION 
In an attempt to answer the call for predictive generalizability [7, 
10, 26], we used interaction data from 69,174 students over an 
entire school year to study the extent to which sensor-free affect 
detectors generalize across usage and demographic clusters.  

6.1 Main Findings 
We found that students primarily differed in their interaction rate, 
active semester, and primary device. The demographic clusters 
were primarily discriminated by grade level, F/R lunch eligibility, 
and (to a smaller extent) race. Using cluster membership as the only 
training feature resulted in near-zero results, which shows students 
in a particular cluster are not generally predisposed to certain 
affective states. We must then consider the context of a student’s 
activity when predicting their immediate affective state. 

Similar to previous work [1, 4, 9, 17, 23, 24, 27, 28], we examined 
the generalizability of our models by training cluster-specific 
models and testing them on the other clusters. We found that 
cluster-specific models perform slightly better on the target cluster, 
with a maximum difference of 0.05 for the usage clusters and 0.09 
for the demographic clusters. We expanded this analysis by 
introducing an individual advantage metric, which measures the 
advantage given to a target group compared to a general (entire 
population) model. This metric agreed with our initial analysis by 
showing a small advantage given by training a cluster-specific 
model. The maximum advantage was 0.14 for the usage clusters 
and 0.11 for the demographic clusters. Although these results 
provide evidence that cluster-specific models are better at 
predicting affective valence, it is not clear what difference is 
meaningful in practice. 

Lastly, we investigated how model generalizability changes in 
response to sample size. We performed a series of simulations that 
trained affect-detection models and systematically varied sample 
sizes. Models trained on 1,500 samples or less did not generate 
stable scores or predictions, even after 1,000 iterations. When 
considering sample sizes greater than 1,500 that yielded reliable 
scores, we found that the individual advantage scores stabilize as 
sample size increases at a value of 0.10 or less, which is consistent 
with our initial analysis. This suggests that generalizability is not 
greatly affected by sample size beyond the 1,500-sample threshold.  

6.2 Limitations and Future Work 
The greatest area of improvement is the overall model performance. 
As discussed in [9], the average performance corresponds to a 
small-sized effect. This is likely caused by the limited number and 
extreme generality of the training features. Future work can address 
this by introducing more platform-specific features, such as which 
quiz a student was attempting. We can then see if our models have 
the power to distinguish between individual affective states rather 
than simply identifying positive or negative valence. Of course, the 
use of these features will result in more platform-specific models, 
which limits their generalizability to different platforms or even to 
other domains within the sample platform. 

Our analysis of generalizability was limited to demographic 
features and overall interaction with the Algebra Nation platform. 
This analysis should be extended to include other academic 
subjects, time frames, and regional groups. For example, while 
Florida does reflect the overall demographic composition of the 
United States, other states do not. It would be interesting to see how 
our models generalize to other populations. With respect to subject 
generalizability, while [9] showed generalizability between 
Algebra and Geometry, we could  see how a model for mathematics  
generalizes to unrelated subjects such as chemistry or music. 

There are several exciting opportunities to apply these large-scale 
sensor-free affect detectors. First, we will be able to develop real-
time interventions based on predictions of a student’s affective state 
and promote more a more engaging experience with the curriculum. 
In addition, as we collect data from different regions and over 
longer time periods, we can more directly investigate the 
relationship between engagement and end-of-course scores.  

Lastly, it is important to understand the impacts of a one-size-fits-
all model on long-term student achievement. When developing 
interventions, one should consider possible effects if predictions of 
affect are incorrect. In this case, the intervention should not have 
any negative consequences for the student receiving it.  

7. CONCLUSION 
Sensor-free affect detection models provide the opportunity to 
provide personalized experience for large populations of students. 
In this work, we answered the call to investigate how these 
predictive models generalize between different subpopulations in 
the training data. We did this using a longitudinal dataset of student 
interaction with an online math learning platform with our groups 
of interest being clusters based on typical usage on the platform and 
demographic features. We showed that while models trained on one 
cluster perform similarly well when applied to the other clusters, 
there is a small advantage to use individual subpopulation models 
rather than one general population model. It is important to consider 
these models’ differential performance and impact when deploying 
large-scale platforms that adapt to sensor-free predictions of 
individual students’ affective states.  

 
Figure 1. Averaged individual advantage simulation scores for usage clusters 
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