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ABSTRACT

Open-ended learning environments (OELEs) allow students
to freely interact with the content and to discover impor-
tant principles and concepts of the learning domain on their
own. However, only some students possess the necessary
skills for efficient and effective exploration. Guidance in the
form of targeted interventions or feedback therefore has the
potential to improve educational outcomes. A promising
approach for adaptation in OELEs is the design of inter-
ventions based on the detection of characteristic learning
behaviors through offline clustering, followed by a real-time
classification of new students. In this paper, we explore the
possibility of using recurrent neural network (RNN) models
for this online classification task. We extensively evaluate
the predictive performance of different variants of RNNs,
namely long-short term memory models and gated recur-
rent units, and different architectures on a data set collected
from an exploration-based educational game. We also com-
pare the prediction accuracy of the different RNN models to
the performance of traditional classifiers on the same data
set. Our results demonstrate that RNNs perform similar or
better than traditional methods regarding early classifica-
tion and therefore constitute a promising alternative for the
online classification of new students.
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1. INTRODUCTION

Over the last years, there has been a rise in OELEs such
as educational games or simulations. These environments
allow students to freely interact with the content and (ide-
ally) infer the concepts and principles of the learning domain
through their exploration. However, previous research [20,
31, 24] has demonstrated that few students possess the prob-
lem solving and inquiry skills necessary to efficiently and ef-
fectively explore the space. Individualized guidance in the
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form of adaptive interventions or feedback therefore have the
potential to improve students’ exploration strategies and at
the same time optimize the educational outcomes.
Traditionally, adaptation in computer-based learning envi-
ronments has been based on the predictions of the student
model. A large body of work has focused on developing stu-
dent models that are able to accurately represent student
knowledge. One of the most popular student modeling ap-
proaches is Bayesian Knowledge Tracing (BKT) [8], a tech-
nique that has been constantly refined and improved over
the years, e.g., [34, 35]. Other widely used approaches are
based on item response theory, such as the Additive Factors
Model [5, 6] and Performance Factors Analysis [28]. Further-
more, dynamic Bayesian networks, e.g., [13, 18] have been
used to model student knowledge. All of these approaches
are based on the assumption that the knowledge of the stu-
dent can be represented through a set of skills (knowledge
components) and that we can infer the knowledge about
a specific skill based on students’ answers to tasks associ-
ated with this skill. OELEs do not fulfill these criteria as
they (usually) do not provide specific sequences of tasks or
explicitly define knowledge components. Therefore, the in-
troduced student modeling techniques cannot be (directly)
applied to such environments.

A prominent idea in the literature is to provide adapta-
tion based on detected (and analyzed) learning behaviors.
This idea has been formalized into a user modeling frame-
work [15]: First, offline clustering is used to identify different
types of student behaviors. The adaptive components of the
environment are then designed with respect to the different
behaviors found. Second, an online classification algorithm
assigns new students to one of the clusters (and the corre-
sponding intervention) in real time. A large amount of previ-
ous research has focused on the offline clustering part of the
framework, applying clustering approaches to identify differ-
ent types of learners [25, 3, 10]. [12] have represented student
activity patterns in massive open online courses (MOOCs)
using behavior state-transition graphs and demonstrated that
the extracted patterns can be interpreted. Other work as-
sessed students’ problem solving behaviors in a game-based
learning environment [32]. The full framework has been suc-
cessfully applied to an environment for learning common ar-
tificial intelligence algorithms [15]. Other researchers [16]
have used the framework to predict the mathematical learn-
ing patterns of students. Recently, the framework has been
used to build student models for a more complex simulation
of electric circuits [11]. To summarize, the presented re-
search has mostly focused on offline clustering or the appli-
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cation of the framework to different learning domains, per-
forming online classification using standard algorithms such
as k-nearest neighbor [2].

Recurrent neural networks (RNN) have been successfully
used for a variety of sequence classification problems such
as sentiment analysis, e.g., [23] and video, e.g., [9]. RNNs
have also been used in the educational community, for exam-
ple to model student knowledge [30], to provide personalized
recommendations in MOOCs [27], or to improve sensor-free
affect detection [4]. Furthermore, RNNs have also been em-
ployed for classification problems. [26] suggested the use of
long-short term memory (LSTM) models to classify learner
behavior from touchscreen data. Other work [1] used LSTMs
for the classification of problem-solving behaviors.

In this paper, we explore the use of RNNs for online clas-
sification: we assume the offline clustering solution to be
given and train different classifiers to predict the cluster la-
bel of a new student early on during interaction with the
OELE. We hypothesize that the ability of RNNs to handle
sequences of arbitrary length, allowing them to accumulate
the relevant information over each time step, may benefit
the online classification task. We investigate different types
of RNNs, varying the models along three dimensions: the
internal node structure used (LSTMs and gated recurrent
units (GRU)), the depth of the network (number of layers),
and the number of nodes in the hidden layers. We also train
the models to either predict the whole sequence, i.e., out-
putting the cluster label at each time step, or only predict
the cluster label at the end of the sequence. The former ap-
proach has the advantage that the model is able to predict
the cluster label at any point in time. The latter approach
requires training different models to make predictions at spe-
cific time points, but enables the models to optimize predic-
tions for the given point in time. We extensively evaluate
and compare the predictive performance of all the different
RNN models on a data set collected from an OELE [17].
Our results demonstrate that RNNs trained to predict the
cluster label at each time step reach a similar predictive
performance in early classification as the RNNs trained to
predict the cluster label at the end of the sequence. Fur-
thermore, despite the smaller number of parameters, GRU
models tend to achieve a classification accuracy similar to
LSTM models. We also compare the RNN models to tra-
ditional classifiers on the same data set. Our findings show
that the RNN models perform similarly or better than the
traditional approaches regarding the prediction of cluster la-
bels early in the game. Earlier prediction of cluster labels
allows to provide targeted guidance sooner. We therefore
conclude that the use of RNNs for the online classification
of student types is promising.

2. DATASET

The data set at hand was collected from a short interactive
game aiming at assessing students’ exploration choices.

Training Environment. Tuglet is an interactive game
designed to assess students’ exploration behavior. The topic
of the game revolves around a tug-of-war. Players can choose
between two modes (illustrated in Fig. 1): they can engage in
inquiry by simulating tug-of-war set-ups (Exzplore) or they
can try to predict the winning side of specific tug-of-war
set-ups and receive right-wrong feedback (Challenge). The
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Figure 1: Snapshots of Ezplore (top) and Challenge modes (bot-
tom). In Ezplore mode, children can set-up different tug-of-war
teams and observe the outcome. In Challenge mode, children
have to determine the winning side of specific tug-of-war set-ups.

Challenge mode consists of a maximum of eight problems
ordered by increasing difficulty. The eight problems consist
of one very easy question followed by two easy questions,
two medium questions, and three difficult questions. If the
student answers a problem incorrectly, (s)he is put back into
Ezplore mode. The student is however free to choose to go
back to the Challenge mode at any point in time. The game
is over after players solve eight problems in a row correctly.
The learning goal of the game, which is not revealed to the
player, is to discover the mathematical principles underlying
the tug-of-war.

Data Set. The data set consists of log files of 229 students
attending the 8th grade of two different middle schools. The
total number of observations in this data set is 10'258. One
observation corresponds to either one set-up tested in Fa-
plore mode or one question answered in Challenge mode.
The length [ of the observation sequences varies between
Il =12 and | = 127. All students in this data set managed
to pass the game.

Clustering Solution. Previous work [17] has shown that
the learning outcome (measured by an external posttest) is
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not only influenced by students’ exploration choices (Ezplore
vs. Challenge) but also by the quality of their inquiry strate-
gies. It was furthermore shown [19] that students can be
grouped into six different clusters based on these detected
strategies. These clusters can be sematically interpreted:
cluster 1 captures students who systematically explore and
try to understand the mathematical principles behind the
tug-of-war. Cluster 3 consists of students who pass the game
fast by only using Challenge mode. Students in cluster 6 also
do not explore, but take a long time to pass the game. Stu-
dents in cluster 4 on the other hand simulate many different
tug-of-war configurations in Ezplore mode, without success.
Cluster 2 lies in-between clusters 1 and 3, and exploration
behaviors in cluster 5 are a mix between those in cluster 3
and cluster 6. The clusters are not only correlated to per-
formance in an external posttest, but also predict academic
achievement more broadly [19].

The features serving as an input for the clustering are ex-
tracted by level: children need to answer eight Challenge
questions in a row correctly to pass the game and there-
fore the game can be divided into eight levels. Level n is
reached the first time the student answers exactly n ques-
tions in a row correctly. The features used for clustering
consist of the following cumulative counts extracted for level
n € [1,8]: the number of Challenge problems NC, needed
to reach level n, the total number of tug-of-war set-ups N E,,
simulated in Ezplore mode before reaching level n, and the
number of tug-of-war set-ups NSFE, simulated in Fxplore
mode which are classified as reflecting systematic inquiry
(see [17] for a definition of systematic inquiry) until reach-
ing level n. Therefore, the input features used for the clus-
tering are NC = [NC4,...,NCs], NE = [NE,..., NEg],
and NSE = [NSEy, ..., NSEs]. The cluster solution is then
found by computing the pair-wise dissimilarities between all
students for each feature using the Euclidean distance as a
similarity measure and subsequently performing a pair-wise
clustering [14]. The optimal number of clusters is deter-
mined by the Bayesian Information Criterion (BIC) [29]. In
the following, we will us the presented clustering solution as
ground truth for our classification task.

3. ONLINE CLASSIFICATION OF NEW
STUDENTS

Ideally, the output of the clustering algorithm enables us to
characterize different student behaviors and to design inter-
ventions or feedback based on the detected behaviors. Ide-
ally, we are also able to characterize the performance of new
learners in real time in order to deliver a targeted interven-
tion as soon as possible. The corresponding framework is
illustrated in Fig. 2. In the case of our data set, students
assigned to cluster 4 might for example get hints on how
to explore systematically, while students from cluster 3 will
be prompted to use Ezplore mode in order to figure out the
principles governing the tug-of-war.

RNN models are a family of neural network models able
to handle sequences of arbitrary lengths. They are espe-
cially suited for time-series data and are able to represent
the relevant information over a sequence of time steps. We
therefore adapt different types of RNNs for the online clas-
sification task (marked in dark blue in Fig 2). RNNs map
a sequence of input features x1,Xz2,...,XT to a sequence of
output features yi1,y2,...,yt. They maintain a sequence of
hidden states hi, ha,...,ht. These hidden states capture
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Figure 2: Students are clustered offline and targeted inter-
ventions are designed based on the (semantic) cluster inter-
pretation. New students are then classified online. In this
paper, we focus on the online classification task (marked in
dark blue).
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Figure 3: Simple RNN unrolled over T time steps. x denotes
the input feature vectors, y denotes the output feature vec-
tors and the hidden states are represented by h.

relevant information from past observations which will in-
fluence future predictions. Figure 3 shows an illustration of
a simple RNN model.

3.1 Long-Short Term Memory Classification
Long-short term memory (LSTM) models are a powerful
modification of the RNN architecture.

Specification. LSTM models replace each hidden state hg
by an LSTM cell unit with additional gating parameters.
These parameters determine when to forget or retain previ-
ous information. The update equations of an LSTM are as
follows:

fi = oc(Wiexe + Wenhe_1 + be)

it = o(Wizxe + Wirhe—1 + by)

Ci = tanh(Weuxe + Werhg—1 + bg)
Cy=f, x Ci_q1 +it X C}

oy = 0(Wozxe + Worhe—1 + bo)

he = o¢ x tanh(C})
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Figure 4: RNN model (LSTM or GRU units) with n hidden
layers for an example student over T' time steps. The input
vector x¢ contains the counts NC;, NE;, and NSFE; at each
time step t. The output vector §¢ can be interpreted as a
probability distribution over the different cluster labels.

Here, f, i¢, and ot represent the forget, input, and output
gates of the LSTM cell unit C4. Cy{ denotes an intermedi-
ate candidate cell state. The different weight matrices are
described by W and the b stands for bias.

Modeling. For our task, the input vector x¢ encodes the
clustering features at each time step t. We input the counts
for each time step t, i.e., x¢ = [NC¢, NE:, NSE:]. Let us
assume that a hypothetical student m tested three differ-
ent set-ups, the first two being random trials and the third
one being systematic, followed by answering two Challenge
questions. The input features for this student over the five
described time steps are as follows: xm,1 = [0,1,0], Xm,2 =
[0,2,0], Xm,3 = [0,3,1], Xm,a = [1,3,1], xm,5 = [2,3,1].
Figure 4 details T time steps of an example student.

The output vectors ¢ represent the (predicted) cluster la-
bels of the students: the output layer of the model uses
the softmax function to normalize the vectors to sum to
1 such that the values within these output vectors can be
thought of as probabilities for the different cluster labels (see
Fig. 4). When training the model, we provide the cluster la-
bels found during clustering as ground truth. Note that we
use a one-hot encoding of the cluster labels, i.e. for a stu-
dent m belonging to cluster &k = 2, ym,+ = [0,0,1,0,0,0].
The chosen model predicts the cluster label of the student
at each time step ¢, augmenting the amount of available data
and increasing flexibility, as it allows to predict the cluster
label of a specific child at any point in time. We denote this
type of model as LSTMgeq.-

Note that ym,1 = Yym,2 = ... = ¥Ym,T for all students m,
because during clustering each student is assigned a fixed
cluster label based on the whole sequence. Given that the
cluster labels are fixed, we can also design the model to only
output the cluster label at the end, i.e. train the LSTM to
predict the cluster label at the end of a given input sequence.
Instead of computing the training loss over the whole se-
quence, we calculate the loss only for the last output yT of
the sequence (marked with red in Fig. 4). When using this
type of model, we have to train a separate model for each
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prediction time point. In our case, we will train separate
models for each level. We call this model LSTMEgnq.
Stacking multiple LSTM layers (see hidden layers in Fig. 4)
is another possible variation of the architecture, i.e., the vec-
tor h¢ of layer n — 1 serves as an input for layer n. Stacking
layers adds levels of abstraction of input observations over
time, for example enabling representation of the problem at
different time scales. We will denote LSTM models with n
hidden layers, where n > 1, as LSTMgeqn or LSTMgnd n-

3.2 Gated Recurrent Unit Classification

Gated recurrent unit (GRU) models are another powerful
modification of RNN models. In contrast to LSTMs, they
are less complex, making training more efficient.

Specification. Similar to LSTM models, GRU models re-
place each hidden unit hy by a GRU cell unit with additional
gating parameters. GRUs use update and reset gates, decid-
ing what information should be passed to the output. The
update equations of a GRU are as follows:

zy = o(Wyrexe + Wyphe 1 + by) (7

ry = 0(Wizxe + Winhe_1 + by) (8)

hy = tanh(Wj, % + 7t X Waphe—1 + by) (9)
hy = z¢ X hg_1 + (1 — z) x hg (10)

z¢ and r represent the update and reset gate of the GRU
cell unit. h} denotes an intermediate candidate hidden state.
The different weight matrices are described by W and the b
stands for bias.

Modeling. Just as for the LSTM models, the clustering
features at each time step t are represented by the input
vector Xg, i.e., X¢ = [NC¢, NE:, NSE;]. The input sequence
of an example student is given in Fig. 4. We also use the
exact same description for the output layer of the GRU:
the output layer of the model uses the softmax function to
normalize the vectors to sum to 1 such that the values within
the output vectors y¢ can be interpreted as probabilities for
the different cluster labels (see Fig. 4). We again train a
model on the whole output sequences of the students able
to predict the cluster label at each time step t. We denote
this model with GRUgeq. We also train one GRU model per
level, where we compute the loss of the model only for the
last output §r of the sequence (marked with red in Fig. 4).
We denote this model with GRUgnq. Finally, similar to
LSTM models, we can also stack GRU models on top of
each other. We will call models with n hidden layers, where
n > 1, GRUseqn 0 GRUEnd,n-

4. EXPERIMENTAL EVALUATION

We evaluated the predictive accuracy of the variations of
RNN models on the data set described in Section 2. We also
compared them to the following popular traditional classi-
fiers using the same data set: k-Nearest-Neighbor (kNN) and
random forests (RF). While these classifiers are well tested
and efficient to train, they require features being the same
length for each student and therefore need to be trained for
fixed points in time. RNNs on the other hand represent the
relevant information over time, possibly enabling a more ac-
curate classification of students early in the game.
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Figure 5: Accuracy (top) and AUC (bottom) of the LSTMsgeq, LSTMgeq,2, and GRUgeq models by achieved level. Both
measures increase up to level 6 and stagnate or deteriorate afterward. This is probably due to the fact that the models are
trained to predict the cluster label after each time step ¢, i.e. training loss is optimized over the whole sequence of observations.

Experimental Setup. We applied a train-test setting, i.e.
parameters were fit on the training data set and performance
of the methods was evaluated on the test data set. Predic-
tive performance was evaluated using the accuracy as well as
the micro-averaged area under the ROC curve (AUC). The
accuracy is a measure that can be interpreted easily. The
cluster solutions for both data sets are not balanced. We
used the AUC as an additional performance measure as it is
robust to class imbalance.

For all methods, we used a student-stratified (i.e. dividing
the folds by students) 10-fold cross validation. Within each
fold f, we re-clustered the students of the training data set
of f to obtain the output features y, i.e. the cluster labels,
for training. We purposely did not use the original cluster la-
bels from the solution found on the whole data set (including
training and test data) for training, to prevent dependencies
to the cluster labels of the test data set. The average cluster
stability [22] between the 10 different training data sets and
the original cluster solution was 0.87, i.e., on average 87%
of the samples received the same label on the training data
set as on the original data set. Therefore, 0.87 constitutes
an upper bound for the accuracy of the classifiers.

All the RNN models were implemented using Keras [7] with
Theano [33] as backend. Categorical crossentropy was used
to calculate loss and ADAM was used as the optimizer. The
models were trained for e = 100 epochs. For all types of
RNN models, we used post-padding and masking to account
for the different sequence lengths.

For the traditional classifiers, we trained one model for each

level n of the game. The input vector x, of each model
therefore encodes the clustering features exactly at level n,
i.e., Xn = [NCn, NE,, NSE,].

We determined the optimal number k, of nearest neighbors
for the kNN classifier as follows: within each fold f, we ran-
domly put 10% of the students from the training data set
in a validation data set and selected the number of nearest
neighbors k, ¢ yielding the best performance in terms of ac-
curacy on this validation data set. We then predicted the
cluster labels of the test data set using the labels of the k, ¢
nearest neighbors.

For the RF method, we trained B = 100 binary decision
trees using bootstrapping with re-sampling (ry = 1.5 - My,
with My being the number of samples in the training data
set of fold f).

RNN Models returning a sequence of outputs. We
varied the parameters of our RNN models outputting the
whole sequence of cluster labels along three dimensions: the
structure of the hidden layer(s) (LSTM or GRU), the num-
ber of hidden layers, and the dimension of the hidden state
within a hidden layer. Specifically, we computed the predic-
tive performance for the following models: a 1-layer LSTM
(LSTMseq) with a dp-dimensional hidden state where d;, €
{4,8,16,32}, a 2-layer LSTM (LSTMsecq,2) with a dj,-dimensi-
onal hidden state per layer where d;, € {2,4,8,16}, and a
1-layer GRU (GRUseq) with a dj-dimensional hidden state
where dp, € {4,8,16,32}. Figure 5 illustrates the predictive
performance in terms of accuracy and AUC for the three
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Figure 6: Categorical crossentropy of the LSTMgeq, LSTMsgeq,2, and GRUgeq models by the number of dimensions of the
hidden state. The average test error begins to increase when using more than d;, = 16 hidden dimensions, while the training

error still decreases.

different architectures by achieved level.

The LSTMseq models reach a poor accuracy when dp = 4.
There is also not much difference between the accuracy at
level 1 (0.42) and at level 8 (0.49). The accuracy improves
substantially when increasing the dimension of the hidden
state to dp, = 8, dj, = 16, or d;, = 32. We especially observe a
jump in accuracy between levels 3 (e.g., Accuracyg = 0.45)
and 4 (e.g., Accuracyg = 0.58). For dn = 32, there is a
second jump between levels 5 (Accuracy;, = 0.59) and 6
(Accuracys, = 0.64). These jumps in accuracy correspond
to jumps in the difficulty of the Challenge questions: the
eight problems consist of one very easy question followed by
two easy questions, two medium questions, and three dif-
ficult questions. There is no increase in accuracy between
levels 1 and 3 as most students passed these easy levels very
quickly. We observe a similar picture for the AUC. The AUC
increases with the number of dimensions d; of the hidden
state. Note that the AUC again jumps between levels 3 (e.g.,
AUCg =0.72) and 4 (e.g., AUCs = 0.81).

For the LSTMgeq,2 models, predictive performance again in-
creases with the number of dimensions of the hidden state
within a layer. For this type of models, using a 2-dimensional
hidden state or a 4-dimensional hidden state per layer leads
to a low accuracy. Increasing to an 8-dimensional hidden
state or a 16-dimensional hidden state per layer yields a
large improvement in accuracy and these models also show a
jump in accuracy between level 3 (e.g., Accuracy,, ;4 = 0.48)
and level 4 (e.g., Accuracy,,,;; = 0.63). The AUC also in-
creases with an increasing number of dimensions dj, per hid-
den layer. The LSTMgeq,2 models’ accuracy is in range with
the accuracy of the LSTMgeq models for dp = 16/dp = 228
hidden dimensions as well as for d, = 32/d;, = 2z16 hid-
den dimensions. However, the LSTMscq models show a
higher AUC than the LSTMseq,2 models, e.g., for dn =
16/d;, = 28 hidden dimensions (for example at level 5:
AUCrst™g.q = 0.87, AUCLsTMS,» = 0.79).

Performance of the GRUgeq models in terms of accuracy
shows the same trends over time as for the LSTMgeq mod-
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els. Again, employing a 4-dimensional hidden state results in
a low accuracy. When increasing the number of dimensions
of the hidden state to d;, = 8, dj, = 16, or d;, = 32, the mod-
els are able to capture the jump in difficulty between level
3 (e.g., Accuracyg = 0.43) and level 4 (e.g., Accuracyg =
0.54). The architecture employing a 16-dimensional hid-
den state also shows a jump in accuracy between level 4
(Accuracy,q = 0.59) and level 6 (Accuracy,q; = 0.66). The
AUC again increases with an increasing number of dimen-
sions of the hidden state. Applying d;, = 32 instead of
dpr = 16 hidden dimensions does generally not increase the
AUC, and is even worse for some levels, e.g., for level 6
(AUC16 = 0.86, AUC32 = 0.81). Generally performance is
in range with the performance of the LSTMgcq models in
terms of accuracy for d;, = 16 and d;, = 32 hidden dimen-
sions. Again, the AUC for the LSTMsgeq models tends to
be higher than the AUC for the GRUgeq models, for ex-
ample for dp, = 16 hidden dimensions at the peak level 6
(AUCrsTMg., = 0.90, AUCLsTMgRy = 0.86).

The performance increase of all models with a higher number
of hidden dimensions is as expected. However, the danger
of overfitting increases with a higher number of parameters.
While our training and evaluation methods have measures
for overfitting, such as the crossvalidation, in place, we in-
vestigated the relation between the average training and test
error of the different configurations and the number of di-
mensions dy, of the hidden state. Figure 6 illustrates the av-
erage categorical crossentropy on the training data sets and
test data sets. We observe that the difference between train-
ing error and test error starts to get bigger with an increased
number of hidden dimensions. Specifically, there is a kink
in the test error at dj, = 16/d;, = 228 hidden dimensions for
all models. We therefore conclude that d, = 16/dp = 228 is
the maximum number of hidden dimensions that should be
used for this data set.

RNN Models returning the last output in the se-
quence. We also trained a range of RNN models returning
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Figure 7: Accuracy (top) and AUC (bottom) of the LSTMgnd, LSTMEnd,2, and GRUgna models by achieved level. Both mea-
sures increase over time and all models achieve a similar predictive performance for the higher numbers of hidden dimensions.

only the last output in the sequence, i.e.

predicting the

sions per layer leads to the lowest achieved accuracy and

cluster label at the end of a given sequence. We varied the
parameters of these models along the same dimensions as
for the models predicting the whole sequence. Specifically,
we computed the predictive performance for the following
models: a 1-layer LSTM (LSTMgnq) with a dj,-dimensional
hidden state where dj, € {4, 8,16, 32}, a 2-layer LSTM
(LSTMgna,2) with a dp-dimensional hidden state per layer
where dj, € {2,4,8,16}, and a 1-layer GRU (GRUgua) with
a dp-dimensional hidden state where dj, € {4,8,16,32}. We
trained one model for each level of the game. The predictive
performance of all the models in terms of accuracy and AUC
is illustrated in Fig. 7.

Similar to the models predicting sequences, the LSTMEgn4
model achieves the lowest accuracy with dn, = 4. How-
ever, up to level 6, there is no big difference in accuracy
between this model and the models with dj > 8 hidden di-
mensions. All the LSTMgnqa models capture the jump in dif-
ficulty between level 3 and level 4. The models with higher-
dimensional hidden states also capture the second jump hap-
pening after level 5. For dj, = 16, we for example see a jump
in accuracy after level 3 (level 3: Accuracy = 0.46, level
4: Accuracy = 0.62) and a second jump after level 6 (level
6: Accuracy = 0.67, level 7: Accuracy = 0.77). Regarding
the AUC, we observe superior performance of the models
with dp, = 16 and d; = 32 hidden dimensions after level 4.
For these models, the AUC constantly increases until level 6
(AUC16 = 0.89, AUC32 = 0.88). As seen before, we do not
observe any improvement in performance after level 6.

For the LSTMEng,2 model, employing dj, = 2 hidden dimen-
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there is also not much improvement over time. The mod-
els with dp > 2 capture the increased difficulty after level 3
(e.g., level 3: Accuracy,,s = 0.47, level 4: Accuracy,,s =
0.57). Only the models using dr, = 8 or d;, = 16 hidden
dimensions per layer manage to capture the second jump
in difficulty (e.g., level 6: Accuracy,,;q = 0.69, level 7:
Accuracy,y,;s = 0.81). We observe a similar picture for
the AUC: when using using d, = 8 or d, = 16 hidden
dimensions, there is a strong increase in AUC after level
3 (e.g., level 3: AUCq2.s = 0.74, level 4: AUC2,;5 = 0.81)
and after level 6 (e.g., level 6: AUC2z16 = 0.87, level T:
AUC32416 = 0.95).

The accuracy plot of the GRUgnq models looks similar to
the accuracy plot of the LSTMgna models. Up to level 4,
all models perform similarly (at level 4: Accuracy, = 0.58,
Accuracyg = 0.62, Accuracy,; = 0.61, Accuracyy, = 0.55).
For the higher levels, the model with d;, = 4 hidden di-
mensions shows the lowest accuracy. Using a model with
an 8-dimensional hidden state nicely captures the jumps
in accuracy between level 3 (Accuracy = 0.47) and level
4 (Accuracy = 0.62) and between level 6 (Accuracy = 0.62)
and level 7 (Accuracy = 0.73). Increasing the number of hid-
den dimensions to d;, = 16 improves performance only from
level 5 on (e.g., at level 6: Accuracyg = 0.62, Accuracy,;q =
0.69). This model also captures the two jumps in accuracy.
Using dn, = 32 hidden dimensions does not lead to any fur-
ther improvements. The model employing a 4-dimensional
hidden state performs worst for the AUC, with exception
of level 3. When using d;, = 16 or d;, = 32 hidden dimen-
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sions, the AUC again models the two jumps in difficulty
(e.g., level 3: AUC32 = 0.72, level 4: AUC32 = 0.82, level 5:
AUC32 = 0.85, level 6: AUC3o = 0.92). It also seems that
using a higher number of hidden dimensions, i.e. dn > 8,
increases the stability of the AUC. With exception of the
drop at level 3, the AUC of the model with dj, = 16 hidden
dimensions nicely increases over time.

We again tested for overfitting, by comparing the average
training and test loss of the different models. Just as for the
models trained to predict the cluster label at each time step,
we found that there is a kink at d;, = 16 hidden dimensions:
while the training error still decreases for a higher number of
dp, the error on the test set increases. We therefore conclude
that dn, = 16 is the maximum number of hidden dimensions
that can be used.

‘Sequence versus End’. When comparing the RNN mod-
els trained for sequence prediction to the models trained
to predict only the last output of the sequence, we observe
that the performance plots show the same overall trends (see
Fig. 5 and Fig. 7). For both types, predictive performance
in terms of the accuracy is similar for the 1-layer LSTM
and the 1-layer GRU models. The GRUgeq model generally
has a lower accuracy than the LSTMgeq model when using
dn < 16. The GRUgnq model exhibits a lower accuracy than
the LSTMEna model only for dj, = 4. The models with two
stacked layers, i.e. the 2-layer LSTM models, generally show
a lower accuracy when employing a low number of hidden
dimensions per layer (222 or 2z4).

For both the ‘sequence’ and the ‘end” RNN models, all three
model types achieve similar accuracies for d;, = 8 or dj, = 16
hidden dimensions. All RNN models show no improvement
or even a drop in AUC after level 6. This effect is more pro-
nounced for the models which are trained on the sequence, as
their loss is optimized over the whole sequence. We further
hypothesize that the length of the sequences at the higher
levels might be too long for the RNN models to capture the
relevant information, because even with the LSTM architec-
ture, RNNs tend to struggle with very long data sequences.
The main difference between the ‘sequence’ and the ‘end’
model is the larger increase of the accuracy with increasing
levels. For example, for the LSTMgeq with dj, = 16 the accu-
racy at level 1is 0.42 and the accuracy at level 7 is 0.63, while
the accuracy of the LSTMgnq model with dj, = 16 is 0.41 at
level 1 and 0.77 at level 7. Because the ‘end’ models are op-
timized to predict the last output of a sequence, they reach
a higher accuracy at the end of the game (e.g. at level 8:
Accuracy grug,, 16 = 0-61, Accuracygruy, ;16 = 0-77). The
‘sequence’ RNN models are optimal on average and there-
fore exhibit less variance over time and smoother accuracy
and AUC curves. For the medium levels of the game, ‘se-
quence’ and ‘end’” RNN models perform similar in terms of
accuracy and AUC.

All configurations exhibit a satisfying accuracy and a medium-
high AUC for d;, > 8. As a comparison, a random classi-
fier would achieve an accuracy of 0.17 and the accuracy of a
classifier always predicting the majority label would be 0.32.
The AUC of these two classifiers would be 0.5.

Comparison to traditional classifiers. We compared
the predictive performance of selected RNN models to the
predictive performance of the traditional classifiers. Because
the RNN models show an increased performance with a
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Figure 8: Accuracy (top) and AUC (bottom) of kNN, RF,

LSTMsgeq, and LSTMgnq by achieved level. The RNNs

achieve similar or better performance than the traditional

classifiers up to level 6.

higher number of hidden dimensions, we used RNN mod-
els with the maximum number of dj, = 16 not resulting in
overfitting for comparison. In case of the ‘sequence’ mod-
els, the LSTMscq model achieved a similar accuracy, but a
higher AUC than the two other model types for d;, = 16.
We therefore selected the LSTMseq model with dj, = 16 for
comparison. In case of the ‘end’ models, the 1-layer LSTM
and 1-layer GRU models achieved similar results, however,
the LSTM models were better at predicting the jumps in
difficulty. We therefore selected the LSTMg,q model with
dp, = 16 for comparison. Figure 8 displays the accuracy and
the AUC of the kNN classifier, the RF method, a 1-layer
LSTM model for sequence predicting with dp, = 16 hidden
dimensions (LSTMseq), and a 1-layer LSTM model for pre-
dicting the last output of the sequence with dn = 16 hidden
dimensions (LSTMgnq).

We observe that the RNN models outperform the traditional
classifiers for the first three levels regarding the accuracy
(e.g., at level 3: Accuracy,yy = 0.38, Accuracygp = 0.43,
Accuracyp gy, = 0-45, Accuracypgryy,, , = 0.46). The
same holds for the middle of the game, i.e. levels 4 — 6
(e.g., at level 5: Accuracy,yy = 0.57, Accuracygr = 0.63,
Accuracyygpvg,, = 0.63, Accu- racypsryg, , = 0.67). At
the end of the game, the accuracy of the traditional classi-
fiers is close to the stability of the clustering (Accuracy,yy =
0.85, Accuracyrp = 0.83).

For the RF approach and the two RNN models, we also
computed the AUC (see Fig. 8 (bottom)). In contrast to
the other three methods outputting probabilities for each
cluster label, kNN just outputs the predicted cluster label
and we therefore did not compute the AUC for this method.
We observe that the LSTMseq and the LSTMgng models
clearly outperform the RF method at the beginning of the
game (e.g., at level 3: AUCgrr = 0.71, AUCLSTMSeq =0.75,
AUCLsTMp,y = 0.73). Also in the middle of the game be-
tween levels 4 and 6, the RNN models show a higher AUC
than the RF method (e.g., at level 5: AUCgrr = 0.82,
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AUCLSTMSeq = 0.89, AUCLSTMEnd = 0.87) with the ex-
ception of level 4. When looking at the whole sequence, we
observe a similar picture as for the accuracy: the AUC of
the RF method is clearly higher than the AUC of the RNN
models (at level 8: AUCgrr = 0.91, AUCLSTMSeq = 0.80,
AUCLSTMEnd = 0.85).

As already mentioned before we assume that the worse per-
formance of the RNN models at the end of the game (level
7 and level 8) is due to the fact that the input sequences
for the RNN models become too long. Note that while most
students manage to reach level 5 within a reasonable time
frame, the lengths of the complete sequences vary signifi-
cantly between the students. The lower accuracy and AUC
of the RNN models at the end of the game are not an is-
sue in our case because we are interested in accurate pre-
dictions early in the game. While the RNN models show
only a slightly increased accuracy in comparison to the tra-
ditional methods at the beginning and in the middle of the
game, they consistently achieve a higher AUC up to level 6,
demonstrating their robustness towards class imbalance.

S. DISCUSSION

OELEs consitute a promising approach for learning. Ideally,
the students learn the concepts and principles of a domain
more deeply through exploration than if they are simply
taught the principles and practice applying them. However,
it has been shown that only a part of the students are able
to effectively explore the space [20, 31, 24, 17]. Providing
guidance to struggling students is therefore essential for ed-
ucational success.

Because OELEs allow the user to freely interact with the
content, traditional student modeling approaches cannot di-
rectly be applied to provide adaptation to the student. Adap-
tation based on detected student behavior and strategies is
therefore a promising approach. Previous work has used of-
fline clustering to detect different student types, followed by
online classification of new students [15, 16, 11].

In this paper, we focused on the task of online classifica-
tion, i.e., predicting the student type (or behavior) early on
during interaction with the environment to provide targeted
guidance as early as possible. In contrast to previous work
applying standard classifiers such as k-nearest-neighbor [15,
16, 11], we suggested the use of RNN models for the online
classification task. While previous research has investigated
the use of RNN models to classify the students according
to their problem-solving behavior based on their whole se-
quence of interactions [1], to classify changing learner behav-
iors over time [26], or to detect affective states over time [4],
we explored the possibility of using RNN models to predict a
student’s cluster label (fixed over time) as early as possible.
We have extensively evaluated a variety of RNN models and
compared their predictive performance to the performance
of k-nearest neighbor and random forest classifiers. We have
used the different levels of the game as specific time points
for evaluation as they pose realistic time points for interven-
tions. We have trained RNN models to predict the cluster
label at each time step as well as RNN models optimized for
predicting the cluster label at each level of the game.

Not unexpectedly, the RNN models trained per level as well
as the traditional classifiers outperform the models trained
for predicting the whole sequence at the higher levels (level 7
and 8) of the game. This is due to the averaging effect of the

performance of the ‘sequence’ RNN models: during train-
ing, the loss is computed for each time step of the sequence.
Nevertheless, for level 4 and 5, which provide promising time
points of intervention both in terms of accuracy of the differ-
ent models as well as in terms of timing of intervention, the
LSTMseq model with 16 hidden dimensions reaches similar
performance as the other approaches. While this model does
not outperform traditional approaches regarding prediction
accuracy, it provides the potential for further adapting in-
tervention. As the model is able to predict the cluster label
at each time step, it is possible to provide the intervention
at different points in time for different students depending
on how sure the model is about the cluster label of the stu-
dent. [21] have for example used a simple heuristic to at each
time step decide whether the model should continue to see
further time steps before outputting a final decision. While
exhibiting the same accuracy, classification happened on av-
erage at an earlier point in time. This earlier classification
allowed to provide targeted interventions sooner.

While the LSTMgnqg model with 16 hidden dimensions is
also outperformed by the traditional classifiers at level 7
and 8 of the game, it shows a higher prediction accuracy
than the kNN and RF classifiers for the first levels. Our
results further demonstrate that the LSTMgnq model with
16 hidden nodes outperforms the RF classifier regarding the
AUC. This is especially important, because the AUC is not
biased by imbalanced data sets.

We have also investigated different architectures for the RNN
models. Our results demonstrate no large difference in the
performance of LSTM and GRU models. However, due to
their lower complexity, GRU models are more efficient and
take less time to train the LSTM models. While this was
not an issue for our small data set, it should be considered
when training on larger data sets.

Due to the relatively small number of samples, we were able
to only train shallow models with one or two hidden layers,
not fully exploiting the advantages of deep learning. Fur-
thermore, we also had to keep the number of dimensions of
the hidden state low. However, the results achieved on our
small data set are promising and we assume that the RNN
models would perform even better on larger data sets.

In the future, we plan to design and test targeted interven-
tions for the different clusters. Furthermore, we will collect
a substantially larger data set to enable the training of deep
neural networks using raw feature input only. Finally, we
also plan to design and train the classifier such that scaf-
folded interventions can be delivered.
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