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ABSTRACT 
We explore generalizability and fairness across sociodemographic 
groups for predicting on-time college graduation using a national 
dataset of 41,359 college applications. Our features include socio-
demographics, institutional graduation rates, academic 
achievement, standardized test scores, engagement in 
extracurricular activities, and work experiences. We identify five 
latent classes based on available sociodemographic data and train 
Random Forest classifiers to successfully predict 4-year 
graduation. When individually trained and tested on each class 
using a split-half validation method, we achieved AUROCs 
between 0.629 and 0.694. We then evaluate how a model trained 
on the entire dataset performs on each latent class by performing a 
slicing analysis, finding a 6 to 10 percent improvement in AUROCs 
compared to the individual-class models. We explore fairness of 
our model by extending the slicing analysis to consider Absolute 
Between ROC Area (ABROCA), finding similar values for each of 
our latent classes. We contemplate how our results might be used 
to avoid perpetuating biases inherent in college application data. 
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1. INTRODUCTION 
In 2016, the Obama administration issued a report urging data 
scientists to explore “how technologies can deliberately or 
inadvertently perpetuate, exacerbate, or mask discrimination." [6]. 
To this point, in recent years, machine learning has come to 
influence a range of real-world activities, such as detecting credit 
fraud, financial investing, advertising, and, of course, education. 

These methods make complex, sometimes life changing, decisions 
based upon training data, often without considering if the training 
data is biased. This is a critical omission because training data takes 
advantage of past events, which may be unfairly biased against 
certain subpopulations, such as those of a particular race, gender, 
or sexual orientation. Given that the past data may be biased, 
machine learnt models further perpetuate or even exacerbate these 
biases. The resultant models can be described as ‘unfair’ because 
they treat different subpopulations differently. For example, 
Amazon recently had to decommission their recruitment AI as it 
favored male applicants for technical jobs [15], ostensibly because 
in the ten years of hiring data used to train the model, the company 
had predominantly hired more men than women in technical roles. 
This biased training data caused the model to negatively evaluate 
resumes that alluded to the applicant being female (e.g. containing 
the phrase “women’s chess club captain” or having attended a 
women’s college). 
In the context of education, there has been considerable interest in  
predicting a range of educational outcomes, such as  affect, learning 
style, likelihood of dropping out of a course, and whether a student 
will succeed on an upcoming test [18, 46]. In this paper, we 
examine generalizability and fairness in the specific case of 
predicting college success. We use the CommonApp-NSC dataset, 
a 6-year longitudinal de-identified dataset of college application 
data and graduation outcomes. We first identify five subgroups of 
applicants based on sociodemographics and then train Random 
Forest classifiers to predict on-time college graduation from 
application data. We explore how the models generalize across 
groups and how fair the models are to each of the groups. 

1.1 Background 
A college degree offers a wide variety of personal, academic, and 
economic benefits [3]. For example, 2015 median earnings for 
young U.S. adults (25-34 years of age) with a Bachelor’s degree 
were 64% higher than those who had only completed high school, 
a consistent pattern over the past 15 years [39]. In addition to 
economic gains for the student, college completion also correlates 
with economic gains for the nation as a whole [11].   
However, based on the latest data, only 40% of first-time, full-time 
U.S. students graduated with a Bachelor’s degree within four years 
[41, 52] (60% graduated within six years). Moreover, the academic 
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achievement gap separating students by race/ethnicity in K12 
persists in college. Only 21% of Black and 30% of Hispanic 
students graduated within 4 years, compared to 44% White and 
48% Asian/Pacific Islander students [52].   
These numbers suggest that there is considerable room for 
improvement overall and especially for closing the achievement 
gap. More to the point of the present focus, they introduce a 
substantial potential for bias in any machine learning model which 
uses demographics to predict 4-year college graduation outcomes 
since these models might inherently predict lower graduation for an 
underrepresented minority based on historic rates irrespective of 
their abilities.  
In addition to demographics, socioeconomic (SES) factors have 
been reliably linked to college success [16, 17, 19, 63]. An early 
1964 study showed that SES factors such as family income, 
parental occupation, and parental education levels had a significant 
effect on college retention and graduation [22]. Other work has 
reported similar links between SES and college success [1, 34, 60], 
particularly with respect to the relationship between SES and 
ethnicity [48]. This signals another potential for bias. Indeed, recent 
work in machine learning (and even in the popular press) has called 
for an examination of how SES is used in models [14, 67], 
especially when making crucial decisions about a person’s future. 
Beyond SES, academic achievement such as high school GPA and 
standardized test scores have also been shown to be predictive of 
college success. In large scale studies [53, 66], including a 
landmark study with 150,000 students, both standardized test 
scores and high school GPA predicted college success. However, 
both of these measures has also been (negatively) linked to SES 
[54, 68], suggesting potential bias in a more indirect way. 
Beyond sociodemographics and cognitive ability, Goodwin and 
Hein [28] hypothesize that the “X-Factors” such as a can-do 
attitude, self-discipline, and good study habits are also important 
for college success. This view aligns with Duckworth [16], Dweck 
[19], Walton [63], and others who argue that non-cognitive factors 
such as grit, self-control, mindset, and social belonging [16, 17, 19, 
63] are critically important for college success after accounting for 
sociodemographics and cognitive ability.  
One complicating factor is that these non-cognitive traits are 
difficult to accurately measure. Therefore, admissions  counselors 
must rely on self-reports or informer reports (such as from 
teachers), which have a number of known biases (see [17] for a 
review). To address this, there is an interest in more objective 
measurement approaches. One relevant proxy measure of non-
cognitive traits is sustained engagement in extracurriculars during 
high-school. The rationale for the predictive value of 
extracurriculars is that they provide a context for the development 
and demonstration of key non-cognitive characteristics (e.g., 
initiative [37], identity [21, 37], competence, confidence, and 
character [9]) linked to academic success. However, 
extracurriculars might also be inherently biased, in that SES 
influences the amount and types of available extracurricular 
opportunities [31, 38]. There is some evidence that work 
experiences might provide similar benefits as extracurriculars 
provided youth do not work too much (see [65]). However, low 
SES students might be the ones more likely to work [61, 64], 
suggesting that work experiences might also be a biased proxy 
measure. 
In previous work with the CommonApp-NSC data set [33], we 
trained models that could successfully predict four year graduation 
using sociodemographics, cognitive ability, and non-cognitive 
factors. However, we did not consider how our models generalized 

between subpopulations or if a population was being treated 
unfairly. We address this issue here by exploring how the models 
perform across different sociodemographic groups and evaluate the 
fairness of our classification methods. 

1.2 Related Work 
Because the field of generalization is vast [59], we focus 
specifically on generalization across sociodemographic groups in 
the context of education. We then go on to discuss fairness for a 
model – that is whether predicted outcomes for a particular group 
are consistently negative. Available techniques fall into two 
groups: (1) methods for evaluating if an existing model is fair; and 
(2) methods for developing a fair model. Both approaches are 
discussed here. 
In machine learning, cross-validation is performed to improve the 
likelihood of a model generalizing to new instances, or in 
educational data mining, to new students (i.e., students not in the 
training set). However, what about generalizability beyond the 
student to groups of students? The results might not be so 
promising. For example, a review by Blanchard [7] indicated that 
work in intelligent tutoring systems (ITS) and artificial intelligence 
in education (AIED) overwhelmingly samples from White, 
educated, industrialized, rich, and democratic (the so-called 
WEIRD) countries. Blanchard notes that cognitive factors differ 
greatly across cultural contexts and stresses the importance of 
expanding research in ITS and AIED to non-WEIRD countries. 
Baker and Gowda [4] showed that generalizability is not even 
guaranteed within communities in the United States of America. 
Using data from a diverse group of students interacting with an ITS, 
they found that behaviors that were predictive of disengagement 
significantly differed between urban, suburban, and rural students. 
This was further supported in [42], where models trained on urban 
or suburban students generalized to each other but not to rural 
students. In contrast, Samei et al, [49] reported that their models of 
effective classroom discourse generalized across urban and non-
urban classrooms. Bosch et al [8] also have had success with 
generalizability. In work on detecting affect while students 
interacted with an educational physics game, they found that video-
based affect detection generalized across ethnicity (as perceived by 
human observers) and gender. 
Each of the aforementioned approaches explore generalizability by 
training models on one group and testing on another, a simple yet 
effective method of validation.  However, this approach does not 
apply when it is infeasible to build models for each sub population, 
for example, when training data is limited. In this case, we must 
instead consider how a model trained on all the data performs to 
individual subgroups of interest. In slicing analysis [50], predictive 
models are trained on the entire data set and evaluated by “slicing” 
along subpopulations of interest (such as race, or ethnicity). This 
allows a researcher to explore if a model is only successful for a 
certain group (e.g. if a model trained on all data is only accurate for 
white students).   
Gardner et al. [26]  recently presented a metric to evaluate fairness 
within slices. They propose Absolute-Between-ROC Area 
(ABROCA) for quantifying how a predictive model’s performance 
varies across different student subgroups. This metric evaluates 
whether a model privileges (provides more accurate classification) 
or disparately impacts (provides less accurate classification) a 
subgroup by comparing the group’s ROC curve to the ROC curve 
of a baseline group. In a study analyzing MOOC dropout rate, they 
show a significant difference in privilege given to males versus 
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females in machine learnt models across a variety of feature sets 
and across a classification techniques. 
Another method for evaluating models is Individual Fairness [20], 
which states that in order for a model to be considered fair it must 
yield similar predictions to similar individuals. The success of this 
evaluation method depends upon how similarity is defined, a 
challenging task when the number of predictors is large as in any 
complex prediction problem.  
An alternative to evaluating fairness post-hoc is to design fair 
models from the ground up. Fairness through unawareness posits 
that a model is fair if it does not include any protected (potentially 
biased) variables (e.g. [25, 36]). However, this approach ignores 
the fact that protected variables such as ethnicity may be encoded 
(via correlation or similar) with variables not initially considered to 
be protected, such as participation in extracurricular activity or 
standardized test scores. [27, 32].  
Alternatively. Kusner et al. [36] have introduced the idea of 
Counterfactual Fairness, which requires an understanding of 
causality among predictors (see [36, 45]). Whereas this method has 
been successful in datasets with a limited number of variables, 
understanding causality in a complex dataset presents many 
challenges and may render this approach unfeasible. 

1.3 Contributions of Current Study 
The present study is novel in multiple respects. We build upon work 
predicting on-time Bachelor’s graduation solely from information 
contained in college applications. We derive 143 variables from 
each application and train models on 41,359 instances. Our sample 
includes students from all 50 U.S. states as well as international 
students, yielding many options for exploring generalizability and 
fairness.  
We first cluster the sociodemographic data by identifying latent 
classes of students within the dataset. From available 
sociodemographic variables (e.g., race/ethnicity, parent education, 
parents’ marital status, and English language learner status), we 
identify five distinct latent classes of applicants for further 
investigation.   Specifically, we examine the accuracy of models 
trained and tested on the same class. We then use a slicing analysis 
to investigate how a model trained on all the data performs for each 
of the classes.   
It should be noted that our complex, real-world dataset does not 
easily lend itself to current methods for designing fair models. 
Decades of research have shown that SES is a predictor of college 
success (as cited above), so a fairness through unawareness 
approach would require ignoring an important predictor. Likewise, 
counterfactual fairness requires understanding causality in the 
dataset, a challenge given that we are working with 143 variables. 
We instead evaluate the fairness of models trained with traditional 
machine learning approaches using ABROCA as the pertinent 
metric.  

2. DATASET 
2.1 CommonApp-NSC Data1 
The Common App [55] is a nonprofit organization that hosts a 
portal where high school students can complete and submit 
applications to nearly 700 colleges. The Common App streamlines 
the admissions processes by enabling students to complete one 
“common” application that can be submitted to multiple colleges 
                                                             
1 In what follows, we provide an abridged description of the dataset, 

which was originally published in [33]. 

across the country. Whilst individual colleges may have their own 
supplemental applications (e.g. additional essays), the core 
application remains the same. 
The Common App has three parts. The student section includes 
information on sociodemographics, future college plans, family 
history, academic history, standardized test scores, honors received 
(for academic, sporting, or other pursuits), extracurricular 
activities, work history, and disciplinary history. Students also 
submit a personal essay, but these are not available to us due to 
privacy concerns. A separate evaluation consists of teacher ratings 
of the student across several dimensions, ranging from “quality of 
writing” to “reaction to setbacks”. Finally, the secondary school 
report contains information on the student’s high school (e.g., 
percent of graduation class enrolling in college), the student’s 
academic performance (e.g., class rank, GPA), and evaluations 
from the student’s guidance counselor (e.g., ratings of academic 
achievements, difficulty of courses, and personal qualities).  
The National Student Clearinghouse (NSC) is a nonprofit 
organization created in connection with the financial aid lending 
industry that gathers enrollment data for student borrowers. The 
NSC data tracks the following information for each student on a 
per-semester basis: college name, college type (2/4 year; private or 
public), enrollment (none, full, part-time), major, and graduation 
status (degree, and major).   
Both organizations have merged, de-identified, and shared the data 
with us, which we prepared for statistical analyses. The Common 
App contains individual applications from 413,675 students who 
completed the 2008 application for admission in the 2009 school 
year. We successfully matched 362,205 of these applications to 
2015 NSC records. From this subset, we removed 50,894 students 
who enrolled in college prior to 2008 and an additional 3 students 
due to data integrity issues, leaving 311,308 students.  
To account for institutional effects on the probability of graduation, 
we obtained 4- and 6-year graduation rates from the National 
Center for Educational Statistics (NCES) [47] for the institution 
students first enrolled in (i.e., their first entry in the NSC). We used 
2012 graduation rates to avoid including students from our 2009 
student cohort who would be on-track to graduate with a 4-year 
degree in 2013. We obtained institution graduation data for 89% of 
the students, resulting in a reduced sample of 278,201 students. 
We also obtained information on students’ high school 
environments (e.g. demographics of the school) from the NCES 
data  [47], using the 2007-2008 school year to avoid direct overlap 
with our student cohort. 
Our data only included applications/reports that were completed 
online, as there was a paper option in 2008. Of the 278,201 
students, only 41,359 had a corresponding teacher evaluation and 
secondary school report, which contained critical GPA scores as 
entered by guidance counselors.  We presume that a majority of the 
missing cases were submitted on paper; they were therefore not 
available to us. Previous work investigated the importance of GPA 
in predicting college success [33] and found that it did not 
significantly boost prediction after accounting for the other 
features. Here, we with this subset for consistency, but do not 
consider GPA.  
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2.2 Encoding the Application 
We extracted 143 features from the application, including auxiliary 
sources (e.g., NCES data), which we grouped these into the 
following categories:  
Personal and family, 48 features. Features in this category focus 
primarily on sociodemographics (e.g., ethnicity, sex, number of 
parents who went to college, etc.).  
Academics and standardized tests, 38 features. This category 
encodes information from the ‘academics’ (e.g., did a student 
intend to graduate from high-school on time) and ‘standardized 
tests’ (e.g., SAT scores) section of the student application along 
with data about the high school environment from the NCES (e.g., 
teacher-student ratio). 
Activities and work experience, 45 features. Students enter 
information for up to seven extracurricular activities, including the 
type of the activity, the time commitment, and the school years in 
which they participated in the activity. In addition, students can 
enter up to three work experiences, from which we derived features 
such as number of jobs and hours per week at each job.  
Honors, 10 features. Students describe academic and sporting 
honors received during their high school career. For each honor, we 
encode the type of honor, the level of the honor (school, state, 
national or international), and the grade when it was received. 
Institutional graduation rates, 2 features. These are the 4- and 6- 
year graduation rate of the colleges in which students first enrolled. 
Our sample of 41,359 students represented all 50 states and 
included some international students. The students represented 
5,678 secondary schools and were enrolled in 1,238 post-secondary 
institutions. Forty-four percent (44%) graduated within four years 
of enrollment; this rate aligns with national norms [41].  

2.3 Student demographics 
Our sample was majority female (56%). Student age was 
unavailable due to data de-identification, which eliminated birth 
dates. With regard to ethnicity, 54% of students identified as 
Caucasian, 8% as African American, 8% as Hispanic, 8% as Asian 
American, 5% as Asian Indian, 4% as Mexican American, 1% as 
Native American/Alaskan, and 5% as other ethnicities (students 
could select multiple ethnicities as well as decline to answer). In 
terms of home life and education, 96% had two living parents, 77% 
of students reported living with both parents, 68% had two parents 
who attended college, and 16% had one parent who attended 
college. For secondary education, 68% of students reported 
attending a public high school, 14% a religious high school, 16% 
an independent high school, 2% a charter school, and 1% were 
home schooled. The subset of 41,359 students was representative 
of the full sample of 311,308 students, differing only with respect 
to the number of parents who attended college [33]. 

3. LATENT CLASS ANALYSIS 
We used latent class analysis (LCA) to  identify five clusters of 
students based on individual sociodemographic characteristics 
(race/ethnicity, parent education, parents’ marital status, and 
English language learner status), the race/ethnic composition of 
students’ high schools (% African American, % Latino, % White, 
and % Asian American), and whether the school was Title I  eligible 
(a school is eligible if it has high concentration of low income 
students [23]). We selected these characteristics because they not 
only paint a relatively comprehensive portrait of socioeconomic 
status, but also have demonstrated associations with college 
success (see Introduction). Specifically, White and Asian American 

students, students of college educated parents, students with 
married parents, and students who speak English as a first language 
have higher on-time graduation rates than are African American 
and Latino students  [58], first generation college students [57], 
English language learners [35], and students with single parents 
[44, 51]. Likewise, high schools with large percentages of low-
income and minority students, when compared to predominantly 
White higher-income high schools, often have lower rates of 
college matriculation and completion [29].  Although often used in 
generalizability studies (e.g., [8, 24]), we did not include gender in 
these models as it does not relate to SES and ethnicity (see 
Discussion). 
We used the entire sample size, in this case, all students who 
attended a public high school (N= 216,133) for the latent class 
analysis in order to obtain the most representative clusters. We used 
complex mixture models with a maximum likelihood estimator in 
MPlus 7 [40] to identify our latent class structure. Standard errors 
were adjusted to account for the clustering of students within high 
schools. An initial two-class solution yielded AIC and BIC values 
of 385,195.512 and 385,493.737, respectively. Subsequently, we 
tested solutions with up to six classes. Although each increase in 
the number of classes resulted in notable improvements in model 
fit (see Table 1), the magnitude of these improvements diminished 
with increasing model complexity. The selection of the final five-
class solution (see Table 2) balanced model fit against pragmatism. 
Specifically, the six-class solution fit the data somewhat better than 
the five-class solution, but two of the six classes had very similar 
profiles (i.e., profiles similar to class 3 in Table 2). Each class in 
the five-class solution, on the other hand, had a distinct profile as 
described below.  
 

Table 1. Model fit by number of latent classes 
#  

      AIC 
Incremental 
reduction in 
AIC 

         
        BIC 

Incremental 
reduction in 
BIC  

2 385195.51                   -- 385493.74                 -- 
3 196766.61 188428.90 197198.52 188295.21 
4 16127.75 180638.87 16693.35 180505.18 
5 -103474.54 119602.29 -102775.26 119468.60 
6 -180815.24 77340.70 -179982.27 77207.01 

 
Of the 41,359 students analyzed here, only 28,122 were included in 
the LCA analysis since we only focused on those who attended a 
public high school. Class 1 contains a plurality of Black students 
with a sizable white minority (20%) in their high schools. The 
majority of students are native English speakers, approximately 
half of students are first generation college students and 
approximately half of students are children of unmarried parents. 
This reflects an average SES. Class 2 contains a plurality of White 
students, but other groups are represented in their high schools 
(51% white). The majority are native English speakers with 
married, college-educated parents. Students in this class typically 
attend a non-Title I eligible, diverse high school where 
approximately half the students are white with moderate 
representation across other ethnic/race groups. Thus, this class can 
be categorized as predominantly white students, high SES students 
in diverse high schools. Class 3 is similar to Class 2, except with a 
higher majority of white students and students typically attending a 
primarily white high school. These students are also high-SES. 
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Class 3 is the largest of the classes representing 60% of the students. 
Class 4 is the smallest of the classes, containing 4% of students, the 
majority of students are Asian, and a sizable number (52%) of 
students are English language learners. The majority of students in 
class 4 have college educated; married parents and attend a non-
Title I eligible high school, which suggests high-SES. Finally, in 
class 5, there is a plurality of Latino students, many (45%) of whom 
are English language learners. The majority of students have 
married parents who did not attend college. Most students in this 
class attended majority Latino, Title I eligible high schools, 
suggesting low-SES. 

4. MACHINE LEARNING 
We used the scikit-learn library [43] for machine learning. We 
focused on Random Forests because previous work that considered 
logistic regression, naive Bayes, decision tree (using the scikit-
learn CART-like algorithm), and gradient-boosted decision trees 
[33]. found that Random Forest was consistently the best 
performing approach. 
Hyperparameters for the random forest classifier [10, 30], were 
tuned on the training set using the cross-validated grid search 
method provided by scikit-learn [43]. Specifically, the number of 
trees in the forest (n_estimators), the maximum number of features 
to consider when searching for the best split (max_features), and 
the maximum depth of the trees (max_depth) were tuned. By 
careful tuning of these hyperparameters, we negate the need for 
traditional feature selection, as this is then implicit in the Random 
Forest algorithm when hyperparameters are set to appropriate 
values. The random seed was set to a random integer generated by 
the Numpy.random library [62]. Other hyperparameters relating to 
limiting the size of the trees (other than maximum depth) were left 
at default values as resources were sufficient to compute unpruned 
trees in reasonable time. 
We validated our models using a student-level k-fold cross-
validation (k=2). For each iteration of the classifier, a random 50% 
of students were assigned to the training set, the remaining 50% to 
the test set, the process was repeated with the sets reversed, and 
results computed after pooling predictions across the folds. By 
using a low k value, we increase the size of our test set, increasing 
the likelihood that successful models will generalize to new data.  
This process was repeated for 15 iterations and the results were 
averaged across iterations.  We selected 15 iterations to balance 
computation time and reliability across multiple training/testing 
pairs. Although setting k=2 imposes a stringent test of the model by 
removing half the data for the test set, it helps to ensure that the 
models will generalize to new students.  
We note that for some of the latent classes there is a substantial data 
skew (more instances of not graduating than graduating). Class 
imbalance poses a challenge because supervised learning methods 
tend to bias predictions towards the majority class. To compensate 
for this concern, we used the SMOTE algorithm [12] to create 
synthetic instances of the minority class by interpolating feature 
values between an instance and its randomly chosen nearest 
neighbors until the classes were equated. SMOTE was only applied 
on the training sets; the original class distributions were maintained 
in the test sets in order to ensure validity of the results. 

5. RESULTS 
We report area under the receiver operating characteristic curve 
(AUROC). Whereas overall recognition rate/model accuracy is 
susceptible to data skew, AUROC presents the result relative to 
chance (0.5). 
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5.1 Generalization  
We first compared how models trained on each class individually 
compared to a model trained upon all data. The all data model was 
evaluated using a slicing analysis, where predictive model 
performance is evaluated by “slicing” along subpopulations, in this 
case, the computed LCA classes. We trained a random forest 
classifier on all of the data (41,359 instances) and then evaluated it 
by the five latent classes previously identified. The results of this 
analysis are shown in Figure 1 with the baseline reflecting chance 
performance (AUROC of 0.5).  

Each of the individual models performed above chance, suggesting 
that our methods generalized across classes. However, there was a 
disparity between the classes, the highest performing (class 3, white 
high SES) performed 10% better than the lowest performing (class 
4, Asian high SES).  The two lowest AUROC scores were for class 
1 (Black, Mid SES) and class 4 (Asian, high SES); the two classes 
with the lowest number of instances (1,745 and 1,051 respectively).  

Our model trained on all students performed better across all 
classes than individually trained models, with improvements 
ranging from 6-10%. The difference between the worst performing 
and best performing groups also decreased to 6%, implying better 
generalization across groups. One reason for this may be the 
improved power that comes with a higher number of instances; the 
all data model was trained on 41,369, instances, more than double 
that of the largest LCA class (16,959 instances). 

 
Figure 1. Accuracy of individual models compared to a slicing 
analysis of a classifier trained on all data 

5.2 Fairness 
We next examined the fairness of our model. Using the model 
trained on all data (41,359 instances) we computed five ROC 
curves, one for each of the latent classes. Recall that this was done 
for 15 iterations with k=2 cross validation. The ROC curves for a 
single iteration is shown in Figure 2, this iteration was chosen as 
the ABROCA scores are similar to the averages shown in Table 3. 
A sixth ROC curve for all students is also shown for comparison. 
In order to formally compare two curves, we use Absolute Between 
ROC Area (ABROCA) [26], defined as: 

!|𝑅𝑂𝐶&(𝑡) −	𝑅𝑂𝐶,(𝑡)|	𝑑𝑡
.

/

 

Here, 𝑅𝑂𝐶& is the baseline curve and 𝑅𝑂𝐶, is the comparison 
curve. ROC curves characterize model accuracy as the likelihood 
of correct positive predictions versus the likelihood of false positive 
predictions. ABROCA measures the absolute difference between 
two curves, allowing for the possibility that the curves may cross 
each other (see [26] for details). A higher ABROCA value between 
two groups implies a higher difference in predictions and thus more 
unfairness in the model. 

 
Figure 2. Sample ROC curves for each Latent class from model 
trained on 41,359 instances 
We used class 3 (White, high SES) as the baseline ROC curve as it 
is the highest performing group in our dataset. It is also a group 
typically overrepresented in Educational Data Mining [7]. When 
compared to this class, the other classes had low ABROCA values 
(see Table 3), perhaps unsurprising given the similarity of the 
curves in Figure 2. In general, the ABROCA values were all low 
with only small differences between classes, leading us to conclude 
that our model was providing fair predictions across our 
sociodemographic groups.  
 
Table 3. Slicing analysis by latent class from model trained on 

all data 

LCA Class AUROC ABROCA 

1 (Black, mid-SES) 0.675 0.011 

2 (White/diverse, high SES) 0.696 0.005 

3 (White, high SES) 0.706 - 

4 (Asian, high SES) 0.691 0.016 

5 (Latino, low SES) 0.668 0.008 
 

6. DISCUSSION 
On-time 4-year college graduation is something of a “holy-grail” 
for students, parents, and educators alike [58]. Although efforts to 
improve college enrollment have been paying off, graduation rates 
are still lackluster with troublesome achievement gaps stubbornly 
persisting. Big data approaches might offer a potential solution to 
improving college graduation rates by providing new insights into 
the “ingredients” of success. However, they have their own set of 
limitations and biases, which need to be addressed before we 
uncover their full potential. Accordingly, we investigated how 
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predictive models of 4-year college graduation generalized across 
sociodemographic subgroups identified through latent class 
analysis and whether they yielded fair predictions for the different 
groups of students.  

6.1 Main Findings 
Whilst much of the previous work has relied on limited datasets and 
traditional statistical techniques [53, 61, 69], we harness a large and 
diverse dataset with greater potential for generalizability. 
Specifically, using data from students’ college application, we have 
been able to predict college graduation with moderate accuracy 
across demographic subgroups.  We also show through slicing 
analysis that a model trained on all data generalizes across all of the 
subgroups and outperforms individual models (improvement 
ranging from 6-10%). Training a model on all of the data also 
reduced the disparity between the subgroups.  
By evaluating the ABROCA metric, we were also able to examine 
which of our subgroups (if any) the classifier was treating unfairly. 
An unfair model would perform generate less accurate predictions 
for a given subgroup compared to the baseline group (White High 
SES in our case). In general, the differences in ABROCA scores 
were small, suggesting that our model treats no one class 
significantly different from another. 
Whilst all of our models’ predictions were substantially more 
accurate than a chance, there were still inaccuracies. In many ways, 
this result is reassuring, as we have only considered data from high 
school. The error that exists across all of our models confirm that 
college success does not merely depend on a student’s 
environment, past achievement, and experiences. What students 
experience and do in college plays a critical role in their success. 
Simply put, there is no predetermination. This gives us hope that 
through careful data mining we can soon begin to close the 
achievement gaps that exist across different sociodemographics. 

6.2 Applications 
It is perhaps easiest to start with how these models should not be 
used. Specifically, the models should not be used to make college 
admissions decisions because their accuracy scores are insufficient 
to drive life-changing decisions for individual students and they do 
not capture several additional factors of the college years that are 
important for success (e.g. financial needs, life-altering events, 
social pressures).  
We show that it is possible to build generalizing and fair detectors 
in this domain. On a larger scale, we hope to use this research to 
provide actionable advice for educators so that they may better 
prepare students for college success. Further analysis is needed to 
derive these personalized recommendations, especially since the 
current models are correlational and thereby unsuited for causal 
inference.  
There are further applications at the college level. Many U.S. 
colleges have committed to improving 4-year graduation rates [13]. 
This has resulted in an increased reliance on educational data 
mining approaches, especially methods to identify “at-risk” 
students early on [2]. A common issue however is that early 
warnings are not early enough [5]. Our models consider college 
application data, so enable us to pre-identify students who might 
need additional support before they begin their studies. Of course, 
the models’ assessments should be privately communicated to the 
student’s themselves and perhaps to a trusted counselor so they are 
empowered to take whatever next step is in their best interests. 

6.3 Limitations and Future Work  
All studies have limitations and ours is no exception. Each of the 
latent classes had different graduation rates and varied number of 
instances (a difference of 15,909 instances between the smallest 
and the largest groups). We attempted to account for class 
imbalance via synthetic oversampling. However, further work is 
required to evaluate how the number of instances influenced our 
results. Future work will also explore the effect of increasing the 
amount of data used to train models.  
Second, our sample only included students who applied to schools 
that accepted the Common App, which would introduce selection 
bias, which we cannot account for in this work. Further study is 
required to investigate how the results generalize to other colleges 
in the U.S. and beyond.  
In addition to addressing these limitations, there are also several 
promising avenues for future work. For example, since biased 
variables seem to be predictive in this domain, we will also look 
into ways to create fair models without fully ignoring the biased 
variables, perhaps by deriving unbiased proxies.  
Our models utilized a range of features including socioeconomic 
factors, academic history, cognitive ability, the high school 
environment, and indicators of extracurricular participation that 
may reflect non-cognitive characteristics. Previous work using the 
CommonApp-NSC dataset work has shown that different feature 
groups [33] achieve different classification accuracies. In future 
work we intend to explore fairness for different feature groups and 
incorporate insights into the design of fairer models. 
When computing the LCA classes, we did not include gender as a 
variable. However, gender might be more relevant when it comes 
to specialized outcomes, such as STEM graduation where there are 
significant disparities across the genders. Relatedly, we also will 
explore other outcome metrics such as 6-year graduation and 
STEM graduation, an area with wide achievement gaps when it 
comes underrepresented groups [56].  

6.4 Concluding Remarks 
In conclusion, the age of big data brings with it big opportunity, and 
big responsibility. Although a predictive modeling approach 
applied to big data has considerable potential in providing new 
insights to illuminate persistent challenges, these methods have 
own weaknesses, particularly when it comes to making biased 
predictions. Thus, we must also consider how our models are 
perpetuating pre-existing bias and how this can be prevented. 
Taking the case of predicting on-time college graduation outcomes, 
we show that our models both generalize and are fair to various 
sociodemographics subgroups, a critical step towards using these 
models more broadly. 
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