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ABSTRACT

Sequencing items in adaptive learning systems typically re-
lies on a large pool of interactive question items that are
analyzed into a hierarchy of skills, also known as Knowledge
Components (KCs). Educational data mining techniques
can be used to analyze students response data in order to
optimize the mapping of items to KCs, with similarity-based
clustering as one of the two main approaches for this type of
analysis. However, current similarity-based methods make
the implicit assumption that students’ performance on items
that belong to the same KC should be similar. This assump-
tion holds if the latent trait (mastery of the underlying skill)
is relatively fixed during students’ activity, as in the con-
text of testing, which is the primary context in which these
methods were developed and applied. However, in adaptive
learning systems that aim for learning, and address subject
matters such as K-6 Math that consist of multiple sub-skills,
this assumption does not hold. In this paper we propose a
new item-similarity measure, termed Kappa Learning (KL),
which aims to address this gap. KL identifies similarity be-
tween items under the assumption of learning, namely, that
learners’ mastery of the underlying skills changes as they
progress through the items. We evaluate KL on data from
a K-6 Math Intelligent Tutoring System, with experts’ tag-
ging as ground truth, and on simulated data. Our results
show that clustering that is based on KL outperforms clus-
tering that is based on commonly used similarity measures
(Cohen’s Kappa, Yule, and Pearson), and that KL is also
superior in the task of discovering the number of KCs.

Keywords
Intelligent Tutoring Systems, Adaptive Learning, Clustering
Educational Items, Similarity Measurement

1. INTRODUCTION

Mastery learning [4] is based on the assumption that the
domain knowledge can be analyzed into a hierarchy of com-
ponent skills, with prerequisites between them [9, 10]. This
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structure can be used to sequence learning in an Intelligent
Tutoring System (ITS) so that students master prerequisite
skills before moving to skills that depend upon them [10].
Cognitive model is a formal representation of this structure
that is encoded into the ITS. It is typically generated in a
process that relies on domain experts, learning scientists,
and programmers [6].

A significant part of this process is the mapping of question
items into the skills that underlie them (skills are also re-
ferred to as Knowledge Components, abbreviated KCs'; in
this paper we use the two terms interchangeably). Q-matrix
is a standard representation used in Psychometrics to spec-
ify the relationships between individual test items and tar-
get skills [28]. Generating item-to-skill mapping requires a
significant human-labor and expertise [13]. In addition, ev-
idence shows that experts’ mapping of items into skills can
be significantly inconsistent with students’ learning process
[20]. Thus, methods that identify the skills underlying each
item, or assist human experts in doing so, can optimize the
process by increasing its accuracy and reducing human labor
[14, 19].

Constructing Q-Matrix from response data is an active re-
search topic. Barnes [3] “mined” students’ data to create
concept models that can be used to direct learning paths.
Examples within the Psychometrics literature include [11,
21, 28]. A Matrix Factorization-based method for Q-matrix
construction was proposed in [12], and was later used for
enhancing expert-based Q-Matrices [14]. Learning Factor
Analysis (LFA) [6] is a combinatorial search algorithm for
optimizing the cognitive model while controlling for model
complexity. In [22] it was demonstrated that using LFA to
refine the human-generated cognitive model of an ITS im-
proves learning gains. Performance Factor Analysis (PFA)
[24] reconfigured LFA to enable predictions for individual
students with individual skills (LFA assumes all students
accumulate learning at the same rate), and also addresses
the multiple KCs problem (standard Knowledge Tracing [10]
assumes that each item requires one KC; examples of exten-
sions that address multiple skills include [15, 32]). A differ-
ent approach for ‘human-in-the-loop’ Student Model Discov-
ery (finding the item-to-skill assignment that best describes
students’ behavior) was proposed in [27].

In general, there are two approaches for mapping items into

Yin the Psychometrics literature, skills are also referred to
as latent factors or constructs
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skills: Model-based, and Similarity-based [26]. Model-based
methods reduce the dimensionality of the problem and try
to infer the latent factors (=skills or KCs) that underlie the
items. The methods mentioned above fall into this category.
Similarity-based methods are based on the assumption that
students will tend to have similar performance on items that
require the same skill, thus seek to identify the similarity
between pairs of items. Examples of methods that are based
on item-similarity measures include [2, 26]. The method
that we propose in this paper falls into this category as well.

The first phase of item similarity-based methods consists of
computing a similarity measure for each pair of items. This
measure can be then used to cluster items, which is natu-
rally interpreted as associating the items of a cluster with
a single KC. In [26], different measures of item similarity
(Pearson, Cohen’s Kappa, Yule, Jaccard, and Sokal) were
evaluated on real and simulated data. A different method
for identifying the similarity between pairs of items, which
is based on Fisher‘s Exact Test of independence, was pro-
posed in [2] and was applied to data from an Introductory
Physics MOOC. In addition to correct/incorrect informa-
tion, ‘item-similarity’ can be based also on other behavioral
characteristics, such as response-times [5, 26].

The item-similarity methods used in educational data min-
ing for clustering items make the implicit assumption that
the latent trait (mastery of the specific skill) is fized dur-
ing the learning activity that generated the responses (so
students’ responses to items that belong to the same KC
should be highly correlated). This assumption may be rea-
sonable in the context of festing (summative assessment),
which is expected to occur after the learning process. (In
[26], the authors explicitly refer to this shortcoming of the
item-similarity measures and mention that by using these
methods “we mostly ignore the issue of learning”, p. 17.)
However, this assumption does not hold in the context of
learning. In such cases, the correlation between the items
might not be a good indication of their similarity (e.g., stu-
dents will tend to fail on the first items of each KC, and
succeed on later ones).

The goal of this research is to address this gap by provid-
ing a measure that can capture similarity in the context of
learning. For that, we propose a new item-similarity mea-
sure termed Kappa Learning (KL). The main assumption
behind KL is that students’ performance on items belong-
ing to the same KC can be increasing, but not decreasing.
As we use dichotomous scoring (correct/incorrect on first
attempt), we expect that the performance of student s on
KC k would take the form of a ‘step’ function, which moves
from 0 to 1 when s masters k (guess or slip may occur, and
introduce noise). To quantify that, KL extends the notion
of ‘agreement’ in Cohen’s Kappa [8].

We first make the assumption that the items are admin-
istered to the students in the same order (defined by the
instructional designers), but we later explain how our for-
mula naturally generalizes to random or adaptive ordering.
We note that we do not assume that all items belonging
to the same KC will be presented to students one after the
other, or that all the students attempt all the items. On the
contrary, we assume that students can skip items, and that
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items from different KCs may interleave (as in the data that
we analyze), which makes the clustering non-trivial. We
then compare a clustering that is based on KL to clustering
that is based on the similarity measures evaluated in [26],
and show that KL significantly outperforms them (Jaccard
and Sokal, which achieved the lowest results in [26], and also
on our data, are omitted from the analysis).

The rest of this paper is organized as follows. In Section 2,
we present Cohen’s Kappa and our new measure, Kappa
Learning. Section 3 describes the clustering method. The
details of the empirical setting and the data are provided in
Section 4. In Sections 5 and 6 we evaluate the performance
of Kappa Learning against standard similarity measures on
real and simulated data, respectively. Finally, in Section 7
we discuss the results and suggest directions for future re-
search.

2. COHEN’S KAPPA AND KAPPA LEARN-
ING
2.1 Cohen’s Kappa

Cohen’s Kappa (sometimes abbreviated as Kappa and de-
noted Sj) is a measure of inter-rater agreement for nominal
scales [8].

Sk = ——— (1)

where:
P, is an observed level of agreement
P. is an expected level of agreement

The observed level of agreement is the proportion of the
cases the raters agree upon. The expected level of agreement
is the proportion of agreement that is expected by chance.

We consider items as raters, learners as subjects to classify,
and learners’ responses as classification results. We interpret
learner’s correct/incorrect answer to an item (encoded as
1/0) as the rater’s (=item) attempt to identify if the learner
has mastered the KC underlying the item. Let us consider
a contingency table summarizing learners’ responses to two
different items: @1 and Q2. Assume n learners answered
both items. The number of learners in each cell is defined
as follows (Table 1):

e a - number of learners answered both Q1 and Q2 cor-
rectly

e b - number of learners answered ()1 incorrectly and Q2
correctly

e ¢ - number of learners answered )1 correctly and Q2
incorrectly

e d - number of learners answered both @1 and Q2 in-
correctly

e n - total number of learners (n = a+ b+ c+d)
The number of cases the raters agree upon (the learner gave

the same answer to both items) is equivalent to a + d. In-
tuitively, if two different items belong to the same skill, and
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Table 1: A contingency table for @1 and Q.
Q1 correct Q1 incorrect

Q2 correct a b a+b
Q)2 incorrect c d c+d
a+c b+d n

learner’s mastery of that skill is fized during the learning
activity, the learner is expected to answer both items either
correctly or incorrectly, depending on whether the skill is
mastered or not. So, it follows that:

a+d
n

P, =

The items are independent in the sense that each item inde-
pendently ‘rates’ if a learner belongs to a category of learners
knowing a particular KC. So we could compute the level of
agreement that is expected by chance as a sum of products
of marginal probabilities (Table 1).

(a+b)(a+c)+ (b+d)(c+d)

P. =
n2

By doing substitution of P, and P. into Equation 1 and
some straightforward simplification we get:

2(ad — be)
(a+b)(b+d)+ (a+c)(c+d)

Sk =

2.2 Kappa Learning: Adjusting Kappa to Ac-

commodate Learning
To accommodate for learning, we give a different interpreta-
tion to the notion of ‘agreement’ in Cohen’s Kappa formula,
taking into account possible improvement of learner’s skill,
or in other words, learning.

We make the following assumptions on the process:

1. The items are presented to the learners in a fixed or-
der?.

2. The items belong to k KCs (k>1); Each item belongs
to one KC; Items belonging to different KCs may in-
terleave (which makes the clustering non-trivial)

3. Learner’s success on items belonging to the same KC
behaves like a ‘step’ function: Before mastering the
skill of KC k, the student fails on items of k; once
mastering the skill underlying k, the student succeeds
on future items of k (guess and slip may occur; we
assume no ‘forgetting’).

For a pair of items Q1, @2, where (1 is presented to the
learners before ()2, we define the values in the contingency
table (Table 1) as follows:

e ¢ - number of learners who got both items correct,
namely mastered the required skills before getting to
Q1. This is a case of agreement.

2We later explain how this assumption can be removed

e b - number of learners who got the first item incorrect
and the second item correct, namely, mastered the re-
quired skill after getting to @1, but before getting to
Q2. This is a case of agreement, and is where
our measure differs from Cohen’s Kappa

e ¢ - number of learners who got the first item correct
and the second item incorrect. This is the only case
interpreted as disagreement.

e d - number of learners answered both @1 and Q2 in-
correctly. This is a case of agreement.

e 1 - total number of learners (n =a+ b+ c+d)

Based on these, we define P, and P. as follows:

a+b+d
n

P, =

(a+b)(b+d)+ (a+b)(at+c)+ (b+d)(c+d)

P. =
n2

By doing substitution of P, and P. into Equation 1 and
some straightforward simplification we get:

(ad — bc)
(a+c)(c+d) )

We call this measure Kappa Learning and denote it Sk;. The
values of both Kappa and Kappa Learning range between
—1 and +1, where 0 means independence, and +1 means
perfect agreement. In Kappa it is achieved when both ¢ and
b are equal to 0. In Kappa Learning, perfect agreement is
achieved when c equals 0.

Skt =

3. METHOD

3.1 Similarity Measures
To evaluate the performance of Kappa Learning (denoted
Ski), we compare it to the following similarity measures:

e Si: Cohen’s Kappa inter-rater agreement
e Sp: Pearson product-moment correlation coefficient

e Sy: Yule coefficient of association

Cohen’s Kappa (see also in Subsection 2.1) coeflicient is de-
fined as:
2(ad — bc)

@I )T Fatolctd (3)

Sp =

Pearson product-moment coefficient is a measure of linear
correlation between two variables. When applied to dichoto-
mous data, the Pearson correlation coefficient returns the
phi (¢) coefficient. So, in terms of a, b, ¢ and d (Table 1)
the value of S, is computed as follows:

(ad — bc)
Via+c)(a+b)(b+d)(c+d)

S, = (4)

Yule coefficient of association is a measure of colligation
between two binary variables and it is commonly used for
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analyzing scores in Item Response Theory (IRT). It is the
number of pairs in agreement (ad) minus the number in dis-
agreement (cb) over the total number of paired observations
and it is defined as:

(ad — bc)

v = (ad + bc)

()

All three measures range from minus unity to unity, where 1
indicates perfect agreement, —1 indicates perfect disagree-
ment and 0 indicates no relationship [30]. A thorough eval-
uation of these measures as means for clustering items in
an interactive learning environment was done by Rihdk and
Peldnek [26] (they analyzed the most appropriate measures
among the 76 measures analyzed in [7]).

We follow a similar methodology to the one proposed in
[26], described below, and demonstrate that Kappa Learning
outperforms the other measures.

3.2 Process

Our process has two main steps: 1) Cluster the items based
on the four similarity measures (Kappa Learning, and the
three reference measures). 2) Compare the goodness-of-fit
of the clusterings computed in step 1.

Step 1. Computing the clustering includes the following
sub-steps (per similarity measure):

1. From students’ performance data, we compute user-
based item similarity matrix, denoted M1. M1[3, j]
contains the result of the relevant similarity measure
for items ¢; and g;.

2. Compute item-based distance matrix from the user-
based similarity matrix M 1. The rationale is that for
a pair (gi,q;), if ¢; and ¢; are similar (i.e., belong to
the same KC), they should have a similar distance to
a third item g (whether it is in the same KC or not).
This incorporates more information into the similarity
between the items, which should improve the accuracy
of the clustering [26]. We denote the item-based dis-
tance matrix with M2. Two standard metrics are used
for computing M2: Pearson and Euclidean.

3. Two clustering algorithms are applied on M2: K-Means
and Ward’s Hierarchical [17]. The number of clusters
is derived from the hierarchal Knowledge Tree defined
by content experts (see Subsection 4.2).

Step 2. Per clustering, we use Adjusted Rand Index (ARI)
[16, 25] to measure the goodness-of-fit against ground truth —
experts’ mapping of the items into Knowledge Components.

ARI is a common measure for comparing the similarity be-
tween two clusterings. In ARI, a similarity is interpreted as
the number of pairs of items on which the clusterings ‘agree’,
adjusted for the amount of agreement ‘by chance’.

To be concrete, assume C' is a dataset which contains m
items, with two clusterings of C' into k clusters, denoted C4
and Cy. For a pair of items (i1,42), C1 and Cs ‘agree’ on
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(i1,12) iff 41 and 42 are either assigned to the same cluster,
or to different clusters, in both C7 and Cs.

To evaluate the level of agreement between C; and Ca, we
define a contingency table with the values a, b, ¢, and d, as
follows:

e a - number of pairs (i1, 42) where i1 and is are assigned
to the same cluster in C7 and in Cs. This is a case of
agreement.

e b - number of pairs (i1,42) where i1 and i» are assigned
to the same cluster in C1 and to different clusters in
(3. This is a case of disagreement.

e ¢ - number of pairs (i1,42) where 41 and iy are assigned
to different clusters in C7 and to the same cluster in
C. This is a case of disagreement.

e d - number of pairs (i1, 32) where i1 and is are assigned
to different cluster in C'y and in C>. This is a case of
agreement.

n - total number of pairs (n = a+b+c+d = w)

Using this definition of a, b, ¢, and d, we can construct
a contingency table similar to Table 1 for pairs of items,
and compute Cohen’s Kappa based on this table, which is
equivalent to Adjusted Rand Index [31].

4. EMPIRICAL SETTINGS

4.1 The Learning Environment

We use data from an ITS that teaches Fractions for 4"
grade. The students progress through the ITS on their own
pace, in a linear order defined by the content experts. The
subject matter knowledge that the ITS covers is modeled
by a Knowledge Graph, which is described in Subsection 4.2
(since it is hierarchical, hereafter we use the term Knowledge
Tree).

The content of the ITS includes 550 items, instructional ma-
terials such as videos, and on-line labs that students can use
to explore the various concepts. These are arranged in 112
learning units. Each of the learning units contains a collec-
tion of items and learning materials and is designed to take
approximately 5 — 15 minutes.

The course is divided into two parts. Part A contains 57
learning units which include 337 items, and Part B contains
55 learning units which include 213 items. Concepts are
first introduced and explained and are later re-visited. This
means that items which require a certain skill can appear in
different locations.

4.2 Knowledge Tree and Content Mapping

The course was designed according to a Knowledge Tree
(KT) that models the hierarchy of skills that students should
master (under the root topic “Fractions for 4" grade”). The
KT was developed by the content experts who built the
course. The first level, termed ‘subject’, includes 8 top-
ics. Some of these topics have a second level, termed ‘sub-
subject’. On this level of the tree (sub-subject + subjects
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that do not have second level) there are 19 topics. The di-
vision of the first two levels is curricular (e.g., ‘adding frac-
tions’ as the first level, with ‘adding fractions with a common
denominator’ and ‘adding fractions with a different denom-
inator’ as its children).

In addition to these two levels, there is a third level, termed
‘goals’, which is orthogonal to the classification into subjects
and sub-subjects, and refers to the cognitive type of the task
(inspired by Bloom’s Taxonomy [1]). Since the ‘goal’ level
is orthogonal to the division into subjects/sub-subjects (see
Figure 1), it can be interpreted as refining the categories
under ‘subject’ (hereafter denoted first level + goals), or as
refining the ‘sub-subject’ (hereafter denoted second level +
goals).

5 Cognitive goals Fg‘n(iit{fm
ord-th

Knowledge grade
Comprehension
Application 8 Subjects
Analysis Addingand Comparing Mixed
subtracting aciions numbers
Synthesis fractions
19 Sub-subjects
Adding  Subtracting  Adding  Subtracting . .
fractions fractions  fractions  factions  Comparing . . . acaijm-  Ylixednym-
withacom-  witliacori- mth((\uf— yithad e erswitha - baswitha
- mop de- erentde-  ferentde- : !
nominator  nommator  nommator  nommator nomimator - nominator
. . 9
Figure 1: Content expert’s Knowledge tree for

the topic “Fractions for 4% grade”. The re-
fining of subjects/sub-subjects into ’first level +
goal’/’second level + goal’ is computed as a Carte-
sian product of goals layer with subjects/sub-
subjects layers correspondingly.

The experts tagged each item with the ‘subject’, ‘sub-subject’,
and ‘goal’ it belongs to. In most cases, each item is mapped
into one category on each level. In the few cases were an
item was mapped into more than one category, we assume
that each unique combination of subjects/sub-subjects is ac-
tually a new knowledge component (similar to the rationale
of [15]). For example, if item ¢ is marked as belonging to
subjects 1 and 2, we create a new artificial subject for this
combination of subjects. We removed from the data arti-
ficial combinations containing only one item, and the few
items (< 5) that belong to these combinations.

4.3 Knowledge Components

We interpret Knowledge Component (KC) as a group of
items that deal with the same concept (i.e., require the same
skill) . We examine classifications of items into Knowledge
Components that are based on different levels of granular-
ity with respect to the Knowledge Tree. For example, ‘first
level’ is a classification that is based only on the first split
of the tree (‘subject’). Table 2 presents the number of KCs
defined by each level of the KT.

4.4 Data

The data include the responses of 594 4" grade students,
who used the ITS for a few hours a week during regular
class hours, for a period of 2 months. (We remove the data

3We use the term KC in two ways — as skill, and as a set of
items that require a certain skill

Table 2: Number of Knowledge Components by the
level of Knowledge Tree.

Level of Number of
Knowledge Tree Knowledge Components
First 14
First with Goals 42
Second 32
Second with Goals 62

of students who attempted less than 50 items, and the few
who had less than 25% success on first attempt, as we as-
sume they were mainly ‘gaming the system’). On average,
students spent about 12 hours in the ITS.

Students’ performance is operationalized as correct on first
attempt. From the log files, we build a 0/1 student X item
response matrix, denoted RM. RM][i, j]==1 if f students i
solved item j correctly on first attempt.

5. RESULTS ON REAL DATA
5.1 Computing the Similarity Matrix

We compute the similarity matrix for each of the four mea-
sures, as described in Section 3. This yields four similarity
matrices.

To cluster the items based on these matrices, we use three
clustering algorithms:

e Ward’s Hierarchical clustering using Pearson correla-
tion Distance

e Ward’s Hierarchical clustering using Euclidean Dis-
tance

e K-means clustering using Euclidean Distance

As noted before, the number of clusters is defined according
to the number of Knowledge Components of the Knowledge
Tree (Table 2). Goodness-of-fit of clustering is evaluated by
measuring its similarity to the ground truth labeling, using
Adjusted Rand Index (ARI).

5.2 Results of Hierarchical Clustering

Table 3 demonstrates the results of the Hierarchical Cluster-
ing on the entire course, based on the four similarity mea-
sures, using Pearson Distance (which outperforms Euclidean
Distance in all combinations; thus we omit the results for Eu-
clidean Distance). As can be seen, clustering that is based
on Kappa Learning outperforms the other measures in all
the combinations.

5.3 Results of K-Means Clustering

In addition to the comparison that is based on Hierarchical
Clustering, we make a comparison that is based on K-Means
Clustering. Since K-Means is non-deterministic (depends
on random assignment of initial cluster centers), we run the
algorithm 100 times for each combination, each time com-
puting the Adjusted Rand Index against ground truth. The
distribution of the Adjusted Rand Index for each combina-
tion are presented in Figures 2 and 3. As can be seen, Kappa
Learning outperforms the other similarity measures.
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Table 3: Adjusted Rand Index for different simi-
larity measures, using Hierarchical Clustering and
Pearson Distance, for number of KCs that is based
on different levels of the Knowledge Tree.
First Second
with with
First Goals Second Goals
Kappa
Learning 0.26 0.21 0.26 0.36
Kappa 0.16  0.17 0.18 0.27
Yule 0.15  0.19 0.21 0.29
Pearson 0.16 0.18 0.21 0.30

KL
Similarity
Measure
P Kappa
Learning
Pearson
K : : Kappa
Yule
Y
0.10 0.15 0.20 0.25 0.30

Adjusted Rand Index Value

Figure 2: Results of K-means clustering for the en-
tire course and number of KCs as defined by the
second level of the Knowledge Tree. The vertical
dashed line goes through the mean of the distribu-
tion of the ARI results for Kappa Learning.

KL
Similarity
Measure
P Kappa
Learning
Pearson
K . Kappa
Yule
Y

0.20 0.25 0.30 0.35
Adjusted Rand Index Value

Figure 3: Results of K-means clustering for the en-
tire course and number of KCs as defined by the
second level of the Knowledge Tree + Goals. The
vertical dashed line goes through the mean of the
distribution of the ARI results for Kappa Learning.

5.4 Finding optimal number of clusters

While the clustering algorithms described above take the
number of clusters as input, in many real-life scenarios it is
unknown in advance and needs to be discovered from the
data. Finding an optimal number of clusters is a fundamen-
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tal problem in clustering analysis that is typically ill-posed
[16], as there is no rigorous definition of a cluster, and the
practical considerations are domain and application-specific.
For example, in our model, we consider number of clusters
that is based on different resolution of experts’ hierarchical
Knowledge Graph (Subsection 4.2).

The ‘goodness’ of the resulting clustering is usually mea-
sured by cluster cohesion and cluster separation. One of
the measures for cluster cohesion or compactness is Within
Cluster Sum of Squares (WSS), Wi. For any clustering of
a set S into k clusters S = {S1,52,..., Sk}, WSS is defined
as

k

1 .

W=D D ldist(z,y) (6)

— 2|55 _
i= z,y€eS;

where dist(z,y) is a measure for distance between two items

of a set.

In our case the value of Wy depends on the method used for
evaluating the item’s similarity matrix based on student’s
performance matrix, the method for measuring the distance
between items of similarity matrix and the clustering algo-
rithm used. Within Clusters Sum of Squares is commonly
used to find an optimal number of clusters using the ‘elbow’
heuristic, however, in our case, there is no clear ‘elbow’ in the
graph. Another common method for estimating an optimal
number of clusters using WSS measure is the Gap statistic
method.

5.4.1 Gap Statistic

The main idea of Gap statistic is comparing the goodness of
clustering applied to a specific dataset with the goodness of
clustering obtained when applied on a uniformly distributed
data with no clustering structure at all (so-called 1-cluster
data) [29]. The GAP; measure used in Gap statistic is the
difference between an expected value of log(W}) computed
for clustering of 1-cluster random data into k clusters and
log(W4) value obtained from clustering of input dataset into
the same number of clusters k. The random data is gener-
ated from a uniform distribution over the same range as the
input dataset. The Gap statistic method receives K.max —
the maximal number of clusters to consider, a clustering al-
gorithm, a distance measure, and an input dataset. For each
k from 1 to K.max, it computes GAP;, value and searches
for the value of k that maximizes the Gap value.

For the four similarity matrices obtained (Section 3) we
compute Gap statistic using Ward’s Hierarchical Cluster-
ing, Pearson distance and K.max = 70. Then we apply two
different methods for computing the optimal number of clus-
ters: First SE Max (first local maximum of Gap value within
one standard error) and First Max (first local maximum of
Gap value) [29].

Running Gap statistic on Kappa Learning dataset produces
19 as an optimal number of clusters (see Figure 4), which
is similar to the number of Knowledge Components at the
Second level of the Knowledge Tree (see Figure 1; the second
level of the Knowledge Tree is denoted ‘sub-subjects’).

The optimal number of clusters based on Yule similarity
measure is 14 (with First SE Max) or 15 (with First Max),
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Figure 4: The values of GAP statistic for k in a range
from 1 to 25 computed based on Kappa Learning
similarity matrix. The vertical dashed line indicates
the optimal number of clusters as predicted by both
firstMax and firstSEMax methods.

which is also quite close to the ground truth. For the two
other methods (Cohen’s Kappa, Pearson), Gap statistic does
not produce meaningful results (Table 4).

Table 4: Optimal number of clusters by GAP statis-
tic.

First Max First SE Max
Method Method
Kappa Learning 19 19
Kappa 1 1
Yule 15 14
Pearson 1 1

6. SIMULATION STUDY

In addition to evaluating our method on data from a real
learning environment (Subsection 4.1), we conduct a simu-
lation study.

6.1 Data Generation
Our simulation model makes the following assumptions:

1. Each item belongs to one of K knowledge components
(KCs); the items are uniformly distributed among these
KCs. Each KC has an individual difficulty level (drawn
from a probability distribution defined below).

2. The order of appearance of KCs is predefined. We as-
sume that the topic is first presented and explained to
the learners, so the majority (=~ 60%, chosen empiri-
cally based on the data) of the items that belong to
it appear one after the other. The rest of the items

that belong to the KC are presented to the learner on
a later stage and interleaved between items from other
KCs.

3. Students learn as they interact with the items; Learn-
ers have individual learning rate (drawn from a prob-
ability distribution defined below).

6.1.1 Hidden Markov Model and Bayesian Knowl-

edge Tracing

Bayesian Knowledge Tracing (BKT) [10] is a popular ap-
proach to model skill acquisition in ITSs. It models a stu-
dent knowledge as a latent binary variable of a Hidden Markov
Model. Learning is modeled as a transition from ‘not mas-
tered’ to ‘mastered’ state. The standard BKT model uses
the same four parameters for all the students and items.
Several studies extended the basic BKT model with indi-
vidualized parameters for student ability and item difficulty
(e.g., [18, 23, 33]). We use the model introduced in [33] as
the underlying model for the data generation process.

6.1.2 Individualized Bayesian Knowledge Tracing
We apply Individualized BKT approach with parameter split-
ting [33] to model a learning process. Namely, we construct
individual HMM per student and KC. All items of the same
KC are assumed to have the same difficulty. The model as-
sumes students learn as they practice more. On each oppor-
tunity to solve an item that belongs to a knowledge com-
ponent, the probability that the student masters the skill
underlying the item’s KC increases.

Let us define:

e [ - number of learners
e K - number of Knowledge Components

e N - total number items (questions)

For each KC k and each student | we generate the following
parameters:

e P(Lg) - the probability that a student initially knows
a particular KC. In this model we assume the students
have no initial knowledge.

e P(T)F - the probability of learning for student [ and
skill k.

e P(S) - the probability of slip, meaning making an in-
correct attempt when applying a known skill. We as-
sume P(S) = 0.1 (not individualized; determined by
an educational expert).

e P(QG) - the probability of random guess, meaning mak-
ing a correct attempt when applying an unknown skill.
We assume P(G) = 0.2 (not individualized; deter-
mined by an educational expert).

As proposed in [33], the value of the parameters P(T)F is

combined from two components: a per-skill component and
a per-student component. So, we generate for each skill and
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each student a pair of parameters (P(T);, P(T)*). Each
of the above parameters is generated from a uniform dis-
tribution ¢/(0,1). Then for each student ! and KC k the
parameters are combined as follows:

P(T)f = o(I(P(T):) + I(P(T)")) (7)
where:
o(x)=1/(1+exp™ ™) (8)
and
l(z) = log (z/1 —x) 9)

Where o(z) and [(z) are the sigmoid and logit functions,
respectively.

The performance matrix for each student and knowledge
concept is generated using R’s HMM package, and the data
is combined into a L x N student’s performance matrix. For
all Knowledge Components containing more than 6 items,
the first 6 items are placed one after another, modeling the
introduction of the concept to the learners. The rest of the
items are shuffled randomly between future KCs.

6.1.3 Model Parameters

In the experiment reported below the basic setting is 1000
learners, 20 Knowledge Components, 200 items. The param-
eters are chosen in a way that approximates the multivari-
ate distribution of the real data with respect to the average
number of items per Knowledge Component and the mean
performance of students, as illustrated in Table 5.

Table 5: Comparison of simulation model to empir-
ical data.
Average
number of performance
Questions per KC  of Students
Empirical data ~9 67%
Simulation model 10 64%

Average

To evaluate the clustering that is based on each of the four
measures, we follow the same process as described in Sec-
tion 3. Since the results depend on the simulated data, we
repeat the process 700 times, each time starting with gener-
ating a new performance matrix.

6.2 Results on Simulated Data

The results are presented in Table 6 (right column) and Fig-
ure 5. As can be seen, Kappa Learning outperforms all other
measures in its ability to reproduce the original clusters. Ta-
ble 6 also presents the results of each measure on the real
data (left column), for reference.

To verify the statistical significance of the results, we con-
duct a t-test for the results of Kappa Learning vs. the three
other measures (Yule, Cohen’s Kappa, and Pearson). For
all combinations, the p-value is less than 0.01.

7. DISCUSSION

The results show that Kappa Learning - the new similar-
ity measure that we propose, which is based on adjusting

Table 6: Comparison of Adjusted Rand Index values
for different similarity measures.

Real data,  Simulation Model
Second level (averaged
with Goals over 700 runs)
Kappa Learning 0.36 0.40
Kappa 0.27 0.35
Yule 0.29 0.31
Pearson 0.30 0.37
KL
Similarity
Measure
P o Kappa
Learning
Pearson
K s Kappa
Yule
Y
0.1 0.2 03 0.4 05 06 07

Adjusted Rand Index Value

Figure 5: Distribution of Adjusted Rand Index val-
ues for different similarity measures (KL - Kappa
Learning, K - Kappa, Y - Yule, P - Pearson). The
vertical dashed line goes through the mean of the
distribution of ARI values for Kappa Learning.

Cohen’s Kappa to ‘learning’, can improve the clustering of
educational items into Knowledge Components, compared
to the state-of-the-art (the measures that are reported in
[26] as producing the best results). We ascribe this to the
fact that Kappa Learning explicitly models similarity un-
der the assumption that students’ skill can grow during the
activity (= learning), while the conventional measures are
based on the assumption that students’ skill is fixed.

On real data, with different combinations for the number of
clusters (Table 2), the improvement with Hierarchical Clus-
tering was in the range of 10 — 60% (Table 3), comparing to
the conventional measures (Kappa, Yule, and Pearson). On
simulated data that follow the ‘mastery’ assumption, and al-
low items of different Knowledge Components to interleave
(which makes the task more difficult; if all the items of a
certain KC are presented together, the clustering is almost
trivial), the improvement with Hierarchical Clustering was
in the range of 10 — 20% (Table 6).

In real-life scenarios, the number of clusters, which the clus-
tering algorithms that we use take as input, is typically un-
known, and it is necessary to extract it from the data. On
the task of finding an optimal number of clusters, Gap statis-
tic on clustering that is based on Kappa Learning yielded
a number of clusters (19) that is similar to the number of
clusters in the ground truth (according to the second level of
the Knowledge Graph. See Table 2). Among the other mea-
sures, Gap statistic on Yule-based clustering also produced
results that are reasonably close to the ground truth. For
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Kappa and Pearson, Gap statistic did not yield meaningful
results.

Overall, Kappa Learning was superior with respect to all
the combinations that were evaluated: Various interpreta-
tions of the ground truth (deciding on the KCs according to
different levels of Knowledge Graph); clustering algorithm
— K-Means and Hierarchical Clustering; real and simulated
data; and in reproducing the number of clusters with Gap
statistic. Thus, we conclude that in the context of learning
in structured domains (such as K-6 Math), Kappa Learning
provides a significant improvement to the task of clustering
that is based on item similarity, compared to conventional
item-similarity measures.

7.1 Generalizing to Random Order of Items
In Subsection 2.2, the definition of Kappa Learning was
based on the assumption that the items are presented to
the learners in a fixed order. We now explain how this as-
sumption can be removed. Let us assume that the items
administered to the learners in a random order, meaning
that different learners may see the items in a different or-
der. In this case, for each learner and for each pair of items
we construct the contingency table (similar to Table 1) by
computing the values of a, b, ¢, d as follows:

e ¢ - number of learners who got both items correct

e b - number of learners who got the first item presented
to them (among Qi1 and @Q2) correct, and the second
incorrect

e ¢ - number of learners who got the first item presented
to them (among Q1 and Q)2) incorrect, and the second
correct

e d - number of learners who got both items incorrect

7.2 Future Work

This work provides a few directions for future research. On
the next step, we intend to work with the developers of the
ITS on using the results of Kappa Learning to refine and op-
timize the pedagogic design of the ITS (cognitive modeling,
but also questions such as which KCs require more content,
are too difficult, too easy, etc.).

Algorithmic directions include studying additional ways to
insert the notion of ‘learning’ into existing item-to-skill de-
tection methods, and additional sources of information such
as domain experts or analysis of the body of the items (text,
images, mathematical symbols, etc.).

In terms of use cases, it would be interesting to evaluate
Kappa Learning on data from a variety of learning environ-
ments (e.g., MOOCs) and subject matters, and in particu-
lar, on domains in which knowledge is less structured (e.g.,
reading comprehension).

7.3 Summary and Conclusions

This paper presents a new method for measuring the sim-
ilarity between educational items, termed Kappa Learning.
The novelty of this method, compared to previous measures
of similarity between educational items, lies in the fact that

it explicitly captures the notion of ‘learning’, namely, change
of the latent trait (student’s mastery of the concept). This is
done by extending the notion of ‘agreement’ within Cohen’s
Kappa basic formula.

Our results show that clustering that is based on Kappa
Learning outperforms clustering that is based on conven-
tional methods (Cohen’s Kappa, Yule, Pearson), on real
data from K-6 Math ITS that teaches multiple concepts,
and on generated data that simulates learning of multiple,
interleaved concepts. Thus, we believe that Kappa Learning
is more suitable than existing measures for computing simi-
larity between items in the context of learning in structured
domains.
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