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ABSTRACT 
Short forms of psychometric scales have been commonly used in 
educational and psychological research to reduce the burden of test 
administration. However, it is challenging to select items for a short 
form that preserve the validity and reliability of the scores of the 
original scale. This paper presents and evaluates multiple 
automated methods for scale short form creation based on 
metaheuristic optimization algorithms that incorporate validity 
criteria based on internal structure and relationships with other 
variables. The ant colony optimization (ACO) algorithm, tabu 
search (TS), simulated annealing (SA) and genetic algorithm (GA) 
are examined using confirmatory factor analysis (CFA) of scales 
with one factor, three factor, and bi-factor factorial structure. The 
results indicate that SA created short forms with best model fit for 
scales with one and three factor structures, but ACO was able to 
obtain highest reliability. For scales with bi-factor structure, SA 
provide short forms with best model fit, but TS obtained highest 
reliability. Overall, the SA algorithm is recommended because it 
produced consistently best model fit and reliability that was only 
slightly lower than the ACO or TS algorithms.  
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1. INTRODUCTION 
Applied researchers using psychometric scales often face a 
dilemma due to limited resources: should they use the full form of 
a well-established scale with strong validity evidence supporting it, 
but with a large number of items requiring a substantial amount of 
time and effort to complete, or should they use a short form of the 
scale that has not had the extensive evidence of validity? This issue 
has generated strong interest in the academic community the 
development of short forms of scales (e.g. [1]). Multiple methods 
have been proposed for scale short form development [2], with 
different fields utilizing a few preferred methods. For example, 
these methods include theoretical or practical justifications for the 

inclusion or exclusion of items (e.g., [3]), keeping one item from a 
set of items that are apparently similar or redundant (e.g., [4]), 
obtaining certain criteria for statistical values such as high factor 
loadings or item correlations (e.g., [5]), adding or retaining items 
that seem to improve measures of reliability and/or dimensionality 
(e.g., [6]).  

The focus of item selection for short forms tends to be on the 
internal structure of the newly-created form, rather than using 
external relationships to help build the short form. For example, 
Petrillo, Capone, Caso, and Keyes [7] created a short form for a 
positive mental health assessment for use with Italian respondents 
by selecting items from twelve other scales with a focus on its 
internal structure. The resultant short form had adequate 
psychometric properties, but the average absolute correlation 
between the total score and sixteen other criterion measures was 
0.37 (range: 0.20 to 0.62). Despite the adequate validity evidence 
for the internal structure, the external relationships would be 
characterized as modest since on average the short form’s and the 
other measures’ scores shared about 6% of their variances. 

Obtaining a short form that has both adequate internal structure and 
strong validity with respect to relationships with other variables is 
difficult with traditional methods of short form development. 
Metaheuristic optimization algorithms [8] have the potential to 
solve these difficulties because the can simultaneously maximize 
multiple validity criteria for short forms. This paper aims to present 
the evaluation of multiple automated methods for short form 
creation based on metaheuristic optimization algorithms that 
incorporate criteria based on internal structure and relationships 
with other variables and determine which perform best under 
commonly used scale structures. 

2. THEORETICAL FRAMEWORK 
There have been some attempts to develop algorithms to derive 
short forms of scales that (a) maintain the internal structure of the 
scale in question (e.g. factor structure and/or content balance), (b) 
have favorable model characteristics such as meeting model fit 
statistic thresholds, and (c) produces scale scores that have 
favorable relationships with other variables, including other scales 
or external variables. For example, Olaru, Witthoft, and Wilhelm 
[9] compared multiple algorithms for the purpose of creating 
psychometrically valid short forms of a 99-item scale with various 
criterion (e.g., jointly optimizing two fit indices) and concluded 
that, under their study conditions, the Ant Colony Optimization 
(ACO) and Genetic Algorithm (GA) were able to produce 
statistically appropriate short forms that generalize well to new 
data. Marcoulides and Drezner [10] have shown that a Tabu search 
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can be used to successfully reduce the number of items loading on 
factors. Leite, Huang and Marcoulides [2] developed and 
demonstrated an ACO algorithm that selects items for short forms 
while keeping adequate model fit and maximizing the relationship 
between the latent variable and external variables. More recently, 
Browne, Rockloff, and Rawat [11] produced an automated 
structural equation modeling (SEM) scale reduction algorithm and 
purport that it is an effective and efficient method for reducing 
items during scale development.  

While these articles demonstrate the use of some automated scale 
short form development strategies and the importance of research 
in this area, an in-depth comparison of automated strategies under 
different scenarios does not seem to exist. In addition, some 
commonly-used metaheuristic algorithms for combinatorial 
problems have never been applied to the short-form development 
problem. For example, the inaugural example of the simulated 
annealing (SA) algorithm is with the Traveling Salesman Problem, 
which has various algorithms attempt to find the shortest path that 
travels between n cities exactly once [12], while no psychometric 
use of SA is apparent in the literature. To address these issues, this 
paper presents a simulation study utilizing three different scale 
structures commonly observed in educational research (one factor, 
three factor, and bifactor scales) and four meta-heuristic 
algorithms: The ant-colony optimization algorithm (ACO), genetic 
algorithm (GA), Tabu search (TS), and simulated annealing (SA). 
We chose these algorithms because they are the most well-
established metaheuristic algorithms in the combinatorial 
optimization literature. 

The ACO algorithm [13] mimics the behavior of ants searching for 
the shortest path to a food source. We evaluate the implementation 
of the ACO algorithm proposed by Leite, Huang and Marcoulides 
[2] for short form development, with minor modifications to the 
tuning parameters.  Their implementation of the ACO algorithm 
attaches sampling weights to items, which are used to sample items 
for a set of candidate short forms of the scales. Each set of candidate 
short forms is evaluated and the best short form in the set is 
identified based on criteria that are specified by the researcher, such 
as SEM fit indices and the relationship between the scale’s factors 
and an external variable. The criteria of choice are used to calculate 
the pheromone level, which is a summary of the quality of the short 
form chosen. The pheromone level is then used to update the 
sampling weights for the next round of sampling of candidate sets 
of short forms. This is repeated until a specified convergence 
criterion is met, such as number of iterations without improvement 
of the solution quality.  

The GA mimics the biological process of evolution using the model 
parameters as genes. As implemented by Yarkoni [14], the 
algorithm generates an initial population of candidate models of 
size 200 and, by evaluating the fitness of each candidate model 
through a loss function, selects the best 20% of the models and 
repopulates. Between model generations, new models are created 
from mutation (randomly changing the items in a model) and 
recombination (two models exchanging items retained). After a 
certain number of iterations (100+), the model with the best fit 
according to the loss function is retained as the best solution. The 
loss function penalizes the fit of the models for every item included; 
this value needs to be tuned to achieve the correct reduction of 
items. 

The TS algorithm implementation was modified from the 
presentation given in Marcoulides and Falk [15] to constrain the 
solution space to a specified number of items. Broadly, the TS looks 
at each of the local solutions to a model by changing one model 

parameter at a time; the particular change can be adjusted to suit 
the problem at hand. The main idea behind the TS procedure is to 
continually adjust the currently selected best model by examining 
other models in the neighborhood of the current best solution. If a 
neighboring model fits better than the current model, it is selected 
as the new best fitting model. If not, the examined neighboring 
model is marked “tabu”—placed on a list so that it is not 
reconsidered for some number of iterations. For this study, the TS 
was modified to (a) randomly generate a short form of a 
predetermined length from a longer form for the first iteration and 
(b) search for local short forms that maintain the predetermined 
length.  

The SA algorithm is a statistical analog to metallurgic processes of 
annealing metals [16]. Generally, the algorithm begins with a 
specified starting model whose parameters are randomly changed 
by some process and a starting temperature. The new model is 
compared to the starting model and the difference in model fit is 
calculated. At any time, if the new model has better fit than the 
current model, it is selected for use in the next iteration; otherwise, 
the new model is selected with probability equal to a function of 
the difference in model fit and the current temperature. After each 
new model is either selected or ignored, the temperature updates 
and the current model is randomly changed. The algorithm checks 
each model against the best model seen and updates as needed. 
Some variants of the algorithm include a process that selects this 
best model after a certain number of iterations in which no better 
model has been found. This process repeats until the temperature 
reaches zero. 

3. METHODS 
3.1 Research Questions 
1. How do the algorithms differ in terms of the time it takes for each 
to converge on a short form, model fit and reliability of the short 
form? 

2. How do model misspecifications in the full form affect the fit 
and reliability of the short forms created by the algorithms? 

3. Does the inclusion of an external variable affect the model fit and 
reliability of the short forms? 

4. Does the performance of the algorithms depend of the factorial 
structure of the scale? 

3.2 Manipulated conditions 
To investigate the research questions, a Monte Carlo simulation 
study was conducted using the following population confirmatory 
factor analysis models: (a) the 20-item unidimensional model of the 
self-deceptive enhancement (SDE) scale [17], (b) the 24-item 
three-dimensional model of the teacher efficacy scale [18], and (c) 
a three-factor bifactor model [20] of the 30-item BASC-2 BESS 
[19] scale. These models represent three common models seen in 
scale development and are good representations of what 
educational researchers would work with. The covariance structure 
from the multidimensional scale were used to simulate samples for 
these conditions, and the factor loadings for the unidimensional 
model were used to simulate samples for this condition. In each 
case, the goal was to create a short form that is half the length of 
the long form. 

Additional manipulated simulation conditions were the relationship 
with an external variable and full-scale model misspecification. For 
the relationship with an external variable, the two levels that were 
manipulated are (a) no relationship and (b) a moderate relationship 
(approximately equal to a path coefficient of 0.6 standard 
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deviations). The full-scale model misspecification was manipulated 
in the simulation according to three levels: (a) no misspecification, 
(b) a minor misspecification in the factor loadings (i.e., population 
models modified to have six of the items cross-loading on a 
nuisance factor with a loading of 0.3), and (c) a major 
misspecification in the factor loadings (i.e., same as (b), but with 
factor loadings of 0.6 on a nuisance factor). 

The data were simulated in R v3.5.0 [21] using the ‘MASS’ 
package [22]). The baseline condition (i.e., high reliability, no 
external variable relationship, no misspecification) used the values 
provided by the original models as the population values. These 
values were changed as necessary to create new population models 
that fit the target simulated conditions, resulting in fifteen 
covariance matrices. The sample size of each condition was set to 
500. For each combination of manipulated conditions, we created 
100 datasets. 

3.3 Outcomes 
The outcome variables of the simulation were the time to converge 
to a short form, the average level of model fit of the short form, and 
the composite reliability of the short form for each factor.  
 
The comparative fit index (CFI), Tucker-Lewis Index (TLI), and 
Root Mean Square Error of Approximation (RMSEA) were used as 
the model fit indices, and the cutoff values of CFI > .95, TLI > .95, 
and RMSEA < .05 were used as indicators of adequate model fit 
[26]. 
 
For this study, the composite reliability of the one and three factor 
models was calculated as [23]:   

 

where the items are indexed with i,  are the standardized factor 

loadings, and  are the (standardized) residual variances of the 
items [24]. For the bifactor model, the composite reliability for the 
of general factor was calculated as 

 
where s indexes the specific factors [25]. 
  

4. RESULTS 
For each factor model, results for the “Minor Error with External 
Variable” condition did not have noticeable differences from either 
the “Minor Error with No External Variable” conditions or the “No 
Error” conditions, so this condition was dropped from the current 
study.  

4.1 One Factor Model 
The time to complete for each algorithm was similar across 
conditions, except for GA (see Table 1), which was faster. The time 
to converge was slightly longer for the ACO, SA, and TS under the 
major error with an external relationship condition.  

The average model fit statistics for both factor models across 100 
replications of the analysis for the three conditions is also shown in 
Table 1, where bolded values indicate good model fit. When there 
is no error in the original model, each algorithm produced good 
model fit, but as the error level increases the model fit decreased. 

In the major error conditions, only the SA algorithm had model fit 
greater than the traditional cutoff values.  

Table 1. Model fit of short forms for one factor model 

Error/ 

External Method 

Minutes 
to 

Complete CFI TLI RMSEA 

None/ 
No 

ACO 2.482 0.976 0.969 0.043 
SA 2.516 0.993 0.992 0.018 
TS 3.933 0.985 0.981 0.028 
GA 0.699 0.975 0.967 0.042 

Minor/ 
No 

ACO 2.575 0.961 0.950 0.055 
SA 2.572 0.987 0.983 0.027 
TS 3.987 0.977 0.971 0.036 
GA 0.708 0.964 0.953 0.051 

Major/ 
No 

ACO 2.713 0.943 0.926 0.061 
SA 2.581 0.983 0.978 0.029 
TS 3.956 0.940 0.923 0.061 
GA 0.701 0.850 0.807 0.112 

None/ 
Yes 

ACO 3.059  0.943 0.929 0.058 
SA 2.871  0.981 0.976 0.029 
TS 2.819  0.923 0.903 0.066
GA 0.702  0.859 0.823 0.106

Major/ 
Yes 

ACO 3.301  0.942 0.928 0.058 
SA 3.107  0.981 0.976 0.029 
TS 5.162  0.934 0.917 0.060
GA 0.752  0.855 0.819 0.108 

 

The inclusion of the external variable reduced the model fit for each 
of the algorithms such that the conditions with no error and an 
external variable relationship had similar fit to the conditions with 
major error and either with or without external variable relationship 
(see Table 1).  

Table 2 shows the reliability of the full form of the scale, as well as 
the reliability the short forms. As expected, the full form resulted 
in scores with higher reliability than all the short forms. The ACO 
had the greatest composite reliability for both the no error and 
minor error conditions, followed by the GA.  
 
Table 2. Composite reliability estimates with one-factor model 

Method Reliability 

Full Form 0.889 

ACO 0.854 

SA 0.813 

TS 0.806 

GA 0.835 

 

4.2 Three Factor Model 
For all five conditions, the SA and TS algorithm took about twice 
as long to converge on average as compared to the ACO and GA 
algorithms (see Table 3). For the three-factor model, the average 
model fit for the conditions with no external variable can be seen 
in Table 3. In both the no error and minor error conditions, each of 
the algorithms had good model fit. In the major error conditions, 
only the SA algorithm produced short forms with adequate model 
fit according to all three fit indices. The ACO and TS algorithms 
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had good model fit according to CFI and TLI (ACO) and CFI (TS), 
while the GA algorithm had poor fit according to all three fit 
indices.  

Table 3. Model fit for short forms with three-factor structure  

Error/ 
External 

Method 

Minutes 
to 

complete CFI TLI RMSEA 

None/ 
No 

ACO 2.967 0.979 0.973 0.043 

SA 6.228 0.991 0.989 0.024 

TS 6.063 0.986 0.982 0.031 

GA 2.705 0.977 0.970 0.044 

Minor/ 
No 

ACO 3.091 0.978 0.971 0.047 

SA 6.238 0.989 0.985 0.030 

TS 6.264 0.984 0.979 0.037 

GA 2.710 0.974 0.967 0.048 

Major/ 
No 

ACO 3.285 0.964 0.953 0.054 

SA 6.295 0.990 0.987 0.027 

TS 6.061 0.956 0.943 0.056 

GA 2.695 0.910 0.883 0.087 

None/ 
Yes 

ACO 3.713 0.978 0.971 0.047 

SA 7.040 0.989 0.985 0.030 

TS 7.577 0.984 0.979 0.037 

GA 2.685 0.974 0.967 0.048 

Major/ 
Yes 

ACO 3.387 0.960 0.948 0.060 

SA 6.173 0.984 0.979 0.036 

TS 6.586 0.950 0.935 0.063 

GA 2.282 0.917 0.892 0.087 
 

Including an external variable had little effect on the model fit 
indices (see Table 3). With no error, the average model fit was 
approximately the same between the no external variable 
conditions and moderate external variable conditions, while the 
average model fit somewhat decreased in the major error condition 
for the external variable conditions as compared to the no external 
variable conditions. Only the SA produce short forms with good 
model fit across all the conditions.  

The reliability of the full form and short forms with the three-factor 
CFA is shown in Table 4. All methods produced short forms with 
less reliable scores than the full form, but among the metaheuristic 
methods, the ACO produced short forms with the largest composite 
reliability for each of the factors in each condition. 

Table 4. Composite reliability estimates with three-factor 
model 

Method 
Reliability 
Factor 1 

Reliability 
Factor 2 

Reliability 
Factor 3 

Full form 0.870 0.910 0.900 

ACO 0.788 0.846 0.833 

SA 0.752 0.829 0.813 

TS 0.754 0.828 0.809 

GA 0.763 0.846 0.819 

 

4.3 Bifactor Model 
With the bifactor model, the GA had the fastest time to converge, 
and the ACO took about four times longer. The TS and SA 
algorithms had convergence times that were about 10 times of the 
GA algorithm. 

Table 5 shows the average model fit indices of the bifactor model 
for the conditions with no external variable relationship. The SA 
and TS algorithms produced short forms with good model fit by 
each fit index in every condition, while the ACO resulted in good 
model fit by each fit index except for the RMSEA in the major error 
condition. The GA had good model fit by CFI in the no and minor 
error conditions only.  

Including the external variable tended to reduce model fit. Both the 
SA and TS showed slight reductions in model fit across both error 
conditions, but still found short forms with good model fit 
according to all three fit indices. The ACO maintained 
approximately the same model fit in both no error and minor error 
conditions, but showed an increase in average fit in the major error 
conditions when comparing the no external variable to moderate 
external variable relationship conditions. However, only the CFI 
and TLI showed good model fit in these conditions (see Table 5).  

The reliability of general factor with the full form and short forms 
with the bi-factor model are shown in Table 6. For the example 
scale used in this study, the full form produced scores with adequate 
reliability for the general factor, but for the specific factors the 
composite reliability is low. For the short forms, none of the 
algorithms produced consistently greater reliabilities for every 
factor in these conditions. The reliability of general factor with the 
short forms were smaller than the reliability of the full form for all 
algorithms. The GA performed best for the general factor reliability 
than the ACO, SA and TS. 
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Table 5. Model fit of short forms with bi-factor model and 
external variable 

Error/ 
External Method 

Minutes 
to 

complete CFI TLI RMSEA 

None/ 
No 

ACO 13.054 0.986 0.976 0.041 

SA 37.925 0.995 0.992 0.020 

TS 39.933 0.992 0.986 0.028 

GA 3.577 0.951 0.939 0.074 

Minor/ 
No 

ACO 12.296 0.982 0.969 0.047 

SA 40.658 0.994 0.990 0.023 

TS 48.200 0.990 0.984 0.031 

GA 3.562 0.954 0.943 0.069 

Major/ 
No 

ACO 12.875 0.974 0.956 0.055 

SA 39.556 0.993 0.987 0.027 

TS 41.211 0.982 0.969 0.043 

GA 3.606 0.945 0.921 0.079 

None/ 
Yes 

ACO 18.537 0.986 0.976 0.041 

SA 45.815 0.995 0.992 0.020 

TS 49.665 0.992 0.986 0.028 

GA 3.458 0.951 0.939 0.074 

Major/ 
Yes 

ACO 17.989 0.975 0.959 0.051 

SA 42.336 0.991 0.986 0.028 

TS 38.947 0.979 0.965 0.046 

GA 3.546 0.940 0.907 0.080 

 

For the specific factors, the TS performed better than the other 
methods for two out of three factors. Surprisingly, the TS produced 
scores with higher reliability than the full form for factor 3, and the 
SA produced higher reliability than the full form for factor 2. 

The results with the bi-factor model are limited in that the scale 
used produced scores with low reliability. Using a different scale 
that results in higher reliability of scores of the full form for all 
factors might have produced different results with respect to the 
comparison of algorithms.  

 

Table 6. Reliability of short forms of general factor of bi-factor 
model 

Method 
General 
Factor Factor 1 Factor 2 Factor 3 

Full 0.715 0.304 0.114 0.319 

ACO 0.661 0.067 0.115 0.062 

SA 0.641 0.061 0.133 0.055 

TS 0.659 0.149 0.124 0.433 

GA 0.669 0.055 0.118 0.049 

 

5. CONCLUSION 
In general, the algorithms produced short forms with adequate 
model fit in all cases with no error, with two exceptions: each 
algorithm except the SA under the one factor model with an 
external variable, and the GA under the bifactor model. Therefore, 
when the original scale is correctly specified, the results showed 
that the algorithms are likely to produce short forms with model fit 
that maintain the desired factor structure of the scale.  

The ACO, TS, and GA each had problems maintaining good model 
fit for the short forms with increasing error, though this was 
alleviated by increasing the factor structure’s complexity. Including 
an external variable into the process generally had a small negative 
effect on average model fit, but the effect was never enough to cross 
the model fit thresholds. Overall, the SA provided short forms with 
the best average model fit in every single condition, while the ACO 
seemed to have better reliability on average for each of the factors 
with one factor and three-factor models. Given that the difference 
in reliability between the ACO and SA algorithms was about .05 or 
less on average, the practical difference in reliability between these 
methods may be outweighed by the difference model fit of the 
resulting short forms. Therefore, the current results lead to 
recommending the SA as the preferable metaheuristic algorithm for 
automated short form selection.  

This study provides useful information to applied researchers about 
the benefits and drawbacks of utilizing these four algorithms for 
scale short form development in some common scenarios in 
educational research. This will allow for easier creation of 
psychometrically-sound short forms with stronger evidence of 
validity, especially as compared to creating short forms manually. 
Future research could apply these algorithms to the short form 
creation problem alongside other methods on real data to compare 
the efficacy of each approach.  
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