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ABSTRACT 

 

There is often confusion about distinctions between growth models and value-added 

mdoels.  The first half of this paper attempts to dispel some of these confusions by 

clarifying terminology and illustrating by example how the results from a large-scale 

assesment can and will be used to make inferences about student growth and the value-

added attributable to teachers or schools.  Two key differences between growth models 

and value-added models are discussed: the unit of analysis (growth models focus first and 

foremost on students; value-added models focus on teachers or schools) and inferential 

intent (growth models are primarily descriptive, value-added models are meant to support 

causal inferences).  The point is made that all growth models can be used to make value-

added inferences, but value-added models almost never lead to student-specific 

inferences about growth.  The focus of the second half of this paper is on design issues 

that will need to be considered by the PARCC consortium such that test scores can be 

used for either growth or value-added inferences.  It is shown that vertically scaled test 

scores are not prerequisite for value-added modeling.  Vertical scales are most desirable 

in support of student-level growth interpretations, but certain conditions must be met 

before their creation would be defensible.  In particular, the case is made that vertical 

scales will be most compatible with a learning progression perspective on construct and 

item development.  The second half of the paper also discusses design factors that would 

minimize the role that measurement error will play in distorting inferences about growth 

and value-added. Finally, the paper concludes with the some recommendations for the 

PARCC consortia. 
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Introduction 

 

 One of the priority purposes that has been expressed for the PARCC assessments 

is that they should “provide information, including measures of growth, that supports 

various forms of accountability including teacher effectiveness. (PARCC Assessment 

System: Requirements and Constraints, June 17, 2011)” I have written this paper with 

two primary objectives in mind.  The first objective is to attempt to clarify, or at least 

bring to the surface, some understandable confusion over terminology.  For example, 

what is a growth model? How is a growth model different from a value-added model? Do 

statements about growth or value-added require a vertical scale? It seems important for 

the state members of PARCC to come to some common understandings when answering 

such questions.  The second objective is to discuss design factors for the PARCC 

assessments that will have a bearing on the inferences that can be supported about growth 

and value-added.   

To give this paper some added bite at the outset, and to further motivate animated 

discussion, I have chosen to illustrate a number of salient issues and distinctions in the 

context of the real-world example of an elementary school in Colorado.  This school was 

recently sanctioned under the auspices of No Child Left Behind because over the course 

of two years its students had not met performance targets on the Colorado Student 

Assessment Program (CSAP) tests.  In the future, one of the most identifiable features of 

No Child Left Behind is likely to change upon reauthorization: namely, inferences about 

school performance will shift from whether or not students have reached some minimum 

level of proficiency to whether they have obtained some minimum level of college and 

career readiness. Nonetheless, the fundamental issue of how scores from a large-scale 

assessment can best be used to make inferences about a student’s academic preparation 

and the quality with which this is being provided in public school settings will remain the 

same.  What would need to be said about the PARCC tests relative to the CSAP tests 

such that the use of scores for educational accountability purposes had greater validity? 

Furthermore, what can growth or value-added models bring to the table (that has not been 

there in the past) and what will they require of the PARCC assessments?   
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Creekside Elementary School and Growth 

 

On August 3, 2011, approximately one week before the start of the school year, 

the parents of students attending Creekside Elementary School received a letter informing 

them that, because Creekside had failed the provisions required to demonstrate adequate 

yearly progress for two years in a row, they were eligible to have their children attend a 

different school in the Boulder Valley School District.  If such a choice were to be made, 

transportation would be provided at the district’s expense.  The rest of the letter detailed 

the steps that Creekside was and would continue to take to improve classroom teaching 

and learning, with the implicit message being “Don’t give up on us yet!” Empirically, 

there is little question that the average academic achievement of students at Creekside 

leaves much to be desired.  Among students tested in grades 3-5 in math, reading and 

writing on the CSAP test, only 59%, 57% and 47% of students scored at a level that 

would be classified as either “proficient” or “advanced” according to Colorado’s 

performance standards.  Across the entire school district these numbers were 

considerably higher (70%, 80% and 69%).  On the other hand, it is also true that 

Creekside faces certain challenges with the student population it is educating that the 

higher-achieving schools in Boulder County do not.  For example, the proportions of 

Hispanic students (many of whom are likely to be English Language Learners) and 

students eligible for free and reduced lunch services at Creekside (40% and 33%) is more 

than twice as large as the proportions across the district (18% and 17%).  Some of the 

current interest in evaluating test scores for evidence of growth is that this should make it 

possible to better distinguish between schools where students may be low-achieving but 

making laudable progress, and schools with students who are low-achieving and making 

either no progress or progress that is negligible.  Would such an approach make a 

difference when casting judgment upon the quality of education at Creekside? In this 

section I do my best to present the relevant data and let the reader be the judge.  To keep 

the presentation manageable, I focus attention solely on CSAP test performance in 

mathematics. 
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Cohort to Cohort Change 

 

Figure 1.  Cohort to Cohort Change in Percent Proficient or Advanced at Creekside 

Elementary in Mathematics, 2005-2011 

 
 

Braun et al (2010) describe a “cohort to cohort change model” as one that 

compares achievement status at two or more points in time, but not for the same students.  

As an example of this, Figure 1 plots the grade 3, 4 and 5 percentages of students 

classified as either “proficient” or “advanced” on the CSAP math exams from 2005 to 

2011.  Also included in this plot is the trend line for the average percentage across all 

three grades.  Averaging across grades has the effect of greatly reducing the year to year 

variability in the percentages.  This happens for two reasons.  First, to the extent that 

some of the variability from year to year can be attributed to either measurement error or 

sampling error in a way that is analogous to sampling theory, an increase in the number 

of students used to compute a school-level average will reduce this source of variability1.  

Second, when an average is taken across grades it creates a pseudo-longitudinal data 

structure in which as much as 2/3 of the students may overlap across adjacent years, and 
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this overlap greatly enhances the stability of the school-level statistics from year to year.  

It is, however, worth pointing out that when given data for any two year period, school 

administrators are likely to overinterpret grade-specific swings in one direction or the 

other.  For example, after the 2009-10 school year, 59%, 80%, and 52% of grade 3, 4 and 

5 Creekside students respectively had been classified as proficient or advanced in Math.  

On this basis, when the school’s principal drafted a school improvement plan2, these 

numbers were used as the baseline from which the performance of the next year’s cohort 

would be judged.  Targets were set that called for increases by 5% in the percentage of 

students in the 2010-11 cohorts classified as proficient or advanced in math. Empirically, 

it can be seen that mistaking cohort-to-cohort change for growth essentially set the school 

up to fail a key target on its publicly released improvement plan. 

 

Progress to Future Target 

 

A variant of the pseudo-longitudinal cohort-to-cohort change approach is the 

progress to future target model.  Here the percentages of students classified as proficient 

or advanced in a given year are averaged across grades and then compared to a target that 

has been set by policymakers.  In Colorado, this is a rather confusing exercise because for 

the purposes of compliance with No Child Left Behind, the state includes the percentage 

of students classified as partially proficient along with those classified as proficient or 

advanced when assessing progress toward the federal target.  This has the effect of 

inflating upwards the values that were shown in Figure 1.  Nonetheless, when observed 

and expected values are plotted over time as in Figure 2, a basis for Creekside’s failure to 

make AYP in two consecutive years become evident3.   

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 See https://cedar2.cde.state.co.us/documents/SPF2010/0480%20-%205606%20-%203%20Year.pdf 
3 The more proximal cause is far more complicated because meeting AYP is a conjunctive function of 
many distinct targets for different demographic subgroups, and even if a target is not met, a school may be 
excused through a “safe harbor” provision.  See appendix Table A-1 for a flow chart that illustrates the 
complexity of this process in Colorado.	
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Figure 2.  Comparing Creekside’s Progress to Standard 

 
Note:  Values for Creekside are based on all students except those classified in the lowest performance 
level (“unsatisfactory”). For NCLB AYP targets, see 
http://www.cde.state.co.us/FedPrograms/danda/aypprof.asp 
  

On the one hand, in Figure 2 it becomes possible to answer the policy question, “Is the 

progress being observed at this school good enough?”  On the other hand, a longstanding 

criticism of No Child Left Behind has been that setting a target of 100% proficiency is 

unrealistic (Linn, 2003), and the example of Colorado having two different definitions of 

proficiency on the CSAP for state and federal accountability purposes is just one example 

of the way that states have attempted to put off the day of reckoning that was bound to 

come. 

 

Growth Models 

 

When the Race to the Top competition was launched by the United States 

Department of Education, the request for proposals included the following definition of 

growth as “the change in student achievement for an individual student between two or 

more points in time” with student achievement  defined as “a student’s score on one of 

the State’s assessments…provided they are rigorous and comparable across classrooms.”  

It follows that neither of the examples shown above would constitute a “growth model” 
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because they are not designed to track the test scores of the same students from one year 

to the next.  Though Figures 1 and 2 seem to be indicative of some worrisome trends in 

performance for Creekside, this interpretation is potentially confounded by the movement 

of students in and out of the school from year to year.  If the population of students at a 

school is changing systematically4 such that an increasing proportion of new students 

enter a given school year with academic deficits, then this could mask significant growth 

that might be apparent if the same students had been tracked longitudinally.  

The simplest adjustment that could be made would be to continue to track trends 

in the proportion of students with test scores above some chosen cutpoint, as in Figures 1 

and 2, but to only do some for longitudinal cohorts of students.  Note that when taking 

such as an approach at the student level, it would only be possible to characterize growth 

in terms of a series of transitions from discrete classifications.  A drawback to such an 

approach when aggregated to the school-level is that growth statistics will show great 

sensitivity to changes in the region of the classification cutpoints, but not necessarily to 

changes in other regions of the score scale (Holland, 2002; Ho, 2008).  Unfortunately, the 

matched longitudinal data needed to illustrate this particular approach in the present 

context was not available.  However, because the CSAP has been vertically scaled, it is at 

least possible to illustrate in Figure 3 how school-level growth trends can differ when the 

mean is taken over what is, at the least, an ordinal distribution with multiple levels 

relative to an ordinal distribution with just two levels.  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 In fact, there have been some significant demographic shifts in the composition of Creekside students 
from 2005 to 2011.  During the time period, the percentage of Hispanic/Latino students increased from 
about 27% to 33%. Interestingly, the percentage of students eligible for free and reduced lunch services has 
actually decreased from 48% to 40%.  The former shift might work to excuse the flat trends in Figure 1, but 
the latter does not. 
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Figure 3.  Differences in Creekside Trends in Math when the School-Level Outcome is a 

Scale Score vs. Percent of Student Proficient and Advanced 

 
Note: Left Axis = Vertical Scale; Right Axis = % of students proficient or advanced 

 

An approach to growth that preserves more of the information about changes in 

student performance at all locations along the test score distribution without requiring a 

vertical scale can be seen in the student growth percentile model (SGPM; Betebenner, 

2009) that was first implemented in Colorado and has since been adopted in states such 

as Massachusetts, Indiana, Wisconsin and Hawaii. In short, the SGPM computes for each 

student, a conditional test score percentile.  This conditional score percentile is found by, 

in essence, comparing the test score performance of a student in a current grade (e.g., 

grade X) to all students in the state with the same test score history in all prior grades 

(e.g., X-1, X-2, etc.) where a standardized test was administered.  A student that scores at 

the 50th percentile of this conditional distribution is one that is inferred to have shown 

“growth” that represents “one year of learning.”  An estimate of classroom or school-

level growth can then be computed by taking the median over all student growth 

percentiles for students with test scores in at least two adjacent grades.  Note that in this 

approach the concept of growth is an inference—we infer that if a student has 

performance that is higher than expected relative to similar students, the reason for this is 

that they have learned more (i.e., shown more growth) than these similar students5.  
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Figure 4. Plots of School-Level Achievement and Growth, Boulder Valley School District, 

2011 

 

 
 

The scatterplot in Figure 4 represents an attempt to combine information about 

two different dimensions of school “quality”: achievement status and growth.  Each 

“bubble” represents a unique elementary school in the Boulder Valley School District and 

the blue bubble represents Creekside Elementary. The size of each bubble is proportional 

to the number of students attending a given school. The vertical axis represent the 

percentage of students in a given school that have been classified as proficient or 

advanced in math.  In contrast, the horizontal axis represents a school’s median student 

growth percentile.  In this example, the vertical line at 70 represents the demarcation 

between schools that are performing better or worse than would be expected given the 

prior test performance of their students.  The horizontal line at 50 represents the threshold 

set by Colorado for a school to be considered “high achieving.”  Figure 4 makes it 

possible to distinguish among four “types” of schools: 

1. Quadrant I: Higher Achievement, Higher Growth 

2. Quadrant II: Higher Achievement, Lower Growth 

3. Quadrant III: Lower Achievement, Lower Growth 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
next.  Of course, this presumes that the vertical scale is a valid external criterion for growth, and there are 
often good reasons to be skeptical of such claims (Briggs, 2011).	
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4. Quadrant IV: Lower Achievement, Higher Growth 

The frames of reference for the descriptors “higher” and “lower” are the vertical and 

horizontal thresholds that have been established by the Colorado Department of 

Education.  The further a school departs from these thresholds, the clearer the designation 

of a school within each quadrant.  Relative to other Boulder Valley School District 

elementary schools, it can be seen that as of 2011 Creekside lands in Quadrant IV: Lower 

Achievement, Higher Growth. 

 

Figure 5.  Creekside Trends in Annual Math Growth  

 
 

Finally, Figure 5 presents the trends in the median growth percentiles of Creekside 

students in mathematics from 2006 to 2011.  The interpretation from this analysis 

diverges sharply at points from that based on the pseudolongitudinal data shown in 

Figures 1 and 2.  For example, while trends in math performance showed a steady decline 

between 2005 and 2011 in Figure 1, this is only mirrored between 2006 and 2009 in 

Figure 5; from 2009 to 2011 there is evidence of a turnaround.   
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Using Growth Models to Project the Status of Students in the Future 

 

In Figure 4, information about student growth aggregated to the school level is 

provided as a visual complement to information about achievement status.  It would also 

be possible to essentially combine the two sources of information by using the growth 

model to project future trends in achievement status.  That is, policymakers may establish 

fixed expectations for what all students are expected to achieve, as has been the case 

under No Child Left Behind.  When this is the case, the main purpose of the growth 

model is to give credit to schools whose students are below the progress cutpoints 

established for any specific grade, but show signs of making rapid growth such that in the 

future they will meet the expectations that have been established for them.  By the same 

logic, a growth model used for these purposes should indicate the converse—students 

whose performance is currently adequate but who are losing ground such that they may 

not meet achievement expectations in the future.  This was the impetus for the growth 

model pilot project that was initiated by Secretary Spellings in 2005 (Spellings, 2005).  

For many of the states that participated in this project, growth models essentially 

provided another way to make “safe harbor” if targets based on achievement status were 

not met. 

In the context of the SGPM, the key move is to compare, for each student, his or 

her conditional growth percentile against what is known as an adequate growth percentile.  

An adequate growth percentile represents the conditional growth percentile that needed to 

have been observed in order for a student to have been classified as proficient or 

advanced either in the current year or within the next three years6.  This is computed by 

using the achievement trends from previous panels of students to predict what is most 

plausible for the current cohort of students.  So for example, imagine that in the past (e.g., 

2007) we observed a subsample of grade 5 students who had scored .25 SDs below the 

score scale threshold for proficiency on the CSAP math test.  Three years later, we 

examine how many of these same students scored above the proficiency threshold.  For 

those that do, we can observe the pattern of conditional growth percentiles that were 
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associated with this shift.  We then use this information about the past to estimate the 

minimum conditional growth percentile trend that a student in the current year (e.g., 

2011) would minimally need to pass the proficiency threshold within three years. This 

represents a student’s adequate growth percentile.  When a student’s adequate growth 

percentile is well above his or her observed conditional growth percentile, it becomes 

indicative of the extent the student will need to “catch up” to meet future performance 

expectations, and the school does not get credit for the student being “on track” to 

proficiency.  However, if his or her conditional growth percentile is higher than the 

adequate growth percentile, the school does receive credit. 

 Returning to the Creekside example one last time, Figure 6 plots trends in the 

projected growth percentiles of grade 4 and 5 students each year who score below, score 

at, or score above the proficient level on the CSAP math test.  There are three different 

lines of interest.  The solid line represents the percentages of grade 4 and 5 students in 

any given year that score below proficiency, but would be classified as proficient within 

the next three years if they were to maintain their current conditional growth percentile.  

These are known as Creekside’s “catch up” percentages.  The dashed line represents the 

percentages of grade 4 and 5 students in any given year that score at or above proficiency 

who would not be classified as proficient within three years if they were to maintain their 

current conditional growth percentile.  These are known as Creekside’s “keep up” 

percentages.  Finally, the dotted line represents the percentages of grade 4 and 5 students 

in any given year that score at proficiency who could be predicted to shift to the advanced 

category if they were to maintain their current conditional growth percentile.  These are 

known as Creekside’s “move up” percentages.  It can be seen that in any given year 

relatively small percentages of Creekside students have had conditional growth 

percentiles that would enable them to “catch up” or “move up” relative to the state 

standards that have been set for proficient and advanced performance in math.  Indeed, 

for a significant proportion of students classified as proficient, the growth they are 
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demonstrating would not be enough for them to “keep up7”, and this is a trend that has 

worsened over time.  

 

Figure 6.  Growth Projection Approach for Creekside Math Performance 

 
  

Projection approaches to growth that are similar to this in spirit, if not in technical 

details, can be found in the Race to the Top proposals that were funded for Tennessee, 

Florida and Delaware.  The obvious drawback to this approach is that it assumes that the 

thresholds that have been set for proficiency have been vertically articulated, and that the 

thresholds are plausible for all students to obtain (no matter what their level of 

performance in the early grades of testing).  

 

A Note on Normative vs. Absolute Growth Interpretations 

 

Neither the USED or NRC definitions of growth presented earlier specify whether 

inferences are to be made as a function of absolute or normative changes in student 

achievement. An “absolute” growth model can be used to answer the question “How 

much has student achievement changed from one grade to the next?” or “At what rate is 
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student achievement changing across multiple grades?” A well-known requirement of an 

absolute growth model is that test scores have been placed onto a vertical scale to adjust 

for differences in difficulty such that scores across grades can be directly and 

meaningfully compared.  A deeper, and potentially more problematic assumption is that 

such scales have equal-interval properties (Ballou, 2009; Briggs, 2010, 2011). In contrast, 

“normative” growth models such as the SGPM do not require a vertically linked scale, 

only prior test scores that are strongly associated with subsequent test scores. 

Fundamentally, these models answer the question: “Compared to students with the same 

prior achievement, is current achievement higher or lower than would be expected?” 

Normative growth is generally not what a layperson conceptualizes when they are told 

that a model has been developed to measure growth in student achievement, and this can 

lead to some confusion when results are being communicated to the public.  However, as 

the illustration above has demonstrated, at the school-level there are some innovative 

approaches (e.g., adequate growth percentiles) that can be implemented to help assess 

how much students on the whole have learned and whether the rate of learning appears to 

be increasing or decreasing.  However, these approaches depend greatly on the quality of 

the horizontal equating and grade to grade standard-setting procedures that underlie the 

large-scale assessment.  

 

Recap 

 

The trends in achievement status at Creekside paint a worrisome picture that 

would seem to explain why the school has been sanctioned under the auspices of No 

Child Left Behind.  Yet when we shift from an eye toward trends in status for pseudo-

longitudinal cohorts to inferences about growth for longitudinal cohorts, the picture 

changes considerably.  It now appears that the past two cohorts of grade 4 and 5 students 

at Creekside have test performance that is indicative of significant growth when 

compared to other students across the state with the same test score histories.  On the 

other hand, relative to the standards the state of Colorado has established for proficient or 

advanced performance in math, a good case can be made that Creekside students are not 

growing fast enough.  As presented here, a growth model provides an assessment of 
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school-level performance at Creekside that appears more equitable than that which would 

be given through comparisons of cohort to cohort changes in achievement status.  This is 

because it is based on longitudinal data and takes into account test performance in the 

past before passing judgment on test performance in the present. It does not, however, 

simplify the process of reaching a conclusion about the quality of services students at 

Creekside are receiving.  Indeed, the illustration here has been greatly simplified in that I 

have only focused on math performance and no comparisons as a function of 

demographic subgroups were made.  To come to a summary conclusion about the 

educational needs at Creekside would surely require further detective work, and in my 

view, this is how it should be. (For more on this see Briggs, in press).  

 

Making Causal Inferences about Teachers or Schools: “Value-Added Modeling” 

 

There is considerable confusion over the distinction between growth models and 

value-added models, and the two terms are often used synonymously in discussions of 

educational accountability.  In the National Research Council report Getting Value out of 

Value-Added, Braun et al. (2010) define value-added models (VAMs) as “a variety of 

sophisticated statistical techniques that use one or more years of prior student test scores, 

as well as other data, to adjust for preexisting differences among students when 

calculating contributions to student test performance. (Braun et al. 2010, 1)”  According 

to Harris (2009), “the term is used to describe analyses using longitudinal student-level 

test score data to study the educational input-output relationship, including especially the 

effects of individual teachers (and schools) on student achievement.”  Given these 

definitions, the clearest distinction between a growth model and a value-added model is 

inferential intent.  A growth model is first and foremost descriptive, and makes no 

explicit attempt to “isolate” the contribution of teachers or schools to student 

achievement.  By contrast, it can be argued that a value-added model is specified first and 

foremost with the intent of estimating the causal effects of teacher (or schools) on 

students8.  This distinction between growth and value-added is easy to blur because the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8	
  For example, SAS makes the following explicit claim in its marketing of its Educational Value Added 
Assessment System (EVAAS): “It is much more than teacher or classroom level analyses; it assesses the 
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moment that student-level growth statistics are aggregated to the classroom or school 

levels, it will often be unavoidable that high or low values are attributed to teachers or 

schools in a causal manner.  However, while all growth models applied to students in 

educational settings may well encourage value-added inferences, in the absence of 

additional evidence, there is no compelling reason a priori to believe that these 

inferences—in the absence of additional detective work—will be valid.   

At this point there have been a number of excellent reviews written on issues 

surrounding the specification and use of value-added models (Braun et al., 2010, 

McCaffrey et al, 2003; McCaffrey, Han & Lockwood, 2009; OECD, 2008; Harris, 2009).  

I briefly focus attention on three distinct approaches that might be taken to use PARCC 

test scores to make value-added inferences.  In a departure from the Creekside example 

above, I illustrate each model for the case in which classrooms rather than schools are the 

units of analysis. 

 

The Student Growth Percentile Attribution Approach 

 

The SGPM (Betebenner, 2009) quantifies student achievement relative to prior 

achievement in the metric of cumulative score percentiles.  A student growth percentile 

(SGP) is computed for each student in a given grade with at least two years of 

consecutive tests scores using quantile regression (Koenker & Hallock, 2001).  No 

imputation is performed to include students with missing values. Quantile regression can 

be conceptualized as an elaboration of the widely known and applied Ordinary Least 

Squares linear regression from a case in which one is interested in parameterizing trends 

in conditional means, to one in which one is interested in parameterizing trends in many 

different conditional quantiles.  An advantage of the quantile regression underpinnings of 

the SGPM is that the approach does not assume linearity in its regression functions, is 

insensitive to outliers, the presence or absence of vertical links between the score scales 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
effectiveness of districts, schools and teachers, as well as provides individual student projections to future 
performance. SAS EVAAS for K-12 provides precise, reliable and unbiased results that other	
  simplistic 
models found in the market today cannot provide.”  Retrieved August 25, 2011 from 
http://www.sas.com/govedu/edu/k12/evaas/index.html.	
  	
  	
  

	
  



	
   18	
  

from grade to grade, and whether or not the score scale for any given grade is interval or 

ordinal.  Specialized software is required to specify and estimate a quantile regression, 

but such software is publicly available and the SGP package is free through the R 

statistical environment.   

 The SGPM is a perfect example of why the terms growth model and value-added 

model are sometimes used interchangeably: because student-growth percentiles can be 

easily aggregated to the classroom and school-levels, they are often given a de facto 

attribution as value-added.  Yet the model was not developed as a competitor to other 

value-added models, and the statistics it produces at the classroom or school level were 

never meant to represent a direct estimate of the causal effect of teachers or schools on 

student achievement9. So while it may well be used as though it were a value-added 

model, and it may even lead to many of the same rankings and conclusions as some 

value-added models, this is not its purpose, which is to provide a descriptive 

characterization of conditional student achievement that supports inferences about growth.  

Nonetheless, it seems important to note that just because value-added models are 

intended as tools to isolate the causal effects of teachers and schools on student 

achievement this does not necessarily mean they are any more capable of accomplishing 

this relative to the SGPM (Betebenner, Wennig & Briggs, 2011).  In fact, in two 

instances where the teacher and school rankings based on the SGPM and a widely used 

VAM (i.e., the EVAAS, see below) have been compared, the typical correlations have 

been greater than 0.8 (Briggs & Betebenner, 2009; Wright, 2010). 

 

The Production Function Approach 

 

 Let  represent the composite end of year test score on a PARCC assessment for 

student (i) in grade (g), in a classroom with teacher (t) and school (s). The VAM is 

specified as  

.     (1) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  For more on this issue, which is really quite subtle, please see Briggs (in press). 
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The covariates in this model are captured by  which represents PARCC test scores 

from prior grades10 , and , which could represent any number of student, classroom 

or school-specific variables thought to be associated with both student achievement and 

classroom assignment.  The key parameter of interest is the fixed effect , which 

represents the effect of the current year’s teacher on student achievement (i.e., the model 

above includes a dummy variable indicator for each teacher in the dataset).   

The validity of the model hinges upon the assumed relationship between the 

unobserved error term  and Dig.  If, conditional upon X and Z,  and Dig are 

independent, in theory it is possible to obtain an unbiased estimate of .  In other words, 

if one can control for the  variables that govern the selection process whereby higher or 

lower achieving students land in certain kinds of classrooms, then one can approximate 

the result that would be obtained if students and teachers had been randomly assigned to 

one another from the outset.  This is controversial proposition, and much of the debate 

over the use of VAM for teacher accountability has focused on (a) the nature and number 

of covariates that need to be included in X and Z, and (b) evaluating the extent to which 

adding more variables or student cohorts serves to reduce bias in . 

The production function model has a long history in the economics literature 

(Hanushek & Rivkin, 2010; Todd & Wolpin, 2003), and helps to explain why this has 

been the preferred specification approach among economists who have contributed the 

VAM literature.  This is the specification that underlies the VAM used by Wisconsin’s 

Value-Added Research Center, which has taken an active role marketing its services to 

urban school districts across the country (e.g. New York City, Milwaukee, Los Angeles).  

There is ongoing debate over whether certain VAMs from this tradition can be used to 

support unbiased causal inferences about teacher effects.  For optimistic perspectives, see 

Kane & Staiger, 2008; Koedel & Betts, 2009; and Goldhaber & Hansen, 2010.  For more 

pessimistic assessments, see Ballou, 2009; Rubin, Stuart & Zanutto, 2004; and Rothstein, 

2009; 2010.   
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The EVAAS Approach 

 

 The Educational Value-Added Assessment System (EVAAS; Sanders, Saxton & 

Horn, 1997) is a multivariate longitudinal mixed effects model. While a detailed 

presentation is outside the scope of this paper, a key point of differentiation between it 

and the approaches presented above can be seen by writing out the equation for a single 

test subject in parallel to equation 1 

        (2) 

In contrast to the fixed effects specification above, under this approach teacher effects for 

a given grade are cast as random variables with a multivariate normal distribution such 

that .  Only the main diagonal of the covariance matrix is estimated (i.e., 

teacher effects are assumed to be independent across grades).  The student-level error 

term is also cast as a draw from a multivariate normal distribution with a mean of 0, but 

the covariance matrix is left unstructured. The EVAAS is often referred to as the “layered 

model” because a student’s current grade achievement is expressed as a cumulative 

function of the current and previous year teachers to which a student have been exposed.  

For example, applying the model above to longitudinal data that span grades 3 through 5 

results in the following system of equations: 

 In the model above no teacher effects can be computed for grade 3 because they are 

confounded with variability in student achievement backgrounds. In contrast, when 

certain assumptions hold it is possible to get an unconfounded effect for the grade 4 

teacher. This can be seen by substituting the first equation into the second equation in the 

system such that .  This shows that the sufficient statistic 

for estimates of teacher effects under the EVAAS are test score gains from one grade to 

the next.  It is for this reason that the EVAAS (and other mixed effect modeling 

Yig =! g + "g*
g*!g
" + # ig.

!g* ~ N (0,! )

Yi3 =!3 +!3 + ! i3
Yi4 =!4 +!3 +!4 + ! i4
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approaches related to it) has long been presumed to require test scores that had been 

vertically scaled (Ballou, Sanders & Wright, 2004; McCaffrey et al., 2003).11   

This simplified presentation may obscure two significant aspects of the EVAAS 

that contribute to its purported ability to reliably and validly “disentangle” the influence 

of teachers from other sources of that influence student achievement.  In particular, the 

EVAAS 

• makes use of panel data for up to five years of test data per student and three 

student cohorts per teacher; and 

• models multiple test subject outcomes jointly as a multivariate outcome. 

The EVAAS has the longest history as an approach being used for the purposes of 

educational accountability.  Though it has been criticized because it does not control for 

additional covariates beyond a student’s test score history (Kupermintz, 2003), teacher 

value-added estimated by the EVAAS with and without student-level covariates have 

been shown to be strongly correlated (Ballou, Sanders & Wright, 2004).  A more 

equivocal issue is whether or not one should control for classroom or school-level 

characteristics (McCaffrey et al, 2004).  Controlling for classroom characteristics can 

lead to overadjustments of teacher effect estimates; controlling for school fixed effects 

will restrict teacher comparisons to a within-school reference population.  Finally, note 

that the EVAAS assumes that the effects of students’ teachers in the past persist 

undiminished into the future.  McCaffrey et al (2004) and Lockwood, McCaffrey, 

Mariano & Setodji (2007) have demonstrated empirically that this may not be a viable 

assumption in the context of teachers; Briggs & Weeks (2011) show that it is probably 

not viable in the context of schools.  However, this issue only has an impact on the 

precision of value-added estimates, not with accuracy. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 As it turns out, while it does matter how a test has been scaled (Briggs & Weeks, 2009), it will generally 
make little difference to value-added rankings of teachers or schools whether the tests have or have not 
been vertically linked.  I demonstrate this in a subsequent section. 
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Assessment Design Factors that Could Impact Inferences about Growth and/or 

Value-Added 

 

Vertical Scaling12 

 

 A vertical scale is not a prerequisite when tests are being used to make value-added 

inferences.  This is true not only in the case of the SGPM and production function 

approaches where it may seem self-evident, but is also generally true for approaches (like 

the EVAAS) that depend upon gain scores or repeated measures as sufficient statistics. 

From a purely empirical standpoint, the presence or absence of a vertical scale when 

implementing a reduced form version of the EVAAS has been shown to make almost no 

difference to the normative rankings of teacher or schools from a value-added model 

(Briggs & Weeks, 2009; Briggs & Betebenner, 2009; Briggs & Domingue, in progress).  

But a theoretical explanation for this can be established as well, and it seems worthwhile 

to do so here.   

 Imagine a pair of vertically scaled assessments taken over the course of two years. 

Denote the pair of scale scores (that have been scaled via Item Response Theory but not 

yet placed on the vertical scale) by y and x, where x comes from grade g in year t and y 

comes from grade g + 1 in year t + 1. Vertical scaling imposes a grade-specific linear 

transformation on x and y where the linking constants are usually estimated iteratively 

using the Stocking-Lord Algorithm (Stocking & Lord, 1983).  After the two tests have 

been vertically scaled we have 

  

It is easy to show that when using some version of the VAM from equation 1, there will 

be a perfect correlation between estimates of value-added whether one is using y and x or 

y '  and x '  in the model.  To keep the proof simple without any loss of generality, we can 

rewrite equation 1 for the case where we are estimating the value-added of a school on its 

students in grade 5 with only a single prior year test score in grade 4 as 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12  Part of this section draws from a manuscript in progress by Briggs & Domingue.  The mathematical 
argument being presented was first established by Ben Domingue. 

x ' = ! 0 +!1x
y ' = "0 + "1y.
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.       (3) 

Now consider the same model after the two scales have been vertically linked.  

!0 + !1yi = " 0 + " 1(# 0 +#1xi )+ $tDi
t
% + & i      (4) 

With a little algebra (4) can be rewritten as follows 

 

It follows that the value-added parameters  and  from (3) and (4) have a perfect 

linear relationship.  Now consider the same proof in the case where the outcome variable 

of interest is a gain score.  Before vertical links have been established, we have 

       (5) 

Once again, consider the same model after the two scales have been vertically linked: 

     (6) 

In this case, unless the two linking constants  and  that affect the variability of the 

scales are identical, there is no guarantee that the value-added estimates from (5) will be 

linearly related with those from (6).  However, using grade 3 through 8 data from 

Colorado we have examined the correlation between school-level estimates when we fix 

 at 1 (a common identification constraint imposed on the base grade of a vertical scale) 

and let  vary.  For values of  between .9 and 1.1, our correlations between school-

level estimates are 0.97.  Only when the values drop (increase) as low (high) as .8 (1.2) 

do we see a noticeable drop in our correlations to .89.  In our empirical work with vertical 

scales based on the grade span between 3 and 8, we have found that the estimates for 

these constants from grade to grade range between about .95 and 1.05.  Hence in most 

realistic testing contexts the decision to link score scales vertically is unlikely to have a 

significant impact on the value-added rankings of teachers or schools.   

The discussion above is not meant to imply that vertical scales are not desirable, 

or that PARCC should not consider establishing some—only that this needs to be done 

for the right reasons.  It is possible that choices in vertical scaling can have a major 
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impact when they are used as a basis for simple parametric linear models that project 

student achievement into the future.  For example, in some states, a vertical scale is used 

as a means of setting vertically articulated cut-points across grades through the process of 

standard-setting. Since projections of student achievement are evaluated relative to these 

cutpoints, if two different vertical scales led to different cutpoint locations, this could 

change the cumulative distribution of students below a given cutpoint.  Beyond this, 

Kolen (2011) has argued that a vertical scale can be useful as a means for connecting a 

single number associated with a school, classroom or student back to meaningful 

statements about the content of the test that has or has not been learned. As noted earlier, 

only a vertical scale can support statements about student-level growth in terms of 

magnitudes that are analogous to the sorts of statements that would be made about a 

child’s growth in height.  Unfortunately, not all vertical scales are created equally (Briggs, 

2009; 2011), and there are good reasons to be wary about the claims they can support. 

Nonetheless, there is some reason for optimism about the prospects for vertical 

scaling with the PARCC assessments.  In contrast to most existing large-scale 

assessments, the PARCC tests will be designed on the basis of a standards framework in 

which focused attention to growth over time in “highlighted domains” was a guiding 

principle.  If careful thought is given ahead of time to the proper design and validation of 

vertical scales, they could play an important role in (a) communicating growth trends at 

the student-level in a manner that is intuitive to stakeholders, and (b) providing 

complementary information that could serve as a criterion-referenced validity check on 

normative value-added inferences.   

One way this might be accomplished in mathematics would be to attempt to 

create staggered vertical scales for a small set highlighted domains.  For example, see 

Figure 7.  In elementary school, vertical scales could be created within the domains of 

“numerical operations: fractions” and “measurement”.  By middle school, growth would 

be measured using new vertical scales within the domains of “expressions & equations” 

and “geometry.”  Because no vertical scale would span more than 3 to 4 grades, it would 

feasible to implement a scaling design in which the same external form was administered 

to all students across a given grade span containing the same set of items.  In ELA, a 

single vertical scale for a well-understood construct like reading comprehension would 
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appear to be a more viable possibility (Briggs, 2011; Stenner, Burdick, Sanford, & 

Burdick, 2006; Stenner & Stone, 2010). 

 

Figure 7.  Staggered Vertical Scales in Mathematics 

Grade Fractions Measurement Expressions & 

Equations 

Geometry 

8   X X 

7   X X 

6 X  X X 

5 X X   

4 X X   

3 X X   

 

Construct Conceptualization 

 

A key design feature of the PARCC tests will be the construct conceptualizations 

within the mathematics and ELA subject areas. Figure 8 shows two different growth 

interpretations associated with two different conceptualizations of the construct of 

measurement. The left side of Figure 8 contains planes that are intended to demonstrate 

what it means to be “college and career ready” in a given subject area (e.g., mathematics) 

at a given grade level (e.g., grade 3). Within each plane are light-colored shapes, and 

within each shape is a series of dots. The shapes are meant to represent different “content 

domains” (e.g., Numerical Operations, Measurement & Data, Geometry); the dots 

represent domain-specific performance standards that delineate grade-level expectations 

for students (e.g., within the domain of Measurement & Data: “Generate measurement 

data by measuring lengths using rulers marked with halves and fourths of an inch.”). This 

sort of taxonomy has traditionally been used to deconstruct the often amorphous notion 

of “mathematical ability” into the discrete bits of knowledge, skills, and abilities that 

should, in principle, be teachable within a grade-level curriculum. Such an approach 

facilitates the design of grade-specific assessments because test items can be written to 

correspond to specific statements about what students should know and be able to do.   
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The construct of measurement in such designs is not a well-understood psychological 

attribute of the test-taker, but a composite of many, possibly discrete, KSAs. I refer to the 

assessment design implied by the left side of Figure 8 as the domain-sampling 

approach.13  

 

Figure 8.  Different Construct Conceptualizations and Implications for Growth 

 
 

Under the domain-sampling approach, the intent is for growth to be interpreted as 

the extent to which a student has demonstrated increased mastery of the different 

domains that comprise mathematical ability. This is indicated by the single arrow 

indicating movement from the plane for a lower grade to the plane for a higher grade. 

Note that if both the domains and the content specifications within each plane change 

considerably from grade to grade, then it becomes possible for students appear to “grow” 

even if distinct content is tested across years.  In the best case scenario for growth 

inferences, considerable thought has been put into the vertical articulation of the changes 

among content domains, clusters, and standards from grade to grade.  For example, 

according to the CCSS, a composite “construct” of mathematical ability could be defined 

from grade to grade as a function of 5 content domains and 6 skills domains.  Yet this 

leaves ample room for growth in terms of the composite to have an equivocal 

interpretation depending upon the implicit or explicit weighting of the domains in the 

assessment design and scoring of test items.  Furthermore, the number of items required 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 For complementary perspective see the recent article by Markus & Borsboom (2011). 
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to make inferences about all CCSS domains at one point in time along with change over 

time is likely to be prohibitive. 

A different basis for construct conceptualization comes from what I refer to as the 

learning progression approach. Learning progressions have been defined as empirically 

grounded and testable hypotheses about how students’ understanding of core concepts 

within a subject domain grows and become more sophisticated over time with appropriate 

instruction (Corcoran, Mosher, & Rogat, 2009). The key idea shown in the right panel of 

Figure 8 is the presence of an implicit hypothesis about the nature of growth: the way that 

students’ understanding of some core concept or concepts within the same domain is 

expected to become qualitatively more sophisticated from grade to grade. The notion that 

this constitutes a hypothesis about growth to be tested empirically is represented by the 

question marks placed next to the arrows that link one grade to the next.  The learning 

progression approach to growth values the assessment of depth of knowledge within a 

single domain over the assessment of breadth of knowledge across multiple domains.  

Hence there is a cost to following this approach exclusively as it may reduce the ability of 

a testing system to “assess the full range of the CCSS.”   

To illustrate this idea more concretely, consider a specific example of something 

that might serve as an initial basis for a learning progression hypothesis: the concept 

“represent and interpret data” that can be found in the “Measurement and Data” domain 

in the CCSS.   The standards associated with this concept each time it appears across 

grades 1 through 5 are shown in Figure 9 below.   
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Figure 9.  Example of a Learning Progression Hypothesis That Could be Made on the 

Basis of the Measurement & Data Domain of the Common Core Standards 

Grade Grade Level Performance Expectations for “Represent and Interpret 
Data” 

5 

• Make a line plot to display a data set of measurements in fractions of a 
unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve 
problems involving information presented in line plots.  For example, 
given different measurements of liquid in identical beakers, find the 
amount of liquid each beaker would contain if the total amount in all 
the beakers were redistributed equally. 

4 

• Make a line plot to display a data set of measurements in fractions of a 
unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction 
of fractions by using information presented in line plots.  For example, 
from a line plot find and interpret the difference in length between the 
longest and shortest specimens in an insect collection. 

3 

• Draw a scaled picture graph and a scaled bar graph to represent a data 
set with several categories. Solve one- and two-step “how many more” 
and “how many less” problems using information presented in scaled 
bar graphs.  For example, draw a bar graph in which each square in 
the bar graph might represent 5 pets. 

• Generate measurement data by measuring lengths using rulers marked 
with halves and fourths of an inch. Show the data by making a line 
plot, where the horizontal scale is marked off in appropriate units— 
whole numbers, halves, or quarters. 

2 

• Generate measurement data by measuring lengths of several objects to 
the nearest whole unit, or by making repeated measurements of the 
same object. Show the measurements by making a line plot, where the 
horizontal scale is marked off in whole-number units. 

• Draw a picture graph and a bar graph (with single-unit scale) to 
represent a data set with up to four categories. Solve simple put-
together, take-apart, and compare problems using information 
presented in a bar graph 

1 
• Organize, represent, and interpret data with up to three categories; ask 

and answer questions about the total number of data points, how many 
in each category, and how many more or less are in one category than 
in another. 

 

In this illustrative learning progression the ability of students to represent and 

interpret data is expected to increase in sophistication from grade to grade: In grade 1 

students are expected to make frequency comparisons across a limited number of nominal 

categories; by grade 2 they are expected to be able to make relatively crude ordinal 

measurements of length; by grade 3 they are expected to make these ordinal comparisons 

more precise; and by grade 4 they are, for all intents and purposes, making continuous 

measurements of length.  Note that when the ability to represent and interpret data is 

viewed in terms of the continuum above, there are important implications for the design 
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of items that would be used to assess student understanding.  Say that grade 3 students 

are given items that indicate whether or not they can represent and interpret data so as to 

make measurements to the nearest ¼ of an inch.  If a student fails to master the items, 

does this mean he/she is struggling with the prerequisite skills listed for grade 2 or grade 

1?  Conversely, if a student demonstrates mastery of the items, this doesn’t help us 

identify whether he/she might have an understanding that is even higher on the 

hypothesized progression.  The upshot of all this is that to make meaningful inferences 

about growth, students need to be assessed from grade to grade with items that are both 

below (easier) and above (harder) the level of understanding anticipated on the basis of 

the standards  This is a fundamental way that a learning progression approach to 

assessment design differs from a domain-sampling approach. 

A message that has been delivered time and time again by the PARCC TAC is 

that the validity of any large-scale assessment will hinge upon the ability of test 

developers to be clear and concrete about what it is that is being measured.  From the 

perspective of designing assessments that can support inferences about growth, this 

message must be extended to a demand that test developers be clear and concrete about 

what is expected to change over time.  In this regard, because vertical linkages are 

already evident in the progression of domains and standards across grades, the CCSS are 

a step in the right direction as a blueprint for an assessment system focused on growth.  

The two ways of conceptualizing the construct of measurement I have presented here, 

domain-sampling and learning progression, are by no means exhaustive or mutually 

exclusive.  One could imagine a large-scale assessment in which items associated with a 

learning progression are embedded as a stratum within a larger sample across domains.  

However, I would argue that the learning progression approach is much more likely than 

the domain sampling approach to lead to a theoretically defensible basis for a vertical 

score scale. 

 

Measurement Error and Inferences about Growth 

 

 Regardless of the modeling approach being taken, growth inferences for students 

at the low and high ends of the score distribution will be biased downward in the 
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presence of measurement error.  It may be easiest to think of this issue in term of floor 

and ceiling effects.  Floor effects will occur when the easiest items on an assessment are 

still too difficult for students at the low end of the total score distribution.  Ceiling effects 

will occur when the hardest items are still too easy for students at the high end of the total 

score distribution.  In item response theory, it is well understood that measurement error 

at a particular location of a test score scale has an inverse relationship to the number of 

items at the same location.  Because of constraints in testing time and a recognition that 

the bulk of test-takers will not be located at the extremes of the score distribution, most 

large-scale assessments have an information function with the typical inverted U shape.  

If the PARCC tests were to conform to this, then making student-specific inferences 

about growth from year to year will remain problematic for students at the low and high 

ends of the distribution.   

The best way to avoid floor and ceiling effects is to increase the possibility of 

“out of level” testing.  The idea would be to test students where they are, not where they 

should be.  Though PARCC is not planning a computer adaptive testing structure, it 

might still be possible to “route” students to more targeted test forms for their end-of-year 

testing on the basis of their performance on one of the earlier through-course tests.  It 

does not seem advisable however, to hold the PARCC tests to the criterion of the same 

(low) SEM for students no matter where they happen to be located in the score 

distribution as a computer adaptive test.  One might argue that for the extreme cases in 

which all the students in a teacher’s classroom are at least two SDs below the mean of the 

test score distribution, there are much bigger issues than measurement error to worry 

about.  My (admittedly limited) empirical work on this issue suggests that such cases will 

be relatively rare.  Using the data from the Los Angeles Unified School District 

(LAUSD; Briggs & Domingue, 2011) we can ask how many grade 3-5 teachers have 

classrooms in which no student has a test score that is higher than 2 SDs below average.  

There were between 1,694 and 1,861 distinct classrooms in the LAUSD in 2009.  Out of 

this number, there is a not a single example of a classroom that would meet the 2 SD 

criterion. If we loosen the criterion to a classroom in which no student has a test score 

higher than 1 SD below average, we find that for reading outcomes there is one grade 3 

classroom, two grade 4 classrooms and one grade 5 classrooms where this applies.  For 
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math, there is a single grade 4 and 5 classroom.   Needless to say, as a percent of total, 

this is less than .05% of all LAUSD classrooms.  So while there is considerable 

variability in test score performance by classroom in Los Angeles elementary schools 

(the proportion of total variance that is between classrooms rather than within them are 

between about .35 and .36 in math and .38 and .40 in reading), in this particular example 

it seems unlikely that student tracking by ability is so extreme that measurement error 

would become a primary technical objection to student or classroom-level inferences 

about growth. 

 

Measurement Error and Value-Added Indicators 

 

Measurement error can pose problems for stability of value-added indicators in 

two different ways at two different levels.  First, to the extent that the student-level 

regression equations at the foundation of a value-added analysis includes prior year test 

scores as “control” variables, measurement error in these observed scores will lead to an 

attenuation of all regression coefficients in the model (Fuller, 1987; Buonocarsi, 2010).  

Second, regardless of the quality of instruction to which they are exposed, it may be the 

case that some cohorts of students are simply “better” or “worse” than others14.  Given 

this, when teachers or schools are the units of analysis to which inferences are being 

made, it has been argued that some portion of the observed variability in estimates of 

value-added can be explained by chance (Kane & Staiger, 2002; McCaffrey, Sass, 

Lockwood, & Mihaly, 2009).  The key distinction here is that measurement error at the 

student level is assumed to have a functional relationship with the number of test items 

that students have been administered; at the teacher or school level, measurement error is 

assumed to have a functional relationship with the number of students.  The analogy here 

is essentially that students are to schools what items are to students.  Taken together, both 

of these sources of measurement error could explain the phenomenon in which value-

added estimates appear to “bounce” up and down in a volatile manner from year to 

year—even if the true value were actually constant over time.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14	
  This is sometimes described as “sampling error” rather than measurement error, but the concept is the 
same.  
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Measurement	
  Error	
  at	
  the	
  Classroom	
  or	
  School	
  Levels	
  

The year to year correlation of teacher value-added has been found to be weak to 

moderate, ranging from about 0.2 to 0.6 (Goldhaber & Hansen, 2008; McCaffrey et al., 

2009).  Kane & Staiger (2002; 2008) have argued that such intertemporal correlations can 

be interpreted as an estimate of reliability, in which case any intertemporal correlation 

less than 0.5 would imply that more than half of the variability in value-added can be 

explained by chance unrelated to characteristics of teacher or school quality that persist 

over time.  After conducting a simulation study, Schochet & Chiang (2010) conclude that 

35% of teachers are likely to be misclassified as either effective or ineffective when 

classifications are based on a single year of data. 

Three adjustments are typically made, sometimes in tandem, to account for the 

instability of value-added indicators.  One adjustment is to increase the number of years 

of data over which value-added is being computed.  Schochet & Chiang (2010) find that 

going from one to three years of data reduces the error rate for teacher effectiveness 

classifications in their simulation from 35 to 25%.  Using empirical data from Florida, 

McCaffrey et al. (2009) find that going from one to three years of data increases, on 

average, the reliability of value-added estimates for elementary school and middle school 

teachers from 0.45 to 0.55 and 0.56 to 0.66 respectively.  Two related adjustments are to 

use these estimates of reliability to “shrink” value-added estimates back to the grand 

mean (i.e., the average value-added of all teachers in the system), and/or to compute a 

confidence interval around each value-added estimate.   

When the reliability of value-added is low, it will typically be a mistake to 

attempt to classify teachers or schools into more than three categories (e.g., significantly 

below average, average, significantly above average).  In such instances if teachers are 

instead classified into quintiles of the value-added distribution (five equally spaced 

categories instead of three unequally spaced categories), misclassification rates are likely 

to increase dramatically (Aaronson, Barrow, & Sander, 2007; Ballou, 2005; Briggs & 

Domingue, 2011).   
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Measurement Error at the Student Level 

Considerably less research has been done to evaluate the impact of student-level 

measurement error on value-added analyses.  The problem only appears to be relevant to 

regression models in which prior year test scores are included as independent variables.  

Such cases lead to the classic “errors in variables” problem that is well-understood in the 

econometrics literature.  Though there are many possible adjustments that could be used 

as a correction to this problem (c.f., Fuller, 1987; Buonacorsi, 2010), the adjustments that 

have been applied in the literature to date (c.f., Buddin & Zamarro, 2009; Rothstein, 

2009) have been based on the assumption of constant measurement error across the test 

score distribution, an assumption that is clearly unrealistic given the way that large-scale 

assessments are designed (see next section).  While it is clear that the failure to adjust for 

the error in variables problem can have a significant impact on value-added inferences, 

the practical impact of imposing linear instead of nonlinear adjustments is unclear.  This 

is likely to be an active area for research studies in the coming years.  

 One subtle issue that might have an impact on VAM usage comes from a footnote 

in Brennan’s recent White Paper “Using Generalizability Theory to Address Reliability 

Issues for PARCC Assessment.”  Brennan (2011) writes in footnote 7, “To put it bluntly, 

coefficient α is not likely ever to be a defensible statistic for characterizing the reliability 

of scores for a PARCC assessment.”  In the production function VAM specifications, it is 

typical for econometricians to make adjustments that take into account measurement 

error in test scores included as covariates on the right-hand side of the equation.  Most of 

these adjustments involve some use of Cronbach’s alpha to estimate a single standard 

error of measurement.  To the extent that Brennan’s assertion is correct, this may well 

have an impact on the adjustments made for measurement error in the production 

function VAM approach, especially if there are significant differences in conditional 

standard errors of measurement.   

 

Horizontal Equating 

 

 Growth models that are used to supplement the evaluation of achievement status 

(e.g., “college and career readiness by the end of high school”) through projections of 
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student achievement into the future depend on the assumption that test scale scores for 

the same grade are, at a minimum, horizontally comparable across time.  At present there 

is considerable empirical evidence to suggest that some large-scale assessments have had 

problems with their horizontal equating.  On one state’s test my students and I have found 

examples of shifts in horizontal “ability” across years that were larger than those found 

vertically across grades.  Meyer & Dokumaci (2009) expressed similar concerns in the 

context of horizontal shifts found for Wisconsin’s state test.  While substantial shifts 

upward might not be surprising in the early years following the implementation of a new 

assessment, in some states these shifts appear to continue in subsequent years, in both 

directions.  For more on this issue see the PARCC White Paper by Luecht & Camara 

(2011).  

 

Testing Window and Days of Instruction 

 

 One design issue that has only recently come to my attention is the timing and 

length of the testing window during which students in participating states will be 

expected to have taken the PARCC assessments.  Assume for the moment that the 

PARCC tests will in fact be sensitive to instruction in the sense that ceteris paribus, a 

student exposed to an additional five days (or 10 days, or 15 days, etc.) of focused 

instruction that is aligned to the CCSS (i.e., a unit of adding/subtracting fractions with 

different denominators) will score higher, on average, then a student who has not.  It 

follows that when test scores are being used to evaluate teachers and schools it is not 

likely to be a matter of indifference whether a given classroom or school is comprised of 

students that were tested at the beginning or end of the testing window.  The key variable 

is not so much the testing window, but the number of days of instruction to which 

students have been exposed before they are tested.  If this varies considerably by 

classrooms, school districts and/or states, then to the extent that value-added comparisons 

are to be made across these different units of analysis, it will be necessary to include this 

as a covariate in a VAM (e.g., production function approach) or as a inclusion criterion 

for the teachers and schools eligible to be compared with respect to value-added (e.g., 

EVAAS approach).  In general, then having a shorter time window will mitigate this 
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concern. The tradeoff, of course, is that having a shorter time window may limit the 

PARCC’s ability to implement a large-scale assessment with truly innovative features, as 

accommodating such features (such as performance tasks that span multiple days) may 

require a longer testing window. 

 

Recommendations 

 

1. The first priority for PARCC needs to be to design large-scale assessments that 

allow for student-level inferences about what students know, can do, and have 

learned in the subject areas of mathematics and English Language Arts.  And 

these inferences should form the basis for judgments about college and career 

readiness. Inferences about classroom or school-level growth and value-added 

should be (distant) secondary priority because these are generally not something 

that can be directly influenced by assessment design decisions. 

2. Inferences about growth will be most interpretable when the constructs of 

measurement have properly conceptualized. To this end it is important to be 

explicit about the KSAs that are and are not changing from grade to grade in the 

content areas of math, reading and writing.  This notion was illustrated through 

the learning progression approach to assessment design shown in Figure 9. 

3. In support of this, PARCC should find a way to embrace a considerable degree of 

“out of level” testing.  Items will need to be administered to certain students in a 

particular grade that may well be too easy to too hard for them in a traditional 

sense.  This may mean that some items that would be rejected under a traditional 

review of classical item statistics would be maintained. An increase in out of level 

testing will have the effect of decreasing floor and ceiling effects of grade-specific 

tests.   

4. Conditional on #2 and #3 above, PARCC should develop vertical scales.  In 

mathematics, these vertical scales should be targeted to specific highlighted 

domains across a limited span of grades.  In reading, it might be feasible to 

develop a vertical scale for the construct of reading comprehension that spans 

grades 3 through 12.  There does not seem to be a sufficient basis for the 
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development of a vertical scale in writing.  I want to emphasize the point that a 

vertical scale should only be developed given the constraints I have presented 

here, and if clear criteria are established for how the quality of the scale will be 

evaluated. 
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Appendix 

 

Figure A-1.  A Flow Chart for AYP Decisions in Colorado 

 

 
 

 

 


