urhan ÇETİN, Ergin HAMZAOĞLU, Yurdal DİKMENLİ, Bahadır KILC

New Horizons in Educational Sciences

SRA Strategic Researches

Academy

Turhan ÇETİN, Ergin HAMZAOĞLU Yurdal DİKMENLİ, Bahadır KILCAN

New Horizons in

Educational Sciences

ISBN: 978-605-69047-9-0

edited by

Turhan ÇETİN, Ergin HAMZAOĞLU, Yurdal DİKMENLİ & Bahadır KILCAN

New Horizons in Eduational Sciences

We work with leading authors to develop the strongest academic materials with bringing cutting-edge thinking and best learning practice to a global world.

© All rights reserved.

This book is the academic studies of Strategic Researches Academy (SRA). It is printed with the academic and financial support from SRA. The papers are first reviewed by the independent reviewers, and then proof-read and edited by the editor(s). The opinions and views expressed in papers are not necessarily those of this book editor(s) and SRA. All parts of this publication are protected by copyright. Any utilization outside the strict limits of the copyright law, without the permission of the publisher, is forbidden and liable to prosecution. This applies in particular to reproductions, translations microfilming, and storage and processing in electronic retrieval systems. This publication has been peer reviewed.

New Horizons in Educational Sciences

Turhan ÇETİN, Ergin HAMZAOĞLU Yurdal DİKMENLİ, Bahadır KILCAN

New Horizons in Eduational Sciences Turhan ÇETİN, Ergin HAMZAOĞLU, Yurdal DİKMENLİ & Bahadır KILCAN (eds.)

SRA Academic Publishing (Strategic Researches Academy)

visit us on the World Wide Web at: www.stracademy.org

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN: 978-605-69047-9-0 Copyright © 2019 by Turhan ÇETİN, Ergin HAMZAOĞLU, Yurdal DİKMENLİ & Bahadır KILCAN

Printed in Lithuanian

Library of Congress Cataloging-in-Publication Data New Horizons in Eduational Sciences / edited by Turhan ÇETİN, Ergin HAMZAOĞLU, Yurdal DİKMENLİ & Bahadır KILCAN p. cm.

ISBN 978-605-69047-9-0

Managing Editor: Turhan ÇETİN Printed date: 08 October 2019

SRA Academic Publishing H. Manto G. 74 Klaipeda 92292 Lithuanian +370 46 3796028 www.stracademy.org

Table of Contents

CHAPTER 1

Erosion and Landslide Concepts for Different Teaching Levels	1
Yurdal DİKMENLİ & İbrahim GAFA	

CHAPTER 2

Preparing Questions using the Cognitive Process Dimension of the Revis	ed Bloom's
Taxonomy in Geography Teaching	
Ali İLHAN	

CHAPTER 3

Factors Affecting the Educational Policy Implementation: Review of Literature 23 H. Ayşe CANER

CHAPTER 4

Academic Stress and Academic Coping	
Behire KUYUMCU	

CHAPTER 5

CHAPTER 6

Preservice Social Studies Teachers' Cognitive Structures Regarding Instructional	
Technologies and Materials	73
Arcan AYDEMİR & Turhan ÇETİN	

CHAPTER 7

CHAPTER 8

Patriotism Value in Geography Class Curriculum	
Yurdal DİKMENLİ & Özgür TEKİN	

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

Web Supported Science Education 151	1
Esra AÇIKGÜL FIRAT	

CHAPTER 13

Moving beyond looking for appropriate nature of science understandings:	An overview
on the journey of pedagogical content knowledge for nature of science teach	ning (PCK for
NOS) in instructional practice	
· •	

Ümit DURUK

CHAPTER 14

Gamified Assessment	
Gülden GÜRSOY	

CHAPTER 15

ntegrated STEM Education) 5
Dilber ACAR	

CHAPTER 16

Investigation of the Evaluation Cases in Social Science T	Cextbooks in the Framework of
Alternative Measurement and Evaluation	

Zeynep YAYLACI & Turhan ÇETİN

CHAPTER 17

lisun UÇTEPE & Ergin HAMZAOGLU

CHAPTER 18

CHAPTER 19

Literacy in Social Studies Education	267
Fatıma Betül DEMİR, Sibel OĞUZ HAÇAT & Bahadır KILCAN	

CHAPTER 20

CHAPTER 21

Social Studies and Creativity	9
Mustafa DOLMAZ & Özge METİN	

CHAPTER 22

Motivation Theories	
Ali Çağatay KILINÇ & Osman ÇEPNİ	

CHAPTER 23

Reading and Writing Poems with Fourth-Graders	333
Ayşegül BAYRAKTAR & Bengisu KAYA	

CHAPTER 24

Foreword

Technology has influenced all the aspects of our lives by causing inevitable changes and improvements in every field. Naturally, the world of science has greatly benefited from this change and development. In consequence, the rapid circulation of information and technology in the scientific world has increased the cooperation among scientists. This cooperation highly contributes to researches and studies in the fields of language, history, literature, education, economy, social and cultural life, politics, sports, tourism, and media and communication along with many other areas.

Thus, this book contains **New Horizons in Educational Sciences** in parallel with the improvements in the world of science. In this context, educational sciences, classroom education, geography education, science education, environmental education, psychological guidance and counselling teacher preparation, teaching methods and approaches. It took about one year to prepare and print the book. We would like to express our deepest gratitude to our friends who contributed to this process. We also thank SRA academic publishing staff.

Finally, very special thanks go to the authors who contributed to our book with their researches. It is our greatest wish that this book will increase the cooperation among scientists to make the world a better place.

Kind Regards.

Editors

Turhan ÇETİN, Ergin HAMZAOĞLU, Yurdal DİKMENLİ & Bahadır KILCAN 08. 10. 2019

CHAPTER 9

The Evaluation of Ecological Footprint Awareness Levels of Science and Technology Teacher Candidates by Artificial Neural Networks

Semra BENZER¹, Recep BENZER² & İçten BİRGÜL³

1. Introduction

Mankind has always benefited from natural resources to meet its needs from past to present. The world natural resources are also decreasing with population growth. How many planets like the world are needed in the future if individuals continue to live within the framework of their current consumption habits? Determining the answer to this question is important for a livable world to be left to future generations. In this regard, "ecological footprint" is one of the methods used. Ecological Footprint along with indication of sustainable lifestyle is a computing method that gives an opportunity to compare the needs of people on the earth with renewable capacity of the world (Eren et al., 2016). It is possible to calculate the ecological footprint by dissolving a test for the individual past and present. This test examines subheadings such as feeding habits, transportation routes and energy savings.

A disproportionate increase in world population brings with its skewed urbanization and industrialization. This causes various environmental problems such as destruction of natural areas, environmental pollution, seasonal changes, global warming, ozone depletion. In addition, people's unconscious and unpredictable approach to the issue triggers environmental problems.

The sustainable environment represents a process. It aims to protect the environmental values of future generations in social, economic, cultural and physical fields. One of the concepts that comes together with the concept of sustainable development is the ecological footprint (Du et al., 2006). For this purpose, it is the process of developing works without jeopardizing the existence and quality of the resources that will be needed in the future and today.

The first study on ecological footprint was conducted with the study named "Ecological footprints and appropriated carrying capacity: what urban economics leaves out" (Rees, 1992). In section 21 of the 21st agenda of UNESCO studies, it was noted that the development of phenomena such as education, environmental awareness, value judgments, attitudes and behaviors is directly proportional to sustainable development (UNESCO, 2002).

Dinc (2015) has emphasized the importance of global ecological footprint in Turkey. Many ecological footprint studies have been conducted on the awareness, attitudes and behaviors of elementary school students, prospective teachers and engineering students towards sustainable life (Van den Bergh and Verbruggen, 1999;Keleş et al., 2008; Erdoğan and Tuncer, 2009; Keleş, 2011;

¹Assoc. Prof. Dr., Gazi University, Faculty of Education, Science Education, sbenzer@gazi.edu.tr

² PhD, Gazi University, Information Institute, Computer Forensics, rbenzer@gmail.com

³ Science and Technology Teacher, ictenbirgul@gmail.com

Coşkun, 2013; Yıldız and Selvi, 2015; Eren et al., 2016, Eren et al., 2017; Özgen and Aksoy, 2017; Destek and Sarkodie, 2019).

Science and technology teacher candidates are responsible for carrying social awareness and creating and supporting this awareness in their environment. In the future, it is aimed that science teachers will be able to instill this awareness to the students and raise a conscious society.

ANNs are mathematical models inspired by biological neural networks contained in human brain. Having similar characteristics to those of biological neural networks, these systems attempt to learn tasks and determine how they will react to new tasks by means of creating their own experiences through the data obtained by using the predetermined samples (Sagiroglu et al., 2003). The implementation of a user-friendly software tool based on neural network classifiers was described for predicting the student's performance in the course of Mathematics of the first year of Lyceum (Livieris et al., 2012). Neural networks were also used to predict MBA (Master of Business Administration) student success (Naik and Ragothaman, 2004). The authors classified applicants to MBA program into successful and marginal student pools based on undergraduate GPA (Grade Point Average), undergraduate major, age, GMAT (Graduate Management Admission Test) score using a neural network with three layers. There is some educational research (Naik and Ragothaman, 2004; Lykourentzou et al., 2009; Paliwal et al., 2009; Livieris et al., 2012; Oancea et al., 2013; Kardan et al., 2013; Khan and Kulkarni, 2013; Naser et al., 2015; Yorek and Ugulu, 2015; Bahadır, 2016; Özdemir and Polat, 2017; Matzavela et al., 2017) related to artificial neural networks. The great advantage of neural networks is that they can be used to make predictions in several aspects in education. Using neural networks and analyzing parameters such as student satisfaction, can lead to high prediction accuracy (Kardan et al, 2013).

Questionnaires also became useful tools for studies with low budget, helping them plan correctly the next semesters without excessive spending. It was very valuable to predict the next prefer that each student would choose, and it could be achieved by using questionnaires. In that direction the contribution of Artificial Neural Networks (ANNs) was remarkable (Matzavela et al., 2017). ANNs are directed graphs with weights and they are used, apart from education, in weather forecasting, predicting earthquakes, calculating the financial risk of a loan, in automatic pilots, in stock exchange.

The aim of this study is to determine whether there is a difference between the science and technology teacher candidate's ecological footprint awareness levels with ANNs which is used as an effective prediction method in various sectors and as an alternative for traditional methods in the field of education.

2. Methods

In the study, the data will be collected with the "Ecological Footprint Awareness Scale" developed by the authors of the thesis "Investigation of ecological foot print levels of classroom teacher candidates" (Çoşkun and Sarıkaya, 2014). Survey model is based on the quantitative stage and it is convenient to general survey model. The qualitative research is based on the views of the participants or the interests, skills, abilities, attitudes, etc. of a topic or event which are usually based on larger samples than on other studies (Büyüköztürk et al., 2011).

In order to find answers to the sub-problems of the study, six questions containing demographic characteristics were written to the first part of the questionnaire. In the second part of the questionnaire, 83 items, which are thought to be aimed at detecting Ecological Footprint Awareness, were written according to the information obtained from the studies of different researchers. The study was applied to 120 students consisting of Gazi University Gazi Education Faculty of science

and technology teacher candidates's 1st, 2nd, 3rd and 4th classroom students in 2015-2016 academic year. A total of 120 students were studied at 30 student each grade level.

In the analysis of the data; arithmetic mean, standard deviation, independent groups t test, correlation and one-way analysis of variance (ANOVA) statistical techniques will be used. The analysis of the data will be done with SPSS 19.0 package program and the significance level will be taken as 0.05 in t test and variance analysis.

The highest score on the "Ecological Footprint Awareness Scale" will be 5 and the lowest score will be 1. Independent groups t test will be used to find out whether science teacher candidates' ecological footprint awareness varies according to gender and grade level. One-way analysis of variance will be used to find out if there is a significant relationship between the groups according to their level of residence, economic income, education level of parents and ecological footprint awareness of science teacher candidates.

In this study, it is to be able to make an effective prediction regarding the attitudes of science and technology teacher candidates in Gazi University towards the ecological footprint awareness according to some variables with ANNs which is used as an effective prediction method in various sectors and as an alternative to traditional methods in the field of education.

Qualitative data obtained from student answers to open-ended questions were used to train and test the ANNs model. 70% of this data was used for training of the network and the remaining 30% was used for testing the network (Hagan et al., 1996). Likert-scale survey is usually in a non-numeric form. For neural network training, responses were converted to the range of 0 to 1. The mapping shown in Table 1 was used. It was used for the traditional education approach by 1-5 numerical values for the Likert-scale.

Value	Normalized for ANNs	Traditional Value
1	0.24	1
2	0.42	2
3	0.58	3
4	0.74	4
5	0.90	5

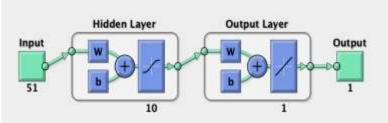
Table 1. Likert-scala value

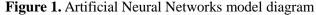
The body of an artificial neuron then sums the weighted inputs, bias and "processes" the sum with a transfer function. In the end, an artificial neuron passes the processed information via output(s). the benefit of artificial neuron model (Krenker et al., 2011) simplicity can be seen in its mathematical description below:

$$y(k) = F \cdot (\sum_{i=0}^{m} w_i(k) \cdot x_i(k))$$

Where:

 $w_i(k)$ is weight value in discrete time k where i goes from 0 to m,


 $x_i(k)$ is input value in discrete time k where i goes from 0 to m,


F is a transfer function,

 $y_i(k)$ is output value in discrete time k.

Neural network consists of three layers (Figure 1). The first layer has k input neurons which send data via connection links to the second layer of M hidden neurons, and then via more connection

links to the third layer of output neurons. The number of neurons in the input layer is usually based on the number of features in a data set. The second layer is also called the hidden layer.

The supervised learning method trained with the network structure (Back-propagation Networks) will be used to solve the problems in this study. The transfer function, (V_N is normalized data, V_N is data to be normalized, V_{min} is the minimum value of the data, V_{max} is the maximum value of the data) mostly used as a sigmoid or a logistic function, gives values in the range of [0,1] and can be described as (normalization):

$$V_N = 0.8 x \left(\frac{V_R - V_{min}}{V_{max} - V_{min}} \right) + 0.1$$

MATLAB is a multi-paradigm numerical calculation software and fourth generation programming language. Neural Network Toolbox of MATLAB was used for the ANNs calculations. The coefficient correlation (R^2) was calculated by MATLAB.

The correlation between two variables numerically describes whether larger and smaller average values of one variable are related to larger or smaller than average values of the other variable. It measures the strength and direction of a linear relationship between two variables and can be described as:

$$r = (\mathbf{R}^2) = cor(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(x_i - \bar{x})^2(y_i - \bar{y})^2}}$$

It has been determined the correlation coefficient into "weak," "moderate," or "strong" relationship. While researchers would agree that a coefficient of <0.1 indicates a negligible and >0.9 a very strong relationship. For example, a correlation coefficient of 0.65 could either be interpreted as a "good" or "moderate" correlation, depending on the applied rule of thumb.

3. Results

The distribution of the participants in 5 subgroups (Food, Energy, Transportation and Housing, Waste and Water Consumption) according to gender is shown in Table 2. It is seen that the number of women participating in the research is twice the number of men participating in the research. The distribution of the participants according to their grade levels is shown in Table 3.

	Table 2. Distribution by	gender
	Ν	%
Women	80	66.7
Men	40	33.3
Total	120	100

1	Table 3. Distribution by grade leve	ls
	Ν	%
1 st Grade	31	25.8
2 nd Grade	28	23.2
3 rd Grade	30	25
4 th Grade	31	25.8
Total	120	100

ANOVA (One-Way ANOVA) was conducted to determine whether science teacher candidates' awareness of ecological footprint differed according to grade level and the results are shown in Table 4.

Table 4. Differences of science teacher candidate	s' awareness about ecological footprint according
to also	

Subgroups	Grade Level	N	lass leve X	Standard deviation (S)	F	Р
Subgroups					Г	Г
	1	31	3.23	0.53		
	2	28	3.38	0.34		
Food	3	30	3.19	0.59	4.18	0.01**
	4	31	3.02	0.58		
	1	31	2.98	0.62		
	2	28	3.45	0.54		
Energy	3	30	3.32	0.64	3.00	0.03*
	4	31	3.31	0.68		
	1	31	3.92	0.74		
	2	28	4.47	0.35		
Transportation and Housing	3	30	4.33	0.51	5.95	0.00**
	4	31	4.16	0.60		
	1	31	3.59	0.71		
	2	28	3.92	0.47		
Waste	3	30	3.68	0.74	1.28	0.28
	4	31	3.62	0.66		
	1	31	3.74	0.68		
	2	28	4.32	0.60		
Water Consumption	3	30	4.09	0.67	3.73	0.01*
-	4	31	4.01	0.64		

*p<0,05; **p<0,01

Mean scores for the dimensions subgroups of the scales change between 2.98 and 4.47. The highest score was found for transportation and housing (4.47) in 2^{nd} class and the lowest score was found for energy (2.98) in 1^{st} class.

Results of the current study showed that science and technology teacher candidates have relatively high level of awareness on the ecological footprint. Their awareness level on the transportation and housing and water consumption dimensions found to be higher than the other dimensions. This result consisted with previous research reporting that the highest level of the awareness found on the dimensions of water consumption and lowest level of the awareness found on the food dimension of the ecological footprint (Coşkun and Sarıkaya, 2014; Keleş, 2007; Keleş et al., 2008, Şahin et al., 2018).

In terms of one-way analysis of variance, there was a significant difference between class level and food sub-dimension (F: 4.18, p <0.05). Accordingly, the ecological footprint awareness averages of 4^{th} grade students were significantly lower than the 2^{nd} and 3^{rd} grade students' ecological footprint averages. It can be thought that this result stems from the inability of 4^{th} grade students to control

their consumption habits due to their process. Ecological footprint awareness of prospective science teachers shows similar results with the literature of grade level.

The capabilities of ANNs can allow us to implement them in complicated problems and eliminate that disadvantage, minimizing time and cost. Artificial Neural Networks (ANNs) evaluations of the obtained data were made with MATLAB (R2015b). This study is implemented using Neural Network Toolbox (neural fitting) in MATLAB for the ANNs calculations. Data of questionnaire was divided into xpthree parts: training, validation and test sets. Functions built in MATLAB were used for these sets.

The prediction models established with Artificial Neural Networks are generally chosen as 70% training, 30% validation and testing. However, it has been reported in the literature that better results can be obtained with different data groups (Zhang et al., 1998). In this study, 64 ANNs models were designed, and the results were compared. ANNs model was established as 60%, 65%, 70%, 75%, 80%, 85% and 90% training data and 5%, 10%, 15%, 20% and 25% validation and testing data. Similarly, the number of neurons in the hidden layer of ANNs models was established as 5, 10, 15 and 20. ANNs model's results and the best four ANNs results is shown in Table 5.

The Evaluation of Ecological Footprint Awareness Levels of Science and Technology TeacherCandidates by Artificial Neural NetworksSemra BENZER, Recep BENZER & İçten BİRGÜL

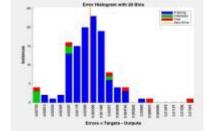

Training Validation Test Neuron (N) Training Validation Test Training Validation Test MSE R 90 5 5 2.08225e-5 1.61194e-5 8.08949e-5 0.998815 0.755256 0.574272 2.35681e-5 0.998417 90 5 5 10 2.23803e-5 7.12409e-5 5.3403e-5 0.997270 0.621084 0.741546 0.86487e-5 0.999417 1 90 5 5 2.0 2.06400e-2 2.95382e-5 1.26228e-6 0.999850 0.529052 0.271167 0.7634e-5 0.999417 1 90 5 5 10 15 2.80316e-5 1.85826e-1 6.22496e-5 0.999751 0.6014047 0.27107 1.47283e-5 0.999079 85 5 10 10 9.03832e-6 1.26496e-5 0.999173 0.1617421 0.424494e-5 0.999874 85 10 5 1.454743e-5 2.659024e-5 0.999179 0.41721		Percent of	Data		Table 5. The	MSE			R		ANNs I	Model	Best
90 5 5 10 2.23803e-5 7.12469e-5 5.36686e-5 0.998871 0.619812 0.276476 2.63549e-5 0.999418 90 5 5 15 4.81379e-5 3.16244e-5 5.53403e-5 0.999770 0.621084 0.741546 0.86487e-5 0.999501 85 5 10 5 2.80316e-5 1.58256e-1 6.22496e-5 0.470731 0.618146 0.952105 7.89084e-3 0.210995 85 5 10 10 9.03832e-6 4.54547e-5 0.999514 0.0040497 0.270173 1.47283e-5 0.999079 85 5 10 20 8.59967e-6 1.93150e-5 1.1645e-4 0.999137 0.7411950 0.29123 1.97867e-5 0.998006 85 10 5 1.45743e-5 2.26902e-5 0.999877 0.742100 0.424498 1.65432e-5 0.99974 85 10 5 1.45743e-5 5.57465e-5 7.33283e-5 0.999130 0.167421 0.424498 <t< th=""><th>Training</th><th></th><th></th><th></th><th>Training</th><th></th><th>Test</th><th>Training</th><th></th><th>Test</th><th></th><th></th><th>Dest</th></t<>	Training				Training		Test	Training		Test			Dest
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	5	5	5	2.08225e-5	1.61194e-5	8.08949e-5	0.998885	0.755256	0.574272	2.35681e-5	0.998617	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	5	5	10	2.23803e-5	7.12469e-5	5.36686e-5	0.998871	0.619812	0.276476	2.63549e-5	0.998418	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90	5	5	15	4.81379e-5	3.16244e-5	5.53403e-5	0.997270	0.621084	0.741546	0.86487e-5	0.999457	1
85 5 10 10 9.03832e-6 4.54547e-5 4.82041e-5 0.999514 0.0040497 0.270173 1.47283e-5 0.999079 85 5 10 15 5.84287e-6 7.30384e-5 4.13507e-5 0.999079 0.7411950 0.299123 1.97867e-5 0.998906 85 10 5 1.45743e-5 2.65902e-5 1.23859e-5 0.999133 0.167421 0.424498 1.65432e-5 0.998974 85 10 5 1.11943e-5 5.7945e-5 7.33283e-5 0.999137 0.167421 0.424498 1.65432e-5 0.998974 85 10 5 10 1.99108e-5 2.02171e-5 5.40269e-5 0.999139 0.15771 0.728382 1.9410e-5 0.99868 85 10 5 3.78104e-5 2.83835e-5 6.55738e-5 0.999230 0.242392 0.12333 2.23817e-5 0.999712 80 5 15 14.42218e-5 2.49284e-5 0.999727 0.761535 0.289805 2.82241e	90	5	5	20	2.60400e-2	2.95382e-5	1.26328e-6	0.999985	0.592052	0.277167	0.79634e-5	0.999500	
85 5 10 15 5.84287e-6 7.30384e-5 4.13507e-5 0.999686 0.0240612 0.373815 1.26963e-5 0.999209 85 5 10 20 8.59967e-6 1.93150e-5 1.16045e-4 0.999737 0.7411950 0.299123 1.97867e-5 0.9988074 85 10 5 1.45743e-5 2.65902e-5 4.23859e-5 0.999137 0.167121 0.424498 1.65936e-5 0.998874 85 10 5 1.11943e-5 5.79465e-5 0.399389 0.157271 0.728382 1.94102e-5 0.999123 80 5 15 3.1814e-5 2.3835e-5 0.999389 0.157271 0.728382 1.94102e-5 0.999757 80 5 15 10 1.60911e-5 4.44265e-5 4.89128e-5 0.999231 0.721630 4.14731e-5 0.999757 80 5 15 14 4.42218e-5 2.49284e-5 0.999727 0.761553 0.282805 2.82241e-5 0.999870	85	5	10	5	2.80316e-5	1.58526e-1	6.22496e-5	0.470731	0.618146	0.952105	7.89084e-3	0.210995	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	85	5	10	10	9.03832e-6	4.54547e-5	4.82041e-5	0.999514	0.0040497	0.270173	1.47283e-5	0.999079	
85 10 5 1.45743e-5 2.65902e-5 4.23859e-5 0.999193 0.167421 0.424498 1.65493e-5 0.998074 85 10 5 10 1.99108e-5 2.02171e-5 5.40269e-5 0.999877 0.492603 0.601770 2.16177e-5 0.998668 85 10 5 15 1.11943e-5 5.79465e-5 7.3228a-5 0.999874 0.128520 0.266662 1.65936e-5 0.999146 85 10 5 20 1.68943e-5 5.93157e-5 2.52084e-5 0.999389 0.157271 0.728382 1.94102e-5 0.999757 80 5 15 10 1.60911e-5 4.44865e-5 4.89128e-5 0.999220 0.724700 0.603363 2.23817e-5 0.998740 80 5 15 10 1.60911e-5 1.442218e-5 0.999727 0.761553 0.289805 2.82241e-5 0.998267 80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.998292 0.487489	85	5	10	15	5.84287e-6	7.30384e-5	4.13507e-5	0.999686	0.0240612	0.373815	1.26963e-5	0.999209	
85 10 5 10 1.9910& 5 2.02171e-5 5.40269e-5 0.998877 0.492603 0.601770 2.16177e-5 0.9998668 85 10 5 15 1.11943e-5 5.73465e-5 7.33283e-5 0.999487 0.128520 0.269662 1.65936e-5 0.999146 85 10 5 20 1.68943e-5 5.93157e-5 2.5284e-5 0.999389 0.157271 0.728382 1.94102e-5 0.999123 80 5 15 10 1.60911e-5 4.44865e-5 4.89128e-5 0.999262 0.724700 0.603363 2.23817e-5 0.999740 80 5 15 20 5.37430e-4 1.58166e-5 1.5494e-5 0.999717 0.761553 0.289805 2.82241e-5 0.998207 80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.999320 0.171161 3.09836e-5 0.998209 80 10 10 2 1.27792e-7 1.29717e-4 1.80453e-4 0.9999	85	5	10	20	8.59967e-6	1.93150e-5	1.16045e-4	0.999737	0.7411950	0.299123	1.97867e-5	0.998906	
85 10 5 15 1.11943e-5 5.79465e-5 7.33283e-5 0.999487 0.128520 0.269662 1.65936e-5 0.999146 85 10 5 20 1.68943e-5 5.93157e-5 2.52084e-5 0.999230 0.242392 0.123630 4.14731e-5 0.9997557 80 5 15 10 1.60911e-5 4.44865e-5 4.89128e-5 0.999262 0.724700 0.603363 2.23817e-5 0.9997412 80 5 15 14.42218e-5 2.49284e-5 1.97422e-6 0.999213 0.701492 0.22323 6.26046e-5 0.9997412 80 5 15 20 5.37430e-4 1.58166e-5 1.55494e-5 0.999220 0.487489 1.51244e-2 0.987021 80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.999633 0.999390 0.11161 3.08836e-5 0.998220 80 10 10 2.077952e-7 1.29717e-4 1.80433e-4 0.999930 0.171161 3.080	85	10	5	5	1.45743e-5	2.65902e-5	4.23859e-5	0.999193	0.167421	0.424498	1.65493e-5	0.998974	
85 10 5 20 1.68943e-5 5.93157e-5 2.52084e-5 0.999389 0.157271 0.728382 1.94102e-5 0.999123 80 5 15 5 3.78104e-5 2.83835e-5 6.55738e-5 0.998230 0.242392 0.123630 4.14731e-5 0.997557 80 5 15 10 1.60911e-5 4.44865e-5 4.89128e-5 0.999262 0.724700 0.603363 2.23817e-5 0.998740 80 5 15 14.42218e-5 2.49284e-5 1.74222e-6 0.999313 0.701492 0.292323 6.26046e-5 0.997412 80 5 15 2.0 5.37430e-4 1.58166e-5 1.55494e-5 0.999727 0.761553 0.289805 2.82241e-5 0.998267 80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.999320 0.292887 0.388171 2.83461e-5 0.998229 80 10 10 20 1.04451e-5 3.97826e-5 0.9998470 0.442262	85	10	5	10	1.99108e-5	2.02171e-5	5.40269e-5	0.998877	0.492603	0.601770	2.16177e-5	0.998668	
80 5 15 5 3.78104e-5 2.83835e-5 6.55738e-5 0.998230 0.242392 0.123630 4.14731e-5 0.997557 80 5 15 10 1.60911e-5 4.44865e-5 4.89128e-5 0.999262 0.724700 0.603363 2.23817e-5 0.998740 80 5 15 15 4.42218e-5 2.49284e-5 1.74222e-6 0.999717 0.761553 0.289805 2.82241e-5 0.998267 80 10 10 5 3.81724e-5 1.52151e-1 4.52252e-5 0.549364 0.998292 0.487489 1.51244e-2 0.987921 80 10 10 2.77952e-7 1.2971re-4 1.80453e-4 0.996543 0.999390 0.171161 3.09836e-5 0.998292 80 10 10 15 1.32721e-6 6.83401e-5 2.06755e-4 0.999930 0.171161 3.09836e-5 0.998290 80 15 5 3.26309e-5 4.08254e-5 3.76268e-5 0.999470 0.442262	85	10	5	15	1.11943e-5	5.79465e-5	7.33283e-5	0.999487	0.128520	0.269662	1.65936e-5	0.999146	
80 5 15 10 1.60911e-5 4.44865e-5 4.89128e-5 0.999262 0.724700 0.603363 2.23817e-5 0.998740 80 5 15 15 4.42218e-5 2.49284e-5 1.74222e-6 0.999313 0.701492 0.292323 6.26046e-5 0.997412 80 5 15 20 5.37430e-4 1.58166e-5 1.55494e-5 0.999727 0.761553 0.289805 2.82241e-5 0.998267 80 10 10 5 3.81724e-5 1.52151e-1 4.52252e-5 0.549364 0.998292 0.487489 1.51244e-2 0.987921 80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.999390 0.171161 3.09836e-5 0.998229 80 10 10 20 1.04451e-5 3.93818e-5 8.27807e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998709 80 15 5 3.26309e-5 4.08254e-5 3.76268e-5 0.999470 0.451744	85	10	5	20	1.68943e-5	5.93157e-5	2.52084e-5	0.999389	0.157271	0.728382	1.94102e-5	0.999123	
80 5 15 1.42218e-5 2.49284e-5 1.74222e-6 0.999313 0.701492 0.292323 6.26046e-5 0.997412 80 5 15 20 5.37430e-4 1.58166e-5 1.55494e-5 0.999727 0.761553 0.289805 2.82241e-5 0.998267 80 10 10 5 3.81724e-5 1.52151e-1 4.52252e-5 0.549364 0.998292 0.487489 1.51244e-2 0.987921 80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.996543 0.999390 0.171161 3.09836e-5 0.998229 80 10 10 15 1.32721e-6 6.83401e-5 2.06755e-4 0.999932 0.292887 0.388171 2.83461e-5 0.998220 80 15 5 3.26309e-5 4.08254e-5 3.76268e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998709 80 15 5 10 8.73894e-5 4.06779e-5 1.07153e-4 0.997488 0.574180	80	5	15	5	3.78104e-5	2.83835e-5	6.55738e-5	0.998230	0.242392	0.123630	4.14731e-5	0.997557	
80 5 15 1.42218e-5 2.49284e-5 1.74222e-6 0.999313 0.701492 0.292323 6.26046e-5 0.997412 80 5 15 20 5.37430e-4 1.58166e-5 1.55494e-5 0.999727 0.761553 0.289805 2.82241e-5 0.998267 80 10 10 5 3.81724e-5 1.52151e-1 4.52252e-5 0.549364 0.998292 0.487489 1.51244e-2 0.987921 80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.996543 0.999390 0.171161 3.09836e-5 0.998229 80 10 10 15 1.32721e-6 6.83401e-5 2.06755e-4 0.999932 0.292887 0.388171 2.83461e-5 0.998220 80 15 5 3.26309e-5 4.08254e-5 3.76268e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998709 80 15 5 10 8.73894e-5 4.06779e-5 1.07153e-4 0.997488 0.574180	80	5	15	10	1.60911e-5	4.44865e-5	4.89128e-5	0.999262	0.724700	0.603363	2.23817e-5	0.998740	
80 10 10 5 3.81724e-5 1.52151e-1 4.52252e-5 0.549364 0.998292 0.487489 1.51244e-2 0.987921 80 10 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.999390 0.171161 3.09836e-5 0.998229 80 10 10 15 1.32721e-6 6.83401e-5 2.06755e-4 0.999932 0.292887 0.388171 2.83461e-5 0.998220 80 10 10 20 1.04451e-5 3.93818e-5 8.27807e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998709 80 15 5 3.26309e-5 4.08254e-5 3.76268e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998005 80 15 5 10 8.73894e-5 4.06779e-5 1.07153e-4 0.997488 0.574180 0.266384 8.14207e-5 0.997038 80 15 5 10 8.73894e-5 4.37083e-5 0.999257 0.696835	80	5	15	15	4.42218e-5		1.74222e-6	0.999313	0.701492	0.292323	6.26046e-5	0.997412	
80 10 10 2.77952e-7 1.29717e-4 1.80453e-4 0.996543 0.999390 0.171161 3.09836e-5 0.998229 80 10 10 15 1.32721e-6 6.83401e-5 2.06755e-4 0.999932 0.292887 0.388171 2.83461e-5 0.998220 80 10 10 20 1.04451e-5 3.93818e-5 8.27807e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998709 80 15 5 3.26309e-5 4.08254e-5 3.76268e-5 0.998490 0.451744 0.351936 3.40976e-5 0.998005 80 15 5 10 8.73894e-5 4.06779e-5 1.07153e-4 0.997488 0.574180 0.266384 8.14207e-5 0.999036 80 15 5 15 1.65330e-5 6.62878e-5 1.48199e-4 0.999357 0.152968 0.413074 3.04635e-5 0.999061 75 5 20 5 2.86250e-5 7.36285e-5 1.61279e-5 0.000262	80	5	15	20	5.37430e-4	1.58166e-5	1.55494e-5	0.999727	0.761553	0.289805	2.82241e-5	0.998267	
80 10 10 15 1.32721e-6 6.83401e-5 2.06755e-4 0.999932 0.292887 0.388171 2.83461e-5 0.998220 80 10 10 20 1.04451e-5 3.93818e-5 8.27807e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998709 80 15 5 5 3.26309e-5 4.08254e-5 3.76268e-5 0.998490 0.451744 0.351936 3.40976e-5 0.998005 80 15 5 10 8.73894e-5 4.06779e-5 1.07153e-4 0.997488 0.574180 0.266384 8.14207e-5 0.997038 80 15 5 15 1.65330e-5 6.62878e-5 1.48199e-4 0.999357 0.152968 0.413074 3.04635e-5 0.998061 75 5 20 9.32018e-6 4.05769e-5 1.61279e-5 0.000262 0.725531 0.188055 5.71682e-5 0.999761 75 5 20 10 9.04200e-4 3.16262e-5 2.10000e-2	80	10	10	5	3.81724e-5	1.52151e-1	4.52252e-5	0.549364	0.998292	0.487489	1.51244e-2	0.987921	
80 10 10 20 1.04451e-5 3.93818e-5 8.27807e-5 0.999470 0.442262 0.463996 2.04886e-5 0.998709 80 15 5 5 3.26309e-5 4.08254e-5 3.76268e-5 0.998490 0.451744 0.351936 3.40976e-5 0.998005 80 15 5 10 8.73894e-5 4.06779e-5 1.07153e-4 0.997488 0.574180 0.266384 8.14207e-5 0.997038 80 15 5 15 1.65330e-5 6.62878e-5 1.48199e-4 0.999357 0.152968 0.413074 3.04635e-5 0.998236 80 15 5 20 9.32018e-6 4.05769e-5 4.37083e-5 0.999598 0.295279 0.696835 1.56751e-5 0.999061 75 5 20 5 2.86250e-5 7.36285e-5 1.61279e-5 0.000262 0.725531 0.188055 5.71682e-5 0.997781 75 5 20 15 1.14322e-7 1.77127e-4 1.674	80	10	10	10	2.77952e-7	1.29717e-4	1.80453e-4	0.996543	0.999390	0.171161	3.09836e-5	0.998229	
8015553.26309e-54.08254e-53.76268e-50.9984900.4517440.3519363.40976e-50.99800580155108.73894e-54.06779e-51.07153e-40.9974880.5741800.2663848.14207e-50.99703880155151.65330e-56.62878e-51.48199e-40.9993570.1529680.4130743.04635e-50.99823680155209.32018e-64.05769e-54.37083e-50.9995980.2952790.6968351.56751e-50.9990617552052.86250e-57.36285e-51.61279e-50.0002620.7255310.1880555.71682e-50.99778175520109.04200e-43.16262e-52.10000e-20.8625330.7248000.9991634.18900e-30.998404475520151.14322e-71.77127e-41.67449e-40.9999940.4316100.1436454.20822e-50.99735575520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.10994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.99737751510151.56687e	80	10	10	15	1.32721e-6	6.83401e-5	2.06755e-4	0.999932	0.292887	0.388171	2.83461e-5	0.998220	
80155108.73894e-54.06779e-51.07153e-40.9974880.5741800.2663848.14207e-50.99703880155151.65330e-56.62878e-51.48199e-40.9993570.1529680.4130743.04635e-50.99823680155209.32018e-64.05769e-54.37083e-50.9995980.2952790.6968351.56751e-50.9990617552052.86250e-57.36285e-51.61279e-50.0002620.7255310.1880555.71682e-50.99778175520109.04200e-43.16262e-52.10000e-20.8625330.7248000.9991634.18900e-30.998404475520151.14322e-71.77127e-41.67449e-40.9999940.4316100.1436454.20822e-50.99735575520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	80	10	10	20	1.04451e-5	3.93818e-5	8.27807e-5	0.999470	0.442262	0.463996	2.04886e-5	0.998709	
80155151.65330e-56.62878e-51.48199e-40.9993570.1529680.4130743.04635e-50.99823680155209.32018e-64.05769e-54.37083e-50.9995980.2952790.6968351.56751e-50.9990617552052.86250e-57.36285e-51.61279e-50.0002620.7255310.1880555.71682e-50.99778175520109.04200e-43.16262e-52.10000e-20.8625330.7248000.9991634.18900e-30.998404475520151.14322e-71.77127e-41.67449e-40.9999940.4316100.1436454.20822e-50.99735575520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	80	15	5	5	3.26309e-5	4.08254e-5	3.76268e-5	0.998490	0.451744	0.351936	3.40976e-5	0.998005	
80155209.32018e-64.05769e-54.37083e-50.9995980.2952790.6968351.56751e-50.9990617552052.86250e-57.36285e-51.61279e-50.0002620.7255310.1880555.71682e-50.999778175520109.04200e-43.16262e-52.10000e-20.8625330.7248000.9991634.18900e-30.998404475520151.14322e-71.77127e-41.67449e-40.9999940.4316100.1436454.20822e-50.99735575520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	80	15	5	10	8.73894e-5	4.06779e-5	1.07153e-4	0.997488	0.574180	0.266384	8.14207e-5	0.997038	
7552052.86250e-57.36285e-51.61279e-50.0002620.7255310.1880555.71682e-50.99778175520109.04200e-43.16262e-52.10000e-20.8625330.7248000.9991634.18900e-30.998404475520151.14322e-71.77127e-41.67449e-40.9999940.4316100.1436454.20822e-50.99735575520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	80	15	5	15	1.65330e-5	6.62878e-5	1.48199e-4	0.999357	0.152968	0.413074	3.04635e-5	0.998236	
75520109.04200e-43.16262e-52.10000e-20.8625330.7248000.9991634.18900e-30.998404475520151.14322e-71.77127e-41.67449e-40.9999940.4316100.1436454.20822e-50.99735575520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	80	15	5	20	9.32018e-6	4.05769e-5	4.37083e-5	0.999598	0.295279	0.696835	1.56751e-5	0.999061	
75520151.14322e-71.77127e-41.67449e-40.9999940.4316100.1436454.20822e-50.99735575520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	75	5	20	5	2.86250e-5	7.36285e-5	1.61279e-5	0.000262	0.725531	0.188055	5.71682e-5	0.997781	
75520201.12442e-72.91488e-42.61080e-30.9984330.6412820.9987185.32384e-40.998186375151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	75	5	20	10	9.04200e-4	3.16262e-5	2.10000e-2	0.862533	0.724800	0.999163	4.18900e-3	0.998404	4
75151059.98654e-66.45527e-57.25443e-50.9995570.3901280.4210432.43079e-50.998570751510104.109994e-54.36141e-57.22120e-50.9986220.4181060.6686104.45590e-50.997937751510151.56687e-57.37180e-54.31229e-50.9992610.1361570.1909352.70268e-50.998306	75	5	20	15	1.14322e-7	1.77127e-4	1.67449e-4	0.999994	0.431610	0.143645	4.20822e-5	0.997355	
75 15 10 10 4.109994e-5 4.36141e-5 7.22120e-5 0.998622 0.418106 0.668610 4.45590e-5 0.997937 75 15 10 15 1.56687e-5 7.37180e-5 4.31229e-5 0.999261 0.136157 0.190935 2.70268e-5 0.998306	75	5	20	20	1.12442e-7	2.91488e-4	2.61080e-3	0.998433	0.641282	0.998718	5.32384e-4	0.998186	3
75 15 10 10 4.109994e-5 4.36141e-5 7.22120e-5 0.998622 0.418106 0.668610 4.45590e-5 0.997937 75 15 10 15 1.56687e-5 7.37180e-5 4.31229e-5 0.999261 0.136157 0.190935 2.70268e-5 0.998306	75	15	10	5	9.98654e-6	6.45527e-5	7.25443e-5	0.999557	0.390128	0.421043	2.43079e-5	0.998570	
75 15 10 15 1.56687e-5 7.37180e-5 4.31229e-5 0.999261 0.136157 0.190935 2.70268e-5 0.998306	75	15	10	10	4.109994e-5		7.22120e-5	0.998622	0.418106	0.668610	4.45590e-5	0.997937	
	75	15	10	15	1.56687e-5		4.31229e-5	0.999261	0.136157	0.190935	2.70268e-5	0.998306	
	75	15	10	20		5.71587e-5	1.99713e-4	0.999860	0.542374	0.165222	5.29726e-5	0.998320	

Table 5. The results of ANNs model and the best ANNs models

The Evaluation of Ecological Footprint AwarenessLevels of Science and Technology TeacherCandidates by Artificial Neural NetworksSemra BENZER, Recep BENZER & İçten BİRGÜL

	Percent of	Data			MSE			R		ANNs I	Model	Best
Training	Validation	Test	Neuron (N)	Training	Validation	Test	Training	Validation	Test	MSE	R	
75	20	5	5	3.32673e-5	4.20788e-5	4.41359e-5	0.998430	0.471268	0.819998	3.55540e-5	0.997777	
75	20	5	10	1.33138e-4	4.83443e-3	1.72622e-4	0.117900	0.997071	0.243334	1.06758e-3	0.983748	
75	20	5	15	1.18879e-5	6.56094e-5	9.36885e-5	0.999440	0.217496	0.807503	2.65996e-5	0.998323	
75	20	5	20	1.35407e-4	1.38238e-4	2.20265e-4	0.997458	0.877235	0.911502	1.40177e-4	0.995213	2
70	5	25	5	4.48526e-5	1.48639e-4	5.36371e-5	0.990055	0.473906	6.51221	5.21771e-5	0.996733	
70	5	25	10	2.59346e-5	8.68542e-5	5.91526e-5	0.999546	0.891965	0.324146	3.71913e-5	0.998655	
70	5	25	15	1.39755e-5	5.94350e-5	7.71925e-5	0.999408	0.601853	0.803453	3.19033e-5	0.997989	
70	5	25	20	6.00993e-6	8.19315e-6	1.10248e-4	0.921515	0.764418	0.998923	3.19624e-5	0.998663	
70	10	20	5	1.77609e-5	2.50312e-5	5.70555e-5	0.999450	0.552805	0.398659	2.62759e-5	0.998586	
70	10	20	10	6.14254e-5	1.00369e-4	1.77856e-2	0.683869	0.173755	0.985062	3.58083e-3	0.957937	
70	10	20	15	1.67895e-5	3.70372e-5	5.87523e-2	0.785216	0.335599	0.994512	1.16688e-2	0.954923	
70	10	20	20	7.72430e-6	6.25435e-5	7.84751e-5	0.999775	0.359209	0.517830	2.71941e-5	0.998348	
70	15	15	5	1.06762e-5	2.29592e-5	3.28069e-5	0.999545	0.628907	0.520019	1.57956e-5	0.999020	
70	15	15	10	6.66567e-5	1.90986e-4	7.40432e-5	0.999574	0.565093	0.309606	8.62509e-5	0.998032	
70	15	15	15	2.21333e-5	4.54886e-5	6.76536e-5	0.999334	0.352757	0.135580	3.23793e-5	0.998404	
70	20	10	20	1.20404e-4	1.64961e-4	9.33124e-3	1	0.371585	0.999551	1.41265e-3	0.998568	
70	20	10	5	9.86125e-5	5.51705e-3	2.18404e-4	0.484941	0.999443	0.484643	1.18522e-3	0.997519	
70	20	10	10	3.27161e-6	7.90331e-5	8.72872e-5	0.999860	0.838172	0.245424	2.66308e-5	0.998323	
70	20	10	15	6.73244e-6	7.39100e-5	9.41512e-5	0.999782	0.28280	0.106834	2.87265e-5	0.998298	
70	20	10	20	4.79713e-6	6.76001e-5	1.26856e-4	0.999790	0.113259	0.133621	2.93589e-5	0.998158	
70	25	5	5	3.22463e-5	1.25866e-2	3.41537e-5	0.441274	0.999065	0.190108	3.14500e-3	0.996803	
70	25	5	10	1.49315e-5	3.53038e-5	4.39081e-5	0.999359	0.399810	0.521862	2.14194e-5	0.998676	
70	25	5	15	1.074464e-4	1.51799e-4	2.20404e-4	0.999116	0.105721	0.228528	1.24057e-4	0.996770	
70	25	5	20	4.24441e-6	1.15931e-4	6.94645e-5	0.999911	0.295328	0.120370	3.51695e-5	0.997913	
65	15	20	5	1.76340e-5	6.83071e-5	4.42862e-5	0.999270	0.163880	0.333684	3.04585e-5	0.998092	
65	15	20	10	5.74485e-6	6.11359e-5	2.35676e-2	0.920609	0.463308	0.999282	4.68742e-3	0.998493	
65	15	20	15	2.92079e-6	1.11465e-4	1.13690e-4	0.99989	0.406625	0.750498	4.10386e-5	0.997816	
65	15	20	20	2.06178e-6	8.66506e-2	9.43839e-5	1	0.976306	0.158880	1.29089e-2	0.931243	
65	20	15	5	2.17036e-5	3.62659e-5	4.54913e-5	0.999165	0.409683	0.464077	2.81307e-5	0.998397	
65	20	15	10	1.57341e-5	4.26875e-5	4.60755e-5	0.999532	0.520768	0.315232	0.25593e-5	0.998531	
65	20	15	15	4.39344e-6	7.91821e-5	2.16136e-4	0.999905	0.340169	0.268173	5.07265e-5	0.996817	
65	20	15	20	8.26125e-9	4.21166e-3	5.66017e-4	0.999990	0.997810	0.364665	9.19578e-4	0.994455	
						2.0001/01						

The distribution of the data over the best obtained ANNs model is shown in Figure 2. Performance and graphical presentation of the overlapping between the actual and predicted values for the results of the regression on learning, validation and test clusters in MATLAB for questionnaire data are shown in Figure 3.

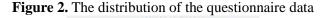
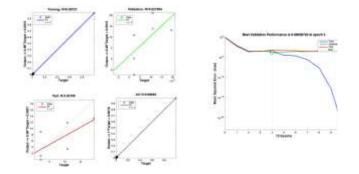



Figure 3. The actual and predicted values for the results of the regression and performance

In this study, the results of the ANNs model obtained with the ecological footprint awareness weight average are given in Table 6. In this study; it is seen that the lowest average is 1.13 and the highest average is 3.73 when the answers obtained from the questionnaire are evaluated.

	Table 6. ANNs results								
ANNs	Number of sample	MSE	R						
Training	108	4.81379e-5	0.997270						
Validation	6	3.16244e-5	0.621084						
Test	6	5.53403e-5	0.741546						
All data	120	0.86487e-5	0.999457						

According to ANNs results; The average weight of ecological footprint awareness was 2.35. Considering that the ecological footprint awareness weights obtained in this study are between 2.50 and 5.0, it is seen that the ecological footprint awareness is weak.

4. Conclusion

The most important step in trying to compensate for this is that the human being who is confronted with the problems that arise as a result of the deteriorations in the ecological balance is aware of his actions. Knowing the nature of human activities, how much harm it causes, and in short, the size of the ecological footprint it leaves on the environment, is extremely important in terms of guiding the activities of human beings. Ecological footprint awareness is of great importance for each individual to realize the opportunities offered by the environment in which he lives, to know how the traces left on nature will be reflected to him and to future generations and to take responsibility for the actions to be taken.

The aim of this study is to examine the ecological footprint awareness of prospective science and technology teacher candidates with artificial neural networks as well as traditional education methods.

5. Recommendations

It can be said that science and technology teacher candidates' ecological footprint awareness levels are weak, when the research findings and results are examined. In order to improve the results of the research, the following suggestions can be made:

- The design and implementation of the ANNs system can be designed to meet the need for automatic questioning as an expert questionnaire for future technology-based measurement and evaluation activities.
- Teacher candidates should be taught that there is a limit to the biological capacity of the world and its ability to renew itself, that the footprint left by the world and our country on nature gradually increases, and that this will lead to problems that cannot be compensated.
- All public opinion should be made aware of this issue through visual and written media, and what is expected of living things should be shown to people with various animations or films.
- Teacher candidates should be informed as an example for countries with small ecological footprints.
- Teacher candidates should prepare projects to minimize their ecological footprints and thus encourage them to find solutions to environmental problems.
- The parents of the young generations, parents and teachers should be made aware of this issue and be set an example to their children with their behavior.
- This study should be carried out on large firms and industrial organizations producing and they should be made aware of this issue.

Since there is only one world to meet the needs of human beings, it is the duty of all humanity to reduce the ecological footprint. However, one of those who will undertake the task of raising this awareness is teachers.

References

- Bahadır, E. (2016). Prediction of Prospective Mathematics Teachers' Academic Success in Entering Graduate Education by Using Back-propagation Neural Network. Journal of Education and Training Studies, 4(5), 113-122.
- Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. ve Demirel, F. (2010). Bilimsel araştırma yöntemleri (Beşinci baskı). Ankara: Pegem Akademi Yayınları
- Coşkun, I. & Sarıkaya, R. (2014). Investigation of Ecological Foot Print Levels of Classroom Teacher Candidates. Turkish Studies, 9, 1761-1787.
- Coşkun, I. Ç., (2013). Sınıf öğretmeni adaylarının ekolojik ayak izi farkındalık düzeylerinin belirlenmesi. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü İlköğretim Ana Bilim Dalı Sınıf Öğretmenliği Bilim Dalı Yüksek Lisans Tezi, Ankara.
- Destek, M. A., & Sarkodie, S. A. (2019). Investigation of environmental Kuznets curve for ecological footprint: the role of energy and financial development. Science of the Total Environment, 650, 2483-2489.
- Dinç, A. (2015): Bir sürdürülebilir kalkınma göstergesi olarak ekolojik ayak izi ve Türkiye. Yüksek Lisans Tezi. Anadolu University, Social Sciences Institute, Eskişehir.
- Du, B., Zhang, K., Song, G., Wen, Z. (2006). Methodology for an urban ecological footprint to evaluate sustainable development in China. International Journal Of Sustainable Development and World Ecology, 13, 245-254.
- Erdoğan M, Tuncer G, (2009). Evaluation of a course: "Education and awareness for sustainability". International Journal of Environmental & Science Education, 4(2): 133-146
- Eren, B., Aygün, A., Chabanov, D., & Akman, N. (2016). Mühendislik öğrencileri ekolojik ayak izinin belirlenmesi. *Uluslararası Mühendislik ve Teknoloji Araştırmaları Dergisi*, 1(1), 7-12.
- Eren, Ö., Parlakay, O., Hilal, M., & Bozhüyük, B. (2017). Ziraat Fakültesi akademisyenlerinin ekolojik ayak izinin belirlenmesi: Mustafa Kemal Üniversitesi örneği. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 34(2), 138-145.
- Kardan, A.A., Sadeghi, H., Ghidary S.S. & Sani, M.R.F. (2013). Prediction of student course selection in online higher education institutes using neural network. Computers and Education. 65: 1–11.
- Keleş Ö, (2011). Öğrenme halkası modelinin öğrencilerin ekolojik ayak izlerini azaltmasına etkisi. Gazi Üniversitesi Sosyal Bilimler Dergisi, 10(3): 1143-1160. (Turkish)
- Keleş, Ö. (2007): Application and evaluation of ecological footprint as an environmental education tool towards sustainable life. (Ph.D Thesis). – Gazi University, Department of Primary Education, Science Education Discipline, Ankara.
- Keleş, Ö., Uzun, N., & Özsoy, S. (2008): Measuring and evaluating pre-service teachers' ecological footprints. Ege Journal of Education, 9, 1-14.
- Khan, I., & Kulkarni, A. (2013). Knowledge extraction from survey data using neural networks. Procedia Computer Science, 20, 433-438.

- Krenker, A., BešTer, J. and Kos, A., (2011). Introduction to the Artificial Neural Networks, Artificial Neural Networks - Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.)., ISBN: 978-953-307-243-2.
- Livieris, I E., Drakopoulou, K. & Pintelas, P. (2012). Predicting students' performance using artificial neural networks. 8th PanHellenic Conference with International Participation Information and Communication Technologies in Education. 2012.
- Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V. and Loumos, V. (2009), Early and dynamic student achievement prediction in e-learning courses using neural networks. J. Am. Soc. Inf. Sci., 60: 372–380.
- Matzavela, V., Chrysafiadi, K., & Alepis, E. (2017). Questionnaires and artificial neural networks: A literature review on modern techniques in education. In 2017 IEEE Global Engineering Education Conference (EDUCON) (pp. 1700-1704). IEEE.
- Matzavela, V., Chrysafiadi, K., & Alepis, E. (2017). Questionnaires and artificial neural networks: A literature review on modern techniques in education. In 2017 IEEE Global Engineering Education Conference (EDUCON) (pp. 1700-1704). IEEE.
- Naik, B., Ragothaman, S., (2004). Using Neural Network to Predict MBA Student Success, College Student Journal, 38(1):1-4.
- Naser, S. A., Zaqout, I., Ghosh, M. A., Atallah, R., & Alajrami, E. (2015). Predicting student performance using artificial neural network: In the faculty of engineering and information technology. International Journal of Hybrid Information Technology, 8(2), 221-228.
- Oancea, B., Dragoescu, R., & Ciucu, S. (2013). Predicting students' results in higher education using a neural network. MPRA Paper No. 72041, posted 2 October 2017 13:41 UTC. https://mpra.ub.uni-muenchen.de/72041/
- Özdemir, I., Polat, D. (2017). Forecasting With Artificial Neural Network Of Science Teachers' Professional Burnout Variables. Int. J. Educ. Stud. 04 (03):49-64.
- Özgen, U., & Aksoy, A. D. (2017). Tüketicilerin Ekolojik Ayak İzi Farkindalik Düzeyleri (Ankara İli Örneği). Third Sector Social Economic Review, 52(3), 46-65.
- Paliwal, M., & Kumar, U. A. (2009). A study of academic performance of business school graduates using neural network and statistical techniques. Expert Systems with Applications, 36(4), 7865–7872.
- Rees, W. E. (1992). Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and urbanization, 4(2), 121-130.
- Sağiroglu S, Beşdok, E., Erler, M. (2003). Muhendislikte Yapay Zeka Uygulamalari-I: Yapay Sinir Ağları (in Turkish), Ufuk Press.
- Şahin, H., Erkal, S. & Ateşoğlu, L. (2018). Determination of ecological footprint awareness of preschool teacher candidates, International Journal of Eurasia Social Sciences, 9, 31, 1-12.
- UNESCO (2002). Education for Sustainability From Rio to Johannesburg: Lessons learnt from a Decade of Commitment. [Online]: http://unesdoc.unesco.org/images/0012/001271/127100e.pdf.
- Van den Bergh, J. C., & Verbruggen, H. (1999). Spatial sustainability, trade and indicators: an evaluation of the 'ecological footprint'. *Ecological economics*, 29(1), 61-72.

- Yıldız, E., & Selvi, M. (2015). The Awareness Levels of Science and Technology Teacher Candidates towards Ecological Footprint. *Journal of Turkish Science Education* (*TUSED*), 12(4):23-34.
- Yorek, N., & Ugulu, I. (2015). A CFBPN Artificial Neural Network Model for Educational Qualitative Data Analyses: Example of Students' Attitudes Based on Kellerts' Typologies. Educational Research and Reviews, 10(18), 2606-2616.
- Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks:: The state of the art. International journal of forecasting, 14(1), 35-62.