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The Use of Item Scores and Response Times To Detect the Examinees Who May Have

Benefitted from Item Preknowledge

Abstract

According to Wollack and Schoenig (2018), benefitting from item preknowledge is one of the

three broad types of test fraud that occur in educational assessments. We use tools from

constrained statistical inference to suggest a new statistic that is based on item scores and

response times and can be used to detect the examinees who may have benefitted from item

preknowledge for the case when the set of compromised items is known. The asymptotic

distribution of the new statistic under no preknowledge is proved to be a simple mixture of

two χ2 distributions. We perform a detailed simulation study to show that the Type I error

rate of the new statistic is very close to the nominal level and that the power of the new

statistic is satisfactory in comparison to that of the existing statistics for detecting item

preknowledge based on both item scores and response times. We also include a real data

example to demonstrate the usefulness of the suggested statistic.

Key words: chi-bar-square distribution, likelihood ratio statistic, Wald statistic.
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Standard 6.6 of the Standards for educational and psychological testing (American

Educational Research Association, American Psychological Association, & National Council

for Measurement in Education, 2014) includes the recommendation that testing programs

with high-stakes consequences should have defined procedures for detecting potential testing

irregularities. One type of testing irregularity is the sharing of assessment questions and/or

their answers by a source (such as a website) followed by several examinees memorizing

the questions and/or answers. The examinees who are involved in such a phenomenon are

referred to have benefitted from item preknowledge and the shared items are referred to

as compromised items. Wollack and Schoenig (2018) listed item preknowledge as one of

three broad types of test fraud that occur in educational assessments (the other two types

being test tampering and answer-copying). In this paper, we consider the detection of

item preknowledge for the case when the investigator knows which items are compromised.

Cizek and Wollack (2017, p. 14) and Eckerly, Smith, and Lee (2018) provided examples

of real data sets for which several items were known to have been compromised. In cases

where the set of compromised items is unknown, it is possible to apply a method to detect

compromised items (e.g., Veerkamp & Glas, 2000) before applying the methods discussed

in this paper.

While most research on detecting item preknowledge is based only on item scores (e.g.,

Drasgow, Levine, & Zickar, 1996; McLeod, Lewis, & Thissen, 2003; Sinharay, 2017a; Wang,

Liu, & Hambleton, 2017), the increasing popularity of computerized assessments has allowed

the recording of response times, and, subsequently, detection of item preknowledge using

both item scores and response times. Researchers such as Fox and Marianti (2017), Lee and

Wollack (2017), van der Linden and Guo (2008), and Wang, Xu, Shang, and Kuncel (2018)

suggested a variety of methods that can be used to detect item preknowledge using both

item scores and response times. However, all of these existing approaches are designed to

detect response patterns that are in general aberrant (aberrant response patterns are those

that do not fit the joint model for item scores and response times) and are not specifically

designed to detect item preknowledge. It is expected that a statistic that is based on both

item scores and response times and specifically targets item preknowledge will be more
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powerful than the existing approaches. Therefore, the goal of this paper is to suggest a

statistic that is (a) based on both item scores and response times and (b) specifically

designed to detect item preknowledge. The statistic works with the hierarchical/joint

model of van der Linden (2007) for item scores and response times and is predicated on

the idea that the performance of those with item preknowledge is likely to differ over the

compromised items and non-compromised items.

The next section includes reviews of the hierarchical model of van der Linden (2007) for

item scores and response times, the existing approaches for estimation of the parameters of

the model, and the existing approaches for detection of item preknowledge using item scores

and/or response times. In the Methods section, we describe a new statistic for detection of

item preknowledge based on item scores and response times and prove that the asymptotic

null distribution of the new statistic is a simple mixture of two χ2 distributions. A study of

the Type I error rate and power of the new statistic is included in the Simulation section.

The Real Data section includes an application of the new statistic to an operational data

set that involves actual item preknowledge. The last section includes some conclusions and

recommendations.

Literature Review: A Model and Some Existing Methods

The Hierarchical Model for Item Scores and Response Times

The hierarchical/joint modeling approach of van der Linden (2007) involves the

application of a model for response times in combination with an item response

theory (IRT) model for the item scores. Let us consider an assessment that consists of I

items. Let ti and xi respectively denote the response time and item score of a randomly

chosen examinee on item i. Let yi denote the logarithm of ti. In the first stage of the

hierarchical modeling approach of van der Linden (2007), one assumes that

• the response time follows the lognormal model (LNMRT; van der Linden, 2006), that
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is, yi follows a normal distribution with mean βi − τ and variance 1
α2
i
, or,

f(yi|τ, αi, βi) =
αi√
2π
e−

1
2
α2
i (yi−βi+τ)2·

The parameters τ , βi and αi respectively are the examinee’s speed parameter, the

time-intensity parameter for item i, and the time-discrimination parameter for item i.

• the item scores follow an IRT model; for example, if the two-parameter logistic model (2PLM)

is used and ai and bi respectively denote the item slope and item difficulty parameter

of item i, then

P (xi = 1|θ, ai, bi) =
eai(θ−bi)

1 + eai(θ−bi)
,

where θ is the examinee ability.

Though van der Linden (2007) used the three-parameter normal ogive model for the item

scores in his hierarchical approach, the flexibility of the approach allows the use of any other

IRT model such as the 2PLM or the three-parameter logistic model. In the second stage of

the hierarchical modeling approach of van der Linden (2007), one assumes a suitable prior

distribution, typically a bivariate normal distribution with means equal to 0, for the vector

of examinee parameters, (τ, θ)′.

Klein Entink, Fox, and van der Linden (2009) and van der Linden (2007) suggested

Bayesian approaches to estimate the item parameters of the hierarchical model involving

the LNMRT and an IRT model (such as the 2PLM or 3PLM or their corresponding

normal-ogive versions) using the Markov chain Monte Carlo algorithm. The Bayesian

approach is implemented in the R package LNIRT (Fox, Klein Entink, & Klotzke, 2017).

Glas and van der Linden (2010) suggested an expectation-maximization (EM) algorithm to

compute the marginal maximum likelihood estimates (MMLEs) of the item parameters of

the hierarchical model of van der Linden (2007). van Rijn and Ali (2017) provided further

details (such as expressions of the first and second derivatives of the marginal likelihood

function) on the EM algorithm for the hierarchical model involving the LNMRT and the

2PLM. Molenaar, Tuerlinckx, and van der Maas (2015) provided Mplus codes for computing

the MMLEs of the item parameters of the hierarchical model.
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The joint distribution of the item scores and the response times of a person can be

expressed as the product of the distribution of the item scores and that of the response

times (e.g., van der Linden, 2007). Therefore, to compute the joint maximum likelihood

estimates (MLEs) of τ and θ for a person after the estimation of the item parameters, one

can compute the MLEs separately—the one for τ only using the response times and the

one for θ only using the item scores. Standard textbooks such as Baker and Kim (2004)

describe approaches for the estimation of θ given item parameters. The computation of the

estimates of the person speed parameter τ given α2
i ’s and βi’s for the LNMRT is discussed

in van der Linden (2006).

Detecting Item Preknowledge Using Item Scores and/or Response Times

Let C and C respectively denote the set of compromised items and non-compromised

items that were administered to the abovementioned randomly chosen examinee. Let x,

xC, and xC respectively denote the collection of the scores of the examinee on all items, on

the items in C and on the items in C, respectively. Thus, for example, xC = {xi, i ∈ C}.

Similarly, let y, yC, and yC respectively denote the collection of logarithm of response times

of the examinee on all items, the items in C and the items in C. The existing approaches for

detecting item preknowledge using item scores and/or response times are briefly described

below.

The Signed Likelihood Ratio Test Based on the Item Scores

For the examinee, let us denote the true ability based on the whole test, C, and C as

θ, θC, and θC, respectively.1 Let us denote the MLEs of these parameters as θ̂, θ̂C, and θ̂C,

respectively. Note that θ̂ is computed from all the items on the test while θ̂C and θ̂C are

computed from the subsets C and C, respectively. The likelihood ratio test (LRT) statistic

1The true or estimated ability based on a part of the test is rarely of interest in operational score reporting.

However, the introduction of θC , and θC here facilitates the derivation of the new statistic, as will be clear

later.
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for testing the null hypothesis H0 : θC = θC versus the alternative hypothesis H ′1 : θC 6= θC is

given by

ΛS = 2[`(xC|θ̂C) + `(xC|θ̂C)− `(x|θ̂)], (1)

where

`(xC|θ̂C) = log-likelihood of the scores on C at θ̂C,

`(xC|θ̂C) = log-likelihood of the scores on C at θ̂C,

and `(x|θ̂) = log-likelihood of the scores on all the items at θ̂.

The local independence assumption underlying the standard IRT models leads to equalities

such as

`(xC|θ̂C) =
∑
i∈C

logPi(xi|θ̂C),

where Pi(xi|θ̂C) is the probability of a score xi on item i at θ = θ̂C. In the context of the

hierarchical modeling approach of van der Linden (2007), terms such as Pi(xi|θ̂C) depend

on the IRT model used under. For example, if the 2PLM is used as the IRT model, then

Pi(xi|θ̂C) =

(
eai(θ̂C−bi)

1 + eai(θ̂C−bi)

)xi (
1

1 + eai(θ̂C−bi)

)1−xi
·

Then one may express the LRT statistic given in Equation 1 as

ΛS = 2

∑
i∈C

logPi(xi|θ̂C) +
∑
i∈C

logPi(xi|θ̂C)−
I∑
i=1

logPi(xi|θ̂)

 ·
Sinharay (2017a) suggested that to detect item preknowledge, one can test H0 : θC = θC

versus H1 : θC ≥ θC, and the hypothesis can be tested using the signed likelihood ratio test

statistic given by

LS =


√

ΛS if θ̂C ≥ θ̂C,

−
√

ΛS if θ̂C < θ̂C·

A large positive value of LS leads to the rejection of the null hypothesis of no item

preknowledge. The statistic LS follows the standard normal distribution for large C and

5



C under the null hypothesis of no item preknowledge (e.g., Sinharay, 2017a; Cox, 2006,

p. 104). Sinharay (2017a) and Sinharay (2017b) found the Type I error rate and power

of LS to be quite satisfactory in comparison to the existing statistics for detecting item

preknowledge based on item scores.

The Signed Likelihood Ratio Test Based on Response Times

Let τC and τC respectively denote the examinee’s true speed parameters on the

compromised and non-compromised items, respectively, and let τ̂C and τ̂C denote their

MLEs. Let τ̂ denote the MLE of the examinee’s true speed parameter based on all the I

items on the test. The LRT statistic for testing H0 : τC = τC versus H ′1 : τC 6= τC is given by

ΛT = 2[`(yC|τ̂C) + `(yC|τ̂C)− `(y|τ̂)], (2)

where, for example,

`(yC|τ̂C) = log-likelihood of the log-response times of the items in C, computed at τ̂C·

Sinharay (2019) showed that when one uses the LNMRT (van der Linden, 2006) for the

response times under the hierarchical modeling framework of van der Linden (2007),

`(yC|τ̂C) can be expressed as

`(yC|τ̂C) =
∑
i∈C

[
−1

2
log[2π] + log(αi)

]
+ τ̂ 2C

∑
i∈C

α2
i

2
−
∑
i∈C

α2
i

2
(yi − βi)2, (3)

and that

ΛT = τ̂ 2C
∑
i∈C

α2
i + τ̂ 2C

∑
i∈C

α2
i − τ̂ 2

I∑
i=1

α2
i · (4)

Consequently, to detect item preknowledge based on response times, one can test

H0 : τC = τC versus H1 : τC > τC using the signed likelihood ratio statistic given by

LT =


√

ΛT if τ̂C ≥ τ̂C,

−
√

ΛT if τ̂C < τ̂C

(5)

(Sinharay, 2019).
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It can be shown that for this hypothesis-testing problem, the LT statistic is identical to

the Wald test statistic given by

τ̂C − τ̂C√
Var(τ̂C) + Var(τ̂C)

=
τ̂C − τ̂C√

[
∑

i∈C α
2
i ]
−1 + [

∑
i∈C α

2
i ]
−1
·

Sinharay (2019) also showed that under the LNMRT, LT follows the standard normal

distribution under the null hypothesis of no item preknowledge irrespective of the sizes of C

and C.

Using A Bayesian Person-fit Approach to Detect Item Preknowledge

Marianti, Fox, Avetisyan, Veldkamp, and Tijmstra (2014) suggested a person-fit

statistic based on response times that is given by

lt =
∑
i

α2
i (yi − βi + τ)2, (6)

and described a Bayesian approach to estimate the posterior probability of an aberrant

response-time pattern using lt. To assess person fit using item scores, Fox and Marianti

(2017) suggested a Bayesian approach to estimate the posterior probability of an aberrant

item-score pattern using the lz statistic (Drasgow, Levine, & Williams, 1985) that is given

by

lz =
`(x|θ)− E(`(x|θ))√

Var(`(x|θ))
·

Fox and Marianti (2017) also suggested a Bayesian approach using both lt and lz to

estimate the posterior probability of both an aberrant item-score pattern and aberrant

response-time pattern. The posterior probability is expected to be large (for example,

larger than 0.99) for aberrant response patterns. While the Bayesian approach of Fox and

Marianti (2017) is designed to detect a variety of aberrant responses, the approach can be

used to detect item preknowledge.

Using Standardized Residuals to Detect Item Preknowledge

van der Linden and Guo (2008) suggested a Bayesian approach for detecting

aberrant response times in the context of the hierarchical model of van der Linden
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(2007). They showed that the posterior distribution of the predicted value of the

log-response time on item i conditional on y−i = (y1, y2, . . . , yi−1, yi+1, . . . , yI) and also

on x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xi) is approximately normal. Then, they defined the

standardized residual, ei, as

ei =
yi − E(yi|y−i,x−i)√

Var(yi|y−i,x−i)
· (7)

The response time for the examinee on item i is concluded as aberrant at 1% level if the

absolute value of ei is larger than the 99th percentile of the standard normal distribution.

While this approach is designed to detect a variety of aberrant responses, the approach

can be used to flag for possible item preknowledge the examinees with several statistically

significant and negative ei’s, as was performed in Boughton, Smith, and Ren (2017, p. 181)

and Qian, Staniewska, Reckase, and Woo (2016). We follow the strategy of van der Linden

and Guo (2008, p. 382) of flagging for possible item preknowledge the examinees with one

or more statistically significant ei’s that are negative and associated with a correct answer.

Using Mixture Models to Detect Item Preknowledge

Lee and Wollack (2017) and Wang et al. (2018) suggested using mixture hierarchical

IRT models, which are fitted using Bayesian estimation approaches, to detect aberrant

item scores and response times. These models include an aberrance indicator ∆ij for

each examinee-item combination. The estimated posterior probability of ∆ij being

equal to 1 can be used to determine whether the response time and item score for

an item-examinee combination are aberrant. An examinee with too many aberrant

item-examinee combinations may be identified for possible item preknowledge. These

approaches do not require the assumption of known compromised items.

The use of the approaches of Lee and Wollack (2017) or Wang et al. (2018) are most

appropriate for the cases when one does not know the set of compromised items; when

the investigator knows the set of compromised items, these approaches are not capable

to take that information into account and are expected to lead to low power. In some

limited simulations, when the set of compromised items is known, these approaches were
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found to have much smaller power to detect examinees with preknowledge than the new

statistic suggested later. In addition, the approaches of Lee and Wollack (2017) and Wang

et al. (2018) are time-consuming; for example, Lee and Wollack (2017) stated that the

estimation of their mixture model for a real data set with less than 2,000 examinees (the

data set is the same as the one analyzed later in the current paper) took more than three

days. Therefore, the approaches of Lee and Wollack (2017) or Wang et al. (2018) are not

considered henceforth in this paper.

Motivation of This Paper

The above review shows that all of the existing approaches that can be used to detect

item preknowledge based on item scores and response times are designed to detect response

patterns that are in general aberrant and are not specifically designed to detect item

preknowledge. Given that statistics based only on item scores and specifically designed to

detect item preknowledge have been found more powerful than statistics based only on item

scores and designed to detect aberrant response patterns in general (e.g., Sinharay, 2017a, p.

59), it is expected that a statistic that is based on both item scores and response times and

specifically targets item preknowledge will be more powerful than the existing approaches.

The major goal of this paper is to suggest one such statistic. As is demonstrated below,

it is possible to construct a new statistic that combines information from the LS and LT

statistics to detect item preknowledge based on both item scores and response times.

Ideas from constrained statistical inference (e.g., Silvapulle & Sen, 2001) are used in the

construction of the new statistic and the derivation of its asymptotic distribution under the

null hypothesis. Given the satisfactory performances of both LS and LT (e.g., Sinharay,

2017a, 2019), the new statistic is expected to have satisfactory Type I error rate and power.

Method: A New Statistic Based on Item Scores and Response Times

The examinees who benefited from item preknowledge are likely to answer the

compromised items faster than the non-compromised items, as was found for real data
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sets by Kasli and Zopluoglu (2018) and Smith and Davis-Becker (2011). They are also

likely to perform better on the compromised items in comparison to the non-compromised

items, as was found for real data sets by researchers such as Sinharay (2017a) and Smith

and Davis-Becker (2011). Consequently, using notation introduced above, one can detect

item preknowledge by testing the null hypothesis H0 : τC = τC and θC = θC versus the

alternative hypothesis H1 : τC > τC or θC > θC. The rejection of the null hypothesis may

indicate possible item preknowledge. The LRT statistic for testing the null hypothesis

H0 : τC = τC and θC = θC versus the alternative hypothesis H ′1 : τC 6= τC or θC 6= θC can be

obtained, in a manner similar to Equation 1, as

ΛST = 2 max
θC ,τC ,θC ,τC

[`(xC,yC|θC, τC) + `(xC,yC|θC, τC)]− 2 max
θ,τ

`(x,y|θ, τ), (8)

where, for example, `(xC,yC|θC, τC) denotes the joint log-likelihood of θC and τC for the

examinee.

Because the joint likelihood of the item scores and response times of an examinee is

equal to the product of the likelihood of the item scores and the likelihood of the response

times under the abovementioned hierarchical model (e.g., van der Linden, 2007), one can

express the joint log-likelihood of the ability parameter and the speed parameter for the

compromised items, non-compromised items, and all items as

`(xC,yC|θC, τC) = `(xC|θC) + `(yC|τC),

`(xC,yC|θC, τC) = `(xC|θC) + `(yC|τC),

and `(x,y|θ, τ) = `(x|θ) + `(y|τ)·

As discussed earlier, for example, the computation of the joint MLE of θC and τC based on

xC and yC for an examinee is equivalent to the computation of two separate MLEs—one of

θC based on xC and the other of τC based on yC. As a consequence, ΛST given in Equation 8

can be expressed as

ΛST = 2
[
`(xC|θ̂C) + `(yC|τ̂C) + `(xC|θ̂C) + `(yC|τ̂C)− `(x|θ̂)− `(y|τ̂)

]
= ΛS + ΛT , (9)
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because of Equations 1 and 2. If both C and C are large and the null hypothesis is true, then

both LS and LT follow the standard normal distribution (Sinharay, 2017a, 2019) and are

independent because of the local independence assumption underlying the model of van der

Linden (2007), and hence ΛST is the sum of the squares of two independent standard

normal variables and follows the χ2 distribution with two degrees of freedom. However,

the use of ΛST and, for example, the 95th percentile of the χ2
2 distribution as a cutoff

to perform a test at significance level of 0.05 for detecting preknowledge is inappropriate

because the alternative hypothesis of our interest consists of the union of two one-sided

hypotheses (rather than the union of two two-sided hypotheses). If one uses ΛST along with

the percentiles of the χ2
2 distribution, then an examinee who performs considerably worse

or slower on the compromised items would be incorrectly identified as having preknowledge.

The use of ΛST was found, in our simulations, to lead to (a) low power and (b) inadvertent

flagging of those who performed worse or slower on the compromised items, and is not

considered henceforth. Also, Sinharay, Duong, and Wood (2017) emphasized the need of

using one-sided hypothesis testing in detection of test fraud.

Therefore, to test against the alternative hypothesis H1 : τC > τC or θC > θC, instead

of using ΛST , we resorted to tools from constrained statistical inference (e.g., Silvapulle &

Sen, 2001) and recommend the constrained likelihood ratio test statistic

Λ?
ST = L2

S+ + L2
T+,

where LS+ = max{LS, 0} and LT+ = max{LT , 0}. The statistic Λ?
ST is similar to ΛST

and is identical to ΛST when both LS and LT are positive, but, unlike ΛST , protects the

examinees who perform slower or worse on the compromised items from being incorrectly

identified. To derive the null distribution of Λ?
ST , it is useful to consider the four possible

scenarios described in Table 1, where each scenario corresponds to a possible combination

of values of LS and LT .

In the first scenario, both LS and LT are larger than zero, or, equivalently, the estimates

of the examinee speed and ability parameters based on the compromised items are larger

than the estimates based on the non-compromised items; in this case, Λ?
ST is composed of
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Table 1: The four possible scenarios and their relationships to the constrained likelihood ratio
statistic. The third column gives the probability of the scenario under the null hypothesis

Scenario Λ?
ST Probability under H0

LS > 0, LT > 0 L2
S + L2

T Pr{LS > 0, LT > 0} = 0.25
LS ≤ 0, LT > 0 L2

T Pr{LS ≤ 0, LT > 0} = 0.25
LS > 0, LT ≤ 0 L2

S Pr{LS > 0, LT ≤ 0} =0.25
LS ≤ 0, LT ≤ 0 0 Pr{LS ≤ 0, LT ≤ 0} =0.25

both L2
S and L2

T . In the second and third scenarios, only one of LS and LT is positive, and

therefore, Λ?
ST is based only on the one positive statistic. In the final scenario, neither is

positive, which results in Λ?
ST being equal to 0.

The four scenarios described in Table 1 simply define the four quadrants in the real

plane. If both C and C include a large number of items and the null hypothesis is true,

LS and LT are standard normal (e.g., Sinharay, 2017a, 2019) and uncorrelated (because of

the local independence assumption) and hence the probability of each scenario is 1
4
. Then,

the cumulative distribution function (CDF) of Λ?
ST for large C and C and under the null

hypothesis can be obtained as

P (Λ?
ST ≤ λ) = P (Λ?

ST ≤ λ|LS > 0, LT > 0)P (LS > 0, LT > 0)

+P (Λ?
ST ≤ λ|LS ≤ 0, LT > 0)P (LS ≤ 0, LT > 0)

+P (Λ?
ST ≤ λ|LS > 0, LT ≤ 0)P (LS > 0, LT ≤ 0)

+P (Λ?
ST ≤ λ|LS ≤ 0, LT ≤ 0)P (LS ≤ 0, LT ≤ 0)

=
1

4
[P (L2

S + L2
T ≤ λ|LS > 0, LT > 0) + P (L2

T ≤ λ|LS ≤ 0, LT > 0)

+ P (L2
S ≤ λ|LS > 0, LT ≤ 0) + P (0 ≤ λ|LS ≤ 0, LT ≤ 0)]

=
1

4
[P (L2

S + L2
T ≤ λ|LS > 0, LT > 0) + P (L2

T ≤ λ|LT > 0)

+ P (L2
S ≤ λ|LS > 0) + P (0 ≤ λ|LS ≤ 0, LT ≤ 0)]· (10)

The last equality holds because LS is independent with LT (because of the local

independence assumption made in the hierarchical modeling approach of van der Linden,

2007). The CDF provided in Equation 10 corresponds to a mixture distribution, with a

weight of 0.25 on the four components of the mixture, of the conditional distributions of
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• L2
S + L2

T given LT > 0 and LS > 0,

• L2
T given LT > 0,

• L2
S given LS > 0, and

• a point mass at zero.

As is proved in the appendix, under the null hypothesis, all four of these conditional

distributions are χ2 for large C and C; the first conditional distribution is χ2
2, the second

and third are both χ2
1, and the fourth is χ2

0. So, the CDF of Λ?
ST for large C and C and

under the null hypothesis is given by

P (Λ?
ST ≤ λ) =

1

4
P (χ2

2 ≤ λ) +
1

2
P (χ2

1 ≤ λ) +
1

4
I{λ ≥ 0}. (11)

The CDF shown in Equation 11 corresponds to a distribution that is referred to as the

chi-bar-square (χ̄2) distribution (e.g., Dykstra, 1991; Silvapulle & Sen, 2001) that is popular

in constrained statistical inference. Consequently, for λ > 0, the p-value for the test statistic

Λ?
ST is calculated as2

P (Λ?
ST > λ) = 1− P (Λ?

ST ≤ λ) =
3

4
− 1

4
P (χ2

2 ≤ λ)− 1

2
P (χ2

1 ≤ λ)

=
1

4
P (χ2

2 > λ) +
1

2
P (χ2

1 > λ)· (12)

One can calculate the critical value of the distribution at significance level of α by solving

the equation
1

4
P (χ2

2 > λ) +
1

2
P (χ2

1 > λ) = α·

This equation can be solved by using the R (R Core Team, 2019) function “uniroot”. The

critical values of the distribution for significance levels of 0.001, 0.01, 0.05, and 0.10 are

11.762, 7.289, 4.231, and 2.952 respectively; that is, the right-hand side of Equation 12 is

equal to 0.001, 0.01, 0.05, and 0.10 for λ=11.762, 7.289, 4.231, and 2.952 respectively.

If the alternative hypothesis is true, which typically would occur when an examinee

has item preknowledge, one or both of LS and LT will have a large positive value and,

consequently, the value of Λ?
ST will be large and positive.

2Note that negative values of λ are not of interest because Λ?
ST cannot be negative by definition.
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Simulation Study

We used simulations based on real data rather than simulations based on data generated

from any response-time model and/or IRT model to examine the properties of Λ?
ST and to

compare the properties of Λ?
ST to those of LS, LT , the residual-based approach of van der

Linden and Guo (2008), and the Bayesian person-fit approach of Fox and Marianti (2017).

Design of the Simulation Study

The simulations were based on the item scores and response times of 18,353 test

takers on one form of an English proficiency test that is administered on computers. The

test consists of 34 multiple-choice items. The average response times on the items ranged

between 21 and 52 seconds and the average per-item response times of the examinees

ranged between 9 and 53 seconds. There was no knowledge of examinees benefitting from

item preknowledge on the test.

The data set was used to artificially create several simulated data sets that involve

different extents of item preknowledge. The following three factors were varied in the

simulations:

• an indicator ISA of whether the item scores were affected or not by item preknowl-

edge (the values of ISA were 0 or 1),

• the size of the set of compromised items (4, 7, 10, or 17 items)3,

• a quantity δ (with values 0, 1, 2, or 3) that determines the speed of those with pre-

knowledge on the compromised items;

To simulate the data and compare the approaches, we repeated the following steps 100

times for each combination of values of the three abovementioned factors:

1. Randomly select 12,235 examinees (who comprise about two-thirds of all the examinees

3The case of 17 compromised items out of 34 items was considered because the proportion of compromised

items has been found to be quite large in practice (e.g., Cizek & Wollack, 2017; Eckerly et al., 2018).
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in the original data set) from the original data set.4

2. From the 12,235 examinees, randomly select 1,000 examinees5 who would play the role

of the cheaters, that is, those who benefitted from item preknowledge.

3. From the 34 items in the data set, randomly choose the 4, 7, 10, or 17 items that would

play the role of the compromised items.

4. For each combination of a compromised item and a cheater, artifically create item

preknowledge by replacing the actual logarithm of response time by the same minus

sδ, where s is the standard deviation of the logarithm of response times for the item.

5. When ISA is equal to 0, the item scores were not changed for any examinee—these

cases represented the scenario that item preknowledge affects only response times and

not the item scores. When ISA is equal to 1, the item scores of the cheaters on

the compromised items were replaced by numbers randomly drawn from a Bernoulli

distribution with success probablity of 0.9—these cases represented the scenario that

item preknowledge affects both response times and item scores.

6. Compute the estimated item parameters for the hierarchical model of van der Linden

(2007) that comprises the LNMRT and the 2PLM from the (changed) data set using

(a) the R package LNIRT (Fox et al., 2017) and (b) a Fortran program to compute

the MMLEs of the item parameters for the hierarchical model (Glas & van der Linden,

2010).

7. Compute the MLEs of the examinee ability and speed parameters from the data set.

8. Compute the statistics—Λ?
ST , LS, LT , and the standardized residuals of van der Linden

and Guo (2008)—and the posterior probabilities for the Bayesian person-fit approach

of Fox and Marianti (2017) for all the examinees in the (changed) data set. The

4Changing this number to other large values such as 5,000, 10,000 or 15,000 did not change the comparative

performance of the methods.
5Changing 1,000 to 500 and 2,000 did not change the comparative performance of the methods.
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MMLEs of the item parameters (produced from the Fortran program) were used in

the computation of Λ?
ST , LS, and LT while the Bayesian estimates of the item pa-

rameters (produced by the LNIRT package6) were used in the computation of the

standardized residuals (van der Linden & Guo, 2008) and the posterior probabilities

for the Bayesian person-fit approach (Fox & Marianti, 2017).7

Steps 4 and 5 indicate that no change to the score or time was made for the examinee-item

combinations in which the examinee was a non-cheater or the item was a non-compromised

item. The response times are actually not changed in the fourth step for the simulation

conditions in which δ is equal to 0. Thus, the null hypothesis is true (that is, there is

no preknowledge) for each simulation condition in which δ = 0 and ISA = 0; the Type I

error rate of each approach was estimated from these conditions as the proportion of all

examinees with a statistically significant value under the approach. For each simulation

condition with δ > 0 or ISA = 1 or both, which corresponded to the alternative hypothesis

being true, the power of each approach was approximated as the proportion of examinees

with item preknowledge that had a significant value under the approach. The conditions

with δ = 0 and ISA = 1 represent the cases when only the item scores are affected and

response times are not affected by preknowledge. The conditions with δ > 0 and ISA = 0

represent the cases when only the item scores are not affected and response times are

affected by preknowledge. The conditions with δ > 0 and ISA = 1 represent the cases when

both the item scores and response times are affected by preknowledge.

The Distribution of Λ?
ST Under the Null and Alternative Hypotheses

The dashed line in the left panel of Figure 1 shows the kernel-density estimate8 of

the distribution of the values of Λ?
ST for the simulation case of no item preknowledge

6The LNIRT package can only fit probit models—so the estimates for the probit model were transformed

to those for the logistic model using the conversion procedure implied in, for example, Birnbaum (1968, p.

399). The conversion involves the multiplication factor of 1.7 to convert the slope parameter estimates.
7The MMLEs and Bayesian estimates of the item parameters were very close—so the approach to estimate

item parameters did not have any effect on the comparative performance of the approaches.
8The estimate was computed using the function “density” in the R software (R Core Team, 2019).
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Figure 1: The kernel-density estimate of the distribution of Λ?
ST under the null (left panel)

and alternative (right panel) hypothesis for the case of 7 compromised items.

when C includes 7 items. The probability density function (pdf) of the theorized χ̄2 null

distribution given by Equation 11 is also shown in the figure using a solid line. The two

lines are very close to each other, indicating that the distribution of the values of Λ?
ST

under no item preknowledge is very close to the corresponding theorized null distribution

and that the Type I error rate of the statistic will be close to the nominal level. Thus, the

χ̄2 null distribution of Λ?
ST seems to hold for real data that involve no item preknowledge.

The right panel of Figure 1 shows the pdf of the χ̄2 null distribution and the kernel-density

estimate of the values of Λ?
ST for the case of preknowledge on 7 items—the panel shows

that the distribution of values of Λ?
ST under preknowledge is far (towards right) from the

distribution under no preknowledge—so Λ?
ST is expected to have large power to detect item

preknowledge.

The Performance of the Statistics When the Null Hypothesis is True

The Type I error rates of LS, LT , Λ?
ST , the residual-based approach of van der Linden

and Guo (2008), and the Bayesian approach (Fox & Marianti, 2017) at the significance
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Table 2: The Type I Error Rates at the Level of 0.01

Approach/Statistic 4 items 7 items 10 items 17 items
Bayesian residuals 0.027 0.047 0.053 0.092
Bayesian person-fit 0.052 0.072 0.048 0.063

LS 0.008 0.010 0.009 0.011
LT 0.006 0.009 0.008 0.009
Λ?
ST 0.007 0.010 0.011 0.011

level of 0.01 are shown in Table 2. Columns 2-5 of the table show the rates for 4, 7, 10,

and 17 compromised items, respectively.9 Table 2 indicates that the Type I error rates of

the Bayesian person-fit approach and the approach based on residuals (van der Linden &

Guo, 2008) are considerably larger than the nominal level. The Type I error rates of Λ?
ST

are close to the nominal level, which provides favorable evidence for Λ?
ST given that the

data that were used to compute these rates are not simulated, but real data. Especially,

the satisfactory Type I error rates of Λ?
ST for 4 and 7 items (Columns 2 and 3 of Table 2)

indicate that even though the theoretical result on the null distribution of Λ?
ST holds for

large C and C, the result seems to hold in simulations even for rather small C. The Type

I error rates of LS and LT are also close to the nominal level, a finding that agrees with

similar findings in Sinharay (2017a) and Sinharay (2019).

The Performance of the Statistics When the Null Hypothesis is False

The power (at level 0.01) of LS, LT , Λ?
ST , the residual-based approach of van der Linden

and Guo (2008), and the Bayesian approach (Fox & Marianti, 2017) are shown in Figures 2

and 3 for different numbers of compromised items and δ. Figures 2 and 3 respectively

correspond to the cases with ISA = 0 and ISA = 1. The four panels of each figure show

the power of the approaches when the number of compromised items was 4, 7, 10, and

17, respectively. In each panel, the values of power for Λ?
ST , LT , LS, the residual-based

9The use of any “number of compromised items” may seem at odds with the computation of the Type I

error rate given that the latter corresponds to no item preknowledge. However, to compute statistics such as

Λ?
ST , one needs to a assign a set of items as compromised (even though they are actually not compromised)

and Table 2 shows the Type I error rates for various sizes of this set.
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Figure 2: The power of Λ?
ST , LT , LS, the residual-based approach and the person-fit approach

at significance level of 0.01 when only response times are affected by preknowledge.

approach (van der Linden & Guo, 2008), and the person-fit approach (Fox & Marianti,

2017) are shown using hollow circles, hollow triangles, hollow squares, hollow diamonds,

and hollow inverted-triangles, respectively, joined by a solid line. Given the simulation

design, all simulation conditions in Figure 2 represent the conditions when only the response

times were affected by item preknowledge, the simulation conditions with δ=0 in Figure 3

represent the conditions when only the item scores were affected by preknowledge, and the

simulation conditions with δ >0 in Figure 3 represent the conditions when both the item

scores and response times were affected by item preknowledge.

Figures 2 and 3 indicate that in general, the power of each approach increases as the

number of compromised items increases, which implies that the chance of detecting item
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Figure 3: The power of Λ?
ST , LT , LS, the residual-based approach and the person-fit approach

at level of 0.01 when both item scores and response times are affected by preknowledge.

preknowledge increases as the extent of preknowledge increases. The figures also indicate

that the power of all approaches except LS increases as δ increases, which is expected

because increasing δ means faster responding to the compromised items and all the

approaches except LS incorporate information on speed. The power of Λ?
ST is larger than

0.7 when δ is 2 or 3. Figures 2 and 3 indicate that the residual-based approach (van der

Linden & Guo, 2008) and the Bayesian person-fit approach (Fox & Marianti, 2017) have

smaller power than Λ?
ST in all simulation cases. Figure 2 shows that when only response

times are affected by preknowledge and item scores are not, LT will be more powerful, but

only by a small margin, compared to Λ?
ST . Similarly, the values for δ=0 in Figure 3 indicate

that when only item scores are affected by preknowledge and response times are not, LS
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will be more powerful, but only by a small margin, compared to Λ?
ST . Figure 3 shows that

when both item scores and response times are affected by preknowledge, Λ?
ST is slightly

more powerful than LT and much more powerful than LS. Given that both item scores

and response times are likely to be affected by preknowledge for operational tests (some

evidence favoring this assertion was provided by Kasli & Zopluoglu, 2018), Figures 2 and 3

indicate that Λ?
ST is the most appropriate candidate (among those considered in this paper)

for detecing item preknowledge when both item scores and response times of the examinees

are available.

The simulation cases with δ > 0 or ISA = 1 or both also allow one to estimate the

false alarm (FA) rates of each approach as the proportion of examinees with no item

preknowledge that had a significant value under the approach.10 The FA rate of Λ?
ST was

always smaller than the nominal level—this is favorable evidence for the statistic given that

the item parameters in these simulation cases were estimated from the contaminated data

sets (contaminated in the sense that they included some examinees with preknowledge).

Given that an investigator would typically have to work with contaminated data sets in

practice, these FA rates imply that Λ?
ST will not falsely identify examinees too often in

practice.

Real Data Example

Item scores and response times on two forms of a non-adaptive computerized licensure

test were available for 1,624 and 1,629 examinees, respectively. The licensure test comprises

170 dichotomous items. The two forms included 63 and 61 items, respectively, which were

known to have been compromised. Further, a rigorous investigative process identified as

possible cheaters 41 and 42 examinees, respectively, on the two forms. It is not known

what methods were used or exactly what types of test fraud were found in the investigative

process. For further details about the data set, see Cizek and Wollack (2017, p. 14) who

10Note that the data sets from which the FA rates are computed include some examinees with preknowl-

edge, whereas the data sets from which the Type I error rates are computed include no examinees with

preknowledge.
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stated that while some of the test fraud involved examinees having item preknowledge, other

types of fraud were possible as well. Also, while all the examinees identified as cheaters

were believed to have engaged in test fraud, it is certainly possible that other examinees

should have been identified as cheaters, but were not. Researchers such as Boughton et al.

(2017), Eckerly (2017), Kasli and Zopluoglu (2018), and Sinharay (2017a) used these data

sets to detect item preknowledge, Fox and Marianti (2017) used these data sets to detect

person misfit, and Zopluoglu (2017) used these data sets to detect answer-copying.
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Figure 4: The Proportion of examinees for whom LT , LS, and Λ?
ST were significant for the

real data.

The item parameters for the hierarchical model of van der Linden (2007) were

estimated from data for each form using a Fortran program to compute the MMLEs of
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item parameters under the assumption that the 2PLM is used for the item scores and the

LNMRT is used for the response times. The values of LT , LS and Λ?
ST were computed

from the two data sets using the estimated item parameters. The residual-based approach

(van der Linden & Guo, 2008) and the person-fit approach (Fox & Marianti, 2017) were not

considered because of their inflated Type I error rate and smaller power in the simulations.

Figure 4 shows the proportions of examinees (along the vertical axis) for whom the

three statistics were significant at significance levels of 0.001 (dotted line) and 0.01 (dashed

line) for the two forms. The top two panels of the figure show the proportions significant

among the examinees who were not flagged as possible cheaters and the bottom two panels

show the proportions significant among the examinees who were flagged as possible cheaters

by the licensure organization. The title of each panel indicates the form and flag status of

the examinees. The range of the vertical axis is the same in all the panels. Note that the

proportions are computed from much smaller number of examinees (41 and 42 respectively)

in the bottom two panels compared to the top two panels (1,583 and 1,587, respectively).

The top two panels of Figure 4 indicate that the proportions of significant values for

Λ?
ST are close to those for LS and LT among non-flagged examinees. The bottom two panels

of Figure 4 indicate that the proportions of significant values for Λ?
ST are substantially

larger than those for LS and LT among flagged examinees for significance level of 0.001 for

Form 1 and for both significance levels for Form 2; these proportions indicate that the use

of Λ?
ST will often lead to the detection of a larger number of examinees compared to the use

of only one among LS and LT .

Further insight on the relationship between LS, LT , and Λ?
ST is provided by Figure 5

that shows the values of the Λ?
ST statistic (along Y-axis) versus those of the LT statistic (left

panel) and the LS statistic (right panel) for the 41 examinees who were flagged by the

licensure organization for Form 1. Each circle (hollow or solid gray) corresponds to a flagged

examinee. Horizontal and vertical dashed lines are shown at the 99.9th percentile of the

respective null distribution (any value larger than this quantile is statistically significant at

level 0.001). The range of the Y-axis is the same in the two panels of the figure. The figure

shows that Λ?
ST increases with an increase in either of LT and LS, but this relationship is
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Figure 5: A scatter-plot of Λ?
ST versus LS and LT for the 41 flagged examinees for Form 1.

more pronounced for LT . The figure also shows that among the 13 examinees for whom Λ?
ST

is significant at level of 0.001, LT was significant for nine examinees, LS was significant for

four, and both LT and LS were significant for three. The three solid gray circles correspond

to examinees for whom neither of LT and LS was significant, but Λ?
ST was significant. Thus,

the use of Λ?
ST would lead to the the detection of examinees who are detected by neither

of LT and LS. This result is in agreement with the finding in the simulations that when

an aberrant examinee answers faster and performs better on the compromised items, the

power of Λ?
ST is larger than that of either of LT and LS. It is also interesting to note that

Λ?
ST is significant for all the examinees for whom either LT or LS was significant.

Figure 6 includes a comparison of the response times versus average response times

for the whole sample, of the three examinees for whom Λ?
ST were the largest for Form 1

and one additional randomly chosen examinee for whom Λ?
ST was not significant. In each

panel, the logarithm of the response times of an examinee on the individual items is shown

along the Y-axis and the logarithm of the average response time of the items over the whole
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Figure 6: Response times of four examinees.

sample is shown along the X-axis. A plus sign and a minus sign respectively correspond

to items that the examinee answered correctly and incorrectly. The black plus or minus

signs correspond to the compromised items while the gray plus or minus signs correspond

to the non-compromised items. A diagonal line is provided in each panel for convenience.

Each of Examinees 1-3 answered several items correctly and faster than the average and

more of these items are compromised items, which causes several bold plus signs to appear

towards the bottom and far from the diagonal line of Panels 1-3; the items on which

Examinee 3 (and Examinees 1 and 2, to a certain extent) spent most time are mostly

non-compromised items (that is clear from the abundance of gray symbols towards the top

of the bottom left panel); in contrast, the plot for Examinee 4 does not reveal any pattern.
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Conclusions and Recommendations

Examinees benefitting from item preknowledge is a serious problem in educational

assessments (e.g., Wollack & Schoenig, 2018). In this paper, we suggest a new approach

to detect item preknowledge based on item scores and response times. The approach is

based on ideas from constrained statistical inference (Silvapulle & Sen, 2001). Wollack and

Schoenig (2018) divided the statistical methods used to detect cheating into six categories

and the suggested approach combines two of those categories (response-time methods and

score differencing). The suggested approach seems promising. The asymptotic distribution

of the suggested statistic under the null hypothesis of no item preknowledge is a mixture of

χ2 distributions, the estimated Type I error rate of the new statistic was found to be close

to the nominal level, and the power of the statistic was found to be larger in comparison to

the existing statistics. The computations required to implement the new statistic are not

intensive.

The new statistic should not be used by itself to detect item preknowledge in operational

testing. Instead, as recommended by, for example, van der Linden and Guo (2008), the

new statistic should be employed as a part of quality control and/or as secondary evidence,

along with other statistics and non-statistical evidence (e.g., Hanson, Harris, & Brennan,

1987), in investigations of test fraud. Also, if the goal is to detect aberrant responding in

general using response times, then the approaches of, for example, Fox and Marianti (2017),

Lee and Wollack (2017), van der Linden and Guo (2008), and Wang et al. (2018) should be

used instead of the new statistic.

The statistic Λ?
ST applies only to the case where a subset of all the items is compromised.

Thus, the statistic cannot be applied when all or almost all items are compromised—the

only (suboptimal) solution in such a case is to compare the performance of the examinees

to the performance predicted from covariates such as scores on other tests. Also, Λ?
ST will

have low power if only a few items are compromised, as clear from Figures 2 and 3. In

addition, Λs can only be applied when the set of compromised items is known. Typically,

such a case arises when the test administrators become aware after an administration about

some items possibly being compromised (one example of this is that the test administrators
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come across a website where some test items have been posted). In cases when the set of

compromised items is not precisely known, Λ?
ST can be applied if the examinees were also

administered a set of items that are new (that is, they were not administered in the past),

as was the case in the study of item compromise by Smith and Davis-Becker (2011)—the old

and new items would respectively play the roles of the compromised and non-compromised

items in such an analysis.

When the proportion of examinees with item preknowledge is large, item-parameter

estimates (that are typically estimated from the available examinee sample that will include

those with preknowledge) will be biased and the Λ?
ST statistic may not perform well in

detecting item preknowledge. For example, for a non-adaptive test for which the item

parameters are estimated from the examinee sample, the time-intensity parameters of the

compromised items would be substantially underestimated and the difficulty parameters

will be underestimated if a large number of examinees have preknowledge of those items

because they would answer those items faster and more correctly. As a consequence,

the speed-parameter estimate and ability estimate based on the compromised items (τ̂c

and θ̂c) would be substantially underestimated for those with preknowledge and without

preknowledge—this underestimation would make LT+’s and LS+’s smaller than what they

actually are and would in turn lead to smaller power and a false alarm rate that is smaller

than the nominal level of Λ?
ST . This phenomenon was verified from a comparison of the

results reported in this paper to those from an additional set of simulations11 in which

item parameters were not estimated in sixth step of the simulations and the true item

parameters were used instead. One possible solution in the face of item preknowledge for a

large proportion of examinees involves the four-step purification process of (a) estimating

item parameters from the full sample, (b) computing Λ?
ST for the full sample using

item-parameter estimates computed in the previous step, (c) reestimating the item

parameters from the subset of the sample that does not have significant values of Λ?
ST , and

(d) computing Λ?
ST for the full sample using the item-parameter estimates computed in the

11The results from these additional simulations are not reported in this paper and can be obtained from

the authors upon request.
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previous step. Such purification procedures have been successfully applied in other types of

person-level analysis such as person-fit analysis (e.g., Patton, Cheng, Hong, & Diao, 2019).

However, when the proportion of examinees benefitting from item preknowledge is very

large (say, larger than 0.5), then even a purification would not work well and retesting all

examinees would probably be the only reasonable choice. However, tests for which a large

proportion of examinees benefitted from item preknowledge are very rare, if not unheard of.

Thus, the above discussion suggests that while Λ?
ST is expected to have a small Type I

error rate and small false alarm rate, the statistic is expected to be most useful (in terms

of being reliable and having a large power) when a small percentage of examinees have

preknowledge of a moderately large number of items. In other cases, Λ?
ST will have small

power (an example of such a case is preknowledge on a small number of items by a small

percentage of examinees) or will be unreliable (when a large percentage of examinees have

preknowledge of some items).

Though this paper suggests a method that seems to be promising, this paper has

several additional limitations. First, one could examine the consequences of misfit of the

model on the properties of the new statistic in future research. Second, the statistic Λ?
ST

should be calculated for more data sets, both simulated and real. Especially, while the

statistic applies to adaptive tests as well, we did not compute it from any data (real or

simulated) originating from of an adaptive test and it is possible to compute Λ?
ST using

data originating from adaptive tests. Third, it is possible to compare the suggested

approach to the Bayesian approach of detecting item preknowledge using mixture

hierarchical IRT models (e.g., Lee & Wollack, 2017; Wang et al., 2018) that find both

compromised items and aberrant examinees. Fourth, the item parameters were assumed

known in the derivation of the null distution of the new statistic and it is possible to

explore approaches to account for the uncertainty of the item parameters in the

distribution of the new statistic. However, such an approach would almost surely have to

be Bayesian. Finally, while the suggested approach is an important initial step towards

detecting item preknowledge using both item scores and response times, the extension of

the suggested approach to response-time models other than LNMRT and to the case when
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the set of compromised items is unknown are potential areas of future research.
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Appendix A: Some Proofs Regarding the Asymptotic Null Distribution of Λ?
ST

Null Distribution of L2
S given LS > 0: The joint probability of L2

S < u2 and LS > 0 is

equal to

P (L2
S ≤ u2, LS > 0) = P (0 < LS ≤ u)

= P (0 < Z ≤ u), (A1)

where Z ∼ N(0, 1) is a standard normal random variable. Equation A1 holds because LS

has a standard normal asymptotic null distribution (Sinharay, 2017a). Because of the

symmetry of the standard normal distribution around zero, we have

P (L2
S ≤ u2, LS > 0) = P (0 < Z ≤ u)

=
1

2
P (−u < Z ≤ u)

=
1

2
P (Z2 ≤ u2).

We also have P (LS > 0) = 1
2
, so

P (L2
S ≤ u2|LS > 0) =

P (L2
S ≤ u2, LS > 0)

P (LS > 0)

= P (Z2 ≤ u2) = P (χ2
1 ≤ u2).

Therefore, the null distribution of L2
S given LS > 0 is the χ2

1 distribution. The null

distribution of L2
T given LT > 0 can be proved to be the χ2

1 distribution in a similar manner.

Null Distribution of L2
S + L2

T given LS > 0 and LT > 0: To derive the asymptotic

conditional distribution of L2
S + L2

T given LT > 0 and LS > 0 under the null hypothesis, we

use the result that the polar coordinates of two independent normal random variables are

independent of one another (Box & Muller, 1958). In terms of the statistics LS and LT , the

polar coordinates are

r =
√
L2
S + L2

T , and

ϕ = atan2(LT , LS),

where r is the distance of the point (Ls, LT ) from the origin and ϕ is the angle between the

horizontal (LS) axis and the ray going through the point (LS, LT ). Note that atan2(x, y)

1



returns a single value θ such that for some r > 0, x = r sin(θ) and y = r cos(θ). Because LS

and LT are standard normal variables under the null hypothesis, r2 is a χ2
2 random

variable, and ϕ is uniform on [0, 2π] (Box & Muller, 1958). Furthermore, r and ϕ are

independent of one another and LS > 0 and LT > 0 if and only if 0 ≤ ϕ ≤ π
2
. Therefore,

the conditional distribution of L2
S + L2

T given LS > 0 and LT > 0 is equivalent to the

conditional distribution of r2 given 0 ≤ ϕ ≤ π
2
. Because r2 and ϕ are independent of one

another, the conditional distribution of L2
S + L2

T given LS > 0 and LT > 0 is equal to the

marginal distribution of r2, which is χ2
2.
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