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ABSTRACT

In this paper, we investigate two purported problems with
Bayesian Knowledge Tracing (BKT), a popular statistical
model of student learning: identifiability and semantic model
degeneracy. In 2007, Beck and Chang stated that BKT is
susceptible to an identifiability problem—various models with
different parameters can give rise to the same predictions
about student performance. We show that the problem they
pointed out was not an identifiability problem, and using an
existing result from the identifiability of hidden Markov mod-
els, we show that under mild conditions on the parameters,
BKT is actually identifiable. In the second part of the paper,
we discuss a problem that has been conflated with identifiabil-
ity, but which actually does arise when fitting BKT models,
semantic model degeneracy—the model parameters that best
fit the data are inconsistent with the conceptual assumptions
underlying BKT. We give some intuition for why semantic
model degeneracy may arise by showing that BK'T models fit
to data generated from alternative models of student learning
can have semantically degenerate parameters. Finally, we
discuss the potential implications of these insights.
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1. INTRODUCTION

Bayesian Knowledge Tracing (BKT) is a popular model of
student learning that tries to predict the probability that
a student knows a skill and the probability that a student
will answer questions based on the skill correctly. The BKT
model is a two state hidden Markov model (HMM) that
posits students have either mastered a skill or not, and at
every practice opportunity, a student who has not mastered
the skill has some chance of attaining mastery. If a student
has mastered a skill, they will answer a question correctly
unless they “slip” with some (ideally small) probability, and
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if the student has not mastered the skill, they can only guess
correctly with some (ideally small) probability. In 2007,
Beck and Chang stated that BKT is not identifiable, mean-
ing that different settings of the four BKT parameters can
lead to identical predictions about a student’s performance
[7]. Whether or not BKT is identifiable is an important
issue, because if BKT is not identifiable, it means that we
would fundamentally need other criteria (beyond accurately
modeling student performance data) to fit BKT models.

However, in this paper, we show that BKT is actually an
identifiable model, under mild conditions on the parameters
that should always be satisfied in practical settings. This
result follows from BKT being a special case of a hidden
Markov model and therefore it inherits identifiability results
that prior work has proven for HMMSs. This implies no ad-
ditional criteria beyond predictive accuracy are needed to
identify a single BKT model that best explains observed
student performance, under the assumption that learning
can accurately be modeled by a BKT. We then describe three
potential issues with BKT models that may have been mis-
construed as an identifiability problem in the literature. Note
that our goal is by no means to criticize prior researchers, as
such researchers helped identify some important limitations
of Bayesian Knowledge Tracing, but these limitations do not
stem from a lack of identifiablity.

In the second part of this paper, we focus on one of the
issues that has been conflated with identifiability, but which
actually does arise when fitting BK'T models, semantic model
degeneracy—the model parameters that best fit the data are
inconsistent with the conceptual assumptions underlying
BKT. We give a critical look at the types of semantic model
degeneracy in the literature and then give some intuition for
why this problem may arise by showing that BKT models
fit to data generated from alternative models of student
learning can have degenerate parameters. We further show
that fitting models to sequences of different lengths generated
from the same underlying model can result in different forms
of semantic degeneracy. We show that these insights can
have important implications on how these models should be
used.
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2. BAYESIAN KNOWLEDGE TRACING
The Bayesian Knowledge Tracing model is a two-state hid-
den Markov model that keeps track of the probability that a
student has mastered a particular skill and the probability
that the student will be able to answer a question on that
skill correctly over time. At each practice opportunity 7 > 1
(i.e., when a student has to an answer a question correspond-
ing to the skill), the student has a latent knowledge state
K; € {0,1}. If the knowledge state is 0, the student has
not mastered the skill, and if it is 1, then the student has
mastered it. The student’s answer can either be correct or
incorrect: C; € {0,1} (where 0 corresponds to incorrect and
1 corresponds to correct). After each practice opportunity,
the student is assumed to master the skill with some proba-
bility. The BKT model is parametrized by the following four
parameters:

e P(Lo) = P(K; = 1): the initial probability of know-
ing the skill (before the student is given any practice
opportunities)

e P(T) = P(Ki+1 = 1|K; = 0): the probability of mas-
tering a skill at each practice opportunity (if the student
has not yet mastered the skill)

e P(G) = P(C; = 1|K; = 0): the probability of guessing

e P(S) = P(C; = 0|K; = 1): the probability of “slip-
ping” (answering incorrectly despite having mastered
the skill)

3. IDENTIFIABILITY

In their 2007 paper, Beck and Chang claimed that BKT is
not identifiable, illustrating this with a particular example of
three different BKT models [7]. For concreteness we include
these models in Table 1. The authors consider the case of
predicting the probability of correctness under these three
models as the students receive practice opportunities, but in
absence of any observation about the student’s performance.
They use plots as in Figure 1 to claim that the three models
make very different predictions about student knowledge
(Figure 1 (a)), but make identical predictions about student
performance (Figure 1 (b)). They claim,

All three of the sets of parameters instantiate
a knowledge tracing model that fit the observed
data equally well; statistically there is no justifica-
tion for preferring one model over another. This
problem of multiple (differing) sets of parameter
values that make identical predictions is known
as identifiability.

However, this is not correct since no data was used to fit
these curves; the curves are predicting the probability that
a student will know the skill or will answer the skill cor-
rectly at each practice opportunity i, when we have no prior
performance or data on the student. In order to take past
data from a student into account, we actually want to pre-
dict P(Kl = 1|C1, e Cifl) and P(CZ = 1|Cl, P Cifl) and
this is indeed what we do in practice when doing knowledge
tracing; we make predictions based on our past observations.
Figure 2 shows the curves predicting these conditional proba-
bilities for a particular sequence of correct/incorrect answers
for a student (namely we use (1,0,0,0,0,0,0,1,1)). We find

that even when we condition on a single observation (i.e.,
for P(C2 = 1|C1)), the three models make vastly different
predictions, and as we collect more data, the models con-
tinue to make very different predictions. In fact, except for
P(Cy = 1), the models never agree on the probability that a
student would answer the step correctly.

Formally, a model is said to be identifiable if there are no two
distinct sets of model parameters 6 and @’ that can give rise
to the same joint probability distribution over observations
under that model. As far as inference is concerned, identifia-
bility means that the likelihood function of the model has
only one global maximum, so inference of the true model
parameters is possible. In the case of BKT, the model would
be identifiable if for any two distinct sets of BKT parameters,
6 and ¢,

Py(Ch,C, ..., C) # Py (C1,Ca, ..., C)

for some n > 1. What Beck and Chang show is that there can
be infinitely many models that share the same set of marginal
distributions P(C1), P(Cs),..., P(Cy). This does not mean
the model is unidentifiable. As we saw from Figure 2, the
conditional distribution P(Cy|C4,...,Crh—1) is quite different
for each model, and so the joint distribution P(Ch4,...,Ch)
is also very different for the three models.

It turns out there has been a substantial amount of work,
going back 50 years and continuing to this day, on finding the
conditions for which hidden Markov models are identifiable
[15, 1, 2, 17, 10]. Although much of the literature focuses on
particular types of HMMs (e.g., stationary, irreducible) that
do not include the standard BKT model, Anandkumar et al.
have recently shown that, subject to some non-degeneracy
conditions, a large class of HMMs, which includes BKTs, is
identifiable with just the joint probability distributions for
up to three sequential observations [4]. That is, knowing
P(Ch),P(C1,C5), and P(C1,C5,Cs) is enough to infer the
unique model parameters, subject to non-degeneracy condi-
tions. In our context, the conditions are that P(Lo) ¢ {0,1},
P(T) # 1, and P(G) # 1 — P(S). This suggests that as long
as we have more than two observations per student, BKT
models with reasonable parameters are identifiable and there
is a single global maximum to the likelihood function. Feng
recently independently showed the same result directly for
BKT models, except without requiring the condition that
P(Lo) # 0 [9]. One advantage of relying on general identifia-
bility results for HMMs is that we can use the same results
to show the conditions under which related student models
that can also be modeled as HMMs are identifiable’.

This misuse of the term “identifiability” has lead to multiple
subsequent papers in the educational data mining commu-
nity throughout the past decade which have similarly given a
mistaken description of the underlying phenomena [5, 16, 13,
12]. Two papers, however, have correctly identified that the

1For example, for the BKT model with forgetting, where
P(F) = P(Ki+1 = 0|K; = 1) # 0, we can show that the
model is identifiable with the same conditions, except that we
require P(T) # 1 — P(F) instead of P(T) # 1. We can also
easily show the conditions under which multi-state extensions
of BKT such as the model introduced in Section 4.2 are
identifiable. These conditions can be derived from Condition
3.1 and Proposition 4.2 of [4]. See also the note under
Proposition 3.4 of [3].
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Model

Parameter Knowledge Guess Reading Tutor

P(Lo) 0.56 0.36 0.01
P(T) 0.1 0.1 0.1
P(G) 0 0.3 0.53
P(S) 0.05 0.05 0.05

Table 1: The three BKT models used by Beck and Chang [7] to claim BKT is unidentifiable. The models are chosen to have
very different semantic interpretations. The Knowledge model requires the student to master the skill to get it correct, the
guess model relies on the student guessing, and the Reading Tutor model has an even higher probability of guessing, but it was
based on models actually used by the Reading Tutor [14].
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Figure 1: Hypothetical learning and performance curves for three models from [7], in absence of any data.
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Figure 2: Learning and performance curves for three models from [7] conditioned on all past observations for a student whose
observed trajectory is as follows: (C1,C2,C3,C4,Cs5,Cs,C7,Cs,C9) = (1,0,0,0,0,0,0,1,1)
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“identifiability problem” is limited to the case where there
is no data [18, 11]. Even though this is not a statistically
precise claim, it does show that some researchers have the cor-
rect understanding behind the phenomenon. Van de Sande
distinguishes between the two cases where predictions are
made in the absence of data and where they are made in the
presence of data, and claims that the source of the identifia-
bility problem in the former case is that the predictions can
be completely determined by three parameters, so there is
a degree of freedom [18]. When we are making predictions,
however he claims there is no identifiability problem, because
P(K;|C;) depends on four parameters [18]. While he has
correctly identified the absence of an identifiability problem
in the presence of data, we believe that there is still confu-
sion about the identifiability problem in the community (e.g.,
some of the papers that show a misunderstanding of the issue
are more recent than [18]). We hope to make the absence
of an identifiability problem more clear and elucidate the
phenomena and misconceptions surrounding it. Gweon et
al. also distinguish between two cases which they refer to as
the BKT model without measurement and the BK'T model
with measurement, and show, as van de Sande did, that the
former depends on three parameters (hence the “identifia-
bility problem”) whereas the latter depends on all four [11].
However, they claim this does not necessarily mean that
the BKT model with measurement does not suffer from an
identifiability problem, and actually claim that it still does
suffer from an identifiability problem, because empirically,
they found that for some data, fitting BKT models many
times resulted in a wide spread of possible parameters [11].
However, this cannot be due to the presence of an multiple
global maxima, which we have shown cannot exist, and hence
must be due to multiple local optima.

The work closest to ours is Feng’s recently published disser-
tation [9]. The author gives a similar explanation to ours for
why Beck and Chang’s claim was incorrect and also proves
that the BKT model is identifiable directly [9]. However,
we believe the exposition there is perhaps less accessible to
the educational data mining community and will likely not
obtain the visibility needed to clear the misunderstandings
surrounding the identifiability of BKT. In this paper, we
not only focus on identifying the misidentified identifiability
problem, but also understanding the confusion surrounding
it as well as pointing out actual issues with fitting BKT
models that have been conflated with identifiability. This is
the focus of the rest of the paper.

There are three potential sources of confusion that we believe
could be and have been misconstrued as an identifiability
problem:

1. A priori predictions. That multiple models, which
make very different claims about student’s knowledge
state over time, could predict the same probability
that students answer questions correctly over time in
the absence of data. This is the problem that Beck
and Chang conflated with identifiability, and many
researchers thereafter also treated as identifiability. As
we showed above, van de Sande, Gweon et al. and
Feng correctly identified what is happening here [18,
11, 9.

2. Multiple local optima. It is well known that the ex-
pectation-maximization algorithm that is commonly
used to fit BKT models is suceptible to converging
to local optima of the likelihood function rather than
converging to the global optimum. While Beck and
Chang clearly did not conflate this with the identifi-
ability issue, we saw that other researchers such as
Gweon et al. have possibly conflated the two. In order
to avoid local optima, one can use a grid search over
the entire parameter space or run multiple iterations of
the expectation-maximization algorithm with different
initializations of the parameters.

3. Semantic model degeneracy. Baker et al. identified an-
other problem with BKT models, which they termed
model degeneracy [5]. A model is said to be seman-
tically degenerate? when it is inconsistent with the
conceptual assumptions underlying the BKT model.
The problem is when the model that best fits our data
is semantically degenerate. Even though Baker et al.
clearly contrasted this to the (supposed) identifiability
problem, we claim that this is the problem that Beck
and Chang attempted to fix in their paper. We will
now focus on better understanding this problem.

4. SEMANTIC MODEL DEGENERACY

In their paper, Beck and Chang propose a way to get around
the identifiability problem. They propose using Dirichlet pri-
ors to encode prior beliefs about the BKT parameters, which
will in turn bias the model search towards more reasonable
parameters [7]. They motivate their method as follows:

We have more knowledge about student learning
than the data we use to train our models. As
cognitive scientists, we have some notion of what
learning “looks like.” For example, if a model
suggest that a skill gets worse with practice, it
is likely the problem is with the modeling ap-
proach, not that the students are actually getting
less knowledgeable. The question is how can we
encode these prior beliefs about learning?

The problem they appear to be describing is that some models
have parameters that do not match our intuitions of student
learning, i.e., they are exactly describing the issue of semantic
model degeneracy (and not that of unidentifiability). Baker
et al. later provide another solution to tackling semantic
model degeneracy by using contextual features to estimate
the guess and slip parameters [5]; however, interestingly they
did not view Beck and Chang’s original solution as a way of
tackling semantic model degeneracy, treating it as a way to
tackle identifiability as the authors originally claimed.

Having shown that identifiability is not an issue with BKT,
and given that there are easy ways to tackle the existence
of local optima, we believe semantic model degeneracy is
perhaps the most important problem with respect to fitting
BKT models that needs to be better understood and tackled.
Essentially, the problem arises because the BKT is simply a

2We refer to this property as semantic model degeneracy to
distinguish it from mathematically degenerate parameters
that would result in BKT models being unidentifiable, as
described above.

Proceedings of the 10th International Conference on Educational Data Mining 146



particular form of a two-state hidden Markov model and it
will try to fit the best two state hidden Markov model it can
to the data; our model fitting procedures do not understand
that the K; = 1 state is supposed to correspond to mastering
a skill, and so it might fit a model that does not match our
intuitions of mastery. We will try to understand this in more
detail below, but first we aim to characterize the types of
semantic model degeneracy that have been pointed out in
the literature.

4.1 Types of Semantic Model Degeneracy
Baker et al. distinguish between two forms of semantic model
degeneracy: theoretical degeneracy and empirical degeneracy
[5]. They define a model to be theoretically degenerate when
either the guess or the slip parameter is greater than 0.5.
They define a model to be empirically degenerate if one of
two things occur: (1) for some large enough n the model’s
estimate of the student having mastered the skill decreases
after the student gets the first n skills correct or (2) for some
large enough m, the student does not achieve mastery (our
estimate of the student having mastered the skill does not go
beyond 0.95) even after m consecutive correct responses [5].
The authors arbitrarily chose the values n = 3 and m = 10.
Note that the first form of empirical degeneracy is only
possible if 1 — P(S) < P(G) (i.e., the student is more likely
to answer a question correctly if they have not mastered a skill
than if they have mastered a skill), as was shown by van de
Sande [18]. This is true, even for n = 1. Thus, this first notion
of empirical degeneracy is equivalent to P(G) + P(S) > 1,
which implies either P(S) > 0.5 or P(G) > 0.5, meaning
that it always implies theoretical degeneracy! Huang et al.
have noted that while P(G) + P(S) > 1 definitely implies
semantically degenerate parameters as it contradicts mastery,
the condition that P(G) < 0.5 and P(S) < 0.5 may not
always be necessary for the parameters to be semantically
meaningful, since, for example, there may be some domains
where the student can guess the correct answer easily [12].
We agree that suggesting P(G) < 0.5 is degenerate does
seem somewhat arbitrary depending on the domain; however,
we do think P(S) > 0.5 should be characterized as a form
semantic degeneracy, because, as Baker et al. claimed, it does
not make sense for a student who has mastered a skill to
answer questions of that skill incorrectly most of the time—
that goes against our intuitions of what mastery means.
In any case, it does not seem like the distinction between
theoretical and empirical degeneracy is a clear one, so we
suggest categorizing the forms of semantic model degeneracy
by what they suggest about student learning:

e Forgetting: This is a result of P(G) + P(S) > 1, which
suggests that not only are students not learning, but
that students have some probability of losing their
knowledge over time. Another way to view this degen-
eracy is that the state we would conceptually call the
mastery state is now the state where performance is
worse.

e Low Performance Mastery: This is a result of P(S) >
0.5. Alternatively, we can set our threshold for low
performance mastery to be lower (e.g., P(S) > 0.4).

e High Performance Guessing: This is a result of P(G) >
t, where t is some threshold. As mentioned earlier,

this seems like a weak form of degeneracy, as students
can often guess an answer easily even if they have not
mastered a skill, but we can set ¢ to a large enough
value, to make this a form of model degeneracy.

e High Performance # Learning: This is the second form
of empirical degeneracy given by Baker et al. [5]: for
some choice of m, the probability that the student
has achieved mastery is less than some threshold p
(typically taken to be 0.95) after m consecutive correct
responses

4.2 Sources of Semantic Model Degeneracy
We will now consider a possible explanation for why BKT
models are so prone to semantic model degeneracy (which
we believe to be part of the reason that researchers look
towards identifiability and local optima to explain the strange
parameters that result from fitting BKT models). First of all,
note that forgetting degeneracy will occur whenever students
actually do forget or when they learn misconceptions; it is
not unreasonable to believe that students will sometimes
learn and reinforce a misconception, causing their knowledge
of some skill to decrease over time. Thus, while this form
of degeneracy technically violates our notion of mastery, it
is to be expected if we switch the semantic interpretation
of the two states and suppose that students forget instead
of learn. We now consider sources of the other forms of
semantic model degeneracy. We claim that such forms of
semantic model degeneracy can result from not accurately
being able to capture the complexity of student learning with
a two state HMM. When this is the case, fitting the data
with a two state HMM will result in trying to find the best fit
of the data for a two state HMM, and not to come up with
a model that tries to accurately model the data while also
matching our intuitions about what it means for a student
to have mastered a skill.

To support our claim, suppose student learning is actually
governed by a 10-state HMM with ten consecutive states
representing different levels of mastery. From each state, the
student has some probability of transitioning to the next
state (slightly increasing in mastery), and from each state,
the student has a probability of answering questions correctly,
and this probability strictly increases as the student’s level of
mastery increases. Specifically consider the model presented
in Table 2. Now suppose we try to use a standard BKT
model to fit data generated from this alternative model of
student learning. The first two columns of Table 3 show the
parameters of BKT models fit to 500 sequences of 20 practice
opportunities or 100 sequences of 200 practice opportunities,
both generated from the the model in Table 2. Notice that
the model fits (nearly) degenerate parameters in both cases.
When we only have 20 observations per student, the model
estimates a very high slip parameter; this is because it has
to somehow aggregate the different latent states which cor-
respond to different levels of mastery, and since not many
students would have reached the highest levels of mastery
in 20 steps, it is going to predict that students who have
“mastered” the skill are often getting it wrong. However,
what’s more interesting is that for the same model, if we
simply increase the number of observations per student from
20 to 200, we find that the slip parameter is reasonably small,
but now the guess probability is 0.49! This is because, by
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State i

Parameter 0 1 2

4 5 6 7 8 9

P(Ko =k) 0.1 0.1 0.1
P(C; =1|K; =k) 0.0 0.1
P(K; =k+1|K; =k)

0.2 0.3
04 03 02 0.1

02 0.3 0 0 0 0
04 05 06 07 08 09
0.05 0.05 0.056 0.05 0.05 -

Table 2: Alternative model of student learning where there are ten levels of mastery.

10-State HMM AFM
Parameter 20 200 20 200

P(Ly) 030 0.001 0.09 0.001
P(T) 005 002 005 0.05
P(G) 027 049 014 028
P(S) 044 0.3 046 0.03

Table 3: BKT models fit to data generated from the model
described in Figure 2 and an additive factors model described
in the text. The first column for each model is fit to 500
sequences of 20 practice opportunities, while the second
column is fit to 100 sequences of 200 practice opportunities.
The models were fit using brute-force grid search over the
entire parameter space in 0.01 increments for the parameters
using the BKT Brute Force model fitting code [6].

this point most students have actually reached the highest
level of mastery, so to compensate for the varying levels of
mastery that occurred earlier in student trajectories, the
model will have to estimate a high guess parameter. So we
find that not only can alternative models of student learning
lead to fitting (near) degenerate parameters, but varying
the number of observations can lead to different forms of
degeneracy! This is a counterintuitive phenomenon that we
believe is not the result of not having enough data (students)
to fit the models well, but rather the result of the mismatch
between the true form of student learning and the model we
are using the fit student learning.

We find similar results if we fit a BKT model to data gener-
ated from another alternative model of student learning that
is commonly used in the educational data mining community,
the additive factors model (AFM) [8]. In particular, we used
the model

1

PC=1) =17 exp(—0 + 2 — 0.17)

where 6 ~ N (0,1) is the student’s ability®. The second two
columns of Table 3 show the parameters of BKT models fit
to data generated from this model. We again find that when
using only data with 20 practice opportunities, we fit a high
slip parameter, but when we using data with 200 practice
opportunities, we fit a higher guess parameter and a very
small slip parameter.

Additionally, notice that for the parameters fit to the 10-
state HMM, the probability of transitioning to mastery is

3This model suggests that students who are two standard
deviations above the mean initially will answer correctly half
the time, and after 20 practice opportunities the average
student will answer correctly half the time.

very small when we fit to sequences with 200 practice op-
portunities. Since the transition probability is small and the
guess probability is large, we also have high performance %
learning degeneracy for this model for m = 10. That is,

P(Kn:l‘cl:1,02:1,...,010:1)%.89<0.95

This is yet another form of degeneracy that does not exist
in the model fit to sequences of 20 practice opportunities.
Furthermore, notice that when we have 200 observations,
the probability of transitioning to mastery is smaller than
P(K; = k+ 1|K; = k) for all states ¢ in the model that
generated the data (Table 2). Again, this is because the best
fitting BKT model will aggregate low performing states and
high performing states, so a single transition in the BKT
model between these two aggregate states will have to loosely
correspond to the student transitioning several times in the
actual 10-state HMM. Thus, while the learned BKT model
makes it appear as though learning happens very slowly,
according to the true student model, learning actually occurs
much more often but in more progressive increments. This
suggests that if we use some automated technique to detect
if a skill is useful for student learning, we may conclude it is
not, if we do not allow for the possibility that students are
learning progressively.

These observations have important implications for how
learned models can be used in practice. Using such a BKT
model to predict student mastery can lead to problematic in-
ferences. For example, for the first model in Table 3, the BKT
model assumes that when a student has reached mastery,
they have a 56% chance of answering a question correctly,
whereas a student who has actually mastered the skill will
have a 90% chance of answering correctly (see Table 2). Thus,
an intelligent tutoring system that uses such a BKT model
to determine when a student has had sufficient practice on a
problem, will likely give far fewer problems to the student
than they actually need in order to reach mastery!

There are several potential ways that future work can pro-
ceed in light of these findings. One is that we should be
giving our model fitting procedures more domain knowledge
about the kind of model we want it to fit. This is essentially
what Beck and Chang did by using Dirichlet priors [7] and
what Baker et al. did by estimating the guess and slip param-
eters using context [5]. But perhaps there are other ways of
doing this where we do not need to give context-dependent
domain knowledge to the model per se, but rather come up
with a model that realizes the difference between a student
having mastered a skill or not (which the BKT model cannot
do). However, this may not be ideal in some cases where
student learning cannot accurately be modeled by BKT with
semantically plausible parameters. For example when we
have forgetting degeneracy, we should probably not force
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the parameters to suggest learning is occurring when it may
not be. Another way to proceed is to consider alternative
student models, which is an active area of educational data
mining research. Perhaps, obtaining semantically degenerate
parameters from a fit should signal that our students may
be learning in more complicated ways than the simple BKT
model can predict, and so we should try to find alternative
models that fit our data better without yielding semantically
degenerate parameters. Finally, even if our model is seman-
tically degenerate, it does not necessarily make the BKT
model useless. The result of fitting a BKT model is that we
get the best fit of the data given that we are modeling the
data with a two-state HMM (if we disregard local optima).
Presumably, such a model can give us some insights about
student learning even if it is not modeling student mastery.
So perhaps we can use such semantically degenerate models
to understand student learning rather than to predict student
mastery.

5.  CONCLUSION

We have explored the issues of identifiability and semantic
model degeneracy in Bayesian Knowledge Tracing. We have
shown that what researchers posited was an identifiability
problem is actually not an identifiability problem, and by
using a result from the literature on learning hidden Markov
models, we showed that an identifiability problem does not
exist for BKT models (with the exception of some mathemat-
ically degenerate cases that should not come up in practice).
We then examined the various issues with fitting BKT mod-
els that have been conflated with identifiability. We offered
what we believe to be new insights on one potential source of
semantic model degeneracy. We believe analyzing the sources
of semantic model degeneracy in more detail can be a fruitful
direction for future research. For example, it could be useful
to know what BKT parameters result from fitting various
other popular models of student learning. It would also be
informative to see if we can find automated ways of detecting
which assumptions of BKT are not met in our data (e.g., the
number of levels of mastery, the independence of different
skills). Such analyses could help in devising better student
models, and ultimately may lead to a better understanding
of student learning.
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