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ABSTRACT 
Research in Educational Data Mining could benefit from greater 
efforts to ensure that models yield reliable, valid, and interpretable 
parameter estimates. These efforts have especially been lacking 
for individualized student-parameter models. We collected two 
datasets from a sizable student population with excellent “depth” 
– that is, many observations for each skill for each student. We fit 
two models, the Individualized-slope Additive Factors Model 
(iAFM) and Individualized Bayesian Knowledge Tracing (iBKT), 
both of which individualize for student ability and student 
learning rate. Estimates of student ability were reliable and valid: 
they were consistent across both models and across both datasets, 
and they significantly predicted out-of-tutor pretest data. In one of 
the datasets, estimates of student learning rate were reliable and 
valid: consistent across models and significantly predictive of 
pretest-posttest gains. This is the first demonstration that 
statistical models of data resulting from students’ use of learning 
technology can produce reliable and valid estimates of individual 
student learning rates. Further, we sought to interpret and 
understand what differentiates a student with a high estimated 
learning rate from a student with a low one. We found that 
learning rate is significantly related to estimates of student ability 
(prior knowledge) and self-reported measures of diligence. 
Finally, we suggest a variety of possible applications of models 
with reliable estimates of individualized student parameters, 
including a more novel, straightforward way of identifying wheel 
spinning. 
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1. INTRODUCTION 
In Educational Data Mining, statistical models are typically 
evaluated based on fit to overall data and/or predictive accuracy 
on test data. While this is an important initial step in evaluating 
the contributions of advancements in statistical and cognitive 
modeling, research in the field could benefit from greater efforts 
to ensure that models are reliable and valid. More reliable and 
valid models offer more explanatory power, contributing to the 
advancement of learning science. They also inspire greater 
confidence that deploying model advancements in future tutoring 
systems will genuine result in the hypothesized improvements to 
learning. 

Some recent work has been done towards interpreting, validating, 
and acting upon cognitive/skill modeling improvements [7, 8, 10, 
11, 17]. Educational data mining efforts oriented around 
personalizing student constructs [3, 12, 13, 14, 18], however, have 
remained focused on improving predictive accuracy and/or 
demonstrating hypothetical time savings. Little has been done to 

validate or understand the estimates that models with 
individualized or clustered student parameters produce. 
Anecdotally, efforts to do so have shown that these individualized 
student parameter estimates, or discovered student clusters, are 
often difficult to interpret. 

It is especially critical to examine the reliability and validity of 
parameter estimates for modeling advancements that dramatically 
increase the parameter count, as is generally true for 
individualized student-parameter models. More parameters create 
greater degrees of freedom and increase the likelihood that the 
model may be underdetermined by the data. 

We focus on the question: To what degree can we trust a model’s 
parameter estimates to correctly represent the constructs they are 
supposed to? 

Key to expecting reliable, valid estimates of student-level 
constructs is not just big data in the “long” sense, but big data in 
the “deep” sense. Oftentimes, the datasets used in secondary 
analyses in EDM are large in terms of total number of students (or 
total observations) but highly sparse in terms of observations per 
skill, per student. These features make it difficult to get reliable 
measurements of constructs at the individual student level, 
particularly constructs related to learning over time. 

Here, we collected two datasets from a sizable student population 
(196 students) with excellent “depth” – that is, many observations 
for each skill for each student. We then fit two models that 
individualize for student ability and student learning rate (the 
Individualized-slope Additive Factors Model [9] and 
Individualized Bayesian Knowledge Tracing [18]). We assess the 
models’ fit to data and predictive accuracy. We also move beyond 
these metrics to examine the reliability of the models’ estimates of 
student ability and student learning rate. Additionally, we 
externally validate the parameter estimates against out-of-tutor 
assessment data. 

We further interpret and understand the constructs by visualizing 
representative student learning trajectories, examining the 
relationship between estimated student ability and student 
learning rate, and the relationship between those constructs and 
self-reported data on motivational attributes. Finally, we propose 
some useful applications of reliable and valid individualized 
student-parameter models, including a new way to detect wheel 
spinning. 

2. PRIOR WORK 
Prior work on individualizing student parameters has focused on 
variants of Bayesian Knowledge Tracing (BKT) [3]. This work 
includes modeling the parameters separately for each individual 
student instead of separately for each skill [3], individualizing the 
P(Init) (“initial knowledge”) parameter for each student [13], and 
individualizing both P(Init) and P(Learn) (“learning rate”) to the 
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base BKT model [18]. These models have generally focused on 
assessing predictive accuracy improvements relative to their 
respective non-individualized baseline models. 

There have also been some “time savings” analyses [12, 18] that 
evaluate the hypothetical real world impact that individualizing 
statistical model fits could have. These analyses report the effect 
of fitting individualized BKT models, compared to traditional 
BKT, on the hypothetical number of under- and over- practice 
attempts that would be predicted for each student. Results 
generally have indicated that many more practice opportunities 
are needed for models to infer the same level of knowledge when 
using whole-population parameters rather than individual student 
parameters. These analyses show that individualized models differ 
in their hypothetical decision points if they were to be applied to 
drive mastery-based learning, but they do not in and of themselves 
interpret the individualized parameter estimates, nor do they 
assess the reliability and validity of such estimates. 

In a previous effort to better understand individualized student 
learning rate parameters [9], we examined predictive accuracy and 
parameter reliability in an extension of the Additive Factors 
Model [2] applied to existing educational datasets. We did not 
find evidence that individualizing student rate parameters 
consistently improved predictive accuracy improvements, nor 
could we validate the parameter estimates on out-of-tutor 
assessment data. However, the datasets we analyzed either 
contained a small number of students or were largely sparse in 
observations for student-skill pairs, with the exception of two 
datasets. These two datasets happened to be the ones on which the 
Individualized-slope Additive Factors Model did achieve higher 
predictive accuracy. Thus, we wondered if the sparsity of the 
datasets were the primary limitation, rather than the modeling 
advancement itself. This idea is corroborated by the fact that 
pooling students into “groups” rather than generating 
individualized estimates worked well on those datasets [9]. 

For the present modeling work, we collected our own data in 
order to ensure the data features that we believe are necessary for 
reliable, valid, and potentially meaningful estimates of constructs 
at the individual student level. 

3. METHODS 
It is common in EDM to do secondary analyses across multiple 
datasets. However, it can be difficult to find datasets that (1) 
contain a sizable number of students, (2) contain many 
observations for each skill for each student (i.e., are not sparse), 
(3) contain students spanning a range of abilities in the domain 
covered by the tutor, and (4) contain data from out-of-tutor 
assessment data that is well-mapped to the content in the tutor. 

For the present work, we wanted to use as close to an “ideal” 
dataset as possible for estimating student parameters. We 
collected our own dataset with a sizable number of students (196), 
many observations (5-50, depending on the skill) for each skill for 
each student. In addition, we ensured that a wide range of student 
ability levels was represented in our data to allow for the 
possibility that models could capture this variability. 

3.1 Data Collection 
196 students, spanning 10 classes taught by three different 
teachers, enrolled in high school geometry participated in two 
studies conducted about a month apart. A range of student 
abilities were included in the study.  Two of the 10 classes were 
“Honors” and three of the 10 classes were “Inclusion”. Honors 
classrooms are intended for students who have strong theoretical 
interests and abilities in mathematics. Inclusion classrooms are 

“general education” classrooms designed to provide the 
opportunity for individuals with disabilities and special needs to 
learn alongside their non-disabled peers. 

Students spent five consecutive days participating in each study 
during their regular geometry class periods. On the first and last 
days, they took a computerized pretest and posttest, respectively. 
During the middle three days, they worked within an intelligent 
tutoring system [19] designed to give them practice on their 
current chapter’s content. This procedure applied to both studies, 
one of which covered the students’ Chapter 3 content (Parallel 
Lines Cut by a Transversal, Angles & Parallel Lines, Finding 
Slopes of Lines, Slope-Intercept Form, Point-Slope Form) and the 
other of which covered the students’ Chapter 4 content 
(Classifying Triangles, Finding Measures of Triangle Sides & 
Angles, Triangle Congruence Properties). Figure 1 shows an 
example problem interface from the intelligent tutoring system, 
which was designed using Cognitive Tutor Authoring Tools [1]. 
 

 
Figure 1. Example problem interface from the intelligent 
tutoring system used for data collection. 
 

We also collected self-report survey data on motivational factors 
falling along three dimensions. These were Competitiveness (e.g., 
“In this unit, I am striving to do well compared to other students” 
and “In this unit, I am striving to avoid performing worse than 
others”), Effort (e.g., “I am striving to understand the content of 
this unit as thoroughly as possible” and “I work hard to do well in 
this class even if I don't like what we are doing”), and Diligence 
(e.g., “when class work is difficult, I give up or only study the 
easy parts” [inverted scale] and “I am diligent”). Self-report 
measures were indicated on a Likert scale from 1-7. 
A key reason we collected two datasets, covering two distinct 
chapters of the curriculum, is that we were interested in 
investigating the consistency of student-level parameter estimates 
across different content, time, and contexts. We discuss this 
further, along with preliminary results, in Section 4.4.1. 

3.2 Statistical Models 
3.2.1 The Individualized-slope Additive Factors 
Model (iAFM) 
The Additive Factors Model (AFM) [2] is a logistic regression 
model that extends item response theory by incorporating a 
growth or learning term. 

ln !!"
!-!!"

= θ! + Q!"(β!!∈!"# + γ!T!")       (1) 
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This statistical model (Equation 1) gives the probability 𝑝!" that a 
student i will get a problem step j correct based on the student’s 
baseline ability (𝜃!), the baseline easiness (𝛽!) of the required 
knowledge components on that problem step (𝑄!"), and the 
improvement (𝛾!) in each required knowledge component (KC) 
with each additional practice opportunity. This KC slope, or 
“learning rate,” parameter is multiplied by the number of practice 
opportunities (𝑇!") the student already had on it. Knowledge 
components (KCs) are the underlying facts, skills, and concepts 
required to solve problems [6]. 

Individualized-slope AFM (iAFM) builds upon this baseline 
model by adding a per-student learning rate parameter (𝛿!). This 
parameter represents the improvement (𝛿!) by student i with every 
additional practice opportunity with the KCs required on problem 
step j. 

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!" + 𝛿!𝑇!") (2) 

The KC and student learning rate parameters are both multiplied 
by the number of opportunities (𝑇!") the student already had to 
practice that KC. 

3.2.2 Individualized Bayesian Knowledge Tracing 
(iBKT) 
Bayesian Knowledge Tracing (BKT [3]) is an algorithm that 
models student knowledge as a latent variable using a Hidden 
Markov Model. The goal of BKT is to infer, for each skill, 
whether a student has mastered it or not based on his/her sequence 
of performance on items requiring that skill. It assumes a two-
state learning model whereby each skill is either known or 
unknown. There are four parameters that are estimated in a BKT 
model: the initial probability of knowing a skill a priori – p(Init), 
the probability of a skill transitioning from not known to known 
state after an opportunity to practice it – p(Learn), the probability 
of slipping when applying a known skill – p(Slip), and the 
probability of correctly guessing without knowing the required 
skill – p(Guess). Fitting BKT produces estimates for each of these 
four parameters for every skill in a given dataset. BKT models are 
usually fit using the expectation maximization method (EM), 
Conjugate Gradient Search, or discretized brute-force search. 

Individualized Bayesian Knowledge Tracing (iBKT [18]) builds 
upon this baseline BKT model by individualizing the estimate of 
the probability of initially knowing a skill, p(Init), and the 
transition probability, p(Learn), for each student. To accomplish 
the student-level individualization of these parameters, each of 
them is split into skill- and student-based components that are 
summed and passed through a logistic transform to yield the final 
parameter estimate. Details on the decomposition of p(Init) and 
p(Learn) into skill- and student-based components are described 
in [18]. 

4. RESULTS 
4.1 Model Fit & Predictive Accuracy 
As a first pass evaluation of the two individualized models, we 
assessed them using Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC), which are standard metrics 
for model comparison, and 10 independent runs of split-halves 
cross validation (CV). Although 10-fold cross validation has been 
popular in the field, [4] showed that it has a high type-I error due 
to high overlap among training sets and recommended at least 5 
replications of 2-fold CV instead. 
Here, the comparison of interest is each individualized model 
against its non-individualized counterpart. We do not encourage a 

literal comparison between the predictive accuracies of the two 
classes of models due to differences in whether they use incoming 
test data towards their predictions on later test data (BKT/iBKT 
do, and AFM/iAFM do not). 

Both iAFM and iBKT outperform their non-individualized 
counterparts by all metrics, with the exception of BKT having a 
better BIC value than iBKT for the Chapter 4 dataset. This is not 
surprising, as BIC is known to over-penalize for added 
parameters. We recommend cross validation as a better indicator 
that iBKT is the true better fitting model in this case. 

Counter to the majority of findings reported in [9], iAFM 
achieved higher predictive accuracy than AFM in both datasets 
here. This further supports the idea that the “depth” of the dataset 
is a critical factor in whether an individualized student-parameter 
model can explain unique variance in the data. 

Table 1. Summary of Model Fit and Predictive Accuracy 
metrics comparing AFM vs. iAFM and BKT vs. iBKT. Cross-
validation values are mean RMSE values across 10 runs, with 
standard deviations included in parentheses. 

Data 
Set Model AIC BIC CV Test RMSE 

(10-Run Average) 

Ch. 3 

AFM 57229 57283 0.38440 (0.0039) 

iAFM 55931 56003 0.37868 (0.0044) 

BKT 66714 67473 0.4222 (0.0005) 

iBKT 56325 60479 0.3777 (0.0006) 

Ch. 4 

AFM 18059 18106 0.41037 (0.0048) 

iAFM 17863 17925 0.40789 (0.0050) 

BKT 19908 20376 0.44091 (0.0014) 

iBKT 18285 21809 0.40725 (0.0018) 
 

4.2 Reliability of Student Parameters 
Next, we examined the degree to which we can rely on these 
parameters to reasonably estimate the constructs that they should 
be estimating. We believe that a strong relationship between the 
parameter estimates of two statistical models with entirely 
different architectures is a high bar for testing reliability. That is, 
if a student genuinely displayed evidence of high overall ability in 
a dataset (relative to his/her peers), then both iAFM and iBKT 
should estimate that to be the case. 

Because of known and observed nonlinear relationships between 
logistic regression and Bayesian Knowledge Tracing parameter 
estimates, we measured correlation based on Spearman’s 
coefficient (rs), which is based on rank order. 

We observed strong and statistically significant correlations 
between iAFM Student Intercept and iBKT Student p(Init) 
parameter estimates (Figure 2, top row). We also observed a 
strong and statistically significant correlation between iAFM 
Student Slope and iBKT Student p(Learn) parameter estimates for 
one of the two datasets (Chapter 4). This correlation was much 
milder, though still significant, for the other dataset (Chapter 3). 

We hypothesize that this difference between datasets may be due 
to the presence of more difficult KCs in Chapter 4. A dataset with 
more difficult items should provide more sensitive measures of 
individual differences in improvement, since it avoids ceiling 
effects. Indeed, this was the case: the mean KC easiness parameter 
estimate (𝛽!) for chapter 4 was 0.799 (which translates to a 
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probability of 0.69), compared to 1.253 for chapter 3 (which 
translates to a probability of 0.78). When students are practicing 
many opportunities at ceiling (which was the case in particular for 
chapter 3, based on exploratory analyses of the data), the 
individualized models will often assign them a lower “learning 
rate” due to an essentially flat learning trajectory. 

 
Figure 2. Relationships between iAFM Student Intercept and 
iBKT Student p(Init) parameter estimates (top row), and 
between iAFM Student Slope and iBKT Student p(Learn) 
parameter estimates (bottom row), for the two datasets. 

4.3 Validity of Student Parameters 
To assess the validity of student parameter estimates, we related 
them to out-of-tutor assessments of the relevant student 
constructs. In this case, we validated parameter estimates using 
pretest and posttest assessment data collected in the study.  

4.3.1 Estimates of Student Ability 
The Student Intercept (𝜃!) parameter of iAFM and the Student 
p(Init) parameter of BKT are designed to estimate baseline 
student ability, as least for the knowledge domain represented in 
the dataset. To validate the models’ estimates of this construct, we 
examined relationships between the model estimates and students’ 
pretest scores, which are an out-of-tutor assessment of student 
initial ability for the skills covered by the tutor. 

We report standard Pearson correlation coefficients here, since the 
relationships between pretest scores and the parameter estimates 
did not appear to be particularly nonlinear. 

Figure 3 illustrates a summary of these relationships. Both 
models’ estimates of the student ability construct were strongly 
and significantly correlated with pretest scores. 

In addition, adding an individualized student slope improved the 
validity of the model’s estimate of student ability (a parameter 
that’s modeled in both AFM and iAFM). We compared the 
correlations between AFM’s intercept estimates to pretest scores 
(Chapter 3: r = 0.62, p < 0.0001, Chapter 4: r = 0.58, p < 0.0001) 
to iAFM’s intercept estimate / pretest score correlations (Chapter 
3: 0.74, p < 0.0001, Chapter 4: r = 0.66, p < 0.0001). 

This has several interesting implications for educational 
applications. First, it suggests that formative assessment via 
modeling of process data as learning unfolds is a reasonable 
method of assessment. 

It also suggests that detailed assessment data (e.g., from a pretest) 
could be used to reasonable effect to improve different students’ 
“on-line” estimates of students’ knowledge of KCs. For example, 
combining KC parameter estimates (derived from model-fitting to 
prior domain-relevant data) with student intercept priors based on 
pretest assessment data would allow a model like AFM to 
generate individualized predictions of how much each student 
needs to practice to reach mastery. 

In addition, these results suggest that individualized BKT models 
could use pretest assessment data to “set” reasonably valid 
student-specific p(Init) values before collecting any within-tutor 
data from those students. 

In considering the degree to which these results may generalize, it 
is important to note that the pretests in the present datasets were 
specifically designed to map closely to the practice problems in 
the intelligent tutor. Pretests contained 1-2 questions for each KC 
that was practiced in the tutor, and the items were similar to those 
encountered within the tutor. 

 
Figure 3. Relationships between out-of-tutor pretest scores 
and iAFM/iBKT estimates of student ability based on within-
tutor data. 

4.3.2 Estimates of Student Learning Rate 
Given that the only external assessment data collected were a 
pretest and posttest, we sought to validate the construct of student 
learning rate (as estimated by the models) on pretest-posttest 
gains. Students were given roughly the same amount of time to 
engage with the tutors, so those with accelerated learning rates 
might be expected to gain more knowledge in the time available. 

Thus, we examined the degree to which student learning rate 
estimates predicted pretest-posttest gains while controlling for 
pretest scores. We controlled for pretest scores because they have 
been shown to negatively predict learning gains due to assessment 
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ceiling effects. That is, students who start out performing well on 
the pretest have less “room for improvement”. 

For the Chapter 3 dataset, iAFM Student Slope (𝛿!) estimates did 
not significantly predict learning gains. In a linear regression 
predicting pretest-posttest gains, pretest scores were a significant 
predictor (β=-0.189, p=0.005) and Student Slope estimates were 
not (β=0.396, p=0.144). iBKT Student p(Learn) estimates did not 
significant predict learning gains. In a linear regression predicting 
pretest-posttest gains, pretest scores were a significant predictor 
(β=-0.226, p=0.005) and Student Slope estimates were not 
(β=0.062, p=0.218). 

For the Chapter 4 dataset, iAFM Student Slope (𝛿!) estimates 
significantly predict learning gains. In a linear regression 
predicting pretest-posttest gains, pretest scores (β=-0.641, 
p<0.0001) and Student Slope estimates (β=0.576, p=0.007) were 
both significant predictors. iBKT Student p(Learn) estimates also 
significantly predict learning gains. In a linear regression 
predicting pretest-posttest gains, pretest scores (β=-0.645, 
p<0.0001) and p(Learn) estimates (β=0.133, p=0.004) were both 
significant predictors. 

For one of the two units (Chapter 4), we observed that student 
learning rate estimates were validated on external assessments of 
learning gain. Interestingly, this is the same unit for which we 
observed a strong cross-model reliability in student learning rate 
estimates. Thus, we have converging evidence that student 
learning rates estimates for the Chapter 4 dataset are both reliable 
and valid. 

 
Figure 4. Relationships between student parameter estimates 
across the two datasets (same student population). 
 

4.4 Towards Understanding & Using Student 
Parameter Estimates 
4.4.1 Consistency of individual student constructs 
across datasets 
A core motivating question for collecting two datasets on the 
same group of students was: How consistent are iAFM and iBKT 

model estimates of the student ability and student learning rate 
constructs across units? 

Figure 4 summarizes this relationship. Estimates of student ability 
are fairly consistent, especially as estimated by iAFM. It seems 
sensible to interpret this as suggesting that overall student ability 
on Chapter 3 content is strongly related to overall student ability 
on Chapter 4 content, as we have shown estimates of student 
ability to be both reliable and valid. 
Estimates of student learning rate are less consistent. This may 
either be due to the fact that Chapter 3 estimates of student 
learning rate were neither very reliable nor very valid. 
Alternatively, the differences in student learning rate estimates 
across the two chapters may also be due to the fact that students 
genuinely learn different material at different rates. Unfortunately, 
we cannot resolve this question with the present data. We are 
currently collecting more datasets from this same group of 
students. If we obtain more reliable and valid student learning rate 
estimates in future data from this group of students, we can more 
confidently address this question in future research. 

4.4.2 Understanding student learning rate estimates 
Given that we established the reliability and validity of iAFM and 
iBKT’s parameter estimates for the Chapter 4 dataset were 
reasonably reliable and valid, we sought to dig deeper into the 
explanatory power of these estimates. To this end, we conducted 
exploratory analyses on the Chapter 4 data to (1) visualize the 
learning trajectories of students with the highest vs. lowest 
estimated learning rates, (2) understand the relationships between 
estimated learning rates and prior-knowledge and motivational 
factors, and (3) understand the degree of variability in estimated 
learning rate across students. 
 

 
Figure 5. Top Row: Early-opportunity learning trajectories of 
students, grouped based on iAFM (Left) and iBKT (Right) 
estimated learning rates. Solid lines are actual data; dotted 
lines are each respective model’s predicted performance.  
Bottom Row: Mean self-report Likert scale ratings of 
questions measuring dimensions of competitiveness, effort, 
and diligence. Grouped based on iAFM (Left) or iBKT (Right) 
estimated learning rates. Error bars show standard errors on 
the means.  
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Figure 5 (top row) shows the aggregate learning trajectories for 
students split based either on their iAFM Student Slope estimates 
(top left) or their iBKT Student p(Learn) estimates (top right). The 
top 25% of student parameter estimates are plotted in blue, the 
middle 50% (between 1st and 3rd quartiles) are plotted in red, and 
the lower 25% are plotted in black. Dotted lines represent each 
respective model’s predicted earning trajectories. 

One striking pattern, especially in the iAFM learning trajectories 
(top left), is the apparent relationship between average success on 
initial practice opportunities (i.e., prior knowledge) and estimated 
learning rate through the remaining opportunities. This 
observation is corroborated by a strong and significant correlation 
between iAFM Student Intercepts and iAFM Student Slopes 
(r=0.78, p<0.0001). One might interpret this to suggest that 
students who enter into the tutor with greater prior knowledge will 
be poised to gain more from the tutor (i.e., “the rich get richer”). 
Alternatively, students may have higher overall knowledge 
because they are fast learners. There may also be individual trait-
based variables that positively drive both learning rate and overall 
achievement. 

To explore the relationships between measures of traits relevant to 
learning, we analyzed self-report survey data grouped by three 
factors (as described in Section 3.1): Competitiveness, Effort, and 
Diligence. The relationship between these measures and the high, 
medium, and low learning rate estimates from iAFM and iBKT 
are shown in Figure 5 (bottom row). There appears to be a 
relationship between the means of each self-report measure and 
the general range that the learning rate estimate falls in. 
We analyzed the continuous relationship between students’ mean 
self-report rating along each dimension and their iAFM learning 
rate estimates. In a linear regression predicting iAFM Student 
Slopes, Competitiveness and Effort were not significant predictors 
but Diligence (β=0.016, p=0.007) was. In a similar linear 
regression predicting iAFM Student Intercepts, again Diligence 
was the only significant predictor (β=0.02, p=0.04). Thus, among 
self-reported measures, the strongest dimension predicting both 
student ability/prior knowledge and student learning rate was the 
Diligence measure. Future work using causal modeling is 
warranted to discover the true nature of causality among these 
student-level constructs. 

Finally, we investigated the degree of variability in estimated 
learning rate across students. The first quantile of student learning 
rates from iAFM is 0.03 logits and the third quantile of rates from 
iAFM is 0.08 logits. These can be conceptualized as canonical 
“slow” and “fast” learners. If we were to assume starting at 
around 70% performance (which comes from the model’s global 
intercept estimate), it would take the “slow” (0.03 logits) student 
approximately 25 opportunities to reach mastery (defined as 85%, 
the performance equivalent of a p(Know)=0.95, factoring in the 
guess and slip probabilities we used in the actual tutor). It would 
take the “fast” (0.08 logits) student approximately 11 
opportunities to reach the same place. 

4.4.3 Identifying wheel spinners 
The current definition of “wheel spinning” put forth in the 
Educational Data Mining community is the “phenomenon in 
which a student has spent a considerable amount of time 
practicing a skill, yet displays little or no progress towards 
mastery” [5]. There has been some controversy around the ideal 
way to measure mastery (e.g., 3 corrects in a row vs. reaching a 
certain p(Know) in knowledge tracing). Furthermore, some 
students may be classified as wheel spinners based on not 
mastering in a certain number of opportunities but they may still 
be making progress. 

We propose that reliable and validated estimates of individual 
student learning rate parameters, combined with KC learning rate 
parameters, could be used to estimate wheel spinning student/KC 
pairs in way that is agnostic to mastery status. Specifically, if the 
combined student and KC learning rate parameters in iAFM 
predict no improvement or negative improvement across 
additional practice opportunities, and aren’t already at a high level 
of performance on their first opportunity (here we considered this 
to be 80% or above), we could consider the student to be wheel 
spinning on the KC. This method of estimating wheel spinning 
would be particularly useful for datasets with sparse data on some 
student-KC pairs, as it is not performance-dependent after the 
model has been fit to the full dataset. 

Based on this operationalized definition, we found that 
approximately 15% of student-KC pairs in the Chapter 4 dataset 
are estimated to be wheel spinning. That is, those students are not 
making progress on those KCs. This is a substantially lower 
estimate than the 25% reported by a recent wheel spinning 
detector in [5]. An interesting route for future work would be to 
do a direct comparison of the wheel spinning detector presented in 
[5] and our proposed student/KC learning rate identifier within the 
same dataset. This would allow for testing the possibility that 
some students who are still making progress, albeit extremely 
slowly, may be prematurely labeled as “wheel spinners” by [5]. 

5. SUMMARY & LIMITATIONS 
Previous efforts towards more explanatory, interpretable, and 
actionable modeling advancements in the realm of 
skill/knowledge component model discovery have been promising 
in their potential and demonstrated impact on learning science and 
education. The present paper represents a novel effort to bring 
these deeper modeling approaches, focused on ensuring 
explanatory power, to the realm of individualized student- 
parameter models. 

Towards improving the reliability and validity of individualized 
student estimates, we collected two datasets from the same student 
population. Both datasets were “deep” along the dimension of 
student-KC observations. We fit iAFM and iBKT to both datasets 
and showed that the models outranked their non-individualized 
counterparts in terms of fit to data and predictive accuracy. 
Importantly, we moved beyond these metrics to show that 
estimates of student ability were highly reliable (iAFM and iBKT 
yielded strongly correlated estimates) and valid (estimates 
significantly predicted pretest data). 

This demonstration of confidence in the student ability estimates 
from iBKT, but even more so iAFM, has promising implications 
for the possibility of individualizing the student models that 
determine mastery in intelligent tutoring systems at least in terms 
of overall student ability/knowledge. Our results also suggest that 
it would be reasonable to fix such student ability parameters, or 
set priors on them, based on either well-mapped pretest 
assessment data or prior (deep) data from those students’ learning.  

We also showed that estimates of student learning rate per 
practice opportunity were reliable and valid in one of the two 
datasets (Chapter 4). This is the first evidence, to our knowledge, 
of obtaining both reliable and valid student learning rates through 
a statistical model with individualized student parameters. We 
believe that this success is largely related to the amount and 
quality of per-student data we collected. 

With the confidence of having reliable and valid parameter 
estimates, we then proceeded to further investigate potential 
explanations for differences in student learning rates within the 
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Chapter 4 dataset. We found a strong and significant relationship 
between student ability and improvement rate as well as an 
additional effect of diligence, based on self-report measures. 
Further research is warranted to distill the causal relationships 
between these constructs. 

Knowing that a model’s estimates of individualized student 
parameters not only fit data well, but are reliable and valid, 
provides greater confidence for applying the model to (1) interpret 
the parameter estimates to understand characteristics of students, 
and (2) use the model to individualize the trajectory of mastery 
estimation for future students. 

Even though both iBKT and iAFM outperformed their non-
individualized counterparts in predicting performance in the 
Chapter 3 dataset, we did not find strong evidence of reliability 
and validity of the student-specific parameter estimates. Thus, we 
did not rely on that dataset to help us understand individual 
differences in learning rates. For the same reason, we could not 
confidently attribute the differences, in estimated student learning 
rates across the datasets, to true differences in students’ learning 
rates for the two chapters’ material. 

Although considering reliability and validity of models’ parameter 
estimates sets a higher bar than predictive accuracy for evaluating 
modeling advances, we believe those to be important 
characteristics of a model that is to be explanatory, interpretable, 
and/or actionable. Here, we have demonstrated that with a 
sufficiently good dataset, iAFM and iBKT are individualized 
student models that can produce reliable and valid parameter 
estimates. 

Since our present work was limited to two datasets on one 
population of students, it is unclear the degree to which our 
modeling results will generalize, especially given that at least 
iAFM does not produce reliable, valid parameter estimates on 
more sparse datasets [9]. In addition, these results are limited to 
two specific statistical models produce individualized estimates 
student-level parameters, with a particular focus on individual 
differences in learning rate. There are other classes of models that 
could be extended to estimate differences in learning rate: for 
example, producing individualized estimates of the differential 
effects of success versus failure [15]. This would be an interesting 
focus for future work on this topic. 

Nevertheless, we have laid a foundation of methodology by which 
reliability and validity of parameter estimates, whether student- or 
KC-level, can be assessed. We have also demonstrated ways of 
using the reliable and valid student parameter estimates from 
iAFM and iBKT to yield interesting insights about student 
learning. 
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