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ABSTRACT

Modeling student knowledge while students are acquiring
new concepts is a crucial stepping stone towards provid-
ing personalized automated feedback at scale. We believe
that rich information about a student’s learning is captured
within her responses to open-ended problems with unbounded
solution spaces, such as programming exercises. In addi-
tion, sequential snapshots of a student’s progress while she
is solving a single exercise can provide valuable insights into
her learning behavior. Creating representations for a stu-
dent’s knowledge state is a challenging task, but with re-
cent advances in machine learning, there are more promis-
ing techniques to learn representations for complex entities.
In our work, we feed the embedded program submission se-
quence into a recurrent neural network and train it on two
tasks of predicting the student’s future performance. By
training on these tasks, the model learns nuanced represen-
tations of a student’s knowledge, exposes patterns about a
student’s learning behavior, and reliably predicts future stu-
dent performance. Even more importantly, the model dif-
ferentiates within a pool of poorly performing students and
picks out students who have true knowledge gaps, giving
teachers early warnings to provide assistance.
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1. INTRODUCTION

With the inception of online learning platforms, educators
around the world can reach millions of students by dissem-
inating course content through virtual classrooms. How-
ever, in these online environments, teachers’ ability to ob-
serve students is lost. Understanding a student’s incremen-
tal progress is invaluable. For instance, if a teacher watches
a student struggle with an exercise, they see the student’s
strengths as well as their knowledge gaps. The process by
which the student reaches the final solution is equally as im-
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portant as the solution itself. We attempt to encode these
markers of progress. We performed representation learn-
ing with recurrent neural networks to understand a stu-
dent’s learning trajectory as they solve open-ended program-
ming exercises from the Hour of Code course, a MOOC on
Code.org. The deep learning model trains on a student’s
history of past code submissions and predicts the student’s
future performance on the current or the next exercise. The
model is able to learn meaningful feature representations for
a student’s series of submissions and hence does not require
manual feature selection, which would be very difficult for
open-ended exercises. Furthermore, the learned representa-
tions can be used for other related tasks, such as predicting
an intervention.

1.1 Motivation: Instructional Scaffolding

The widely used pedagogical concept of the zone of proximal
development (ZPD) suggests that ideal learning objectives
are in a sweet spot of difficulty called the ZPD: more difficult
than what the student can accomplish on their own, but
not so difficult that they cannot succeed even with guidance
[3, 24]. The guidance for accomplishing such challenging-
but-achievable objectives is called instructional scaffolding,
and it is most effective when personalized to each student’s
mastery of the material [18].

Scaffolding is particularly difficult in MOOCs—-it is hard to
personalize instruction to thousands of students at once.
While some research has explored the merits of academic
habit scaffolding [6] or reciprocal scaffolding with peer col-
laboration [19] in MOOCsSs, the most promising work lies
in expert scaffolding, which involves an expert, usually a
teacher, in the relevant domain of knowledge providing guid-
ance to help students acquire knowledge [?]. Effective teach-
ers possess pedagogical content knowledge (PCK), or exper-
tise about not only the domain of knowledge, but also how to
best teach that material to learners [21]. Most importantly,
PCK helps anticipate where students will struggle.

In existing MOOC research, the expert scaffolding usually
takes the form of feedback to students’ responses on assign-
ments. Yet, many current systems for automating feedback
in MOOC s relies on time-consuming and potentially arbi-
trary tasks of feature engineering [20] or defining rulesets
[22] applicable only to single exercises. This manual en-
coding of PCK is task-specific and not a generalizable un-
supervised process. A more generalizable signal of student
failing learning objectives is student attrition from MOOCs.
Limited work exists exploring correlations between attrition
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and student engagement with MOOC materials [27] or other
students (e.g. on discussion forums) [17, 26]. However, to
the authors’ knowledge, existing MOOC attrition research
does not control for student achievement. Often, attrition is
merely a downstream symptom of struggling with learning
objectives. When students underachieve, their self-concept
of themselves as learners may be threatened, which recur-
sively reinforces lower achievement and disengagement [4].
In general, anticipating common domain-specific mistakes
with PCK can help preempt them and mitigate subsequent
disengagement, and thus the unsupervised anticipation of
student mistakes is a worthwhile objective for automated
systems that can ultimately improve learning.

2. RELATED WORK

Representation Learning with Neural Networks
In the field of machine learning, representation learning is
the task of learning a model to create meaningful represen-
tations from low-level raw data inputs. The goal of repre-
sentation learning is to reduce the amount of human input
and expert knowledge needed to preprocess data before feed-
ing it into machine learning algorithms [1]. In contrast to
manually selecting high-level features, representation learn-
ing algorithms are trained to extract features directly from
raw input, e.g. from words in a document. The combina-
tion of linear functions and nonlinearities stacked in layers
allows deep neural networks (DNNs) to learn abstract rep-
resentations in an efficient manner [1]. Empirically, DNNs
do particularly well when the data has high semantic com-
plexity and manually choosing features is not only tedious,
but often insufficient. Once the representations are trained
on one task, they can be used for other related tasks as well.
E.g. In word2vec [12], word representations were trained on
predicting context words but were then used for document
classification and translation. Empirically, DNNs do partic-
ularly well when the raw data has high semantic complexity
and manually choosing features is not only tedious, but of-
ten insufficient. Recurrent neural networks (RNNs) are a
subtype of neural networks which take inputs over multiple
timesteps and are therefore well-suited for learning repre-
sentations on sequential data with temporal relationships.

2.1 Program Code Embeddings

In order to expand DKT to understand students as they pro-
duce rich responses over time within an exercise, a necessary
step is to create meaningful embeddings of their program
submissions. Piech et al. proposed to use recursive neural
networks to create program embeddings for student code[15].
Recursive neural networks that learn embeddings on syntax
trees were first developed by the NLP community to vector-
ize sentence parse trees [23], but are even more applicable
to computer programs due to their inherent tree structure,
since any program can be represented as an Abstract Syntax
Tree (AST).

2.2 Knowledge Tracing (KT) and Deep KT

The task of knowledge tracing can be formalized as: given
observations of interactions zg . . . z; taken by a student on a
particular learning task, predict aspects of their next interac-
tion z:41 [5]. Piech et al. applied RNNs to data from Khan
Academy’s online courses to perform knowledge tracing by
predicting student performance [14]. The authors found
that RNNs can robustly predict whether or not a student

Programming challenge: Correct solution:
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Figure 1: Ezercise 18 in the Code.org Hour of Code. Left, the
programming challenge. Right, the solution. The challenge is to
program the squirrel to reach the acorn, while using as few coding
blocks as possible. https://studio. code. org/hoc/ 18.

will solve a particular problem correctly given their perfor-
mance on prior problems. Other models that are designed
to take low dimensional inputs, such as IRT and modifica-
tions of Bayesian Knowledge Tracing [28] [13], sometimes
outperform the initial version of Deep Knowledge Tracing
(DKT) [25] [10]. However, DKT does not require student
interactions to be manually labeled with relevant concepts
and the RNN paradigm was designed to take vectorized in-
puts, hence it can utilize inputs that extend beyond the
discrete inputs of traditional models [7]. These properties
make the model an appropriate fit to understand trajecto-
ries of open-ended student responses, which have unbounded
input spaces.

A limitation with the work of Piech et al. is that it does not
fully leverage the promise of using neural networks to trace
knowledge. The dataset they used only contained binary
information about a student’s final answer (i.e. correct or
incorrect). In contrast, the Hour of Code dataset comprises
program submissions that each have a boundless solution
space. These infinite variations represent richly structured
data which we can encode as program embeddings. The
ideas presented in this paper work towards a model with
the representative capacity to tackle open-ended knowl-
edge tracing [9]. In addition, previous work in deep knowl-
edge tracing has looked at student responses over multiple
exercises, but not within an exercise. Our method focuses
on a student’s sequence of submissions within a single pro-
gramming exercise to predict future achievement. We model
student learning and progress by capturing representations
of the current state of a student’s knowledge as they work
through the exercise and incrementally submit programs.
When focusing exclusively on the final submission, these in-
cremental steps are ignored.

3. EXPERIMENTS: TASK DEFINITIONS

In order to create representations of a student’s current state
of knowledge, we chose the two following training tasks:

e Task A:
Based on a student’s sequence of k code submission
attempts over time (hereby, their “trajectory”) T =
[ASTy, AST>, ..., ASTy] on a programming exercise, pre-
dict at the end of the sequence whether the student will
successfully complete or fail the next programming ex-
ercise within the same course.

e Task B:
At each t < k, given a student’s sequence thus far of t
code submission attempts T = [ASTi, AST, ..., AST;]
on a programming exercise, predict whether the student
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will successfully complete or fail the current program-
ming exercise.

Task A is pedagogically comparable to predicting whether
or not a student will be able to learn a new concept given the
way they did or did not learn previous concepts. Phrased
differently, a student who quickly (e.g. in few time steps)
demonstrates some level of mastery of material (i.e. the
goodness of their final submission) should be considered
more likely to outperform a student who took a long time
and may have struggled before eventually demonstrating the
same level of mastery. Meanwhile, Task B is pedagogically
comparable to detecting whether or not a student is strug-
gling to acquire the present concept as they incrementally
engage with the learning objective. In other words, teach-
ers can get real-time information about the learning of the
students. We expect Task B to be more difficult but also
more pedagogically powerful. Task B is unlike Task A in
that Task B does not use the full trajectory of a problem,
which would contain post-hoc knowledge of whether or not a
student gave up in an earlier learning interaction, for pre-
diction. All of the students used as inputs in Task B can
be considered not attrited at least at some point in the pre-
diction task. Critically, success on Task B would enable
teachers to predict at-risk students who may eventually give
up and not complete the exercise but have not yet given up,
where in Task A, by the time a teacher knows a student
has given up one exercise (the inputs of A) as you are try-
ing to guess their success on the next exercise, it may be
too late to get the attrited student to rejoin in the learning
environment (e.g. re-enroll after dropping out).

4. DATASET: HOUR OF CODE EXERCISE

The Hour of Code course consists of twenty introductory
programming exercises aimed at teaching beginners funda-
mental concepts in programming. Students build their pro-
grams in a drag-and-drop interface that pieces together blocks
of code. The number of possible programs a student can
write is infinite since submissions can include any number
of block types in any combination. A student can run their
code multiple times for any exercise. These submissions
provide temporal snapshots to track the student’s learning
progress. The student submission data for Exercises 4 and
18 from this course are publicly available on code.org/research.
For our experiments, we focus on the sequences of interme-
diate submissions on Exercise 18. We chose Exercise 18
(over Exercise 4) because it covers multiple concepts such
as loops, if-else statements, and nested statements, resulting
in more complex and varied code submissions. This Exer-
cise 18 data set contains 1,263,360 code submissions, and, in
turn, more varied trajectories of student learning, of which
79,553 are unique, made by 263,569 students. 81.0% of these
students arrived at the correct solution in their last submis-
sion. In comparison, there were 1,138,506 code submissions,
of which only 10,293 were unique. The 509,405 students who
attempted Exercise 4 succeeded at a 97.8% rate.

Since the Hour of Code exercises do not have a bounded
solution space, students could produce arbitrarily long tra-
jectories. We noted that the accuracy of student submissions
have a high correlation with trajectory lengths. For instance,
the vast majority of students with trajectory length 1 solved
the problem with their very first submission. Hence, for
both tasks A and B, we chose to only include trajectories
of length 3 or above. Pedagogically, we are also more inter-

ested in students who don’t get the answer right away, and
we speculate that longer trajectories should roughly corre-
late with greater struggling with the learning objective.

5. MODELS
5.1 Recurrent Neural Network Model for Stu-

dent Trajectories

Since we would like to capture aspects of a student’s learn-
ing behavior over time, RNN’s are a suitable neural net-
work architecture for our experiments, as RNN’s have em-
pirically performed well on sequence modeling tasks in other
domains. For both tasks A and B, we used a Long Short
Term Memory (LSTM) RNN architecture, which is a pop-
ular extension to plain RNNs since it reduces the effect of
vanishing gradients [8]. A student’s trajectory consists of k
program submissions, which are represented as ASTs. Note
that an AST contains all the information about a program
and can be mapped back into a program. These ASTs are
converted into program embeddings using a recursive neural
network similar to the one described in [15]. The program
embedding is a more compact representation of the original
AST, which captures aspects of the program; in particular
its functionality. This sequence of program embeddings gets
fed into an RNN, as illustrated in Figure 2.

For task A, we used a three layer deep LSTM. To make
the prediction at the end of the sequence, we pass the hid-
den state at the last timestep through a fully connected layer
and a subsequent softmax layer. The output g of the softmax
layer is an estimated probability distribution over two binary
classes, indicating whether the student successfully solved
the next exercise. For task B, we built a dynamic three
layer LSTM, which makes a prediction at every timestep ¢
based on the hidden state at t. Hence, if a student submits
three times, we will use the sequence thus far to make three
predictions.

5.2 Baselines

Task A: The goal here is to show that our model can learn
from the program embeddings alone whether a student is
likely to succeed on the subsequent exercise and contrast
its performance against the state of the art baseline using
handpicked features. For the baseline, we chose the follow-
ing two features for a student’s trajectory 7', which have
been shown to be highly correlated with learning outcome
and performance on the next exercise and trained a logistic
regression model.

1. The Poisson path score of the trajectory 7T as
defined in [16]. Intuitively, the path score is an estimate
of the time it will take a student to complete the trajectory
series. The path score of a student trajectory has previously
been related to student retention in sequential challenges
[16]. pathScore(T) = > .r i where A, is the number of
times AST x appears in student submissions.

2. Indicator feature of student success on current
exercise 18. A student succeeded if they ended the trajec-
tory with the solution AST.

Task B: Here, we would like to demonstrate that an LSTM
is able to capture more information about a student’s tra-
jectory and capture the temporal relationships within the
sequence. Hence, we picked logistic regression on program
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Figure 2: Simplified Sequential RNN Model. For Exzperiment A, the model only predicts at the last timestep. For Ezperiment B, the
model predicts at every timestep. Note that the RNN can be unrolled any number of times, since the parameter weights are shared across
timesteps. Note that our models for both tasks stack multiple LSTM layers to increase expressivity.

embeddings as our baseline. Since logistic regression cannot
take in a sequence of embeddings, we consider every embed-
ding within a trajectory sequence as a separate sample that
we pass into the logistic regression model. Hence, this model
ignores any previous temporal information; e.g. at timestep
t, it ignores all embeddings from timestep 1 to t — 1. Note
that this is fairly high baseline, since we feed in program
embeddings which are learned using neural networks. We
also included a random baseline as a sanity check.

6. RESULTS

6.1 Quantitative Results

Task A: For both the pathscore baseline model and the
LSTM model, we used 90% of the data set to perform train-
ing and validation and the remaining 10% for testing. The
LSTM model consistently outperforms the path score base-

line by around 5% on test accuracy at every trajectory length.

This result is significant since the input we feed into the
LSTM model consists of program embeddings, and not hand-
picked features like success on current problem. Our model
identified trajectories that show more promise. The abil-
ity to understand trajectories suggests that the representa-
tions used for the programs within the trajectories were also
meaningful. The program embeddings were trained to pre-
dict the output of any given student program. Our program
embedding model was able to correctly predict the output
for 96% of the programs in a hold out set, compared to a 54%
accuracy from always predicting the most common output.

Task B: We trained on trajectories of variable lengths 5 to
15, using 90% for training/validation and 10% for testing.
At every timestep, we perform a binary prediction. Let’s call
these two classes “success” and“failure”. Since the “failure”
class is pedagogically more important, we reported recall,
precision and F1 score for the “failure” class at each timestep
for our LSTM model as well as for the logistic regression
baseline and the random baseline (see Figure 3). We can
observe that logistic regression on program embeddings ap-
pears to be a very strong baseline. This is potentially due to
a high correlation between certain ASTs and the “success” or
“failure” classes. Our model does particularly well on recall
on the “failure” class, which is pedagogically more impor-
tant than precision. In education settings, it is much worse
to miss students who will fail then giving superfluous sup-
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port to students who would be successful anyway. It is also
worth noting that with increasing number of timesteps, the
gaps between the LSTM model and the logistic regression
baseline on recall and F1 are increasing. In particular, while
recall and precision roughly remain constant after timestep
5 for logistic regression, recall is improving significantly for
the LSTM while precision stays roughly constant.

6.2 Analysis of Trajectory Representations
The hidden layer outputs of the trained neural net can be
interpreted as the learned feature representations. Input
samples that share patterns in the context of the learned
task should ideally be mapped close to each other in the
representation space.

Visualizing the learned representations of a neural net is an
empiric method to explore what the neural net has learned.
t-Stochastic Neighbor Embedding (t-SNE) [11] is particu-
larly suited for visualization of high-dimensional data, as it
can uncover structures at different scales. Figure 4 shows
a t-SNE visualization of student trajectory embeddings for
trajectories of length 6. We can observe five distinct clus-
ters, labeled A through E, which we were also able to iden-
tify using the K-Means clustering algorithm with number of
centroids set to 5. Each cluster contains trajectories sharing
some high-level properties. Some statistics for the clusters
are summarized in table 1.

Within these clusters of student trajectories, qualitative anal-
ysis found 3 distinct learning groups. Cluster A contains
the best students who make consistent progress, showing log-
ical debugging steps to apply programming concepts. Each
step fixes an existing error and moves towards the correct
final solution. A notable differentiator for Cluster A stu-
dents is that they did not return to sections of their solution
that they had already corrected. This demonstrates compre-
hension of the error and that they have digested the concept.

Students in Clusters C and E make inconsistent progress
and show signs of random guessing. Some students method-
ically test combinations of elements to engineer a passing
solution. This behavior likely represents uncertain or dis-
trusted knowledge. This kind of behavior is overlooked by
the current grading system as Code.org only considers cor-
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Figure 4: t-SNE visualization of trajectory representations. Left: Ground truth student success for current challenge. Center: Predic-
tions for next challenge given student trajectories on this challenge. Right: Ground Truth student success for next challenge.

rectness of the final submission when scoring, a "number-
right scoring” policy. The alternative is a “negative marking”
policy, which would penalize students for wrong submissions
along with the final answer. Educators have found that
number-right scoring is a less reliable grading policy that
overestimates student achievement particularly for students
with more distrusted knowledge because it obscures whether
responses represent true understanding or a lucky guess [2].
Anecdotally, we speculate that the students’ success in the
next problem may come from being able to reverse-engineer
conceptual knowledge through repeated guessing.

Students in Clusters B and D appear to miss important
concepts tested in this exercise. Students in Cluster D used
an average of 9.21 blocks for every solution (see Table 1), al-
most twice as many total blocks as other clusters. Rather
than solving the challenge with one generalized program,
they break the challenge down into segments, hardcoding
steps to pass each segment. Students in Cluster D have the
highest usage of move forward blocks and turn blocks since
students rely on these simple elements rather than the more
complex if-else and while statements, both crucial learning
components of this challenge. An ideal solution would in-
clude one if-else statement and one while loop. Students in
Cluster D used the if statement only an average of 0.87
times and the while statement 0.60 times. Inspection of their
programs show that students in Cluster B and Cluster D
often disregard the while statement completely, unlike other
clusters where students’ solutions consistently contain the
while loop) even if used incorrectly or inefficiently.

In summary, this analysis shows that our model can create
more nuanced representations that lead to better predictions
than a model that only looks at binary success indicators.
Given that all students in Clusters B, C, D, and E per-
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Table 1: Statistics on student clusters (K-means)

Cluster A B C D E

# students 316 51 44 58 62
Avg # total 442 | 510 |545 |921 |s541
blocks

Ave # 095 | 095 |1.03 |087 |0.97
statements

Avg # while 089 |083 |097 |060 | 092
blocks

Avg # move

forward blodks || 138 [ 120 [ 200 | 581 | 212
Ave # turn 1.20 | 1.32 | 144 |1.94 | 1.40
blocks

Success rate on [ gq zor | 4 70z | 0.0% | 1.7% | 14.5%
current problem

Success rate on I o5 sor | o5 5o | 47.7% | 17.2% | 71.0%
next problem

formed poorly on the current exercise, a binary input model
analyzing student success on Exercise 18 could not have dis-
tinguished between these poorly performing students. How-
ever, our model predicted that students in Clusters C and
E, despite getting an incorrect answer for Exercise 18, would
be successful on the next exercise. See Figure 4 Left and Fig-
ure 4 Center. Students in Cluster C went from a success
rate of 0% in the current problem to a success rate of 48%
in the next problem. Students in Cluster E went from
15% to 71%. This high success rate for Clusters C and
E is visually noticeable in Figure 4 Right. The students’
learning trajectories provided our model information to un-
derstand the students’ learning at a deeper level and make
these nuanced predictions, validating the claim that analyz-
ing student trajectories provides richer data for the model.
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7. CONCLUSION

Our work focuses on multi-step exercises with unbounded so-
lution spaces. While open-ended exercises encourage more
flexible problem solving (e.g. in comparison to multiple-
choice questions), understanding a student’s progress is more
challenging due to unbounded variations in student sub-
missions. Given that digital learning platforms can easily
archive the temporal dimension of student submissions, we
proposed a new approach for learning representations of stu-
dent knowledge by using program embeddings of student
code submissions over time instead of hand-picked features.
We showed that the trajectories of these representations pro-
duce distinct clusters of different student learning behaviors
not picked up by a model that only observes binary success
outcomes. We also showed that these representations can
predict future student performance. We envision creating
automated hint systems, where deep knowledge tracing has
the potential to identify weaknesses and provide personal-
ized feedback. By being able to anticipate student struggles
in particular, we are in essence capturing pedagogical content
knowledge in an unsupervised fashion. These applications
could help improve and personalize the learning experience
of students both in the classroom and on online education
platforms.
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