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ABSTRACT
One of the most challenging tasks in the field of Educa-
tional Data Mining (EDM) is to cluster students directly
based on system-student sequential moment-to-moment in-
teractive trajectories. The objective of this study is to build
a general temporal clustering framework that captures the
distinct characteristics of students’ sequential behaviors pat-
terns, that tracks whether a student’s learning experience is
unprofitable, and can identify such an individual as early as
possible so personalized learning can be offered. The central
idea of our framework is based on Dynamic Time Warping
(DTW), which calculates distance between any two tempo-
ral sequences even with different lengths. In this paper, we
explore both the original DTW and our proposed normalized
DTW to generate distance matrix and apply Hierarchical
Clustering to the resulted distance matrix. To fully evaluate
the power of our temporal sequential clustering framework,
we calculate distance matrix at three types of granularity
in the increasing order of: problem, level, and session across
three training datasets. As expected, results show that clus-
tering moment-to-moment temporal sequences at problem
granularity is more effective than level and session granu-
larity. In addition, our proposed normalized DTW is more
effective than both original DTW and the baseline Euclidean
distance.
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1. INTRODUCTION
The impetus for the development of many Intelligent Tutor-
ing Systems (ITSs) was the desire to capture the effective
learning experience provided by human one-on-one instruc-
tion. ITSs have shown positive impact on learning but the
degree of their effectiveness often depends on individual stu-
dent’s motivation, incoming competence, etc. In ITSs, the
system-student interactions can be viewed as a sequential

action-response process. Each of these interactions will af-
fect the system-student’s subsequent interactions. As one of
the great promises of ITS is to support personalized learn-
ing [15], the system-student moment-to-moment interactive
trajectories often have vastly different lengths while most
existing clustering approaches including K-means and Hier-
archical Clustering are not designed to directly handle such
temporal sequential datasets. Therefore, the main objective
of this research is to build and evaluate a general cluster-
ing framework that captures the distinct characteristics of
system-students’ sequential interactive behavioral patterns,
that tracks whether a student’s learning experience is un-
profitable, and can identify such an individual as early as
possible so personalized learning can be offered.

Previously, various clustering methods have been widely ap-
plied for different Educational Data Mining (EDM) appli-
cations such as temporally coherent clustering [7], collabo-
rative learning [9], reading comprehension [13], handwritten
coursework [4], and personalized e-learning [8]. However, as
far as we know, most of the prior research has used datasets
that consist of per-student feature vectors that summarize
a student’s entire interaction trajectory but do not consider
the sequential nature of the interactions; or sequential data
where the student’s behavior is extracted as a sequence of
feature vectors but the length of the sequence is fixed. Nei-
ther approach directly handles the moment-to-moment tem-
poral dependency and different length of interactive trajec-
tories. Therefore, we implement Dynamic Time Warping
(DTW) [11] which calculates the distance between any two
sequences of different lengths and also considers moment-to-
moment dependencies.

We proposed a general temporal clustering framework that
would firstly construct a specified distance matrix on the se-
quential dataset and then apply clustering approach on the
resulted distance matrix. We tested our framework across
three datasets collected in Fall 2015, Spring 2016 and Fall
2016 semesters. All participants were trained on a logic tu-
tor named Deep Thought (DT) and they were assigned to
different conditions based on how the tutor decided whether
to assign a Problem Solving or a Worked Example on next
problem. Two-three weeks after the training, all partici-
pants took a in-class midterm as the PostTest. Much to
our surprise, empirical results showed no significant differ-
ence among different conditions on PostTest scores across
all three semesters. So we explored whether our proposed
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general temporal clustering framework would generate effec-
tive clusters to predict student PostTest scores. To do so,
we explored three types of granularity in increasing order
of problem, level and session. More specifically, a session
contained a student’s entire training session on the tutor
which involved six levels and each level contained multiple
training problems. For three types of granularity: prob-
lem granularity recorded students’ problem-by-problem be-
haviors and thus had different lengths for different students
since the number of problems that students solved on DT
varied greatly: from 19 to 65; level granularity contained the
sequential data with a fixed length of six, one per level, for
each student; and session granularity had one single summa-
rized feature vector for each student. In our case, we treated
session granularity as the baseline for early detection and
investigated the impact of different types of granularity on
clustering results.

In this work, we applied three distance functions including
DTW, normalized DTW and Euclidean distance, and imple-
mented Hierarchical Clustering with four different linkage
functions. Finally, we evaluated the goodness of clusters
on PostTests. Our results showed that significant differ-
ence was consistently found among the discovered clusters
when clustering student trajectories at problem granularity
rather than level and session granularity, and the best re-
sult is found when using the first four out of six levels of
trajectories rather than using entire trajectories. Therefore
it suggested that using fine-grained problem granularity was
more suitable for clustering student interactive trajectories
than coarse-grained level and session granularity.

2. RELATED WORK
2.1 Previous Research on Clustering
Previous research has showed the value of clustering for var-
ious applications in EDM. For example, clustering has been
widely used in student modeling. Yue Gong et al [3] im-
plemented k-means on to identify clusters with distinct stu-
dents’ skill and then applied knowledge tracing model to
model students from each cluster separately in order to de-
tect students’ knowledge level. They found that clustering
had positive impact on student modeling, providing a good
representation of student knowledge. Furthermore, Terry
Peckham and Gord McCalla [13] utilized k-means in reading
comprehension tasks and determined four different clusters
based upon cognition skills including positive or negative
reading, scanning or scrolling behaviors.

Relatively little research has done to directly cluster student
trajectories. Generally speaking, most of the prior research
used either per-student feature vectors or the sequential data
with fixed length on such task. For the former case, Ke Niu
et al [12] extracted the feature vector per learner through
analyzing his/her behavior and then applied spectral clus-
tering algorithm to classify students’ performance in order to
provide benefit for personalized services. They categorized
students’ performance into nine classes and evaluated clus-
tering results based on accuracy. Similarly, Gholam Mon-
tazer [10] proposed hybrid clustering method to group learn-
ers in E-learning systems and evaluated clustering results by
comparing clustering labels with the ground truth labels.

For using sequential data but with fixed length, Severin Klin-

gler et al [7] designed a pipeline for evolutionary clustering
on student behavior sequential data with fixed length in or-
der to group students at any time point and to identify the
change of clusters over time. Particularly, Markov Chain
model is applied to transfer the original behavior data as
well as to capture the moment-to-moment temporal depen-
dency. The optimal number of clusters is selected based
upon the best model, evaluated by Akaike information cri-
terion (AIC). Different from this work, we try to clustering
the sequences with different lengths.

2.2 Application of DTW
DTW has been successfully applied to a variety of applica-
tions related to time series data, such as time series index-
ing [6], classification [14] and clustering in domains of as-
tronomy, speech physiology, and medicine [1]. More specif-
ically, Hesam Izakian et al [5] applied fuzzy clustering with
DTW distance approach on UCR time series data sets and
evaluated the performance of clustering methods based on
precision value. In addition, Gançarski, Pierre et al [2] uti-
lized DTW to capture the semantic proximity between urban
blocks on spatial temporal topographic databases and imple-
mented ascendant Hierarchical Clustering to detect the dis-
tinctive evolutions of urban blocks. Furthermore, Nurjahan
Begum et al [1] explored DTW by adding pruning strate-
gies and did the multidimensional time series clustering on
different types of data sets in astronomy, speech physiol-
ogy, medicine, entomology and astronomy domains. They
evaluated performance of clustering approaches in term of
accuracy.

As far as we know, this is the first study of applying DTW
to the field of EDM by directly clustering student-system
interactive sequential trajectories. Given the special nature
of EDM, we further propose normalized DTW and find that
normalized DTW is more effective to our task than original
DTW.

3. METHODOLOGY
In this section, we first introduce the original and the pro-
posed normalized DTW for calculating the distance matrix
between any pair of student interactive trajectories, and
then describe how we apply Hierarchical Clustering to iden-
tify clusters with distinctive behavior pattern and perfor-
mance.

3.1 Distance Function
3.1.1 Dynamic Time Warping (DTW)

Given sequencesX = {x1, x2, ..., xN} and Y = {y1, y2, ..., yM}
with different lengths (N 6= M), a warping path W is an
alignment between X and Y , involving one-to-many map-
ping for each pair of elements. The cost of a warping path is
calculated by the sum of cost of each mapping pair. Further-
more, warping path contains three constraints: 1) Endpoint
constraint: The alignment starts at pair (1, 1) and ends at
pair (N,M); 2) Monotonicity constraint: The order of el-
ements in the path for both X and Y should be preserved
same as the original order in X and Y respectively; 3) Step
size constraint: the difference of index for both X and Y
between two adjacent pairs in the path need to be no more
than 1 step. In other words, pair (xi, yj) can be followed
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by three possible pairs including (xi+1, yj), (xi, yj+1) and
(xi+1, yj+1).

Dynamic Time warping (DTW) is a distance measure that
searches the optimal warping path between two series. Par-
ticularly, we firstly construct a cost matrix C where each
element C(i, j) is a cost of the pair (xi, yj), specified by us-
ing Euclidean, Manhattan or other distance function. DTW
is calculated based on dynamic programming. Initial step of
DTW algorithm is defined as

DTW (i, j) =

{
∞ if (i = 0 or j = 0) and i 6= j
0 if i = j = 0

The recursive function of DTW is defined as

DTW (i, j) = min





DTW (i− 1, j) + wh · C(i, j)
DTW (i, j − 1) + wv · C(i, j)

DTW (i− 1, j − 1) + wd · C(i, j)

Where wh, wv, wd are weight for horizontal, vertical and di-
agonal direction respectively. DTW (i, j) denotes distance or
cost between two sub sequences {x1, ..., xi} and {y1, ..., yj},
and DTW (N,M) indicates total cost of the optimal warping
path.

In equally weighted case (wh, wv, wd) = (1, 1, 1), the recur-
sive function has the preference on diagonal alignment di-
rection because the diagonal alignment takes one-step cost
while the combination of a vertical and a horizontal align-
ment takes two-steps cost. In order to counterbalance this
preference, we can set (wh, wv, wd) = (1, 1, 2).

3.1.2 Normalized DTW
One potential issue of using the original DTW definition is
that the longer the two sequences are, the larger their DTW
value will be. Thus, its absolute value may not truly reflect
the difference of the two sequences. Thus, we propose the
normalized DTW, defined as dividing original DTW by the
sum of lengths of two sequences as shown below:

DTWnorm(N,M) =
DTW (N,M)

N +M

Each alignment in the warping path has a corresponding
weight, selected from (wh, wv, wd) and the sum of weights for
all alignments equals to the sum of lengths of two sequences
(N + M). Therefore, the normalized DTW evaluates the
average distance of alignments in the warping path for two
sequences. We will empirically compare the effectiveness of
the original DTW and our proposed normalized DTW.

3.2 Hierarchical Clustering
Our proposed framework uses Hierarchical Clustering be-
cause K-means cannot directly applied here. K-means needs
to calculate the centroid of each cluster while we only have
the DTW-based distance for each pair of trajectories.

To apply Hierarchical Clustering, we explore four linkage
functions: average, median, complete and ward, which de-
termine how to merge clusters based on the distance between
the clusters. Our results show that the first three linkage
methods generate extremely unbalanced clusters while the
ward linkage discovers relatively balanced ones. Therefore,
in the following, we will report our results using ward linkage
only.

The optimal number of cluster is selected based upon the
measurement called WCSS (within cluster sum of squares)
[16] defined as

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

d(xi, xi′)

Our results show that the optimal number of clusters is 4.

4. EXPERIMENT
4.1 Training Datasets
Our datasets were collected by training students on a logic
DT tutor across three semesters: 2015 Fall, 2016 Spring and
2016 Fall referred as DT15F, DT16S and DT16F respec-
tively. For each semester, students were randomly assigned
into different conditions based on the pedagogical strategies
employed by the tutor. Pedagogical strategies were policies
used to decide whether give Problem Solving (PS) or Worked
Examples (WE) as the next problem. In WE, students were
given a detailed example showing the expert solution for the
problem. In PS, by contrast, students were tasked with solv-
ing a particular problem. For different versions of DTs, we
applied different types of data-driven approaches to induce
pedagogical strategies [15]. There were a total of four, six
and five conditions for DT15F, DT16S and DT16F respec-
tively. One-way ANOVA results showed that there was no
significant difference on PostTest scores among conditions
across all three semesters: F (158, 1) = 0.728, p = 0.537
for DT15F, F (196, 1) = 0.644, p = 0.667 for DT16S and
F (188, 1) = 0.445, p = 0.776 for DT16F. More details were
eliminated due to the limitation of space. While no signif-
icant was found among different conditions, different peda-
gogical policies resulted in quite different student-system in-
teractive trajectories and our goal was to investigate whether
the proposed temporal clustering framework would be more
effective to predict PostTest scores and to discover the true
temporal patterns during student training than the condi-
tion.

To best describe student learning trajectory, we considered
the following 36 continuous features which could be grouped
into three categories:

1 Autonomy (AM): the amount of work done by the
student: such as the number of problems solved so far
(PSCount) or the number of hints requested (hintCount).

2 Temporal Situation (TS): the time related information
about the work process: such as the average time taken
per problem (avgTime), or the total time for solving a
problem (TotalPSTime).

3 Student Action (SA): the statistical measurement of
student’s behavior: such as the number of non-empty-click
actions that students take (actionCount), or the number
of clicks of applying rules for logic proof (AppCount).

To fully evaluate our proposed framework, we explored three
types of granularity: 1) Problem granularity considered
students’ behaviors problem by problem. When training
on DT, the number of problems that each student solved
differed greatly and as a result, the length of student inter-
active sequences varied. For example, about 8%, 4% and
1% of students had more than 40 problems in their interac-
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DT Level
Hierarchical Clustering with Ward Linkage

Problem Level Session

Normalized DTW DTW Normalized DTW DTW Euclidean Euclidean

DT15F

3 5.05(.027)* 6.48(.012)* 3.84(.051). 1.40(.238) 1.30(.256) 2.26(.135)

4 10.3(.001)** 1.18(.279) 5.86(.017)* 7.67(.006)** 0.75(.388) 2.96(.087).

5 6.06(.015)* 1.71(.193) 4.03(.046)* 2.55(.112) 1.93(.166) 1.81(.181)

6 3.19(.076). 1.37(.244) 3.79(.053). 0.50(.480) 1.21(.272) 0.76(.385)

DT16S

3 12.4(.000)*** 0.63(.427) 8.94(.003)** 1.89(.171) 0.41(.521) 1.00(.318)

4 13.7(.000)*** 0(.995) 10.0(.002)** 2.49(.117) 0.99(.319) 0.38(.536)

5 7.1(.008)** 0.84(.359) 6.36(.013)* 3.75(.054). 0.39(.532) 15.8(.000)***

6 3.11(.079). 0.05(.821) 0.53(.466) 0.67(.412) 0.06(.806) 8.33(.004)**

DT16F

3 0.28(.594) 0.96(.328) 0.94(.333) 2.38(.124) 0.89(.344) 2.90(.090).

4 3.93(.049)* 1.97(.163) 2.61(.108) 3.32(.070). 0.52(.471) 1.14(.288)

5 4.76(.030)* 3.64(.058). 2.64(.058). 1.74(.189) 1.65(.201) 0.06(.798)

6 3.95(.048)* 9.67(.002)** 2.27(.134) 1.92(.168) 1.27(.261) 0.0(.997)

Note: significant codes: 0.000 :‘****’; 0.001: ‘***’; 0.01: ‘**’; 0.05: ‘*’; 0.1: ‘.’

Table 1: One way ANOVA using PostTest score as dependent measure and cluster as a factor

tive sequences in DT15F, DT16S and DT16F respectively.
2) Level granularity summarized students’ behaviors for
each level as a singe feature vector; since DT has six levels,
the length of level interactive sequence is six for each stu-
dent. 3) Session granularity summarized the students’
entire training behaviors by a single feature vector.

Furthermore, there were 158, 196 and 188 students that par-
ticipated in DT15F, DT16S and DT16F respectively. Com-
bining semesters with three types of granularity, we had a
total of 9 data sets.

4.2 Data Preprocessing
Our data-preprocessing involved two steps: 1) Standardiza-
tion. To ensure that our state features measured at different
scales would contribute equally to the distance functions,
we standardized all features by subtracting mean and di-
viding standard deviation; 2) Principle Component Analy-
sis (PCA), which is widely used for dimensionality reduc-
tion. PCA is able to generate mutually independent princi-
ple components (PCs) which cover the majority of variance
information. We selected PCs with the corresponding vari-
ance larger than 1, thus 6-8 PCs were chosen for different
training data sets.

4.3 Clustering Process
While most of previous clustering research on sequential tra-
jectory used the entire trajectory, we investigated whether
it was more effective to only use sub-sequential trajectories
rather than the entire trajectories. This was especially im-
portant because we wanted to identify students with differ-
ent learning patterns, especially the students with unprof-
itable learning as early as possible so personalized learning
could be offered.

To do so, we recursively generated our nine training datasets,
three types of granularity across three semesters, using sub-
sequential trajectories from the beginning of the training up
to each of the six levels separately. For example, ‘Level4-

Problem-DT16S’ training dataset was generated by using
problem-by-problem trajectories from the beginning of train-
ing process up to level 4 using DT16S. Then we followed the
following three steps:

Distance matrix. We explored three types of distance
matrices: DTW, normalized DTW and Euclidean distance.
Euclidean distance was used as the baseline here.

Outlier Detection. Given that many clustering methods
are often sensitive to outliers, we applied filtering approach
to remove them from our training data. More specifically,
for each type of distance matrix, we calculated the average
distance for each student to all others and then obtained the
mean µ and standard deviation σ for all students’ average
distances. We filtered out students whose average distances
were larger than: µ+ 2 ∗ σ.

Cluster Evaluation. We applied Hierarchical Clustering
on distance matrices calculated above, and used PostTest
scores to evaluate the effectiveness of the resulted clusters.

5. RESULT
As mentioned above, while the assigned condition did not
seem to be a crucial factor to predict student PostTest scores,
we explored whether our proposed temporal clustering frame-
work could do better.

5.1 Cluster Evaluation
Table 1 summarized clustering results. In Table1, each row
denoted clustering results of using student interactive sub-
sequential trajectories, varying from using the first three lev-
els up to the entire six levels. For instance, ‘Level 4’ used
sequential data or summarized data points from the begin-
ning of training process up to level 4. Note that we did
not get good clustering results when using only the first two
levels so their results were eliminated from the table. This
was probably because there were a lot of noises in the first
two levels as some students were still getting used to the
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DT #Student
Dependent Measures: F -ratio(p-value)

PostTest Interaction WrongApp hintCount avgstepTime avgTime TotalTime

DT15F 155 10.31(.001) 40.54(.000) 21.55(.000) 6.79(.010) 0.01(.919) 17.15(.000) 20(.000)

DT16S 190 13.69(.000) 47.59(.000) 67.47(.000) 99.73(.000) 2.77(.097) 28.76(.001) 36.21(.000)

DT16F 178 3.93(.048) 2.28(.133) 0.16(.691) 5.99(.015) 13.45 (.000) 0.31(.58) 0.20(.655)

DT Cluster Size
Dependent Measures: Mean(Standard Deviation)

PostTest Interaction WrongApp hintCount avgstepTime avgTime TotalTime
(score) (count) (count) (count) (sec) (min) (hour)

DT15F

C1 47 84.84(21.64) 1052(432) 80(47) 21(34) 6.01(1.86) 5.45(2.31) 1.75(0.73)
C2 26 76.92(26.02) 1259(662) 110(79) 44(45) 10.88(3.21) 11.47(5.52) 3.76(1.97)
C3 55 72.35(28.77) 2021(752) 214(155) 76(61) 8.31(3.00) 12.64(5.14) 4.49(1.76)
C4 27 66.58(24.49) 1706(600) 154(101) 26(30) 5.48(1.73) 7.88(3.28) 2.60(1.04)

DT16S

C1 112 91.04(16.53) 1242(519) 104(64) 13(12) 5.89(2.32) 5.98(3.60) 2.06(1.22)
C2 41 83.99(23.83) 1483(660) 140(91) 22(16) 9.37(3.73) 10.72(4.33) 3.66(1.42)
C3 14 70.98(27.14) 2186(551) 275(170) 39(28) 5.04(1.84) 8.84(4.50) 3.16(1.73)
C4 23 78.66(26.08) 2058(994) 278(205) 65(52) 6.81(2.08) 10.91(8.07) 4.05(2.98)

DT16F
C1 40 79.61(20.67) 1216(500) 122(92) 17(21) 8.76(2.53) 9.11(5.43) 3.15(1.94)
C2 44 88.21(16.35) 1713(867) 147(98) 16(15) 4.19(0.94) 5.71(2.93) 2.03(1.09)
C3 35 78.57(25.87) 2335(887) 276(182) 43(34) 6.26(1.74) 11.25(4.62) 4.09(1.84)
C4 59 90.09(13.95) 1440(528) 116(66) 25(28) 5.99(1.48) 7.12(3.30) 2.47(1.19)

Table 2: result of one way anova on dependent measurements for best clustering assignment

tutor. Each cell in Table 1 denoted one-way ANOVA results
using PostTest score as the dependent measure and clus-
ters as the factor in the format of F -ratio(p-value). The
bold numbers showed that significant differences were found
among clusters on PostTest scores. Each column represented
different types of granularity using different distance func-
tions: DTW, normalized DTW and Euclidean. For problem
granularity, we only applied DTW and normalized DTW
approaches because Euclidean distance could not be applied
on sequential trajectories with different lengths. For level
granularity, we utilized all three distance functions. Note
that when calculating Euclidean distance, we first calcu-
lated distance for each level separately and then summed
them up. For session granularity, all three distance func-
tions were equivalent in that all became Euclidean distance.

Granularity Comparison. Table 1 showed that among
three types of granularity, problem granularity was most
suitable for clustering because significant differences were
found across all three datasets and across all levels of sub-
sequences on PostTest scores when using problem granular-
ity. This finding was consistent with our hypothesis that
directly clustering student moment-to-moment fine grained
trajectories indeed provide benefit to discover the underline
characteristics of student learning processes.

Distance Function Comparison. To compare the three
distance functions, we only focused on the level granularity
since it was the only one that involved all three distance
matrices. Table 1 showed that both original and normalized
DTW outperformed Euclidean distance because no signif-
icant differences were found among the clusters using Eu-
clidean distance. To compare the two types of DTW, we fo-
cused on both problem and level granularity. Table 1 showed
normalized DTW could induce more robust and consistent

results than DTW. In short, among the three distance func-
tions, our proposed normalized DTW was the best.

Sub-sequences Comparison. Table 1 showed that con-
sistently significant results were found for all problem gran-
ularity data sets using normalized DTW and sub-sequential
trajectories up to first four or five levels. Interestingly, using
the entire sequential data may be not as effective as using
sub-sequences in that for DT15F and DT16S datasets, no
significant difference was found when using problem granu-
larity on the entire trajectories.

Variable Definition

PostTest the score of student’s post test
Interaction number of student’s actions
WrongApp number of wrong application of rules
hintCount number of hints that students take

avgstepTime average time per step
avgTime average time per problem

TotalTime time of completing the training process

Table 3: Variables and Definitions

5.2 Clusters Analysis
Table 1 showed that the consistent significant results was
found when we clustered on problem granularity using nor-
malized DTW on sub-sequences from beginning of training
process to the level 4 across the three semesters’ datasets.
Therefore, in the following, we will shed some lights on char-
acteristics of the discovered clusters.

Table 2 showed one-way ANOVA results on seven depen-
dent measures using clusters as the factor. Particularly,
we bolded p values which were less than 0.05. We found
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that there was significant difference on all variables except
avgstepTime for DT15F and DT16S. Additionally, signifi-
cant difference existed on three variables including PostTest,
hintCount and avgstepTime for DT16F. In order to investi-
gate how much difference existed among clusters based on
selected variables, we presented the mean and standard de-
viation for each pair of cluster and variable in Table 2. We
highlighted the mean of variables that were significantly dif-
ferent from others, either extremely large or small. We ana-
lyzed the difference among clusters for three semesters sep-
arately shown as follows.

1. DT15F. C1 had the highest PostTest while C4 had the
lowest one among four clusters. C1 had the lowest Inter-
action, WrongApp, hintCount and TotalTime among four
clusters. Although C2 and C3 had similar PostTest, C2
contained dramatically larger Interaction, WrongApp and
hintCount than C3. Furthermore, C3 had the largest value
of Interaction avgTime and TotalTime.

2. DT16S. C1 had the highest PostTest and the lowest
Interaction, on the contrary, C3 had the lowest PostTest
and the highest Interaction among four clusters. Although
C2 and C4 had the closed PostTest, C4 contained higher
WrongApp and hintCount than C2.

3. DT16F. C4 had the highest PostTest, while C3 had the
lowest one. Although C2 performed closed to C4, C2 had
higher WrongApp than C4. Furthermore, C1 had the lowest
Interaction and the highest avgstepTime while C3 contained
the highest Interaction and WrongApp.

In short, our results showed that our discovered clusters in-
deed had the distinctive interactive patterns and could pre-
dict students PostTest better than their assigned conditions.

6. CONCLUSIONS & FUTURE WORK
In this paper, we proposed the temporal clustering frame-
work to directly cluster student interactive trajectories. Par-
ticularly, we explored three different distance functions and
three types of granularity. Results showed that normal-
ized DTW is the most effective function for generating dis-
tance matrix; problem granularity is more effective than
level and session granularity. More importantly, through
clustering statistical analysis, we were able to identify dis-
tinctive patterns among clusters during the learning process,
which could provide benefit to the personalized learning. For
the future work, we will modify distance matrix by combin-
ing kernel function with DTW approach given sequential
data containing both continuous and discrete features in or-
der to generate effective distance matrix.
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