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ABSTRACT 
Scientific explanations, which include a claim, evidence, and 
reasoning (CER), are frequently used to measure students’ deep 
conceptual understandings of science. In this study, we developed 
an automated scoring approach for the CER that students 
constructed as a part of virtual inquiry (e.g., formulating questions, 
analyzing data, and warranting claims) in an intelligent tutoring 
system (ITS), called Inq-ITS. Results showed that the automated 
scoring of CER was strongly correlated with human scores when 
validated using independent sets of data from both the same inquiry 
task/question, as well as when using data from a different inquiry 
task/question. These findings imply that automated CER is a very 
promising approach to reliably and efficiently score scientific 
explanations in open response format for both small- and large-
scale assessments. It also provides Inq-ITS with the capability to 
assess the full complement of inquiry practices described by NGSS. 
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1. INTRODUCTION 
The implementation of the Next Generation Science Standards 
(NGSS) has led to a need for assessments that are able to capture 
students’ competencies at science inquiry practices [21]. Open-
response tasks have been used in assessments for science inquiry 
because they can elicit students’ communication skills, conceptual 
understandings, and ability to reason from evidence due to the 
measurement constraints of traditional multiple-choice items [10]. 
Rubrics for scoring students’ explanations have been developed 
according to frameworks, such as Toulmin’s [27] model of 
argumentation [8,16]. A modified version of Toulmin’s model 
consists of three components: claim (an assertion about an 
investigated question), evidence (data or observations that support 
the assertion, i.e., the claim), and reasoning (articulating how the 
evidence supports the claim and how scientific principles explain 
the relationship between the data and claim). 
Previous studies have developed rubrics to assess the accuracy of 
claim, evidence, and reasoning (CER) in students’ scientific 
explanations. Gotwals and Songer [8] applied a rubric following 
the CER framework in order to score middle school students’ 

explanations in an ecological science assessment. The rubric 
scoring for each component of CER was on a scale from 0 to 2 
according to the accuracy and depth students’ responses. McNeill 
et al. [16] scored students’ responses to explanation prompts for 
middle school chemistry with a rubric that also followed the CER 
format using a 0 to 2 scale. These general rubrics for open response 
items provide some insight regarding the argumentation skill level 
of students, which can be valuable for guiding teachers’ instruction 
and feedback. Open response items, however, can be time 
consuming and costly to score [28]; they can be inaccurately scored 
due to human factors such as rater fatigue [19], and rubrics can be 
interpreted and used differently by different raters [1]. One way to 
resolve these issues is through the use of automated scoring 
techniques [30]. 
Automated scoring techniques also permit automated feedback to 
students as they write scientific explanations or immediately 
following their writing tasks, when students have the opportunity 
to revise their writing. Automated, real-time feedback has been 
found to: significantly reduce the time between response 
submission and feedback relative to human scorers [15] and be as, 
if not more, effective than feedback presented by teachers [3]. 
While automated scoring presents an efficient and accurate means 
for promoting student learning gains, no studies, to date, have 
developed techniques for online, automated scoring of scientific 
explanations according to CER. 
The current paper presents a new automated scoring approach to 
CER using the techniques of both natural language processing and 
machine learning. The approach addresses accuracy as well as 
important structural components of explanations as identified in the 
CER framework. The approach was validated using correlations 
between human scores and automated scores for scientific 
explanations produced in the Inq-ITS learning environment. 
Automated scoring of CER will: dramatically reduce time and 
expense, improve the efficiency and accuracy of CER scores, allow 
for instantaneous feedback, and make individualized instruction 
from teachers and/or automated scaffolding possible. Furthermore, 
scoring these data is critical because our data show that many 
students who have acquired a deep understanding of science 
content and inquiry practices, cannot articulate in words what they 
have learned. Conversely, some students are able to simply parrot 
what they have heard/read when doing written CER tasks, but do 
not actually understand the science content or practices [4, 11]. 

1.1 Automated Open Response 
Automated scoring techniques have been developed to assess 
students’ open responses in computer-assisted assessments and 
learning environments for science. Techniques include natural 
language-processing (NLP), such as regular expressions [12], to 
determine whether students’ scientific explanations include key 
conceptual phrases [3, 13, 14]. The specific techniques and rubrics 
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used for automated scoring of science open response items vary 
across programs as described below.  
The Summarization Integrated Development Environment (SIDE) 
uses a combination of NLP techniques and machine learning 
algorithms to score scientific explanations for the inclusion of 
biology concept knowledge [9, 20]. This system yielded 
correlations between human-scored and computer-scored 
responses ranging from 0.79 to 0.87 depending on the sample of 
participants. Disagreement was attributed to differences in 
linguistic tendencies across samples [9]. A later study by Nehm et 
al. [20] on the same system found that agreement between human 
and computer scoring was strong (i.e. k > .81). The SIDE program 
may be a valuable tool in scoring student scientific explanations 
[20], but is limited to identifying the presence of concepts within 
responses, and as such is not useful at scoring students’ 
competencies at generating claims, evidence, and reasoning, which 
are critical to NGSS inquiry practices.  
Another program that has been used to autoscore scientific 
explanations is the SPSS Text Analysis (SPSSTA) program [29], 
which uses language-processing procedures to identify terms and 
note patterns within texts [25]. A study by Weston et al. [29] 
applied SPSSTA to score undergraduate responses to biology 
explanation prompts. The agreement between human-coded 
responses and the SPSSTA for different levels of an analytic rubric 
ranged from a kappa of 0.67 to 0.88. The SPSSTA program relates 
to SIDE in terms of its potential to identify important concepts, but 
is unable to automatically produce machine learning algorithms 
from a trained data set [9], and this is limited in utility. 
EvoGrader automatically scores constructed explanations using 
machine-learning algorithms [17]. A study compared EvoGrader 
scores to human scores based on the identification of nine key 
evolution concepts and strong agreement was found, as indicated 
by kappas above 0.85 for all concepts except one (k = 0.71) [17]. 
The EvoGrader automated assessment system was able to produce 
human-like scoring of key evolutionary concepts, but would need 
retraining in order to be generalized to other domains.  
The c-Rater program scores scientific explanations based on the 
presence of central concepts using natural language processing 
[13]. A study by Liu et al. [13] compared human and c-Rater scores 
for four energy open response questions and found moderate 
agreement with Pearson correlations ranging from 0.67 to 0.72. 
While c-Rater was able to capture the presence of concepts, the 
program did not perform highly enough to be recommended for use 
as a sole scorer. Liu et al. [14] examined the agreement between 
human scorers and c-rater-ML, which is an autoscoring program 
that uses support vector regressions, a machine learning technique. 
Kappas across eight science explanation items ranged from 0.62 to 
0.90, indicating good to very good agreement between human 
raters and c-rater-ML on a 5-point rubric for connecting key ideas 
[14]. The high agreement on certain explanation items 
demonstrated the potential for c-rater-ML to be used as a sole 
scorer, but, as noted by the authors, sensitivity to variations in 
phrasing of central concepts needed to be improved.  
Automated scoring programs for scientific explanations exemplify 
the potential for accurate and efficient scoring of open responses in 
terms of the presence of scientific concepts, but do not provide 
opportunity for scoring more fine-grained components of 
explanations. That is, auto-scoring techniques have yet to address 
argumentative components of explanations that are central to 
science inquiry, namely students’ competencies at generating 
claims, evidence for claims, and articulating the link between the 
two using reasoning, which are required by NGSS. Auto-scoring 

specific sub-components of responses, as we have done in our 
work, enables automated scaffolds that can, in turn, target specific 
areas of student difficulty. The rubrics for CER in previous studies 
broadly categorized responses into incorrect, partially correct, or 
fully correct, but failed to break down CER into finer-grained sub-
skills or sub-components. As a result, previous rubrics have been 
unable to pinpoint exactly why students are having difficulties 
constructing explanations. In the present study, we developed a 
fine-grained rubric modified from McNeill et al. [16]. 

1.2 Description of Inq-ITS 
Inq-ITS is a web-based intelligent tutoring system for Physical, 
Life, and Earth science that automatically assesses scientific 
inquiry practices at the middle school level in real time within 
interactive microworld simulations [5, 24]. Within each 
microworld, inquiry practices proposed in the NGSS for middle 
school are assessed including: question asking/hypothesizing, 
collecting data, analyzing data, warranting claims, and 
communicating findings using a CER framework. 
Automated scoring has been implemented within Inq-ITS with 
patented algorithms [5] to measure sub-skills of each inquiry 
practice based on actions recorded in log files [7, 23]. Automated 
scoring of sub-skills in Inq-ITS required building detectors based 
on data-mined algorithms that captured variations of complex 
behaviors, such as designing controlled experiments [7, 24]. In 
order to build detectors, human raters used text-replay tagging to 
identify key behavioral features and train models that determined 
the presence of particular sub-skills [23]. The additional 
implementation of Bayesian Knowledge Tracing and Knowledge 
Engineering has enabled real-time, automated feedback that 
scaffolds students as they engage in inquiry practices in Inq-ITS [7] 
and has been found to result in significant inquiry learning gains 
for students [18, 22]. Sao Pedro and his colleagues [22, 24] found 
that students who had no experience with designing controlled 
experiments and testing stated hypotheses were able to acquire 
these skills after receiving scaffolded feedback from Inq-ITS’s 
pedagogical agent, Rex. Moussavi, Gobert, and Sao Pedro [18] 
found that students who received scaffolds on data interpretation 
skills in one science topic of Inq-ITS were better able to apply those 
skills in a new science topic.  
While automated scoring and feedback has been successfully 
applied to student actions in Inq-ITS, automated scoring has yet to 
be developed for written explanations. The automated scoring 
approach presented in this paper allows for automatic scoring of 
students’ written scientific explanations in Inq-ITS, as well as lays 
the groundwork for the development of specific, automated 
feedback for open response items. 

2. METHOD 
2.1 Participants and Materials 
Participants were 293 middle school students from 18 classes in six 
public middle schools who completed the Inq-ITS density virtual 
lab. The Density Virtual Lab contained three activities aimed to 
foster understanding about density of a liquid when using: different 
shapes of a container (narrow, square, and wide), different types of 
liquid (water, oil, and alcohol), and different amounts of liquid 
(quarter, half, and full). This study validated the automated scoring 
for the scientific explanations that students constructed in the first 
two activities: shape-density (N = 293) and type-density (N = 268) 
after a series of scientific investigations. The type-density data set 
was used to train and test the model with the method of 10-fold 
cross-validation. The shape-density data set was used to further test 
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the model to examine how well the model performed when it was 
generalized to an independent data set. 

2.2 Rubrics and Inter-Rater Reliabilities 
Scientific explanations in Inq-ITS consisted of three components: 
claim, evidence, and reasoning (CER). As previously stated, other 
rubrics have been unable to pinpoint exactly why students are 
having difficulties when constructing explanations. In the present 
study, we developed a fine-grained rubric modified from McNeill 
et al. [16], described as follows. 
Claim was graded by four sub-skills: independent variable (IV), IV 
relationship (IVR; the conditions that students changed in the 
controlled target IV), dependent variable (DV), and DV 
relationship (DVR; the effect of IV on DV). For example, a good 
claim that a student wrote in the type-density activity was: I found 
out when you change the type (IV) of the liquid from water to oil 
(IVR), the density (DV) will decrease (DVR). IV and DV were 
graded with binary scores: 1 for presence of the sub-skill and 0 for 
the absence. IVR was classified into four levels: (1) correct answers 
in which students reported two controlled conditions of the target 
IV, (2) general answers in which students stated IVR using general 
expressions rather than specifically stating the conditions of change 
(e.g., I found that the change (IVR) of type of liquid (IV) changes 
(DVR) the density (DV), (3) partial answers in which students only 
reported one controlled target condition (e.g., The density of water 
is the largest), and (4) incorrect answers. Therefore, correct IVR 
was given 1 point; general IVR, 0.8 points; partially correct IVR, 
0.5 points; and incorrect IVR, 0 points. DVR in the type-density 
activity was scored according to three levels: correct (1 point), 
general (0.8 as shown in IVR example), and incorrect. DVR in the 
shape-density activity was scored dichotomously, correct (1 point) 
versus incorrect (0 points). The DVR (shape of the container) did 
not affect the DV (density), so responses were either correct or 
incorrect and no general expressions were involved. 
Evidence was scored by two sub-skills: sufficiency and 
appropriateness [6]. Sufficiency was a measure of whether students 
provided sufficient evidence. If two controlled target conditions 
were stated, then 2 points were given. Mentioning only one 
controlled target condition was insufficient and was given 1 point. 
Using general expressions was given 0.5. Not mentioning any 
controlled target condition was incorrect and was given 0 points. 
Appropriateness was a measure of whether students provided 
appropriate data, such as the data of mass, volume, and density, as 
displayed in students’ data tables in Inq-ITS. This sub-skill was 
consistent with the sufficiency of evidence, but focused on the data. 
Here is an example of a good answer in the shape-density activity: 
No matter what the container shapes are, narrow or wide, and the 
mass of oil was 212.5 (data of mass) while the volume was 250 (data 
of volume). The density resulted in 0.85 g/ml (data of density). If 
students specified the data of density, they were given 1 point for 
DVR in appropriate evidence; otherwise, 0 points. If they reported 
both the data of mass and volume, they were given 1 point. If they 
only reported the data of either mass or volume, they were given 
0.5 points. If they did not report any data of mass or volume, they 
were given 0 points. 
Reasoning was measured by three sub-skills: theory, connection 
between data and the claim, and data that supports or refutes the 
claim. Theory referred to whether students stated a scientific 
principle related to density, here being: the properties of a substance 
(based on the type of liquid) affect the density, not the shape of the 
container. Four categories were classified: (1) complete theory for 
2 points (e.g., When looking at the data chart, it is noticeable that 
the mass and volume don't change so the density doesn't change.), 

(2) partial but closer to complete for 1 point (e.g., only mentioning 
two of three properties), (3) partial but closer to none for 0.5 points 
(e.g., only mentioning one property), and (4) incorrect or no 
theories for 0 points (e.g., no property was mentioned). Connection 
between data and claim referred to whether students specified that 
their data supports or refutes their claim. If they did, 1 point was 
given (e.g., My evidence supports my claim...). If they only partially 
stated the connection, 0.5 points were given (e.g., It will support my 
claim…) because the student did not specify whether the data or 
evidence supported the claim. If there were no expressions 
specified, 0 points were given. Data in the reasoning task were 
similar to the claim task with one main difference. In scoring 
reasoning data, mentioning either IV or IVR was accepted as 
correct (1 points) and mentioning only one condition of change was 
considered partially correct (0.5 points).  
Two expert raters scored students’ CER according to the fine-
grained rubric. The interrater-reliabilities by Cronbach’s α were 
.993, .994, .938 and the intraclass correlations were .986, .988, .882 
for claim, evidence, and reasoning, respectively, higher than human 
agreement in prior studies (e.g., [14]). Disagreements were 
discussed until agreement was reached and agreed upon scores 
were used for analyses. 

2.3 Automated Scoring 
The target sub-skills were extracted using regular expressions 
(RegEX) based on the rubrics used by human raters in section 2.2. 
RegEX is a natural language processing technique that often 
applies algorithms to search for specific phrases or phrases that are 
semantically equivalent to a target concept [26]. In ITSs, RegEX 
has been used to accurately identify the presence of target concepts 
in students’ responses [12]. Table 1 displays some examples of the 
RegEX that we used to extract features. RegEXs were generated 
based on semantically similar phrases that corresponded to a 
particular concept noted in the rubric. 

Table 1. Examples of RegEX in the Shape-Density Activity. 

CER Sub-Skill RegEX 

C
la

im
 (0

~4
) IV shape 

IVR (narrow.*square| (square.*wide) 
DV density 

DVR (^((?!n[o']t|doesn(')?t.)* (same|constant)) 

Ev
id

en
ce

 
(0

~4
) 

Sufficient Same as IVR 

IVR ((mass.*volume).*250)| 
((volume*mass).*250) 

DVR 1|85|78 

R
ea

so
ni

ng
 (0

~6
) Theory ((mass.*volume).*density) 

Connection (data|evidence).*(support|prove|indicate| 
|show|refute).*(claim|hypothesis|theory)) 

Data IV/IVR shape|(narrow.*(wide|square)) 
DV Same as DV claim 

DVR Same as DVR claim 

If the sub-skill was binary, RegEX was used to detect the presence 
or absence of the content with Python programming language. If 
the sub-skill contained more than two levels, RegEx was used to 
detect the presence or absence of the sub-skill with a higher score 
first, and then with a lower score. Each sub-skill at each level was 
assigned to a binary score, 1 for the presence and 0 for absence of 
the sub-skill. If the sub-skill had more than two scales, each scale 
was assigned to a binary score first and then transformed into the 
true scores. Take IVR in claim as an example (e.g., I found that the 
change of the container shape does not change the density). RegEX 
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matched two conditions first and assigned this category a score of 
0 because the two specific shapes were not mentioned. Then 
RegEX matched general expressions and found the target 
expression, change of the container shape, so 1 was assigned to the 
general expression category and matching stopped when the target 
content was found. In the analysis, this claim IVR was given a score 
of 0.8 points. 
In this study, we used an if-then algorithm to search for a particular 
word or phrase, as is done in AutoTutor [12]. Take the IV (e.g., 
shape of the container) in the claim as an example. First, RegEX 
“shap” was generated to match the word “shape.” Second, this 
RegEX was used to search a written claim. Third, if there was the 
word “shape” in the claim, then IV was present and scored as “1”. 
If no word “shape” existed in the claim, then IV was considered 
absent and scored as “0”. Moreover, before searching the target 
work, the misspelt target words were corrected to avoid a decrease 
in agreement [14]. If-then algorithms enhanced the performance 
especially for the more complex sub-skills, such as IVR, by 
matching the higher-level features first and then filtering down to 
the lower-level features. The modification of RegEx and algorithms 
typically took about 10 iterations for complicated sub-skills, such 
as theory, IVR, but fewer iterations for simple sub-skills, such as 
IV and DV. Each iteration took about 1-30 minutes, depending on 
the complexity of the sub-skills. 

2.4 Statistical Analyses 
Linear regression analyses were conducted using M5-prime 
method to assess whether sub-skills were predictive of human 
scores of CER. We used two methods to validate the model. The 
first method was 10-fold cross-validation. The second method was 
to further validate the model with an independent data set in a 
different inquiry, shape-density activity. If the model yields good 
performance with similar statistics as the cross-validation analyses, 
our confidence in model stability is increased and the model could 
be generalized to different Inq-ITS activities. We used the Pearson 
correlations as previous studies [14] did to evaluate automated 
scores and followed the same rules for describing their magnitude 
[2]: none (0.00–0.09), small (0.10–0.30), moderate (0.31–0.50), 
and large (0.51–1.00). 

3. RESULTS 
3.1 Performance of Automated Scores 
A linear regression analysis for automated claim scoring with 10-
fold cross-validation yielded a significant model in the type-density 
activity, r = .97, p < .001. The four sub-skills of claims were 
combined to account for 94% of the variance in the human claim 
scores, with correlation coefficients (β) of 1.02, 1.04, 1.07, 0.86 (p 
< .001) for IV, IVR, DV, and DVR, respectively. When this model 
was validated in the shape-density data set, it was also significantly 
correlated with human scores, r = .94, p < .001, which explained 
88% of the variance in the human scores.  
The same procedures were applied to the automated evidence 
scores. The cross-validation analysis showed a significant model, r 
= .97, p < .001, with three sub-skills accounting for 94% of the 
variance in the human evidence scores, with βs of 0.99, 0.87, and 
0.90 (p < .001) for sufficiency, appropriateness IVR, and DVR, 
respectively. When this model was validated in the shape-density 
data set, the automated scores were also almost perfectly correlated 
with human scores, r = .97, p < .001, which explained 94% of the 
variance in the human evidence scores.  
Finally, the same analysis was conducted for automated reasoning 
scores. The cross-validation analysis indicated a significant model, 
r = .84, p < .001, with five sub-skills accounting for 71% of the 

variance in the human reasoning scores, with βs of 0.21, 0.94, 0.85, 
1.09, and 0.96 (p < .001) for theory, connection between data and 
claim, data of IV/IVR, DV, and DVR, respectively. When this 
model was validated in the shape-density data set, the automated 
scores were highly correlated with human reasoning scores, r = .85, 
p < .001, which explained 72% of the variance in the human 
reasoning scores.  
These findings imply that the automated CER scores could best 
capture human CER scores in the independent sets of data from 
both the same inquiry task/question and data from a different 
inquiry task/question (r = .84~.97, larger than threshold of .50) [2]. 
These findings imply that the automated methods with the sub-
skills of CER are a promising approach to automatically score 
scientific explanations respective of CER in science inquiry. This 
automated method with regular expressions and if-then algorithms 
enables automated scoring to be generalized to different inquiry 
activities without additional training and testing of the model, and 
yields satisfactory performance. 

3.2 Analyses of Errors 
Across three components of scientific explanations, automated 
claim and evidence scores almost perfectly predicted human claim 
and evidence scores when validated using independent sets of data 
from both the same inquiry task/question, as well as when using 
data from a different inquiry task/question. Reasoning showed a 
very good correlation between automated scores and human scores 
in both data sets, but this correlation was relatively low as 
compared to claim and evidence. This section, therefore, analyzes 
the errors of reasoning in the type-density data set. Table 2 displays 
the confusion matrix of automated rating and human rating for 
reasoning, which explicitly demonstrated a discrepancy for 
disagreement in scores between humans and automated scores. 
Results showed a high discrepancy for scores 2 – 4. Specifically, 
when the human score was 2, only 40% were given a score of 2 by 
automated methods. Almost half of the remaining responses were 
given 1 and the other half were given 3 points or more. Similarly, 
when the human score was 3, only 44% was scored 3 by automated 
methods. More than 30% was scored 2 and about another 30% was 
scored 4 – 5. It is the same for the human score of 4. Less than 40% 
of responses were scored 4 by automated methods, while more than 
half was scored 3 by automated methods.  

Table 2. Confusion Matrix for Reasoning. 
Scores Automated (Column) 

Human (Row) 0 1 2 3 4 5 6 N 
0 19 5 1     25 
1  23 7     30 
2 1 13 18 9 1 2 1 45 
3  6 34 47 6 11 2 106 
4   5 27 20  1 53 
5   1 1 1 2 1 6 
6      1 2 3 
N 20 47 66 84 28 16 7 268 

Note. 0–6 are the total reasoning scores rated by humans and 
automated methods based on the analytic rubrics. 
This relatively lower agreement may have been largely due to 
inaccuracy that was caused by simple regular expressions. As 
constructed reasoning responses involve more complex causal 
relationships and different levels of sub-skills, the simple regular 
expressions may not completely cover all alternative expressions in 
students’ responses. To examine which sub-skill showed high 
discrepancy between human rating and automated rating, we 
compared the agreement for the five sub-skills of reasoning 
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between automated scores and human scores. Results showed very 
high agreement for the first four sub-skills: 85% for theory, 85% 
for connection, 92% for data IV/IVR, and 95% for data DV, 
whereas the agreement for data DVR was only 46%. The 
confusion-matrix analyses for data DVR revealed that the 
automated scores used the binary score for this sub-skill (i.e., 
incorrect versus correct), whereas the humans rated DVR on the 
four levels mentioned in section 2.3. Binary scoring for DVR in the 
reasoning of the type-density activity was used to remain consistent 
with the scoring used in the shape-density activity. In the shape-
density activity, there were no partially correct or general answers. 
Only correct answers (i.e. “density of liquid is the same” or 
“density of liquid doesn’t change”) or incorrect answers were 
considered. In the type-density activity, responses for DVR 
included correct answers (i.e. “density of the liquid decreases from 
water to oil”), general answers (i.e. “density of liquid changes due 
to the change of liquid”), partial answers (i.e. “density of water is 
largest”), and incorrect answers. With the rule of least effort, we 
did not change the algorithms from one activity to another to satisfy 
the multiple categories of students’ responses accounted for by 
humans. Thus, a large disagreement arose due to the binary scoring 
used by the automated method versus the four level scoring used 
by humans. 
Even though the criteria that humans and automated methods used 
to score DVR in reasoning were different, automated scores still 
yielded pretty good performance. The performance can be 
improved if the automated method scores reasoning using the same 
criteria as humans. A future study may explore whether the 
consistency in DVR between automated and human rating would 
improve the performance of reasoning scores overall.  

4. DISCUSSION 
These findings demonstrate that using regular expressions to match 
key sub-skills of CER with if-then algorithms is a very promising 
approach to effective and efficient automated scoring of open 
response scientific explanations. This assertion can be confirmed 
based on two key factors. First, the automated methods showed 
very good correlations with human scores for CER in the 
independent sets of data with the 10-fold cross-validation analyses 
in the same inquiry task/question as well as in a different inquiry 
task/question. Previous studies on automated scoring of constructed 
response items showed that good correlations between automated 
scores and human scores ranged from .60 to .91 (e.g., [14]). In our 
study, automated scores for claim and evidence reached .97 in the 
cross-validation analyses in the same inquiry task/question. When 
transferred to a different inquiry task/question, results remain .97 
for evidence and .94 for claim. These results greatly exceed the 
current state of research on automated scoring of scientific 
explanations, as they are almost perfectly correlated with human 
scoring of claim and evidence scores. Even for reasoning using 
evidence, a more complex task, results were good as well, ranging 
from .84 to .85. One explanation for the slightly lower performance 
of automated reasoning scores is that the agreement between 
humans was lower relative to agreement for claim and evidence 
(.88 versus .99) due to the complexity of the reasoning task. 
Another explanation is that the regular expressions and algorithms 
applied across different tasks were the same. If we modify regular 
expressions to satisfy each activity, the performance of automated 
scoring for reasoning will likely increase.  
Second, the sub-skill features that were extracted by regular 
expressions along with if-then algorithms not only consistently 
predicted human scores, but also were simple to implement. A 
central factor to the success of this method was that experts were 

able to generate accurate regular expressions to identify sub-skills 
of explanations in science inquiry. More specifically, experts knew 
how to identify the sub-skills of CER, how to develop a fine-
grained rubric to guide human and machine scoring, and how to 
generate nearly-complete regular expressions to capture as many 
alternative expressions as possible in students’ responses. The use 
of appropriate regular expressions was key to the success of our 
automated scores. Regular expressions were easier and quicker to 
generate for simple sub-skills such as IV, IVR, and DV for claim 
and data in evidence. For more complex sub-skills, such as DVR 
and theory, more time was needed to develop sets of alternative 
expressions. However, once the algorithms yield good 
performance, only a slight modification is needed for different 
activities. Compared to manual scoring, the time and effort that was 
spent on the development of automated scoring was worthwhile. 
Another key to the success of our automated scoring method was 
the development of the fine-grained rubric. Our rubric was finalized 
over many iterations. When we used more general rubrics, the inter-
rater reliabilities for reasoning were very low (r = .50). With the 
fine-grained rubric, the reliabilities increased to .88. The high 
agreement between human coders guaranteed the possibility of 
high agreement between human scores and machine scores.  
The success of automated scoring for open responses in science 
inquiry will greatly contribute to science education by making 
possible immediate individualized feedback on students’ 
explanations, as well as adaptive instruction and scaffolding. The 
implementation of automated scoring in computer-assisted learning 
and assessment systems will provide students with instant feedback 
on their constructed CER, which will allow students to immediately 
know their strengths and weaknesses with regard to scientific 
explanations. Teachers could then use the explicit feedback from 
automated scoring to adapt instruction based on what students need. 
In addition, the automated scoring of CER in science inquiry will 
advance the development of computer-assisted systems for inquiry, 
such as Inq-ITS. Inq-ITS has used automated scoring to implement 
immediate feedback and scaffolding for inquiry skills involved in 
“doing” science, such as formulating a question/hypothesis, 
collecting data, analyzing data, and warranting claims. Automated 
scoring could also be used to align students’ “doing” science skills 
with their science “writing” skills. The alignment of sub-skills 
involved in “doing” with “writing” during inquiry will allow for 
comparison of students’ conceptual knowledge with their ability to 
communicate such knowledge. Thus, this automated scoring 
approach truly advances science education by meeting the 
comprehensive assessment criteria that NGSS [21] demands: 
science assessments that include both students’ understandings of 
core ideas, their skills at conducting inquiry, as well as their skills 
at effectively articulating what they know by generating a claim and 
evidence for that claim, and articulating their reasoning linking 
their claim to their evidence.  
Even though the automated methods for scientific CER 
demonstrated good performance, there is one limitation that needs 
to be addressed in future studies. Namely, regular expressions for 
reasoning may be modified to adapt to each task/question to align 
with criteria used by humans. In doing so, the accuracy may be 
improved.  
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