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ABSTRACT

Existing personalized learning systems (PLSs) have primar-
ily focused on providing learning analytics using data from
learners. In this paper, we extend the capability of current
PLSs by incorporating data from instructors. We propose a
latent factor model that analyzes instructors’ preferences in
explicitly excluding particular questions from learners’ as-
signments in a particular subject domain. We formulate the
problem of predicting instructors’ question exclusion pref-
erences as a matrix factorization problem, and incorporate
expert-labeled Bloom’s Taxonomy tags on each question as
a factor in our statistical model to improve model inter-
pretability. Experimental results on a real-world educational
dataset demonstrate that the proposed model achieves supe-
rior prediction performance compared to several other base-
line methods commonly used in recommender systems. Ad-
ditionally, by explicitly incorporating Bloom’s Taxonomy,
the model provides meaningful interpretations that help un-
derstand why instructors exclude certain questions. Since
instructor preference data contains their insights after years
of teaching experience, our proposed model has the poten-
tial to further improve the question recommendations that
PLSs make for learners.

Keywords
personalized learning, educational data mining, latent factor
model, Bloom’s Taxonomy

1. INTRODUCTION

Today’s education system has largely remained a “one-size-
fits-all” learning experience in which the instructor selects a
single learning action for all learners, ignoring their diverse
backgrounds, interests, and goals. Modern machine learn-
ing (ML) techniques have led to a great acceleration in the
development of personalized learning systems (PLSs) that
have the potential to revolutionize education by delivering a
high-quality and affordable personalized learning experience
at large scale.

Current PLSs generally perform learning analytics using
only learner data, overlooking data that instructors gener-
ate. However, when instructors are present in educational
settings such as traditional classrooms, they generate im-
portant data that reveals how they prefer to interact with
learning resources. Augmenting current learning analyt-
ics approaches by modeling instructors’ preferences clearly

provide advantages, since their preferences reflect years of
teaching experience and thus provide valuable insights on
how to utilize learning resources effectively. As a result,
PLSs can refine their learning resource recommendations
for learners using both learner data and these valuable in-
sights. Additionally, analysis of instructor preferences for
learning resources can serve as a starting point of recom-
mending learning resource to learners when learner data is
scarce such as at the beginning of a semester.

In this work, we focus on a specific instance of instructors’
content! preferences. We collect instructors’ preferences to
exclude questions from being given to learners in their class
via OpenStax Tutor[13], a personalized learning and teach-
ing platform. OpenStax Tutor has a functionality to auto-
matically select homework assignment questions for learners
from a question corpus. At the same time, it allows instruc-
tors to exclude questions they do not want OpenStax Tutor
to assign to learners in their classes from the corpus. While
this exclusion option allows more flexibility for instructors
to control homework assignment questions that learners re-
ceive, manually selecting questions to exclude from a (po-
tentially huge) corpus is a labor-intensive process. As a re-
sult, analyzing instructors’ question exclusion behavior has
immediate utility in automating the question exclusion pro-
cess.

1.1 Contributions

With the objective of analyzing instructors’ preferences on
assigning questions to learners on the OpenStax Tutor plat-
form, we develop a novel latent factor model that predicts
instructors’ question preferences in a particular subject do-
main given previous records of whether instructors choose
to exclude certain questions from homework assignments.
The latent factor modeling approach is primarily inspired
by SPARFA [10] which is a successful latent factor model
for learner and content analysis. But more importantly, this
approach allows flexible incorporation of prior knowledge in
the form of meta-data into the model. Consequently, the
model that we develop in this work can be easily extended
to include additional information in the form of latent fac-
tors to explain instructors’ question exclusion preferences,

'From now on, we will use the phrase “learning resources”
and the word “content” interchangeably.
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as well as be used in other educational data mining tasks
where auxiliary information is available. Additionally, our
proposed model incorporates expert-labeled Bloom’s Taxon-
omy tags for each question to explain instructors’ question
exclusion preferences, based on the conjecture that instruc-
tors have varying inclinations towards different Bloom’s Tax-
onomy tags2.

Experimental results on a real-world educational dataset
show that, compared to standard methods used in recom-
mender systems, our model achieves higher overall accuracy
in predicting instructors’ question preferences. Additionally,
we demonstrate that our model is highly interpretable in
that the Bloom’s Taxonomy explains question preferences of
individual instructors, and reveals question preference pat-
terns among instructors. Our analysis of the instructors’
question exclusion preferences enables PLSs to incorporate
instructors’ insights on questions and potentially improve
the quality of their personalized question recommendations.

We emphasize that our proposed model is not limited to
analyzing instructors’ question exclusion preferences; it can
be easily modified to analyze instructors’ preferences on a
broader range of learning resources. Therefore, our work
serves as an initial investigation into extending the capabil-
ity of existing PLSs with the analysis of instructor learning
resource interaction data.

1.2 Related Work

We formulate the problem of predicting instructors’ question
preferences as a matrix factorization problem underlying a
recommender system. Recommender systems often rely on
collaborative filtering (CF); the two most successful family
of CF approaches to date are neighborhood-based methods
and latent factor methods [4]. Neighborhood-based methods
predict preferences based on neighbors chosen by some simi-
larity measure. Latent factor methods, in particular, can be
readily applied to education applications, resulting in ten-
sor factorization for student modeling [15] and probabilistic
models such as SPARFA [10], a primary source of inspiration
for this work. However, these approaches, in their original
form, do not have mechanisms to incorporate meta-data on
learners and questions. Therefore, the explanatory power of
these methods is usually limited. Our proposed model, on
the other hand, extends the original latent factor model to
explicitly include the Bloom’s Taxonomy tag of each ques-
tion as meta-data, providing additional interpretability and,
at the same time, improves prediction accuracy.

Works including [6] and [12] incorporate external factors
such as movie genres to improve users’ movie rating pre-
diction in the Netflix challenge [2], but their methods do
not directly apply to education scenarios.

The work in [14] broadly describes a Bayesian approach to
model instructors. While our work pursues a similar ob-
jective, we propose a concrete model with evaluations on

2Bloom’s Taxonomy hierarchically describes questions in
terms of one of the six cognitive processes, including re-
membering, understanding, applying, analyzing, evaluating,
and creating, in increasing cognitive complexity [9]. It de-
scribes the cognitive processes by which learners encounter
and work with knowledge [1].

a real-world dataset instead of a high-level overview. [11]
uses the k-means clustering algorithm to recommend learn-
ing resources for instructors based on similar teaching styles
among instructors. In addition to studying question type
preferences, we approach the problem with a latent factor
model instead of k-means clustering, yielding results that
are more interpretable.

The work in [16] compares several models in predicting learn-
ers’ next-term grades using various features including in-
structors’ job title, rank, and tenure status. Our work, on
the contrary, uses data that contains instructors’ direct in-
teraction with learning resources rather than simple demo-
graphic information.

2. LATENT FACTOR MODEL

Let N, @Q, K denote the total number of instructors, the
total number of questions, and the total number of distinct
Bloom’s Taxonomy tags, respectively. Let Y be the binary-
valued matrix of dimension N by @ that represents instruc-
tors’ preference for a particular course, where Y;; = 1 in-
dicates instructor ¢ explicitly denotes preference to exclude
question 7, and Y;; = 0 indicates no preference. Also let
a; be a vector of dimension K that represents the question—
Bloom’s Taxonomy tag association for question j, where a;x
denotes the kth component of a;. a;i = 1 indicates an as-
sociation of question j with Bloom’s Taxonomy tag k, and
ajr = 0 indicates no association.

With the above setup, we model Y as Bernoulli random
variables:

Yi; ~ Ber(¢(pi a; + g/ hy)), (1)
Where the function ¢(-) is the sigmoid function:

1

Po) = 1 —-

In the model, p; € R¥, g; € RM, h; € RM are model pa-
rameters to be estimated, where M is the dimension of g;
and h; (we select the value of M via cross validation). Intu-
itively, the latent factor p; represents the instructor Bloom’s
Taxonomy tag preference vector that reveals instructors’ dif-
ferent preferences on each Bloom’s Taxonomy tag. The la-
tent factors g; and h; model additional factors that also
contribute to explaining the observed data matrix Y.

To compare the significance of the factor p; against the fac-
tors g; and h;, we use two simplified variants of the full
model in Equation 1, namely P Model that involves only
the factor p;, and GH Model that involves only factors g;
and h;:

P Model:  Yi; ~ Ber(¢(p; a;)) (2)
GH Model: Y;; ~ Ber(¢(g] h;)) (3)
2.1 Optimization Algorithm
We formulate the maximum-likelihood parameter estimation

problem for the proposed model as an optimization problem.
The optimization objective is given by

minimize f(P,G,H),

where P = [p1,...,pn~] denotes the matrix of instructor
Bloom’s Taxonomy tag preference associations by stacking
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the association vectors together. G and H are defined anal-
ogously. The cost function f(P, G, H) is given by

N Q

f(P,G H) = Zzlog<1 +exp(— (pi aj + gfhj)))

i=1 j=1

Ao 7 n <
2 2 2
+52|Ipi|l2+§Z|\gillz+52\lhﬂlz.
i=1 i=1 j=1

The last three terms in the cost function are regularization
terms added to prevent overfitting. A, 7, and n are regular-
ization parameters for the factors ps, g:, h;, respectively.

The above optimization problem is non-convex, but the sub-
problems to optimize over each parameter while holding the
others fixed are convex. We therefore employ block coordi-
nate descent to efficiently find a local minima for the above
optimization problem by iteratively updating each param-
eter in turn. The update equations for the parameters are
given by

Pi I apz

0
new __ p(_)ld —5 f(p?1d7 g;)ld’ h(;ld)

0
new old new _old old
g =8 - 578&- f(pi > 8i 7hj )
0
new 1d new new 1d
hje :h;) _68hjf(pze 7g7le 7h_(]? ),

where § is the step size. The gradients of the cost function
with respect to each parameter are given by

Q
0 a;
iy 8i,hy) = — z Api
apif(p i hy) ; 1 4+ e~ (@] a;+elhy) AP
Q
) h;
8g¢f(p“g“h]) T ]; 1 4+ e~ (] aj+elhj) t8
0 a 8i
——f(pigihy) == - + nh;.

Oh; 1 4 ¢~ (P aj+el'h;)

i=1
At the beginning of optimization, we randomly initialize the
model parameters p;, g;, h; for all 4,j. In each optimiza-
tion iteration, we first loop over all i’s to update all p; and
gi while holding all h;’s fixed, and then loop over all j’s
to update h; using the newly calculated p;’s and g;’s. We
repeat the above iterations until convergence, i.e., the differ-
ence of the cost function between two iterations falls below
a predefined threshold.

Note that the inference problem for the P Model in Equa-
tion 2 is convex, and optimization is straightforward via gra-
dient descent. Since the GH Model in Equation 3 involves
two sets of parameters and has a non-convex inference prob-
lem, we employ the same block coordinate descent method
as in the full model.

2.2 Model Extensions

‘We now enumerate possible extensions to the proposed model.

First, we can incorporate additional prior information as la-
tent factors in the model by simply including other modal-
ities of meta-data as an additional inner product terms of
two more latent factors inside the ¢(-) function. In this way,
in each inner product term, one factor denotes the newly

Table 1: Performance comparison between the pro-
posed model and its variants, in terms of prediction
accuracy (ACC) and area under operating charac-
teristic curve (AUC). The proposed model achieves
the best result among its two variants. The model
involving the g; and h; factors achieves better per-
formance than the model with the p; factor alone.

Metrics
Models ACC AUC
Proposed Model 0.9033+0.0045 0.9592+0.0061
P Model 0.8880+0.0047 0.8908+0.0064
GH Model 0.9026+0.0048 0.9254+0.0058

included meta-data modality, and the other characterizes
the instructor’s exclusion preference in terms of that spe-
cific modality of meta-data. Concretely, the extension of
the model in Equation 1 has the following form:

L
Yi; NBer<¢(ZuiTv; +g?hj)), (4)
=1

where we have replaced the inner product term pya; in
Equation 1 with a sum of L inner product terms. Each
u! and vg model instructor and question association of a
particular modality of meta-data. Additionally, the dimen-
sions of u! and vé can vary for different I’s depending on the

mathematical representation of that meta-data modality.

Next, it is easy to see that the same approach can be ap-
plied to analyzing instructors’ preferences on other learn-
ing resources. Although we specify in Equation 1 that Y;;
represents instructor i’s preference for question j, Y;; can
naturally represent preferences to other contents types, by
using j to index learning resources. Therefore, we can easily
extend the proposed model in Equation 1 to analyze addi-
tional instructor preference data with a different preference
data matrix Y.

3. EXPERIMENTS

We now evaluate the prediction performance of the proposed
latent factor model using a real-world educational dataset.
We further showcase the interpretability of the model by
visualizing the instructor Bloom’s Taxonomy tag preference
vectors p;.

3.1 Dataset

We collect from OpenStax Tutor [13] 20 instructors’ pref-
erences on all 896 questions of the textbook “Concepts of
Biology” that these instructors use in their classes, resulting
in a fully observed data matrix Y of dimension 20 by 896.
About 15% of all entries in Y have a value of 1, meaning
that an instructor explicitly indicates to exclude a question,
and the rest 0, meaning that there is no such indication.
We remind the reader that excluding a question in Open-
Stax Tutor means that this question is excluded from the
pool of questions that OpenStax Tutor selects from to as-
sign to learners as personalized practice recommendations.
We also collect the Bloom’s Taxonomy tag for each ques-
tion, labeled by domain experts, as meta-data on the ques-
tions. Since there are 6 distinct Bloom’s Taxonomy tags
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Table 2: Performance comparison between the proposed model and existing collaborative filtering methods
in terms of the four metrics. The proposed model shows superior prediction performance compared to the

other methods on all metrics.

Models/Methods
Metric Full Model UBCF IBCF FSVD
ACC 0.9033+0.0045 0.8961+0.0048 0.889540.0048 0.8896+0.0045
F-1 0.6483+0.0128 0.6007£0.0158 0.5696+0.0137 0.618540.0158
Precision 0.7163+0.0222 0.7070£0.0214 0.6928+0.0254 0.6964+0.0236
Recall 0.6153+0.0227 0.5226+0.0190 0.49544-0.0159 0.566140.0248

Table 3: Comparison between p;. (second row for each instructor) and the percentage of questions they
actually excluded under each Bloom’s taxonomy tag k (first row for each instructor), for selected instructors.
The values of p; estimated by the proposed model closely resemble the actual number of questions each

instructor excluded.

Bloom’s Taxonomy tag

Instructor k=1 k=2 k=3 k=4 k= k=
—3 0.9% 1.6% 0.5% 1.8% 0.0% 0.0%
= 0.058 0.083 0.038 0.216 0.075 0.084
5 16.9% 16.3% 19.0% 5.5% 21.1% 33.3%
= 0.441 0.448 0.501 0.360 1.000 0.858
i=9 63.1% 67.8% 72.4% 67.3% 42.1% 33.3%
- 0.826 1.000 0.985 0.924 0.583 0.215

in total, the dimension of the question—Bloom’s Taxonomy
tag association vector a; is K = 6. The entries of a; cor-
respond to Bloom’s Taxonomy tags in increasing levels of
cognitive complexity, i.e., k = 1 represents “remembering”,
k = 2 represents “understanding”; etc. Additionally, each
question is only associated with one Bloom’s Taxonomy in
our dataset. Therefore, the values of a; satisfy a;, € {0,1}
and ), ajx = 1 for all j.

3.2 [Experimental Setup

We compare our model and its variants against three
methods frequently used in recommender systems: user-
based collaborative filtering (UBCF), item-based collabora-
tive filtering (IBCF), and funk singular value decomposition
(FSVD). UBCF and IBCF use similarities among users (in-
structors) and items (questions), respectively, and predict
a user’s preference on an item based on the preferences of
most similar users or items. FSVD makes the observation
that the actual number of user and item types is much lower
than the number of users and items, and therefore utilizes
a low-rank model to model user—item interactions [4, 5]. [7]
explain the detailed implementations and evaluation meth-
ods for UCBF, ICBF, and FSVD that we use in this paper.

We use a total of five metrics for model evaluation: (i) pre-
diction accuracy (ACC), (ii) precision, (iii) recall, (iv) F-1
score, and (v) area under the receiver operating characteris-
tic curve (AUC) of the resulting binary classifier [8]. Formu-

las for calculating metrics (i) through (iv) are shown below:

— _ TP+TN
ACC — TP+FP+TN+FN
Tl _ TP
precision = TPLFP
— TP
recall = TPFN
F-1 — 9 x brecisionxrecall

precision+recall ?

where TP denotes true positive, TN denotes true negative,
FP denotes false positive, and FP denotes false negative. In
the context of this paper, we treat preference for excluding
a question, corresponding to Y;; = 1, as the positive class.
True positive means predicting the positive class when the
ground truth is also positive. False positive means predict-
ing the positive class when ground truth is negative, and
the rest follows. All metrics take on values in [0, 1], with
larger values indicating better prediction performance. We
perform two sets of comparisons, one between the full model
and its two variants (the P and GH models) evaluated on
the ACC and AUC metrics, and the other one between the
full model and UCBF, IBCF, and FSVD using ACC, F-1,
precision, and recall. Since the AUC metric is only appro-
priate for evaluating algorithms using probabilistic models,
we do not evaluate the three CF methods that do not have
an underlying probabilistic model.

We perform 5-fold cross validation for model selection, i.e.
choosing the best set of parameters for each model, and
model assessment, i.e. evaluating the best model on the test
set, according to the train-validation-test split paradigm.
First, we randomly select 20% of all observed data and set it
aside as test set. We then randomly partition the remaining
80% of all data into four roughly equal-sized parts, fit the
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Figure 1: 2D projection of instructor Bloom’s Tax-
onomy tag preference vectors using multidimen-
sional scaling and clustering using k-means that
shows instructors’ diverse question exclusion pref-
erences. Notice that instructors 3, 5, and 9 that
we show to have very different question exclusion
preferences also appear far apart in the plot.

model to first three of the four parts, and validate the fitted
model using the fourth part of the data to select the values
of the regularization parameters using grid-search. Finally,
we select the best performing model, fit it on all data except
for the test set, and evaluate its performance on the test set.
We perform 20 random partitions of the data, average the
evaluation results, and compare the best evaluation results
of each method.

3.3 Results And Discussions

Table 3 shows results for the full model, UBCF, IBCF, and
FSVD evaluated on the ACC, F-1, Precision, and Recall
metrics. The relatively lower Recall scores of the full model
compared to its ACC suggests that the proposed model still
exhibits some albeit less tendency to avoid assigning an ex-
clusion preference label than other methods. Nevertheless,
comparing across columns, we see that the performance of
the full model, regardless of the choice of metric, is signifi-
cantly better than the rest of the models, showing promise
for the proposed latent factor model in predicting instruc-
tors’ question exclusion preferences.

Table 1 shows prediction performance results for the full
model and its two variants evaluated on the ACC and AUC
metrics. From the table, we observe that the full model
achieves the best performance on both metrics. Further in-
spection of the results of the two variants reveals that the
GH Model, which involves factors g; and h;, achieves better
results for both metrics than the P Model, which involves
only factor p;. This implies that besides Bloom’s Taxon-
omy, additional factors are needed in the latent factor model
to better characterize instructors’ question exclusion pref-
erences. Even though Bloom’s Taxonomy contribute only
moderately to the prediction performance, the purpose of
explicitly incorporating Bloom’s Taxonomy, as stated ear-

Cluster Centers

w

3 4
Bloom's Tag

Figure 2: Heatmap visualization of the cluster cen-
ters that shows the radically different question ex-
clusion preferences of each cluster of instructors.

lier, is the power of interpretability it brings to the proposed
model, which we demonstrate below.

First, we use the instructor Bloom’s Taxonomy tag associ-
ation vectors to interpret how instructors prefer to exclude
certain questions in terms of Bloom’s Taxonomy. Table 3
presents a comparison between the numerical values of en-
tries in the instructor Bloom’s Taxonomy tag preference vec-
tor p; and the percentage of questions that the correspond-
ing instructor excludes with each Bloom’s Taxonomy tag,
for a selected subset of instructors i € {3,5,9}. Comparing
the values in the two rows for each instructor i in the table,
we observe that higher values of p;x correspond to a higher
percentage of the questions of Bloom’s Taxonomy tag k that
the instructor excludes. Therefore, p;; reflects the degree to
which instructor ¢ prefers to exclude questions with Bloom’s
Taxonomy tag k. For example, we observe from the second
row of instructor 5 that values of p;x are high for k = 5
and k = 6, indicating that this instructor strongly prefers
to exclude questions that involve more complex cognitive
processes such as evaluating and creating. Second, the in-
structor Bloom’s Taxonomy tag preference vectors uncover
differences and patterns in instructors’ Bloom’s Taxonomy
tag preferences. Comparing the second row of all instructors
in Table 3, we see distinct preferences for different instruc-
tors. For example, values of p; for instructor 9 are high for
k =1,2,3,4, indicating that this instructor strongly prefers
to not assign questions that involve simpler cognitive pro-
cesses such as remembering, understanding, applying and
analyzing. Such preferences are opposite to those for in-
structor 5. Moreover, instructor 3 exhibits no obvious ex-
clusion preference for any Bloom’s Taxonomy tags by noting
the small values of p;; for ¢ = 3, setting this instructor apart
from both instructors 5 and 9.

We further visualize patterns in instructors’ question prefer-
ences after projecting each p; onto a 2-dimensional plane us-
ing multidimensional scaling [3]. We then run the K-means
algorithm to group the instructors into 3 clusters. Figure 1
plots each p; as a point in the 2-dimensional space, where
the color of the point denotes the cluster that the point
belongs to. The figure shows obvious clustering patterns,
which means that instructors exhibit only a few patterns on
their Bloom’s Taxonomy tag preferences. Note that instruc-
tors 3, 5 and 9 are far apart in the figure and belong to differ-
ent clusters. Figure 2 presents a heatmap visualization of the
cluster centers that shows distinct Bloom’s Taxonomy pref-

Proceedings of the 10th International Conference on Educational Data Mining 294



erences across the three instructor clusters. For example, the
first and third clusters demonstrate almost entirely opposite
Bloom’s Taxonomy preferences, where the first cluster tends
to exclude questions with more complex cognitive process,
whereas the third cluster tends to exclude questions with
simpler cognitive processes. On the other hand, the second
cluster does not exhibit strong exclusion preferences for any
particular Bloom’s Taxonomy tag. Such clustering could
help a PLS to recommend questions to an instructor that
they might want to exclude, based on instructors that have
demonstrated similar Bloom’s Taxonomy preferences.

4. CONCLUSIONS AND FUTURE WORK

We have presented a latent factor model that predicts in-
structors’ question preferences, and explicitly incorporates
questions’ Bloom’s Taxonomy tags to improve model inter-
pretability. Evaluated on a real-world educational dataset,
our proposed model shows superior prediction performance
over popular collaborative filtering methods frequently used
in recommender systems. Additionally, we demonstrated
model interpretability by showing that the Bloom’s Taxon-
omy captures each instructor’s question preferences reason-
ably well, and also visualized different Bloom’s Taxonomy
preference patterns across instructors. These encouraging
results show the promise of using latent factor approach for
instructors’ content preferences modeling to 1) potentially
automate the question exclusion process in OpenStax Tutor,
and 2) more broadly, to improve various aspects of personal-
ized learning systems such as intelligent content recommen-
dation that takes into account of instructors’ preferences.

To achieve these goals, the following avenues of future re-
search seem appropriate. First, we used only one source
of meta-data, i.e., Bloom’s Taxonomy tags, in the proposed
model. We have shown that the proposed model is easily ex-
tendable to accommodate additional meta-data; moreover,
the performance comparison between the P Model and the
GH Model shows the need to incorporate additional factors.
Therefore, we plan to extend the proposed model to include
other sources of meta-data, such as the textbook chapter
or section that each question belongs to, to improve both
prediction accuracy and model interpretability. Second, we
focused on instructors’ preferences in a very specific content,
i.e., question exclusion. We are interested to see how well the
proposed modeling approach can be adapted to analyze in-
structors’ preference for other learning resources. Third, we
also plan to expand our experiments from a single textbook
to multiple textbooks and domains, in order to validate the
proposed approach for analyzing instructor preferences on a
wide range of contents and across different subject domains.
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