
 
 

Improving Fraction Understanding in Sixth Graders With Mathematics Difficulties: Effects of a 
Number Line Approach Combined With Cognitive Learning Strategies 

 
Christina A. Barbieri, Jessica Rodrigues, Nancy Dyson, and Nancy C. Jordan 

University of Delaware 
 
Abstract: 

The effectiveness of an experimental middle school fraction intervention was evaluated. The 
intervention was centered on the number line and incorporated key principles from the 
science of learning. Sixth graders (N = 51) who struggled with fraction concepts were 
randomly assigned at the student level to the experimental intervention (n = 28) or to a 
business-as-usual control who received their school’s intervention (n = 23). The 
experimental intervention occurred over 6 weeks (27 lessons). Fraction number line 
estimation, magnitude comparisons, concepts, and arithmetic were assessed at pretest, 
posttest, and delayed posttest. The experimental group demonstrated significantly more 
learning than the control group from pretest to posttest, with meaningful effect sizes on 
measures of fraction concepts (g = 1.09),  number  line  estimation  as  measured  by  percent  
absolute  error  (g  =  -.85),  and  magnitude comparisons (g = .82). These improvements held 
at delayed posttest 7 weeks later. Exploratory analyses showed a significant interaction 
between classroom attentive behavior and intervention group on fraction concepts at posttest, 
suggesting a buffering effect of the experimental intervention on the normally negative 
impact of low attentive behavior on learning. A number line– centered approach to teaching 
fractions that also incorporates research-based learning strategies helps struggling learners 
to make durable gains in their conceptual understanding of fractions. 
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Educational Impact and Implications Statement 
A mathematics intervention that used a number line– centered approach and validated learning 
principles to teach fraction concepts helped struggling sixth graders improve their fraction under- 
standing. After participating in the intervention, students performed better on assessments of 
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fraction concepts, number line estimation, and magnitude comparisons than a group of students 
who received their school’s regular intervention, and these improvements held seven weeks later. 
Findings suggest that students who are struggling with fractions, even after receiving several 
years of formal fraction instruction in school, can still make large gains in their understanding, 
preparing them for more advanced mathematics and for success in STEM related fields. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Introduction 

A strong foundation in fractions helps students succeed in mathematics (National Mathematics 

Advisory Panel, 2008). More specifically, fraction magnitude understanding supports algebra 

proficiency (Booth & Newton, 2012). Because Algebra is a requisite skill for enrollment in 

advanced level mathematics courses as well as many science courses, algebra proficiency leads 

to a higher rate of college admittance, and eventual pursuit of careers in STEM disciplines 

(Chen, 2009; Matthews & Farmer, 2008; Schneider, Swanson, & Riegle-Crumb, 1998). 

Moreover, fraction knowledge is needed for many non-STEM jobs (Handel, 2016) as well as for 

everyday activities, such as managing money, cooking, and doing home repairs. 

Unfortunately, many students enter sixth grade with a tenuous grasp of fractions, even after 

several years of instruction on the topic (Resnick et al., 2016). Students who enter seventh grade 

without foundational knowledge of fractions face cascading mathematics difficulties (Mazzocco 

& Devlin, 2008). To address this problem, we developed and evaluated an experimental 

intervention for entering sixth graders who exhibit low knowledge of fraction concepts. Our 

experimental intervention is informed by current research on fraction learning; specifically, the 

importance of understanding fractions as magnitudes that can be represented on the number line. 

Numerical magnitude knowledge uniquely predicts a range of mathematical competencies (see 

Schneider, Thompson, & Rittle-Johnson, 2018 for a review). Moreover, deficits in under- 

standing of symbolic numerical magnitudes characterize students with mathematics difficulties 

and disabilities (e.g., Butterworth, 2005; Butterworth & Reigosa-Crespo, 2007). Fraction 

magnitude knowledge is especially predictive of mathematics proficiency, beyond whole 

number skills and general cognitive competencies (Resnick et al., 2016). The number line is an 

effective but often underused tool for developing fraction magnitude knowledge in struggling 



 
 

students (Dyson, Jordan, Rodrigues, Barbieri, & Rinne, 2018; Fuchs et al., 2014; Gersten, 

Schumacher, & Jordan, 2017; Saxe, Diakow, & Gearhart, 2013). In addition to centering 

instruction on the number line, our approach aims to bolster students’ fraction skills through 

application of research-based learning principles from cognitive science (Brown, Roediger, & 

McDaniel, 2014; Rittle-Johnson & Jordan, 2016). 

Transitioning From Whole Numbers to Fractions 

When learning fractions, students gradually expand their understanding of numbers; they take 

into account differences, as well as similarities, between fractions and whole numbers. Whole 

numbers are represented linearly with each number being exactly one more than the previous 

number and only one number represents each magnitude. Fractions, on the other hand, can be 

represented in countless ways (e.g., 1/5, 2/10, and so on). There are infinite fractional parts 

between integers, and fractions can be less than, equal to, or more than one (Resnick et al., 

2016). When determining the magnitude of a fraction, the size of the numerator or denominator 

cannot be considered in isolation as in separate whole numbers. Larger numbers in the fraction 

do not always signify larger magnitudes (e.g., 1/4 < 1/2). With fractions less than one, 

multiplication does not lead to a product greater than a factor and division does not lead to a 

quotient smaller than a dividend. 

Students often incorrectly apply whole number logic to fractions (DeWolf & Vosniadou, 2015; 

Siegler, Thompson, & Schneider, 2011; Vamvakoussi & Vosniadou, 2010), and the problem 

seems to be especially pervasive in low-achieving students (Malone & Fuchs, 2017). In a study 

of fraction arithmetic errors, it was found that low-achieving students focused on the size of the 

fractional parts rather than the relations among the parts (Malone & Fuchs, 2017). Importantly, 

these students’ errors reflected poor magnitude understanding rather than difficulties with part–



 
 

whole knowledge more generally. 

Reasoning About Fractions on the Number Line 

Numerical magnitude reasoning is reflected by students’ ability to estimate magnitudes on the 

number line. Understanding that all real numbers are represented as magnitudes on a number line 

provides a unifying framework for number learning (e.g., Siegler et al., 2011). For example, a 

fraction of 1/19 is very close to 0 relative to 6/7 which is closer to 1, and 5/4 is greater than 1. 

Students with stronger whole number estimation skills in third grade are more likely to perform 

better on fraction concepts and procedures measures in fourth and sixth grades (Bailey et al., 

2015; Fuchs et al., 2013). 

Fraction magnitude knowledge predicts both broad and more specific mathematics outcomes, 

over and above general cognitive abilities and whole number skills. A longitudinal study found 

that growth in fraction number line estimation (FNLE) acuity between fourth and sixth grades 

predicts mathematics achievement at the end of sixth grade, even when controlling for a 

constellation of domain general and domain specific abilities (Resnick et al., 2016). A troubling 

finding was that a significant number of students showed little to no growth in fraction number 

line estimation accuracy between fourth and sixth grade, even though they had received three 

years of fraction instruction in school. Fraction arithmetic is typically introduced in fourth grade 

with addition and subtraction and remains the primary focus through sixth grade (National 

Governors Association Center for Best Practices & Council of Chief State School Officers, 

2010). At this point, formal fraction arithmetic instruction typically comes to a close with 

division of fractions and students move on to prealgebra instruction. FNLE acuity specifically 

predicts prealgebra skills (Booth & Newton, 2012), a key element of sixth-grade achievement 

(Booth, Newton, & Twiss-Garrity, 2014). One proposed explanation is that understanding rules 



 
 

that govern the relationship between the numerator and denominator can later be translated to 

reasoning about algebraic equations (e.g., “fractional representations of 1/3 will fit into the 

equation, x/y = 1/3, which is equivalent to the equation y = 3x,” Empson & Levi, 2011, p. 134). 

Further, fraction magnitude knowledge appears to fully mediate the relation between early whole 

number magnitude knowledge and later fraction arithmetic (Bailey, Siegler, & Geary, 2014). 

That is, children who are highly accurate in their number line estimations of whole numbers in 

first grade tend to have highly accurate number line estimations of fractions in middle school 

which then predicts higher fraction arithmetic skills. 

Number lines are a visual, mathematically correct way to represent complex fraction concepts. 

The importance of the number line has recently been noted in the Common Core State Standards 

for Mathematics (CCSS-M) with students being asked as early as Grade 3 to understand a 

fraction as a number on a number line (National Governors Association Center for Best Practices 

& Council of Chief State School Officers [NGACBP & CCSSO], 2010). Unfortunately, many 

interventions used in schools still emphasize part–whole models for struggling learners, often to 

the exclusion of number line models (Jordan, Resnick, Rodrigues, Hansen, & Dyson, 2017). 

Part–whole models represent fractional values as a shaded region of a whole or a subset of a 

group of objects. For example, a popular part–whole model used when teaching fractions is in 

the form of a pizza relating slices to fractional values. These models are concrete representations 

that build on intuitive understandings (Mix, Levine, & Huttenlocher, 1999). However, 

overemphasis of this approach may lead to a limited way of thinking about fractions that does 

not encourage an understanding of fractions as numbers with their own numerical magnitude 

(Gersten et al., 2017). In other words, fractions are numerical values determined by the 

relationship between the numerator and denominator and not just “parts of a whole.” Although 



 
 

number lines can be thought of more broadly as part–whole models when partitioning, the 

number line more naturally lends itself to a continuous and unified representation of numerical 

fraction magnitude than traditional part–whole models. The number line representation is more 

aligned with the understanding that the numerator and denominator work together to determine 

the value of the fraction and cannot be separated, as opposed to other tools used to find a discrete 

part of a whole (e.g., pizza slices). Hamdan and Gunderson (2017) found that even second and 

third graders trained on a fraction number line estimation task demonstrated greater transfer of 

knowledge to a novel fraction comparison task than those who were trained using an area model. 

Previous work with fourth graders deemed at risk for mathematics difficulties showed that the 

number line is an effective tool for building fraction concepts and skills (Fuchs et al., 2013, 

2014), although the extent to which the findings hold over time was not investigated. 

Principles From the Science of Learning 

General learning principles should guide any mathematical intervention. Findings from the 

science of learning have yielded many such principles that instructional designers can use in 

learning environments (Booth et al., 2017). Many factors related to instructional technique, 

dosage, and timing can be combined in an unlimited number of ways to yield varying effects 

(Koedinger, Booth, & Klahr, 2013). In the present study, we chose to employ several major 

principles that improve understanding and retention for students with learning difficulties and 

disabilities. These include use of explicit instruction, representational gestures, dual coding (i.e., 

words and visuals) for presenting information, spaced and interleaved practice, and systematic 

feedback. The following is a description of the learning principles that we capitalize on to 

increase the effectiveness of our experimental intervention. 

Explicit Instruction 



 
 

Hanover Research (2014) conducted a curricular review of seven mathematics intervention 

programs that have research support in an attempt to narrow in on key components of effective 

mathematics interventions. The one common instructional component of these interventions was 

explicit and systematic instructional methods. In a meta-analysis on mathematics instruction, 

Gersten and colleagues (2009) also found that explicit instruction was a highly effective 

instructional technique for students with mathematics difficulties. Explicit instruction 

encompasses a wide array of instructional approaches but, as explained by Gersten and 

colleagues, involves teachers demonstrating a step-by-step strategy to solve a specific type of 

problem and encouraging students to use this particular strategy in their own work. To be 

effective, explicit instruction must include clear teacher models of problem-solving, 

opportunities for guided practice, and regular feedback (Doabler & Fien, 2013). Bryant and 

colleagues (2008) found that an intervention using explicit instruction focused on number, 

operations, and quantitative reasoning improved mathematics achievement. The instructor in 

Bryant and colleagues’ intervention explained and modeled the steps needed to solve problems 

before asking students to complete problems on their own. For example, when teaching addition 

and subtraction involving doubles, the instructor said, “I have 12 connected cubes. I break them 

into two equal parts. Count with me how many in each (6)” as she made two rows of six cubes. 

The instructor then said, “This is a double fact: 6 + 6 = 12.” After modeling the strategy on the 

board, students were then given the same materials and asked to model a similar double fact 

(e.g., 4 + 4 = 8) while the instructor continued to ask guiding questions and was available for 

further support. 

Representational Gestures and Physical Movements 

When people speak, they naturally gesture or move their hands to help convey an idea to 



 
 

listeners. Representational gestures depict a spatial object, event, or abstract concept (Goldin-

Meadow, 2011). For example, a teacher can indicate that two sides of an equation are equal by 

using a sweeping hand motion under each side of the equation while also explaining the 

equivalence of the two sides out loud (Perry, Church, & Goldin-Meadow, 1988). These kinds of 

gestures enhance learning for mathematical material (e.g., Church, Ayman-Nolley, & Mahootian, 

2004; Cook & Goldin-Meadow, 2006; Ping & Goldin-Meadow, 2008). On a Piagetian 

conservation task, a gestural demonstration of the width of a glass with C-shaped hands placed 

side by side to approximate the corresponding width improved children’s performance more than 

verbal explanation alone (Ping & Goldin-Meadow, 2008). Ping and Goldin-Meadow argue that 

these kinds of gestures during instruction help students form abstract representations of the 

problem to be solved. Although gesturing may not be necessary in mathematics problem-solving 

situations that involve concrete objects, it becomes particularly useful when students must go 

beyond whole number arithmetic to working with abstract representations, such as fractions. 

Carefully designed gestures and movements that emphasize target fraction concepts (e.g., 

focusing on the magnitude of the fraction by using a range of hand and finger movements to 

convey fractions of varying sizes) assist students in forming a representation of the concept and 

focus attention on key visuals. 

Dual Coding (Visual and Verbal) and Triple Coding (Magnitude) 

Dual coding purports that information is encoded into long-term memory via two pathways: 

visual and verbal. These pathways are physiologically interconnected but also function 

independently (Paivio, 1986; Welcome, Paivio, McRae, & Joanisse, 2011). Evidence suggests 

that retention of material is greatest when visual information is presented in combination with 

verbal information (Cuevas, 2016, for a review). For example, research comparing the retention 



 
 

of abstract words (e.g., justice) with concrete words (e.g., hammer) reveals that verbal 

information that is associated with images (i.e., concrete words) is more easily remembered than 

abstract terms not easily linked to imagery (Bauch & Otten, 2012; Welcome et al., 2011). This 

finding suggests that pairing verbal concepts with visual cues should be particularly helpful in 

improving retention of that material. A related model more specific to numerical cognition is 

Dehaene’s Triple Code model (Dehaene, 1992), which suggests that numbers are stored in three 

distinct but related forms. Two of these forms are similar to dual processing: visual form (i.e., 

Arabic numeral) and auditory form (i.e., verbal word/name). The additional form is that of an 

analog magnitude representation akin to a mental number line. Our intervention approach 

supports both of these models. 

Spaced and Interleaved Practice 

Practice is a critical component of any intervention aimed at skill retention. However, the way 

in which practice is used affects learning and retention. Practice sessions should be spaced out or 

distributed over time, rather than practicing only after the corresponding instructional unit. 

Distributing practice across multiple lessons is more effective for producing long-term retention 

than practicing in quick succession or in a single session (see Dunlosky, Rawson, Marsh, Nathan, 

& Willingham, 2013, for a review). Although distributed practice effects seem to be greatest for 

simpler materials in free-recall tasks (e.g., multiplication facts; Don- ovan & Radosevich, 1999; 

Rea & Modigliani, 1985), there also is evidence demonstrating the benefits of distributed 

practice for learning more complex mathematical concepts, such as determining simple 

permutations (Rohrer & Taylor, 2006, 2007). 

Interleaved or layered practice involves mixing the types of problems used during practice 

sessions rather than grouping them according to problem type (Mayfield & Chase, 2002). For 



 
 

example, intermediate-grade students who completed practice assignments with different types 

of problems mixed together were more accurate in their mathematics problem-solving than 

students who were assigned blocked practice (i.e., problem sets presented by problem type) over 

the same period of time (Rohrer, Dedrick, & Stershic, 2015). Interleaved practice helps students 

evaluate the demands of types of problems and choose the correct strategy according to problem 

type (Taylor & Rohrer, 2010). Additionally, interleaving practice problems across instructional units 

increases spacing of the practice (Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012). 

Feedback 

Feedback is particularly useful for children with low prior knowledge (Fyfe, Rittle-Johnson, & 

DeCaro, 2012). However, the timing and manner of the feedback must be considered (Shute, 

2008, for a review). Low-achievers in particular benefit from feedback that is immediate (Mason 

& Bruning, 2001), explicit, and directive (Moreno, 2004). Low-performing students also benefit 

from feedback that is structured and scaffolded; feedback that is immediate and specific to the 

incorrect step taken in real time is particularly effective (Graesser, McNamara, & VanLehn, 

2005). For example, Fyfe and Rittle-Johnson (2016) found that children with low prior 

knowledge who incorrectly responded to a mathematics equivalence problem benefitted more 

from receiving immediate feedback including the correct answer compared with no feedback or 

summative feedback presented at a delay once all problems were solved. 

Intervention Research on Fractions 

The majority of published fraction intervention studies focus on fraction arithmetic and solving 

word problems that require arithmetic skill. For example, Shin and Bryant (2017) conducted a 

small-scale case study on the effects of a computer-assisted pro gram (Fun Fractions) that 

included metacognitive problem-solving strategies (i.e., teaching a heuristic they term Read- 



 
 

Restate-Represent-Answer) on three students’ solving of word problems based primarily on 

fraction arithmetic. Bottge and colleagues (Bottge et al., 2014) examined the effects of another 

computer-assisted program (Fractions at Work) that centered instruction around video-based 

real-world problems (e.g., building a skateboard ramp) to be solved by fictitious students within 

the video along with hands-on applied projects. Though this program used a range of virtual and 

concrete representations of fractions (e.g., fraction strips, number lines), the primary outcomes of 

interest were fraction arithmetic. 

One experimentally studied fraction intervention focused on students’ understanding of 

fraction magnitudes as a continuous numerical quantity is Fraction Face-Off! by Fuchs and 

colleagues (Fuchs, Schumacher, Malone, & Fuchs, 2011). Fuchs and colleagues (see Fuchs, 

Malone, Schumacher, Namkung, & Wang, 2017 for a review) have iteratively designed an 

effective fraction intervention with large effect sizes at immediate posttest for fourth-grade 

students at risk for mathematics difficulty. Their fraction intervention is supported by domain-

general cognitive learning principles (e.g., schema-based instruction, supported self-explaining). 

However, Fraction Face-Off! is designed for younger students when fraction instruction 

typically begins in schools. Moreover, the durability of the results was not evaluated after a 

delay. Our intervention builds on promising findings by Fuchs and colleagues through targeting 

sixth-graders who have already received fraction instruction yet still struggle with fraction 

understandings and assessing effects over time. 

The Present Study 

The present randomized study evaluated the effectiveness of an experimental intervention 

designed to build fraction knowledge in students who reach sixth grade with low fraction skills. 

As noted, the experimental intervention focused on the number line, although other common 



 
 

representations of fractions were also introduced (e.g., area models) and connected explicitly to 

the number line. The experimental intervention also incorporated the key learning principles 

described previously. It was carried out at the beginning of the school year to help students 

benefit from their regular fractions instruction, which was occurring concurrently. Students were 

selected for inclusion based on low performance on a validated fraction screener (Rodrigues, 

Jordan, Hansen, Resnick, & Ye, 2017). Relative to a business-as-usual control, we assessed 

learning not only from pre- to immediate posttest but also at a 7-week delay. The delayed 

posttest is particularly important for determining skill retention over time (e.g., Bailey et al., 

2016). Outcomes included assessments that measured specific fraction skills of fraction number 

line estimation (FNLE), fraction magnitude comparisons, and fraction arithmetic as well as a 

broader fraction concepts measure. Skills measured on the broad fraction concepts measure as 

well as the FNLE task and fraction comparison task were all directly targeted within intervention 

lessons. In addition to expected improvements on the broad concepts and magnitude measures, 

we were interested in the extent to which students in the experimental intervention group would 

show greater improvements than control group students on fraction arithmetic skill, which was 

not the explicit focus of the experimental intervention. 

We also assessed children’s general cognitive competencies. Prior work suggests that fadeout 

effects (i.e., the finding that mathematics intervention treatment effects often diminish over time 

once the intervention has been complete) may be attributable to preexisting differences (e.g., 

language; prior mathematics knowledge) between students in treatment and control groups 

(Bailey et al., 2016; Bailey, Fuchs, Gilbert, Geary, & Fuchs, 2018). Although not a major focus 

of the current study, assessing students on a range of cognitive measures enabled us to test and 

account for differences in these competencies in our analyses. That is, we collected these 



 
 

measures with the intention of using measures that conditions differed upon as covariates. We 

assessed working memory, receptive vocabulary, inhibitory control, nonverbal matrix reasoning, 

and nonsymbolic proportional reasoning, all known predictors of mathematics achievement (e.g., 

Fuchs et al., 2014; Hansen et al., 2015; Ye et al., 2016). We also assessed classroom attention. 

Struggling students commonly display poor attention (Fuchs et al., 2005), and students’ 

classroom attentive behavior has been shown to influence fraction knowledge in particular 

(Hansen et al., 2015; Hecht, Close, & Santisi, 2003; Resnick et al., 2016; Ye et al., 2016). 

Demographic variables including gender, special education status, and English language learner 

status were assessed to ensure equivalence of conditions. 

In sum, the current study evaluated the effectiveness of an intervention centered primarily on 

the number line, one that also incorporates cognitive learning strategies to improve learning and 

retention. In addition to a broad measure of fraction concepts more akin to school measures, we 

were concerned with the specific conceptual skills of fraction magnitude estimation for sixth 

grade students at risk for mathematics failure. We hypothesized that the intervention would lead 

to meaningful immediate and longer-term improvements on a range of fraction skills. We also 

explored whether the experimental intervention would have differential impacts on the learning 

of students with different cognitive or behavioral competencies, focusing on classroom attentive 

behavior in particular. 

Method 

Participants 

Students from two public middle schools in the Northeast region of the United States were 

recruited to participate. Both schools were racially and ethnically diverse (School 1: 36% Black 

non- Hispanic, 32% white Hispanic, 12% white non-Hispanic, 12% Other; School 2: 50% Black, 



 
 

non-Hispanic, 31% white Hispanic, 19% white non-Hispanic) and served students from low-

income families (School 1: 52% low income; School 2: 35% low income). Qualifying for 

enrollment in the schools’ free or reduced lunch program was used as a proxy for low-income 

status. Information on SES was not available at the student level. In the previous school year, 

proficiency level on the state test in mathematics was 45% for both schools. That is, the majority 

of students did not meet state mathematics proficiency benchmarks. 

Using G*Power (Faul, Erdfelder, Lang, & Buchner, 2007), we conducted a priori power 

analyses to determine the minimum sample size to detect a meaningful effect on fraction 

knowledge using α= .05. Our preliminary work led us to expect large effects (i.e., Hedges’ g = 

0.8) of the experimental intervention on the fraction concepts measures. A priori analyses 

suggested a sample size of 54 would provide power of .81 to detect a large effect on fraction 

concepts. 

A fraction screener (described in the Method section) was administered to all nonhonors sixth 

graders in both schools. Students who scored at or below a validated cutpoint for mathematics 

difficulties were invited to participate in the study (Rodrigues et al., 2017). Ninety-nine of the 

392 students (25%) screened met this selection criteria and were invited to participate in the 

experiment. Of this sample, parents of 56 students provided informed consent (School 1: n = 27; 

School 2: n = 29). These students also assented to participate. 

Participants were randomly assigned either to the experimental intervention condition or the 

business-as-usual control (BAU) condition stratified by regular mathematics classroom. If there 

were three participating students in a classroom, we assigned the extra student to the 

experimental intervention group to ensure the target intervention group size of three to four 

students, an optimal group size for struggling learners (Fuchs et al., 2014). Participants within 



 
 

the experimental intervention condition were then randomly assigned to one of four experimental 

intervention groups within each of the schools (i.e., eight experimental intervention groups total), 

disregarding mathematics classroom membership to reduce issues of nesting (i.e., each group 

included students from several mathematics classes). Each small group was taught by one 

researcher- instructor. Because of available resources, four researcher– instructors taught one 

group each and two researcher–instructors taught two groups (one in each school). 

Of this original sample, three students in the experimental intervention and one student in the 

control group moved away before the experiment was completed; one experimental intervention 

student was removed before the completion of the study because of overly disruptive behavior. 

The final sample (N = 51; 20 males, 31 females) included students enrolled in seven different 

classrooms across the two schools (School 1: n = 25; School 2:  n = 26). Five participants were 

English Language Learners (ELL; School 1: n = 4; School 2: n = 1). There were 28 

experimental intervention students and 23 control group students. 

Pretest and Posttest Fraction Measures 

Fraction concepts. This broad fraction concepts measure was made up of 24 released National 

Assessment of Educational Progress (NAEP) items that assessed various aspects of fraction 

concepts. Nineteen of these items were used as a screener to select students eligible for 

participation. The screener included six part– whole area model items, one set model item, six 

equivalence items, two fraction magnitude items, one estimation item, and three comparison and 

ordering items. These 19 screening items were validated in a prior study (Rodrigues et al., 2017), 

which used receiver operating characteristic (ROC) analysis to assess the diagnostic accuracy of 

the screener for predicting students’ later mathematics risk status. The fraction concepts screener 

yielded an area under the curve (AUC) value of .881, signifying a very good screener 



 
 

(Cummings & Smolkowski, 2015). The analysis identified that students who scored at a cut 

score of 10 or below on the 19-item screener had an 87% chance of failing a standardized 

mathematics test at the end of sixth grade. 

Five additional, more challenging, NAEP items were added to the fraction concepts measure to 

avoid potential ceiling effects and were administered along with the 19 screener items at all time 

points. The five items assessed part–whole understanding of an area model, fraction equivalence, 

and fraction magnitudes. As these items were not included in the prior screener validation study, 

performance on these five items was not counted toward the screener score. Students received 

one point for each correct item for up to a total of 24 points for the entire measure (up to a total  

of 19 points for the screener). Screener scores were used only for inclusion criteria. Performance 

on the full 24-item measure was used at all time points to assess the effectiveness of the 

intervention. The full fraction concepts measure as well as the screener items have displayed 

good internal consistency with 

sixth graders in prior studies 

with larger samples from the 

same region (a= .86 and .78, 

respectively; Jordan et al., 2017; 

Ye et al., 2016). Sample NAEP 

items are displayed in Figure 1.  

Fraction comparisons. The 

paper and pencil fraction  

comparisons measure includes 24 items for 

which students are presented with two 

Figure 1. Sample of released NAEP fraction conceptual items. 



 
 

fractions and asked to select the larger fraction. Students complete as many problems as they can 

within three minutes. The measure includes several types of comparisons including unit fractions 

(e.g., 1/3 or 1/2), fractions with like denominators (e.g., 5/7 or 6/7), fractions with like numerators 

(e.g., 2/4 or 2/5), reciprocal fractions (e.g., 8/4 or 4/8), and fractions with different denominators and 

numerators (e.g., 12/50 or 8/60). Students received one point for each correct item for up to a total of 

24 points. Internal reliability of the fractions comparison measure in sixth grade with a larger sample 

from the same region was high (α =.92; Jordan et al., 2017). 

Fraction number line estimation. Two paper-and-pencil fraction number line estimation 

(FNLE) tasks were used. The tasks were adapted from a computer administered version (Hansen 

et al., 2015) for logistical reasons. These tasks includeda0 to1 scale and a 0 to 2 scale. The 0 to 1 

scale included six individual number lines and the 0 to 2 number line included eight individual 

number lines, each 81 mm in length. The number 0 was placed below the left end of the number 

line and the 1 or 2 was placed at the right end of the number line. The target fraction was 

centered below each number line. The number lines for each task were printed on the same sheet 

of paper but were staggered so that participants could not easily use their estimates on other 

number lines to inform their placements. Students were instructed to “Mark a line to show where 

each number belongs on the number line if the endpoints are 0 and 1 [or 2].” The target numbers 

on the 0 to 1 task were all proper fractions (1/4, 1/5, 1/3, 1/2, 1/19, 5/6). The target numbers on 

the 0 to 2 task included proper fractions (3/8, 5/6, 1/2, 1/19), improper fractions (7/4, 5/5), and 

mixed numbers (1 11/12, 1 1/2). 

Prior work on whole number magnitude has been concerned with the logarithmic to linear shift 

that occurs throughout development with increasingly large scales. That is, whole number 

magnitudes are represented in a compressed logarithmic distribution (i.e., overestimating the 



 
 

distance between smaller numbers and underestimating the distance between larger values) and 

become increasingly more linear throughout development with increasingly larger scales 

(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Booth & Siegler, 2006; Siegler & Booth, 

2004; Thompson & Opfer, 2010). This method requires fitting linear and logarithmic functions 

for each participant’s estimates and then determining which pattern is a better fit for that learner 

(Siegler & Opfer, 2003). Whereas becoming increasingly linear in one’s whole number estimates 

is the standard developmental trajectory that children follow (leading to increases in accuracy 

with whole numbers), the same is not true for fractions (e.g., Opfer & DeVries, 2008; Siegler, 

Thompson, & Opfer, 2009). Thus, most work on fraction magnitude estimation uses percent 

absolute error (PAE) as a performance measure on fraction number line tasks (e.g., Fazio, 

Kennedy, & Siegler, 2016; Fuchs et al., 2017; Hamdan & Gunder- son, 2017; Siegler & Pyke, 

2013). The current study follows this field standard. 

To gauge students’ accuracy of their estimates, PAE was calculated for each estimate by 

dividing the absolute difference between the participant’s estimate and the accurate target 

location by the scale of the estimates. The PAE for each of the 14 number lines was averaged to 

determine the overall PAE. Lower scores indicate more accurate performance. All number line 

estimates were measured twice by the same two research assistants, and any discrepancies were 

reconciled. Internal consistency for the fraction number line task in sixth grade with a larger 

sample from the same region was high (α = .87; Resnick et al., 2016). 

Fraction arithmetic. There were 12 written fraction arithmetic items: four addition, five 

subtraction, and three multiplication. Proper and improper fractions as well as mixed numbers 

were used. Addition and subtraction items included addends and subtrahends both with like and 

unlike denominators (e.g., 3/4 + 2/3 =       ; 5/6 – 2/6 = __). In each of the three multiplication 



 
 

items,  one factor was a fraction and one factor was an integer (e.g., 3/4 X 12 = ). Students 

were asked to give their answers in simplest form. Students received one point per correct 

item as well as one point per correct response in simplest form. Thus, there were a total of 24 

points to be earned. The internal reliability for this measure in sixth grade with a larger 

sample from the same region was high (α = .82; Hansen et al., 2015). 

General Competencies 

We assessed working memory, receptive vocabulary, and inhibitory control with validated 

measures from the NIH (National Institutes of Health) Toolbox (Gershon et al., 2013). All 

toolbox tasks were administered individually on an iPad. All raw scores were converted to scaled 

scores for ease of interpretation (M = 100, SD = 15). These three NIH toolbox measures have 

demonstrated good to excellent test/retest reliability at 8 –15 years of age, with alphas ranging 

from .81–.91. Convergent and discriminant validity were also established (see Bauer & Zelazo, 

2013). 

Working memory. Participants were presented with pictures  of food and/or animals that were 

labeled with audio and text and displayed for 2 s. Participants recalled items aloud from smallest 

to largest, with the number of images increasing by one item per trial. Students completed a 

unidimensional (either food or animals) and a two-dimensional (both food and animals) list. 

Higher scores represent more items correctly recalled from both lists. 

Receptive vocabulary. Participants were asked to select the correct image from a group of 

four that most closely matched the meaning of the word presented. The Toolbox Picture 

Vocabulary Test (TPVT) is a Computer Adaptive Test (CAT) that adjusts the level of difficulty 

based on each student’s performance. Item Response Theory (IRT) is used to score performance 

on the TPVT. Higher theta scores represent better vocabulary. 



 
 

Inhibitory control. Students completed a traditional flanker task in which they were shown a 

series of arrows and asked to choose the direction of the center arrow. Sometimes the direction 

of the center arrow was congruent with the arrows flanking it and sometimes the direction was 

incongruent. Higher scores represented greater speed and accuracy. 

Nonverbal reasoning. Nonverbal reasoning was assessed using the Matrix Reasoning 

subtest of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). 

Students were shown a series of grids that contain pictures in three of the four cells which 

begin a pattern and are asked to choose the next grid that completes the pattern. Higher t 

scores (M = 50, SD = 10) represent more items correct. Test/retest reliability was adequate at 

12–16 years of age (α = .74). Convergent, discriminant, and construct validity were also 

established (see Wechsler, 1999). 

Nonsymbolic proportional reasoning. Proportional reasoning was measured using an iPad 

adaptation of the nonsymbolic scaling task used by Boyer and Levine (2012). Students are 

shown a target “juice” mixture represented by a vertical bar with a portion of red representing the 

red powder mix and a portion of blue representing the water. Students are shown two additional 

bars that are a different size than the target and tasked with choosing the option that is a rescaled 

version of the original. Correct responses required either scaling down from a larger target to a 

smaller match or scaling up from a smaller target to a larger match. Higher scores represent more 

correct trials. Internal reliability with a larger sample from the same region was high (α = .93; Ye 

et al., 2016). 

Classroom attentive behavior. Classroom attention was measured using mathematics teacher 

reports on the Inattentive Behavior subscale of the SWAN Rating scale (Swanson et al., 2006). 

Attentive behavior is one’s level of attention exhibited in the classroom as observed by a 



 
 

student’s regular classroom teacher. This subscale included nine Likert-style items that followed 

Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria for attention-

deficit/hyperactivity disorder. A sample item is “Gives close attention to detail and avoids 

careless mistakes.” Responses ranged from 1 (far below average) to 7 (far above average). 

Lower scores represent poorer attention. Sum scores range between 9 and 63. Students’ regular 

mathematics teachers rated individual students’ behavior. Internal consistency is high  (α = .92; 

Lakes, Swanson, & Riggs, 2012). 

Background Variables 

Demographic variables including gender, special education status and English Language 

Learner (ELL) status as well as whether students were classified as having a math, reading, 

and/or behavioral disability, were obtained through school records with permission from 

parents/caregivers. Income status, race, and ethnicity were not available for individual students. 

Procedure 

The study design included group administration of a fraction pretest right before the 

intervention period, a posttest immediately after the intervention period, and a delayed posttest 

seven weeks later. The general cognitive measures were administered prior to the intervention 

period with the exception of the SWAN attentive behavior scale (Swanson et al., 2006). 

As the intervention was administered at the start of the school year, the SWAN Rating Scale was 

completed several weeks after the intervention began to allow general classroom teachers to 

become acquainted with their new students so that they could provide more accurate 

representations of their normal classroom behavior. Posttest fraction measures were administered 

to the experimental and control conditions at the same time in the same classroom. 

The intervention took place during a 6-week period in which  all students received specialized 



 
 

help from  a  teacher  within  their school. This designated 45-min intervention time is in 

addition to students’ regular mathematics class. In their regular mathematics classes, both 

schools used the same mathematics curriculum: Connected Mathematics Project (CMP; Lappan, 

Difanis Phillips, Fey, & Friel, 2014). The CMP curriculum is aligned with CCSS-M (NGACBP 

& CCSSO, 2010). According  to its manual, it aims to help students develop mathematical 

understanding by emphasizing connections between mathematical ideas and their real-world 

problem-solving applications. When followed according to its intended design, CMP includes 

minimal explicit instruction on specific strategy use but instead encourages students to invent 

their own strategies for problem-solving and discuss multiple strategies during whole group 

discussions. For fractions in sixth grade, this curriculum covers factors, models, and fraction 

operations. 

During the additional class period dedicated to intervention, students in the experimental 

intervention condition received 27 researcher-designed lessons (described further below). These 

lessons were administered to each of the small groups by one of the trained instructors. 

Concurrently, students in the control condition received their regular mathematics intervention 

provided by their school. Both schools used a computer adaptive tutoring software for their 

mathematics intervention period, on which students worked individually. Students received 

individualized assistance in mathematics from the computer adaptive software based on their 

current level of performance. One school used Dreambox Learning (2012). The other used i-

Ready (2016). Both programs are aligned with the CCSS-M and as such address fraction 

understanding including operations and some magnitude judgments along with other sixth-grade 

mathematics content. 

Instructor Training 



 
 

Experimental intervention instructors were trained research assistants who also participated in 

lesson design. Instructors varied in prior teaching experience. Two instructors were doctoral 

students, two were postdoctoral researchers, and two were previous certified teachers. Each of the 

six instructors received more than 16 hr of the same training in administration of the lessons from 

one of the authors of the current paper. Training included practice in use of gestures, proper 

strategies for providing feedback, instructor/student dialogue, and behavior management. 

Experimental intervention instructors also practiced teaching the lessons in pairs and provided 

each other feedback for lesson improvement prior to administering the lessons. 

Experimental Intervention Design 

Lesson structure. The lessons were situated in the context of a color run—a race in which 

runners are showered with different colored powders at stations along the way. The race course 

models a number line, on which students can think about fractions and their magnitudes in a real-

world context for understanding fraction magnitude (Rodrigues, Dyson, Hansen, & Jordan, 2016). 

Lessons focused primarily on denominators that occur frequently in measurement activities of daily 

life, including halves, thirds, fourths, sixths, eights, and twelfths. However, students also practiced 

with other denominators during practice activities and games involving fraction magnitude 

comparison. The lessons were carefully scripted to increase fidelity. The scope and sequence of the 

experimental intervention lessons is presented in Table 1. A general overview of the lesson structure 

is presented in Table 2. 

Prior to the explicit instructional time of each lesson, students completed a warm-up worksheet 

in which they individually practiced material they learned from the previous lessons. The 

National Mathematics Advisory Panel (NMAP, 2008) deems the ability to recall basic 

mathematics facts a crucial prerequisite skill for mathematics success. Quick and accurate recall, 



 
 

or automaticity, of basic mathematics facts is thought to free up the necessary attentional 

resources that a learner needs to focus on more complex aspects of a task. Students who have a 

learning disability and those with low mathematics achievement typically struggle with both 

accuracy and speed in mathematics fact recall (Geary, 2004; Jordan, Hanich, & Kaplan, 2003). 

Therefore, after the warm-up, students participated in practice of whole number multiplication 

facts which targeted multiplicands used as the main denominator of that day’s lesson. Practice 

during a given lesson included facts learned in prior lessons and was interleaved for fact 

retention. 

Next, as a group, students practiced counting aloud fractions of like denominators along the 

number line using both proper and improper fractions or whole and mixed numbers. These 

activities were also aimed at automaticity in preparation for the explicit instructional period 

focused on concepts which lasted about 15 to 20 min per lesson. These lessons were 

predominantly focused on developing students’ understanding of fraction as a number or 

magnitude on their mental number line. As such, this was accomplished mostly through the use 

of a visual number line (or “race course”) but also through the use of fraction strips and other 

representations. Although not the primary focus, some attention was given to addition and 

subtraction in a conceptual manner as represented by moving forward (addition) and backward 

(subtraction) along a number line. More details are presented in Table 1, which displays the 

scope and sequence of the lessons provided within the experimental intervention. 

Each lesson concluded with short, fast-paced card games that gave students opportunities to 

practice lesson goals related to fraction concepts in particular. The games targeted fraction 

concepts such as magnitude judgments and their corresponding strategies (e.g., comparing two 

fractions to each other, to one half, etc.) as well as fraction equivalencies (e.g., 3 is the same as 



 
 

how many halves?; 3 halves is the same as how many fourths?). Lastly, students completed an 

independent cool-down worksheet in which they solved problems that assessed their knowledge 

of the concepts presented in the instructional period as well as concepts from previous lessons. 

Many of the practice problems were near transfer problems that required students to apply 

previously learned skills to find solutions to problems very similar to those practiced throughout 

the lessons. However, far transfer (i.e., novel) problems were also included to encourage students 

to expand upon their knowledge and modify methods learned to find a solution (Barnett & Ceci, 

2002). 

Cognitive learning strategies. Strategies based on key learning principles were implemented 

comprehensively throughout the lessons to target the range of skills covered within the lessons as 

noted within the Scope and Sequence in Table 1. For example, students completed spaced and 

distributed practice on numerous skills including but not limited to fraction magnitude 

comparisons, whole number multiplication facts, and partitioning and marking number lines. The 

following sections provide examples of how each principle was regularly implemented. 

Explicit instruction. In each experimental intervention lesson, students were explicitly taught 

concepts and step-by-step strategies the majority of the time (i.e., 15–20 min per lesson) prior to 

practicing them independently. This explicit instruction period focused primarily on the number 

line representation of fractions although complementary representations were also provided (e.g., 

fraction bars). For example, in Lesson 2 students were taught how to partition a number line race 

course into half miles. The instructor displayed a blank number line that represents a four-mile 

race course and then used a paper bar that represented one mile to mark off each of the four 

miles. Once all students correctly partitioned and marked their number lines into four miles, the 

instructor demonstrated finding one half mile by finding the midpoint of the first mile. The 



 
 

instructor placed a pencil under the line and estimated at which point the segments on the left 

and right of the pencil are equal. The instructor then made a mark at this point and explained that 

this mark is the one-half mile mark, because it is one of two equal portions of a whole. The 

instructor repeated this process until the remaining halves were marked, ensuring that students 

followed along on their own race course. This explicit modeling was included to encourage 

students to adopt these efficient partitioning strategies in their independent work. A similar 

process was used for fractions with other denominators such as fourths and eighths (see Figure 

2). 

Representational gestures. In each 

experimental intervention lesson, gestures 

were used to represent corresponding 

concepts and ideas. A chunking gesture helped students visualize the magnitude of a particular 

unit fraction along a number line. The instructor placed her index finger and thumb at the start 

and endpoint of a particular magnitude (e.g., 0 to 1/4) much like a bracket and held her fingers in 

this manner while demonstrating moving along the number line in consistent units as she counted 

aloud and explained the meaning of the corresponding magnitude. This gesturing was done to 

foster the understanding that the magnitude of any given fraction on a number line is the distance 

between 0 and that fraction—not simply an arbitrary label for the mark on the number line. Other 

gestures highlighted the meaning of the numerator and denominator. For example, when 

explaining the meaning of one half, the instructor displayed the fraction on the board and used a 

components gesture. This gesture involved pointing to the “1” with one finger while saying “one 

of . . .” and pointing to the “2” with two fingers while stating, “two equal portions in the 

whole.” 

Figure 2. Example of number line used in lesson on fourths. 



 
 

Dual coding.  Verbal information was typically presented with a visual aid. Along with the 

number line, the experimental intervention used concrete materials such as fraction bars and 

other magnetic manipulatives that were presented and used with corresponding verbal 

explanations. For example, when discussing equivalent fractions, the instructor presented 

students with magnetic fraction bars that displayed the same whole partitioned into different 

numbers of parts and labeled accordingly (e.g., halves, fourths, and eighths). When converting 

halves to fourths, the instructor connected verbal explanations with visual representations by 

saying, “We know that each green magnet represents one-half. Do you see an equivalent fraction 

for one-half? One-half equals two-fourths. One-half and two-fourths are equivalent fractions.” 

Students were encouraged to match up the one 

half magnet with two one fourth magnets to 

connect these verbal explanations with visual 

representations. An image of these magnets is 

displayed in Figure 3. 

Spaced and interleaved practice. Distributed and interleaved practice was used to enhance long-

term retention of basic prerequisite competencies (e.g., whole number multiplication facts) and 

develop fluency in specific problem-solving strategies for more conceptual tasks (e.g., fraction 

magnitude comparisons). For example, students practiced whole number multiplication facts for 

several minutes during each lesson over the course of the 27-day experimental intervention. 

Students also practiced fraction magnitude comparisons during which they were shown two 

fractions and asked to indicate which fraction is more. Fractions taught in previous lessons (e.g., 

unit fractions) were interleaved with those taught in later lessons (e.g., improper fractions). 

Students also worked on earlier presented problem types both at the warm-up and cool-down 

Figure 3. Fraction magnet manipulatives. 



 
 

phases of the lessons. For example, during the warm-up and cool-down activities within a lesson, 

students practiced partitioning a number line using a range of denominators and completing 

fraction computations with fractions of varying denominators, even though the bulk of each 

lesson was generally structured around one specific denominator that varied on every fifth lesson 

(e.g., Lessons 1– 4 focused on halves, Lessons 5– 8 focused on fourths). 

Feedback. Instructors gave individual feedback on students’ independent work during the 

warm-up activity and throughout the lessons. This feedback was both corrective and process-

oriented, allowing students to revise their strategies. One example of corrective feedback was the 

process used for error correction while practicing whole number multiplication facts. When a 

student gave an incorrect product, the instructor briefly displayed the number sentence with the 

correct product and then gave the student another opportunity to answer the question. An 

example of process-oriented feedback was the approach used for addressing incorrect fraction 

comparison strategies. During practice on fraction comparison tasks, students were asked to note 

the best strategy to    use for each particular pair of fractions based on fraction type.  For 

example, when comparing 6/8 and 1/4, if a student named an incorrect strategy (e.g., “more parts 

equals larger fraction”), the instructor noted the best strategy (e.g., benchmarking – determine 

which is closer  to  1)  and  explained  why  this  choice  was  more efficient (e.g., “These 

fractions have different denominators so we can’t simply compare number of parts. We know 

that 1/4 is closer to 0 and 6/8 is closer to 1. Therefore, 6/8 is larger than 1/4”). Common errors 

across student work (e.g., skipping the fractions that are equivalent to whole numbers when 

labeling halves on a number line) were discussed and corrected with the group during lessons. 

Fidelity of Implementation 

Lessons were scripted to ensure instructor fidelity of implementation. All lessons were audio 



 
 

recorded to obtain measures of fidelity, which were transcribed and coded by trained 

researchers. Each lesson had a checklist of an average of 80 items to check off per lesson 

(approximately one check per 30 seconds of audio recording). Eight of the 27 lessons were 

randomly selected for each of the six instructors and coded according to conformity to the 

scripted activities. Instructors administered an average of 99% of all scripted experimental 

intervention activities to students. Experimental intervention activities that were not administered 

mainly resulted from lack of time as a result of natural classroom disturbances (e.g., 

announcements, fire drills, student tardiness, behavioral issues, etc.). 

Plan of Analysis 

Evaluating the effects of intervention. The primary focus of the current study was to evaluate 

the effectiveness of our experimental fraction intervention on improving student performance on 

a range of fraction skills from pretest to immediate posttest and to determine whether these skills 

were retained at a delay. To assess whether there were differential effects on fraction learning 

from pre- to immediate and delayed posttest between experimental and control students, four 2 

(Group: Intervention and Control) X 3 (Time: Pretest, Posttest, Delayed posttest) mixed analyses 

of covariance (ANCOVA) were planned on fraction concepts, FNLE, fraction comparisons, and 

fraction arithmetic, respectively. 

A mixed ANOVA is a general linear model similar to a combination between a repeated measures 

ANOVA (RMANOVA) and a one-way ANOVA (Murrar & Brauer, 2018). It is termed a mixed 

ANCOVA once a covariate is added to the model. In the absence of baseline balance, we planned to 

control for any cognitive or demographic variables that conditions differed upon at pretest. The 

planned mixed ANCOVAs explain variance in the dependent variable between groups, within 

groups, and, most importantly, between groups over time, while controlling for any time invariant 



 
 

covariate measured only at pretest. The main focus of a mixed ANOVA is the Time X Condition 

interaction, which examines whether differences over time in the dependent variable were 

significantly different between conditions. Planned trend analyses on Time X Condition interactions 

involved fitting linear and quadratic terms to determine whether the effect of condition on the 

outcome increased linearly over time and whether the effect leveled off showing a retention at 

delayed posttest. All statistical analyses were performed using SPSS v. 24.0 (IBM Corp. 2016). 

Individual differences exploratory analyses. We explored whether the experimental 

intervention had differential impacts on the learning of students with different cognitive or 

behavioral competencies. A preliminary examination of the data suggested that the effect of 

intervention on the fraction outcome measures at posttest may be moderated by students’ 

attentive behavior (as measured by the SWAN teacher rating scale). Thus, we examined this 

possibility using ordinary least squares (OLS) regression models to test for an interaction 

between students’ attentive behavior score and condition on each outcome measure that 

demonstrated differential improvements based on the mixed ANCOVA results. Because a 

significant amount of learning occurred specifically between pre- and posttest, models were 

tested on immediate posttest only. A dummy code variable was created for condition 

(Experimental intervention = 1; Control condition = 0). SWAN scores were centered to reduce 

the risk of multicollinearity that may arise when including interaction terms in analyses. 

An interaction term was created between the centered Attentive Behavior variable and 

condition dummy code. A series of multiple regressions predicting posttest scores were 

conducted. Four regressions for each of the outcomes of interest were built starting with a 

pretest-only model and adding one term to the prior model until the final model included pretest, 

dummy code for intervention, classroom attentive behavior, and an interaction term between 



 
 

condition and classroom attentive behavior. The main effects models reestablish the relationship 

between posttest scores and condition, controlling for pretest scores on each corresponding 

measure. The three moderation models tested whether the effect of condition on each outcome 

measure varied by students’ attentive behavior as represented by classroom teacher ratings on the 

SWAN. These exploratory models are displayed in Table 10 and supplemental tables S11 and 

S12 and results are discussed below. 

Corrections for multiple tests. Because the current study was proposed to include planned 

multiple comparisons within the mixed ANCOVAs noted above, corrections are not necessary 

(Armstrong, 2014; Perneger, 1998). Additionally, exploratory analyses that do not test specific 

hypotheses but rather provide suggestions for future work do not require corrections. However, 

we have opted to take a more conservative approach in interpreting our findings in both sets of 

analyses and have adjusted our alpha levels for multiple tests. We employed Benjamini and 

Hochberg’s (1995) correction procedure for multiple tests which decreases the False Discovery 

Rate (FDR). The FDR is the expected proportion of the rejected null hypotheses which are 

incorrectly rejected. Unlike the classic Bonferroni correction (Bonferroni, 1936), which adjusts 

the alpha level once to use for all comparisons, the BH correction adjusts the alpha level down to 

an increasingly conservative cutoff, using an ordered set of obtained m p values, only after each 

statistically significant result and not after nonsignificant results After finding the largest p 

value that satisfies 𝑝𝑝𝑘𝑘  ≤  𝑘𝑘
𝑚𝑚
𝛼𝛼, all tests with smaller p values are declared significant. BH 

corrections were applied to the four Time X Condition interactions within the mixed ANCOVAs 

with adjusted alpha levels of 0.05, 0.0375, 0.025, and 0.0125. In our exploratory analyses, we 

adopt BH adjusted alpha levels of 0.05, 0.033, and 0.017 to interpret the results of the three 

Attentive Behavior X Condition interactions.  

http://dx.doi.org/10.1037/edu0000384.supp
http://dx.doi.org/10.1037/edu0000384.supp
http://dx.doi.org/10.1037/edu0000384.supp
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Nesting as nuisance. We did not have substantive questions on the effects of classroom level 

variables in the current study. As previously noted, participants were randomly assigned at the 

student level within classroom to the intervention or control group. Then, students in the 

intervention condition were randomly assigned to one of four intervention groups in each school. 

Thus, we did not expect to find substantial classroom effects. Indeed, intraclass correlations 

(ICC) were low on all outcomes (ICC < .05) and did not warrant multilevel modeling (MLM). 

Thus, clustering can be considered a nuisance variable (Clarke, Crawford, Steele, & Vignoles, 

2010, p. 7). However, we tested fixed effects models controlling for cluster (i.e., accounting for 

all cluster-level effects) and to reduce the issue of the omitted variable bias (Huang, 2016; 

Kennedy, 2003). These exploratory analyses revealed a consistent pattern of results regarding the 

effects of the intervention on all four fraction outcomes demonstrated in the mixed ANCOVAs 

as well as the significant moderation of effect of condition by Attentive Behavior in the 

exploratory analyses reported below. 

Determining effect sizes. To determine the magnitude of the intervention effects on each 

outcome, we utilize Hedges’ g, Cohen’s U3, and an improvement index, all presented in Table 

9.1 As suggested by the WWC Procedures and Standards Handbook, Version 3 (U.S. 

Department of Education, Institute of Education Sciences, 2014), effect sizes of an education 

intervention that uses the same measure for pre- and posttests should be calculated as the 

difference between the pre- and posttest mean difference of the experimental intervention 

condition and the pre- and posttest mean difference of the control condition. Thus, effect sizes 

reported in Table 9 represent the difference of the differences as opposed to simply the difference 

                                                      
1 Whereas Hedges’ g provides a standardized index of a mean difference of learning between the two 

groups, partial eta squared (' ɳp
2) provides ameasure of variance explained by each factor of the mixed 

ANCOVAs. Therefore, ɳp
2 is also presented as an additional measure of effect size in the tables for each 

of the four 3 X 2 mixed ANCOVAs conducted. 



 
 

between posttests. Hedges’ g provides a better estimate of effect sizes in small samples than 

Cohen’s d (Cummings, 2012). Hedges’ g can be interpreted using Cohen’s (1988) standards of 

small (0.2), medium (0.5), or large (0.8; e.g., Lakens, 2013). However, Cohen suggested caution 

when using rules of thumb and emphasized the importance of considering effect size in context. 

According to the same WWC Procedures and Standards Handbook, an effect size (Hedges’ g) 

of at least .25 is considered meaningful in education research, even if statistical significance is 

not reached. An effect size of .25 indicates that the experimental group performed one fourth of a 

standard deviation higher than the control group, based on the pooled variance from the sample. 

To provide another measure of practical importance, we also converted the effect size of Hedges’ 

g to Cohen’s U3 to yield an improvement index. The U3 represents the percentile rank of a 

student in the control group who performed at the level of an average experimental group 

student. By definition, the average control group student would rank at the 50th percentile. Thus, 

finding the difference between the computed value of the U3 for the experimental group and 

50% yields the improvement index. 

Results 

Descriptive Statistics 

Descriptive statistics for the entire sample as well as by condition are presented in Table 3 on 

demographic variables as well as participants’ scores at pretest on fraction measures and 

cognitive competencies. All continuous variables were normally distributed. Prior to addressing 

our research questions, chi square analyses and t tests were conducted to confirm equivalence 

between conditions on demographic variables, teacher report of attentive behavior, pretest 

fraction measures and cognitive measures. As demonstrated in Table 3, there were no significant 

differences at pretest, with the exception of receptive vocabulary. Students in the control 



 
 

condition had significantly higher receptive vocabulary scores (M = 81.37, SD = 6.99) than the 

experimental intervention (M = 77.55, SD = 5.60), t(49) = 2.166, p = .035. Thus, receptive 

vocabulary was used as a covariate in the four planned mixed ANCOVAs to control for these 

differences. No other covariates were used. 

Effect of Intervention on Fraction Outcomes 

Results from the four 2 (Condition: Intervention and Control) X 3 (Time: Pretest, Posttest, 

Delayed posttest) mixed analyses of covariance (ANCOVA) conducted on fraction concepts, 

FNLE, fraction comparisons, and fraction arithmetic (controlling for receptive vocabulary) are 

presented in Table 4. Estimated marginal means reported for each outcome are adjusted for 

receptive vocabulary at M = 79.27. Greenhouse-Geisser corrections were used to correct for 

violations of assumptions of sphericity. As previously noted, the Time × Condition interactions 

are interpreted after applying BH corrections (Benjamini & Hochberg, 1995). 

Fraction Concepts 

As displayed in Table 5, there was no main effect of time, but there was a main effect of 

condition as well as a significant time by condition interaction. A trend analysis explicating the 

time by condition interaction revealed both a significant linear and quadratic component. This 

trend is plotted in Figure 4, which displays a general increase in scores from pretest to immediate 

posttest and a leveling off between posttest and delay for experimental intervention students. The 

control group shows a small but noticeable improvement between immediate and delayed 

posttest. Post hoc pairwise comparisons revealed that the experimental intervention group had 

higher fraction concepts scores than the control condition both at posttest (p < .001) and 

delayed posttest (p = .008). 



 
 

 

Figure 4. Estimated marginal means of fraction concepts controlling for receptive vocabulary 

Fraction Number Line Estimation 

As displayed in Table 6, there was no main effect of time, but   a main effect of condition as 

well as a significant time by condition interaction. A trend analysis explicating the time by 

condition interaction revealed a significant quadratic component and a trend toward a significant 

linear component. This trend is plotted in Figure 5, which displays a general decrease in PAE 

(indicating more accurate performance) from pretest to posttest for the experimental intervention 

group and then a leveling off between posttest and delay. Post hoc pairwise comparisons revealed 

that the experimental intervention group had lower PAE than the control condition, both at 

posttest (p < .001) and delayed posttest (p < .001). 
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Figure 5. Estimated marginal means of Fraction number line estimation controlling for receptive 

vocabulary 

Fraction Comparisons 

As displayed in Table 7, there was no main effect of time, but   a main effect of condition and a 

significant time by condition interaction. A trend analysis explicating the time by condition 

interaction revealed a trend toward a significant quadratic component but not a significant linear 

component. This trend is plotted in Figure 6, which displays an increase in scores from pretest to 

posttest for both conditions but a much greater increase for the experimental intervention group. 

The experimental intervention shows a minor decline in fraction comparison scores from post- 

to delayed posttest but still significantly outperforms the control condition. Post hoc pairwise 

comparisons revealed that the experimental intervention group had higher fraction comparison 

scores than the control condition at both immediate posttest (p = .001) and delayed posttest (p = 
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Figure 6. Estimated marginal means of fraction comparison controlling for receptive vocabulary 

Fraction Arithmetic 

As displayed in Table 8, there was no main effect of time or condition. There was no 

significant interaction between time and condition. Both conditions demonstrated comparably 

small improvements in fraction arithmetic scores between pretest and post- test and comparable 

declines between immediate and delayed posttest. 

Effect Sizes 

The experimental intervention yielded large effects on fraction concepts (g = 1.09), FNLE (g 

= -0.85), and fraction comparisons (g = 0.82) at posttest. Effects of the experimental 

intervention on these three measures at delayed posttest were medium to large (gs = 0.66, 

0.60, 0.61, respectively). Effect sizes for fraction arithmetic were small at both posttests. 
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Exploration of Attentive Behavior as Moderator of the Effect of Intervention on Fraction 

Concepts 

As displayed in Table 10 and in supplemental tables S11 and S12, the exploratory 

moderation models revealed a significant interaction between attentive behavior and 

intervention only when predicting  posttest  fraction  concepts  (β = -.30,  p  = .048).  To 

explicate the significant interaction, simple effects were calculated. This was done with 

follow-up split regressions based on condition using the same variables included in the 

main effect model for fraction concepts. Posttest fraction concepts scores were regressed onto 

attentive behavior scores controlling for pretest fraction concepts. Results demonstrated that 

although attentive behavior scores were trending toward significance for the control 

condition (β  = .330, p = .085), they were unrelated to posttest fraction concepts scores for 

the experimental intervention group (β =  -.020,  p  =  .921).  These  results  suggest  that  on  

fraction concepts, students who normally demonstrated low attentive behavior in the 

classroom may have benefitted more from the experimental intervention than the regular 

school intervention provided to the business-as-usual control condition. This moderation is 

displayed in Figure 7, which displays the predicted fraction concepts posttest score of a student 

who was one standard deviation above the mean and a student who was one standard deviation 

below the mean on the SWAN scale. 
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Figure 7. Moderating effect of attentive behavior on predicted fraction concepts score by 
condition 
 

Discussion 

We evaluated the effectiveness of an experimental intervention designed to improve fraction 

learning in sixth-grade students with mathematics difficulties. The experimental intervention 

builds on a growing body of research stressing the importance of number lines as 

representational tools for learning key mathematics concepts (Fazio et al., 2016; Siegler et al., 

2010). Understanding that all real numbers can be represented as magnitudes on a number line 

provides a unifying structure for most mathematical learning, including fractions (Siegler et al., 

2011). The experimental intervention was further supported by validated strategies from studies 

on the Science of Learning. 

As predicted, the experimental intervention led to large and meaningful improvements on 

student measures aligned specifically to the experimental intervention (i.e., fraction number line 
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estimation acuity and fraction magnitude comparisons) as well as on a broader measure of 

fraction concepts. Pre- to posttest effect sizes (Hedges’ g) were large, ranging from 0.82 to 1.09. 

Importantly, these improvements generally held at a 7-week delay. Because of stratified random 

sampling and random assignment, we are confident that receipt of the experimental intervention 

was the only systematic difference between conditions. Conditions did not differ on fraction 

pretest measures, demographics, and cognitive measures (with the exception of vocabulary, 

which we controlled for in all subsequent analyses). Further, high instructor fidelity reflects 

consistent administration of the experimental intervention across instructors. Additionally, we 

used a validated screener (Rodrigues et al., 2017) to identify selected students at risk for 

mathematics failure, ensuring that our sample was highly targeted to increase the applicability of 

our current findings to the appropriate population. 

Our findings add to the current literature on the effectiveness of a number-line approach to 

teaching fractions in important ways. First, the findings show that such an experimental 

intervention successfully boosts fraction knowledge in older students (i.e., sixth graders) whose 

mathematical difficulties are likely to be entrenched, relative to those of younger learners. Much 

of the previous fraction number line intervention work has focused on at-risk fourth graders 

(Fuchs et al., 2014) because this is the grade when formal fraction instruction first takes place. 

In the present study, we undertook a more challenging task. That is, we chose to focus on sixth-

grade students who had already received several years of formal instruction on fractions, but who 

still showed weak performance on a validated fraction screener at sixth grade entry. 

Mathematics achievement shows steep declines around the time that students transition into 

middle school (Wang & Pomerantz, 2009), and fractions are a key element of mathematics 

achievement during this period. According to the 2015 National Assessment of Educational 



 
 

Progress (NAEP), only 40% of fourth graders in the U.S. are proficient in mathematics and this 

declines to 33% in eighth grade. Strikingly, without intervention, studies have shown that 

students with mathematics difficulties make minimal gains in fraction learning between sixth and 

eighth grades (Mazzocco & Devlin, 2008; Siegler & Pyke, 2013). As such, sixth grade is a 

critical time to catch students who may have fallen through the cracks in fraction learning during 

intermediate grades.  

Second, experimental intervention students’ gains were sustained after an almost two-month 

delay. We speculate that integration of strategies based on learning principles worked as 

intended, leading to deeper learning that was retained at a 7-week delay. Explicit instruction 

likely provided the appropriate teacher modeling and student practice necessary to build 

students’ repertoire of problem-solving strategies (Doabler & Fien, 2013). Representational 

gestures encouraged students to form abstract representations of fractions, as suggested by Ping 

and Goldin-Meadow (2008), leading to improved performance on the three conceptually oriented 

fraction measures. Presenting information verbally and visually likely fostered dual coding and 

improved retention of the learning material (Cuevas, 2016) along with spaced and interleaved 

practice (Rohrer et al., 2015). Finally, it is probable that immediate and process-oriented 

feedback throughout the lessons necessary for learners with low prior knowledge encouraged 

students to refine their thinking and problem-solving skills (Graesser et al., 2005; Fyfe & Rittle-

Johnson, 2016). However, it is important to note that we chose to employ these learning 

principles in combination, rather than isolating the effects of each feature. Our “engineering” 

approach aimed to maximize student learning through the use of established, research-based 

learning strategies. Future work would need to experimentally isolate these features to determine 

causal effects of each principle on the development of fraction understanding in particular. 



 
 

Our sample demonstrated below-average performance on most of the cognitive and behavioral 

measures, including working memory, nonverbal reasoning, receptive vocabulary, and classroom 

attentive behavior. Even after employing random assignment strat ified by classroom, our 

intervention and control group showed significant differences on receptive vocabulary prior to 

the start of the intervention. When controlling for receptive vocabulary we found that vocabulary 

predicted performance on the general fraction concepts measure and number line task but did not 

differentially predict performance by condition. This is not surprising when considering the 

fraction concepts measure which includes several word problems. Vocabulary did not predict 

performance on the fraction comparison or arithmetic measures. Although not a focus of the 

current study, these findings may suggest a potentially interesting area for future work. A recent 

study demonstrated that syntactic ability was a significant predictor of first and second graders’ 

mathematics performance whereas vocabulary was not (Chow & Ekholm, 2019). Yet, earlier 

work suggests that a range of oral language skills, including receptive vocabulary, are important 

predictors of fraction performance in particular (Chow & Jacobs, 2016). Future work should 

explore further the role that oral language skills, and vocabulary in particular, may play in 

learning fraction concepts. 

One curious finding was that students demonstrated average inhibitory control as measured by 

the flanker task, which was not highly correlated with classroom attentive behavior (r = .289).2 

This low correlation suggests that these measures (i.e., flanker task and SWAN) assess related 

but distinct forms of attention. We propose that the measure of classroom attentive behavior used 

in the current study taps students’ self-regulation skills, whereas the flanker task is an assessment 

of selective visual attention in particular. The exploratory analyses involving classroom attentive 

                                                      
2 A correlation matrix between pretest fraction measures and cognitive competencies is available in a 

supplemental online appendix. 
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behavior suggests the SWAN measure as a potentially important measure of attention as 

described below. 

A potentially interesting exploratory finding was the moderating effect of attentive behavior on 

condition. That is, students who exhibited inattentive behavior in their regular mathematics 

classroom (based on teacher reports) tended to benefit more from the experimental intervention 

than from the regular school intervention that was provided to the business-as-usual control 

group (i.e., working with the computer adaptive mathematics software). High attention in the 

classroom allows learners to stay on task and focus on key parts of a problem (Finn, Pannozzo, & 

Voelkl, 1995). Prior research has confirmed the direct and indirect influences of attentive 

behavior on broad fraction skills (e.g., Hecht et al., 2003). Classroom attention has been linked to 

specific fraction skills including fraction conceptual knowledge (Hansen et al., 2015), fraction 

magnitude estimation (Ye et al., 2016), and fraction arithmetic (Ye et al., 2016). Arguably, the 

explicit supports provided in our experimental intervention helped students attend more often 

than the school control intervention administered individually on computers. It is also possible 

that the small, synergistic groups that our experimental intervention provided were important in 

this respect. In any case, the results should be interpreted cautiously, considering that this 

moderating effect was present only on the broad fraction concepts measure—not on the number 

line estimation or comparison tasks. These exploratory findings should spark future systematic 

study with a larger sample on the relationship between classroom attentive behavior and the 

effects of fractions interventions. 

Although our primary hypotheses received support, we did not find improvements in fraction 

arithmetic for the experimental intervention students. Rather, growth in fraction arithmetic 

followed a pattern similar to that of the control condition, with slight increases between pre- and 



 
 

posttest and then a slight decline at delayed posttest. It is possible that the minor changes in 

students’ fraction arithmetic were associated with students’ regular classroom instruction rather 

than differential experiences during the intervention period. The finding is not surprising given 

that our experimental intervention focused on developing fraction concepts, although some 

research suggests that instruction in fraction magnitudes leads to improved fraction arithmetic as 

well as concepts (Bailey, Hoard, Nugent, & Geary, 2012). However, a post hoc power analysis 

suggested we were underpowered for detecting small effects. Another issue is that our arithmetic 

assessment may not have been sufficiently sensitive to growth. Many of the items did not match 

the content of the limited arithmetic instruction provided in our experimental intervention, 

leading to few opportunities for students to demonstrate the arithmetic they may have learned. 

For example, although modeling multiplication of a fraction and a whole number was covered in 

two lessons of focused instruction and interleaved review over seven lessons, only three of the 

arithmetic items assessed this skill. Examination of performance at the item level showed that 

experimental intervention students answered three particular arithmetic items more accurately at 

posttest than did controls: two addition with common denominators and one multiplication (1/2 

X 24). For each of these problems, 20% to 30% more of the students in the experimental 

intervention group answered correctly than those in the control condition. Future iterations of our 

experimental intervention should use measures that align fraction arithmetic problems more 

closely to the content that is taught as well as address the conceptual underpinnings of 

procedures taught in the classroom to help students avoid misapplication (Rittle-Johnson, 2017). 

Our lack of specific information about the instruction offered to the business-as-usual control 

during their corresponding school intervention period as well as in regular mathematics classes 

limits interpretation of the results. Although we can confirm that students in the control condition 



 
 

were simultaneously receiving an individualized mathematics intervention offered by their 

schools, the software programs were adaptive. As such, the specific content each control student 

was exposed to likely varied, but this was not made available to us. We also were not given 

specific information on how fractions are normally taught in their regular mathematics classes, 

although both participating schools followed CCSS-M benchmarks (NGACBP & CCSSO, 2010) 

and used the same curriculum (Connected Mathematics Project). The sixth grade CCSS-M 

benchmarks emphasize understanding of rational numbers on a number line, but it is unclear to 

what extent our sample’s regular mathematics teachers incorporated the number line into their 

regular instruction. The finding that children in both groups gained at the same rate in arithmetic 

but not on fraction magnitude concepts (e.g., fraction number line estimation) suggests that 

arithmetic may have been the focus in regular mathematics classes. Still, if differences did exist in 

the treatment of fractions in their classrooms, these differences would be randomly distributed across 

conditions and should not systematically influence the impact of our experimental intervention on 

students’ fraction knowledge. 

One interesting finding is that, although students in the experimental intervention condition 

outperformed the control group at delayed posttest on the broad fraction concepts measure (with 

medium to large effects), the control group showed a small but noticeable improvement between 

immediate and delayed posttest while the intervention condition levels off. Formal fraction 

instruction within students’ regular mathematics class would have concluded at the point of 

immediate posttest. Even if fraction instruction continued in some of the regular mathematics 

classes, this would not have systematically differed by condition as students from both the 

intervention and control groups were distributed evenly within each regular mathematics class. 

One plausible explanation is that students in the control group as well as their parents, 



 
 

mathematics teachers, and intervention period teachers were each made aware of their need for 

mathematics intervention particularly in the area of fractions. Students were also aware that they 

would be taking the fraction assessment again. It is possible that the control group students’ 

mathematics teachers assigned these students additional practice with fractions either during 

class or as homework between immediate and delayed posttest to make up for the lack of the 

comprehensive fraction intervention that the experimental students received. Unfortunately, we 

do not have access to detailed records of regular classroom instruction that occurred over the 

course of data collection for the current study. However, school administrators and teachers did 

not mention this issue to our research team. Future work should include collection of more 

detailed information on classroom instruction received over the course of the study to help 

interpret results more contextually. 

The pattern of results for the broad fraction concepts measure suggests that the control group 

may eventually catch up to the intervention group. Future work should include one or more 

additional time points to assess longer-term retention of improvements by condition. Because of 

the lack of attention fractions receives in formal instruction within the regular sixth-grade 

mathematics class, students may need a longer-term intervention to show continued improvements, 

either in the form of a longer intervention period, additional refresher sessions scheduled later in the 

school year, or the same number of sessions but spread out across the school year. These possibilities 

should be explored further. 

To understand the practical significance of the current findings, we examined how students in 

our experimental intervention group compared with their higher-performing peers at the 

completion of the intervention period. A previous longitudinal study with a sample 

representative of the population that the current study participants were sampled from found 



 
 

three distinct growth trajectories in fraction number line estimation skills (Resnick et al., 2016), 

using a similar FNLE measure. As noted earlier, one group of students in the 2016 study started 

accurate in the fourth grade and ended accurate in the sixth grade (Class 1). These students were 

more likely to have high sixth grade mathematics achievement scores. Two groups of students 

started off with inaccurate number line estimates but one group showed steep improvements 

(Class 2) while the other showed minimal growth (Class 3). The group that started off inaccurate 

but showed substantial gains between fourth and sixth grades was more likely to have average 

sixth-grade mathematics achievement scores. The group that started off inaccurate and showed 

minimal growth was more likely to have low sixth grade mathematics achievement scores. In the 

present study sample, students made inaccurate number line estimates prior to the start of the 

intervention, with scores similar to the two inaccurate classes in the aforementioned 2016 

longitudinal study. However, at the completion of the present intervention and at delayed 

posttest, the experimental intervention group showed steep growth with scores similar to Class 

2, which was the group that was more likely to have average mathematics achievement scores at 

the end of sixth grade. The control condition showed no growth and had scores similar to Class 1 

in the aforementioned 2016 study, which was the group that was likely to have low mathematics 

achievement scores. We suspect that our experimental intervention helps minimize the 

mathematics achievement gap between low and average-performing students, although further 

work is needed to confirm this suggestion. 

Overall, our intervention findings hold promise for strengthening fraction skills in struggling 

students, which then should bolster later mathematics achievement more generally (Bailey et al., 

2012) and algebra readiness in particular (Booth & Newton, 2012). We saw large improvements 

in fraction concepts, fraction number line estimation, and fraction comparison skills after just six 



 
 

weeks of targeted instruction, and these improvements held seven weeks later. Translating 

research on learning principles into real-world classrooms for struggling students while keeping 

the number line representation of fractions at the forefront seemed to have a powerful effect on 

the development of foundational mathematics knowledge. Perhaps the most important lesson to 

be learned from this study is that at-risk students can show marked improvements in their 

fraction knowledge several years after receiving initial instruction, if provided with a purposeful 

intervention designed to capitalize on learning principles from cognitive science and 

mathematics development. 
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Table 1. Scope and sequence of the fraction intervention 
 

 Lessons  
1-4 

Lessons 
5-9 

Lessons 
10-15 

Lessons  
20-21 

Lessons 
22-24 

 
                                                
Key Topics 

Halves Halves 
Fourths 

Halves 
Fourths 
Eighths 

Thirds 
Sixths 

Twelfths 

All 
studied 

denominators 
Counting by unit fractions, by 
whole and mixed numbers 
 

•  •  •    

Partitioning using 
linear, area, and set models 
 

•  •  •  •   

Finding 1/b of a set  
(Multiplication) 
 

•  •  •    

Finding a/b of a set when a ≠1 
(Multiplication) 
 

•  •  •    

Adding/Subtracting fractions 
with common denominators 
 

•  •  •    

Locating mixed numbers on 
the number line 
 

•  •  •    

Equating to improper fractions 
and mixed numbers 
 

•  •  •    

Measuring with rulers marked 
with whole numbers and… 
 

•  •  •    

Finding equivalent fractions 
with different denominators 
 

 •  •    

Comparing fraction 
magnitudes using various 
strategiesa 
 

  •  •   

Measuring with cupsb 
 

   •   
Adding/Subtracting with 
unlike denominators 
 

    •  

a Activities involving comparison of fraction magnitudes provided opportunities for students to apply 
fraction comparison strategies (e.g., benchmark strategy) to denominators not studied within the 
intervention, such as fifths.  
b Involved only denominators common to measuring cups: halves, thirds, fourths, and eighths. 



 
 

 
 

Table 2. Overview of lesson structure 
Activity Description Time 
Warm-up Individual worksheet practice of material from 

previous day. 
 

3 minutes 

Multiplication practice Speeded practice of whole number multiplication facts 
using multiplicands that are aligned with 
denominators in the corresponding lesson. 
 

3 minutes 

Counting Practice of oral counting of fractions with like 
denominators (e.g., “one-fourth, two-fourths, three-
fourths…”) using the number line as reference. 
 

3 minutes 

Targeted instruction Explicit instruction targeting the lesson’s learning 
goals and focused on the number line.  
 

20 - 25min. 

Games Short, fast-paced card games targeting fraction 
magnitude judgements (e.g., comparing two fractions 
to each other, to one-half) and fraction equivalencies 
(e.g., 3 is the same as how many halves?; 3 halves is 
the same as how many fourths?).  
 

3 minutes 

Cool Down 
(Independent Practice 
and Formative 
Assessment) 

Individual worksheet practice of material from that 
day’s lesson and prior content. 
 

3 minutes 



Table 3.  Descriptives and tests of equivalence between conditions at pretest 
 Business-as-

Usual Control  
(n = 23) 

Intervention  
Group  

(n = 28) 
Difference test  

Continuous variables Mean SD Mean SD sig. T-test 
Fraction concepts 9.83 3.38 9.54 1.86 t = 0.369, p = .715, ns 
Fraction arithmetic 3.65 2.62 4.07 3.03 t = -0.522, p = .604, ns 
Fraction comparisons 10.35 3.80 12.00 5.73 t = -1.185, p = .242, ns 
FNLE (PAE) 24.25 9.71 20.20 7.32 t = 1.70, p = .096, ns 
Attentive behavior  35.65 13.39 34.04 11.02 t = 0.473, p = .638, ns 
Receptive vocabulary 81.37 6.99 77.55 5.60 t = 2.166, p = .035* 
Working memory 86.86 11.50 90.08 10.93 t = -1.009, p = .318, ns 
Inhibitory control 102.53 14.08 103.05 13.41 t = -0.133, p = .894, ns 
Nonverbal reasoning 33.83 10.19 36.43 9.44 t = -0.945, p = .349, ns 
Proportional reasoning 14.36 5.34 16.11 5.56 t = -1.120, p = .268, ns 
Categorical variables % % sig. χ2 
Male 34.78% 50% χ2 = 1.192, p = .275, ns 
Special Education (Spec Ed) 30.43% 32.14% χ2 = 0.017, p = .896, ns 
English Language Learner (ELL) 13.04% 7.14% χ2 = 0.497, p = .481, ns 
Math Learning Disability (MLD) 30.43% 25.00% χ2 = 0.187, p = .665, ns 
Reading Learning Disability (RLD) 30.43% 28.57% χ2 = 0.021, p = .884, ns 
Behavioral Disability 0.00% 3.57% χ2 = 0.838, p = .360, ns 
* p < .05.  ** p < .01.   
Note: Fraction concepts, fraction arithmetic, and fraction comparison scores are sum scores with the highest possible score 
of 24. FNLE is percent absolute error with lower scores indicating higher accuracy. Attentive behavior is a sum score 
ranging from 9 – 63. Receptive vocabulary, working memory, and inhibitory control are scaled scores (M = 100, SD = 15). 
Nonverbal reasoning is a T-score (M = 50, SD = 10). Proportional reasoning is number correct of 24 trials.  

 



Table 4. Estimated marginal means (EMM) for fraction outcome measures controlling for receptive vocabulary 
  Pretest Posttest Delayed Posttest 
 Control Intervention Control Intervention Control Intervention 
  EMM SE EMM SE EMM SE EMM SE EMM SE EMM SE 

Fraction Concepts 9.45 0.52 9.85 0.47 11.09 0.65 15.14 0.59 12.20 0.70 14.84 0.63 
FNLE  24.43 1.83 20.05 1.65 23.27 1.55 12.40 1.40 21.36 1.69 11.93 1.53 
Fraction Comparison 10.45 1.07 11.91 0.96 12.79 1.16 18.68 1.05 13.19 1.21 18.06 1.09 
Fraction Arithmetic 3.46 0.60 4.23 0.55 6.94 1.22 8.66 1.10 5.84 0.89 7.06 0.81 
Note: Adjusted for vocabulary at M = 79.27 
All scores are raw scores with the exception of fraction number line estimation (FNLE), which uses the percent absolute error 
(PAE) where lower scores indicate better performance. 

 



Table 5. Mixed 2 (Condition) x 3 (Time) ANCOVA on pre-, post-, and delayed 

posttest Fraction Concepts scores by condition (intervention vs. control) 

controlling for vocabulary 

Source df F p MSE ɳp
2 

Condition  1, 48 10.53 .002 18.32 .18 

Time 1.74, 83.71 0.49 .611 4.28 .01 

Vocabulary 1, 48 11.85 .001 18.32 .20 

Time × Vocabulary 1.74, 83.71 0.37 .662 4.28 .01 

Time × Condition 1.74, 83.71 10.41 <.001 4.28 .18 

Within-subject contrasts: Time x Condition interaction 

Linear 1, 48 6.31 .015 4.59 .12 

Quadratic 1, 48 16.93 <.001 2.89 .26 

Note. MSE = mean square error  

 



Table 6. Mixed 2 (Condition) x 3 (Time) ANCOVA on pre-, post-, and delayed 

posttest Fraction Number Line Estimation (PAE) by condition (intervention vs. 

control) controlling for vocabulary 

Source df F p MSE ɳp
2 

Condition  1, 48 17.70 <.001 132.06 .27 

Time 1.72, 82.70 2.17 .128 32.39 .04 

Vocabulary 1, 48 4.70 .035 132.06 .09 

Time × Vocabulary 1.72, 82.70 3.20 .053 32.39 .06 

Time × Condition 1.72, 82.70 4.80 .014 32.39 .09 

Within-subject contrasts: Time x Condition interaction  

Linear 1, 48 3.81 .057 38.65 .07 

Quadratic 1, 48 7.05 .011 17.15 .13 

Note. MSE = mean square error 

 



Table 7. Mixed 2 (Condition) x 3 (Time) ANCOVA on pre-, post-, and delayed 

posttest Fraction Comparisons by condition (intervention vs. control) controlling 

for vocabulary 

Source df F p MSE ɳp
2 

Condition  1, 48 10.69 .002 53.65 .18 

Time 2, 96 1.21 .301 16.47 .03 

Vocabulary 1, 48 0.04 .837 53.65 <.01 

Time × Vocabulary 2, 96 1.29 .282 16.47 .03 

Time × Condition 2, 96 3.77 .027 16.47 .07 

Within-subject contrasts: Time x Condition interaction 

Linear 1, 48 3.59 .064 18.73 .07 

Quadratic 1, 48 4.01 .051 14.70 .08 

Note. MSE = mean square error 

 



Table 8. Mixed 2 (Condition) x 3 (Time) ANCOVA on pre-, post-, and delayed 

posttest Fraction Arithmetic by condition (intervention vs. control) controlling for 

vocabulary 

Source df F p MSE ɳp
2 

Condition  1, 48 1.25 .269 42.11 .03 

Time 2, 96 0.02 .982 7.85 < .01 

Vocabulary 1, 48 2.22 .143 42.11 .04 

Time × Vocabulary 2, 96 0.26 .769 7.85 .01 

Time × Condition 2, 96 0.33 .719 7.85 .01 

Within-subject contrasts: Time x Condition interaction 

Linear 1, 48 .16 .689 7.54 <.01 

Quadratic 1, 48 .49 .489 8.16 .01 

Note. MSE = mean square error 

 
 
 



Table 9. Effect sizes on differences between estimated marginal means between conditions 
  Pre - Posttest Pre - Delayed Posttest 

  g U3 Improvement 
Index g U3 Improvement 

Index 
Fraction Concepts 1.09 .87 36.74% 0.66 .75 24.89% 
Fraction NLE (PAE) -0.85 .19 30.81% -0.60 .27 23.01% 
Fraction Comparison 0.82 .80 29.76% 0.61 .73 23.17% 
Fraction Arithmetic 0.17 .57 6.71% 0.11 .54 4.42% 
Note. Comparisons of estimated marginal means controlling for receptive vocabulary. Fraction 
number line estimation (FNLE) is scored as percent absolute error (PAE) where lower scores 
indicate better performance. 
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Table 10. Prediction models of posttest fraction concepts scores 
 Fraction concepts 

 
Pretest model Main effects 

model 
Covariate 

model 
Moderation 

model 

 β B β B β B β B 
    (SE)   (SE)   (SE)   (SE) 
Pretest fraction concepts .47** 0.65 .49** 0.67 .42** 0.58 .35** 0.48 

 (0.18)  (0.15)  (0.16)  (0.17) 
Intervention   .46** 3.38 .47** 3.44 .47** 3.43 

   (0.80)  (0.79)  (0.76) 
Attentive behavior     .18 0.05 .41* 0.13 

     (0.04)  (0.05) 
Attentive behavior × 
Intervention 
  

      -.30* -0.14 

       (0.07) 

R2 .22 .43 .46 .50 
∆R2 from prior model  .21** .03 .05* 

F 13.54** 18.16** 13.22** 11.61** 
 p < .05 level. *   p < .01 level. ** 
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