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ABSTRACT 

Recent work in predictive modeling has called for increased 

scrutiny of how models generalize between different populations 

within the training data. Using interaction data from 69,174 

students who used an online mathematics platform over an entire 

school year, we trained a sensor-free affect detection model and 

studied its generalizability to clusters of students based on typical 

platform use and demographic features. We show that models 

trained on one group perform similarly well when tested on the 

other groups, although there was a small advantage obtained by 

training individual subpopulation models compared to a general 

(all-population) model. Lastly, we perform a series of simulations 

to show how generalizability is affected by sample size. These 

results agree with our initial analysis that individual subpopulation 

models yield a small advantage over all-population models. 

Additionally, we show that training sizes smaller than 1,500 yield 

unstable models which make generalizability difficult to interpret. 

We discuss applications of this work in the context of developing 

large-scale affect detection models for diverse populations. 
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1. INTRODUCTION 
Computer-enabled classrooms and online learning environments 

are becoming increasingly common methods of learning [12, 25]. 

Compared to traditional classroom settings, students must be more 

self-regulated when interacting with online platforms [15]. In [20], 

Pekrun discusses how emotion and its regulation are key factors in 

educational achievement. It is then important to consider student 

affect when developing intelligent tutors and educational platforms. 

A review of affect-sensitive instructional strategies, particularly for 

intelligent tutors [5], discusses how affect- and motivation-

sensitive strategies can promote student engagement. However, the 

authors found that a “one-size-fits-all approach, where variants of 

the same strategy are indiscriminately used for all learners and in 

all situations” limits the overall effectiveness of these tutors in 

targeting individual student needs. This observation motivates a 

more detailed analysis of how affect detectors trained on a general 

population generalize across different subpopulations. 

In this work, we extend previous research exploring the 

generalizability of sensor-free affect detectors. We trained models 

predicting positive and negative affective states using interaction 

data from an online algebra learning platform along with self-

reported affect. A novel component of our work compared to 

previous work (e.g., [2]) is the scope of our dataset, which 

encompasses 69,714 students across a nine-month period. We 

extend the previous work in [9]. This enables a more detailed 

exploration of generalizability than was previously achievable. 

1.1 Related Work 
Reviews of issues and methods of sensor-free affect detection are 

covered in other work, which we summarize here. Baker and 

Ocumpaugh review work in sensor-free affect detection in 

educational software and discuss methods for collecting ground-

truth labels [3]. Specific to this work, they note that student-

generated responses are likely more accurate than labels from 

external coders. Second, [9] reviews a representative collection of 

sensor-free affect detection models developed in authentic 

classroom environments. The authors conclude that the studies 

show the potential success for sensor-free affect detection models 

in authentic environments but are limited by small sample sizes 

(20-646 students) from mostly homogenous samples, which limits 

claims or tests of generalizability. 

Recent work in machine learning and prediction calls for increased 

awareness of how models perform for individual subpopulations in 

addition to overall accuracy. In [10], Kusner et al. introduce 

counterfactual fairness, where models should be unaware of 

protected attributes such as gender and race. Fair models should 

generalize by generating similar predictions for individuals with 

similar features, regardless of their protected attributes. In [26], 

Sculley et al. suggest slicing analysis as a method to evaluate 

fairness, where predictive model performance is evaluated by 

“slicing” along subpopulations or protected attributes. This is an 

alternative to measuring overall model accuracy, which can ignore 

disadvantaged subpopulations. In response, Gardner et al. present a 

framework for using slicing analysis in predictive modeling [7].  

Related to this discussion on generalizability, several studies have 

measured how models generalize across cultural contexts. Ogan et 

al. [18] found differences in collaboration, engagement, and student 

needs between cultural groups. In [24], San Pedro et al. trained 

models detecting student carelessness in Philippines. They showed 

generalizability by testing these models on previously collected 

data from students in the USA. In [27], Soriano et al. compared 

models of help-seeking behavior. By training models on each group 

and testing on the other groups, they showed that models for 

Philippines and USA generalize to each other but not to Costa Rica. 

Besides cross-country generalization, several studies investigated 

how predictive models generalize over demographic attributes. In 

[17], Ocumpaugh et al. trained affect detection models on rural, 

suburban, and urban students. By training models on each group 

and testing on the other groups, they found that models for urban 

and suburban students generalized to each other but not to rural 

students. In [23], Samei et al. trained models of teacher question 

 

 



Educational Data Mining 2019, July 2-5 2019, Montreal, Quebec, Canada 

asking behavior using data from urban and non-urban classrooms. 

They showed generalizability using the methods from [17]. 

Other studies measured the generalizability of predictive models 

over time. In [1], Baker et al. trained models detecting gaming the 

system behavior in a cognitive tutor. They showed generalizability 

by training models on data from three sessions and testing on the 

remaining session. In [4], Bosch et al. trained face-based affect 

detection models. They showed generalizability by training models 

on data from one day and testing on the other day. 

Finally, some studies measured generalizability between different 

tasks or subjects. In [28], Stewart et al. compared models of mind 

wandering trained on students reading a scientific text or watching 

a narrative film. They found models trained on the narrative film 

dataset generalized to the scientific text dataset, but models trained 

on the scientific text dataset only generalized to the narrative film 

dataset after adjusting the predicted mind wandering rate. In [9], 

Hutt et al. found that models trained on data from students enrolled 

in Algebra 1 generalized to students enrolled in Geometry using 

“generic activity features” specifically designed for generalization.  

1.2 Contribution of Current Study 
This work contributes to the field of generalizability in sensor-free 

affect detection in three important ways. First, we extend beyond 

previous work by using data from a large, heterogeneous sample of 

students. Besides the noted studies that compare country-wide 

cultural differences, previous work relies on homogeneous samples 

such as individual schools, which yield sample sizes of hundreds of 

students. As discussed in [2], these sample sizes do not allow 

researchers to draw conclusions about the studied categories as a 

whole, so generalizability can only be tested in a minimal sense. In 

this study, we collected affect data from 69,174 students at 1,898 

schools in the state of Florida. Because Florida closely represents 

the demographic composition of the United States in terms of race 

and ethnicity [29, 30], this allows us to study the generalizability of 

our models to other students in the country. 

Second, we measure the generalizability of our models in terms of 

usage characteristics over an entire school year. In previous studies, 

data are collected during one or a few sessions, which overlooks 

long-term student behavior. This work uses interaction logs from 

an entire school year and measures student use over several 

sessions. We use clustering analysis to identify common usage 

patterns and show that our models generalize across these clusters.  

Lastly, we provide simulation experiments to inform the number of 

instances needed in order to construct generalizable models. 

Specifically, we estimate the advantage obtained by training 

models on individual groups across different sample sizes.  

2. DATA 
We used a previously published dataset [9] but all analyses reported 

here are new. 

2.1 Algebra Nation 
Data was collected through Algebra Nation, an online math 

learning platform developed by Study Edge. Algebra Nation 

supports over 150,000 students studying Algebra 1, Algebra 2, and 

Geometry each semester. Students can use Algebra Nation in a 

variety of contexts; some teachers integrate the platform into their 

regular classroom time while some students only use it to study or 

help with homework. Students can access Algebra Nation using a 

mobile app or on the internet (https://www.algebranation.com/). 

For this study, we used data from students enrolled in Algebra 1. 

In Algebra Nation, course material is organized according to state 

mathematics standards. Although the topics are ordered according 

to the curriculum, students are free to skip topics as necessary or 

learn the material in a different order. 

For each topic, students can watch a video lecture from one of 

several tutors. In addition to watching videos, students can use the 

Test Yourself quiz feature for each topic, which randomly selects 

10 questions aligned with state standards. After attempting a quiz, 

students can review feedback on their answers or watch solution 

videos. Lastly, students can get more help through the Discussion 

Wall where they can interact with other students and study experts 

hired by Algebra Nation. Students can earn karma points by 

answering questions posted by other students. However, students 

primarily spend time watching videos and taking quizzes rather 

than engaging in the social functions of the platform. 

2.2 Affect Surveys 
Due to the large number of students in the study and because 

students can use the platform in multiple contexts, we collected 

ground-truth affect labels using a self-report survey rather than 

through expert coders or human observers (see [16, 22]). These 

surveys were pseudo-randomly triggered based on student activity 

on the platform. Specifically, we manually assigned probabilities to 

each action so that triggered surveys were not overly intrusive and 

there was an adequate sampling of infrequent actions (e.g., wall 

posts) compared to highly frequent ones (e.g., seeking in videos).  

The survey was displayed in a pop-up window. Students had the 

option to ignore surveys. To decrease the prevalence of the surveys, 

once a survey was triggered for a student, the student was removed 

from the survey pool for two weeks. Our dataset includes surveys 

from the 2017-2018 school year (September through May). In this 

time, 69,174 students responded to at least one survey. The mean 

number of survey responses per student was 1.94 (median = 1). Of 

the students that responded, the minimum number of responses was 

1 and the maximum number of responses by any student was 14. 

Each survey targeted one affective state, randomly selected, from 

the following: Anxiety, Boredom, Confusion, Contentment, 

Curiosity, Disappointment, Engagement, Frustration, Happiness, 

Hopefulness, Interest, Pride, Relief, Sadness, Surprise, Mind 

Wandering, Pleasantness, and Wakefulness. We chose several 

states because they closely relate to learning [21] while others 

address core dimensions of affect such as valence and arousal [11]. 

Mind Wandering, Pleasantness, and Wakefulness represent bipolar 

concepts, so we used a seven-point scale with contrasting options 

and presented prompts for each polarity (e.g., sleepy/awake). The 

other states used a five-point scale ranging from “Not at all __” to 

“Very __”. In our analysis, we linearly scaled all survey responses 

to lie in a five-point range so that all states are represented equally. 

2.3 Generic Activity Features 
We recorded student activity on Algebra Nation using 22 features 

that did not depend on specific content (e.g. which video was 

watched or a particular quiz question). These activity features 

included attempting quizzes, watching videos, and interacting with 

the wall or discussion board. Based on our prior work [9], we 

counted the number of occurrences of each feature over 30-second 

chunks and summed the counts for each action across 5-minute 

window lengths preceding an affect survey. In some cases, the 

platform measured an unnaturally high amount of activity (e.g. 

playing/pausing a video 100 times within 30 seconds). We 

addressed these outliers by limiting each 30-second chunk to 10 

recorded activities.  

2.4 Usage Features 
In addition to session-specific generic activity features, which were 

used to train the models, we were interested in investigating 

https://www.algebranation.com/
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generalizability to differences in how students interact with the 

platform over an entire school year. To do this, we defined five 

usage features. First, we calculated the proportion of sessions 

students use their mobile device compared to a desktop computer 

as this may indicate the context in which students are using the 

platform (e.g., at home or while commuting). Second, we 

calculated the proportion of sessions in the spring semester 

compared to the fall semester. We were interested in this feature 

because students must pass the algebra standardized exam that is 

offered in the spring semester in order to graduate from high school. 

To model how much students use the platform, we calculated the 

number of sessions and the average length of each session. Students 

may leave an active session open for long session times in their 

browser while switching to another task or repeatedly log into the 

platform without recording any meaningful interactions. We 

replaced these outliers with the 99th percentile value for the average 

length and number of logins. Finally, we calculated the mean time 

of day that students use the platform, which can indicate whether 

students primarily use the platform during the school day or at 

home. Usage data was available for 235,756 individual students, 

including those who did not receive or respond to any surveys. 

2.5 Demographics 
We also obtained records of demographic data of 118,177 students 

from the Florida Department of Education. This dataset includes 

students from grade 6 through grade 12, from which we defined 

three groups. We defined the first group as Middle School (54%), 

which includes grades 6 through 8. These students are often 

advanced and are enrolled in the Algebra course earlier than is 

typically expected by state standards [6]. The second group is 

Grade 9 (37%). We chose to keep this grade separate because it has 

one of the largest enrollment numbers and grade 9 is when students 

are enrolled in the course during the typical mathematics sequence. 

Lastly, we defined High School (9%) as grades 10 through 12. 

These students are often behind in the typical mathematics 

sequence and struggle to pass the course before they graduate. For 

gender, the available data classifies students as Male (49%) or 

Female (51%), which we took at face value. 

This dataset records student eligibility for free or reduced-price 

(F/R) school lunch, which is one indicator of socioeconomic status 

(but see Harwell & LeBeau [8]). We defined the groups as F/R 

(53%) and Other (47%), with the latter reflecting those who did not 

qualify or did not apply. We combined free and reduced because 

there were so few students that qualified for a reduced-price lunch. 

Finally, this dataset includes data on race and ethnicity. We defined 

these groups to approximately balance group size: White (72%), 

Black (23%), Hispanic (32%), and Other (13%; Asian, Native 

American, Pacific Islander, and Mixed). 

3. CLUSTERING 
We clustered participants based on usage characteristics and 

demographics to investigate the generalizability of the affect 

models across clusters. To determine the number of clusters, we 

inspected the dendrogram generated with Ward hierarchical 

clustering [31] using the SciPy library (http://www.scipy.org/). For 

efficient clustering, we randomly sampled 1,000 instances. We then 

used the k-means algorithm [14] to construct the clusters using 

scikit-learn [19]. We chose to use all available students regardless 

of their participation in the surveys since our goal was to generalize 

over as many students as possible. 

We constructed usage clusters using the five features described in 

Section 2.4. We first scaled each of these features to [0, 1]. The 

above procedure yielded five clusters (Table 1). One group (U1) 

showed heavy usage patterns (signified by long sessions and 

numerous log-ins). Two groups were defined by primarily mobile 

sessions and were further differentiated by sessions focused in 

either the fall (U4) or spring (U5) semester. Finally, two groups 

showed particularly light usage patterns and were differentiated by 

sessions focused in either the fall (U3) or spring (U2) semester.  

Next, we constructed clusters using the demographic features 

described in Section 2.5. We dummy encoded our variables 

resulting in seven features indicating grade level, three features 

indicating lunch status, seven features indicating race/ethnicity, and 

one feature indicating gender. The above procedures yielded seven 

clusters (Table 2). Grade level largely differentiated clusters. Only 

Table 1. K-means cluster centers based on typical usage. Distinguishing features are bolded. 

ID Cluster Description 
Session 

Time (min) 

Num. 

Sessions 

Prop. 

Spring Use 

Prop. 

Desktop Use 

Time of 

Day (hour) 

Prop. of 

Users 

U1 Spring semester, heavy use 45.46 25.44 0.75 0.90 14.19 0.20 

U2 Spring semester, light use 14.26 3.53 0.96 0.99 14.86 0.35 

U3 Fall semester, light use 13.81 3.46 0.11 0.99 14.81 0.28 

U4 Fall semester, mobile use 21.38 9.54 0.19 0.30 13.25 0.07 

U5 Spring semester, mobile use 29.66 10.95 0.93 0.27 13.21 0.10 

 
Table 2. Demographic cluster centers. For clarity, only distinguishing features are displayed and are bolded. 

ID 
Cluster Description 

Grade 

7 

Grade 

8 

Grade 

9 

Grade 

10 

F/R 

Lunch 
White Black Asian 

Prop. of 

Users 

D1 Split grades, F/R lunch, Black 0.08 0.29 0.44 0.17 0.99 0.03 1.00 0.01 0.16 

D2 Grade 7, not F/R lunch, White/Asian 1.00 0.00 0.00 0.00 0.20 0.80 0.06 0.16 0.10 

D3 Grade 8, not F/R lunch, White 0.00 0.99 0.00 0.00 0.00 0.87 0.09 0.07 0.22 

D4 Grade 8, F/R lunch, White 0.00 1.00 0.00 0.00 1.00 0.90 0.03 0.06 0.15 

D5 Grade 9, F/R lunch, White 0.11 0.00 0.87 0.00 1.00 0.91 0.01 0.03 0.16 

D6 Grade 9, not F/R lunch, White/Black 0.00 0.00 0.99 0.00 0.04 0.81 0.16 0.04 0.16 

D7 Grade 10, split F/R lunch, White/Black 0.00 0.00 0.00 1.00 0.52 0.76 0.20 0.03 0.05 

 

http://www.scipy.org/
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cluster D1 had a significant distribution of students across grade 

levels. Another differentiating feature was lunch status, where three 

clusters (D1, D4, D5) were largely comprised of students on F/R 

lunch. Four clusters were differentiated by race (D1, D2, D6, D7).  

4. AFFECT DETECTION MODELS 

4.1 Model-building Procedure 
We used scikit-learn [19] to implement a supervised learning 

pipeline. We chose to use the Bayesian Ridge Regression algorithm 

[13] since it produced good overall results in previous work on the 

same data [9] compared to several more complicated alternatives. 

We trained regression models using 10-fold student-level cross 

validation. For each fold, instances for each student were included 

in either the training or testing set. This practice reduces overfitting 

and increases the likelihood that the model will generalize to new 

students. In each fold, we trained a model using the generic activity 

features and generated predicted survey responses on the test data. 

We evaluated the performance of the model using the Spearman 

correlation as it assumes ordinal and continuous values. We then 

averaged these scores across folds to obtain a final accuracy score. 

We trained prediction models for positive and negative affective 

valence rather than the original 18 states measured in the surveys. 

We initially trained a model for each state and calculated the 

correlation between the predicted survey responses for each state. 

These predictions were strongly correlated within positive and 

negative valence. We then trained positive and negative valence 

models using the combined set of states and generated predictions 

for the individual states. The mean performance of the valence 

models was similar to training individual affective models, so we 

chose to use the valence models for parsimony. For the positive 

valence models, we included the following states: Arousal, 

Contentment, Engagement, Happiness, Hopefulness, Interest, 

Pleasantness, Pride, and Relief. For the negative valence models, 

we included the following states: Anxiety, Boredom, Confusion, 

Disappointment, Frustration, Mind Wandering, and Sadness. We 

did not include Curiosity and Surprise since their valence does not 

clearly align on either direction. 

4.2 Preliminary Models on Cluster 

Membership 
We first investigated whether our models discriminated using 

group features rather than the generic activity features. To test this, 

we trained models using cluster membership as the training data 

instead of activity features. We expected these models to perform 

poorly since they are not simply reflecting group differences. 

Indeed, we found that the average Spearman correlations were low 

(between 0.02 and 0.05) for both cluster models.  

4.3 Generalizability 
Our main analysis focused on investigating how our models, 

trained on activity features, generalize across different clusters. 

First, we considered a general model trained on the entire dataset 

using 10-fold student-level cross validation. We then built cluster-

specific models. For each cluster, we trained and tested a model on 

data from that cluster. We also tested this model on the other cluster 

data. For example, we trained a model on U1 and tested  on each of 

the other clusters (U2 – U5) as well as the entire dataset (All). We 

performed this procedure separately for the positive and negative 

valence states as well as for the usage and demographic clusters1.  

                                                                 

1 Similar results for other slices can be found using this code (link).  

4.4 Results 
We examined the generalizability of our models using the 

procedure in Section 4.3. If our models generalized well, we expect 

to see a model trained on one group perform similarly well when 

applied to other groups (Table 3). This was the case for the usage 

clusters, where the maximum difference between testing on one 

cluster and testing on another is 0.05. The demographic clusters 

were more varied. In this case, the greatest difference between 

testing on the one cluster and testing on another was 0.09.  

Recent metrics proposed in slicing analysis, such as [7], apply to 

classification problems and not the regression task considered here. 

To better quantify model generalizability, we defined an individual 

advantage metric. Using the procedure from Section 4.1, we trained 

a model using the training set X and tested the model using the 

testing set Y. We represented the performance of the model, which 

is the average Spearman correlation, as PX,Y. For a target group T, 

we defined the individual advantage metric as (PT,T – PAll,T)/PAll,T. 

This describes the proportion improvement over using a general 

model for the target group T. Therefore, a perfectly generalizable 

model would have an individual advantage of 0 since an individual 

model and general group model will have the same accuracy. 

We used this metric to quantify the generalizability of our models. 

Both positive and negative models showed small, positive 

individual advantage values (mean usage 0.04; mean demographics 

0.02), which indicates a small advantage to training cluster-specific 

models compared to a general model.  

5. SAMPLE SIZE SIMULATIONS 
We then investigated whether sample size affects the advantage for 

using individual models. Specifically, are individual advantages 

mitigated when more data is available? To address this question, 

we computed the average individual advantage metric over 10 cross 

validation folds for a range of sample sizes starting at 500. For each 

sample size, we randomly selected the appropriate number of 

instances from the training sets. We incrementally increased the 

sample size by 200 until we reached the actual group size, which 

varied between 1,500 and 7,100. We repeated this simulation 1,000 

times and calculated the 95% confidence interval of the mean 

individual advantage metric at each sample size (Figure 1). 

Table 3. Mean correlation of positive valence models 

(negative in parentheses) for usage clusters.  

 Test U1 Test U2 Test U3 Test U4 Test U5 Test All 

Train 

U1 
0.25 

(0.19) 

0.23 

(0.22) 

0.21 

(0.19) 

0.19 

(0.19) 

0.21 

(0.18) 

0.21 

(0.20) 

Train 

U2 

0.21 

(0.18) 

0.26 

(0.23) 

0.22 

(0.19) 

0.21 

(0.20) 

0.22 

(0.19) 

0.22 

(0.20) 

Train 

U3 

0.21 

(0.17) 

0.24 

(0.21) 

0.23 

(0.20) 

0.20 

(0.19) 

0.20 

(0.17) 

0.22 

(0.19) 

Train 

U4 

0.20 

(0.17) 

0.25 

(0.22) 

0.21 

(0.19) 

0.21 

(0.20) 

0.21 

(0.19) 

0.22 

(0.21) 

Train 

U5 

0.23 

(0.17) 

0.25 

(0.22) 

0.21 

(0.18) 

0.20 

(0.19) 

0.24 

(0.21) 

0.22 

(0.20) 

Train 

All 

0.22 

(0.18) 

0.25 

(0.22) 

0.22 

(0.20) 

0.21 

(0.20) 

0.22 

(0.19) 

0.22 

(0.21) 
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We first noted that the scores for models using sample sizes less 

than 1,500 varied wildly, as indicated by the width of the 

confidence intervals in this region. As such, we can only conclude 

that results obtained from small samples might not be reliable. This 

is concerning since previous work used sample sizes ranging from 

20 to 646 students [9]. As expected, for larger sample sizes, the 

models quickly stabilized and produced more reliable scores. 

For most clusters, the individual advantage scores stabilized to a 

value of 0.10 or less, which indicates a small advantage of training 

cluster-specific models. The scores for clusters D1 and U1 seemed 

to increase as the sample size increased, but we cannot make strong 

conclusions since the sample size of these clusters was small. 

6. DISCUSSION 
In an attempt to answer the call for predictive generalizability [7, 

10, 26], we used interaction data from 69,174 students over an 

entire school year to study the extent to which sensor-free affect 

detectors generalize across usage and demographic clusters.  

6.1 Main Findings 
We found that students primarily differed in their interaction rate, 

active semester, and primary device. The demographic clusters 

were primarily discriminated by grade level, F/R lunch eligibility, 

and (to a smaller extent) race. Using cluster membership as the only 

training feature resulted in near-zero results, which shows students 

in a particular cluster are not generally predisposed to certain 

affective states. We must then consider the context of a student’s 

activity when predicting their immediate affective state. 

Similar to previous work [1, 4, 9, 17, 23, 24, 27, 28], we examined 

the generalizability of our models by training cluster-specific 

models and testing them on the other clusters. We found that 

cluster-specific models perform slightly better on the target cluster, 

with a maximum difference of 0.05 for the usage clusters and 0.09 

for the demographic clusters. We expanded this analysis by 

introducing an individual advantage metric, which measures the 

advantage given to a target group compared to a general (entire 

population) model. This metric agreed with our initial analysis by 

showing a small advantage given by training a cluster-specific 

model. The maximum advantage was 0.14 for the usage clusters 

and 0.11 for the demographic clusters. Although these results 

provide evidence that cluster-specific models are better at 

predicting affective valence, it is not clear what difference is 

meaningful in practice. 

Lastly, we investigated how model generalizability changes in 

response to sample size. We performed a series of simulations that 

trained affect-detection models and systematically varied sample 

sizes. Models trained on 1,500 samples or less did not generate 

stable scores or predictions, even after 1,000 iterations. When 

considering sample sizes greater than 1,500 that yielded reliable 

scores, we found that the individual advantage scores stabilize as 

sample size increases at a value of 0.10 or less, which is consistent 

with our initial analysis. This suggests that generalizability is not 

greatly affected by sample size beyond the 1,500-sample threshold.  

6.2 Limitations and Future Work 
The greatest area of improvement is the overall model performance. 

As discussed in [9], the average performance corresponds to a 

small-sized effect. This is likely caused by the limited number and 

extreme generality of the training features. Future work can address 

this by introducing more platform-specific features, such as which 

quiz a student was attempting. We can then see if our models have 

the power to distinguish between individual affective states rather 

than simply identifying positive or negative valence. Of course, the 

use of these features will result in more platform-specific models, 

which limits their generalizability to different platforms or even to 

other domains within the sample platform. 

Our analysis of generalizability was limited to demographic 

features and overall interaction with the Algebra Nation platform. 

This analysis should be extended to include other academic 

subjects, time frames, and regional groups. For example, while 

Florida does reflect the overall demographic composition of the 

United States, other states do not. It would be interesting to see how 

our models generalize to other populations. With respect to subject 

generalizability, while [9] showed generalizability between 

Algebra and Geometry, we could  see how a model for mathematics  

generalizes to unrelated subjects such as chemistry or music. 

There are several exciting opportunities to apply these large-scale 

sensor-free affect detectors. First, we will be able to develop real-

time interventions based on predictions of a student’s affective state 

and promote more a more engaging experience with the curriculum. 

In addition, as we collect data from different regions and over 

longer time periods, we can more directly investigate the 

relationship between engagement and end-of-course scores.  

Lastly, it is important to understand the impacts of a one-size-fits-

all model on long-term student achievement. When developing 

interventions, one should consider possible effects if predictions of 

affect are incorrect. In this case, the intervention should not have 

any negative consequences for the student receiving it.  

7. CONCLUSION 
Sensor-free affect detection models provide the opportunity to 

provide personalized experience for large populations of students. 

In this work, we answered the call to investigate how these 

predictive models generalize between different subpopulations in 

the training data. We did this using a longitudinal dataset of student 

interaction with an online math learning platform with our groups 

of interest being clusters based on typical usage on the platform and 

demographic features. We showed that while models trained on one 

cluster perform similarly well when applied to the other clusters, 

there is a small advantage to use individual subpopulation models 

rather than one general population model. It is important to consider 

these models’ differential performance and impact when deploying 

large-scale platforms that adapt to sensor-free predictions of 

individual students’ affective states.  

 

Figure 1. Averaged individual advantage simulation scores for usage clusters 
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