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A B S T R A C T

Despite agreement about the importance of executive function (EF) for children’s early math achievement, its
treatment in correlational studies reflects a lack of agreement about the theoretical connection between the two.
It remains unclear whether the association between EF and math operates through a latent EF construct or
specific EF components. Specifying the correct measurement model has important theoretical implications for
the predicted effects of EF interventions on children’s math achievement. In the current study, we tested whether
associations between EF and math operate via a latent EF factor, or via specific EF components using data from a
large, nationally representative sample. We then replicated these same analyses with a meta-analytic database
drawn from ten studies that collected measures of children’s EF and math achievement. Our results lend support
to explanations that a single EF factor accounts for most of the EF component-specific associations with math
achievement. We discuss theoretical and methodological implications of these findings for future work.

1. Introduction

Executive function (EF) has been shown to be robustly associated
with children’s math achievement in early childhood (Best, Miller, &
Naglieri, 2011; Blair, Ursache, Greenberg, & Vernon-Feagans, 2015;
Clark, Pritchard, & Woodward, 2010; Espy et al., 2004; McClelland
et al., 2007, 2014). Despite this consensus on the importance of EF to
children’s learning in academic contexts, its treatment in correlational
studies of cognitive development reflects a lack of agreement about its
relation to math achievement through (1) a single underlying EF con-
struct and/or (2) the specific components of EF. Consequently, these
theoretical distinctions have implications for the predicted effects of EF
interventions on children’s achievement.

Although EF is often conceptualized as a set of cognitive processes,
including working memory, inhibitory control, and cognitive flexibility,
individual differences in such processes appear to be largely psycho-
metrically undifferentiated in correlational studies of young children’s
cognitive development (Wiebe, Espy, & Charak, 2008; Willoughby,
Wirth, & Blair, 2012); although EF is usually found to be multi-
dimensional in older children and adults (Lee, Bull, & Ho, 2013;
Engelhardt, Briley, Mann, Harden, & Tucker-Drob, 2015; Lehto,
Juujärvi, Kooistra, & Pulkkinen, 2003; Miyake et al., 2000). Perhaps in

part because of the theoretical distinctions but empirical overlap among
EF measures in young children, sometimes non-experimental research
in cognitive development includes models with academic outcomes
regressed on specific components of EF (Bull, Espy, & Wiebe, 2008;
Monette, Bigras, & Guay, 2011; Simanowski & Krajewski, 2017), and
other times, achievement is regressed on a general EF construct (Bull,
Espy, Wiebe, Sheffield, & Nelson, 2011; Hassinger-Das, Jordan,
Glutting, Irwin, & Dyson, 2014; Schmitt, Geldhof, Purpura, Duncan, &
McClelland, 2017). These differences in model specification reflects a
lack of clarity about how the EF construct and its components relate to
math achievement (for a recent discussion, see Rhemtulla, van Bork, &
Borsboom, in press). Although these two model specifications are likely
to produce some similar results – for example, they may explain similar
amounts of total variance in children’s academic outcomes – they imply
very different types of causal relations among components of EF and
academic achievement.

The current study addresses an unanswered question regarding the
relation between EF and math achievement. Specifically, we investigate
whether correlations among EF tasks and math achievement are con-
sistent with the hypothesis that the association between EF and math
achievement operates through specific components of EF, through a
single latent EF factor, or both. Even under the assumption that EF
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consists of a single factor with multiple components, different modeling
decisions reflect different theories about the causal relation between EF
components and math, and yield substantively different results.

1.1. Specific components or underlying construct?

The current study aims to increase clarity about the robust asso-
ciations between individual differences in young children’s EF and
math achievement. We consider two possibilities, displayed in Fig. 1:
Model 1, which illustrates latent EF as the primary influence on math
(represented in the model by a single common factor), and Model 2,
which illustrates specific components of EF as the primary influences on
math. Model 1, depicted in the left panel of Fig. 1, implies that the
relations between children’s EF components and their math achieve-
ment reflects the extent to which they measure the same construct.
Model 2, depicted in the right panel of Fig. 1, implies that differences in
the correlations between EF components and children’s math achieve-
ment reflect the extent to which the EF components differentially in-
fluence children’s math achievement. Is one of these models a more
useful way of conceptualizing the influence of children’s EF on math?
We argue that previous research in this area has not yielded a clear
answer and review the evidence for both possibilities below. We spe-
cifically focus on math achievement given the well-established relations
between the two.

There are theoretical reasons to believe that EF components un-
iquely influence children’s math achievement. For example, it may be
that working memory helps children to temporarily store and manip-
ulate relevant information, which allows them to learn complex ar-
ithmetic procedures. Cognitive flexibility may be uniquely predictive of
children’s math achievement because it helps children switch between
different types of procedures during arithmetic practice. For example,
adding fractions with the same denominator can be done without ma-
nipulating the denominator, whereas multiplying fractions with the
same denominator requires squaring the denominator (Braithwaite,
Pyke, & Siegler, 2017). Similarly, inhibitory control may help children
suppress a dominant but incorrect solution strategy, such as completing
operations by the order in which they are presented in the problem,
rather than by the order of operations. This corresponds with the right
panel of Fig. 1 (Model 2), which assumes that there are component-
specific associations between EF and math that are unique from the
shared variance among EF tasks. If mathematics achievement is influ-
enced by specific EF components, then interventions that influence
working memory, cognitive flexibility, or inhibitory control are pre-
dicted to have transfer effects to mathematics regardless of whether
latent EF is affected. Consistent with this theory, some interventions
that are designed to be EF component-specific, in addition to targeting
other skills, have been found influence math achievement (Blair &

Raver, 2014). Yet there are also some EF component-specific inter-
ventions that have produced null findings of transfer effects to math
(Roberts et al., 2016).

In contrast, the left panel illustrated in Fig. 1 (Model 1) posits that
factors common to EF components fully account for the relation be-
tween EF and children’s math achievement. A latent EF factor can re-
present all the influences (e.g., shared developmental and/or cognitive
processes) that are common to the components. For example, influences
common to the three EF components may reflect general attention or
goal maintenance skills (Blair, 2006; Duncan, Emslie, Williams,
Johnson, & Freer, 1996; Garon, Bryson, & Smith, 2008). This may strike
some as unlikely, given strong theoretical reasons to suggest the specific
usefulness of working memory, inhibition, and switching for children’s
math learning. It could also be that there is a largely overlapping set of
developmental factors (e.g., genes, home and schooling environments)
that influence specific EF component development and children’s math
learning. However, the relations between EF components and children’s
math achievement are often found to be positive after statistically
controlling for measures of such factors (Fuhs, Nesbitt, Farran, & Dong,
2014; Hughes, Ensor, Wilson, & Graham, 2010; Schmitt et al., 2017;
Welsh, Nix, Blair, Bierman, & Nelson, 2010). Alternatively, the overlap
between EF tasks labeled as measures of the same component may be
due to factors other than shared cognitive processes (Oberauer, 2016).
For example, the terms inhibition and task switching, while useful la-
bels for many of the cognitive processes involved in children’s math
learning, may not accurately describe cognitive processes employed in
all such tasks. It may be that the variation shared across inhibitory
control tasks does not truly constitute a unitary cognitive process of
“inhibition” but rather some more general set of developmental con-
straints on learning and performance common across a wide variety of
tasks.

According to this model, children’s math achievement is caused by
influences common to the three EF components, and math achievement
is not assumed to be any more distally related to EF components than
they are to each other. Math achievement is an indicator, just as the
three conceptualized EF components are, of the latent factor(s) general
to EF. Of course, a major limitation of this model is that we do not know
what the common factor in the model is. Several studies report low
correlations between tasks designed to measure different EF compo-
nents, as well as between tasks designed to measure the same EF
component (Clark et al., 2010; Monette et al., 2011; Willoughby, Wirth,
et al., 2012). Low loadings of EF tasks on latent factors are often ob-
served (Espy et al., 2004; Lee et al., 2012; Miller, Müller, Giesbrecht,
Carpendale, & Kerns, 2013; St. Clair-Thompson & Gathercole, 2006;
Willoughby, Blair, Wirth, Greenberg, & The Family Life Project
Investigators, 2012; Willoughby, Wirth, et al., 2012), and children’s
math achievement is sometimes found to correlate just as highly, or

Fig. 1. Conceptual models for how the EF construct(s) affect/s math performance. Model 1 depicts latent EF as the primary influence on math and Model 2 depicts
the specific components of EF as the primary influences on math.
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sometimes even higher, with EF tasks as EF tasks correlate with each
other (Clark et al., 2010; Monette et al., 2011; Schmitt et al., 2017;
Willoughby, Wirth, et al., 2012). The correlational literature on EF
components generally finds similar average correlations between EF
components and math achievement, with working memory as the
strongest correlate of children’s math achievement (see meta-analysis
by Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 2013).
However, along with the hypothesis that working memory is most
causally important for math achievement, this finding is consistent with
the hypothesis that working memory is simply the best indicator of
common causes of both EF and math.

The implication of this version of the latent factor model (in which
there are no paths from EF component residuals to math achievement)
is that EF interventions will affect math achievement only if they affect
the influences general to all EF tasks. To reiterate, these influences may
be some combination of overlapping cognitive and developmental
factors, or even the mutualistic co-development of EF components
during earlier development (van Der Maas et al., 2006). If the influ-
ences general to EF tasks do not include individual cognitive processes
themselves, but other characteristics of the child and context, then even
training the EF components together may not be sufficient to facilitate
broad transfer.

1.2. Challenges of EF construct conceptualization and measurement

It is difficult to disentangle whether the associations between chil-
dren’s EF and math achievement operate through specific components
or through a single latent factor given the different conceptualizations
and measures. Previous research has typically found that a single EF
factor accounts for component-specific variations in early childhood
(Allan & Lonigan, 2011, 2014; Bull et al., 2011; Clark, Sheffield, Wiebe,
& Espy, 2013; Fuhs et al., 2014; Wiebe et al., 2008; Willoughby, Wirth,
et al., 2012). Variation observed in the associations between EF com-
ponents and math may be due differences in the strength to which they
reflect an underlying EF factor. It could be that more valid and reliable
measures of EF, or more complex tasks, load more highly onto the EF
latent factor than less complex measures. Alternatively, certain EF
measures may be related to math because the components that they tap
(e.g., working memory) are causally related to math achievement.
Despite the theoretical importance of this distinction, prior studies have
not explicitly tested such models against each other. Across the wealth
of studies examining the relation between EF and math achievement,
there is also the issue of a lack of standardization of EF components and
their measures and variation in the magnitude of associations between
tasks within and across these constructs. The tasks used to measure a
single component of EF are vastly different (Baggetta & Alexander,
2016; Morrison & Grammer, 2016). Some tasks have been used to assess
multiple EF components such as Head-Toes-Knees-Shoulders (HTKS)
that measure children’s EF skills through gross motor responses
(McClelland et al., 2014; Schmitt et al., 2017). Studies of EF and math
achievement sometimes use a number of different measures for a par-
ticular EF component (see Carlson, 2005; Garon et al., 2008 for com-
prehensive lists). For example, to measure children’s working memory,
tasks such as Backwards Digit Span, Listening Recall, and the Auditory
Working Memory subtest from the Woodcock-Johnson are used. Ex-
amples of measures of children’s cognitive flexibility include card
sorting, Shape School (switching), and Something is the Same. Ex-
amples of measures of children’s inhibitory control include Stroop, Peg
Tapping, Go/No-Go, Flanker, and Shape School (inhibition). It is diffi-
cult to administer all of these tasks to a large sample of preschoolers
during a small number of testing sessions, and the tasks can vary widely
across studies. Given the myriad of measures available, it is likely that
children’s performance can differ across a wide variety of tasks that
purport to measure the same thing.

In addition to the number of tasks available to measure specific
components of children’s EF, the identification and labeling of many

different individual components or processes that comprise EF has
plagued its conceptualization. One example of this is evidenced by the
differing conceptualizations of working memory. Major theories and
psychometric studies have suggested that working memory is a multi-
component model that can be further dissociated into several related
but distinct processes (Baddeley & Hitch, 1974; Baddeley, 1986;
Oberauer, Schulze, Wilhelm, & Süß, 2005; Oberauer, Süß, Schulze,
Wilhelm, & Wittmann, 2000; Oberauer, Süß, Wilhelm, & Wittmann,
2003). Yet some studies conceptualize working memory to be just one
of the components of EF and others use the term updating inter-
changeably with working memory (see Baggetta & Alexander, 2016 for
a review; Lee, Ng, Bull, Pe, & Ho, 2011). One of the direct implications
of this “conceptual clutter” (Morrison & Grammer, 2016) is the added
complexity it presents for building models to rigorously test the relation
between EF and math achievement, which consequently has implica-
tions for the findings from which we draw our conclusions. For the
purposes of our study, we consider working memory and updating as
interchangeable and as a component of EF along with cognitive flex-
ibility and inhibitory control.

Further complicating the measurement and conceptualization of EF,
the variation in performance on common tasks differs across age ranges
(Carlson, 2005), and tasks that are intended to measure the same EF
component often show weaker correlations than tasks intended to
measure different components (Espy et al., 2004; Willoughby, 2016).
Taken together, these issues make it difficult to triangulate across the
literature to clarify the theoretical connections between EF, its sub-
components, and math achievement. As a way to summarize findings
across the relevant published studies more systematically, the current
study compares correlations across a set of studies to examine the
consistency of associations between EF and children’s math achieve-
ment with two different conceptual models: a model that implies the
association is due to an underlying EF factor (i.e., Model 1) and a model
that implies the association is due to EF component-specific perfor-
mance (i.e., Model 2).

1.3. Current study

The current study asks a key question about the relations between
EF and math in early childhood: does the association between EF and
math achievement operate through specific components of EF, through
a single latent EF factor, or both? We use data from a nationally re-
presentative sample of typically developing children across the U.S.
along with a meta-analytic database of ten peer-reviewed studies on EF
and math achievement in early childhood. We conduct a coordinated
series of analyses using multiple datasets to determine which model
best represents the observed data patterns. We first draw on a nation-
ally representative, nonexperimental dataset, and then replicate these
same analyses in a meta-analytic database of ten studies that collected
measures of children’s EF and math achievement. First, we present
correlations between each EF component and math. Second, we use
confirmatory factor analysis to estimate the loadings of each EF com-
ponent onto the latent EF factor. Third, we correlate the factor loadings
with the EF task-specific association with math to examine whether the
EF components that load more strongly onto the latent EF factor are
also more strongly related with math. Fourth, we compare the statis-
tical fit of a model that allows for independent effects of EF components
on math achievement (corresponding to Model 2 in Fig. 1), compared
with a model that allows for an effect of an underlying EF factor on
math achievement (corresponding to Model 1 in Fig. 1). Finally, for
Model 1, which included a path from a latent EF factor to math
achievement, we tested whether components of EF had significant re-
sidual correlations with math achievement. Because measures of EF
administered during early childhood have widely been found to reflect
a single factor (e.g., Fuhs et al., 2014; Wiebe et al., 2008), we hy-
pothesize that the latent EF factor will largely account for the compo-
nent-specific associations with math achievement.
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2. Methods

2.1. Data

The current study uses data from multiple sources to address the
research question. The first part of our study uses data from the fed-
erally-funded Early Childhood Longitudinal Study 2010-11 (ECLS-K:
2010). The ECLS-K: 2010 is an ongoing study focused on children’s
schooling experiences and it is the largest nationally representative
sample to follow children from school entry into fifth grade. Unique to
this dataset are three measures of EF that were not included in its
precursor, the ECLS-K: 1998. Data collection for the ECLS-K: 2010 in-
cluded parent interviews, surveys of teachers and school adminis-
trators, and direct child cognitive assessments. Data were collected for
the full sample of children during the fall of kindergarten (wave 1),
spring of kindergarten (wave 2), and spring of first grade (wave 4), and
a subsample of children had their data collected for the fall of first
grade (wave 3). Therefore, in the current study we only use waves 1, 2,
and 4. The dataset includes 18,170 kindergartners (average age of
5.62 years) sampled from 1330 schools in 90 counties across the U.S
(for more information on the ECLS-K: 2010, see Tourangeau, Nord, Lê,
Sorongon, Hagedorn, Daly, & Najarian, 2014). See Table 1 for de-
scriptive statistics of the sample included in our analyses.

The second part of the current study draws on correlation matrices
from ten studies we identified that met the following criteria: (1) as-
sessed each of the three components of EF – working memory, cognitive
flexibility, and inhibitory control; (2) at least two of the EF measures
were direct assessments; (3) assessed children using a standardized
assessment of math achievement; (4) study samples must include chil-
dren at or near school entry (i.e., children 3–6 years old); (5) did not
select children on the basis of having a medical disorder or learning
disability; (6) reported on original research (e.g., no commentaries or
reviews); (7) published in an academic journal in a 10 year period
spanning 2008–2017. The time period of our search was chosen be-
cause of the influx of literature examining the latent structure of EF
(e.g. Garon et al., 2008; Wiebe et al., 2008).

A broad search of the literature by the first two authors was con-
ducted using PsycINFO, PsycARTICLES, PubMed, and ERIC for articles
that included the following search terms and their variants using the

Boolean operator “AND”: executive function, executive control, mathe-
matics skills, mathematics achievement, preschool, early childhood, ele-
mentary school. To identify potential literature outside of indexed da-
tabases, we also used the Google Scholar search engine. The first author
screened all titles and abstracts to ensure that the criteria listed above
were met. All studies that appeared to meet the inclusion criteria were
collected for full-text screening by the first and second authors for po-
tential inclusion. Disagreements about study inclusion were resolved by
consensus among all three authors. The majority of articles from this
search included studies that examined one or two EF components, and
were ruled out from inclusion. In all, our search process resulted in ten
studies that examined the three EF components and met all other in-
clusion criteria.

Each study was independently coded by the first and second au-
thors. A codebook was created specifically for this project in an Excel
database. The codebook included relevant information about the stu-
dies, including all EF and mathematics measures used, sample size, age
of the sample, and country in which the study took place. Any coding
conflicts were discussed and resolved among all the authors. If there
were multiple articles published using the same dataset, we selected the
most recently published study using those data. Studies had to include
correlations between the EF and math measures. If correlation matrices
for the measures of interest were not presented in the original article,
the first author contacted one of the authors of the included study to
provide correlations for the measures at the earliest measurement time
point. All contacted authors provided this information. See Table 2 for
information on the ten studies included in the analyses. The measures of
EF and math achievement associated with each data source are de-
scribed in the sections below. All decisions in creating this meta-ana-
lytic database were made a priori and before conducting any analyses.

2.2. ECLS-K: 2010

2.2.1. EF measures
Children were assessed on three measures of EF at each wave with a

combination of direct cognitive assessments and teacher reports: the
Woodcock-Johnson Numbers Reversed subtest, the Dimensional
Change Card Sort (DCCS), and the self-administered Children’s
Behavior Questionnaire (CBQ) – Short Form Inhibitory Control
Subscale. Standard scores were used for Numbers Reversed and raw
scores were used for the DCCS and CBQ.

Children’s working memory was assessed with the Numbers
Reversed subtest of the Woodcock-Johnson III Tests of Cognitive
Abilities (Woodcock, McGrew, & Mather, 2001). In this task, the as-
sessor reads increasingly longer series of numbers to the child, up to a
maximum of eight numbers, who must repeat the numbers in reverse
order. For example, if presented with the sequence “4, 6, 8,” the child
would be expected to say “8, 6, 4.” The assessment continued until the
child gave three consecutive incorrect responses or completed all the
number sequences. A maximum of 30 items could have been adminis-
tered in all data collection rounds (5 two-digit number items; 5 three-
digit number items; 4 four-digit number items; 4 five-digit number
items; 4 six- digit number items; 4 seven-digit number items; and 4
eight-digit number items). Each item is scored as “correct” (i.e., the
child correctly repeated the number sequence in reversed order), “in-
correct” (i.e., the child did not correctly repeat the number sequence in
reversed order), or “not administered” (i.e., the child was not ad-
ministered the item because he or she did not answer enough items
correctly to advance to the next item). This task involved 30 trials and
raw scores ranged from 0 to 30. Raw scores can then be converted to
standard scores. For the child who failed previous trials, his or her score
for the later trials was imputed as 0. Children’s standard score for this
measure was used, which is normed to their age and created by the
publisher (M=100, SD=15). The validity of the Numbers Reversed
subtest has been extensively studied and established (LaForte, McGrew,
& Schrank, 2014; McGrew & Woodcock, 2001). The technical manual

Table 1
Descriptive statistics for demographic variables, EF measures, and math by
wave.

N % of sample/
Mean

SD Range

Child characteristics collected at fall of kindergarten
Female 18,132 48.80
Black 2397 13.23
Hispanic 4585 25.30
Asian 1546 8.53
Other 1107 6.11
Non-English home
language

2941 18.33

Key measures collected at the fall of kindergarten
Working memory 14,445 93.40 16.60 45–175
Inhibitory control 14,556 4.92 1.29 1–7
Cognitive flexibility 15,604 14.20 3.33 0–18
Math achievement 15,595 30.35 10.98 6.26–95.23

Key measures collected at the spring of kindergarten
Working memory 17,124 94.98 17.13 40–175
Inhibitory control 15,925 5.08 1.30 1–7
Cognitive flexibility 17,149 15.14 2.80 0–18
Math achievement 17,143 43.40 11.51 6.26–81.12

Key measures collected at the spring of first grade
Working memory 15,102 95.85 17.13 35–197
Inhibitory control 13,399 5.07 1.29 1–7
Cognitive flexibility 15,109 16.05 2.31 0–18
Math achievement 15,103 62.79 13.40 15.52–93.99
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reports correlations between Numbers Reversed and all other subtests
in the Woodcock-Johnson Tests of Achievement, Cognitive Abilities,
and Oral Language batteries. Correlations ranged from 0.23 to 0.40 in a
sample of 3–5 year old children and 0.20 to 0.51 in a sample of 6–8 year
old children. Concurrent validity evidence is also reported in the
technical manuals, indicating moderate to high correlations between
the subtest and other established measures of cognitive ability, such as
the Wechsler Intelligence Scale for Children III (Wechsler, 1997) and
Stanford-Binet: Fourth Edition Short Term Memory (Thorndike, Hagen,
& Sattler, 1986). This measure has a reported reliability of 0.87
(Schrank, McGrew, & Woodcock, 2001; Woodcock et al., 2001).

Children were administered the DCCS task as an assessment of their
cognitive flexibility (Frye, Zelazo, & Palfai, 1995). In this task, children
sort cards into trays based on rules that change in the middle of the
task. Children are presented with a series of picture cards that vary
along three different dimensions – color, shape, and border – and are
asked to sort each card into one of two trays depending on the sorting
rule. The trays had a picture of a red boat and a blue rabbit. The first set
of items were part of the Color Game, where the rule was to sort the
cards by color (i.e., red or blue). For example, a blue boat card would be
sorted into the blue rabbit tray. In the second game, the rules then
switched and the child was asked to sort the cards by shape (i.e., rabbit
or boat). In this scenario, a red rabbit card would be sorted into the blue
rabbit tray. If the child correctly sorted four of the six cards in the Shape
Game, then they moved on to the third and final game. In the Border
Game, the sorting rule (color or shape) depended on whether the card
had a black border around the edges. If the card had a black border, the
child had to sort by color; if there was no border on the card, the child
had to sort by shape. Items are scored as being “correct” (i.e., the card
was sorted into the correct tray according to the sorting rule), “in-
correct” (i.e., the card was sorted into the incorrect tray), or “not ad-
ministered” because the child did not answer enough items correctly to
advance to the next set of items. Children’s scores are computed by
combining scores on all three tasks, with a maximum score of 18 cor-
rect. This measure is reported to have shown high test-retest reliability
of 0.90–0.94 (Beck, Schaefer, Pang, & Carlson, 2011; Weintraub et al.,
2013; Zelazo, 2006). Weintraub et al. (2013) report a correlation of
r=−0.51 for its convergent validity with the Delis-Kaplan Executive
Function Inhibition measure (D-KEFS; Delis, Kaplan, & Kramer, 2001)
and a correlation of r=0.14 for its discriminant validity with the

Peabody Picture Vocabulary Test – 4th edition (PPVT-4; Dunn & Dunn,
2012). This suggests that the DCCS has a relatively weak relationship
with measures that tap different constructs. This measure of cognitive
flexibility is widely used in studies predicting achievement in young
children and is now a standardized measure in the NIH Toolbox
(Weintraub et al., 2013; Zelazo, Anderson, Richler, Wallner-Allen,
Beaumont, & Weintraub, 2013) and has also been used in studies also
examining children’s EF and achievement (Welsh et al., 2010).

To assess inhibitory control, teachers were asked to use the CBQ –
Short Form Inhibitory Control Sub-Scale (Putnam & Rothbart, 2006).
Teachers responded to how true or not a particular behavior is of the
child on a 7-point Likert scale ranging from “extremely true” to “ex-
tremely untrue,” with higher scores indicating that teachers rated in-
dividual children as demonstrating that particular behavior more fre-
quently. This measure is comprised of six items. Sample items for this
scale include whether the child “can wait before entering into new
activities if s/he is asked to,” “has trouble sitting still when s/he is told
to,” and “can easily stop an activity when s/he is told ‘no.’” The item-
level scores were computed as the mean of the items comprising the
total score. Exploratory and confirmatory factor analyses have been
used to substantiate the validity of the CBQ subscales (Putnam &
Rothbart, 2006). Convergent validity was established from both reports
of parent agreement and prediction of behavior patterns (Rothbart,
Ahadi, Hershey, & Fisher, 2001). Although direct child assessments are
preferred for measuring components of EF, the CBQ has been used as a
reliable measure in prior studies examining EF and school readiness
(e.g., Blair & Razza, 2007). Additionally, Allan, Hume, Allan,
Farrington, and Lonigan (2014) showed in a meta-analysis that teacher
ratings are actually the preferred type of measure for investigating re-
lations between inhibitory control and academic achievement. The
Cronbach’s alpha for this assessment across all three waves was 0.87.

2.2.2. Math achievement
Math achievement was assessed with the ECLS-K math battery. This

assessment was designed to measure skills in conceptual knowledge,
procedural knowledge, and problem solving. The test consisted of
questions on number sense, properties, and operations; measurement,
geometry, and spatial sense; data analysis, statistics, and probability
(measured with a set of simple questions assessing children’s ability to
read a graph); and pre-algebra skills such as identification of patterns.

Table 2
Study descriptions from the meta-analytic database.

Study N Age (years) Math measure EF Component Measures

Working memory Inhibitory control Cognitive flexibility

Blair and Raver (2014)
Tools of the Mind

759 5.72 WJ Applied Problems Backward Digit Span Flanker with Reverse
Flanker

Dimensional Change Card
Sort

Bull et al. (2008) 124 4.50 Performance Indicators in Primary
School

Backward Digit Span Shape School - Inhibition Shape school - Switching

Clark et al. (2010) 104 4.00 WJ Math Fluency BRIEF-P Working
Memorya

Shape School - Inhibition Shape school - Switching

Fuhs et al. (2014) 572 4.50 WJ Applied Problems Backwards Digit Span Peg Tapping Dimensional Change Card
Sort

Monette et al. (2011) 85 5.83 Wechsler Individual Achievement
Test

Backward Word Span Fruit Stroop Card Sort

Schmitt et al. (2017) 424 4.69 WJ Applied Problems WJ Auditory Working
Memory

Simon Says Card Sort Task

van der Ven et al. (2012) 211 6.42 Standardized Dutch national test Digit Span Backwards Animal Stroop Sorting Task
Welsh et al. (2010)

Head Start REDI
164 4.49 WJ Applied Problems Backward Word Span Peg Tapping Dimensional Change Card

Sort
Weiland and Yoshikawa (2013)

Boston Pre-K Evaluation
2018 4.50 WJ Applied Problems Backward Digit Span Pencil Tapping Dimensional Change Card

Sort
Willoughby, Wirth, et al.

(2012)
Family Life Project

1036 5.80 WJ Applied Problems Working Memory Span Silly Sounds Stroop Something’s the Same

Note. WJ=Woodcock-Johnson.
a Indirect measure of an EF component.
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The Cronbach’s alphas for this assessment across the three waves were
large (0.92, 0.94, and 0.93, respectively).

2.3. Meta-analytic database

2.3.1. EF measures
Each of the studies included in the present analyses had at least one

measure for each of the three EF factors. For the studies that had
multiple measures for each of the three components of EF, we compiled
a list of measures to prioritize in the current study prior to requesting
the correlations of those measures from the authors of the original
studies. As an example, for measures of working memory we prioritized
the Backwards Digit Span measure over the Listening Recall measure
because the former measure was more closely related to the Numbers
Reversed measure we used in the ECLS-K: 2010. We also elected to use a
teacher-reported working memory measure from the Behavior Rating
Inventory of Executive Function for Preschool (BRIEF-P) since that was
the sole measure the authors used for that particular EF component in
the study (Clark et al., 2010).

2.3.2. Math achievement
The ten studies selected for inclusion in our analyses each measured

children’s math achievement through direct assessment. Similar to the
measures of EF in the selected studies, some studies had multiple
measures of math achievement so we followed the same procedure for
selecting a single measure from each study to include in our analyses.
Collectively, the math achievement measures assessed children’s
number knowledge (counting, comparing and ordering of objects, be-
ginning arithmetic), geometry and spatial thinking, and problem sol-
ving. Examples of measures of children’s math achievement included
the ECLS-K math battery, the Woodcock-Johnson Applied Problems
subtest, the Woodcock-Johnson Math Fluency subtest, the Woodcock-
Johnson Quantitative Concepts subtest, and the math composite from
the Wechsler Individual Achievement Test. One study used a standar-
dized national Dutch math assessment.

2.4. Analytic strategy

All analyses were conducted using either Stata 14 (StataCorp, 2015)
or Mplus 7 (Muthén & Muthén, 1998–2012). A series of analyses were
conducted with the ECLS-K dataset, the meta-analytic dataset, and the
study-specific correlations intended to inform our central research
question on whether the association between children’s EF and math
achievement operates through specific components of EF, a single latent
EF factor, or both. All results for the meta-analytic datasets are shown
for each study separately.

First, correlation matrices are reported for each component of EF
and math by dataset. We present the results for each wave of the ECLS-

K dataset and for the meta-analytic study-specific correlations. Second,
factor analyses were conducted to estimate the loadings of each EF
component onto the latent EF factor for each study. Third, the factor
loadings were then correlated with the task-specific association with
math achievement to estimate to what extent the EF components that
load more strongly onto latent EF are also more strongly associated
with math. Of primary interest, we estimated models in which EF-math
associations were via latent EF (Fig. 1, Model 1) or via components of
EF (Fig. 1, Model 2) and compared their levels of statistical fit and
theoretical interpretations. The BIC was compared across model speci-
fications because one of the models (i.e., EF component explanation)
was saturated and had no degrees of freedom for other model fit
comparison tests. For the ECLS-K dataset, these models were estimated
on the raw data at each time point. These models included a maximum
likelihood robust estimator, which does not assume normal distribu-
tions of outcome variables (Muthén & Muthén, 1998–2012), and clus-
tered data based on school assignment at the given time point. For the
meta-analytic dataset, these models were estimated using a maximum
likelihood estimator and were based on the correlation matrices only
(i.e., the MLR estimator was not possible without the actual data).

3. Results

3.1. Correlations among EF components and math

Correlations among EF components and math performance at waves
1, 2, and 4 in the ECLS-K dataset are reported in Table 3. All correla-
tions were significant at p < .001. Within each specific wave, math
was more closely associated with the specific components of EF (Time
1: rs= 0.31–0.55; Time 2: rs= 0.34–0.57; Time 4: rs= 0.30–0.55)
than the components of EF were with each other (Time 1:
rs= 0.18–0.27; Time 2: rs= 0.17–0.27; Time 4: rs= 0.16–0.29). All
study-specific correlations are available in Appendix Tables 1–10 in the
online supplementary materials.

3.2. EF factor loadings

All results for factor loadings onto a latent EF are presented in
Table 4. No clear pattern of results emerged for the factor loadings
across datasets. In other words, knowing the specific EF component is
not informative about the magnitude of the loading. Excluding one
study that had convergence issues, working memory had the strongest
loading 4 times, inhibitory control 5 times, and cognitive flexibility 4
times (one was a tie between working memory and inhibitory control).

Under the assumption that the associations of specific tasks are re-
lated to math due to the latent EF factor, the expectation would be that
the size of the loadings onto latent EF would be associated with the
tasks correlation with math. The factor loadings and the EF task-math

Table 3
Correlations among EF components and Math in the ECLS-K Study.

Construct 1 2 3 4 5 6 7 8 9 10 11

1. Math T1
2. WM T1 0.55
3. IC T1 0.31 0.23
4. CF T1 0.34 0.27 0.18
5. Math T2 0.82 0.53 0.33 0.35
6. WM T2 0.51 0.60 0.24 0.26 0.57
7. IC T2 0.29 0.21 0.71 0.16 0.34 0.24
8. CF T2 0.31 0.25 0.15 0.31 0.36 0.27 0.17
9. Math T4 0.75 0.52 0.32 0.35 0.82 0.55 0.33 0.35
10. WM T4 0.43 0.47 0.25 0.24 0.50 0.53 0.25 0.25 0.55
11. IC T4 0.27 0.23 0.50 0.14 0.30 0.23 0.55 0.12 0.30 0.24
12. CF T4 0.30 0.23 0.17 0.26 0.34 0.26 0.16 0.27 0.38 0.29 0.16

Note. All correlations significant at p < .001. Bolded are the within-wave correlations included in the analyses. T1 is the fall of kindergarten. T2 is the spring of
kindergarten. T4 is the spring of first grade. WM=working memory. IC= inhibitory control. CF= cognitive flexibility.
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correlation are correlated at r=0.47 (see Fig. 2). In other words, the
tasks that load more strongly onto latent EF were more highly corre-
lated with math achievement. This trend holds when restricted only to
tasks intended to measure the same EF component (see Fig. 3). For the
study specific patterns of these relations, see Appendix Fig. 1 in the
online supplementary materials.

3.3. Latent EF construct or components of EF accounting for the EF-Math
Link?

The primary analyses used to address the research question are
comparing model fit statistics of two hypothetical model specifications
for EF associations with math. In Model 1, latent EF is assumed to be the
primary influence of math and not the specific components. In Model 2,
the specific components are assumed to fully mediate the effects of the
latent EF factor on math. Model 2 is completely saturated (i.e., no de-
grees of freedom); therefore, the BIC is used for the statistical com-
parison. The results for all models and studies are included in Table 5.
For the three time points in the ECLS-K dataset, Model 1 was preferred
each time and fit the data exceptionally well: CFI/TLI= 1.00,
RMSEA=0–0.02, and SRMR=0–0.01. In other words, for the ECLS-K
dataset, the associations between EF and math are consistent with a

model in which a single EF factor influences math achievement across
all waves. The study-specific results from our meta-analysis were less
conclusive. Seven of the ten samples had smaller BIC values for Model
1, two of the ten had smaller BIC values for Model 2, and one was equal.

The path estimates from Model 1, Model 2, and Model 1 with re-
siduals included between each specific component and math are shown
in Table 6. For the three time points in the ECLS-K dataset, Model 1
showed that latent EF had estimated βs= 0.85–0.88. Model 2 showed
that working memory was the most closely associated component of EF,
βs= 0.44–0.46, although only time point 1 found working memory to
have a positive residual correlation beyond the latent EF factor. Across
all of the specific meta-analytic studies, latent EF was a very robust
predictor of math, with no clear pattern in terms of residual correla-
tions. Furthermore, in Model 2 across the specific meta-analytic studies,
there were no clear patterns for which component was most predictive
of math. To test the robustness of our findings to the inclusion of de-
mographic covariates, we ran two additional analyses including age,
gender, race/ethnicity, and socioeconomic status as covariates in the
ECLS-K Model 1 and Model 2 across all three time points. The results
were not substantively different from our main analysis models. These
estimates are presented in the online supplementary materials in Ap-
pendix Table 11.

4. Discussion

The current study examined whether correlations among EF tasks
and math achievement are consistent with the hypothesis that the as-
sociation between EF and math achievement operates through specific
components of EF, through a single latent EF factor, or both. We use a
large-scale database as well as meta-analytic techniques to pursue this
methodological and conceptual question. The correlations between EF
tasks and the close associations between EF and math achievement
largely replicate previous research findings (e.g., Bull et al., 2011; Clark
et al., 2010, 2013; Fuhs et al., 2014; Willoughby, Blair, et al., 2012;
Willoughby, Wirth, et al., 2012; Wiebe et al., 2008). Most of our models
and analyses found support for Model 1, namely, that the underlying
latent EF factor largely accounts for component specific associations
with math. The standardized estimates of the latent EF effect on math in
Model 1 can statistically be interpreted as factor loadings. Notably,
when considering the data from this perspective, the factor loading for
math on latent EF would be the largest loading on the EF factor in 9 of

Table 4
Loadings for each EF component on latent EF.

EF Factor Loadings

Study WM λ IC λ CF λ

ECLS-K T1 0.60 0.39 0.65
ECLS-K T2 0.64 0.39 0.37
ECLS-K T4 0.65 0.43 0.44
Blair and Raver (2014) 0.37 0.41 0.77
Bull et al. (2008) 0.46 0.53 0.84
Clark et al. (2010) 0.29a 1.04a 0.17a

Fuhs et al. (2014) 0.36 0.83 0.50
Monette et al. (2011) 0.62 0.55 0.42
Schmitt et al. (2017) 0.52 0.63 0.48
van der Ven et al. (2012) 0.35 0.59 0.66
Weiland and Yoshikawa (2013) 0.57 0.71 0.64
Welsh et al. (2010) 0.57 0.62 0.41
Willoughby, Wirth, et al. (2012) 0.42 0.42 0.33

a Convergence issues (IC λ > 1).

Fig. 2. Correlation between task-specific EF loading and task-specific math correlation (r= 0.47). Clark et al. (2010) excluded due to factor loading issue (IC λ > 1).
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the 12 models (see Tables 4 and 6; excluding the one study that had a
factor loading larger than one). Additionally, math correlations with EF
tasks were consistently higher than those among EF tasks. This likely
partially reflects the modest reliability of EF tasks (Willoughby, Kuhn,
Blair, Samek, & List, 2017); however, the relatively high factor loadings
of EF component tasks compared with their residual correlations with
math achievement require a more substantive theoretical explanation.
And finally, EF loadings were positively correlated with task-specific
correlations to math. Thus, the ECLS-K and the meta-analytic sample
results are largely consistent with the predictions of Model 1, in which a
single EF factor accounts for EF component-specific associations with
math achievement.

Although examining the factor structure of latent EF was not the
focus of the current study, our results are consistent with previous work
finding a single underlying factor underlying individual differences in
EF (e.g., Bull et al., 2011; Clark et al., 2013; Wiebe et al., 2008;
Willoughby, Blair, et al., 2012; Willoughby, Wirth, et al., 2012), sug-
gesting that variation in the associations between EF tasks and math
could be due to differences in their associations with an EF factor.
However, results from Model 1 cannot rule out the possibility of small
but positive EF component effects. Our findings, although cross-sec-
tional, are consistent with a recent longitudinal investigation of the

relation between EF and math achievement by Nesbitt, Fuhs, and
Farran (2019) and Willoughby, Wylie, and Little (2018) who both
found a very high correlation between the latent factors influencing
math achievement and EF across early childhood (see Table 6, column
1). We conducted cross-sectional analyses to address conceptual and
theoretical questions of how EF and math relate, whether that is due to
an underlying factor or specific components. It is important to note here
that we are not addressing how one or the other predicts growth in the
other construct. Some previous longitudinal studies regress later math
on earlier EF, some with (e.g., Blair & Raver, 2014; Bull et al., 2008;
Fuhs et al., 2014; Welsh et al., 2010) and others without (e.g., Clark
et al., 2010; van der Ven, Kroesbergen, Boom, & Leseman, 2012;
Weiland & Yoshikawa, 2013) statistically controlling for prior math
achievement. Both methods do some to reduce threats to internal va-
lidity. Using later achievement as a criterion precludes the possibility
that the outcome fully causes the predictors, although this makes little
difference in the absence of some event that directly influences EF and
not math (Foster, 2010). Controlling for the autoregressor controls for
some but not all possible confounds influencing both EF and math
across time (Bailey, Duncan, Watts, Clements, & Sarama, 2018;
Hamaker, Kuiper, & Grasman, 2015). All three approaches – cross-
sectional analysis, longitudinal regression, and longitudinal regression

Fig. 3. Component specific correlations between task-
specific EF loading and task-specific math correlation.
Working memory, r=0.64, is the triangles with
dash-dot line. Inhibitory control r=0.69, is the
circles with long dashes. Cognitive flexibility,
r=0.23, is the squares with short dashes. Clark
et al. (2010) excluded due to factor loading issue
(IC λ > 1).

Table 5
Comparison of model fit indices for Latent EF predicting Math (Model 1) and specific components of EF predicting Math (Model 2).

Model 1 Model 2

Study N Chi-square BIC CFI/TLI RMSEA SRMR R2 BIC R2 Preferred Model

ECLS-K T1 15,831 (2) 11.30** 362,822 1.00/1.00 0.02 0.01 0.72 362,829 0.62 1
ECLS-K T2 17,312 (2) 1.47 404,615 1.00/1.00 0.00 0.00 0.77 404,633 0.40 1
ECLS-K T4 15,198 (2) 1.43 353,746 1.00/1.00 0.00 0.00 0.73 353,764 0.39 1
Blair and Raver (2014) 289 (2) 6.44* 3153 0.98/0.93 0.09 0.03 0.76 3158 0.39 1
Bull et al. (2008) 104 (2) 8.76* 1154 0.92/0.75 0.18 0.05 0.56 1154 0.37 Equal
Clark et al. (2010) 104 (2) 1.66 1182 1.00/1.02 0.00 0.03 0.66 1189 0.31 1
Fuhs et al. (2014) 562 (2) 2.67 6013 1.00/1.00 0.02 0.01 0.63 6023 0.40 1
Monette et al. (2011) 85 (2) 0.16 973 1.00/1.16 0.00 0.01 0.41 982 0.23 1
Schmitt et al. (2017) 409 (2) 15.48*** 4435 0.95/0.86 0.13 0.04 0.64 4432 0.38 2
van der Ven et al. (2012) 211 (2) 1.71 2381 1.00/1.01 0.00 0.02 0.19 2390 0.12 1
Weiland and Yoshikawa (2013) 2018 (2) 35.17*** 20,641 0.99/0.96 0.09 0.02 0.77 20,621 0.48 2
Welsh et al. (2010) 164 (2) 3.37 1815 0.99/0.96 0.07 0.03 0.63 1822 0.35 1
Willoughby, Wirth, et al. (2012) 1058 (2) 7.61* 11,850 0.98/0.93 0.05 0.02 0.43 11,856 0.15 1

Note. Meta-analysis results did not include data from the ECLS-K Study. Model 2 was completely saturated, thus only the BIC is reported. Preferred model is based on
the smaller BIC from the two models.
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with an autoregressor – are susceptible to residual confounding, and
estimates from all three kinds of models may be prone to bias from
factors common to EF if they are not modeled explicitly. Notably, two
longitudinal studies that attempt to model factors influencing math and
EF scores similarly over time estimated effects of EF on subsequent
math achievement in the range of 0–0.10 (Nesbitt et al., 2019;
Willoughby et al., 2018), estimates not far from the median residual
correlations between two of the components and math achievement in
Model 1 for our study (see Table 6).

4.1. Implications

Selecting among the models considered in the current study has
important implications for thinking about the design of early childhood
EF interventions focused on promoting transfer to academic domains in
addition to improving children’s EF, math achievement, or both. Our
results suggest that interventions will be effective to the degree that
they can improve the mechanisms that influence factors general to all
components as opposed to specific components. Interventions targeting
specific EF components (e.g., card-sort task performance or working
memory task performance alone), and not factors common to EF, may
not reliably transfer to mathematics. Currently, the intervention lit-
erature does not provide us with clear answers as to whether there is
reliable transfer from EF to math achievement. Jacob and Parkinson
(2015) demonstrate in their meta-analysis that there is little evidence
that EF interventions alone can boost children’s math achievement.
Non-experimental studies with the strongest statistical controls show
weak predictive power of EF to math achievement, and EF training has
shown inconsistent evidence of transfer to math achievement. Processes
underlying the positive effects of EF interventions on math achievement
likely vary across interventions and samples, and may be attributable to
changes in EF, changes to children’s learning environments in-
dependent of EF, or some combination of both (Jacob & Parkinson,
2015).

The argument that EF interventions should target factors general to
EF components rather than the specific EF components in order to
observe transfer is not new (Diamond, 2012), but it is unclear what
approaches are best for boosting the influences general to performance
across EF tasks. Diamond (2012) suggests that early childhood EF in-
terventions will be most effective when they are increasingly challen-
ging and sustained over time. One-time intervention boosts to improve
children’s EF will not be enough to have substantial or lasting effects on

children’s math achievement. A potentially promising approach for
interventions will be those that are broadly beneficial for EF compo-
nents that are also likely to be beneficial for children’s math skills. This
could include multifaceted interventions that directly target both do-
main general cognitive skills and early math knowledge, or those that
broadly target aspects that are likely common to both domains.

To the extent that factors general to EF tasks can be influenced by
early intervention, such interventions are predicted to have the largest
effects on children’s mathematics achievement. We propose that both
intervention and correlational research on EF will progress more effi-
ciently if predictions from the correlational literature are incorporated
into future intervention designs. Further, we must also carefully con-
sider the mechanisms through which EF interventions influence chil-
dren’s achievement (via a higher-order factor or through specific
components). We recommend that evaluations of EF-targeted inter-
ventions should model the effects of the treatment on EF tasks in ad-
dition to a latent EF factor simultaneously to determine which set of EF
skills the intervention is affecting (i.e., specific EF components, un-
derlying EF construct, or both; for discussion of these issues, see
Protzko, 2017).

4.2. Limitations and future directions

Several issues make the meaning of the latent EF factor unclear.
First is task impurity of EF assessments in early childhood (e.g., Miyake
& Friedman, 2012), and the types of EF tasks used in the study. The EF
tasks chosen for this study likely tap other EF components in addition to
the EF component specifically targeted by the task. We were unable to
include all of the EF tasks that were available in our meta-analytic
database in our models, and the range of EF tasks selected for each
component should be another focus for future research. Tasks that
measure multiple components of EF but are represented by a single
indicator may produce results that appear to be a single component, but
in fact consist of multiple components. If so, perhaps latent EF is not
unitary but a mix of the components that tasks intend to measure. Some
have proposed that this mix of components could be some combination
of causes that affect a variety of cognitive skills through a single causal
pathway (Rhemtulla et al., in press; Tucker-Drob, 2013; Willoughby,
Blair, & The Family Life Project Investigators, 2015), an overlap of
cognitive processes (Kovacs & Conway, 2016), or other causes apart
from shared cognitive processes (Oberauer, 2016).

Second, it might just be the case that the two models tested in this

Table 6
Comparison of path estimates for Latent EF predicting Math (Model 1) and specific components of EF predicting Math (Model 2).

Model 1 Model 1 with residuals added Model 2

Study Latent EF WM residual IC residual CF residual WM IC CF

ECLS-K T1 0.85*** 0.13*** −0.00 −0.04* 0.46*** 0.18*** 0.19***

ECLS-K T2 0.88*** 0.03 0.01 −0.02 0.46*** 0.19*** 0.21***

ECLS-K T4 0.85*** −0.01 −0.01 0.02 0.44*** 0.17*** 0.23***

Blair and Raver (2014) 0.87*** 0.23** −0.07 −0.67a 0.36*** 0.19*** 0.32***

Bull et al. (2008) 0.75*** 0.30** 0.04 −1.36a 0.46*** 0.28** 0.10
Clark et al. (2010) 0.81*** 0.26 −5.86a 0.02 0.38*** 0.28**b 0.11
Fuhs et al. (2014) 0.79*** 0.01 −0.53a 0.09 0.14*** 0.41*** 0.27***

Monette et al. (2011) 0.64*** 0.08 0.03 −0.05 0.32** 0.22* 0.10
Schmitt et al. (2017) 0.80*** −0.02 −0.30a 0.37*** 0.19*** 0.12** 0.48***

van der Ven et al. (2012) 0.44*** 0.08 −0.18 0.09 0.13 0.07 0.26***

Weiland and Yoshikawa (2013) 0.88*** 0.20*** −0.21**a −0.08 0.38*** 0.28*** 0.27***

Welsh et al. (2010) 0.79*** −0.29a −0.00 0.18* 0.14* 0.37*** 0.30***

Willoughby, Wirth, et al. (2012) 0.66*** −0.12 −0.06 0.17*** 0.13*** 0.17*** 0.28***

Note. Latent EF column is from model without any residuals. Residuals for Model 1 were added one at a time and estimated independently of any other residual.
a The standardized effect of latent EF on math was greater than 1.
b The loading on latent EF was greater than 1.
* p < .05.
** p < .01.
*** p < .001.
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study are overly simplified and incorrect. A better understanding of EF
components, their co-development, and their causal structure would
improve the potential for developing useful theories about the co-de-
velopment of EF and academic skills. For example, if EF components are
related in a formative, rather than reflective way, it is possible that
neither of the types of models considered in the current study yields
causally informative estimates (Borsboom, Mellenbergh, & Van
Heerden, 2003; Kline, 2006; Rhemtulla et al., in press; van Der Maas
et al., 2006; Willoughby et al., 2015). Both of these possibilities de-
monstrate the need for more experimental psychometric validation of
EF components, in which subskills are manipulated and transfer to
other components and “upward” to EF are evaluated (Protzko, 2017).
However, existing evidence of small transfer effects from EF training
across tasks (Diamond, 2012) suggests that latent variable models may
be a useful starting place. Our findings most directly point to the im-
portance of specifying a measurement model for EF in future experi-
mental research. If a common factor influences math achievement via
pathways that do not go through EF components, then non-experi-
mental studies will need to account for this possibility. Statistically
controlling for two other EF components in order to isolate the effect of
a third component does not mean that latent EF is also controlled for
(see Schmidt, 2017 for a discussion).

Further, our analyses were not well designed to rule out small ad-
ditional effects of the EF components on math achievement. Even if
Model 1 is the correct model, our results do not convincingly rule out
the hypothesis that the influences of specific EF components on math
achievement are small and positive. We found some support for Model
2, implying relatively large direct effects of EF components on math
achievement. Interventions and non-experimental longitudinal studies
that differentiate between changes in general and specific cognitive
skills would help to test this hypothesis more directly.

Finally, the study is limited by the quantity and quality of measures
available in these datasets. Task impurity is a potential problem with EF
assessments in early childhood (Miyake & Friedman, 2012). Most of the
EF tasks used in the study likely capture some aspects of other EF
components (i.e., inhibitory control, working memory, or cognitive
flexibility) in addition to the EF component targeted by the task. Ad-
ditionally, we analyzed just one task intended to tap each of the EF
components. Future studies should attempt to test whether EF compo-
nents show more discriminant validity during this age range when more
measures are used to assess each component. However, in young chil-
dren, discriminant validity is questionable even when there are many
measures used per construct. Further, among the studies that do have
multiple measures per construct, there has not been strong evidence for
EF component-specific factors influencing math in early childhood
(e.g., Lee et al., 2012; Monette et al., 2011; van der Ven et al., 2012;
Willoughby, Wirth, et al., 2012).

Including some indirect assessments in our study along with direct
tasks may exacerbate the task impurity problem. Our meta-analytic
sample includes nine studies that have direct measures of each EF
component. Seven of the nine studies provide support for Model 1 of
latent EF as the primary influence on math, similar to our results from
the ECLS-K. Of course, we cannot completely rule out this measurement
issue given that two of the studies in our meta-analysis support Model 2
of specific EF components as the primary influence on math (Schmitt
et al., 2017; Willoughby, Wirth, et al., 2012), and one study (Clark
et al., 2010) used an indirect measure, which presented convergence
issues. To the extent measurement error contributes to these results,
this would also be true for all studies that combine EF indicators into
latent variables, a relatively common practice observed in our meta-
analytic articles. The major contribution of this paper is not to show a
large correlation between latent EF and math achievement, but to show
that a common factor model fits as well or better than models com-
monly used to estimate effects of EF components on math achievement,
which has very different theoretical implications.
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