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ABSTRACT 

We developed generalizable affect detectors using 133,966 
instances of 18 affective states collected from 69,174 
students who interacted with an online math learning 
platform called Algebra Nation over the entire school year. 
To enable scalability and generalizability, we used generic 
interaction features (e.g., viewing a video, taking a quiz), 
which do not require specialized sensors and are domain- 
and (to a certain extent) system-independent. We 
experimented with standard classifiers, recurrent neural 
networks, and genetically evolved neural networks for 
affect modeling. Prediction accuracies, quantified with 
Spearman’s rho, were modest and ranged from .08 (for 
surprise) to .34 (for happiness) with a mean of .25. Our 
model trained on Algebra students generalized to a 
different set of Geometry students (n = 28,458) on the same 
platform. We discuss implications for scaling up affect 
detection for affect-sensitive online learning environments 
which aim to improve engagement and learning by 
detecting and responding to student affect.  

CCS CONCEPTS 
• Human-centered Computing → Human Computer 
Interaction(HCI); Applied Computing → e-learning 
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1 INTRODUCTION 

Imagine you are tutoring two students in algebra. While 
working through a problem set for balancing equations you 
notice that one student has become frustrated with the task, 
but the other is engaged and eager for more work. You alter 
your tutoring strategy based on the sensed affect – perhaps 
giving the frustrated student a hint while ramping up 
challenge for the engaged student. This level of adaptivity 
was only possible because you were able to sense your 
students’ affective states – a key dimension of adaptivity 
given the critical role of affect in learning [20, 48]. In fact, 
two decades ago, in a popular book called Emotional 
Intelligence [31], Goleman claimed that expert teachers are 
very adept at recognizing and addressing the affective 
states of their students. But what these expert teachers see, 
and how they decide on a course of action, is still an open 
question despite considerable progress on basic research on 
affect and learning in classrooms [7, 17, 44]. 

It is also important to realize that modern learning 
occurs outside of traditional or even computer-enabled 
classroom. Massive Open Online Courses (MOOCs) and 
other online learning environments present a new 
paradigm for learning. Despite posing new challenges for 
educators, online learning environments have become an 
increasingly popular method for e-learning and distance 
learning [39]. For example, MyMaths [43], a subscription 
service where teachers can assign tasks to students, review 
their progress, and provide feedback, is currently used by 
over 4 million students a year across more than 70 
countries. Online learning environments also play a role in 
traditional environments as alternate instructional 
paradigms, such as flipped classrooms and other forms of 
blended learning [55].  

Despite their widespread use, it is widely acknowledged 
that learning with online platforms can be a cold and 
detached experience [41], with the high disengagement and 
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dropout rates in MOOCs providing an exemplary case [18, 
38]. In contrast, meaningful learning is a deeply emotional 
experience [9, 48, 49]. Is it possible to augment online 
learning environments with mechanisms to sense and 
respond to student affect [7] in order to promote 
engagement and learning? 

Because an intelligent affect-sensitive online learning 
environment must first sense affect before it can respond to 
it, researchers in the field of affective computing have spent 
the last two decades developing systems that can 
automatically detect affect [7, 17, 25]. However, despite 
considerable progress, as evident from the literature review 
(Section 2), current affect detectors are limited in several 
fundamental ways — e.g., they are trained and validated on 
data collected from small numbers of students (< 200), 
across short learning sessions (< 2 hours), usually in a 
laboratory setting (but see [7, 14, 17, 60] for some 
exceptions). Further, much of the current work on affect 
detection does not lend itself to online learning 
environments, where physical sensors often meet political 
resistance (e.g., cameras in schools) and financial barriers 
to scalability (e.g., physiological sensing is still cost 
prohibitive).  

We argue that the time has come for next-generation 
detectors, which aim at scalability to hundreds of 
thousands of diverse students across extended time frames 
of an entire school year and beyond. We ground these ideas 
in a project involving automated detection of 18 affective 
states in 69,174 high-school students who use an online 
math learning platform for an entire school year. To 
promote generalizability and scalability, we use generic 
activity features (number of video plays, forum posts, 
questions complete etc.) that are seamlessly collected as 
students interact with an the learning platform. We also 
show that our affect detection models developed in one 
domain (Algebra 1) can be applied to another (Geometry) 
without retraining and with minimal loss in accuracy. 

2 RELATED WORK 

Because the field of affect detection is vast (see reviews in 
[7, 17, 25]), we focus on affect detection during learning 
with technology, with a particular emphasis on studies 
conducted in authentic educational contexts. This work can 
be divided into sensor-based and interaction-based (sensor-
free) affect detection. 

2.1 Sensor-based Affect Detection 

Much of the work in affect detection has relied on sensing 
streams beyond the standard input devices. Facial features, 

acoustic-prosodic cues, posture and body language, 
physiology and, brain imaging have all been used to detect 
affective states (see review articles  [17, 28]). Sensor-based 
models have been used to infer a variety of affective states, 
including frustration [29, 32], confusion [45], engagement 
[11, 34], interest [24, 42]. Whereas the use of sensors lends 
itself to laboratory environments [37, 40, 42], classrooms 
presents a far noisier environment with less experimenter 
control.  

Nevertheless, about a decade ago, researchers began 
deploying affect sensors in authentic learning contexts. For 
example, Arroyo et al [5] collected data from 38 high school 
students and 29 undergraduates as they interacted with an 
Intelligent Tutoring System (ITS) in a computer-enabled 
classroom. Using data from physiology sensors, webcams, 
pressure sensors, and interaction data (i.e., log files from 
the ITS), they attempted to build detectors of frustration, 
interest, confidence and excitement. Their research was 
pioneering despite issues with large sensing data loss and 
lack of evidence on their generalizability to new students. 

Taking a different approach, Hutt et al. [34] harnessed 
eye gaze to detect mind wandering (related to boredom and 
engagement [57]) while 135 students interacted with an ITS 
in their regular biology classroom. Despite the noisy 
classroom environment, they could obtain valid eye gaze 
for 95% of the sessions, suggesting that consumer-grade eye 
tracking could be used in classrooms.  

In another classroom study, Bosch et al. [12] used 
webcam videos (facial expression and body movement) to 
detect boredom, engaged concentration, confusion, 
frustration and delight as 137 students played a physics 
game across two days. They found that facial features could 
be used to detect affective states, but with considerable data 
loss (35%) when the face could not be reliably tracked in the 
video.  

Finally, DeFalco et al. [29] use posture and body 
movement to detect five affective states while 101 students 
engaged with a military training simulation, designed to 
improve combat medicine. They utilized data from a depth-
sensing camera (Microsoft Kinect) to develop detectors for 
boredom, confusion, concertation, frustration and surprise.  

The variety of sensors used in these studies 
demonstrates the multiple avenues available for affect 
detection in computer-enabled classrooms. However, each 
comes with an additional financial cost and setup cost, 
limiting how sensor-based detectors might scale more 
broadly. And although webcams are standard in modern 
computers, there are several privacy concerns involved in 



 

recording video. These concerns are exacerbated when 
minors engage with online learning platforms in the 
privacy of their homes. Interaction-based detectors avoid 
these issues by providing a sensor-free approach to affect 
detection, as detailed below. 

2.2 Interaction-based Affect Detection  

A student interacting with a digital learning environment 
leaves a rich data trail stored in log files.  The logs document 
student actions, topics covered, videos watched, student 
preferences, and so on. Interaction-based affect detectors 
analyze such log data without the need for any sensors 
beyond standard input devices (mouse, keyboard, etc.). 
Table 1 lists a representative sample of studies in which 
interaction-based affect detection was developed and tested 
for different learning environments. A more in-depth 
discussion of many of these studies can be found in [7]. 
Additional studies follow the same trends (e.g., Pardos et 
al.[45]  trained their detectors with data from 229 
students).” 

These studies all found (to varying degrees of success) 
that interaction data can be mined to build sensor-free 
affect detectors. Importantly, most of the studies utilized 
student-level validation methods (data from the same 
student can be in the training or test set but not both), 
which increases the likelihood that the models will 
generalize to new students. 

We also note a number of other commonalities among 
studies. First, studies have typically considered only a small 
subset of affective states, at most seven, with an emphasis 
on concentration, confusion, and frustration. Second, many 
of the existing studies have relied upon small numbers of 
students to train their detectors, often due to constraints 
regarding obtaining a ground truth affect labels. In 
particular, many studies have relied upon online 
observations, requiring considerable researcher time to 
obtain labeled data. Third, much of the existing work has 
taken place either in the lab or in the classroom. Classrooms 
present a rich ecologically valid environment however, this 
presents a limitation as to how many students can be 
involved in the study as well as how long the study can go 
on. It is very costly to continue to return to the school for 
data collection, placing a logistical and financial obstacle to 
scaling these approaches.  As a result most of the studies 
consist of short learning sessions over one or two days 
(with a couple of notable exceptions). 

3 CONTRIBUTION & NOVELTY OF CURRENT 
STUDY 

The novelty of this contribution is four-fold. First, we 
collected data from a an online learning platform (Algebra 
Nation [3]) used across an entire U.S. state, giving us the 
potential to scale up previous work on affect detection to 
hundreds of thousands of  students. Indeed, whereas 
previous work has focused on data collected from small 
numbers of students in one or more classrooms over short 
periods of time (see Table 1), we collected 133,966 instances 
of 18 affective states from 69,174 students in 1,898 schools 
over an entire school year (36 weeks).  

Second, whereas previous work on interaction-based 
affect detection has focused on system-specific activity 
features (e.g., watching video X while viewing lesson Y or 
answering question id 4567 correct [7]), resulting in models 
that are hyper-tuned to a particular learning domain and 
learning technology. As such, one essentially needs to start 
over when moving from one platform (or even domain) to 
another. In contrast, we use generic activity features (e.g., 
viewing any video lecture, taking any quiz, viewing the 
discussion board), which are more domain- and platform- 
independent. Our features are also common to many online 
learning environments, improving the potential for 
generalizing our results to other environments. Indeed, we 
show that not only do our models trained on one domain 
(Algebra I) generalize to new students within that domain, 
they also generalize to new students from a different 
domain (Geometry I). 

Third, due to the large scale of data collection, ours is 
truly an “in the wild” study compared to previous work on 
affect detection which was often done in the lab or on small 
homogeneous samples. With Algebra Nation, we have no 
control over when or how students use the system. Some 
interactions may be from home, others from the classroom. 
Some are student-driven others are teacher-led. This large 
heterogeneous dataset presents a significant challenge for 
affect detection, but improves the potential to generalize 
across different use cases – an important criterion of 
scaling up. 

Finally, we consider a large range of 18 affective states, 
in contrast to previous work focusing on about 7 states. 
This was needed to accommodate the rich affective profile 
expected when diverse students engage in learning across 
extended time frames. It also provides an opportunity to 
explore how different affective states might be manifested 
in interaction patterns and which are easier/harder to 
detect from our generic activity features. 



  
 

 

 

   

Table 1. Sensor Free Affect detection in Learning Studies 
Study Num.  

Students 
Affective 
States 

Learning 
Environment 

Features Context Session 
Time  

Study 
Duration 

Cross 
Validation 

Ground 
Truth 

Ai et al. 
(2008)[2] 

20 Confusion Why2Atlas NLP Features Lab ~ 1 Hour 1 Day 10-fold 
Instance 
Level  

Retrospective 
Human 
Coding 

Baker et al. 
(2012) [6] 

89 Concentration, 
Confusion, 
Frustration 
Boredom 

Cognitive 
Tutor Algebra 

Interaction 
Features 

Classroom  ~ 1 Hour 1 Day 6-fold 
student-level  

Observations 

Botelho, 
Baker, and 
Heffernan 
(2017) [14] 

646 Concentration, 
Confusion, 
Frustration 
Boredom 

ASSISTments Interaction 
Features, 
Student 
Performance 

Classroom 
Study 

~ 1 Hour 1 Day 5-fold 
Student-level  

Observations 

Conati and 
Maclaren 
(2009) [21] 

66 Joy, Distress Prime Club Interaction 
Features, 
Personality  

Classroom  10 
Minutes 

3 Days Leave 
Several 
Students Out  

Self-report 
Survey 

D'Mello et al. 
(2008) [23] 

28 Confusion, 
Flow, 
Frustration,  
Neutral state 

AutoTutor Interaction 
Features, 
Context 

Lab 32 
Minutes 

1 Day 10-fold 
Instance 
level 

Retrospective 
Human 
Coding 

Lee et al.  
(2011) [36] 

149 Confusion BlueJ 
Programming 
Environment 

Interaction 
Features 

Classroom 
Study 

50 
Minutes 

8 Weeks 10-fold 
Student level  

Observations 

Ocumpaugh, 
et al. (2014) 
[44] 

Unknown Concentration, 
Confusion, 
Frustration 
Boredom 

ASSISTments Interaction 
Features, 
Student 
Performance 

Classroom 
Study 

~ 1 Hour 1 Day 5-fold 
Student level  

Observations 

Rodrigo and 
Baker (2009) 
[51] 

40 Frustration BlueJ 
Programming 
Environment 

Interaction 
Features 

Classroom  50 
Minutes 

9 Weeks 10-fold 
Student 
Level  

Observations 

Sabourin, 
Mott, and 
Lester (2011) 
[53] 

450 Anxiety, 
Boredom, 
Confusion, 
Curiosity, 
Excitement, 
Focus, 
Frustration,  

Crystal Island, 
a narrative-
centered 
learning 
environment  

Personal 
Attributes, 
Interaction 
Features 

Classroom  55 
minutes 

1 Day 10-fold 
Student level  

Self-report 
Survey 

Salmeron-
Majadas, 
Baker, Santos, 
Boticario 
(2018) [54] 

41 Valence, 
Arousal 

English 
Second 
Language 
Writing Task 

Keyboard 
and Mouse 
Logging 

Lab Study ~ 1 Hour 1 Day 10-fold 
Student level  

Self-report 
Survey 

Wang, Y., 
Heffernan, N., 
Heffernan, C. 
(2015) [60] 

Unknown Concentration, 
Confusion, 
Frustration 
and Boredom 

ASSISTments Interaction 
Features, 
Student 
Performance 

Classroom 
Study 

~ 1 Hour 1 Day 5-fold 
Student level  

Observations 

 



 

4 ONLINE LEARNING PLATFORM  

Algebra Nation (AN) is a large-scale online math learning 
platform developed by Study Edge, an educational software 
and tutoring company.  

Students can access AN through the website 
(https://www.algebranation.com/) or a mobile app. Over 
150,000 students use AN each semester in Algebra 1, 
Geometry, and Algebra 2. Each domain uses the same 
interaction framework and range of activities (discussed 
below). Content for each domain is aligned with state 
education standards.  

AN provides video lectures by multiple human tutors 
(shown in Figure 1). Each tutor provides a unique 
perspective on the topic, with different levels of 
expressiveness and technical detail. Students can watch the 
introductory and biographic videos of the tutors and select 
their favorite. AN also offers a “Test Yourself! Practice 
Tool”, which delivers a random set of 10 quiz questions on 
the selected topic. These are selected from a pool of 
questions aligned with state math standards. Students 
answer questions through open text boxes, which are then 
automatically graded. Students may review their 
performance on the quiz questions, view solution videos, 
and revisit quiz questions and topic videos. 

 

Figure 1. Sample Algebra Nation video lecture. 

The AN community interacts through a Discussion Wall 
(separately for each math subject). Students post requests 
for help by submitting text and images, which may be 
answered by other students or study experts (teachers 
working for AN). Students who provide helpful guidance 
are awarded karma points by study experts. Karma 
rankings are shown in a Leaderboard and monthly prizes 
are given to students with the highest karma. 

A suggested topic sequence is provided; however, 
students are free to interact with AN in whatever way they 
(or their teacher) choose. From reviewing the interaction 
data, we note that students primarily used the video 

lectures and the practice tests sections of AN, with the 
social functions being secondary.  

5 DATA COLLECTION  

5.1 Participants 

Our collaborator (the company who runs the online 
platform) randomly selected 114,210 students to participate 
in the present study. All students attended K-12 in a state 
in the East Coast United States and were currently studying 
Algebra 1 during the 2017-2018 academic year. Students 
were able to opt-out of the study by ignoring our survey 
prompts (see below), which resulted in a 60% participation 
rate (N = 69,174). Study protocols were approved by our 
Institutional Review Board.  

5.2 Affect Surveys 

Affect detectors rely on “ground truth” labels for supervised 
classification. These labels can be obtained by acting out 
specific affective states, inducing affective states, or based 
on naturalistic affective experiences (see [27, 35, 50]). Our 
interest was in naturalistic affective experiences, which are 
provided by students themselves via self-reports or by 
informant reports, such as humans performing live 
observations or trained raters coding video data. There is 
no perfect method to obtain affective labels, as extensively 
discussed in previous publications [26, 30, 50]. Given that it 
was impossible to deploy human observers at the present 
scale and that video coding was not possible since there was 
no video, we utilized self-reports for affective labels. 

Accordingly, in conjunction with our collaborators, we 
developed a mechanism to self-deliver surveys based on 
student activity. At each student action (e.g., selecting a 
video; viewing the leaderboard), a random number was 
generated and compared to a probability of triggering a 
survey prompt at that action. These probabilities were 
manually assigned to 19 actions and refined through a pilot 
process of trial and error over a period of a few weeks. Our 
main focus was to balance the number of surveys prompted 
by video viewing and practice quiz actions, which were the 
two most prominent student actions.  

Survey prompts were displayed through a pop-up 
window (Figure 2), each targeting one randomly selected 
affective state (see below). Students could choose to close 
the prompt without answering the survey. Whether a 
student answered the survey or not, they were removed 
from the survey pool for two weeks. These dual 
requirements of easy opt-out of surveys along with 
infrequent prompting provided a light touch approach. The 



  
 

 

 

finalized survey prompts were run from September 24th 
2017 to June 6th 2018 (cutoff date chosen to encompass the 
end of the spring semester for the majority of the school 
districts.). Of the 69,174 students who responded to a 
survey, the average number of responses per student was 
1.94 (median = 1) and the maximum number of responses 
by any one student was 14. 

 

 

Figure 2. Example survey question given to a student while 
interacting with Algebra Nation. 

The surveys targeted 18 affective states. These included 
predominant learning-centered affective states [49], such as 
boredom, confusion, engagement, frustration, and mind 
wandering (related to engagement and boredom). We also 
include core affective dimensions of valence and arousal 
[37], described here as pleasantness and wakefulness. 
Following best practices in survey design [4], we used a 5-
point scale from “Not at all ___” to “Very ____”. For 
unipolar prompts (e.g., not confused to very confused ). 
Whereas 15 affective states used unipolar prompts, three 
states represented polar opposites (mind 
wandering/focused, pleasant/unpleasant, awake/sleepy), so 
we used a 7-point scale with contrasting options (e.g., 
wakefulness had a scale from “very sleepy” to “very 
awake”) for these states. A full list of the survey prompts is 
shown in Table 2. 

We avoided ordering effects by selecting an affective 
state to survey at random. This (intentionally) resulted in 
approximately double the number of instances for the 
bipolar states (see Table 3) of mind wandering, 
pleasantness, and arousal, where there were two questions 
per state. As the questions were the reverse of each other, 
we combined the responses of the paired questions via 
reverse coding. For example, the pleasantness responses 
were left as 1 to 7 whereas unpleasantness responses were 
reversed as |𝑥 − 8| , where 𝑥  is the original survey 
response. 

Table 2. Survey questions used for each affective state. 
Affective state Survey question 
Anxiety How anxious do you feel right now? 
Boredom How bored are you right now? 
Confusion How confused are you right now? 
Contentment How content do you feel right now? 
Curiosity How curious are you right now? 
Disappointment How disappointed do you feel right 

now? 
Engagement How engaged are you right now? 
Frustration How frustrated do you feel right 

now? 
Happiness How happy do you feel right now? 
Hopefulness How hopeful are you right now? 
Interest How interested are you right now? 
Pride How proud are you right now? 
Relief How relieved are you right now? 
Sadness How sad do you feel right now? 
Surprise How surprised are you right now? 
Mind Wandering A moment ago, my thoughts were…  

completely focused on other things  
Mind Wandering  
(reverse) 

…completely focused on what I was 
learning 

Pleasantness How pleasant do you feel right now? 
Pleasantness 
(reverse) 

How unpleasant do you feel right 
now? 

Wakefulness How awake are you right now? 
Wakefulness 
(reverse) 

How sleepy are you right now? 

 

5.3 Generic Activity Features 

We aimed to create student activity features that did not 
rely on domain-specific content (e.g., a video lecture on 
factoring polynomials), quiz items (e.g., solving a system of 
equations), or student input (e.g., reading a request for help 
on the discussion wall). The activity features represented 
counts for each action first computed in 30s chunks and 
then aggregated across 1, 3, and 5 minute window lengths. 
We varied window length to study how much data prior to 
a survey prompt was required for accurate affect detection. 
For some actions, particularly video viewing, the database 
sometimes recorded too many actions within 30 seconds 
(e.g., pausing a video hundreds of times during an interval). 
Although these outliers were rare, we removed them by 
clipping each action to a 10 count maximum per 30-second 
interval.  

In addition to these action counts, we also computed 
additional features on practice quizzes. Two practice quiz 
features recorded whether a quiz was attempted, and 
whether the student returned to a previous quiz question. 
Our final set of 22 activity features included video viewing, 
practice quizzes, and discussion wall viewing, along with 



 

karma awards (based on helpful conduct in the discussion 
wall) and visiting the karma Leaderboard. For a full list of 
features see Table 6. 

Table 3. Descriptive statistics for each affect survey item. 

Survey Question N Mean SD Min Max 

Anxiety 6,358 3.12 1.47 1 5 
Arousal 14,843 3.64 1.94 1 7 
Boredom 6,922 3.50 1.41 1 5 
Confusion 6,570 2.89 1.42 1 5 
Contentment 6,041 3.22 1.41 1 5 
Curiosity 5,969 2.88 1.46 1 5 
Disappointment 6,356 2.69 1.51 1 5 
Engagement 6,269 3.20 1.39 1 5 
Frustration 6,796 2.98 1.51 1 5 
Happiness 6,397 3.07 1.47 1 5 
Hopefulness 6,188 3.23 1.44 1 5 
Interest 6,135 2.90 1.45 1 5 
Mind Wandering 11,842 3.62 1.91 1 7 
Pleasantness 12,398 4.13 2.11 1 7 
Pride 6,265 3.04 1.44 1 5 
Relief 6,181 2.93 1.46 1 5 
Sadness 6,515 2.91 1.57 1 5 
Surprise 5,921 2.82 1.46 1 5 

6 MACHINE LEARNING1 

We experimented with standard classifiers, feed forward 
and recurrent neural networks, and a genetic algorithm 
that learned the structure of neural networks. We also 
generated a chance baseline for each affective state by 
shuffling the survey responses and comparing to ground 
truth. This provided a random baseline that preserved the 
original distribution of responses.  

6.1 Standard Classifiers 

We used the scikit-learn library [47] to implement four 
commonly-used classifiers. These were Bayesian ridge 
regression, decision tree (CART [15]), Gaussian naïve 
Bayes and random forest. Hyperparameters for the random 
forest classifier and decision trees [16, 33], were tuned on 
the training set using the cross-validated grid search 
method provided by scikit-learn [47]. 

6.2 Neural Network Modelling 

We constructed neural networks using the Keras toolkit 
with TensorFlow [1]. We used two model structures: feed-
forward and recurrent. Our recurrent neural network 
contained a single long short-term memory (LSTM) 
activation layer. The LSTM layer implements mechanisms 
of forgetting and retaining information across long input 
sequences. LSTM models were trained on activity features 
computed across each 30-second time intervals (e.g., 10 
                                                                 
1Code for models available at: github.com/emotive-computing/Hutt_CHI2019. 

sequences for the 5-min window). We also explored using 
bidirectional LSTMs (BLSTM), which train both forwards 
and backwards on these sequences. The feed-forward 
neural network (FFNN) used a single fully-connected 
activation layer (i.e., dense hidden layer). FFNN models 
were trained on activity across the 30-second time 
intervals, with no sequential information. The models used 
leaky rectified linear units (Leaky ReLU) as the activation 
function, which enabled computationally efficient training, 
while preventing the “dying ReLU” problem which can 
result in stopped training of portions of a neural network. 
We also used batch normalization, which regularizes 
activations to further increase training efficiency. Input 
features were normalized to the [0,1] range prior to 
training.  

We used 32 neurons in the activation layer of all models. 
The model weight updates were guided by the Adam 
optimizer enhanced with Nesterov momentum (Nadam), 
which changes the magnitude of training updates on the fly 
to reduce the need for fine-tuning learning rates. Models 
were trained for 250 epochs (complete training runs 
through the dataset). 

6.3 Genetic Algorithm 

We also considered a genetic Algorithm (GA) approach – 
the NeuroEvolution of Augmenting Topologies (NEAT) 
algorithm – to evolve the topology of a neural network 
alongside an evolution of the network weights [59]. 
Because NEAT evolves both the weights and topology of 
the network, it must implement the genetic operators of 
mutation and crossover in a unique way to handle 
differences between network topologies. NEAT uses 
population speciation to track individuals with similar 
topologies, restricting crossover to individuals with similar 
network structures to ensure the resulting new topology is 
coherent.  Mutation of the topology occurs in two ways, 
either by the creation of a hidden node or the 
addition/removal of a link between nodes. As the size of the 
networks may grow larger in each new generation, 
constraints are imposed to penalize large networks that 
exceed a complexity threshold.  

To encourage innovation in new generations, NEAT 
implements speciation by grouping networks that share 
similar topologies into the same population. The 
populations are determined by a distance metric that 
computes the distance of a topology of an individual from 
the initial topology of the species. New populations are 
created as new networks which are dissimilar from any 



  
 

 

 

existing population evolved. This strategy allows the 
generation of new individuals by applying genetic 
operators on similar individuals in order to maintain viable 
network topologies without hindering the ability of the GA 
to develop new and unique networks.  

6.4 Cross Validation 

We trained our models via 10-fold student-independent 
cross-validation, performed separately for each survey 
question. Within each iteration, data from 60% of students 
(6 folds) were used as the training set, 30% as the validation 
set (to tune hyperparameters) where appropriate (see 
below), and 10% as the test set. Ensuring that instances from 
the same student are either in the training or testing set and 
inclusion of the separate validation fold increases the 
likelihood of model generalizability to new students. 

7 RESULTS 

We compare model accuracy by computing the correlation 
between the model predictions and the self-report survey 
responses. We used the Spearmen correlation coefficient 
(i.e., Spearman rho) since the true labels are on a Likert 
scale and the model predictions are continuous. All results 
reported are from the test folds. 

7.1 Model Predictions 

We examined activity periods 1, 3 and 5 minutes prior to 
each survey. Results were equitable across time windows 
when averaged across model type and affective states (see 
Table 4). We also examined larger time windows (7, 9 and 
11 minutes) but this did not result in improved accuracy 
(not shown here). 

Table 4. Grand mean Spearman correlation by time 
window. 

Time Window M SD 
1-minute  .18 .08 
3-minute .18 .09 
5-minute .19 .08 
Chance .01 .02 

Figure 3 shows the mean correlations for each of the 
classification methods after averaging across window size 
and affective states. We note that the NEAT algorithm, 
which evolves a network along with its weights, 
outperformed the others on average, with Bayesian ridge 
regression coming a close second. NEAT evolved networks 
with 8 to 37 hidden nodes, suggesting considerable 
variability across affective states. Interestingly, the 
recurrent neural networks (LSTM and BLSTM) were less 
accurate on these data, suggesting that the sequential 
information was of less utility here. 

 Table 5 shows the spearman correlation of the best-
performing model for each affective state and window size. 
On average, the models achieved a correlation of rho = 0.25 
(min = 0.08, max = 0.34), which greatly exceeds the chance 
baseline (average of 0.01, min = -0.01, max = 0.02). The 
correlations were statistically significant for all affective 
states (using the strict threshold of p < .001 to account for 
the large number of instances) except for surprise and 
curiosity (ps > 0.1). The best results were achieved for 
confusion, frustration happiness, and hopefulness (rho > 
0.3) and 12/18 of the correlations were higher than 0.2. 
These correlations, though modest, show that generic 
features are sufficient to predict a majority of the affective 
states we considered.  

Table 5. Best Spearman correlation result across classifier 
and window for each affective state. 

State 
Best 
Result 

Classifier Window 

Happiness 0.34* NEAT 5 Min 

Frustration 0.33* NEAT 5 Min 

Confusion 0.32* NEAT 5 Min 

Hopefulness 0.32* NEAT 5 Min 

Contentment 0.29* Bayesian Ridge 5 Min 

Disappointment 0.29* NEAT 5 Min 

Relief 0.29* Bayesian Ridge 5 Min 

Pride 0.28* Bayesian Ridge 3 Min 

Pleasantness 0.26* Bayesian Ridge 5 Min 

Anxiety 0.23* NEAT 5 Min 

Engagement 0.23* Feed Forward 5 Min 

Interest 0.22* Random Forest  3 Min 

Sadness 0.18* Bayesian Ridge 3 Min 

Mind Wandering 0.17* NEAT 5 Min 

Boredom 0.16* NEAT 5 Min 

Arousal 0.14* NEAT 5 Min 

Curiosity 0.10 Bayesian Ridge 5 Min 

Surprise 0.08 Bayesian Ridge 5 Min 

Average 0.25     
* indicates significant correlation in every fold, p < 0.001 

7.2 Predictive Features 

To further examine how individual interaction features 
predict affective state, we computed linear regressions for 
each affective state and examined the direction of the 
significant coefficients Table 6 (p<0.05 using the Benjamini 
& Hochberg [8] adjustment for multiple comparisons).  

We note that each of the affective states, (with the 
exception of frustration, confusion and boredom) had a 
unique signature of features. For example, being awarded 
karma points or making a wall post were positive indicators 



 

of arousal whereas leaving the Test Yourself suite was a 
negative indicator of arousal. In contrast, frustration and 
confusion shared the same significant features, ostensibly 
because they are known to co-occur [13].  

 

Figure 3. Model grand mean Spearman Correlation 

 

The most predictive features across all 18 affective states 
were completing a video, leaving the test yourself 
environment, making a wall post, and reviewing the 
solution for a test yourself question. As one might expect, 
these features had a different impact depending on the 
affective state. Students were more content, happy, pleased, 
and relieved after completing a video, likely because they 
felt a sense of accomplishment. Conversely, they were 
confused, frustrated, sad, and less aroused, happy, hopeful, 
pleasant, proud, and relieved after exiting the Test Yourself 
environment. Reviewing a Test Yourself solution was 
associated with surprise, confusion, frustration, and 
disappointment, ostensibly because performance did not 
match expectations. Social activities, like a wall post, were 
associated with increased arousal, curiosity, engagement, 
interest, and surprise. Thus, a different profile of affective 
states emerged as a function of video viewing (mild 
positive), testing oneself (mainly negative), and engaging in 
social activities (positive activating).  

7.3 Generalizability to a new Domain 

We also collected data while a different set of students used 
Geometry I with Algebra Nation over the same time period. 
This data was used to address the question of how the 

Table 6. Significant features by affective state.  
+ indicates a positive predictor, - indicates a negative predictor 
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models generalize to a new domain. The Geometry dataset 
contained 51,425 affect surveys responses (mean 2,424 
responses per affective state; roughly double for bipolar 
states) from 28,458 students. We trained the models on one 
of the data sets and tested in on another – i.e., train on 
Algebra and test on Geometry and vice versa. The model 
building procedures were identical as above, except that we 
only focused on Bayesian ridge regression as it was more 
computationally efficient and generally resulted in 
equitable performance compared to NEAT (See Figure 3) .  

The results shown in Table 7 are averaged across 
affective state. We note that the models generalized in both 
directions (Algebra 1 to Geometry and vice versa) across 
the three time windows.  In all cases there were minimal 
accuracy differences (< 0.02) between training on the same 
domain and testing on a different domain. For example, we 
achieved similar average correlations when Geometry 
students were tested on a model trained using Algebra 1 
students (rho = .159) or on different Geometry 1 students 
(rho = .147).  

Table 7. Spearman correlations for generalizability across 
domains. 

  Test Domain 

  
Time before Survey Train Domain Algebra1 Geometry 

1 minute 
Algebra1 0.210 0.154 

Geometry 0.188 0.145 

3 minute 
Algebra1 0.213 0.159 

Geometry 0.193 0.147 

5 minute 
Algebra1 0.213 0.159 

Geometry 0.194 0.147 

8 DISCUSSION 

Online learning environments provide a paradox: they 
greatly promote access (a positive) at the cost of meaningful 
engagement (a negative). An affect-sensitive online 
learning environment can alleviate this challenge by 
simultaneously attending to students’ cognitive, affective, 
and motivational states, which comprise the three key 
components of learning [58]. Affect detection is a critical 
component of such a system. Despite considerable progress 
over the past two decades [17, 25], much of the work has 
focused on sensor-based approaches, which are not well 
suited for online learning. There is corresponding work on 
interaction-based (or sensor-free) affect detection, but this 
has yet to be tested at any meaningful scale – a challenge 
we address here. In the remainder of this section, we 

discuss our main findings, consider potential applications, 
and discuss limitations and future work. 

8.1 Main Findings 

Using only activity features on a large-scale dataset 
collected from 69,174 students over a school year, we 
demonstrated the feasibility of interaction-based detection 
of 18 affective states. Focusing on a large set of affective 
states enables us to derive a more complete student model 
which can address individual differences (e.g. less 
frustration for students with higher prior knowledge), and 
temporal changes (e.g., more anxiety as the final exam 
approaches) in affect. 

We were able to develop affect detectors for all 18 states 
by using both standard and advanced machine learning 
methods. All detectors substantially outperformed a chance 
baseline and 16 out of the 18 yielded significant correlations 
with self-report surveys. We also found that correlations 
varied across the states with the highest scores for 
happiness, frustration, confusion and hopefulness 
(Spearman rho’s of .34, .33, .32, and .32, respectively), and 
the lowest scores for curiosity and surprise (rho’s of .10, .08, 
respectively). This suggests that some states can be more 
easily inferred from activity data than others. Further 
investigation is required to ascertain if an alternate feature 
set may produce better results for the underperforming 
states.  

We acknowledge that these results are modest. 
However, sensor-free affect detection has not previously 
been done with such a heterogeneous sample at this scale, 
providing no point of comparison. Although previous 
research may have obtained higher accuracies, they are 
limited by much smaller and homogenous samples. Further, 
we selected a small subset of generic activity features that 
are more likely to generalize rather than overspecifying 
features to a given domain. Thus, we face a tradeoff. We 
improve the ecological validity and generalizability using 
our approach, however, a large heterogeneous sample 
provides more variability and a generic feature set risks 
underfitting, both resulting in lower accuracy.  

That said, our average rho value of .25 (equivalent to a 
Cohen’s d of .51) is consistent with a medium sized effect 
[19]. We also calculated Pearson correlations for each of 
our detectors, yielding an average r value of .22 (equivalent 
to a Cohen’s d of .45), again consistent with a medium sized 
effect. Several of our results are within the range of 
previous reported research on sensor-free estimation of 
mental states. For example, [56], reported a correlation of 
.38 for detecting depression using a rich source of social 



 

media data in a study of 28,749 Facebook users. As a 
comparison, we obtained correlations > .30 for happiness 
(.34), frustration (.33), confusion (.32), and hopefulness (.32). 
Similarly, [46], trained models on 66,732 Facebook users to 
predict five personality traits. These detectors yielded a 
mean correlation of .33 when evaluated on a test set of 4,824 
users, again using a dataset that is far more content rich 
than the interaction features used in our work. Thus, 
though admittedly modest, the present results provide a 
useful baseline for what can be achieved with a set of 
generic activity features are used for affect detection in a 
large, heterogeneous dataset. 

In terms of generalizability, our results are consistent 
with previous interaction-based affect detectors that 
generalize to new students. However, previous research 
has largely used features tailored to specific domains and 
learning platforms, which makes generalizability across 
domains and platforms implausible. By mainly considering 
generic features, such as video viewing behavior and forum 
posts, we showed that our models generalized to a second 
domain albeit with the same learning environment. In a 
related vein, whereas previous work restricted data 
collection to a lab or classroom context, we had no control 
on the learning context (home, school, afterschool, while 
commuting) and how students chose to use the system, 
suggesting that the models also likely generalize to multiple 
contexts (though we have not empirically shown this yet). 

Finally, we investigated patterns between activity 
features and affective states. We discovered that with the 
exception of boredom, the other 17 affective states had at 
least one single feature as a significant predictor. 
Importantly, of the 22 features considered, only eight were 
predictive of at least one affective states. These eight 
actions, associated with videos, Test Yourself items, and 
Wall posts, can be linked to unique learning 
functions/phases with distinct affective profiles. 
Specifically, video completion is associated with 
information acquisition, test yourself with information 
retrieval, and Wall posting with social functions. 

8.2 Applications 

The key application of this work is to integrate the affect 
detectors into Algebra Nation, so that the system may 
detect affective states in real-time. The resultant data can 
be used in a number of ways, beginning with better 
understanding students’ affective experience during 
learning with this platform. Are certain videos particularly 
engaging, inspiring, or motivating? Do others make 
students’ minds wander or induce boredom? Do some test 

items inspire a sense of accomplishment and hope whereas 
others lead to disappointment and despair? Is the wording 
of some items simply too confusing and in need of 
rephrasing?  Similarly, when testing new content, 
frustrating questions or boring videos could be identified at 
an early stage and revised before integration into the 
system. In addition to informing instructional design, 
automated affective reports can be provided to teachers (in 
anonymized and aggregate form), so they can adapt their 
pedagogical approach as well. 

Affect detection also presents the possibility to develop 
interventions to help students regulate their affect. For 
example, students who show signs of frustration with a 
certain topic might be referred to a particular video that 
may help them. In contrast, students who are engaged 
while viewing a video may be encouraged to try a quiz on 
that topic. Research is needed to identify the optimal 
contextually-grounded strategies for the different affective 
states. It is also important to note that affect detection is 
inherently imperfect. The system might detect frustration 
when the student is actually content. However, affect 
detection does not need to be perfect as long as we account 
for its imperfection when designing intervention strategies. 
For example, Algebra Nation could take a probabilistic 
approach to delivering interventions where the detector’s 
confidence determines when and which interventions are 
launched. Similar accuracies have been used to trigger 
successful interventions in the past [22] but importantly, 
interventions should be constructed to be fail-soft in that 
there are no harmful effects if delivered incorrectly. For 
example, intervening infrequently and allowing students to 
choose if they want to engage in the intervention are some 
possible ways to accomplish this. 

Finally, measurement is a critical component of science, 
and affect detection at scale can advance basic research on 
affect and learning. Our current understanding of how 
affect interacts with cognition to influence learning is based 
on rigorous scientific research, but on small samples and 
timescales ([6, 7, 17, 44]). Automated affect sensing at scale 
and across time can both complement traditional research 
by testing existing theories while also advancing basic 
research by discovering new insights. For example, 
foundational question of how individual differences and 
contextual factors interact to influence and affect and 
cognition have been left unanswered due to small and 
mostly homogenous research samples. Automated affect 
detection on large heterogeneous samples can provide a 
critical piece of the puzzle. 



  
 

 

 

8.3 Limitations 

Like all studies, ours has limitations. As with any complex 
psychological constructs, there is no “direct” way to 
measure affect [52], so one has to rely on operational 
definitions of the construct. We chose self-reports collected 
via an experience sampling method as our operational 
definition of affect, due to multiple constraints articulated 
in the Introduction. This choice has strengths and 
limitations as discussed extensively in [26, 30, 50]. As such, 
all conclusion we draw from this research are restricted to 
our specific conceptualization of affect. Relatedly, our light-
touch survey approach, which only measures one affective 
state per survey, ignores the potential of co-occurrence 
affective states or that multiple states could be occurring in 
the same five minute window.  

Second, though a strength of this work was the use of 
generic features, this also presents a limitation. A generic 
feature set operates at a higher level of abstraction, which 
may aid generalizability at the cost of accuracy.  Indeed, our 
average correlation of 0.25 is consistent with a medium 
sized effect [19], suggesting there is considerable room for 
improvement. It would be interesting to further explore the 
accuracy/generalizability tradeoff by contrasting with low-
level content-specific features, such as particular videos 
viewed and specific questions attempted. 

Finally, we only considered mathematics topics. Although 
we have shown that the models generalize across two 
mathematics domains, it is unclear how they would 
perform on other topics, such as foreign languages. 
Similarly, all data was collected from users from a single 
U.S. state using one learning platform, so it is unclear how 
the models will generalize to students from other states 
using similar online learning technologies.  

8.4 Future Work 

In addition to addressing the limitations described above, 
there are also several promising avenues for future work. 
First, data collection is still ongoing, allowing us to explore 
how well these models generalize to a new academic year. 
There is also the potential to explore how these models 
generalize to students in a different state as Algebra Nation 
is being expanded across the nation. 

Second, we will investigate how the models generalize to 
different topics, either other mathematics topics within 
Algebra Nation, (e.g. Algebra 2) or additional topics in 
similar learning environments. It will be particularly 
informative to discover which activity features generalize 
across environments and whether the links between 
activity features and affective states replicate. 

Third, we will consider ways to enhance our detection 
models. One idea is to build multiple models per affective 
state and combine predictions via ensemble approaches. A 
further idea would be to harness user characteristics in our 
model as done in previous work [7]. By examining how 
usage patterns can be used to group users, we can 
personalize models for each sub-group and even refine 
them using active learning methods [10].  

Finally, we are interested to see how the affective states, 
measured via self-reports and our automated detectors, 
predict critical educational outcomes, such as end of year 
tests. This information will be essential to design affect-
sensitive interventions that help to improve learning 
outcomes by responding to affect. 

9 CONCLUDING REMARKS 

Online learning environments present new opportunities 
and new challenges to students and educators alike. 
Understanding students’ affective experience is one 
important way to address some of the challenges with these 
environments. Our results that we can model students’ 
affective states from their digital traces with these learning 
environments at a previously unexplored scale across an 
extended time frame and in a generalizable fashion. In 
doing so, we have advanced the field of affect computing by 
scaling up affect detection.  
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