
Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 1 of 15

STRANGE, BUT TRUE?
OBJECT-ORIENTED PROGRAMMING IS BEST TAUGHT, AND

LEARNT, WHILE SITTING ON THE FLOOR.
Neil Anderson, Aidan McGowan, Philip Hanna & John Busch

The Queen’s University of Belfast

Abstract

There is a perception amongst some of those learning computer programming that the

principles of object-oriented programming (where behaviour is often encapsulated across

multiple class files) can be difficult to grasp, especially when taught through a traditional,

didactic „talk-and-chalk‟ method or in a lecture-based environment.

We propose a non-traditional teaching method, developed for a government-funded

teaching training project delivered by Queen‟s University, we call it bigCode. In this

scenario, learners are provided with many printed, poster-sized fragments of code (in this

case either Java or C#). The learners sit on the floor in groups and assemble these

fragments into the many classes which make-up an object-oriented program.

Early trials indicate that bigCode is an effective method for teaching object-orientation.

The requirement to physically organise the code fragments imitates closely the thought

processes of a good software developer when developing object-oriented code.

Furthermore, in addition to teaching the principles involved in object-orientation, bigCode

is also an extremely useful technique for teaching learners the organisation and structure of

individual classes in Java or C# (as well as the organisation of procedural code). The

mechanics of organising fragments of code into complete, correct computer programs give

the users first-hand practice of this important skill, and as a result they subsequently find it

much easier to develop well-structured code on a computer.

Yet, open questions remain. Is bigCode successful only because we have unknowingly

targeted predominantly kinesthetic learners? Is bigCode also an effective teaching approach

for other forms of learners, such as visual learners? How scalable is bigCode: in its current

form can it be used with large class sizes, or outside the classroom?

Introduction

In 2012, The Royal Society in London published a report, ‘Shut down or restart?’ (The Royal Society,

2012). This seminal investigation, which details the way forward for computing in United Kingdom

(UK) schools, assesses the current provision for Computing (as an academic subject) in schools in the

UK. It also seeks to understand what, if any, preparation, a subject called ICT (Information and

Communications Technology) affords students as they exit secondary education to commence

Computing disciplines at university or in the workplace.

The subject of ICT was originally designed as a broad-brush introduction to the aspects of applied

computing, a suitable preparation for those students who would be expected to be proficient in the use

of computer programs in a workplace environment. ICT was not designed to provide preparation for

those students that would eventually be designing, developing and deploying computer systems and

software projects in a professional capacity. Indeed, the first main finding of the report from the Royal

Society report says:

The current delivery of Computing education in many UK schools is highly unsatisfactory.

Although existing curricula for Information and Communication Technology (ICT) are

broad and allow scope for teachers to inspire pupils and help them develop interests in

Computing, many pupils are not inspired by what they are taught and gain nothing beyond

basic digital literacy skills such as how to use a word-processor or a database.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 2 of 15

The report goes on to state, that:

There is a need for augmentation and coordination of current Enhancement and Enrichment

activities to support the study of Computing.

Change came in short order. In late 2012, Ofqual (The Office of Qualifications and Examinations

Regulation) which regulates qualifications, examinations and assessments in England and vocational

qualifications in Northern Ireland, initiated reform of AS and A level qualifications (Ofqual 2015).

This included reform of Computer Science and ICT subjects at AS and A level. The timeline for

delivery of these revised subjects was set for the years 2015 to 2019. At present all of the English

examination boards have produced revised A level Computer Science qualifications for delivery from

2015.

In 2013, the local Northern Ireland examining board, CCEA (Council for the Curriculum,

Examinations & Assessment), introduced a new A level specification entitled Software Systems

Development (SSD). CCEA, encouraged by universities and industry alike, developed new curriculum

to teach and assess the fundamental concepts of computer programming, including Object Oriented

Programming (OOP) and Database Design.

While SSD is only in its infancy, the level of participation is worrying. In 2014 a total of 37 students

were enrolled in the SSD AS-Level course by schools across Northern Ireland (AS level is an

Advanced Subsidiary level, the first part of the current A level qualification offered by educational

bodies in the UK). In contrast, there were 1886 students enrolled in the ICT AS level course. In the

following academic year, Queen‟s University Belfast admitted 422 students to Computer Science, or

Computer Science-related, courses where each student is required to undertake and pass a module in

computer programming including OOP. At tertiary level education there is good demand for students

with strong OOP skills.

There is also strong demand from industry for graduates skilled in computing (this area of industry is

sometimes known as the „tech sector‟). The latest „Tech Monitor‟ report (KPMG, 2015) from KPMG

(a global network of professional services firms) outlines the demand from the tech industry in the

final quarter of 2014. The report says:

Tech sector job creation and new business trends also exceeded UK-wide benchmarks by

substantial margins in the final quarter of last year, with firms citing a wave of new product

launches and greater investment spending.

Cleary the lack of participation in SSD at AS-Level is not caused by a lack of demand for students

with programming skills from university or industry. Instead, the problem originates from the lack of

teaching staff with the corresponding skills and experience needed to teach OOP. These teachers are in

chronic shortage in Northern Ireland. In response to this skills gap, the Department of Education (DE)

in Northern Ireland funded a three-year „up skilling‟ course to provide teachers with the skills they

need to teach OOP in secondary education. The course is delivered by Queen‟s University Belfast, and

the bigCode teaching method described herein is an initiative developed as part of this course.

Background

The purpose of computer programming is to write a sequence of instructions that will allow a

computer to automatically perform a specific task or to solve a given problem. There are a number of

programming paradigms (ways of building the structure and elements of computer programs), which

provide for fundamentally different styles of computer programming.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 3 of 15

The procedural paradigm and the object-oriented paradigm are two of the most important paradigms,

and while the two are not mutually exclusive, the distinctions between them are significant enough to

warrant attention.

Procedural Programming

Procedural programming is intuitive. A programmer writes the set of instructions in the order in which

they want to the computer to execute these instructions. Indeed, procedural languages are often

referred to as ‘top-down’ languages. This is a reference to the fact that the programming language

follows Western reading order of left to right, top to bottom.

In procedural programming it is also possible to write routines. These portions of code, which may be

called and executed from anywhere in the program, usually contain step-by-step instructions for

commonly-performed tasks, such as printing text to the screen. Again, the instructions contained in

these routines are executed in the same ‘top-down’ manner.

Object-oriented Programming

OOP takes a fundamentally different approach to procedural programming (Kölling, 1999). In OOP,

the programmer logically divides the problem they are trying to solve into small components, each of

which is considered an object. A typical object-oriented program comprises many objects; each of

these basic units can store information, perform certain behaviors and interact with other elements of

the program.

Most importantly, the objects often relate to real-world entities. For example, consider an animal. In

OOP, we say that an animal is an object. We would expect that an animal would have some attributes,

say for instance, a name. In OOP this is called a property of the object. We would also expect that the

object should be able to undertake some actions, for instance, an animal will eat and sleep. We call

these actions the methods of the object.

When the program runs on a computer, each object is created from a class file. A class is often defined

as a blueprint or a template for an object. The class contains the definitions for the behaviours and

properties for a single object.

Figure 1. A diagram depicting a simple inheritance hierarchy for some animals

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 4 of 15

Objects often have a certain amount in common with each other. The embodiment of this concept in

OOP is called inheritance. Inheritance allows us to arrange classes in a hierarchy where we can define

an “is-a” relationship between these classes. Dogs, cats and horses, for example, both share the

characteristics of animals (they sleep and they eat). Yet each also defines these features in a way that

make them different: dogs eat anything; cats eat chicken and horses eat hay.

Object-orientation is intrinsic to languages such as Java and C#. Skills in both of these languages are

in high demand by software development companies. Consequently, there is great pressure on

secondary schools to teach OOP so that their students are adequately prepared for university Computer

Science courses.

Teaching Object-oriented Programming

Learning to program a computer is difficult, and novice programmers experience a wide range of

difficulties while learning their craft (Robins et al, 2003).

For many students, aged 16 or 17 and learning OOP in secondary school, this is their first experience

of computer programming. (There is, at present, a drive to introduce computer programming earlier in

the UK National Curriculum, from as early as age five in primary school.) Accordingly, much time is

spent teaching these students the fundamentals of computer programming, such as syntax, variables,

data structures, loops and conditional statements to name but a few. Consequently, there is not always

a great deal of time remaining to cover, in a meaningful manner, concepts such as objects, classes and

inheritance.

In general, programming suffers from the paradox of attempting to teach a practical subject using

predominantly traditional theoretical methods. Indeed, there are also a number reasons why, in a

traditional setting, it is difficult to teach these concepts well. We examine each of these in turn.

Practical Laboratory Sessions

Practical laboratory sessions are invaluable for students when learning to program. They offer students

the opportunity to practice writing code in a controlled environment. Modern Integrated Development

Environments (IDE), such as Eclipse also play a supportive role. Features such as code completion,

automatic formatting and the relevant colour-coding of reserved words in the code can all help a

student write better computer code.

IDEs are primarily industrial tools, which we use in order to expose our students to industry practices.

However, the very features that are intended to support a professional programmer are often inhibiting

to the learning process for a novice programmer. A student can very quickly learn to rely on the

features discussed above, rather than learning the fundamental principles of programming for

themselves.

There is also another fundamental limitation concerning the use of an IDE in a teaching environment.

As shown in Figure 2, the ancillary features of the IDE, such as the Package Explorer and the Console,

for example, consume valuable screen real-estate. As a consequence the screen area for the program

code is reduced. It would, of course, be trivial to pop-out the program code for each class into separate

windows; however, even a simple program can often contain numerous classes. Our animal example,

as shown in Figure 1, has five different classes. It quickly becomes challenging for a novice student

programmer to maintain, in their head, a conceptual object-oriented model of all five classes, as well

as the corresponding relationships between each class. This is especially difficult when you consider

that the student is, at the same time, just beginning to learn the fundamental principles of objected-

oriented design.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 5 of 15

Figure 2. A screenshot of the Eclipse IDE being used for Java development

Traditional Classroom/Lecture Sessions

More recently, it has become common for tutors to interlace their theory-based material with live code

demonstrations (Rubin, M. J. 2013; Samuel, S. 2015). These „code demos‟ have proved immensely

popular among students as they give the students an opportunity to learn a piece of theory and

immediately see the same theory in practice. However, useful as they are, live code demonstrations are

still limited.

First, the tutor, rather than each student controls the pace of the demonstration. Of course, the tutor is

usually sympathetic to student requests to revisit a particular aspect of the demonstration, but class

time is ultimately finite, so there is a limit to the time available for a live demonstration.

Second, the tutor is bound by the same screen real-estate limitations that affect students in the

laboratory sessions. It is nearly impossible for the tutor to fit all of the relevant program code from

each class onto a single screen, even for a relatively trivial object-oriented program.

An ever-increasing number of tutors are now recording their live code demonstrations and publishing

these to video sharing platforms such as YouTube (Holliman and Scanlon, 2004; McGowan, A.,

Hanna, P., & Anderson, N, in press). These recorded demonstrations instantly solve the issue with

control of pace. They firmly put the learner in control of the demonstration, allowing them to fast-

forward, re-wind and re-watch as often as they like. Unfortunately the recordings obviously do not

provide any additional screen real-estate.

Eureka!

In 2014 a number of Computer Science lectures were scheduled in a newly refurbished lecture theatre.

As part of the refurbishment, the room, which is unusually wide, was fitted with two data projectors

and two screens, sited side-by-side. In most circumstances, both screens simply mirror the presenter‟s

computer. However, crucially, it is possible to use two computers to present independently on each

screen.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 6 of 15

This configuration of a teaching room will provide for vast improvement in the ability to teach OOP.

At last, students can now see the „full picture‟. No longer will a lecturer have to constantly switch

between different tabs in the Eclipse IDE in order to demonstrate the relationship between the

different classes in an object-oriented program. Instead they can project the code from one class, such

as the Animal class on one screen, and the code from another class, such as the Dog, Cat or Horse

class on the second screen. Allowing the students to simultaneously view code from two classes in an

object-oriented software program will encourage them to establish a meaningful cognitive relationship

between the different classes in the program.

In total Queen‟s University has over 200 teaching rooms and lecture theaters fitted with data

projectors, only three of which are fitted with dual screen technology. Clearly, the dual screen setup is

the exception rather than the rule.

Furthermore, while this technical presentation setup is rare in tertiary education, it is all but unheard of

in a primary or secondary education setting. It is obvious that we are in need a low-tech solution that

will allow us to offer the same learning experience to students in primary, secondary and tertiary

education.

Kinesthetic Leaning in Programming

The development of suitable kinesthetic-based teaching approaches in preference to the traditional

„talk and chalk‟ teaching styles adopted by many schools has long been an area of interest (Bonwell,

C. C., & Eison, J. A. 1991; Wolfman, S. A., & Bates, R. A. 2005). More recently, kinesthetic-based

approaches suitable for the teaching of computer programming have received attention (Pollard, S., &

Duvall, R. C. 2006). These are normally cast as a game-based interaction, where students are taught

that writing a computer program is really a problem-solving exercise. However, more extreme

approaches have also been trialed. In one such approach Poon (2000) proposes that the use of physical

props in teaching programming language is beneficial to students in constructing mental models of the

abstract programming concepts. In another approach Fleury (1997) goes a step further and advocates

the physical participation of students where each person acts out a part of a computer program. For

example, a number of students move round a round physically enacting the process of traversing a

Binary Search Tree.

Our Solution

We developed our solution in an attempt to solve some of the difficulties of teaching programming to

novice programmers. We appreciate that programming is a practical subject and our approach

accordingly makes extensive use of kinesthetic-based teaching approaches: a core part of the learning

process is based on a practical activity. We also ask students to work in groups. This has the added

benefit that it develops team-based relationships and promotes peer learning and problem solving.

These skills are as highly prized in industry as they are in education.

We describe our approach, which is called bigCode, thus. Novice programmers are provided with

numerous printed, poster-sized fragments of program code. Together the fragments contain the code

necessary to complete an object-oriented software program, usually containing five or six classes. The

programmers are also given a small class diagram for the program, similar to that shown in Figure 1.

The programmers sit on the floor in groups and assemble these fragments into the classes which make-

up the program. They must ensure that each fragment is placed in the correct class file and that the

fragments in each class file are presented in the correct order. As shown in Figure 3, the fragments are

provided in a jumbled state, but bigCode only contains the fragments required to create a working

program, it does not contain any false fragments or distractors. bigCode is available for both Java and

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 7 of 15

C#, both of which are object-oriented languages.

Benefits of bigCode

The kinesthetic process of arranging the fragments into completed code helps the novice programmers

develop a number of different skills crucial to good programming practices as well as skills such a

effective team working and peer programming which are both crucial for success in the software

industry.

Learning to Recognise Good Code

Due to the screen real-estate constraints of an IDE it is often very difficult to have all of the code in a

class visible on screen at once. All IDEs, of course, have vertical and horizontal scroll controls, but

even so it is difficult for a novice programmer to become familiar with the appearance of a correctly

formatted and fully functional computer program.

Figure 3. The many code fragments of bigCode.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 8 of 15

Figure 4. Alternative slicing strategies for bigCode fragments.

Figure 5. Class file headers arranged to mimic the program hierarchy.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 9 of 15

Figure 6. bigCode fragments arranged into completed code.

By piecing together the code fragments provided for each class, bigCode allows a novice programmer

to see the all of the source code of a class in its entirety. During the process of putting the code

fragments together, students learn to recognise the silhouette of a correctly laid-out and fully-

functioning computer program.

For example, the code fragments are cut from the code in each class in an inconsistent manner. This

approach is a deliberate to force the students to use their problem solving skills when rebuilding the

fragments into completed program code. For example, as shown in Figure 4, the eat() method is

contained in a single fragment, but this fragment also includes the closing curly brace „}‟ for the Cat

class. In this case, the student must place this fragment at the bottom of the program code for the Cat

class. Failure to do so will mean that the class structure will be incomplete as the closing curly brace

for the class will be in the wrong place.

Contrast the Cat class to that of the Horse class. As shown in the upper two fragments in Figure 4, the

corresponding fragment containing the eat() method for a horse does not include the closing curly

brace for the Horse class. In the Horse class the student can safely put code fragments containing the

eat() and sleep() in any order in the class, as long as they are placed above the fragment containing the

closing curly brace for the class. However, as shown in the lower fragment in Figure 4, the eat()

method for a dog does include the closing curly brace for the class. This fragment, therefore, must be

placed at the bottom of the dog class.

Working through this process will give the students great experience of the layout and structure of

computer programs. This will, in turn, save them a vast amount of time when working in an IDE.

Students that have worked with bigCode will know instinctively when the formatting of a program is

wrong. In short, they will know „just by looking‟ at the shape of the code, if a computer program is

wrong. Clearly, bigCode is a tool, which benefits those with a preference for visual learning

approaches as well as those with a preference for a kinesthetic-based leaning approaches.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 10 of 15

Figure 7. Tabs for each class in the Eclipse IDE

Class Relationships in OOP

Figure 1 depicts the hierarchal arrangement of a relatively simple object-oriented program with

inheritance. However, this basic program with its simple hierarchy is, when implemented, made up of

five different class files. This means that in their IDE, a novice programmer must keep track of five

different files, each one containing the code for a different class. As shown in Figure 7, the five class

files are arranged, in a linear fashion, as five tabs across the top of the screen. This is a sensible and

practical arrangement for experienced programmers, however, for a novice programmer it presents a

number of difficulties. First, by design, the code from only one tab can be shown at once. This means

that a novice programmer must „hop‟ between each of the five tabs in order to read all of the code.

Second, the liner organisation of the tabs does not mirror the hierarchical organisation of the program.

For a novice programmer, these two factors promote a disconnection between the organisational

theory of OOP and the development of the code in an IDE.

bigCode, on the other hand, was developed to deliberately promote a cognitive connection between the

organisation of the code fragments into class files and the hierarchical organization of an object-

oriented program. For example, as shown in Figure 5, a student has deliberately setout the header

fragments from each class file in a manner that replicates physically the hierarchal organisation of the

program.

At present, bigCode is entirely paper-based, and as such does not offer any facility for automatic

feedback or student self-assessment. However, tasks such as the organisation of fragments into classes

is ideally suited to a digital environment. Students could organise the fragments on-screen and

received targeted and meaningful feedback when they make a mistake and again when they complete

the task. This is an area for further development.

Inspiration from Mixed Modality Presentations

Moreno and Mayer (1999) describe a style of teaching presentation, which they term as „mixed

modality‟. This style of presentation can be employed when giving a multimedia explanation or live

demonstration (such as a live code demonstration).

According to the modality principle, words should be presented auditorily rather than visually. In the

content of a presentation, this means that words should be presented as an auditory narration rather

than presented as text on screen.

They found this approach to be superior to process of presenting both the media that is to be explained

on screen alongside text that is intended to explain it.

Further, they found mixed modality to be consistent with Paivio‟s (1986) theory that “when learners

can concurrently hold words in auditory working memory and pictures in visual working memory,

they are better able to devote attentional resources to building connections between them.”

We drew inspiration from the modality principle and extended bigCode such that the process includes

a „Code Walkthrough‟ stage. A Code Walkthrough (IEEE, 1993), which is a process used extensively

in the software development industry, is a form of peer review in which, “a designer or programmer

leads members of the development team and other interested parties through a software product, and

the participants ask questions and make comments about possible errors, violation of development

standards, and other problems”

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 11 of 15

Once a group of students has finished arranging the bigCode fragments into a complete program one

student from the group is asked to lead a walkthrough of the code. The remaining students in the group

act as members of the development team: they ask questions and makes comments about possible

errors. The students are expected to explain to each other how the object-oriented relationships

between the different classes operate. This process promotes peer-learning and is a valuable final step

in the bigCode process as it also allows students to develop peer-programming skills which they will

use extensively in industry.

Form-Factor Considerations

Great care was taken to establish the perfect form factor for bigCode. A number of different variants

were trialed with students, each with varying degrees of success.

Initial Prototype

The first prototype of bigCode was produced using A0 paper. However, this meant that the code

fragments, when printed in landscape, we almost 1.2 meters wide. This made bigCode almost

impossible for the learners to work with. In fact, an area equivalent in size to one quarter of a tennis

court was required simply to allow a group of five people adequate space to set out code for a multi-

class C# program.

A revised prototype of bigCode was produced at A2 size instead. In this revised version the code

fragments were much more manageable, and the project required much less floor space. Crucially,

however, A2 paper is still large enough to provide the learners with the „wow-factor‟ when bigCode is

first presented to them.

Figure 8. bigCode fragments contained in their presentation wallet.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 12 of 15

Smaller Version

Reducing the size of bigCode has some clear benefits. First, the code fragments are easier to handle

and considerably cheaper to produce. Most schools and universities already have access to A3 printers,

which means no specialist equipment is required and therefore a smaller version of bigCode can be

produced in-house (the A2 version of bigCode is simply scaled to fit A3 by the printing software). It is

also much easier to distribute and store the code fragments in A3 format as they easily fit into a

presentation wallet, as shown in Figure 8.

Moreover, smaller code fragments can also be used in more restricted settings. For instance, code

fragments produced from A4, or even A5 paper, can be used in a classroom or lecture theatre

environment. This allows tutors to introduce much sought after interactions into existing theory-based

teaching sessions. Clearly some impact will be lost with a reduction in fragment size; however, in a

given scenario this may be more than made up for by the flexibility offered by a smaller form factor.

Conclusion

Students‟ comments indicate that they like the process of setting out the fragments of code into a

completed object-oriented program. The vast majority of the comments centre on the opportunity that

they get to actually get to see all of the code, from many different classes, at once. A substantial

number of students went on to comment that the process of sorting the code fragments into different

classes allowed them to develop an appreciation, in their mind, of how the relationships between the

different classes in an object-oriented program really work. Finally, a number of students also

commented that they had learnt the importance of „clarity in coding‟ when writing a computer

program. This is a technique where-by programmers for the structural appearance of their code using

white space, tabbed spaces and new lines to clearly and neatly layout the code in their programs. All of

the code contained in the bigCode fragments has been presented in a clean and clear manner, such that

the silhouette of the code in the correct program has a distinctive shape and clarity. The students that

commented on the importance of code clarity all directly attributed their appreciation of this style of

development to the appearance of the code silhouette in bigCode.

Our plans for future work fall into two distinct strands. First, we intend to undertake an empirical

study such that we can fully understand the full pedagogic impact that bigCode has on computing

students in secondary education. Second, we also intent to extend bigCode by developing a digital

edition, allowing us to provide bigCode to a much greater number of students.

Measuring Pedagogic Impact

In the forthcoming academic year we will undertake an empirical study to measure the effectiveness of

bigCode as a teaching approach. In this study, we will create two groups of novice computer

programmers; both groups will have members, which are of a similar age, background and

programming ability. Each group will have a similar number of members and a similar gender

balance. We will use both groups of novice programmers to establish a baseline understanding of the

abilities of each group to produce object-oriented code without any formal training.

We then teach object-oriented programming to the first group using the bigCode technique. We use a

traditional lecture-based technique to teach object-oriented programming to teach the second group.

This study seeks to establish if the first group, having been taught using the bigCode technique, shows

an enhanced level of ability to produce object-oriented code when compared to the control group.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 13 of 15

bigCode Digital Edition

Our intention is to create a digital edition of bigCode. It is anticipated that this edition will make use of

the HTML 5 canvas element, which is a container for graphics, allowing them to be manipulated and

redrawn on the fly using JavaScript drag-and-drop controls. HTML 5 will also allow us to provide

bigCode on the widest possible range of platforms and devices. For instance, the application will work

equally well on touch screen devices, such as the iPad and Android tablets, as well as on an interactive

white-board in a school classroom.

Furthermore, the digital edition will allow us to provide automatic contextual feedback. If the user

places the code fragment in the correct class, but in the wrong place in that class, then the will get a

different feedback massage than if they has placed the code fragment into the wrong class.

Finally, our intention is to develop bigCode Digital Edition in such a manner that it can be delivered as

a multi-screen tablet-based application, with full communication between each of the screens during

operation. This will allow the students to completely mimic the experience of the paper-based bigCode

which will be the true test of the success of bigCode Digital Edition.

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 14 of 15

References

A. E. Fleury (1997). Acting out algorithms: how and why it works. The Journal of Computing in Small

Colleges, 13(2):83–90. doi: 10.1080/08993400500056563

Bonwell, C. C., & Eison, J. A. (1991). Active Learning: Creating Excitement in the Classroom.

ASHE-ERIC Higher Education Reports. ERIC Clearinghouse on Higher Education, Washington,

DC.

Coffield, F., Moseley, D., Hall, E., & Ecclestone, K. (2004). Learning styles and pedagogy in post 16

learning: a systematic and critical review. The Learning and Skills Research Centre.

Holliman, R., & Scanlon, E. (2013). Mediating science learning through information and

communications technology. London, UK: Routledge.

IEEE (1993). IEEE Standard for Software Reviews. Retrieved from:

https://standards.ieee.org/findstds/standard/1028-1988.html

Kölling, M. The Problem of Teaching Object-Oriented Programming, Part 1: Languages. Journal of

Object-Oriented Programming, 11(8): 8-15. doi:10.1.1.39.8492

KPMG. (2015). Tech Monitor. Retrieved from:

https://www.kpmg.com/UK/en/IssuesAndInsights/ArticlesPublications/Pages/techmonitoruk.aspx

Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality

and contiguity. Journal of educational psychology, 91(2), 358. doi:10.1.1.458.4719

McGowan, A., Hanna, P., & Anderson, N. (in press). How Video Lecture Capture affects Student

Engagement in a University Computer Programming Course: Attendance, Video Viewing

Behaviours and Student Attitudes. Paper presented at The European Conference on Educational

Research 2015, Budapest.

Ofqual (2015). Reform of AS and A level qualifications. Retrieved from:

https://www.gov.uk/government/collections/reform-of-as-and-a-level-qualifications-by-ofqual

Paivio, A. (1986). Mental representations: A dual coding approach. Oxford Psychology Series, 9.

Pollard, S., & Duvall, R. C. (2006). Everything I needed to know about teaching I learned in

kindergarten: bringing elementary education techniques to undergraduate computer science classes.

ACM SIGCSE Bulletin (Vol. 38, No. 1, pp. 224-228). doi:10.1145/1124706.1121411

Poon, J. (2000). Java meets teletubbies: an interaction between program codes and physical props.

In Proceedings of the Australasian conference on Computing education (pp. 195-202).

Retrieved from: https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-

computing-in-schools.pdf

Robins et al. (2003). Learning and teaching programming: A review and discussion. Computer Science

Education. 13(2), 137-172. doi:10.1076/csed.13.2.137.14200

Rubin, M. J. (2013). The effectiveness of live-coding to teach introductory programming.

In Proceeding of the 44th ACM technical symposium on Computer science education (pp. 651-

656).

Strange, but true? Object-oriented programming is best taught, and learnt, while sitting on the floor.

 Author Name: Neil Anderson
Contact Email: n.anderson@qub.ac.uk

AARE Conference, Western Australia 2015 Page 15 of 15

Samuel, S. (2015). Teaching Programming Subjects with Emphasis on Programming Paradigms. 2014

International Conference on Advances in Education Technology (ICEAT-14). Atlantis Press.

The Royal Society. (2012). Shut down or restart? The way forward for computing in UK schools.

Wolfman, S. A., & Bates, R. A. (2005). Kinesthetic learning in the classroom. Journal of Computing

Sciences in Colleges, 21(1), 203-206.

