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ABSTRACT 

The “doer effect” is the assertion that the amount of interactive 

practice activity a student engages in is much more predictive of 

learning than the amount of passive reading or watching video the 

same student engages in.  Although the evidence for a doer effect 

is now substantial [6, 7, 12], the evidence for a causal doer effect is 

not as well developed.  To address this, we mined data for evidence 

of a causal doer effect across multiple domains.  We examined data 

from two online courses in Psychology, one in Biology, one in 

Statistics, and two in Information Science, applying causal 

discovery algorithms [14] in Tetrad  to each.  Assuming that factors 

driving a student’s choices regarding how to spend their time in an 

online course are temporally prior to their performance on quizzes 

and exams, we found evidence of a causal relationship in every 

domain we studied.  We did not find evidence that a unique causal 

model held in every domain we studied, but when we estimated the 

size of the causal relationships in the models we found in each 

domain, we did find evidence in every case that doing has a much 

stronger quantitative effect on learning than either reading or 

watching video.  This work may be the first EDM effort to explore 

the generalizability of a causal claim about learning across multiple 

datasets from a variety of courses and contexts of use.  It makes 

vivid the role of causal data mining algorithms in educational 

research. The evidence presented furthers the case for doer effect 

causality, but also recommends a need for richer data with more 

student background and learning process variables to better isolate 

causal directionality without assumptions about temporal order and 

unmeasured confounds.   
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1. INTRODUCTION 
When students take an online course, or use a cognitive tutor, a log 

of data is created that records their interactions with the course or 

tutor.  Mining this data for causal information concerning what 

sorts of student behaviors cause better learning outcomes is crucial 

if we are to intervene, either on the design of the online material, or 

on the student’s behavior more directly.    

In this paper, we explore the causes of learning in several online 

courses using Tetrad and Tigris/LearnSphere.  Tetrad 

(http://www.phil.cmu.edu/tetrad/) is a causal discovery tool that 

has already proved helpful in educational data mining [6, 10], and 

LearnSphere is a collaboration dedicated to providing data and 

tools for analyzing information pertaining to student learning 

(http://learnsphere.org/).  LearnSphere combines data and analysis 

tools with Tigris, a workflow tool that connects data from the 

educational data repository DataShop [5] to analytical programs 

such as Tetrad.  Tigris runs in a web browser and has functionality 

to use the abilities of Tetrad and share results of analyses with other 

Tigris users. Tigris allows users to test theories across diverse 

datasets, and this was precisely our goal in the work we describe 

here.  Tigris connects analytical tools to data and users via their 

research. LearnSphere users can upload datasets to DataShop [5] 

and make them available in workflows. They can also share their 

own analytics as well as workflows they construct in Tigris. The 

causal models and analysis in this paper were executed using the 

Tetrad implementation in Tigris. 

The causal discovery algorithms in Tetrad operate on graphical 

causal models [14], which allow us to rigorously represent the 

qualitative causal structure of a domain with a directed graph, and 

to connect the structure of the graph to statistical constraints that 

we can test on measured data. The algorithms compute the 

equivalence class of causal structures that are consistent with 

background knowledge about the domain.   In some cases the 

equivalence class is not very informative - for example the 

equivalence class of a system of two variables X,Y that are 

correlated is: X → Y, X ← Y,   X ← Confounder → Y.  In systems 

involving more than 2 variables, the causal information from an 

equivalence class can be much more informative.   

The question of how to judge whether or not to believe an 

equivalence class output by the algorithms is very complicated and 

very interesting.   All models within an equivalence class have the 

same “fit” with data, but whether the statistical fit is “good enough” 

to warrant belief depends on a large number of factors.  This is by 

no means a problem that is special to causal discovery algorithms, 

however, and it is not the subject of our work.  It is one that should 

concern all data-mining procedures, including ones that involve a 

single human building a hypothesis and then testing it on a single 

dataset.    

Our concern in this paper is whether or not evidence for a causal 

doer effect generalizes across courses and contexts.  We studied 

courses with diverse subject matter and diverse student 

populations.   

The “doer effect” is the assertion that the amount of interactive 

practice activity a student engages in is much more predictive of 

learning than the amount of passive reading or watching video the 

same student engages in.  We want evidence of a causal doer effect, 

that is, intervening to increase the amount of interactive practice 

would result in better learning outcomes. 

Previous work has provided some evidence for a causal doer effect. 

In [12], 52 students at the University of Pittsburgh took an online 

course in which five variables were measured: pretest, percent of 
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modules printed, percent of interactive exercises completed as a 

measure of “doing”, average end of module quiz score, and score 

on final exam.  

Printing out modules was convenient and more common among 

good students, but it reduced the likelihood that students would 

complete interactive exercises (they could not do these on the 

printed modules). It thus served as an “instrument” for the doing → 

Quiz → Final exam relationship. 

This relationship between performing active assignments and a 

learning outcome was directly researched in [6] and coined the 

“doer effect” in [7].  A dataset with six variables was examined in 

[6].  In this data, the relationship between doing and learning was 

far stronger than the relationship between passive activities such as 

watching videos or reading course material and learning.   

Furthering the evidence for the doer effect, in [7], the relationship 

was tested on four other datasets, using regression methods. These 

were a diverse set of courses, but all had shown a strong link 

between doing and learning.  While a strong correlation between 

doing and performance was shown in [7], the causal relationship 

was not tested.  In this paper, we extend the investigation of 

whether the doer effect is causal by explicitly employing causal 

discovery techniques in Tetrad to these additional datasets. 

We examined relationships between approximately six variables 

that are persistent throughout course subject matter, student 

populations, and time.  Our research question: Is there evidence that 

the doer effect is causal across multiple contexts/datasets? 

2. RELATED WORK 
Much of the EDM research has investigated correlational 

relationships in predictive models.  In [11], correlations of variables 

predict whether a student will enroll in college.  While having a 

successful predictor of college attendance is good, it would be more 

useful to educators to understand the causes of college attendance 

so they can make interventions and increase applications and yield. 

In [13], correlation mining is used to explore a relationship between 

the features of a math problem and student learning. They 

acknowledge that future work would have to go into determining if 

these relationships are causal. Only once the relationships are 

determined to be causal can they assuredly be used to influence 

course design.  Analyzing whether these relationships are causal by 

performing a randomized assignment experiment is the gold 

standard for making causal inferences, but this is often impractical, 

and there are thousands of non-experimental datasets available with 

which we can test the external validity (or generalizability) of 

hypotheses across multiple contexts [8].  Thus, it is worthwhile to 

pursue the use of causal discovery methods designed for non-

experimental data on such datasets [6, 9].   

Research into students’ attitudes toward a math tutor [4] conclude 

that correlations exist between empathetic messages in the tutor and 

a student’s mood toward it.  They suggest that the positive 

correlation they found is indicative of a relationship in which 

increasing the empathy of these messages would cause a better 

mood amongst the users of the tutor. This implies a causal 

relationship, but they do not consider confounding variables or 

causal discovery algorithms [14]. 

Previous work in EDM that has researched causal relationships 

include [3] and [9].  Both of these use causal discovery algorithms 

and [9] uses Tetrad.  Rather than resource use variables found in 

this paper, [3] uses variables that measure a student’s interest and 

actions in a tutor, and it provides evidence for causal relationships 

between these variables and a final exam grade. 

These past efforts [3, 6, 9, 12] have performed analyses on single 

datasets and, as such, there remains an opportunity to use the vast 

number of datasets available to probe external validity.  This paper 

is distinctive in this regard -- to our knowledge, this is the first EDM 

effort to explore the generalizability of a causal claim about 

learning across multiple datasets from a variety of courses and 

contexts of use. 

3. METHODS: CONFIRMATORY & 

EXPLORATORY WITH CRITERIA 
We pursued both confirmatory and exploratory approaches to 

addressing our research question by analogy, for example, to 

confirmatory and exploratory factor analysis [15].  

3.1 Method 1: Confirmatory Analysis of 

Causal Model Generality 
Our confirmatory analysis involved testing a causal model that 

displayed the doer effect that was derived from data aggregated 

from a class offered at Georgia Tech in 2013, 

(https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=863) on 

five other datasets. We tested if the model statistically fits each 

dataset, according to the goodness-of-fit measures common in 

linear causal models [14].  We know of no successful attempts to 

test a specific causal model discovered on one dataset on other 

datasets collected in widely varying contexts, as in our datasets 

which have different kinds of course activities collected in different 

educational settings and with different available measures of 

student performance and different sizes of data. In attempting this 

confirmatory analysis, we discovered that it was neither going to 

confirm nor deny the doer effect hypothesis. We present it 

nevertheless as a cautionary message for others who may be 

tempted to do the same and to explain how dataset variations, 

particularly dataset size, make inferences from a confirmatory 

analysis problematic.  

The causal model in Figure 1a was the model discovered on data 

from a 2013 Georgia Tech psychology course [6].  The model was 

previously [6] discovered using the Tetrad Java application, but in 

this paper, the analysis was performed using Tetrad’s 

implementation in LearnSphere’s Tigris workflow tool resulting in 

the same model structure, with negligible edge coefficient 

differences. The dataset features six variables measured on 939 

students.  One variable is a prior knowledge assessment (Pretest), 

one is a measure of doing in terms of the number interactive 

activities students performed (activities_started), two are measures 

of student use of passive learning resources including text page 

reading (non_activities_pageview) and video watching (play), and 

two are measures of learning outcome including the total across 11 

unit quizzes (T.Quiz) and a final exam score (Fina_Exam). A 

directed edge in a causal model depicts evidence of a direct causal 

relationship between the variables.  The coefficient on the edge is 

an indication of the strength of the causal relationship.   

The primary feature to note in the causal model in Figure 1a is that 

while the outcome measures (T.Quiz and, indirectly, Fina_Exam) 

are effects both of passive resource use (non_activities_pageview 

and play) and active resource use (activities_started), it is the active 

resource use that exhibits the much stronger relationship. This large 

difference (0.44 vs. .06) is the doer effect. It is also important to 

note that the edges in the model do not represent correlations 

between the variables; they express and quantify direct causal 

relationships. For example, while activities_started and Fina_Exam 

have a correlation coefficient of 0.28, the causal inference 

algorithm determines they do not have a direct causal relationship. 
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It does so by finding that when conditioned on T.Quiz, Fina_Exam 

and activities_started are independent.  

A final note is to emphasize that the causal claims are about the 

constructs being measured not about the measures themselves. For 

example, the causal link between T.Quiz and Fina_Exam indicates 

that better competence attained during the course (the construct that 

T.Quiz measures) causes better competence at the end of the course 

(the construct that Fina_Exam measures).  It does not imply that 

merely raising a T.Quiz (e.g., by making the quiz easier) would 

cause final exam scores to increase 

A difficulty with testing a model on different datasets is the 

fluctuating naming schemes of variables and the inconsistency with 

which variables are contained within datasets.  For instance, 

GTech’s psychology dataset contains seven variables while a 

dataset from The University of Maryland University College, 

which is also used in this paper, has four variables.  The four 

variables in the UMUC data are a subset of GTech’s psychology 

data.  For each dataset, we used the closest set of variables we could 

construct.  Table 1 shows our decisions.  

To facilitate comparison across datasets in the confirmatory 

analysis, we used the maximum number of variables that were 

common to the original dataset and the dataset being tested.  We 

used five variables when we tested the original model on C@CM 

and four variables when we tested it on the UMUC datasets. 

While we received UMUC data from the previous study [7], we 

added a sixth dataset from an online course on basic computing 

offered at Carnegie Mellon which we call Computing@Carnegie 

Mellon.  A pre-assessment variable was created for each student by 

averaging the highest scored attempt at each pre-assessment quiz.  

The same process was performed on unit level assessments for each 

student.  The number of active activities was the number of 

activities that each student started, and the number of passive 

activities was calculated in the same way as [6].  For a student to 

get to an activities page, they needed to visit a readable page.  To 

accurately represent the number of pages read by a student, the total 

number of readable pages each student visited was subtracted by 

the number of activities they performed divided by a ratio.  This 

ratio was the number of activities started to the total pageviews of 

the student with largest number of activities started.  Therefore, the 

page viewing variable would not quantify the pages that students 

viewed merely as a stepping stone to get to activities.  Once we 

made these datasets compatible with GTech’s data, we could test 

our original model on five datasets.  

3.2 Method 2: Exploratory Analysis with 

Criteria 
Our second pass at answering our research question involved 

exploratory analysis whereby we applied a causal discovery 

algorithm to each dataset instead of confirming the original model 

on the other datasets.  In this approach, we don’t expect to find the 

same model on each dataset, but we do hope to see evidence of a 

causal doer effect in each context.  We asked the question:  What 

are the properties of the search output that would constitute 

evidence of the causal doer effect?  These properties will be the 

criteria that we use to determine if each different context provides 

evidence of a causal doer effect.  We identified them as: 

Properties of a causal model exhibiting evidence of 

the causal doer effect. 

1. There exists a causal edge between doing and either of the 

outcome measures that has a positive coefficient estimate. 

2. The strength of this causal edge is larger than all the edges 

from passive resource use to the outcome measures. 

3. The edge(s) between doing and outcome(s) is oriented from 

doing to an outcome. 

 

4. RESULTS 
We now provide results from the two methods, first the 

confirmatory analysis and then the exploratory analysis. 

4.1 Confirmatory Analysis: Testing a Causal 

Model Across Multiple Datasets 
In order to determine if the causal model discovered on GTech’s 

psychology course data would fit other datasets, modifications to 

the data were made to ensure that all datasets were comparable.  We 

show in Figure 1 the causal model that was used as a “modified 

original” causal model, which was in turn then tested on new data.  

We arrived at the “modified original” model by applying the same 

causal search algorithm to the original data set – but with the set of 

variables that were common to both it and the dataset to be tested. 

Happily, these models are strongly consistent with the original.  For 

instance, when the play variable was removed, the value of the edge 

from non_activities_pageview to T.Quiz (i.e., 

non_activities_pageview→T.Quiz) should be adjusted.  This 

adjustment should be equal to the original edge between these 

variables plus the product of the edges from the two edges that were 

removed (i.e., non-activites_pageview→play and play→T.Quiz). 

 

Table 1.  How the various naming schemes of datasets relate to each other. 
 

Psychology Georgia Tech UMUC: Bio, Psych, Stat, InfoSci C@CM 

Pre-assessment  Pretest 
 

Pretest 

Doing activities activities_started activities_started activities_started 

Reading text pages non_activities_pageview non_activities_reading non_activities_pageview  

Watching lecture videos play 
  

Unit level assessments T.Quiz total_quiz_proportion T.Quiz  

Cumulative assessment Fina_Exam final_grade_in_number C@CM_Final_Exam 
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non_activities_pageview→T.Quiz + 

(non_activities_pageview→play * play→T.Quiz) = edge’s new 

value 

0.0650 + (0.1149*0.0645) = 0.0724 

The model estimated the new value for the edge from 

non_activities_pageview to T.Quiz to be 0.0713, which is 

consistent with the calculation above. 

The causal models in Figure 1 show yellow edges.  These edges 

were originally either unoriented in the representation of the 

equivalence class or were oriented as bidirected edges.  Before we 

can estimate and test a causal model, we must direct all edges to 

form a directed acyclic graph.  Therefore, before estimating, the 

undirected and bidirected edges were arbitrarily converted into 

directed edges - and such edges are shown in yellow to caution the 

user against inferring any directional information from such 

edges.  In Figure 1c, if the edge were directed the opposite way, the 

coefficient would still be 0.3927.  Removing variables such as play 

and Pretest still allowed for models that show strong doer effect to 

be discovered, which is consistent with [6]. 

The structures of the models in Figure 1 were then applied to the 

other five datasets, and these models were estimated to determine 

how well the exact causal structure of the “original model” fit the 

new data.   The results of the confirmatory analysis are summarized 

in Table 2.  As was expected, whether the original causal structure 

fit other datasets was inconsistent.  UMUC’s psychology dataset fit 

very well to this causal model having a p-value of 0.59, however, 

the rest of the p-values from full datasets were low.  It is worth 

noting that the only full data set to fit GTech’s psychology course, 

was another psychology course.  UMUC and GTech’s psychology 

courses have the same content (online readings and interactive 

activities).  The differences between these datasets were the 

population that created the data and the number of variables. 

GTech’s course had all of the variables that UMUC’s course had 

with the addition of the number of videos watched and a pretest. 

Therefore, once the video watching and pretest variables are 

removed from GTech’s psychology dataset, the same causal model 

would be expected to be discovered on GTech’s and UMUC’s 

psychology data. 

In large datasets, e.g., with N > 2000, the goodness-of-fit 2 statistic 

is of limited use, as it not only tests for causal structure, but it also 

becomes sensitive to small deviations from linearity, or normality, 

or other parametric assumptions that have little to do with the causal 

structure.  To test whether the statistic is rejecting the model 

structure or fine-grained violations of the parametric assumptions, 

we took a random sample of 300 students from each of the UMUC 

datasets and then re-estimated and tested the model.  The smaller 

biology sample showed a much better fit than its full dataset, 

however, at a p-value of 0.02, the model is still rejected.  The 

sample from the information science course showed an excellent fit 

with a p-value of 0.49 and a chi-square value that differs from the  

 

 

 

 

Figure 1.  Using subsets of variables from the 
Georgia Tech Psychology dataset, three causal 
models were discovered using the PC algorithm 

and an alpha value of 0.05 as in [6]. 

Table 2.  The causal model that was discovered on GTech’s psychology dataset was estimated using data from 
datasets listed in the first row of the table.  

 

UMUC 
Biology 

UMUC 
Info Sci 

UMUC 
Psychology 

UMUC 
Statistics 

C@CM 

UMUC 
Biology 
(sample) 

UMUC Info 
Sci 

(sample) 

#Students 3516 6112 89 61 383 300 300 

Chi-square 78.89 18.44 1.04 28.33 14.30 11.92* 3.32* 

DOF 2 2 2 2 4 2 2 

P-value 0 0 0.59 0 0 0.02* 0.49* 

*average of multiple trials with different samples 

 

χ2 = 7.27 
DOF = 7 
P-value = 0.4 

χ2 = 3.81 
DOF = 2 
P-value = 0.15 

χ2 = 4.52 
DOF = 4 
P-value = 0.34 

(a) 

(b) 

(c) 
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degrees of freedom of the model by only 1.32.  We take this to be 

evidence, although only weak evidence, that the causal structure in 

the “original model” is reasonably consistent with the measured 

data.  This marginal fit exceeds expectations given the history of 

difficulty in fitting single models across domains. Given the 

diversity of the datasets and lack of control between them, any 

indication of generalizability adds to external validity even though 

the fit was marginal. 

4.2 Exploratory Analysis: Causal Doer Effect 

Criteria Across Multiple Datasets 
The inconsistencies in fitting a single, exact causal model across 

such diverse datasets are to be expected.  A more targeted approach 

focuses the evaluation on just the variables of interest for assessing 

the causal doer effect. As described above, we defined three criteria 

to indicate whether a model provides causal evidence for the doer 

effect. We searched for causal models on each dataset and then 

evaluated them by these criteria.  Unlike the confirmatory strategy 

(as shown in Figure 1), where models were discovered on one 

dataset and estimated on another, these models were discovered and 

estimated on the same data, as is the norm in causal discovery and 

as was done previously [6, 12]. 

Figure 2 shows the results of this analysis. For every dataset we 

discovered a model that fit the data well (with the exception of 

Biology, where the model discovered is untestable because it 

entails no constraints and thus has 0 degrees of freedom). The 

causal model discovered in [6] was found using the PC algorithm 

with a p-value cutoff (alpha) of 0.05 for detection of reliable links 

between variables.  This is the algorithm and alpha value that 

produced a model with largest p-value upon estimation – indicating 

the model does not significantly deviate from the data and thus is a 

good one.  For the datasets in Figure 2, we also used the PC 

algorithm with alpha = .05, .1, or .15.   

In order to assess the goodness-of-fit of the whole model, we use 

the p-value of the χ2 statistic [1].  Unlike the usual logic in 

hypothesis testing, the p-value in this context uses a null of the 

specified model.  So, a low p-value indicates that we should reject 

the specified model, while a p-value over .05 indicates that we 

cannot reject the specified model from the data measured.  In 

general, the χ2 test is more tolerant of simple models, and simple 

models are also favorable since they only show the strong, 

important edges. 

The models in Figure 2 were discovered using the same many-

tiered prior knowledge as the models in Figure 1 and Table 2.  This 

 

Georgia Tech Psychology 

 

Computing@Carnegie Mellon 

 

UMUC Psychology 

 

UMUC Information Science 

 
UMUC Statistics 

 

UMUC Biology 

 

 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 7.27 
DOF = 7 
P-value = 0.4 
 

Alg.: PC 
Alpha: 0.1 
 

χ2 = 3.85 
DOF = 4 
P-value = 0.43 
 

Alg.: PC 
Alpha: 0.15 
 

χ2 = 1.21 
DOF = 3 
P-value = 0.75 
 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 0.27 
DOF = 1 
P-value = 0.60 

 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 0.32 
DOF = 2 
P-value = 0.85 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 0 
DOF = 0 
P-value = NaN 

Figure 2.  Causal models of various datasets.  To the bottom right of each model are the search algorithm and p-value cutoff 

for searching (alpha) used to discover the model.  Below that are the model statistics when estimating the model on the dataset: 

Chi-square (χ2), degrees of freedom in the model (DOF), and p-value. 
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prior knowledge assumes that the pre-assessments and weekly/unit 

assessments were taken before and after the doing and passive 

activities, respectively.  This is an assumption that prohibits causal 

directionality that violate the temporal order, but it is not an 

assumption that a causal edge exists.  That is, the assumption does 

not guarantee that the algorithms will find any edge between doing 

and learning.  If it does find an edge, then it will be directed from 

doing to outcome as opposed to vice versa.  

Setting these tiers for input in the search algorithms in Tetrad 

dictates that if a causal link is to be found between variables 

between temporal tiers, then the directionality of the edge will be 

from the tier earlier in time to the tier later in time.  Again, putting 

the doing variable in an earlier tier than an outcome variable does 

not guarantee that Tetrad will find a causal link between the two 

variables.  

We then asked whether the models discovered from each data set 

satisfy any of the three properties that indicate a causal doer effect 

as we had listed before.  Analyzing Figure 2, all six datasets we 

used in this paper produced causal models that meet all three 

criteria of a model with a causal doer effect.  For example, 

C@CM’s causal model has a directed edge with a coefficient of 

0.2074 from doing to an outcome measure, therefore displaying the 

first and third properties.  The coefficient from the only other 

resource use variable (non_activities_pageview) was -0.122.  The 

strength of the causal edge is larger than the edge from passive 

resource use to the outcome in C@CM, thereby showing the second 

property.  The model for UMUC’s biology class is not testable as a 

model, as it has 0 degrees of freedom.  Nevertheless, the model 

along with the estimated coefficients on the edges support all three 

criteria of a causal doer effect.   

5. DISCUSSION 
We build off of the work in [6] by providing evidence to suggest 

that the doer effect is indeed causal.  Data from a variety of different 

online courses (Psychology, Computing, Information Science, 

Statistics, and Biology) and course use scenarios (MOOCs and for-

credit college courses), analyzed with causal discovery algorithms 

all provide evidence that the doer effect is causal and not just 

associational.   

The correlation between doing and outcome is interesting, but 

establishing the correlation does not specify whether an 

intervention on doing would affect outcome.  If the doer effect is 

causal, then modifying learning environments to guide or 

encourage students to spend more time engaging in interactive 

activities will result in more learning. 

In addition to finding evidence for a causal relationship between 

doing and learning, we articulated what we hope are useful new 

methods for discovering and testing for cause-effect relationships 

across diverse datasets.   

For our confirmatory strategy, we tested models discovered in one 

context on data from another.  Finding models that fit a held-out 

subset of data is protection against overfitting – but it does not mean 

that those models will fit datasets collected in entirely new contexts, 

in fact, it is nearly impossible to fit across datasets as diverse as 

these.  Although models developed for educational research seem 

unlikely to fit in new contexts, we found that features of the causal 

model of the doer effect found in Georgia Tech data did seem to 

generalize. The specific model discovered on Georgia Tech’s 

Psychology course data fit extremely well on the data from 

UMUC’s Psychology data.  The courses had the same content, but 

they had different students and were offered in quite different 

settings (MOOC vs. for-credit course). A marginal fit of the causal 

model from GTech’s Psychology course onto UMUC’s Biology 

and Information Science courses provides some support, albeit 

limited, for even broader generalization of a specific causal model 

across different contexts.  Given that task has been shown to be 

nearly impossible, these results are significant even though most 

fits were marginal. 

The inconsistencies of fitting a specific model across contexts is not 

an indication that a causal doer effect is not present throughout the 

contexts, it is, however, an indication that an exact model is 

inconsistently present throughout the contexts.  The difficulty of 

fitting a specific model across contexts led us to reconsider this 

confirmatory approach. Although a fully specified causal model 

failed to generalize, it appeared to be due to differences in links 

between variables that are not relevant to the main question of 

whether the doer effect is causal. Thus, we developed a method to 

examine just the key claims of the target theory, in our case, a 

theory of a causal doer effect.  We did so by generating a causal 

model in an exploratory fashion for each dataset and then 

evaluating the resulting model as to whether it fit the key criteria 

for providing evidence of the doer effect.  

In all datasets we found that: 1) there was a positive causal edge 

between active doing and either of the outcome measures, 2) the 

strength of this causal edge was larger than all edges from passive 

resource use (reading and watching) to the outcome measures, and 

3) the edge(s) between active doing and outcome(s) was oriented 

from doing to an outcome.   

This work provides many possible subsequent inquiries.  One area 

of future work is to test the assumption on the directionality of the 

causal link between doing and learning outcome.  In this paper, we 

used temporal knowledge to constrain the search algorithms to 

direct a causal relationship, if one was found between doing and 

outcome, to be directed from doing to outcome.  This temporal 

knowledge does not make it more likely to find that there is an edge 

between doing and outcome, it only constrains its orientation.  The 

fact that we found a causal edge between doing and outcome in all 

six domains is exciting, but we need to investigate further to see if 

the direction of these edges can be determined from the data or from 

other plausible assumptions.    

When we relax the assumption that doing is temporally prior to 

outcome, Tetrad is not as likely to orient the edges between doing 

and learning.  Unlike the dataset from Pitt described in the 

introduction [12], where we were lucky to find a natural 

“instrument,” we do not have a variable in the datasets we studied 

that is likely to take on that role.  Identifying a broader set of 

variables in this dataset (e.g., by distinguishing counts of error-free 

doing from errorful doing) or in other datasets may lead such a 

natural instrument. Particularly useful datasets would involve more 

student background variables, such as demographics and prior 

aptitudes, as well as more detailed process data, such as when 

scrolling makes parts of a web page, whether text, video, or activity, 

visible or not to a student. 

We also hope to perform an experiment to test and hopefully 

confirm the causal doer effect, much as Rau, et al., [10] did by 

performing an experiment to test hypotheses generated with causal 

discovery algorithms on non-experimental data.   
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