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ABSTRACT 

In this paper, we describe the analysis of multimodal data 

collected on small collaborative learning groups. In a previous 

study [1], we asked pairs (N=84) with no programming 

experience to program a robot to solve a series of mazes. The 

quality of the dyad’s collaboration was evaluated, and two 

interventions were implemented to support collaborative learning. 

In the current study, we present the analysis of KinectTM and 

speech data gathered on dyads during the programming task. We 

first show how certain movements and patterns of gestures 

correlate positively with collaboration and learning gains. We 

next use clustering algorithms to find prototypical body positions 

of participants and relate amount of time spent in certain postures 

with learning gains as in Schneider & Blikstein’s work [2]. 

Finally, we examine measures of proxemics and physical 

orientation within the dyads to explore how to detect good 

collaboration. We discuss the relevance of these results to 

designing and assessing collaborative small group activities and 

outline future work related to other collected sensor data.   
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Multi-modal learning analytics, physical synchrony, 

computational thinking, collaboration 

1. INTRODUCTION 
Collaboration is increasingly listed as a common factor in many 

frameworks of 21st Century Skills that highlight how classrooms 

and workplaces will differ from their traditional models due to 

deluges of digital data from information and communications 

technologies [3]. Likewise, computational thinking has been 

deemed an essential set of skills and attitudes that are now central 

to all science, technology, engineering, and mathematical (STEM) 

disciplines as well as computer science [4]. The ability to rapidly 

assess and evaluate collaborative computational thinking tasks can 

facilitate instruction that aligns with these important aspects of 

modern learning environments. 

Multi-modal learning analytics utilizing multiple sensor 

technologies and machine learning techniques can offer insights 

into student learning in complex, open-ended scenarios such as 

computer programming, robotics, and problem-based learning [5]. 

These methods allow researchers and educators to conduct 

quantitative research without necessarily losing the richness of 

open-ended, constructionist activities [6]. These techniques are 

intended to be scalable and help implement better instruction by 

generating formative feedback, visualizing performance, and 

increasing the salience of important information for instructors. 

This paper focuses on measuring the quality of collaboration by 

analyzing participant movement and correlating a variety of 

measures with task performance and a coding scheme for 

assessing collaboration quality in dyads. We first summarize 

relevant literature on collaborative problem solving and the 

importance of gesturing in collaboration. Next, we explain the 

design and methods of the study where our data originated. 

Finally, we report our current findings and describe future work 

for our research. 

2. LITERATURE REVIEW 

2.1 Collaborative Problem Solving 
Researchers in computer-supported collaborative learning (CSCL) 

have long studied how small groups collaborate and co-construct 

knowledge [7]. The joint problem space that collaboration entails 

requires active social negotiation of the current problem, what can 

be done to solve the problem, and the goals of the task [8]. By 

studying how collaboration proceeds at a fine-grained level, 

researchers can assess the quality of this collaboration and see 

what measurable markers denote high quality collaboration. 

Examples of such dimensions include synchrony of physical 

actions and eye gaze [2, 9], physical reactions of participants to 

the actions of others [10], and gestures made during activities 

[11]. 

2.2 Gestures and Movement in Collaboration 
Emerging literature from multi-modal learning analytics has 

explored the roles of gesture, posture, and gross motor movement 

in collaborative, co-located activities. For example, facial 

expressions and gestures related to the face predict engagement 

and frustration, while facial expression and body posture have 

been shown to predict learning [12]. Bimanual coordination has 

been shown to be predictive expertise, where experts use both 

hands in a construction task more equally than novices [13]. 

Researchers have also been able to predict agreement between 

participants with a 75% accuracy using motion sensors and audio 

data streams [21].  Automatically detected measures of non-verbal 

synchrony (computed from Kinect data) have been found to 

predict creativity in dyads [22]. Finally, interactive tabletops have 

been a fruitful area of research for studying collaborative learning 
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groups; motion sensors and microphones have been used to 

capture students’ interactions and provide feedback to teachers 

about the status of the group [23]. 

Even if meanings of gestures cannot be automatically deduced 

from sensor data, the amounts of gesticulation can be calculated 

and used to augment analysis of learning [14]. While expert 

coders in a qualitative study can extract context-dependent 

meaning from a wide variety of gestures [15], quantitative work 

can utilize unsupervised machine learning methods to cluster 

student postures and movement patterns automatically to gain a 

coarse-grained sense of how students are transitioning between 

states in an activity and how those state transitions relate to 

learning gains and collaboration measures [2]. 

This paper builds upon this emerging literature to look at 

students’ micro-behaviors during their learning process (e.g., 

[20]). More specifically, we explore how unsupervised machine 

learning algorithms can find prototypical states from dyads of 

students when learning to program a robot. 

3. The Study 

3.1 Participants 
Forty-two dyads completed the study (N = 84) and forty groups 

were used in the final data set (each researcher’s first session was 

removed to improve overall fidelity.) Participants were drawn 

from an existing study pool at a university in the northeastern 

United States. 62.2% of participants reported being students, with 

ages ranging from 19 to 51 years old with a mean age of 26.7 

years. 60% of participants identified as female.  

3.2 Design & Procedure 
Employing a two-by-two between-subjects design, dyads were 

randomly assigned to one of four conditions: Condition #1 

received neither intervention, Condition #2 received solely a 

visualization intervention, Condition #3 received solely an 

informational intervention, and Condition #4 received both 

interventions. The informational intervention was delivered 

verbally by the researcher and consisted of several research 

findings relevant to collaborative tasks such as equity of speech 

time predicting the overall quality of a collaboration. The 

visualization intervention utilized speech data from the motion 

sensor to visualize the relative proportion of speech coming from 

each participant over the prior 30 seconds of the activity. Each 

participant was represented by a color on their side of the tablet, 

and the screen would fill with more or less of their color to reflect 

their contribution (see Figure 1, right). 

After signing informed consent paperwork, participants were 

fitted with sensors described in 3.4. Participants were shown a 

tutorial video illustrating the basics of writing a simple program in 

Tinker, a block-based programming language. Participants then 

had five minutes to write code to move a simple robot across a 

line on the table roughly two feet in front of it. The robot 

consisted of a microcontroller, two DC motors with wheels, and 

proximity sensors mounted on the front, right, and left (see Figure 

1, left). 

 

Following the tutorial activity, dyads were shows a second tutorial 

video that highlighted more advanced features of Tinker such as 

using provided pre-written functions to turn the robot, checking 

the values of the proximity sensors, and using conditional 

statements. A hard copy of a reference sheet that summarized the 

contents of the video was provided following this. Dyads then had 

30 minutes to write code to allow the robot to solve a series of 

increasingly complex mazes (see Figure 1, center). Once the 

participants’ code successfully guided the robot through a maze 

twice, a new maze was provided. During the main portion of the 

activity, a series of predetermined hints were given to dyads at 5-

minute intervals regarding common pitfalls researchers identified 

in pilot testing. 

3.3 Dependent Measures 
The dyad’s collaboration and task behaviors were evaluated 

during the task by the researcher running that session. Quality of 

collaboration was assessed on nine scales based on Meier, Spada, 

and Rummel’s work [16]: sustaining mutual understanding, 

dialogue management, information pooling, reaching consensus, 

task division, time management, technical coordination, reciprocal 

interaction, and individual task orientation. Task behaviors 

evaluated were task performance, task understanding, and 

improvement over time. Following the activity, researchers coded 

the quality of the final block-based code each dyad produced to 

determine how well the code could theoretically guide the robot 

through a maze of unknown layout.  

To assess learning of computational thinking skills, participants 

individually completed a pre- and post-test with four questions 

assessing principles of computer science such as using conditional 

statements, looping, and predicting the output of given code 

(adapted from [17], [18]). Researchers coded the completeness of 

answers based on their demonstrations of understanding of 

computational thinking principles. Along with the post-test, 

 

Figure 1. Materials used in the study: the robot that participants had to program (left), one example maze (middle) and the 

Kinect-based speech visualization (right). 
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participants completed a self-assessment of the perceived quality 

of their collaboration with their partner (also adapted from [16]). 

Participants also filled out demographic information and 

completed a free response reflection regarding how their thinking 

changed over time. 

3.4 Process Data from Multi-modal Sensors 
We used three types of sensors during the study: two mobile eye-

trackers captured participants gaze movements at 50Hz; two 

Empatica wristbands captured physiological signals (e.g., 

electrodermal activity, heart rate, …) at various rates; and one 

Kinect sensor captured body postures and facial information. 

Finally, we also used several cameras and microphones to get an 

overview of the interaction. The details of the exact sensors used 

and the types of data collected are available in [1]. In this paper, 

we focus more closely on the Kinect data. 

The Kinect motion sensor collects roughly 100 variables related to 

a person’s body joints and skeleton (24 different points with 

columns for x, y, z coordinates), their facial expressions, and their 

amount of speech (Figure 2, top). Typically collected at 30 Hz (30 

times per second), this results in roughly 3,000 observations per 

second or 5.4 million observations per individual during a 30-

minute session of our study. When done with dyads, this amount 

of data doubles. 

3.5 Data Preprocessing 
Each session’s Kinect data contained 8-10 comma separated value 

(CSV) files as a new file was created every time a participant was 

lost and then detected again by the motion sensor. After cleaning 

the data to leave only observations collected during the main 

portion of the activity, CSV files were assigned to either the left 

or right participant based on their average spine locations. 

Experimental design prohibited participants from switching sides 

during the activity. 

Additional cleaning was required in instances where researchers 

briefly entered the frame of the Kinect while the session was 

underway. This often led to participant wireframes merging or 

otherwise becoming distorted (Figure 2, bottom). All instances 

where participant skeletons could not be clearly resolved were 

removed from our analysis. 

After assignment of participant side and cleaning, movement 

variables were calculated for each of the skeleton points by 

calculating the difference between the coordinates of a point at 

one observation and the coordinates of the same point at the next 

observation. If the skeletal point was occluded from the Kinect 

sensor (i.e., a hand below the surface of the table) positions of that 

point were automatically inferred by the sensor but no movement 

variables were calculated. Joint angles were also calculated for 

each major joint. 

CSV files were combined in two different ways:  all were 

concatenated to give an individual level file while left and right 

participant files were outer joined to create a dyad level file. The 

Kinect data computations for this paper were run in Python 2.7 

and analyses of pre-post survey data was done in R 3.4.3 and 

RStudio 1.1.423. 

4. RESULTS 
This section summarizes our analyses and results: first, we 

describe some trends in the dependent measures (4.1). Second, we 

look at the amount of movement generated by each participant / 

dyads, and how they correlate with the dependent measures (4.2). 

Third, we use clustering methods to find prototypical body 

postures to identify “(un)productive” states (4.3). Finally, we 

analyze dyadic interactions from the Kinect data (4.4). 

4.1 Task Performance and Collaboration 
We first briefly describe the main results of the study (also to be 

reported in [1]). The researcher-coded quality of collaboration 

differed significantly between the conditions that received the 

informational intervention (3&4) and those that did not (1&2). 

Dyads assigned to “explanation” scored 7.1 percentage points 

higher than those in “no interventions” (p < 0.001). Dyads in 

“both interventions” scored 4.8 percentage points higher than 

those in “visualization” (p = 0.03). 

Participant individual self-assessments of the quality of their 

collaboration different significantly from researcher assessment at 

the dyad level (F = 15.21, p < 0.001) but both are significantly 

positively correlated (r = 0.43, p = 0.001). Self-reported scores 

were higher for measures of task division, time management, and 

reciprocal interaction while being lower for reaching consensus, 

dialog management, and sustaining mutual understanding. 

Participants across all conditions gained an average of 19.8 

percentage points on the survey of computational thinking 

principles (t = 6.18, p < 0.001). Learning gains did not differ 

significantly by condition, gender, the gender makeup of the 

group, or level of previous education. Pre-test scores did not 

differ significantly by condition. The quality of the final block-

based code dyads produced was significantly correlated with the 

number of mazes completed (r = 0.45, p < 0.001), task 

understanding (r = 0.45, p < 0.001), and improvement over time (r 

= 0.54, p < 0.001). Significant correlations from these surveys and 

assessments are summarized in Figure 3. 

 

 

 

Figure 2. Visual representation of skeletons of participants 

(top), example of “messy” data caused by researcher 

entering the frame (bottom). 
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4.2 Movement Variables 
At the individual level, neither the total movement of any specific 

joint nor the average movement of those points correlated 

significantly with any of our collaboration or task performance 

metrics. Amount of time talking was significantly correlated with 

total quality of collaboration at the individual level (r = 0.30, p = 

0.01) and will be investigated in-depth.  

Most of our measures are at the dyad level, so movement variables 

were aggregated by session rather than participant. Improvement 

over time was significantly correlated with increased movement of 

the right elbow (r = 0.47, p = 0.006), right shoulder (r = 0.38, p = 

0.029), mid-spine (r = 0.41, p =0.018), and neck (r = 0.38, p = 

0.028). Task performance was significantly correlated with right 

elbow (r = 0.35, p =0.037), right shoulder (r = 0.35, p = 0.035), 

right hand (r = 0.36, p = 0.027), and mid-spine movement (r = 

0.40, p = 0.017). Code quality was significantly correlated with 

increased movement of the right elbow (r = 0.34, p = 0.025), right 

shoulder (r = 0.32, p = 0.032), mid-spine (r = 0.31, p =0.017), and 

neck (r = 0.34, p = 0.024). Overall collaboration more strongly 

correlated with higher average talk time at the dyad level than the 

individual level (r = 0.48, p = 0.0008).  

Clustering was done on the movement variables to identify 

patterns of movement that may be relevant to our measures of 

collaboration and task performance. Due to the unpredictable 

nature of missing data due to occluded limbs and joints, the 18 

movement variables per observation often had one or two missing 

values. Rather than throw out the entire row, we utilized the K-

POD algorithm [19], a variant of k-means clustering that can 

handle and impute missing data. We generated 2 through 9 

clusters and visually inspected the separation of the different 

centroids. We elected to keep three clusters due to good 

separation and ease of interpretability. 

Groups that spent a higher proportion of their time in the high 

movement cluster had significantly higher task performance (r = 

0.31, p = 0.049) and improvement over time (r = 0.44, p = 0.009). 

Our overall rating of collaboration did not significantly correlate 

with time spent in this cluster (p = 0.052) but ratings of reaching 

consensus and dialogue management did differ significantly (r = 

0.34, p = 0.04; r = 0.40, p = 0.02). Individuals overall spent 

roughly 13% of their time in high movement states with the 

remainder of their time evenly split between medium and low 

movement states. 

4.3 Angle Variables 
In this section, we replicate Schneider & Blikstein (2015)’s 

approach for identifying prototypical body postures using joint 

angle. Joint angles were calculated for 11 upper body joints for all 

observations. Due to having much less missing data for joint 

angles versus movement variables, k-means clustering was used to 

generate visualizations of prototypical postures participants held 

during the course of the activity. As with our prior clustering, 2 

through 9 clusters were fit with our model and we chose three 

clusters due to the interpretability of the resulting visualizations. 

As seen in Figure 4, the three postures are distinct in hand 

placement, symmetry, and arm position. The first posture (left) 

can be thought of as “planning” where both hands are close 

together and the participant is leaning forward. This is generally 

the default posture for someone looking at a computer screen. 

Dyads spent a large amount of their time looking over their code 

and the various options available to them.  

The second posture (Figure 4, center) we refer to as a “tinkering” 

state where the robot is being directly manipulated. In this state, 

participants are generally standing or leaning up out of their chairs 

to test different scenarios the robot might encounter and what 

sensor values those scenarios generate. Participants also had to 

manually reset their robot to the starting position after each 

attempt to solve a maze. 

 

Figure 3. Correlogram of performance metrics and ratings 

of collaboration. All correlations shown are significant. 

 

Figure 4. Three prototypical postures participants assumed during the study. 
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The final state (Figure 4, right) comes from a design decision 

made in the study. The small robot was tethered to the participant 

laptop via a USB cord for power and to upload new code, so each 

time the robot was in motion one participant had to hold the USB 

cord high enough to avoid it getting tangled in the maze. The 

prototypical posture shows this clearly. We refer to this posture as 

“iterating” as it is only observed when running code in an attempt 

to solve the maze. Examples of the “planning” and “iterating” 

postures can be seen in Figure 5. 

As with the movement variables, proportion of time spent in each 

posture was aggregated for each participant. Increased proportions 

of time spent in the “iterating” posture significantly correlated 

with task performance (r = 0.28, p = 0.002), code quality (r = 

0.24, p = 0.005), task understanding (r = 0.24, p = 0.02) and 

improvement over time (r = 0.20, p = 0.02). Proportion of time 

spent in the “tinkering” posture, however, negatively correlated 

with the same four metrics: task performance (r = -0.31, p = 

0.0004), code quality (r = -0.23, p = 0.008), task understanding (r 

= -0.27, p = 0.003) and improvement over time (r = -0.27, p = 

0.003). 

To analyze the probabilities of state transitions taking place 

between these prototypical postures, a Markov model was 

constructed to visualize the probabilities of different state 

transitions occurring (Figure 6). The size of the circles represents 

the relative amount of time spent in each state and the labels of 

the arrows indicate the probability of different transitions 

occurring. The most likely transitions for the average participant 

(Figure 6, center) all involve the “iterating” state, either staying in 

it or moving from the other states to it. The least likely transitions 

involve moving from “iterating” or “tinkering” back to the 

“planning” state. 

Markov models for individuals in the highest performing and 

lowest performing quartiles (according to their task performance) 

were generated to explore how state transitions may vary by 

outcome. High performing individuals (Figure 6, top) were 13% 

more likely to transition back from “iterating” to “planning” and 

38% more likely to transition from “tinkering” to “planning” 

versus their low performing peers (Figure 6, bottom). High 

performing individuals spent 12% less time in the “tinkering” 

state versus low performers, using this time to run more iterations 

of their code versus adjusting the robot itself. 

4.4 Dyad Interactions 
A proximity measure was calculated based on spine positions to 

determine how closely participants were seated next to each other, 

a leaning measure determined if participants were leaning towards 

each other or away from each other, a facing measure based on 

participant shoulders determined how much participant bodies 

 

Figure 5. Examples of “iterating” posture (holding wire) 

and “planning” (seated participant). 

High Quartile: 

 

Average Participant: 

 

Low Quartile: 

 

Figure 6. Markov state transition models. 
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were facing each other, and bimanual coordination was calculated 

for each participant to see how evenly they used both of their 

hands during the activity. While bimanual coordination is 

calculated at the individual level, the dyad analysis explores 

whether synchrony in bimanual coordination correlates with our 

outcome measures. 

Performance on the task correlates positively with dyads leaning 

towards each other (r = 0.34, p = 0.030). Increased bimanual 

coordination of the right participant correlates with task 

understanding (r = 0.34, p = 0.018) but synchrony of coordination 

does not seem significant. Due to the setup of the room where the 

study was conducted, the mouse of the participant laptop was 

placed on the right side and may have led the right participant to 

use the laptop more. This may have had an uneven influence on 

the impact of their bimanual coordination. 

Alignment and proximity are strongly correlated (r = 0.83, p < 

0.001) in our dyads but neither measure significantly correlates 

with our task performance measures. While proximity was not 

correlated with our overall measure of collaboration, participants 

being closer together is significantly correlated with information 

pooling (r = 0.35, p = 0.026). 

5. DISCUSSION 
This paper provides some preliminary and promising results 

describing the relationship between students’ body postures / 

movements and their quality of collaboration, task performance 

and learning gains. We found predictors for those dependent 

measures in a naturalistic, open-ended task that routinely takes 

place in makerspaces and engineering courses. While there are 

limitations to this work, our contribution paves the way to rich 

multimodal analyses of students’ collaboration. It also unlocks 

new opportunities to design innovative interventions to support 

social interactions in small groups (e.g., by providing visual 

representations of students’ behavior to support self-reflection) 

and classroom orchestration (e.g., by providing teachers with real-

time dashboards of the class).  

The significant correlations found between average movement of 

points along the upper right side of participants’ bodies with 

outcome measures indicates the importance of gesturing and 

physical movement when communicating ideas. Qualitative 

coding of exemplar videos may detect specific gestures or 

movements used more frequently by high performing groups, but 

these movement variables offer a quick way to potentially predict 

how well participants will do in an activity. While we do not 

make any causal claims regarding increasing movement to 

increase performance, future interventions could target visualizing 

gesture and movement data for dyads as they work instead of 

verbal contribution.  

The clusters generated by our joint angle data reveal interesting 

patterns in participant behavior. While time spent iterating has 

been shown here to correlate with better performance, dyads may 

benefit from more cycling through the three states to mimic ideal 

cycles of cognition [20].  While iterating and testing their code is 

certainly important, participants must be able to process what 

went wrong and try to fix it before attempting to test their code 

again. In several sessions, participants kept running their code 

over and over in hopes that the robot would perform better the 

next time. Even though they had the code in front of them to 

manipulate, some novices may have lacked the computational 

thinking knowledge to transfer errors they saw the robot making 

to errors in their code. 

6. LIMITATIONS 
We do not have data on the handedness of our participants, but an 

open question is whether the mouse placement on the right side of 

the shared laptop inadvertently lead the right participant to 

assume a leadership role with the laptop. The uneven importance 

of bimanual coordination for the right participant is an indication 

the physical setup of the room may have impacted the study in 

unintended ways. Analyzing the recordings of sessions and 

identifying leader behavior or who is assuming driver / passenger 

roles is an additional avenue for future work. 

Some of our posture results are fairly idiosyncratic to our study 

due to the USB cord attached to the robot, making generalization 

of findings difficult. 

As described in Section 3.5, the Kinect sensor generated a wide 

variety of malformed skeletons that led to a lengthy and imprecise 

period of manual cleaning prior to analysis. Experimental design 

must be conscious of the limitations of the sensors and ensure that 

as little noise as possible be added to the data. 

7. FUTURE WORK 
We plan to further identify productive micro-behaviors from the 

Kinect data to gain additional insights in the ways that dyads 

synchronized their actions. Future work with regards to 

prototypical postures would also explore both participants in a 

dyad at once, clustering on both joint angles simultaneously. This 

may reveal combinations of postures that are informative and 

could extend our exploration of physical synchrony within dyads. 

The differences between dyads in different conditions will also be 

a main focus of analysis moving forward. 

It should be noted that this paper only describes one aspect of a 

positive collaboration. In future work, we plan to extend this line 

of work to attentional alignment (also referred to as joint visual 

attention [24]) using the eye-tracking data, verbal coherence [25] 

using transcripts, physiological synchronization [26] using the 

Empatica data, and ultimately combine those modalities together. 

This will provide us with a richer and more comprehensive view 

of students’ collaboration and potentially feed machine learning 

algorithms to make predictions about the status of a group using 

multimodal streams of data. 

Future work will also revisit our coding of collaboration to 

improve inter-rater reliability (currently Cronbach’s alpha = 0.65, 

75% agreement). For our movement clustering, several 

correlations with collaboration measures were close to being 

significant but may have been hindered due to less-than-ideal 

reliability of our initial coding. Additionally, patterns of missing 

data in movement variables will be explored more thoroughly and 

other clustering algorithms will be tested. 

To further explore the importance of cycles of iteration, the 

number of times participants ran the code on their robot might be 

detected from screencast recordings of the participant laptop. We 

do not have log files from Tinker to analyze, but computer vision 

algorithms should be able to detect how often the “run” button 

was pressed during a session. With the Kinect sensor no longer 

being produced, future work may rely solely on video recording 

with joints and coordinates determined by computer vision 

software rather than sensors. This would aid the scalability of 

these techniques by reducing the cost of implementation in 

classrooms and other learning environments. 
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