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ABSTRACT
We develop an end-to-end neural network-based computer
vision system to automatically identify where each person
within a 2-D image of a school classroom is looking (“gaze
following”), as well as who she/he is looking at. Auto-
matic gaze following could help facilitate data-mining of
large datasets of classroom observation videos that are col-
lected routinely in schools around the world in order to un-
derstand social interactions between teachers and students.
Our network is based on the architecture by [27] but is ex-
tended to predict whether each person is looking at a target
inside or outside the image; and to predict not only where,
but who the person is looking at. Moreover, since our focus
is on classroom observation videos, we collected a dataset
from scratch of publicly available classroom sessions from 70
YouTube videos and collected labels from 408 labelers who
annotated a total of 17, 758 gazes in 2, 263 unique image
frames. Results of our experiments indicate that the pro-
posed neural network can estimate the gaze target – either
the spatial location or the face of a person – with substan-
tially higher accuracy compared to several baselines.

Keywords
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1. INTRODUCTION
The nature and quality of teacher-student interactions in

school classrooms are predictive of learners’ development.
Numerous observational studies and several causal studies
have demonstrated the link between emotional and instruc-
tional support in the classroom and children’s cognitive, so-
cial, and emotional skills [18, 23]. In order to discover how
classroom interactions are related to learning outcomes, ed-
ucational researchers often conduct classroom observation
sessions, whereby human coders score either live or video-
recorded classroom observations (typically 1 hour long each)
along different dimensions, such as positive climate, teacher
sensitivity, language modeling, quality of feedback, etc [25].
The Gates Foundation Measures of Effective Teaching (MET)
project [16], in particular, recorded tens of thousands of
hours of classroom observations across the United States
with the aim of discovering best practices for how to teach
students most effectively.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. #1551594 and
Spencer Small Research Grand No. #201800131.

One of the major impediments to learning more from class-
room observation video datasets is the difficulty and labor
involved in coding them. Deep understanding of teacher-
student interactions requires the coder to consider how the
affective, linguistic, and pedagogical channels interact, and
to interpret interactions within the context of classroom in-
struction. However, classroom observations contain multiple
students and teachers interacting simultaneously in different
parts of the classroom. It is easy for human coders to miss
a subtle but important interaction. As a result, scores often
can vary across coders, and multiple codes per video must
be collected to obtain a reliable estimate. It would thus be
invaluable to devise methods that could at least partially au-
tomate the process of classroom observation coding. Such a
system could be useful not only for educational data-mining
of large-scale classroom observation datasets, but also fa-
cilitate teachers’ professional development by showing them
video examples from their own classrooms in which they
scored particularly high or low along different dimensions.

One important element of effective teacher-student interac-
tions involves the students’ and teachers’ eye gaze: Does
the teacher convey respect to his/her students by looking
them in the eye when he/she is talking to them (positive
climate)? Does the teacher notice when specific persons in
the room are bored, confused, or even bullied (teacher sensi-
tivity)? Tracking the eye gazes of students can also provide
information on their thoughts and intentions [5] and may
indirectly reveal how engaged they are in their learning.

In this paper, we take a tiny step towards creating an au-
tomated classroom observation scoring system. In particu-
lar, we build a prototype computer vision-based system for
automated eye gaze following that estimates, for each per-
son in the classroom, where she/he is looking. Such a sys-
tem can be used to data-mine classroom observation video
datasets. It could also facilitate “smart classrooms”, which
track gazes of both students and teachers, identify disen-
gaged or distressed students, and help teachers to better
recognize whether they are paying attention to the right
thing or the right student in the classroom.

Deep learning for gaze following in classrooms: In
this work, we explore a machine learning-based approach
to automatic recognition of where a person in the image is
looking. In particular, we build an end-to-end deep neural
network that takes 2-D static images of multiple people as
inputs and infers (x, y) coordinates of where each person
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Figure 1: Eye gaze targets labeled by a human labeler for
each person in the image. Labelers also indicate targets that
are located outside the field-of-view (indicated by “OUT”).
Can we build a computer vision system that can estimate
where each person is looking? In this image, the man is
looking at child #3. Can we identify automatically who each
person is looking at? Image from https://goo.gl/xUdYbC

is looking at in the image as outputs. This computational
problem is known as gaze following [10]. Gaze following
from 2-D images is particularly challenging since 1) no addi-
tional information of the scene, such as depth information,
is available and a person can be looking at any of the differ-
ent planes of depth in the image, 2) people in the image can
be looking at objects either inside the image or outside the
image, 3) the eyes of some people may be blurred or par-
tially invisible. Nonetheless, requiring only 2-D images is
attractive because of the ubiquity and greater convenience
of using commodity 2-D cameras. Our automated system
is based on the architecture by [27], who tackled a similar
problem for general images from the web. However, our ap-
proach differs from theirs in several ways, including the pre-
diction outputs, deep neural network architectures, training
techniques, dataset collection, and application focus.

Contributions: (1) We explore a deep learning-based ar-
chitecture, based on related work by [27], for automatic eye-
gaze following from 2-D images of classroom observation
videos. (2) We extend the model of [27] to support gaze
targets that can be outside the camera’s field-of-view. Es-
pecially due to the lack of depth information, this is a highly
challenging problem, both for human labelers and the ma-
chine. (3) Our application focus is on school classrooms,
which contain many subjects (not just a few, as in [27]),
who gaze not only inside but sometimes also outside the
field-of-view. We thus collected and annotated (see Figure
1) a new dataset of images from classroom videos. (4) Since
classroom observation analysis is largely about interaction
between subjects, we explore the accuracy of our automatic
gaze following system in identifying which face (not just ob-
ject) each person is looking at. Detailed methodology and
results for contribution (1), (2) and (3) are described in Sec-
tion 3 and those of contribution (4) are described in Section
5.

2. RELATED WORK
Eye gaze following: Due to the importance of following
gaze of others, which humans do naturally when communi-
cating, collaborating and socializing, researchers in the field

of robotics, computer vision and machine learning have re-
cently started to formulate and tackle the problem of au-
tomatic gaze following within different contexts: In some
settings [15, 3, 11], there is only a single person whose gaze
is being followed, e.g., a student who is interacting with a
mobile phone or a tablet [19] to play an educational game
[31]. In other settings (such as ours), the camera examines
an entire scene containing many people, and the gaze of each
person in the scene is followed [24] [21] [28] [27]. While most
of the prior work uses RGB data, some approaches also use
depth information [24]. More recently, researchers have con-
sidered gaze following not only from static images but also
how to harness temporal information from an entire video to
better estimate the person’s gaze target [28]. In this work,
we only consider gaze following from static 2-D images ex-
tracted from classroom observation videos but future work
can explore following gaze by using temporal information
from a sequence of images.

Saliency modeling: Gaze following is related to saliency
modeling, whereby image features of different levels of ab-
straction (low-, mid-, and high-level) are examined to con-
sider the most likely locations in the image to which an
observer would visually attend [15]. [3] made a connection
between these two by stating that an observer looking at
an image containing people may follow the gaze of people
rather than actually fixating on salient objects in that im-
age. Therefore, gaze following can play a complementary
role in solving the problem of saliency model of attention.
[7] explored the problem of predicting a driver’s gaze be-
haviours and identifying the attention of a driver by detect-
ing saliency in a complex driving environments.

Modeling non-verbal cues of students and teachers:
There has been substantial prior work on analyzing learn-
ers’ affective states from video using computer vision [17,
12, 4, 30]. Much of this work has focused on intelligent tu-
toring systems. More recently, researchers in multi-modal
machine learning and educational data mining have investi-
gated how to characterize the dynamics of an entire class-
room. For example, [9, 8] explored approaches for segment-
ing and recognizing students’ and teachers’ speech in un-
constrained classrooms based on different configurations of
Microsoft Kinect cameras. For automated classroom obser-
vation scoring (e.g., of CLASS [25]), we are only aware of one
prior work: [26] developed a computer vision system, opti-
mized within a multiple-instance learning framework [22], to
estimate which 3-minute snippets of classroom videos were
most relevant for CLASS coders to watch.

3. EXPERIMENT I: METHODOLOGY
3.1 Data collection
Since the application focus of our study is gaze following in
school classrooms, we collected our own dataset of classroom
observation sessions. In particular, we harvested 70 videos
publicly available on YouTube of school classrooms. The
study was approved under WPI IRB 18-0101. In contrast
to publicly available annotated data on gaze following (the
only such dataset of which we are aware is GazeFollow [27]),
classroom observation videos often contain many people per
image frame, and the kinds of background clutter differ sig-
nificantly from that of GazeFollow, which largely consists
of images used for more general object detection research.
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From each video in our collection, we extracted 1 frame ap-
proximately every 10 seconds. After extracting frames from
videos, we used Faster R-CNN for face detection [14] to ob-
tain face bounding boxes (top left (x, y) coordinate, width
and height) in extracted frames.

Annotation: Ground-truth gaze annotations from the im-
age frames were collected using at least 3 labelers per image
on Amazon Mechanical Turk (AMT). Labelers used an on-
line annotation tool that we custom-built for this work, using
JavaScript and HTML5, to annotate two main components
of each subject in each scene. The first component is to iden-
tify the gaze target for each person (identified automatically
by the face detector as described above) which is indicated
by a line, starting between the eyes of a person and end-
ing on an object or a person which the person is attending
to. The second component is the indication of whether the
person is looking at something inside or outside the image.
We collected three gaze annotations each for 17, 758 faces in
2, 263 images, resulting a total of 48, 907 gaze annotations
from 408 unique annotators.

3.2 Approach
Using the datasets annotated on AMT, our goal is to build
a convolutional neural network (CNN) which takes in the
whole image of the scene and predicts the gaze target of each
person in the image along with the indication of whether
that target is inside or outside the image. We have observed
from our annotated datasets that predicting gaze can be
ambiguous. If there are multiple people or several salient
objects in the image, or the eyes of individuals in the image
are not clearly visible, human labelers may disagree when
predicting gaze locations. Due to this inherent uncertainty
in the problem, we explore various options to design our
model to support multimodal predictions.

We can formulate gaze following as either a regression or a
classification task. Regression: the network regresses to
(x, y) coordinates of the gaze target of each person in the
image using the Euclidean distance between the predicted
and ground-truth as the cost function. The disadvantage
of using regression is that our predictions are constrained
to be unimodal. Since each face in each image was labeled
by multiple annotators, we can define the ground-truth by
either (a) computing the mean (x, y) location over all labels
per face, or (b) treating each location as a separate label.
Classification: the gaze location is quantized into one cell
on an N×N grid, and the network’s job is to choose the cor-
rect cell for each person in the image. As the cost function,
we can use cross-entropy loss. Classification naturally sup-
ports multimodal outputs since multiple gaze annotations
at different cells can be treated as soft labels [1]. The disad-
vantage of this approach is that the choice of grid size can
affect the precision of predictions (i.e. smaller numbers of
grid cells N will result in poor precision). Another issue is
that cross-entropy loss does not gradually penalize mistakes
based on distance – misclassification which is off by one grid
cell is penalized just as much as misclassification which is
off by several cells on a grid.

3.3 Architecture
The deep learning architecture is based on the model by [27]
and is depicted in Figure 2. The gaze target for each person
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Figure 2: Deep neural network architecture, based on [27],
for automatic eye-gaze following in school classrooms, con-
sisting of two independent prediction pathways.

in the image is predicted independently based on two in-
formation sources: close-up information of the person’s face
(automatically detected by a separate face detection net-
work [14]), and the whole image. Each information source is
processed by a separate pathway consisting of a CNN, and
the pathways’ predictions about the person’s gaze target are
merged at the end. We call the combined architecture the
Merged Model. In contrast to [27], we use the VGG16 [29] as
the backbone of each CNN since we found empirically that
it performed better than AlexNet [20]. Two other differ-
ences from [27] are the network optimization techniques and
the use of multi-task learning (as described in Section 3.4).
Inputs: The inputs of the Merged Model are a cropped,
close-up face image (64 × 64 pixels); the (r, c) ∈ N ×N lo-
cation of the center of the person’s head in the image; and
the resized 256 × 256 pixels image of the whole frame. We
chose N = 8 in our experiments. Outputs: For regression,
the gaze target is represented as an (x, y) coordinate pair.
For classification, the gaze target consists of a 1-hot vector
indicating which of the N × N grid cells contains the gaze
target. In addition (for both regression and classification),
the network also contains an “in”/“out” binary prediction of
whether the gaze target is inside or outside the image.

The intuition behind the Merged Model is that two CNNs
are trained to solve two subproblems in a fully end-to-end
fashion with only the gaze location and the “in”/“out” label
as supervision to the model: (1) The close-up face CNN (left
pathway in Figure 2) implicitly estimates the head pose and
the direction of the gaze of the subject in order to produce
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a heat map (shown as Reshape 16×16 in Figure 2) of where
the person is looking. In the figure, the heat map roughly
shows a “cone” of possible gaze targets to the upper-left of
the child’s head. (2) The frame-image CNN (right pathway
in Figure 2) identifies the salient objects in the image. This
network has access to the entire original image but does not
know the location of the subject. In the figure, the salient
object heat map highlights the teacher in the upper-left of
the image. In [32], the authors showed that objects tend
to emerge in the filter kernels of the deep layers of CNNs;
therefore, we take a filter kernel at the end of the right path-
way (shown as 3 × 3 conv, 1 in Figure 2). This produces
the heat map of salient objects in the original image. Each
heat map from each branch is combined by element-wise
multiplication.

3.4 Training procedure
Data partitions: The 70 YouTube videos containing school
classrooms were partitioned into training (12,430 gazes), val-
idation (2,664 gazes), and testing (2,664 gazes) sets, such
that none of the frames from any video was assigned to
more than one set. The validation set was used for early
stopping. The accuracy on the test set can be considered a
performance estimate on faces that the network has never
seen before.

Optimization: We used the following procedure for both
the regression and classification formulations: We first per-
formed transfer learning by initializing both CNNs with weights
pre-trained on ImageNet [29]. We augmented the class-
room images from our dataset by flipping the original images
(frame image pathway) as well as the individually cropped
face images, head locations and gaze locations (face path-
way) left to right. We trained the final Merged Model first
by freezing all the convolutional layers and training only the
fully connected layers with RMSProp [13] (learning rate =
0.01, ρ = 0.9). Then all the previously frozen convolutional
layers were unfrozen and the model was fine-tuned with SGD
with momentum (learning rate=0.0001, momentum=0.9).
The model was trained until there was no improvement in
validation loss.

Multi-task learning: Since the Merged Model predicts the
location of the gaze in the image as well as “in”/“out”, it is
performing multiple tasks, and we can use multi-task learn-
ing (MTL) [6] for training. Sharing the same hidden layers
to solve several tasks forces the model to find representa-
tions which capture all of the tasks and thus reduce the risk
of overfitting [2]. We found empirically that MTL helped to
reduce overfitting and improve prediction accuracy. Table
1 compares the performance of the Merged Model with and
without MTL. With MTL, the cross-entropy loss for both
the grid output and the In/Out output is higher (worse)
on the training set, but lower (better) on the testing set,
compared to training two networks to handle each task sep-
arately. We thus adopted the MTL approach for training.

3.5 Accuracy measurement
Accuracy is measured for predicting the gaze target of each
person (identified automatically by a face detector [14]) in
each extracted frame from each of the YouTube videos (see
Section 3.1). For classification of the gaze target among
the N ×N grid cells, we evaluated accuracy in terms of the

Table 1: Effects of multi-task learning. CE Loss refers to
Cross Entropy Loss and reported values are Cross Entropy
Loss of Merged Model predicting gaze on 8× 8 grid.

Only grid
output

Only In/Out
output

Both grid output and In/Out output

CE Loss CE Loss AUC
CE Loss

(Grid Output)
CE Loss
(In/Out)

AUC
(In/Out)

Training 3.27 0.32 0.63 3.39 0.33 0.60
Testing 3.59 0.46 0.59 3.58 0.43 0.62

cross-entropy (CE) loss w.r.t. the label distribution induced
by the 3 annotators per example. For regression to an
(x, y) location, we use mean absolute error (MAE), mean
Euclidean distance and mean angular error (between the
center of the person looking to their gaze target) in degrees,
where the ground-truth is defined as the average annotation
over all the annotators. In addition (for both regression and
classification), we also used the Area Under the Receiver
Operating Characteristics Curve (AUC) to evaluate the bi-
nary classification of whether the target is inside or outside
the field-of-view.

3.6 Baseline comparison
When assessing the accuracy of any neural network, it is
important to establish the relevant baselines for comparison.
For classification, we use a uniform distribution over all N×
N grid cells – in other words, a random guess in the whole
image as to where the person is gazing. Alternatively, we
can assume a center prior (motivated by [15]), consisting of
the center 2×2 grid cells over the N×N grid. A variation on
the center prior is to place a 2-D Gaussian – whose standard
deviation σ is optimized directly on the test set for best
possible accuracy – centered on the middle of the image, and
assign probabilities to the N×N cells based on the Gaussian
probability density function. For regression, we use a center
prior corresponding to the midpoint in the image; we also
compare to randomly selected points in the image.

As stronger baselines, we also consider linear regression to
analyze the vectorized face pixels concatenated with head
locations to predict (x, y) coordinates, as well as logistic re-
gression to predict cells on a N ×N grid. Finally, as a way
of understanding which part of the Merged Model contains
more information, we also compare to a Face-to-Gaze model
consisting of a CNN that takes a cropped, close-up face im-
age and location of head in the image as inputs, and predicts
the location of the gaze in the image as well as “in”/“out”
– this is the left pathway of Figure 2. Comparing with this
baseline helps us understand how much the saliency pathway
improves performance.

4. RESULTS I
Accuracy results on test images of the Merged Model com-
pared to the baselines are shown in Table 2 (for regression)
and Table 3 (for classification). Our Merged Model achieves
mean Euclidean distance of 69.82 pixels on 256 × 256 pixel
image (for regression) and cross entropy loss of 3.5855 on
8× 8 grid (for classification) for gaze locations. These num-
bers are better than for the random gaze, center prior, cen-
ter Gaussian, linear and logistic regression baselines. For
comparison, human labelers exhibited a mean Euclidean dis-
tance of only 41.04 pixels on 256 × 256 pixel image, which
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Table 2: Regression accuracy of the Merged Model for pre-
dicting the (x, y) location (within a 256×256 image) of where
each person in each classroom image is looking. Accuracy is
compared to human annotators and three baseline models.

MAE
Mean Euclidean

Distance
Mean Absolute
Angular Error

AUC for
In/Out

Random Gaze 79.74 124.15 67.24◦ -
Center Region 52.76 82.11 48.36◦ -

Linear Regression 49.63 77.34 55.21◦ -
Face-to-Gaze 45.74 71.53 39.91◦ 0.54

Merged Model 44.49 69.82 38.30◦ 0.62

Human 25.91 41.04 18.38◦ 0.70

Table 3: Classification results on 8 × 8 grid of the Merged
Model compared to several baselines.

Cross Entropy Loss
(Grid Output)

AUC for In/Out

Center Gaze (Center 4 cells) 15.8047 -
Uniform Gaze 4.1589 -

Center Gaussian 4.0561 -
Logistic Regression 3.9997 -

Face-to-Gaze 3.7511 0.5459
Merged Model 3.5855 0.6223

is a bit more than half the error of the Merged Model, indi-
cating that the machine’s accuracy still has much room for
improvement.

For classifying whether the gazes end inside or outside the
image, the Merged Model achieved an AUC of 0.62, whereas
humans scored 0.70 on the same task. The relatively low
human accuracy suggests that detecting whether a person
is looking inside or outside the image is quite challenging in
the classroom images.

Figure 3 shows qualitative results of some of the gaze predic-
tions (represented by thick yellow arrows) by Merged Model.
It can be seen that the model makes decent predictions on
the general direction of gazes but sometimes misses the end-
points on salient objects in the scene. In Figure 3, three
girls in the middle are looking at the man’s hands but the
gaze predictions end before the hand.

One notable fact is that the Face-to-Gaze model’s perfor-
mance is very similar to the Merged Model’s performance.
This suggests that our Merged Model is predicting gaze lo-
cations mainly by using the head pose and gaze pathway
of the subject and less on the salient objects in the image.
One possible explanation is that our dataset does not con-
tain enough variety of classroom environments for the model
to learn how to identify salient objects in classroom images.

5. EXPERIMENT II: WHO ARE THEY
LOOKING AT?

We use the same neural network depicted in Figure 2 to pre-
dict who each person is looking at. This is especially useful
in school classrooms, in which both students and teachers
are often looking at other people, not just objects. Specifi-
cally, we use the classification approach to predict which of
the N ×N grid cells each person is gazing at. The face con-
tained within that cell is then predicted to be target face of
that person’s gaze. We note that, depending on the grid size

Figure 3: Qualitative results of gaze predictions by our
Merged Model on the test set. Thin green arrows are ground
truth annotations. Since there are multiple gaze annota-
tions for each individual, there are multiple green arrows
for each individual. Thick yellow arrows are predictions
by Merged Model. Images (top to bottom) taken from:
https://goo.gl/xUdYbC, https://goo.gl/pcwQ5P

and the specific image, multiple faces might appear within
the same cell. A principled approach to handle to this issue
would be to distribute the probability mass output by the
neural network among all the faces within that cell in pro-
portion to the size of each face. However, in this exploratory
study, we simply assume that no grid cell contains more than
1 face.

5.1 Methodology
First, we computed the subset of all people in all image
frames of our original YouTube dataset in which all annota-
tors agreed that the person is looking at another face (not
just another object somewhere in the image). Note that the
labelers can still differ as to which particular face the person
is looking at. By doing so, we obtained, 410 faces where all
labelers agree that the person is looking at another face out
of 17, 759 faces in our dataset. On the same data subset,
we use the Merged Model to compute the softmax probabil-
ities across all N × N grid cells of where each person was
looking. From these probability outputs (for each person in
each image), we remove every cell that does not contain any
face (as determined by the face detector) and renormalize.
We then choose the grid cell with the highest probability as
the face that the person is most likely to be gazing at.

In order to evaluate how well our network is performing on
determining which face a person is looking at, we took the
top 1 face, top 2 faces, and top 3 faces. For the top-1 face, we
choose the grid cell with the highest probability as the face
that the person is most likely to be gazing at as predicted
by the deep neural network. For top-2 and top-3 faces, if
any of the top-2 and top-3 faces predicted by the network
is the actual face which is agreed by the majority of human
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labelers, the prediction is regarded as a correct prediction.

As baselines, we can consider that the average number of
faces (detected by the face detector [14]) per image was 6.87
on test set; hence, the baseline guess rate is 1/6.87 ≈ 0.15 for
the test set. Moreover, we can estimate human accuracy in a
leave-one-labeler-out fashion: for each unique labeler, in the
subset of the dataset where all labelers agree that a person
being annotated is looking at another face, we compare the
face that the current labeler chooses with the face which
the majority of other labelers agree on. In this fashion, we
compute the accuracy (% correct) of the lth labeler w.r.t. the
other l − 1 labelers. We then average across all labelers
in our dataset. By doing so, we achieve the human level
performance on determining whom the person is looking at
in the classroom given that the person is looking at a face.

In order to make equal comparison with Merged Model’s
predictions, which is done on 8× 8 grid, human annotations
are quantized to cells on 8 × 8 grid and probability of one
labeler agreeing with the rest of the labelers that a person
being annotated is looking at a specific face (last row of
Table 4).

6. RESULTS II
The results on test images, shown in Table 4, indicate that
the Merged Model can predict the face target of people’s
eye gazes with substantially higher accuracy than just ran-
domly guessing among all grid cells (8×8 grid) in the image
containing faces. To put these results in context: if each
classroom image contains 6.87 faces on average (as reported
above), then the probability of 0.79 for k = 3 suggests that
an automated gaze following system can usually determine
at least which group of students a teacher is looking at. In-
terestingly, the accuracy of the Merged Model is close to
that of human labelers when top 3 predicted faces are con-
sidered but still have room for improvement when only top
1 face is chosen.

7. CONCLUSION AND FUTURE WORK
The results in this paper indicate that an automatic neural
network, based on the approach by [27] that analyzes 2-D
images of school classrooms can estimate the gaze target
location of each person in the image with accuracy substan-
tially higher than chance and better than several other base-
lines as well. Moreover, the same architecture can be used
to identify who each person is looking at more accurately
than random guessing.

Future work: The most critical next steps are to (1) im-
prove accuracy by collecting more training data and improv-
ing the accuracy of the annotations. (2) Given an improved
eye gaze following system, we can begin to explore how auto-
matic gaze estimates can be used to predict specific aspects
of classroom observation protocols; for instance, the positive
climate dimension of the CLASS is based explicitly (in part)
on whether the teacher looks at his/her students [25]. Fi-
nally, (3) since multiple people often look at the same person
(e.g., the teacher) in school classrooms, we will also inves-
tigate whether accuracy can be improved by estimating the
gaze targets of all classroom participants jointly rather than
separately.

Table 4: Probability of the Merged Model correctly identi-
fying which face a person is looking at on 8× 8 grid.

Top k faces k = 1 k = 2 k = 3
Random Face 0.15 0.30 0.45

Merged Model 0.47 0.65 0.79

Human 0.82
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