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ABSTRACT 

Identifying struggling students in real-time provides a virtual 

learning environment with an opportunity to intervene 

meaningfully with supports aimed at improving student learning 

and engagement. In this paper, we present a detailed analysis of quit 

prediction modeling in students playing a learning game called 

Physics Playground. From the interaction log data of the game, we 

engineered a comprehensive set of aggregated features of varying 

levels of granularity and trained individualized level-specific 

models and a single level-agnostic model. Contrary to our initial 

expectation, our results suggest that a level-agnostic model 

achieves superior predictive performance. We enhanced this model 

further with level-related and student-related features, leading to a 

moderate increase in AUC. Visualizing this model, we observe that 

it is based on high-level intuitive features that are generalizable 

across levels. This model can now be used in future work to 

automatically trigger cognitive and affective supports to motivate 

students to pursue a game level until completion. 

Keywords 

disengagement, learning games, quit prediction, adaptive 
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1. INTRODUCTION 
In the past couple of decades, education researchers and developers 

have looked into using digital games as vehicles for learning in a 

range of domains [19]. Learning games are designed with the goal 

of keeping students engaged in a fun experience while also focusing 

on their learning. Well-designed games help build intrinsic 

motivation in players, which they sustain throughout the process by 

keeping the player in a state of deep engagement or flow [7].  

For a successful learning experience, Gee [14] emphasizes that the 

game must focus on the outer limits of the student’s abilities, 

making it hard yet doable – Csikszentmihalyi similarly suggests 

that optimal flow is achieved when student ability is matched with 

game difficulty [7]. Although some researchers have argued that 

the difficulty associated with the highest engagement is different 

than the difficulty associated with the highest learning [20], the goal 

of good game design must be to promote both engagement and 

learning.  

The challenge, then, must be to maintain the high difficulty 

associated with learning without compromising engagement to a 

degree that the student becomes highly frustrated or worse, gives 

up [e.g. 20]. After all, if a student gives up, they typically do not 

continue learning from the game (at least, not in the absence of 

reflective or teacher-driven discussion of the game – e.g. [28, 22]).  

Some students may quit a game level (or the entire game) only after 

protracted struggle. Others may quit the level immediately and 

search for an easier level, a behavior tagged as the “soft underbelly 

strategy” [1]. Both responses to difficulty should be addressed in 

an optimal learning game. 

To prevent students from giving up, most serious games in 

education include immediate feedback and interventions aimed to 

improve the learner experience [26]. When the student is 

struggling, a relevant and timely intervention could keep the 

student motivated and prevent frustration from leading the student 

to give up. A struggling student may also benefit from an 

intervention that prevents them from wheel-spinning [4], playing 

for substantial amounts of time without making progress. 

However, even though scaffolding may be beneficial to a struggling 

student, it may be undesirable – even demotivating and harmful to 

learning – if the student is provided with scaffolding when he or 

she does not need it [9]. As such, it may be valuable to detect 

struggling during games that can benefit from an intervention. In 

that fashion, scaffolding can be provided to students who need it 

but withheld where it is unnecessary and may be counterproductive.  

The goal of this paper, then, is to detect whether a student is likely 

to give up and quit a level in progress. We do so in the context of 

Physics Playground [27], a game where students learn physics 

concepts through interactive gameplay. 

1.1 Related Work 
There has been considerable interest in developing automated 

detectors of disengagement over the last decade. This work 

includes detectors for off-task conversation [2], mind wandering 

while reading [8], and gaming the system - where the student 

exploits the system to complete the task [3]. In the specific case of 

games, researchers have developed detectors for a variety of 

disengagement-related constructs, including whether the learner is 

engaging in behaviors unrelated to the game’s learning goals [23], 

whether the student is genuinely trying to succeed in the game [10], 

and whether the learner is gaming the system [29]. One inherent 

challenge to much of the work to detect disengagement is the 

dependence on subjective human judgement for ground truth labels 

such as field observations, self-reports, and retrospective 

judgement. This makes it challenging to validate the model beyond 

the context of data collection. By contrast, predicting whether a 

student will quit has the advantage of only needing an objective 

ground truth label. This aspect of quit prediction makes it relatively 

less labor-intensive to validate a model in newer settings and 

diverse student population.  

There has been past work to predict whether a student will quit 

within other types of online learning environments.  In a lab 
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experiment with a simple reading interface, an interaction-based 

detector was developed to predict if a student would quit an 

upcoming text based on the reading behavior of the student in the 

past text [21]. There has also been considerable attention to the 

issue of quit prediction (sometimes referred to as dropout or stop-

out) in the context of massive open online courses (MOOC), due to 

the high attrition rate in MOOCs. In one of the studies [31], 

researchers conducted social network analysis (based on discussion 

forum participation) and survival analysis to predict student 

dropout from an ongoing Coursera class. Another study [15] 

detected at-risk students based on their engagement with video 

lectures and assignments and their performance in the assignments. 

One important aspect to some of this MOOC work is that the 

detectors have been used to drive interventions. For instance, an 

automatic survey intervention was built based on a MOOC dropout 

classifier by researchers at HarvardX [30]. They observed that the 

surveys appeared to increase the proportion of students thought to 

have dropped out who chose to return to the course. 

1.2 Context/Setting 
Physics Playground1 (PP; formerly known as Newton's 

Playground) [27] is a two-dimensional game, developed to help 

secondary school students understand qualitative physics related to 

Newton’s laws of force and motion, mass, gravity, potential and 

kinetic energy, and conservation of momentum. The player draws 

objects on the screen, often simple machines or agents to guide a 

green ball to hit a red balloon (goal) by using a mouse and drawing 

directly on the screen.  

The agents in the game were as follows: A ramp is any line drawn 

that helps to guide the ball in motion (e.g., such as a line that 

prevents the ball from falling into a hole). A lever rotates around a 

fixed point (pins are used to fix an object on- screen), and is useful 

for moving the ball vertically. A swinging pendulum directs an 

impulse tangent to its direction of motion, and is usually used to 

exert horizontal force. A springboard stores elastic potential energy 

provided by a falling weight, and is useful for moving the ball 

vertically. Such weights are called freeform objects whose mass is 

determined by the density of the drawn object.  

Any solution that solves the problem receives a silver badge; a 

solution that solves the problem with a minimal number of objects 

receives a gold badge. Problems are designed so that receiving a 

gold badge typically requires a specific application of an agent or 

simple machine. Laws of physics apply to the objects drawn by the 

player. There are seventy-four levels in total across seven 

playgrounds. Each level contains fixed and movable objects. The 

player analyzes the givens (what he/she sees on the screen) and 

sketches a solution by drawing new objects on the screen (see 

Figure 1). All objects in the game obey the basic rules of physics 

relating to gravity and Newton’s laws, and each level is designed 

to be optimally solved by particular agents. PP is nonlinear; 

students have complete choice in selecting playgrounds and levels. 

The goal of quit prediction is to identify potential learning moments 

for a struggling student in the game where a cognitive support could 

support the student in developing their emerging understanding of 

key concepts and principles.  

                                                                 

1 Link to play PP - https://pluto.coe.fsu.edu/ppteam/pp-links/ 

 

Figure 1. An example level in physics playground being solved 

with a pendulum agent (drawn in green by the student). The 

dashed blue (marked for illustration; not shown in the game) 

line traces the trajectory of the pendulum when released and 

that of the ball to the balloon after the pendulum strikes. 

2. METHODS 

2.1 Data Collection 
Participants consisted of 137 students (57 male, 80 female) in 

the 8th and 9th grades enrolled in a public school with a diverse 

population in a medium-sized city in the southeastern U.S. The 

game content was aligned with state standards relating to 

Newtonian Physics. The study was conducted in a computer-

enabled classroom with 30 desktop computers over four 

consecutive days. On the first day, an online physics pretest was 

conducted, followed by two consecutive days of gameplay and a 

posttest on the fourth day.  The pre-test and the post-test measured 

students’ proficiency in Newtonian physics. The software logged 

all the student interactions in a log file. In this paper, we focus on 

the data collected during the second and third days (where students 

were playing Physics Playground for 55 minutes each day).  

Physics Playground log data capture comprehensive information on 

student actions and game screen changes as a time series with 

millisecond precision. One of the important fields in the log data is 

the event. It is used to construct most of the features used in our 

model. The value of this field categorizes the game moments into – 

a) game-related events like game start, and end; b) level-related 

events like start, pause, restart, and end; c) agent creation events 

like drawing of ramp, pendulum, level, springboard; d) play-related 

events like object drop, object erase, collision and nudge; e) 

between-level navigation events like menu-focus. We focus on 

level-related events, agent creation events, and play-related events 

for predicting whether a student will quit a specific level. 

Some levels in PP can be solved by multiple agents (ramp, lever, 

pendulum, and springboard). For each of the relevant agents, 

students can get a silver or a gold badge based on how efficient their 

solution is. Hence, a student could be playing a level for the first 

time, replaying using a different agent, or replaying to get a better 

badge. We consider each of these visits to a level as separate 

instances of gameplay on that level and predict whether a student 

will quit the level during the student’s current visit. Each time a 

student exits a level, the log data marks the end of the visit with a 

level end event.  This event can occur either when the student solves 

the level successfully (earns a badge; quit=0) or when the student 

exits a level without solving it (doesn’t earn a badge; quit=1). 
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Within each visit, a student can restart a level multiple times 

without quitting the level. Restarting a level erases all the student-

created objects and resets the ball and the other level-given objects 

back to their default positions. The ball also resets back to its 

original position each time it drops out of the screen. We identify 

this as a ball reset event.  

2.2 Data Preparation 

2.2.1 Data Pre-processing 
Among the total of seventy-four levels in this version of the game, 

only thirty-four levels had data for at least fifty students. These 

levels were used for modelling (Table 1); the other levels did not 

have enough data to build level specific models (explained in 

section 2.3.1). Also, these higher levels are only reached by the 

most successful students, making this data of less interest for our 

research goal. After data pre-processing, we have 390,148 relevant 

events across all the students playing the chosen levels. 

2.2.2 Feature Engineering 
Feature engineering is an important step in the modeling pipeline 

that converts raw log data to a set of meaningful features. Many 

argue that the success of data mining approaches relies on 

thoughtful feature engineering [24]. For each data sample, we have 

engineered a total of 101 features of the four types listed below. In 

designing features, we endeavor to avoid using data about the 

student’s future to interpret their behavior, since our goal is to 

predict their future outcome. Hence, all the features at any time step 

solely include the information from the past and the present.   

a) Student+Level+Visit related features define a student’s progress 

in their current visit to a level. They are recalculated at each event 

within the logs, and each row represents a single event or student 

action. There are multiple kinds of student+level+visit features: 1) 

A set of binary features denote the occurrence of an event (e.g., 

level restart, ball reset, and, the creation of an object). For these 

features, each row in the data represents a single event, so only one 

binary feature will have a value of 1 in any row; 2) A set of 

numerical features represent the current counts of all the actions 

taken by the student since the beginning of the visit. These include 

counts of objects and agents drawn and other relevant events (e.g., 

the number of springboards, freeform objects, pins, and ball 

nudges); 3) A set of features track higher-level game activities since 

the start of the visit (e.g., the number of level restarts and ball 

resets); 4) A set of temporal features (e.g., the time elapsed in the 

visit so far and the time elapsed since the last restart); and 5) A set 

of features that maintain the counts of currently active objects on 

screen since the drawn objects could drop off the screen or be 

erased by the student. There are a total of 27 student+level+visit 

related features. All of these features are updated after each relevant 

event (see section 2.1). In most cases, only a small subset of feature 

values change between consecutive data samples.  

b) Student+Level related features define the student’s experience 

with the level so far, across all the previous visits (recall that a 

student can replay a previously solved or unsolved level; see 

section 2.1). This includes high-level features like the number of 

visits to the level, the number of badges received in the past visits, 

the number of visits quit without solving, the overall number of 

pauses, and the total pause duration in the level overall. This also 

includes cumulative features that indicate past solution approaches 

                                                                 

2 The aggregated data (section 2.2.3) is made available at 

https://upenn.box.com/s/4ocucflaehd7c51lbxx96heikcjtcwz1  

(e.g., the total number of pendulums drawn in the past visits). There 

is a total of 17 such features. These are set to 0 for the first visit and 

is updated at the end of each consecutive visit to the level by the 

student.  

c) Student related features define the student’s progress through the 

game across all the levels played so far. These include counts like 

the total number of levels played, the number of levels quit, the 

number of levels involving a particular physics concept played so 

far (e.g., Newton’s first law of motion, energy can transfer, 

properties of torque), and the number of levels solved using a 

particular agent. These also include an overall summary of 

gameplay attributes across the levels played so far (e.g., means and 

standard deviations of the number of visits, pause duration, time 

spent, and number of objects used across all the levels played so 

far). There are a total of 40 such features. The feature values start 

at zero for a new student and continue to get updated as the student 

proceeds playing more levels in the game.  

d) Level related features define the inherent qualities of a particular 

level. There are two kinds of level-related features – 1) A set of ten 

features computed by taking averages and standard deviations of 

student-level features from all students who played that level (e.g., 

means and standard deviations of number of objects used, time 

taken, number of level restarts, and badges received in this level); 

and 2) A set of seven level-related features that do not require past 

student data. These include binary features for primary physics 

concept and agent(s) used for solving. There are a total of 17 level-

related features. These features are pre-set at the game start and 

their values remain the same for all the students and all the visits to 

a particular level. 

Upon exploring the relationship between the level-pause and level-

end events, we noticed that in order to access the quit button, 

students need to pause the gameplay. Since level-pause is directly 

indicative of the outcome variable (though not all pauses lead to 

quitting), we have discarded any feature that is related to the 

occurrence of a pause event from the student+level+visit set of 

features and retained the pause-related features in the student+level 

set of features.  

2.2.3 Aggregations 
As we are predicting an outcome (quitting a level) that comes as 

the culmination of many actions, and that is likely to be predicted 

by patterns of inter-related actions rather than single actions (such 

as drawing a single object), we aggregate the data into 60-second 

clips [24], [5]. Since only student+level+visit (see Section 2.2.2 a) 

and student+level (see Section 2.2.2 b) features change with each 

event, these are the only features to be aggregated at the 60 second 

interval. The binary student+level+visit features are converted to 

integer features that count the occurrence of these events over the 

60 second interval. For cumulative features like the total number of 

level restarts in the visit so far, the last value at the end of the 60 

second window is retained. Similarly, for features indicating the 

current object counts and on-screen elements like current number 

of lever objects, the values of the last data sample in the 60 second 

interval are retained. The same approach is followed for the features 

corresponding to elapsed time, like time elapsed since level restart 

in the visit. After feature aggregation, we have a final sample size 

of 14,116 data points and a feature space of 101 dimensions.2 
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2.3 Model Training 
The next step of the modeling process is to define the quit value for 

each data sample. We predict a binary label that represents whether 

the student quit a visit (without solving) or not. This variable can 

be operationalized in several fashions. One possible way to define 

the label value would be to only mark the last data sample of a visit 

before the student quits as representing quitting, as in the research 

on MOOC stop-out [30]. However, our goal is to be able to detect 

that a student is likely to quit early enough to prevent this behavior. 

Therefore, we label every 60-second data clip during a visit that is 

eventually quit as “quit”. The overall class distribution in the data 

is 28.77% quit and 71.23% not-quit. 

2.3.1 Level-specific Models Versus Level-agnostic 

Model 
Within this paper, we consider two possible types of models for 

detecting quit: a) level-specific models which are trained on the data 

from a single level; and b) a level-agnostic model which is a single 

model trained on the data from all levels. One can see pros and cons 

to both approaches. We could expect level-specific models to be 

more accurate as the data is tailored to a narrower prediction 

context. However, using level-specific models necessitates having 

enough training data for all the levels. It also implies that detection 

will be unavailable at first when new levels are designed for the 

game.  

2.3.2 Gradient Boosting Classifiers 
Due to the popularity of ensemble methods in classification, 

gradient boosting classifiers [13] are chosen for quit prediction. 

Only one other model (random forest) was tried and the results are 

similar to the gradient boosting classifier. Gradient boosting 

classifiers combine the predictive power of multiple weak models 

into a single strong learner, reducing model bias and variance. The 

ensemble is built in a forward stage-wise fashion where the current 

model corrects its predecessor model by fitting to its pseudo-

residuals. Decision trees are used as the base learners. To avoid 

overestimation of model generalizability, hyperparameter values 

are kept at the default specified by scikit-learn, the python machine 

learning library. These consist of setting the number of estimators 

to 100, the maximum depth of estimators to 3, the learning rate to 

0.1, using a deviance loss function, using the Friedman mean 

squared error criterion, and setting the subsample value at 1 for a 

deterministic algorithm.  

2.3.3 Model Training Architecture3 
Five-fold student-level cross-validation is used for evaluation of 

model performance. In this approach, students are split into folds 

and a single student’s data is only contained in one-fold. To avoid 

biasing the model, feature selection is repeatedly conducted only 

on the training fold data. Model-based feature selection approach is 

used. Based on the model’s fit on the training data, features are only 

selected to be included if their feature importance [6] (see section 

3.3.2) is more than the mean of the importance of all features. The 

reduced-feature training data is used for model training. The 

performance of the trained model is evaluated on the held-out test 

set. The same pipeline is followed for all the five non-overlapping 

folds of train-test splits. Due to the skewness in the data, area under 

the curve (AUC) is used as the evaluation metric [16]. AUC 

indicates the probability that the classifier ranks a randomly chosen 

                                                                 

3 The scripts for feature engineering and modelling is open at 

https://github.com/Shamya/Quit-Prediction-Physics-

Playground.git 

quit sample higher (more likely to indicate quitting) than a 

randomly chosen not-quit sample. The corresponding F1 value, 

giving the harmonic mean between precision and recall at the 

default threshold between quit/not quit (0.5), is also noted. Finally, 

precision-recall curves are used to better understand the 

performance of the model and to choose an appropriate probability 

threshold for intervention. Feature importance and partial 

dependence plots (section 3.3.3) are used to interpret the final 

model. 

3. RESULTS 

3.1 Level-specific Models Versus Level-

agnostic Model 

3.1.1 Cross-validation Results 
The first analysis is aimed at choosing between level-specific and 

level-agnostic modelling approaches for quit prediction (section 

2.3.1). For our first comparison of the model performances, only 

the aggregations of 49 features corresponding to 

student+level+visit and student+level attributes were used for 

training, since the level specific models cannot benefit from level-

related features. We add those additional features to the level-

agnostic model in a following section. Following the modeling 

architecture described in section 2.3.3, the five-fold student-level 

cross-validation results of level-specific models for the 34 unique 

levels in this dataset are given in Table 1. The average AUC of the 

level-specific models is 0.68 (𝑆𝐷 = 0.11), and the average F1 

value is 0.39 (𝑆𝐷 =  0.16). The level-agnostic model has a cross-

validated AUC of 0.75 and F1 of 0.41. The AUC of the level-

agnostic model is higher than the median and mean and close to the 

third quartile value of the level-specific AUCs (Figure 2). The F1 

value of the level-agnostic model is higher than the median and 

mean of level-specific F1 values. The level-specific F1 values also 

have high variance.  

 

Table 1. Cross-validation results of level-specific models for 

the 34 levels sorted by their order in the game.  

Level #Users %quit AUC F1 

downhill 124 8.13 0.93 0.82 

lead the ball 123 4.32 0.94 0.33 

on the upswing 124 11.82 0.83 0.30 

scale 124 8.70 0.92 0.32 

spider web 126 15.38 0.62 0.20 

sunny day 126 23.25 0.55 0.22 

through the cracks 125 13.10 0.77 0.46 

wavy 127 20.78 0.54 0.18 

around the tree 115 29.45 0.63 0.29 

chocolate factory 121 26.11 0.65 0.29 

cloudy day 121 33.78 0.65 0.39 

Proceedings of the 11th International Conference on Educational Data Mining 170

https://github.com/Shamya/Quit-Prediction-Physics-Playground.git
https://github.com/Shamya/Quit-Prediction-Physics-Playground.git


 

                          

 

diving board 120 32.50 0.61 0.36 

jelly beans 122 21.04 0.59 0.29 

little mermaid 115 39.46 0.56 0.33 

move the rocks 114 16.70 0.60 0.21 

need fulcrum 126 42.41 0.55 0.40 

shark 111 44.14 0.61 0.46 

tricky 107 17.75 0.78 0.32 

trunk slide 116 32.56 0.67 0.35 

wedge 107 7.86 0.83 0.32 

yippie! 123 12.66 0.69 0.28 

annoying lever 107 22.41 0.68 0.37 

big watermill 101 43.70 0.62 0.46 

caterpillar 95 40.24 0.67 0.53 

crazy seesaw 92 35.74 0.68 0.38 

dolphin show 81 46.78 0.59 0.52 

flower power 74 35.45 0.65 0.42 

heavy blocks 72 18.75 0.61 0.23 

Jar of Coins 73 36.14 0.74 0.60 

roller coaster 67 45.60 0.64 0.52 

stiff curtains 58 26.47 0.45 0.08 

tetris 67 39.89 0.74 0.56 

work it up 57 73.76 0.68 0.77 

avalanche 54 28.85 0.75 0.60 

 

 

 

Figure 2. Box plot representing the range of AUC and F1 

values of the 34 level-specific models. The box extends from 

the 25th to 75th percentiles, with a notch at the median. The 

dashed horizontal lines correspond to the values of the level-

agnostic model. 

 

3.1.2 Understanding the Model Differences 
The qualitative differences between the two approaches can be 

explored by contrasting the features selected by each (Table 2). 

Feature selection for this analysis is done on the full data. The level-

agnostic model seems to mainly select general features like past 

quits, pauses, badges, visits, level restarts, and ball resets which are 

common across levels. While level-specific models include these 

features, they also incorporate additional features related to finer-

grained aspects of gameplay like the placement of pins and the 

drawing of specific machines (in the current 60-second time bin, in 

the current visit, and across visits). For instance, one of the levels 

named diving board is solved using a springboard. Among the ten 

features selected by this level’s specific model, six of them 

correspond to the specific gameplay actions that one can observe a 

student take (e.g., total springboards drawn, total pins drawn (pins 

are used to hold the springboard on the screen), current number of 

pendulum objects on screen, and total nudges). A similar trend is 

seen in most level-specific models. Note that the number of level-

specific models selecting any specific agent-related feature (as 

shown in Table 2) is distributed across agents, as most levels can 

be solved by only a subset of these agents. 

 

Table 2. Comparing top features selected in level-agnostic and 

level-specific models. 

Selected Feature 

In level-

agnostic 

model? 

In how many  

level-specific 

models (out 

of 34) 

Number of visits made by the 

student to this level so far 

Yes 
25 

Total pause duration in the 

level so far 

Yes 
26 

Number of past quits by the 

student in the level 

Yes 
25 

Number of badges received in 

the level by the student so far 

Yes 
22 

Number of restarts by the 

student in the level so far 

Yes 
20 

Number of ball resets in the 

visit so far 

Yes 
23 

Total ball resets in the level so 

far 

Yes 
20 

Total pins drawn in the visit so 

far  

Yes 
20 

Total pendulums drawn in the 

visit so far  

Yes 
17 

Total nudges in the visit so far  No 32 

Total nudges in the level so far No 30 

Total pins placed in the level so 

far 

No 
28 

Total free form objects drawn 

in the visit so far 

No 
         24 

Current number of free form 

objects on the screen 

No 
25 

Total ramps drawn in the level 

so far 

No 
21 

Total ramps drawn in the visit 

so far 

No 
18 

Total free form objects drawn 

in the level so far 

No 
17 
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Total pendulums drawn in the 

visit so far 

No 
15 

Current number of pendulum 

objects on the screen 

No 
10 

 

3.2 Enhancing the Level-agnostic Model 

3.2.1 Feature Additions 
Counter to the expectation that the individualized models may 

perform better, the AUC value of the level-agnostic model was 7 

percentage points higher than the average AUC of the level-specific 

models. This could be attributed to the ability of the level-agnostic 

model to leverage the larger amount of data to identify 

generalizable features for quit prediction.  

However, it may be possible to achieve even better predictive 

performance in a level-agnostic model by exploiting the level-

related features (section 2.2.2 d). To examine this, we re-fit the 

level-agnostic model, now also incorporating the level-related 

features. Recall that there are two kinds of level related features – 

pre-defined features that can be defined for any new levels 

(indicating what agents and concepts are involved in solving the 

level) and features that use past student data to determine average 

behaviors for other students on the level, such as the number of 

objects used.  We tested each type of additional features separately 

(Table 3, model #2 and #3). Adding just the predefined features had 

very little effect on the output (model #2). By contrast, 

incorporating the ten level-related features that use past students’ 

data appears to improve the AUC value, though only by a modest 

0.04 (model #3).  

 

Table 3. The performance of the original level-agnostic model 

and various extensions to the model with level-related and 

student-related features. 

# Feature Set(s) #Features AUC F1 

1 Level-agnostic Model 44 0.75 0.41 

2 Model 1 + Predefined 

Level-related Features 

51 0.75 
0.42 

3 Model 2 + Level-related 

Features from Past Data  

61 0.79 
0.45 

4 Model 1 + Student-related 

Features (level-agnostic 

features only) 

84 0.79 

0.49 

5 Model 3 + Student-related 

Features (all features) 

101 0.81 
0.51 

 

Finally, we investigated whether we can enhance the model by 

adding features pertaining to the student’s whole history of past 

play (student-related features; section 2.2.2 c). We see that there is 

a modest improvement to the AUC values (Table 3, model #4 and 

#5). Note that model #4 (like model#1) doesn’t contain level-

related features and hence is level-agnostic. With an AUC of 0.79, 

model #4 could be used for new levels of the game where we do 

not have past student data to compute level-related features. For the 

current levels of the game, the best performing model (model #5) 

has an AUC of 0.81. Across the five folds, the AUC values of the 

held-out test sets have a low standard deviation of 0.01.  

3.2.2 Understanding Model Performance 
The AUC values above show that the best model (#5) is good at 

distinguishing students who will eventually quit from other 

students, but the F1 values are surprisingly low, considering the 

AUC. We can further understand the full model’s (model #5) 

performance for different thresholds by examining a precision-

recall (PR) curve (Figure 3) generated for all test set predictions.  

We see that precision is close to perfect for any threshold where 

recall is at or below 0.2. Additionally, recall is perfect when 

precision drops to 0.3. In between these extremes, the relationship 

between precision and recall is nearly linear, offering a clear trade-

off between which of these two metrics is optimized for. Based on 

the characteristics of an intervention, a custom threshold on the 

probability can prioritize recall over precision or vice versa.     

 

Figure 3. Precision-Recall curve of the final model (model #5).  

 

3.3 Final Model Interpretation 

3.3.1 Selected Features  
Out of 101 features, a total of 34 features were selected by the final 

model (model #5). The 21 features are student-related features (out 

of a possible 40 student-related features), 2 are level-related 

features (out of a possible 17), 6 are student+level related features 

(out of a possible 17), and 5 are student+level+visit related features 

(out of a possible 27). Table 4 lists the top 15 features. Similar to 

the original level-agnostic model (model #1), the selected features 

focus on high-level game activities like visits, badges, past quits, 

time spent, level restarts, and experience with agents across visits 

and other levels. There is no student+level+visit related feature in 

the top 15 selected features. The final model (model #5) has 10 

student-related features out of the top 15 features; note that these 

student-related features were not available to the original level-

agnostic model. These features continually track the student’s 

progress across all the levels.  

 

Figure 4. The feature importance of the top 15 features 

selected by the final model (model #5). The mapping between 

feature IDs and feature names is given in Table 4. 
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Table 4. Top 15 features selected by the final model4 (model 

#5). Feature type – SLV=Student+Level+Visit, 

SL=Student+Level, L=Level, S=Student 

Feature 

ID 
Selected Feature 

Feature 

Type 

1 
Number of visits made by the student to 

this level so far 

SL 

2 
Standard deviation of the total time 

spent by the student across levels so far 

S 

3 
Mean number of badges received by all 

students in this level 

L 

4 
Number of past quits by the student in 

the level 

SL 

5 
Number of badges received in the level 

by the student so far  

SL 

6 

Standard deviation of the total 

pendulums drawn by the student across 

levels so far 

S 

7 

Standard deviation of total freeform 

objects drawn by the student across all 

levels so far 

S 

8 
Mean badges received by the student 

across levels so far 

S 

9 
Total pause duration in the level so far 

across all visits 

SL 

10 
Mean time spent by the student in a 

level 

S 

11 
Standard deviation of the number of ball 

resets by the student across levels so far 

S 

12 

Standard deviation of the number of 

visits made by the student across levels 

so far 

S 

13 
Mean pause duration of the student 

across levels so far 

S 

14 
Standard deviation of badges received 

by the student across levels so far 

S 

15 
Mean number of pendulums drawn by 

the student across levels so far 

S 

  

3.3.2 Partial Dependence Plots 
Partial dependence plots (PDP) [13], originally proposed to 

interpret gradient boosting algorithms, have since been used with 

many predictive models to understand the dependence of model 

predictions on the covariates. Intuitively, partial dependence refers 

to the expected quit probability (logit(p)) as a function of one or 

more features. For example, the top right plot (5B) in Figure 5 gives 

the partial dependence between the mean number of badges 

received by students in a level (level-related feature) and the logit 

of quit probability after controlling for all the other features. 

Negative partial dependence values (y-axis) imply that for the 

corresponding value of the feature, it is less likely to predict quit=1. 

Similarly, a positive partial dependence for a feature value implies 

that it is more likely to predict quit=1 for that feature value. In our 

example, levels with mean numbers of badges earned below 0.6 are 

more likely to be quit by students. In general, as one might expect, 

there is a negative relationship between quitting and the mean 

number of badges received by students in a level. The higher the 

value of partial dependence, the stronger the relationship between 

the feature value and the outcome of quitting. More generally, the 

                                                                 

4 All selected features listed at - https://github.com/Shamya/Quit-

Prediction-Physics-Playground.git 

larger the range of the dependence value, the larger the overall 

influence of that feature on the model prediction. 

 

5A 

 

5B 

 

5C 

 

5D 

 

5E 
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5F 

 

5G 

 

5H 

 

5I 

 

5J 

 

Figure 5. Partial dependence of quit probability on some of 

the selected features. Note that the range of y axis is different 

for each plot; larger ranges indicate that the feature is more 

predictive overall.  

 

Below is the summary of our interpretation of some of the features 

(Figure 5) selected by the final model. Most of these align with a 

general intuition of the game attributes and student behavior. Note 

that this analysis is intended only for a high-level model 

interpretation. The model decision-making is more complex and 

involves interactions between different sets of features. 

1. A student who revisits a level is less likely to quit the 

level. This could indicate student interest in solving the 

level. (Figure 5A; student+level-related feature) 

2. A level in which students have received fewer badges 

(mean < 0.6; note that a student may earn multiple badges 

in a level) is more likely to see quitting behavior in future 

students. This could indicate the inherent level difficulty. 

(Figure 5B; level-related feature) 

3. A student who has previously solved the level is less 

likely to quit in their revisits to the level. This could 

indicate that the student generally understands the level 

and is trying to solve it with different agents. (Figure 5C; 

student+level-related feature) 

4. A student who has quit a level in the past is more likely 

to quit the level again. This could indicate that the student 

is struggling with a concept or how to apply it in a way 

that is preventing him/her from succeeding in the level. 

(Figure 5D; student+level-related feature) 

5. A student who has restarted a level fewer times is less 

likely to quit the level. Higher numbers of level restarts 

could indicate struggle. (Figure 5E; student+level-related 

feature) 

6. A student who has received a higher number of badges 

(mean badges > 0.9) in the past levels is less likely to quit 

a future level. This could indicate a student who generally 

understands the physics concepts better. (Figure 5F; 

student-related feature) 

7. A student who either spends under 2 minutes or over 5 

minutes on average across levels is more likely to quit 

future levels. This feature is discussed in section 4.2. 

(Figure 5G; student-related feature) 

8. A student who has quit more levels in the past is more 

likely to quit a future level. This could indicate low 

competence and/or disengagement. (Figure 5H; student-

related feature) 

9. A student who has solved more number of levels that 

involve the concept “energy can transfer” (EcT) is less 

likely to quit a level in the future. EcT is a relatively 

complex physics concept. In our past research [18] we 

have seen evidence that levels that include EcT are 

associated with higher student frustration. (Figure 5I; 

student-related feature) 

10. A level in which students spend less time in average is 

more likely to be solved correctly by a future student. 

This could indicate lower level difficulty. (Figure 5J; 

level-related feature) 

 

4. DISCUSSION 
In this paper, we describe an automated detector we developed to 

predict if a student will quit a specific level they have started, within 

the game Physics Playground. Multiple sets of features were 
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engineered to capture student-related, level-related and gameplay-

related information over time. We compared the performance of 

models trained on data from single levels to the performance of a 

single level-agnostic model trained on the data from 34 levels. 

Contrary to our initial expectations, the level-agnostic model (#1 

above) performed better than almost three-fourths of the level-

specific models. After adding level-related features (which cannot 

be used in level-specific models), the resultant model (#3 above) 

performed better than 29 (out of 34) level-specific models. Among 

the five level-specific models that outperform model #3, four of 

them are the first four levels encountered by the students in the 

game and are designed to be easy. All five of the outperforming 

levels have around 10% of student visits ending in quitting whereas 

the overall incidence of quitting behavior is 28.77%. Comparing 

the features selected by the two kinds of models reveal the emphasis 

of the level-agnostic model on generalizable student behavior, 

while the level-specific models focus on low-level gameplay 

related features. The performance of the level-agnostic model is 

further enhanced by adding student-related features (model #4, #5 

above). The final combined model (#5) selects 34 out of 101 

features, which are interpreted using the feature importance scores 

and partial dependence plots. Due to the superior performance of 

the level-agnostic model and its ability to transfer to new levels and 

the levels with limited data, we recommend its usage over the level-

specific models. Visualizing the final model with feature 

importance and partial dependence graphs, we find insights on 

which student behavior is more indicative of quitting. More 

analysis is needed to validate these claims.  

Given the model’s level of AUC, it appears to be of sufficient 

quality to use in intervention, identifying a student who is 

struggling and could benefit from learning supports before they quit 

the level. Our final model has a clear trade-off between precision 

and recall, shown in the precision-recall curve in Figure 3. 

Depending on the properties of a specific intervention, an 

appropriate threshold could be set on the classifier probability to 

decide whether a student is sufficiently likely to quit to justify an 

intervention.  

4.1 Limitations 
There are some potential limitations to the approach presented here. 

First of all, there are limitations arising from our choice to label all 

data in a student’s visit to a level as to whether the student 

eventually quit. By labeling all data in the visit as quit, we may 

predict quitting before the behaviors have emerged that lead to 

quitting, and may intervene too early. This also leads to the risk of 

interfering with student persistence [25][11]. This risk could be 

mitigated by using interventions that allow the student to continue 

their efforts if they feel that they are not yet ready for an 

intervention.  

Another limitation is in the generalizability of the model we have 

developed. Physics Playground is played by students of various age 

range and representing a diverse range of backgrounds, but the 

students in this dataset are of similar ages and live in the same 

region.  Hence, it is important to test the generalizability of the 

model on data from a broader and more diverse range of students. 

As a next step, we are collecting data from a middle school in New 

York City where over 80% of students are economically 

disadvantaged, 97% belong to historically disadvantaged groups 

and all students enter the school with test scores far below 

proficiency. We also intend to collect data from a broader range of 

levels and test model applicability within this broader range of 

contexts.   

4.2 Future Work 
The goal of quit prediction is to identify student struggle in real-

time to intervene meaningfully. Towards this end goal, the Physics 

Playground team is building an array of cognitive and affective 

supports that can be delivered when a student is predicted to be at 

risk of quitting to improve students’ experience and learning. 

Ideally, these interventions should be based on an understanding of 

why a student is likely to quit, which our current model does not 

yet reveal.  For example, a student may quit a level after putting in 

considerable effort, or rather quickly after minimal effort. A student 

may quit a level to replay other levels to achieve a gold badge, or 

may seek to follow a soft underbelly strategy [1], searching for a 

level easy enough to complete. As reported in section 3.3.3 (Figure 

5F), there are two distinct quitting behaviors associated with time 

spent in a level. A student spending very little time in a level is 

more likely to quit the level. This may occur when the student is 

engaging in soft underbelly strategies, or when the student is 

putting in limited effort. Other students quit a level after 

considerable time and effort, indicating that they are struggling, 

possibly in some cases even wheel-spinning [e.g. 4]. Future work 

to differentiate why a student is likely to quit may help an 

intervention model to differentiate why a specific student needs 

support and personalize the support delivered to that student.  

A learner playing a game experiences a range of emotions while 

engaging with the game. These can influence learning outcomes by 

influencing cognitive processes [12]. Knowing students’ affective 

experience could provide deeper insights into the causes of quitting 

behavior. In past research [17], video-based and interaction-based 

affect detectors were built for Physics Playground to identify the 

incidence of affective states like flow, confusion, frustration, 

boredom, and delight. Combining quit prediction with affect 

detection could help us make a fuller assessment of the student 

experience in the learning game to provide more optimal support.  

In conclusion, the key finding of this paper is that for a well-

engineered set of features, a level-agnostic model of quit prediction 

in this learning game performs better than most level-specific 

models. 
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