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Preface

The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of
the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. The
conference, held July 15th through 18th, 2018, follows ten previous editions (Wuhan 2017, Raleigh 2016,
Madrid 2015, London 2014, Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010, Cordoba,
2009 and Montreal 2008).

This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of
these, 23 were accepted as full papers and 37 accepted as short papers. All total, the combined acceptance
rate of long and short papers is 41%. The acceptance rate for long papers is 16%. An additional 32 papers
were accepted to the poster track.

This year's conference features three invited talks: Tiffany Barnes, Professor at North Carolina State
University in Raleigh, NC; Jodi Forlizzi, Geschke Director of the HCI Institute and Professor at Carnegie
Mellon University; and Jim Larimore, Chief Officer of Center for Equity in Learning at ACT, Inc.

Together with the Journal of Educational Data Mining (JEDM), the EDM 2018 conference supports a
JEDM Track that provides researchers a venue to deliver more substantial mature work than is possible in
a conference proceeding and to present their work to a live audience. Three such papers are featured this
year. The papers submitted to this track followed the JEDM peer review process.

The main conference invited contributions to an Industry Track in addition to the main track. The EDM
2018 Industry Track received ten submissions of which six were accepted, a tangible improvement over
last year, with only four submissions total, all of which were accepted. This expansion of the industry
track represents an intentional goal to better connect industry researchers with the academic research
community.

The EDM conference continues its tradition of providing opportunities for young researchers to present
their work and receive feedback from their peers and senior researchers. The doctoral consortium this
year features 14 such presentations, more than double compared to the prior year. In addition to the main
program, there are four workshops: Educational Data Mining in Computer Science Education (CSEDM),
Proposal Policy & EDM: Norms, Risks, and Safeguards, replicate.education: A Workshop on Large Scale
Education Replication, and Scientific Findings from the ASSISTments Longitudinal Data.
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We thank the sponsors of EDM 2018 for their generous support: ACTNext, University at Buffalo, Central
China Normal University, and YiXue Inc. We are also thankful to the senior program committee and
regular program committee members and reviewers, without whose expert input this conference would
not be possible. Finally, we thank the entire organizing team and all authors who submitted their work to
EDM 2018.

Kristy Elizabeth Boyer Michael Yudelson Alexander Nikolaev
University of Florida ACT, Inc. University of New York at Buffalo
Program Co-Chair Program Co-Chair General Chair
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Best Paper Selection

The two program chairs selected five best paper nominees based on the reviews and meta-reviews for
each of those papers. The nominees were then sent to the members of the best paper awards committee.
Each committee member read and ranked each one of the nominees. Ranking was compiled and the Best
Paper Award was attributed to the most highly ranked paper. Next, the Best Student Paper award was
attributed to the most highly ranked remaining paper that was also authored by a student.

Best Paper Award Committee:
Michel Desmarais

Tiffany Barnes

Roger Azevedo

Agathe Merceron

Kalina Yacef

Best Paper Nominees:

Predicting Quitting in Students Playing a Learning Game. Shamya Karumbaiah, Ryan S Baker, Valerie
Shute

An Open Vocabulary Approach for Estimating Teacher Use of Authentic Questions in Classroom
Discourse. Connor Cook, Andrew Olney, Sean Kelly, Sidney D'Mello

Impact of Corpus Size and Dimensionality of LSA Spaces from Wikipedia Articles on AutoTutor Answer
Evaluation. Zhigiang Cai, Art Graesser, Leah Windsor, Qinyu Cheng, David Shaffer, Xiangen Hu

Studying Affect Dynamics and Chronometry Using Sensor-Free Detectors. Anthony F. Botelho, Ryan
Baker, Jaclyn Ocumpaugh, Neil Heffernan

Understanding Student Procrastination via Mixture Models. Jihyun Park, Renzhe Yu, Fernando
Rodriguez, Rachel Baker, Padhraic Smyth, Mark Warschauer
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ABSTRACT

Instructional Systems Design is the practice of creating of
instructional experiences that make the acquisition of knowl-
edge and skill more efficient, effective, and appealing [18].
Specifically in designing courses, an hour of training mate-
rial can require between 30 to 500 hours of effort in sourcing
and organizing reference data for use in just the preparation
of course material. In this paper, we present the first sys-
tem of its kind that helps reduce the effort associated with
sourcing reference material and course creation. We present
algorithms for document chunking and automatic genera-
tion of learning objectives from content, creating descriptive
content metadata to improve content-discoverability. Unlike
existing methods, the learning objectives generated by our
system incorporate pedagogically motivated Bloom’s verbs.
We demonstrate the usefulness of our methods using real
world data from the banking industry and through a live
deployment at a large pharmaceutical company.

1. INTRODUCTION

Recent estimates suggest that on average, an organization
spends nearly $1200 per year, per employee for training.’
Apart from the costs incurred in delivering training, signif-
icant costs are associated with instruction design activities
such as sourcing and preparation of course materials. Cur-
rently, most of these activities are very human-intensive in
nature, and they rely on the experience and expertise lev-
els of instruction designers and intense reviews by subject-
matter experts (SMEs) to achieve acceptable quality levels.

*Utkarsh carried out this work during his employment with
IBM Research.
1https://www.td.org/Publications/Magazines/TD/TD—
Archive/2014/11/2014-State-of-the-Industry-Report-
Spending-on-Employee-Training-Remains-a-Priority.
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Figure 1: Typical course creation workflow

1.1 Course Creation: Workflow and Challenges
Figure 1 shows the typical steps involved in creating a new
course. In the first step, instructional designers search for
existing learning content that can be used for reference while
developing the course. The learning objectives of the new (to
be designed) course informs this search process. Reference
materials may include existing courses and resources as well
as other informal learning materials, such as those available
in the form of media articles, blogs etc.

In the next step, the new course is designed and implemented
by: extracting the relevant parts of the selected reference
content, transforming them appropriately, and combining
with newly developed materials to meet the overall training
objectives. The new course content is finalized with SME
review and approval. Finally, the course is uploaded to a
repository for access by end users such as instructors and
employees.

The average time taken to produce an hour of material this
way can vary between 50 to 300 hours depending on the
nature of the course being created.? The efficiency with
which a new course can be assembled rests on two critical
factors: (a) the ability to quickly locate an existing reference
material, which is relevant to a learning objective that is part
of the planned new course; and (b) the ability to identify
(and eventually extract) appropriate parts of this material
for use within the new course.

2ht‘cps://www.td.org/Publications/Newsletter's/Learning-
Circuits/Learning-Circuits-Archives/2009/08/Time-to-
Develop-0One-Hour-of-Training.
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1.2 Contributions

In this paper, we present the first system of its kind that
helps reduce the effort associated with sourcing reference
material and course creation. We present algorithms for
document chunking and automatically generating learning
objectives from content as well as creating descriptive con-
tent meta-data that improves content-discoverability. Our
novel methods for document chunking incorporate syntactic
and stylistic features from text as well as a semantic vector-
based representation of document text to identify meaning-
ful chunks. Each chunk is physically persisted and a learning
objective consisting of Bloom’s verb [3] along with a descrip-
tive keyphrase is generated and associated with each chunk.
To the best of our knowledge, we are the first to gener-
ate learning objectives incorporating Bloom’s verbs and our
system is the first of its kind that directly addresses the
challenges in instruction design.

We describe experiments using real-world data from two in-
dustries: banking and pharmaceutical. Our results on data
from the banking industry shows that our document chunk-
ing methods are useful for instruction designers. We report
an average user rating of 2 out of 3 in a blind study to
assess the quality of chunks and an F'1 score of 0.62 com-
puted against expert generated gold standard chunks. Fur-
thermore, in the challenging problem of generating learning
objectives, the output from our system has an F'1 score of
0.70 for predicting Bloom’s verbs with an average user rat-
ing of 2.2 (out of 3) for the associated keyphrase. We also
present details of a live deployment of our solution at a large
pharmaceutical company.

2. RELATED WORK

To the best of our knowledge, our system is the first (com-
mercial or prototype) that can automatically chunk/ segment?

learning material and label them with system-generated course

objectives. We highlight some related work directly relevant
to the subcomponents of document chunking and learning
objective generation.

Document chunking: Broadly, most methods for chunk-
ing/segmentation of text rely on detecting changes in vocab-
ulary usage patterns [11, 14, 15], identifying topical shifts
[6, 7, 23], or employing graph based techniques to identify
boundaries [9, 28]. The TextTiling [11] document segmen-
tation algorithm uses shifts in vocabulary patterns to mark
segment boundaries. Works such as Riedl and Biemann [25]
adapt the TextTiling algorithm to work on topics generated
by Latent Dirichlet Allocation. Glavis et al.[9] use a graph
based representation of documents based on semantic relat-
edness of sentences to identify document segments. More re-
cent work [1, 2] uses semantic distance computed based on
vector embeddings to identify chunk/segment boundaries.
Our work on document chunking is based on this direction
of research. We use file format specific APIs to physically
persist document chunks, retaining any stylistic and presen-
tation elements from the original document.

Learning Objective generation: Most learning manage-
ment solutions either rely on user provided learning objec-

3We use the word “chunk” and “segment” interchangeably,
though a document chunk further refers to a physical em-
bodiment of a document segment

tives or automated methods to label documents with ezisting
learning objectives specified in curricula [4]. Methods such
as Bhartiya et al. [2] and Contractor et al. [5] use a curricu-
lum hierarchy to label learning material with learning objec-
tives. Milli and Hearst [22] simplify the problem of generat-
ing course objectives by directly using document keyphrases
as learning objectives. Similarly, Lang et al. [16] and Rouly
et al. [26] simplify generating objectives using topic model-
ing to identify candidate learning objectives, where Lang et
al. [16] also suggest a system to match topics with Bloom’s
verbs. In contrast, we associate keyphrases with Bloom’s
verbs [3] and rerank them to select the best candidates for
use as learning objectives. To the best of our knowledge, we
are the first to generate pedagogically motivated learning
objectives incorporating Bloom’s verbs.

3. DOCUMENT CHUNKING

Course materials can often be very large and monolithic,
covering a great number of topics and learning objectives,
which makes consumption difficult. To make these course
materials more discoverable, we automatically segment courses
into smaller chunks that can persist independently in the
course repository. We present three chunking approaches in
the following sections.

3.1 Structure guided (syNTACTIC-CHUNKER)
Section headings are often the most natural chunk bound-
aries as they reflect the organization of content by the doc-
ument creator. Formats such as Microsoft Word have an
underlying XML structure that allows us to create these
natural chunks easily. However, for PDF documents, there
is no encoded document structure information, but we can
recover the section titles by analyzing the font sizes of text.
To build the SYNTACTIC-CHUNKER, we use a combination
of Apache PDFBox* for PDF documents, Aspose APIs® for
Microsoft Office documents and Apache Tika® for all other
document formats.

Algorithm 1 details the syntactic chunking algorithm where
we do not have markers for the section headings. The al-
gorithm aims to find the font size of the largest heading in
the document for chunking. The SYNTACTIC-CHUNKER first
groups the lines in the document by their font size (sequen-
tially). For each of these font groups, the algorithm gath-
ers statistics on the chunks that would be created for each
group’s font size. The largest font size (i.e. the top most sec-
tion titles) is then chosen from the groups that satisfies the
heuristics given in the chunking hyperparameters. An exam-
ple heuristic is whether the number of chunks created by this
font size is between 3 and 20, which is the number of sections
or subsections we expect a document or a chapter to contain
on average. The significant heuristics/hyperparameters for
this algorithm are given in Table 1.

Finally, the line indices marking the start of the section
headings are recovered through the font groups created ear-
lier. These starting line indices are then further processed
in the main algorithm for creating the physical chunks or
storing the metadata.

“https://pdfbox.apache.org/
®https://docs.aspose.com/dashboard.action
Shttps://tika.apache.org/
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Algorithm 1: Syntactic chunking algorithm

Input : A path to the document
Output: A list of indices to lines/pages in the document
marking the start of a chunk

LoadParameters ( “syntactic”)

pdf < LoadDocument()

lineText <— ExtractOnEachLine( ‘text”, pdf)

lineFS < ExtractOnEachLine(“fontsize”, pdf)

// Font groups are contiguous groups of lines.

fgs < [(¢,k — 1) | lineFS[i] = lineFS[j],7 < j < k]

// Create chunk statistics for each font group

for i,j € fgs.length, i = j do

while lineFS|fgs[t]] > lineFS[fgs[j]] do
cStats[lineFS[fgs[i]]] += GetStats(fgs[j])
j+—j+1
end

end

// Select candidates from heuristics

cs + [fg | Heuristics(fg, cStats[fg]), Vfg € fgs]

chunkingFontSize < LargestFontSize(cs)

// Return the chunk start boundaries

chunkStartIndices <

[fg.startIndex | lineFS[fg] = chunkingFontSize, Vfg € fgs]

Hyperparameter Value
(1,3]

Description

Minimum and maximum
number of consecutive lines
(of the same font size) to
collapse.

Minimum and maximum
number of resulting chunks
for each font size.
Minimum number of char-
acters for a chunk’s start-
ing line.

font_group_lines

3, 20]

n_chunks

min_section_ 2
title_length

Table 1: Syntactic-chunker hyperparameters.

Hyperparameter Value
80

Description

Threshold for the mini-
mum number of lines to
stop chunking.

Proportion of starting
and ending lines to ignore
when searching for a chunk
boundary.
Pre-trained
model.
Number of most frequent
word types to include from
pre-trained WORD2VEC
model.

min_par_to_stop

trim_par 4

word2vec_model enwiki WORD2VEC

1000

max_vocab

Table 2: Semantic-chunker hyperparameters.

3.2 Topically guided (semaNTIC-CHUNKER)

Some document styles have ambiguous semantic separation
of content, such as presentation slides, informal articles, and
blogs. These document styles often have repeated font sizes
and text that do not provide distinguishing characteristics
for syntactic chunking. For example, presentation slides
often have repeated font sizes for slide titles, causing the
SYNTACTIC-CHUNKER to create a separate chunk for each

N
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Algorithm 2: Semantic/hybrid chunking algorithm

Input : A path to the document

Output: A list of indices to lines/pages in the document
marking the start of a chunk

LoadParameters ( “semantic”/“hybrid”)

pdf < LoadDocument()

lineText < ExtractOnEachLine(‘text”, pdf)

// Vectorize words using pre-trained word vectors

lineVectors <— Vectorize(lineText)

/* Modifications for the hybrid algorithm

lineFS < ExtractOnEachLine(“fontsize”, pdf)

// Create font groups.

fgs < [(¢,k — 1) | lineFS[i] = lineFS[j],7 < j < k]

// Vectorize the font groups

fgsV <« [vectorSum(Vectorize(VlineText € fg)) | Vfg € fgs]
// Similar logic to the semantic algorithm

lineVectors < fgsV

*/

// Return the chunk start boundaries (function below)
chunkStartindices < FindSegments (lineVectors, startIindex)

/* Divide and conquer strategy */

Function FindSegments (lineVectors, startindex):

n < size(lineVectors)

// Create the search area with the
numParagraphsInChunk hyperparameter

x < n/numParagraphsInChunk

y < n/(1 — (1/numParagraphsinChunk))

bestindex + (z +y)/2

bestScore < 1.0

sumTop <+ Vectorsum(lineVectors[1, z])

sumBot < VectorSum(lineVectors[z + 1, n])
for z <i<ydo
sumTop < VectorSum(sumTop, lineVectors[i])
sumBot < VectorSubtract(sumBot, n)
cos < Cosine(sumTop, sumBot)
if cos < bestScore then
bestIndex < i
bestScore < cos
end
chunkindices.append ([bestIndex + startIndex ])
topVectors < lineVectors[1, bestIndex]
botVectors < lineVectors[bestIndex + 1, n]

// Hyperparameter minNumberOfLines as the
stopping condition

if size(topVectors) > minNumberOfLines then

chunklIndices.append All(FindSegments (topVectors,

startindex))

end

if size(botVectors) > minNumberOfLines then

chunkindices.append All(FindSegments (botVectors,
bestIndex + startindex))

end
end
return chunklIndices

slide. For these documents, their text content is more useful
for inferring chunk boundaries than syntactic markers.

To chunk these documents, we use a divide-and-conquer ap-
proach based on topical or content shifts. We represent the
content using mean bag-of-word embeddings, which are pre-
trained WORD2VEC embeddings [20, 21].” We tokenise words
using whitespace, and discard common symbols such as com-

"Word embeddings are trained on English Wikipedia.
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mas and periods. When computing the mean embedding,
stopwords are excluded.® The divide-and-conquer method
first identifies a boundary that separates a document into
two partitions that have the maximum cosine distance us-
ing the vector embeddings (providing topical diversity), and
then recursively creates subpartitions until a minimum text
length is reached. The search strategy is simpler compared
to dynamic programming and iterative improvement tech-
niques typically used in the literature [1] but we found this
divide-and-conquer strategy performs encouragingly.

The pseudocode and hyperparameters for the SEMANTIC-
CHUNKER algorithm with modifications to create the HYBRID-
CHUNKER are in Algorithm 2 and Table 2, respectively. Both
algorithms share similar hyperparameters and similar divide-
and-conquer logic but on different data structures.

3.3 Hybrid method (nvBrID-CHUNKER)

The SEMANTIC-CHUNKER relies purely on content informa-
tion for chunking, ignoring potentially usable structural in-
formation. From preliminary experiments, we observed that
the SEMANTIC-CHUNKER occasionally partitions documents
at arbitrary positions in the text. For example, a few lines
after the start of a new section where the topical shift should
be stronger. To resolve this, we developed a hybrid method
that uses both structural and content information. Similar
to the SYNTACTIC-CHUNKER, we record font sizes for each
line, and gather lines that share a similar font size into a
data structure. With these data structures, we apply the
same divide-and-conquer approach used in the SEMANTIC-
CHUNKER to recursively partition the document into multi-
ple chunks. This forces the chunker to create partitions at
natural text boundaries, when this information is available.

4. LEARNING OBJECTIVE GENERATION

Traditionally, learning objectives associated with courses are
generated manually and are presented in a sentence-like struc-
ture. An example from a K-12 Science curriculum in the US:
Conduct an investigation to determine whether the mixing
of two or more substances results in new substances.®

Automatically generating these objectives can be posed as
summarization problem where the task is to identify the
“learning skill” imparted by the document. However, infer-
ring a skill requires an in-depth understanding of the con-
cepts presented, how they relate with each other, and in
courses—such as those that teach soft-skills or behavioural
skills—the relationships may be more abstract. Thus, in or-
der to generate tractable yet usable learning objectives, we
generate short sentences that are prefixed by a verb from the
Bloom’s taxonomy followed by a keyphrase. Recent work
such as Milli and Hearst [22] contends with simply using
keyphrases as learning objectives.

4.1 Candidate Keyphrase Selection
Existing methods for keyphrase extraction use a variety of
different approaches. Some methods rely on supervision to

8We use mallet’s stopword list: https://github.com/mimno/
Mallet/blob/master/stoplists/en.txt

9Sources: https://www.cs.ox.ac.uk/teaching/courses/2015-
2016/ml/, https://www.nextgenscience.org/topic-arrangement/
S5structure-and-properties-matter.

Method % Useful Keyphrases
WatsoN NLU 66
MODIFIED TEXTRANK [4] 51

Table 3: Percentage proportion of keyphrases iden-
tified by instructional designers as being “useful” for
possible inclusion in learning objectives

extract keyphrases [13, 27, 29], while unsupervised methods
often rely on graph-based ranking [19] or topic-based clus-
tering [10, 17]. For our work, we rely on an accessible and
effective keyphrase extraction method: IBM Watson Natu-
ral Language Understanding (NLU)10 to extract keyphrases.
NLU is one of many commercially available general purpose
keyphrase extraction methods that performs effectively in
general keyphrase extraction tasks [8, 12]. We also eval-
uated other methods such as a variant of TextRank [19],
which has been used in extracting keyphrases from educa-
tion material [4]. We chose NLU for the rest of this paper
after a blind user study on 243 document chunks indicated
a strong preference for these keyphrases as compared to the
method employed by Contractor et al. [4]. Table 3 shows
the proportion of useful keyphrases'! for two keyphrase ex-
traction methods. Further details and results are given in
Section 5.3.

As seen from Table 3, not all keyphrases extracted are useful
for inclusion in learning objectives. Thus, to select candidate
keyphrases for learning objectives from a general keyphrase
list, we rank and select them using a combination of factors:

J—

. Keyphrase score («): A score between 0-1 returned by
the NLU indicating the importance of a keyphrase (1 =
most important).

2. N-gram TF-IDF score (8): We compute an N-gram
level TF-IDF score for each keyphrase using a large do-
main specific background corpus for IDF score computa-
tion.

3. Inverse chunk frequency (7): We compute a chunk-
level modified IDF score for each keyphrase where the
IDF score is computed at the keyphrase level using sibling
chunks of a given chunk.

4. Google N-gram score (¢): The Google Books N-gram
service'? returns the log-likelihood of a given N-gram
from a language model trained on the Google Books cor-
pus. We use the (normalized) rank for a keyphrase within
a chunk as the N-gram score.

5. Word token level overlap with document section
titles (0): Tokens in a section title are likely to contain
mentions of important concepts and this acts as a useful
signal for selecting keyphrases for learning objectives.

10https://natu ral- language-understanding-demo.mybluemix.

net/

H«Usefulness” is defined in terms of possible inclusion of a

keyphrase in a learning objective, and not in terms of the
“quality” of a keyphrase in a general keyphrase extraction
task.

12https://books.google.com/ng rams.
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a B v ¢ 0

bank 0 05 0 05 0
pharma 0.26 0.32 0 032 0.1

Table 4: Hyperparameter values for bank and pharma
data for keyphrase re-ranking: a: orignal keyphrase
score, B: N-gram TF-IDF score, v: Inverse Chunk
Frequency, ¢: Google N-gram score, §: Overlap with
words in section titles.

EIEm  EEEm
e o [ e

Figure 2: A representative taxonomy of Bloom’s
verbs

Let weight w; be associated with each scoring factor f;,
where there are N factors. The weights of each factor is
normalized to sum to 1.0 (i.e. Ziv:o w; = 1.0). Let K9
denote the set of top-k keyphrases selected by the system
for the j-th chunk (based on decreasing order of the score
ZZ].V:O wi f;). Let the average user rating (see Section 5.3)

associated with the keyphrase set K be denoted by s;.
Our goal is to select values of w; that maximises s; for all
training examples:

M

maxM (1)

M
where M is the number of training examples. The values for
k and parameters w; are estimated using grid search.

The tuned hyperparameters for the keyphrase selection are
given in Table 4. We found that ~ is not useful in these data
sets, but maybe useful in other document collections where
learning objectives are derived from a few chunks.

4.2 Bloom’s Verbs Association

Bloom [3] proposes a taxonomy for promoting learning in-
stead of rote memorization. Bloom’s taxonomy aims to cap-
ture the whole pedagogy of learning, teaching, and process-
ing information in a list of “action” verbs. These verbs (re-
ferred to as Bloom’s verbs) characterize the activity involved
in learning concepts.

Figure 2 shows a representative view of Bloom’s taxonomy.
For example, the verb knowledge has a list of child verbs
such as identify and select. Similarly, other top-level verbs
have their own set of verbs. We experiment with a subset
of 10 verbs, as recommended by SMEs. We also explore an-
other more condensed list as suggested by the same SMEs
to investigate the potential of hierarchical options. We col-
lapse the 10 verbs belonging to the same parent, resulting in
4 higher-level verb classes in Bloom’s taxonomy. The verb

Distribution

Original List Collapsed List bank pharma
identify 542 323
define 85 12
recall knowledee 36 11
recognize g 35 31
select 6 1
list 1 8
"7 “describe ~ T T T T a_t__d___l_4fl__T6?3_'
explain understan 127 65
"7 Toutline T T T T 7 analyze =~~~ 11T ~ ~ 40
"7 determine” =~ T " apply  ~ =~ 57775 77

Table 5: Bloom’s verbs used for generating Learn-
ing Objectives and their distribution from a ran-
dom sample of 100 chunks. Each chunk often has
more than one keyphrase describing it, requiring the
SMEsSs to suggest a matching Bloom’s verb.

classes used in our experiments are given in Table 5.

To associate a verb from Bloom’s taxonomy with a keyphrase
learning objective, we train a multilayer perceptron (MLP)
to predict a verb given a document (or chunk) and a can-
didate keyphrase. Thus, the MLP consists of two fully con-
nected (dense) layers with ReLU activation functions[24] in
each node. The input of the network is the mean bag-of-
words embedding of the document text and the keyphrase.

Word embeddings are pre-trained WORD2VEC embeddings
[20, 21] trained on the English Wikipedia. Word embeddings
are kept static and not updated during back-propagation.*?
This approach of predicting bloom verbs was found to be
very effective as shown in Section 5.3.

Two examples of generating learning objectives are shown
in Table 6. They show the pairing of a Bloom’s verb with
various keyphrases. These pairings are presented to SMEs
to evaluate, where their ratings allow us to determine the
final rankings to select the most appropriate candidates as
learning objectives for a piece of text. Note that the text in
the examples (from a document chunk) has been truncated
for presentation.

5. EXPERIMENTS
5.1 Data sets

We evaluate our chunking and learning objective systems
on real-world documents from two industries: banking and
finance (henceforth bank) and pharmaceuticals (henceforth
pharma). Table 7 summarizes the word statistics of the two
document collections used in our experiments.

The bank data set serves as our initial dataset for tuning
and testing our methodology, which has a mix of 15 “for-
mal” (e.g. Microsoft Word style) documents and 15 “infor-
mal” (e.g. HTML, MediaWiki style, Microsoft PowerPoint
slides) documents.

The pharma data is a set of client-provided documents with a

13We also experimented with updating the embeddings
(Facebook’s fastText), but found little improvement and
thus chose the simpler static model with fewer parameters.
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Bloom’s | Keyphrase Avg.
Verb Rating
describe | ach payments 3
explain ach transaction flow 2.5
describe ACH transactions 2.5
identify ACH network 2
identify ACH networks 2
identify ACH payment request 2
describe | ACH payments industry 2
explain internal ach transaction 2
identify traditional ACH payments 2
identify ACH 1

Text

ACH Payments In this section we are going to take a look at
a payment type generically known as small value electronic
credit transfers, although they are referred to with a number
of different names, including automated clearing house or
ACH transactions, automatic clearing payments, electronic
clearing payments and giro payments. ...

Bloom’s | Keyphrase Avg.
Verb Rating
explain consumer payments 3
define Large value payments 2
describe payments industry 2
define Small value payments 2
identify consumer bill payments 1.5
recall consumer payments operations 1.5
identify corporate-to-corporate payments | 1.5
identify interbank payments 1.5
explain payments 1.5
identify banks 1

Text

Business Overview Why focus on consumer payments?
There are two sides to this question. First, why do banks
focus on consumer payments? There are several reasons:
Banks cannot accept consumer deposits without providing
payment services linked to those accounts. While consumer
deposits have always been important, they have never been
as important as they are today. ...

Table 6: Examples of generating learning objectives
and their average ratings from SMEs.

similar distinction of formal and informal documents. The
pharma data set consists of 382 courses containing 408 doc-
uments, where most courses only have one document. We
develop our methodology on the bank data set and pursue a
deployment on the pharma data set (detailed in Section 6).
The remainder of this section describes our experimental
results on the bank data set.

5.2 Evaluation: Document Chunking

For tuning and evaluation, we require gold standard chunks
for the bank documents. To this end, we ask SMEs to chunk'4
these documents manually, resulting in 243 chunks in to-
tal for the 30 documents. The documents were chunked
by SMEs (with inter-annotator disagreements of the chunk
boundaries resolved) based on their understanding of the
subject from an instructional design perspective. The SMEs
opted for page level chunks and thus we build our measure
of quality at the page level.

To measure the quality of our system against SMEs, we
compute the average F1 score on their list of chunk bound-

4 Chunks are contiguous breaks in the document, so chunk
boundaries can be succinctly described and compared using
the starting line/page number for each chunk.

bank pharma
No. Documents 30 408
No. Word Tokens 376,570 1,251,712
Vocabulary Size 32,598 92,890

Table 7: Data set statistics.

aries. We omit the first chunk boundary as it always starts
at page 1, and penalise duplicate page numbers (i.e. multi-
ple sections on the same page). To illustrate the evaluation
method, we give an example:

system chunks = [1, 4, 4]
human chunks = [1, 3, 4]

where each number in the list denotes the starting page num-
ber of a chunk. We omit the first chunk, yielding:

system chunks = [4, 4]
human chunks = [3, 4]

Precision of the system is therefore 1/2 = 0.5 (the second
starting page number “4” is penalised), the recall is 1/2 =
0.5, and thus F1 = 0.5.

There are a number of hyper-parameters for our chunking
methods, which are available in Tables 1 and 2. We tune
them manually based on the F1 score using a small labeled
development set. Given the tuned models, we apply them
to the bank documents.

From the chunking performance in Table 8, we found that
for formal documents, the SYNTACTIC-CHUNKER (relying on
the font size to detect natural chunk boundaries) has the
highest accuracy for formal content. In contrast, for the
informal content, where structural information may not be
very indicative of natural chunk boundaries, we find that
the SEMANTIC-CHUNKER gives better results as expected.

In order to qualitatively assess the results of our systems, we
also evaluate them with a blind user study. Two expert in-
structional designers were presented the output of chunks by
different chunking algorithms in random order and without
information on the underlying algorithm. Each designer was
asked to rate a chunk output with 1 (poor), 2 (acceptable),
and 3 (good) based on their quality and usefulness from an
Instructional Design point of view. Due to complexity and
unsupervised nature of the task, ratings above 1 are strongly
encouraging.

As seen in Table 8, the average ratings for all our best sys-
tems is greater than 1.5 indicating our system generated
chunks could be acceptable and useful for instructional de-
signers. Furthermore, we find that the scores from the user
study reinforce the assessment that formal content (with
well structured natural chunk boundaries) are reliably chun-
ked using the SYNTACTIC-CHUNKER algorithm while informal
content is better chunked using the SEMANTIC-CHUNKER. al-
gorithm.

Surprisingly, we find that the HYBRID-CHUNKER chunking
algorithm performs poorly on informal content compared to
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System Doc Type F1 Avg. Rating

Formal 0.62 2.17
Ség?};igg' Informal 0.31 2.00
Combined  0.47 2.08

. _S;I\;AI\I";I(;—_ T " Formal ~ T 0.08° "~ " 1.36 ~
CHUNKER Informal 0.20 1.67
Combined  0.14 1.51

T ;I;B;{I;)—_ T 7 "Formal T "0.21 T T T 149 T~
CHUNKER Inforrpal 0.05 1.77
Combined  0.13 1.63

Table 8: Results for Document Chunking on the bank
data set. Bold values indicate the best performance
for that system.

the SEMANTIC-CHUNKER. However, the average user evalu-
ation rating shows that the resulting chunks are highly ac-
ceptable, as expected from initial trials in designing this
algorithm. Our inspection shows that increasingly the gran-
ularity from lines to font groups simply means the desired
chunk boundaries are often missed (and they are near misses),
and that fewer chunks are created. We reason that fewer
chunks are favorable to users when the document does not
have clear chunking boundaries because of simplicity. Fur-
thermore, our F'1-score measure is strict, meaning near misses
for chunk boundaries are also heavily penalized, but the
chunk boundaries of the HYBRID-CHUNKER algorithm may
be acceptable to the user. We also experimented with alter-
native methods such as repositioning the chunk start indices
from the SEMANTIC-CHUNKER to match boundaries given by
the SYNTACTIC-CHUNKER, but the resulting chunks were not
favored by the SMEs in initial trials.

Overall, the SYNTACTIC-CHUNKER performs well on both for-
mal and informal documents for the bank data set. On
inspection of the informal documents, some contain suffi-
cient structure for the SYNTACTIC-CHUNKER to infer the de-
sired chunking boundaries, whereas documents with non-
usable structures, the SEMANTIC-CHUNKER provides more
favorable chunking boundaries. We also reason that the
higher ratings for the SYNTACTIC-CHUNKER is due to the
SYNTACTIC-CHUNKER finding section headings for chunking
boundaries, which seems to be preferred by users, whereas
another grouping of pages for the chunk may be more ap-
propriate. These chunking systems provide variety, ensuring
that we have a suitable set of chunks for any document.

5.3 Evaluation: Learning Objective Genera-
tion

To collect annotation for evaluation and for training the
Bloom’s verb MLP and for keyphrase selection, we present
to SMEs: a document chunk (manually chunked by differ-
ent SMEs in Section 5.2) and the top-10 NLU generated
keyphrases and ask them to (1) rate the keyphrase in terms
of usefulness as a learning objective suffix on an ordinal scale
from 1-3 (same as chunking evaluation) and (2) select an ap-
propriate Bloom’s verb (out of 10 verbs) for the particular
keyphrase.

We randomly sample from the full 243 document chunks
and collect annotations for 100 chunks, where each chunk is

P@l1 P@3 P@5

Avg. Rating 197 2.23 220
Precision 0.5 0.5 0.45

Table 9: bank: Candidate Keyphrase Selection for
Learning Objective Generation

annotated by 2 SMEs. We aggregate these keyphrase rat-
ings by taking the mean rating. For Bloom’s verb selection,
we ask the judges to agree on a particular verb if there is
discrepancy. To generate gold standard for the condensed
verbs (4 classes), we map the original 10 classes to the 4
classes, as given in Table 5.

5.3.1 Candidate Keyphrase Selection

We use 10-fold cross-validation at the chunk level for our
experiments. We select the top-k keyphrases for each chunk
as candidates for the learning objectives of that chunk. From
Equation 1, the tuning of factor weights is based on the
average user rating of these top-k keyphrases.

We evaluate the quality of candidate keyphrase selection us-
ing the average user rating of the selected keyphrases, and
Precision@N defined as

PaN = 7’“9'; Ik 2)

where kg is the set of gold standard keyphrases that have an
average user rating of at least 1.5'%, and k, is the set of top-
k keyphrases selected by the system. This measure shows
whether our selection methods are returning the keyphrases
that are relevant for each chunk as determined by the SMEs.

From Table 9 our keyphrase selection method has a P@5 of
0.45 with a high average user rating. This means that 45%
of the top 5 keyphrases selected contain the gold standard
keyphrases.

5.3.2  Selecting Bloom’s Verbs

Given a document and its verbs from the Bloom taxonomy,
we train an MLP and optimise its hyperparameters based
on 10-fold cross-validation at the chunk level. We use the
evaluation metric of mean F1 score over the 10-folds.'® We
use 2 test sets: (1) all keyphrases and (2) top-5 keyphrases
predicted by our system. Note that in each fold, the training
data remains the same, but test set (2) is a subset of (1).

We present the classification performance of Bloom’s verbs
in Table 10. As expected, the performance in the 4-class
prediction task is better than the 10-class prediction due to
less confusion amongst classes. Baseline experiments where
we assign the majority class for all predictions show a con-
sistent 0.10 drop in F1-score for both the 4-class and 10-class
prediction scores.

15We want our system to select only good quality keyphrases.
18For a particular fold, we compute weighted F1, where it is
weighted by the number of true instances for each class.
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1
Test Set 4-Class 10-Class
All KP 0.69 0.51
System Top-5 KP 0.70 0.53

Table 10: bank: Bloom’s verb (BV) prediction per-
formance. “KP” denotes keyphrase.

P@l1 P@3 P@5

Avg. Rating 1.24 1.35 1.38
Precision 0.1 0.3 0.32

Table 11: pharma: Candidate Keyphrase Selection for
Learning Objective Generation

6. DEPLOYMENT

Making content discoverable is a key challenge faced by tal-
ent development teams in organizations worldwide. Our sys-
tem addresses this challenge and is currently being piloted
at one of the world’s largest pharmaceutical companies to
help organize their learning content.

Experiments and Tuning: Using the pharma data shared
by the pharmaceutical company (statistics in Table 7), we
repeated the bank data set experiments on this data. The
pharmaceutical SMEs only wanted generation of document
level learning objectives, and not document chunking. Thus,
we describe only the experiments for this task. As with the
bank experiments, we ask SMEs to rate predicted keyphrases
and select the appropriate verb (from the Bloom’s taxon-
omy) given a document'” and keyphrase.'® For learning
objective keyphrase selection and Bloom’s verb prediction,
we train and tune the systems with 10-fold cross-validation
as before.

Keyphrase selection and Bloom’s verb prediction performance

for pharma are presented in Table 11 and Table 12. We find
that our candidate keyphrase average rating and precision
is lower than what was seen for banking data. We hypoth-
esize a reason for this is due to the extremely dense and
domain specific content as well as the requirement of com-
plete documents without chunking when generating learning
objectives.

Furthermore, many documents from the pharmaceutical com-
pany refer to chemical compounds and chemical formulae,
which resulted in skewed TF-IDF weights while selecting
candidate keyphrases. Our hypothesis is also backed by
the score weights for TF-IDF become less important for
pharma data as compared to bank data. We note that the
Google N-grams scores were useful for re-ranking keyphrases
in both domains. The results also suggest that domain-
specific adaption of keyphrase extraction methods (eg. su-
pervised methods) may be required for learning objective
generation in content that is very technical.

" These were the original documents and were not. chunked.
18We collect annotations for a random 25% subset of the 408
(original) documents, as SMEs simply did not have the time
to evaluate all documents due to their length.

1
Test Set 4-Class 10-Class
All KP 0.66 0.50
Top-5 System KP 0.71 0.48
Table 12: pharma: Bloom verb prediction perfor-

mance. “KP” denotes keyphrase.

Avg. Time Per

System Document (seconds)

bank pharma
SYNTACTIC-CHUNKER 0.41 0.20
SEMANTIC-CHUNKER 0.40 0.20
HYBRID-CHUNKER 0.49 0.27
KEYPHRASE 0.02 0.02
KEYPHRASE RERANKING 0.03 0.02
BLOOM-VERB 0.05 0.04

Table 13: Throughput: Document Chunking,

Keyphrase generation, candidate keyphrase selec-
tion, and bloom verb prediction (in seconds)

For Bloom’s verb prediction (Table 12), we see a marginally
lower performance, but the trend largely remains the same.

6.1 Commercial Deployment

A collection of over 20,000 learning courses have been la-
beled with learning objectives generated by our system and
are being imported into existing learning management sys-
tems used by the organization. This is to help the organiza-
tion retrieve courses efficiently, identify similar course mate-
rial and prioritize new course development as it allows them
identify gaps in their course material by checking course ob-
jectives not covered existing in course material. We briefly
describe the architecture of our full system as this is the
eventual deployment goal.

6.2 System Architecture

Broadly, the system consists of three subsystems (see Fig-
ure 3): (1) UI and Business logic layer, which exposes
interfaces for search and enforces business logic for user ac-
cess; (2) Data Analytics layer, which are Web services
for document chunking, keyphrase extraction, learning ob-
jective generation. Additional web services that generate
different metadata can be easily plugged in and integrated
into our system; and (3) Data Storage and Search, where
we use Apache Solr to store all generated metadata and
document text and to enable search. An illustration of the
architecture is presented in Figure 3. Physical documents
can either be stored locally or can be accessed via remote
requests to learning management systems. Data ingestion
from formal course repositories as well as informal sources
(web based or Intranet) are supported.

We use document format specific APIs to physically persist
document chunks in their original file formats. Our system
exposes a simple search interface by which users can query
the system using learning objectives. The system allows
refinement of search results and also defines user workspaces
where course packages can be created and shared.
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Figure 3: High-level architecture diagram

Table 13 summarizes the average throughput for each of our
components (computed on an Intel i5 6300 2.4 Ghz CPU
with 8 GB RAM), demonstrating its speed and ease of scal-
ability for large scale processing.

7. DISCUSSION AND CONCLUSION

In this paper, we presented the first system that automat-
ically chunks learning material and generates learning ob-
jectives derived from content. It consists of modular sub-
components that require little training data for adaptation.
The cloud based web service architecture enables effective
use of each of its capabilities.

Our system uses a state-of-the-art embedding-based approach
to chunk learning material into meaningful chunks. It also
uses generic structural features from the document to guide
chunking. It employs a novel methodology for generating
learning objectives, which combines automatically generated
verbs from Bloom’s taxonomy and extracted keyphrases.

Our system’s capabilities are being used by a large pharma-
ceutical company to organize learning material. We present
detailed experiments on two different domains that demon-
strate the applicability of our work.

In future work, we look to extend the work with improve-
ments to our document ingestion capabilities, such as sup-
porting images and videos using OCR and extracting head-
ers and footers, and tabulated data. We would also like to
add capabilities that aid instructional designers with other
aspects of course design, such as discovering similar courses,
summarizing documents, and improving learning objective
generation to support a wider set of verbs from Bloom’s
taxonomy as well as supervised approaches for keyphrase
generation in highly technical domains.
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ABSTRACT

A number of studies have demonstrated strong links between
students' language features (as found in spoken and written
production) and their math performance. However, no studies
have examined links between the students’ language features and
measures of their Math Identity. This project extends prior studies
that use natural language processing (NLP) features to examine
student language features and math performance, replicating their
analyses. The study then uses NLP features to model students’
Math Identity. Specifically, the study compares performance on
basic math skills within an online math tutoring system to both
student language (as captured in emails to a virtual pedagogical
agent) and to survey measures of Math Identity (math self
concept, interest, and value). Language features were analyzed by
a number of NLP tools that extracted information related to text
cohesion, lexical sophistication, and sentiment. The findings
indicate weak to medium relationships between math scores and
Math Identity and language features were able to predict a
significant amount of the variance in each Math Identity variable
and in math scores. The potential for these measures to inform
interventions for students with lower Math Identity is discussed.

Keywords

Natural language processing (NLP), math, math identity, student
success, on-line learning

1. INTRODUCTION

Educational Data Mining (EDM) has, among its many
applications, been employed to better understand student-level
differences that are important to personalization efforts in
educational settings [1, 2]. These include efforts to better
understand constructs like student engagement (e.g., [3]), self-
efficacy [4], and self-concept [5]. Many of these studies have
relied upon sensors (e.g. posture sensors, vocal recognition,
heartbeat, video, sweat/skin conductance, EEG), which can
sometimes make it challenging to implement interventions in situ.
Research using student interaction data has become more common
even when modeling highly qualitative constructs like student
engagement (c.f., [3]), but to date, much of these efforts have
focused on temporally short variables (e.g., state-based variables
like behaviors and affect), rather than on trait-based variables such
as identity, which are larger in scope and duration.
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Work in related research areas has shown results that suggest that
trait-based variables may be a promising area for investigation.
Within the EDM community, there is now a growing body of
research on identity-related constructs, such as motivation and
self-requlated learning strategies (cf. [6]). Meanwhile, the related
field of Natural Language Processing (NLP) has demonstrated
relationships between language use and personality characteristics
(cf.,[7, 8]). Detecting a construct like identity, which underlies
motivation and goals [9], could further advance efforts toward
personalized learning within educational setting, including the
development of effective intervention strategies.

Identity, broadly, refers to a person’s sense of who they are and
the development of an identity permits people to make predictions
about their abilities to navigate different aspects of their life (cf.
[9]). While identity is the focus of this study, we do not attempt to
investigate all aspects of student identity, but instead focus
specifically on how they identify with math. Math Identity is often
described as “the association between math and the self” [10], a
definition that might be paraphrased as the degree to which one
considers oneself to be a math person. We do so within the
context of Reasoning Mind, a blended learning curriculum that
offers significant metacognitive support to K-6th grade students
through an on-line learning platform [11]

Specifically, we use language features produced in within-system
emails to predict three aspects of Math Identity in self-reported
survey data: math self-concept, math interest, and math value.
These constructs have been used to understand social influences
on mathematic achievement in previous studies of identity (e.g.,
[12]). In addition, we examine links between math success in the
system and the three Math Identity scales. We also use language
features in the language produced by students to model math
success, math value, math self-concept, and math interest. Our
goal is to examine the potential for linguistic predictors within
student data to identify math success and identity. If successful,
such linguistic predictors could be used to better identify students
in need of intervention.

2. Language and Math Ability

The body of research demonstrating connections between
proficiency in language and math skills continues to grow,
becoming more robust as researchers explore the potential
underlying causes. Early studies focused on links between scores
on math and language tests. For instance, [13] found that students
who scored high on an algebra test also scored well on language
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tests. Using a more difficult algebra test produced a stronger
relationship between algebraic notation and language ability.
Similarly, [14] reported links between language and math skills,
but also found that language skills differed in their degree of
relation with math knowledge. For example, general verbal ability
was indirectly related with symbolic number skills while
phonological skills were directly related to arithmetic knowledge.

Other research has focused on more indirect links between math
and language skills, such as reading ability. For example,
Hernandez [15] found significant positive correlations between
reading and math scores in standardized tests. Based on these
findings, Hernandez recommended that reading skills and reading
strategies should be factored into math instructions to increase
math ability, especially for poor readers. In another study,
LeFevre et al. [16] reported that language ability was positively
related to number naming, but that non-language abilities such as
quantitative skills and spatial attention were stronger predictors of
math ability than language abilities.

A number of recent studies have begun to examine links between
the language features found in students’ language production and
their success in math learning using NLP tools. For instance,
Crossley et al. [17] examined linguistic and non-linguistic features
of elementary student discourse while students were engaged in
collaborative problem solving within an on-line math tutoring
system. NLP tools that reported on affect, text cohesion, and
lexical sophistication were used to extract linguistic information
from transcribed student speech. These language features along
with a variety of non-linguistic features such as gender, age,
grade, and school were used to predict pre- and post-test math
scores. The results showed that language features related to
cohesion, affect, and lexical proficiency explained around 30% of
the variance in students’ math scores, while the selected non-
language features were not significant predictors. A second study
by Crossley and colleagues examined students’ forum posts in an
online tutoring system. Using these posts, Crossley et al. [18]
investigated relationships between math success, click-stream data
within the system, and language features reported by NLP tools
for students in a university level blended math class (i.e., a class
with both on-line and traditional face to face instruction). The
study found that math success was best predicted by a non-
language feature (days on the system) and language features
related to affect (egotism), syntactic complexity and text cohesion.
Specifically, more complex syntactic structures and fewer explicit
cohesion devices equated to higher course performance. The
linguistic model also indicated that less self-centered students and
students using words related to tool use were more successful. In
addition, the results indicated that students that are more active in
on-line discussion forums are more likely to be successful. In a
final study, Crossley and Kostyuk [19] examined links between
the language features of young students’ language production
(grades 2" through 5%) while e-mailing a virtual pedagogical
agent in an online math tutoring system, and success within that
system. Using NLP tools that reported language features related to
affect, lexical sophistication, and text cohesion, Crossley and
Kostyuk found that students who expressed more certainty in their
writing and followed standardized language patterns scored higher
in math assessments. In addition, students from higher grades who
met more objectives, received more messages from teachers, and
sent fewer messages to the agent, performed better on math
problems.

Overall, these studies demonstrate that features from students’
language productions can be used to predict math success (i.e.,
performance) in a variety of domains and across a number of ages

and proficiency levels. In general, older students who produce
more complex language, which is more positive and less self-
centered, tend to have stronger math skills. For younger students,
adherence to expected language patterns relates to higher math
performance. However, to our knowledge, no research has
attempted to extend this approach to predicting larger student
identity features that are trait-based such as Math Identity.

3. Math Identity

Math Identity, or the degree to which one considers oneself a
“math person,” has become an area of interest among social
scientists hoping to better understand what drives students to enter
Science, Technology, Engineering, and Math (STEM) fields (cf.
[20]). However, broader issues of self-definition (identity) are not
new to educational research, especially when considering long-
term development. For example, Bandura’s research [21] on self-
efficacy discusses the role of self-attributional processes
(including a wide range of self-definitions studied by Bem, [22]
many of which are directly related to educational identities. In this
research, a student’s cognitive appraisal (self-evaluation of
ability) is thought to be susceptible to a form of confirmation bias
where the student ignores demonstrable achievements and
improvements when they contrast with a previously established
self-definition [21]. Bandura’s observations on the role of self-
definitions in the development of self-efficacy are highly
compatible with other research paradigms, which describe identity
as an anchor that people use to understand their own interests and
abilities [23]. This may explain Bandura’s findings that students
who show improvement that is contrary to self-appraisals often
attribute their performance to environmental factors rather than to
their own persistence [21].

Constructs considered to be a core part of one’s identity are long
thought to start developing in adolescence ([24]. There is some
support that Math Identity should be included in this timeframe
with research suggesting that it develops early in life. For
instance, [25] showed that students who start in a non-STEM
degree program rarely transfer into a STEM program (despite the
high frequency of major changes more generally). Similarly,
within the EDM community, student engagement indicators in
middle school online mathematics tutors have been shown to
correlate with college enrollment more generally [26], and with
STEM-major enrollment more specifically [27]. Math Identity is
most often studied through ethnographic studies (e.g., [28]),
implicit association tests (e.g., [29, 10]), and surveys (e.g., [30,
31)]).

In this study, we operationalize Math Identity as math self-
concept, math interest, and math value. We defined these
constructs using self-report scales adapted from Ryan & Ryan
[12], who examined how these constructs performed during
conditions likely to trigger stereotype threat effects. While these
are well-established constructs in research on the effects of social
evaluations of mathematics, they are not unique to research on
identity. In addition to their appearance in Bandura’s work, they
appear in Eccles’ [32] expectancy value theory, where self-
efficacy (among a variety of other factors) is hypothesized to
influence both intrinsic value (interest) and utility value (the
usefulness of the task). We discuss each of these briefly below.

3.1.1 Math Self-Concept

Research in self-concept overlaps considerably with two related
constructs—identity and self-efficacy—because all three are
related to the mental schema a person uses when calculating their
ability to negotiate different challenges in their lives. In general,
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social-psychologists are more likely to refer to the concept of
identity when discussing issues related to social processes, while
they are more likely to use the term self-concept when discussing
internal mental processes ([9]).

In education research, self-concept and self-efficacy are often
used to discuss domain-specific evaluations (e.g., self-concept in
mathematics), and they are sometimes used synonymously.
However, there are education researchers who draw a distinction
between these two constructs, limiting the term self-efficacy to
self-evaluations of specific tasks, often specifying that it must be
measured directly after the task has been completed [33, 34]. For
example, they might use a Likert scale administered after each
math problem to measure self-efficacy by asking a student to
indicate his/her confidence that each problem had been completed
correctly.

In this research tradition, self-concept is a broader measure of
ability within the domain, where its meaning more closely
approaches its use among social-psychologists, who tend to define
it as a theory of self (e.g., [35]) which often operates below the
level of consciousness, guiding people’s interpretations and
expectations of external events (cf. [9]). For example, in a
situation where a student failed a task in a domain for which they
have high self-concept, they might be more willing to retry than
someone with low self-concept. Alternatively, they might
interpret the task as flawed since their performance did not match
the expectations created by their self-concept.

Like researchers who study educational outcomes, social
psychologists tend to believe that people develop self-concept
from experience, so that those with more shallow or limited
experiences are likely to be more susceptible to changes in self-
concept [35]. For example, academic self-concept tends to be
positively correlated with achievement indices, [36], but there
appears to be some reciprocity in this relationship. High self-
concept can make students more likely to persist through difficult
mathematics instruction, leading to improved academic outcomes.
However, repeated failure could theoretically lower self-concept,
particularly if a student did not have other mastery experiences in
mathematics to serve as a sort of buffer.

3.1.2 Interest in Mathematics

Motivational research defines interest as the propensity to engage
with a particular subject over time through both affective and
cognitive components [37]. Studies on the relationship of interest
to other constructs such as self-concept have repeatedly found that
self-concept drives intrinsic interest in a given subject [38, 39],
with theorists suggesting that as self-efficacy increases, it
becomes safe for the ego to become invested in a particular topic
[40].

Researchers have identified a number of simple strategies that
appear to increase interest in the classroom, such as creating more
challenging tasks for students or adding variety to the ways in
which a student is asked to perform a task. However, others
caution that some of these strategies may only improve situational
interest (e.g., [37]), suggesting that intrinsic interest (which they
refer to as individual interest) is almost always self-driven,
possibly because it seems to be fed by increased self-efficacy.
Others researchers have found that interest is highly susceptible to
contextual effects that vary from student to student (cf. [39]).
Researchers in Career Theory (e.g., [41]) have found that interest,
like self-efficacy, is directly responsive to performance success
and failure.

Interest is an important complement to self-concept when defining
Math Identity, since its development is known to improve self-
regulatory strategies [37]. Students with a stronger sense of
interest in a subject are more likely to persist when confronted
with frustrating challenges [42, 37; 43], so that strengthening
skills in mathematics is a self-feeding cycle. Eccles’ [32]
discussion of identity development mentions this cycle and state
that enjoyable or pleasant experiences with a subject are likely
necessary to develop the persistence needed to become an expert
in that subject.

3.1.3 Value of Mathematics

Math value is the degree to which a student thinks that math is or
will be useful to their life. Like self-concept and interest, value
(utility) has been linked to motivation in a number of different
research traditions. Among social psychologists, research has
shown that value is influenced by self-concept, and, in turn, that
value positively influences the kind of goal-setting practices that
lead to increased effort [44]. However, research also finds that
(perhaps more than self-concept or interest), parents can have a
substantial effect on math value [44, 45], which suggests the
construct could also be more susceptible to other social pressures
or interventions. Cumulatively, these findings suggest that value is
often the last component of Math Identity to develop unless
external influences (e.g., parents) are involved.

4. Current Study

A number of studies have demonstrated strong links between
students' linguistic knowledge and affect (as found in language
production), and their success in math. However, to our
knowledge, no studies have examined the links between the
linguistic features in student language production and variables
related to Math Identity. In the current study, we attempt to
replicate previous studies that have investigated how linguistic
features and affective aspects of students’ language production
can predict success. More importantly, we also derive models of
math identify based on student survey responses related to math
value, interest, and self-concept. To derive our language features
of interest, we analyzed the language produced by students
sending email messages to a virtual pedagogical agent within an
online math tutoring system. We analyzed the language using a
number of NLP tools in order to extract language information
related to text cohesion, lexical sophistication, and sentiment.
While our primary interest is in using NLP features to predict
variables related to math value, interest, and self-concept, we are
also interested in studying the links between NLP features and
accuracy scores on beginning level math problems within the
online tutoring system. Thus, in this study, we address two
research questions:

1. Are linguistic features significant predictors of self-reported
student traits related to math value, interest, and self-
concept?

2. Are linguistic factors significant predictors of math
performance in an on-line tutoring environment?

5. METHOD
5.1 Reasoning Mind

We collected data from Reasoning Mind's Foundations product,
which is a blended learning mathematics program used in grades
2-5. Foundations students learn math in an engaging, animated
world at their own pace, while teachers use the system's real-time
data to provide one-on-one and small-group interventions [46].
The algorithms and pedagogical logic underlying Foundations
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(previously called Genie 2) are described in detail by Khachatryan
etal. [11].

The main study mode in Foundations, Guided Study, consists of a
sequenced curriculum divided into objectives, each of which
introduces a new topic (e.g., the distributive property) using
interactive explanations, presents problems of increasing
difficulty on the topic, and reviews previously studied topics.
Within  Guided Study, every student completes problems
addressing the basic knowledge and skills required in the
objective. These basic problems (known as A Level problems)
typically require only a single step to solve and are the lowest of
three possible difficulty levels. Students who do well on A Level
problems may also proceed to problems of higher difficulty that
require two or three steps to solve (B Level and C Level
problems) within the objective. They may also access the higher-
level problems in an independent study mode called Wall of
Mastery. Other modes in Foundations allow students to play math
games against classmates, tackle challenging problems and
puzzles, and use points earned by solving math problems to buy
virtual prizes.

Foundations uses animated characters to provide a backstory to
the mathematics being learned and to deliver emotional support.
The main character is the Genie, a pedagogical agent who
encourages students throughout their work in the system. Students
are also able to send emails to the Genie. These messages are
answered in character by part-time Reasoning Mind employees
who reference an extensive biography of the Genie and project a
consistent, warm, and encouraging persona, model a positive
attitude toward learning, and emphasize the importance of
practice and challenging work for success. The Genie email
system is a popular component of the system, having received
129,879 messages from 38,940 different students in the 2016-17
academic year.

5.2 Participants

The students sampled in this study came from a large sample of
Foundations students in the 2016-17 academic year, who had
written messages for the Genie in the email system. The dates
sampled were from August 1, 2016 to June 17, 2017. There were
a total of 34,602 such students. The students were from 462
different schools located in 99 different districts, most of which
were located in Texas. This analysis samples students in 4th-5t
grades because their writing skills are developed enough to be
captured by NLP tools. We also included only those students that
had completed the post-test survey (discussed in the next sub-
section) and those students that had attempted A Level problems.
This subset of the data consisted of 970 students.

5.3 Survey Data

The measures used in the present study consisted of three 4-point
scales adapted from [47] and administered at the start/end of the
2016/2017 school year. The first was mathematics self-concept,
which comprised five items that captured the degree to which the
student see themselves as a “math person” (e.g., “I have always
been good at math”). The second was interest in mathematics,
which consisted of three items that capture intrinsic curiosity or
enjoyment of mathematics (e.g., “How much do you like math?”).
The last scale measured value of mathematics and consisted of
five items that captured the degree to which students find math to
be useful (e.g., “How important is it to you to get good grades in
math class?”). The Cronbach a of these scales were 0.72, 0.69,
and 0.72, respectively.

5.4 Final Corpus

Our language sample for this analysis consisted of messages sent
from the students to the Genie. Because many messages contained
few words, we aggregated all e-mails sent by each student to
create a representation of an individual student’s linguistic
activity.

We then implemented data cleaning procedures to reduce the
amount of noise in the data. First, all the data was cleaned of non-
ASCII characters that could interfere with the NLP tools. Second,
all texts were automatically spell-checked and corrected using an
open-source Python spelling correction library, in addition to
several Python text-cleaning scripts that we developed.
Furthermore, several measures were taken to clean the texts,
including removing random, non-math symbols such as “#”, “@”,
and “&”, as well as omitting repeating words, excessively long
words, words with repeating characters, such as “wooorrrddd”,
and mixed-type words, such as “$word$”, (with the exceptions of
currencies, percentages, timestamps, and ordinals). Next, all non-
dictionary, invalid words were removed from the data. This was
accomplished by first checking each word against synsets in
WordNet, and if a match could not be found, then checking if it
consisted of all consonants (always invalid), or if any pair of
characters (digraph) in the word were invalid in the English
language. Words that met either two of these conditions were
removed. Lastly, all texts were cleaned of repeating, non-
overlapping groups of words, such as “this word this word this
word”. Only word groups of lengths two, three, and four were
removed by this approach.

Finally, we removed data from students who had produced fewer
than 150 words in writing to the Genie (calculated after cleaning).
This cut-off ensures that students produced a large enough
language sample to provide a clear representation of their
linguistic ability including bag-of-word assumptions for Latent
Dirichlet Allocation (LDA) analyses. This left us with data from
351 students for analyses.

5.5 Natural Language Processing Tools

We used several NLP tools to assess the linguistic features in the
aggregated posts of sufficient length. These included the Tool for
the Automatic Analysis of Lexical Sophistication (TAALES) [48],
the Tool for the Automatic Analysis of Cohesion (TAACO) [49],
the Tool for the Automatic Analysis of Syntactic Sophistication
and Complexity (TAASSC) [50], and the SEntiment ANalysis and
Cognition Engine (SEANCE) [51]. In addition, we developed
specific indices related to topics commonly discussed with the
Genie e-mail system using Latent Dirichlet Allocation (LDA).
Thus, the selected NLP features consisted of language variables
related to lexical sophistication, text cohesion, syntactic
complexity sentiment analysis, and topic similarity respectively.
The features are discussed in greater detail below.

55.1 TAALES

TAALES reports on a number of indices related to basic lexical
information (e.g., the number of tokens, and types), lexical
frequency, lexical range, lexical registers, word information
features (e.g., concreteness, meaningfulness, polysemy [the
number of senses a word has]), and psycholinguistic variables.
For instance, the tool uses the Kucera-Francis corpus to compute
the number of registers (e.g., humor academic, or fiction registers)
that words occur in (a measure of register specificity). The tool
also reports on a number of phonological, orthographic, and
phonographic neighborhood effects that calculate how many near
neighbors based on sound or spelling that a word has. TAALES
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also reports on variables that measure how long a word takes to
name, how accurately words are pronounced, and how many
senses a word contains (i.e., polysemy).

55.2 TAACO

TAACO incorporates a variety of classic and recently developed
indices related to text cohesion. For a number of indices, the tool
incorporates the Stanford part of speech (POS) tagger [52] and
synonym sets from the WordNet lexical database [53]. TAACO
provides linguistic counts for both sentence and paragraph
markers of cohesion and incorporates WordNet synonym sets.
Specifically, TAACO calculates type token ratio (TTR) indices,
sentence overlap indices that assess local cohesion, paragraph
overlap indices that assess global cohesion, and a variety of
connective indices such as logical connectives (e.g., also, next, so)
and sentence linking connectives (e.g., but, if, then).

55.3 TAASSC

TAASSC measures large and fined grained clausal and phrasal
indices  of  syntactic  complexity and  usage-based
frequency/contingency indices of syntactic sophistication.
TAASSC includes indices measured by Lu’s [54] Syntactic
Complexity Analyzer (SCA) and a number of pre-developed fine-
grained indices or clausal complexity and phrasal complexity, The
SCA measures are classic measures of syntax based on t-unit
analyses [19] where t-units are defined as a dominant and
subordinate clause. For instance, SCA measures the number of
complex t-units in a text (i.e., T-units that includes both an
independent and a dependent clause). The fine-grained clausal
indices calculate the average number of particular structures per
clause and dependents per clause. The fine-grained phrasal indices
measure noun phrase types and phrasal dependent types.

5.5.4 SEANCE

SEANCE is a sentiment analysis tool that relies on a number of
pre-existing sentiment, social positioning, and cognition
dictionaries. SEANCE contains a number of pre-developed word
vectors that measure sentiment, cognition, and social order. These
vectors are taken from freely available source databases. For
many of these vectors, SEANCE also provides a negation feature
(i.e., a contextual valence shifter) that ignores positive terms that
are negated (e.g., not happy). SEANCE also includes a part of
speech (POS) tagger. Examples of affective variables reports by
SEANCE include positive and negative polarity metrics, terms
related to arousal (as compared to calmness), and respect terms.
Cognition examples include words related to socially defined
ways of doing work, acts and methods to accomplish goals, time
and space, and quantity.

5.5.5 Latent Dirichlet Allocation (LDA) features

We developed measures of domain topicality for the messages
found in the corpus using LDA. LDA is a computational modeling
technique used to infer underlying topics through a generative
probabilistic process. We conducted an LDA analysis on the
entire corpus of student messages to the Genie and fit 200 topics
to the data - the optimal number of topics was inferred using
Hierarchical Dirichlet processes [55]. Using these latent topics,
each word is perceived as a probability distribution across all
topics; if irrelevant for a topic, the corresponding weight is 0,
whereas more relevant topics for a given word have higher
probabilities. These word weights were then used to create topic
distributions for each student in order to identify how strongly
student language overlapped with topics covered in the entire
Genie message corpus.

5.6 Statistical Analysis
We first calculated correlations between the students’ accuracy on
A Level problems and their survey scores for Math Identity (self
concept, interest, and value). These relationships allow us to
better understand how basic math skills interacted with student
survey responses for Math Identity.

We followed this up by calculating linear models to assess the
degree to which linguistic features in the students’ emails to the
Genie, along with other behaviors (e.g., question/note posted,
questions answered, site visits) were predictive of students’ math
skills and their self-reported Math Identity. As part of this
analysis, we first checked that all variables were normally
distributed. For the linguistic variables, we tested only those
variables that showed at least a small effect size (r > .100) with
the response variable. We also controlled for multicollinearity
between all the linguistic and non-linguistic variables (r > .700)
such that if two or more variables were highly similar, all but one
of the variables (the one with the strongest relationship with the
response variable) were removed from the analysis.

We cross-validated our results by dividing data into training and
test sets based on a 67/33 split. We used stepwise linear models
on the training set to find the best fitting models for each analysis.
After model selection, coefficients were checked for suppression
and visual inspection of residuals distribution for non-
standardized variables was conducted. To obtain a measure of
effect sizes, we computed correlations between the fitted and
observed values, resulting in an overall R? value for the fixed
factors in the training set. The model from the training set was
used to derive an r and R? value for the test data.

6. RESULTS

6.1 Correlations

Pearson correlations were conducted among the response
variables to assess links between Math Identity and math scores.
The results, reported in Table 1, indicate that all three Math
Identity variables were positively and significantly correlated with
performance on A level math problems. Medium effects were
found for self-concept. Weak effects were found for interest and
value. None of the Math Identity variables were strongly
associated with one another (i.e., r < .500), although correlations
with interest approached that threshold for both self-concept (r =
.489) and value (r = .491).

Table 1. Correlations between response variables

Variable Self-concept Interest Value
A level score 0.341** 0.205** 0.145*
Self Concept 0.489** 0.309**
Interest 0.491**

Note * p <.010, **p <.001

6.2 Linear Model for Self-Concept

A linear model to predict students’ self-concept including
linguistic, affect, and click-stream variables yielded a significant
model, F(5, 242) = 2.861, p <.001, r =.356, r>=.127 (see Table
2 for details). Two linguistic variables: Phonographic neighbors,
function words and word naming accuracy, function words were
significant predictors as were three affective variables: Methods
and goals words, words related to work, and polarity verbs. No
click-stream  variables were significant predictors. The
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combination of the five variables accounted for 13% of the
variance in the students’ self-concept scores. Cross-validating the
model on the test set yielded r =.371, r?>=.138, demonstrating
that the combination of the five variables accounted for 14% of
the variance in the student samples comprising the test set.

Table 2. Linguistic model for predicting self-concept scores

accounted for 9% of the variance in the student samples
comprising the test set.

Table 4. Linguistic model for predicting value scores

Fixed Effect Coefficient Std. t
Error
(Intercept) 61.518 21.309 2.887**

Phonographic Neighbors:

Function words -0.284 0.081 -3.512***
Acts and methods terms to

accomplish goals 9.441 3.113 3.033**
Words related to work -6.609 2,342 -2.822**
Polarity verbs 0.247 0.087 2.857**

Word naming accuracy:

Function words -57.807 21.413 -2.700**

Fixed Effect Coefficient Esn'tl'cjdr t
(Intercept) 3.301 0.082 40.254**
Polarity verbs 0.15 0.048 3.107**
Time/space terms 2.932 1.048 2.799**
Respect words 4.776 2.119 2.254*

Note * p < .050, ** p < .010, ***p < .001

6.3 Linear Model for Interest

A linear model using linguistic and click-stream variables to
predict students’ interest yielded a significant model,
F(4,218) =4.943, p<.001, r=.419, r2=.176 (see Table 3 for
details).. Four affective variables were significant predictors in the
model: Hu Liu negative terms, power words, arousal ratings, and
words related to methods and goal. No click-stream variables
were significant predictors. The combination of the four variables
accounted for 17% of the variance in the students' interest scores.
Using the model from the training set on the samples in the test
set yielded r = .360, r? = .130, demonstrating that the combination
of the four variables accounted for 13% of the variance in the
student samples comprising the test set.

Table 3. Linguistic model for predicting interest scores

Fixed Effect Coefficient Std. t
Error

(Intercept) 3523 0.137 25.708***

Hu Liu negative terms -0.928  0.201 -4.612***

Power words -8.440  3.335 -2.531**

Avrousal ratings -9.407  3.336 -2.820**

Acts and methods terms to

accomplish goals 8.056 2951 2.730**

Note * p <.050, ** p <.010, ***p <.001

6.4 Linear Model for Value

A linear model to predict students” math value using linguistic and
click-stream  variables  yielded a  significant  model,
F(3,217) =7.843, p<.001, r =.313, r?=.098 (see Table 4 for
details).. Three variables were significant predictors in the model:
polarity verbs component score (verbs related to polarity, aptitude,
and pleasantness), time and space terms, and words related to
respect. No click-stream variables were significant predictors. The
combination of the three affect variables accounted for 10% of the
variance in the students' math value scores. Using the model from
the training set on the samples in the test set yielded r =.303,
r? =.091, demonstrating that the combination of the five variables

Note * p <.050, ** p <.010, ***p <.001

6.5 Linear Model for Math Success

A linear model to predict math success including linguistic and
click-stream  variables  yielded a significant  model,
F(5,217) =9.130, p<.001, r=.417, r2=.174 (see Table 5 for
details).. Five linguistic variables were significant predictors in
the model: Kucera-Francis categories, phonological neighbors
distances, complex t-units, polysemy (adverbs), and quantitative
terms. No click-stream variables were significant predictors. The
combination of the five variables accounted for 17% of the
variance in the students A level math scores. Using the model
from the training set on the samples in the test set yielded
r=.378, r?=.143, indicating that the combination of the five
variables accounted for 14% of the variance in the student
samples comprising the test set.

Table 5. Linguistic model for predicting math scores

Fixed Effect Coefficient ESrtr(jdr T
(Intercept) 33,544 15.331 3.508***
Kucera-Francis categories 2.721 0.776 2.12*
Phonological neighbor

Levenshtein distances 15.225 7.18 -2.701**
Complex T-units -5.256  1.946  -3.019**
Polysemy (adverbs) -1.212  0.401 2.348**
Quantitative terms 62.983  26.82  3.508**

Note * p < .050, ** p < .010, ***p < .001
7. DISCUSSION AND CONCLUSION

Investigating the degree to which students identify with math
(e.g., their Math Identity) can provide important information
related to student-level differences which in turn could allow for
personalization efforts within educational settings. The purpose of
this study was to examine links between students’ self-reported
Math Identity (e.g., math self-concept, value, and interest) and
language features found in student e-mails within an on-line math
tutoring system. The study also examined links between student
math scores and self-reported Math Identity and between math
scores and language features. Overall, we find weak to medium
relationships between Math Identity variables and math scores.
Additionally, language features were able to explain a significant
amount of variance for each Math Identity variable and for student
math scores. These findings are discussed below along with
implications for better understanding Math Identity and
developing pedagogical interventions within Reasoning Mind’s
Foundation system.
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Our first analysis examined links between A level math scores
within the Foundations system and student’s self-reported Math
Identity variables (self concept, interest and value). All of the
Math Identity variables were positively correlated with each other
as well as with the math-performance metric, although this effect
was stronger for self-concept than for interest or value. The
correlation matrix in Table 1 provides evidence that the Math
Identity variables self-reported by the students were related to
math ability within the system.

Our next goal was to investigate if linguistic models could be
developed for each of the Math Identity variables. Specifically,
we were interested in examining links between the words and
language structures produced by the student in their e-mails to the
Genie and their self-ratings of self-concept, interest, and value.
Our model of student ratings for self-concept explained 14% of
the variance in the test set (r = .371). The model was informed by
five language features. Three sentiment and cognition features
were reported by SEANCE while two features related to lexical
sophistication were reported by TAALES. Polarity verbs were
again positively related to a math identify variable indicating that
students who used more positive verbs reported higher math self-
concept. Additionally, students who produced more words related
to accomplishing goals (e.g., build, make, and formulate) reported
higher self-concept. Conversely, words related to ways of doing
work were negatively associated with self-concept. This may be
an effect of the word grade, which is included in this category and
was common in the e-mails (i.e., students worried about low
grades). Two lexical indices for function words were also
negatively predictive of self-concept scores: phonographic
neighbors and word naming accuracy. These findings suggest that
students with higher self-concept produced function words that
had fewer neighbors and lower word naming accuracy. In both
cases, the results indicate that students producing more
sophisticated function words had greater self-concept.

Our model for math interest explained 13% of the variance in the
test set (r=.360) and included only sentiment and cognition
variables reported by SEANCE. These variables indicate that
students with greater math interest used fewer negative terms,
fewer words related to arousal (i.e., more words related to
calmness), and more words related to acts and methods to
accomplish goals, which was also a predictor of self-concept
scores. Lastly, words related to power yielded a negative co-
efficient with math interest scores. This finding suggests that
students that use power words (e.g., force and command) have
lower interest in math.

With respect to students’ ratings of their math value, language
features were able to predict about 9% of the variance in student
test set ratings. (r =.303). Three features were positive predictors
of value: polarity verbs, time/space terms, and respect terms. All
variables were reported by SEANCE and were related to either
sentiment or cognition. The results show that students that
reported higher math value produced language in their e-mails
that included more positive verbs and showed greater respect
through the use of terms such as honor, admire, and respect. In
addition, these students produced more words related to time and
space. Time words include prepositions such as across and above
but also space verbs that may be related to math concepts
including circle, curve, and distance.

Finally, we developed a model to predict math success (i.e., scores
on A Level problems). This model explained 14% of the variance
in math scores (r=.378) using lexical features, a measure of
syntactic complexity, and a measure of cognition. The three

lexical indices included the number of registers in which a word
occurs, phonological neighbors based on Levenshtein distances
(i.e., words that words that require more substitutions, insertions,
or deletion operations to transform that word into its closest
phonologic neighbors), and the polysemy value of adverbs. The
first index suggests that students with high math scores produced
words that were found across a variety of registers. The second
and third indices indicate that students with higher math scores
produced more sophisticated language (i.e., adverbs with fewer
senses and words that required more operations to find a
phonological neighbor). Students with higher math scores also
produced fewer complex sentences (sentences with an
independent and dependent clause) and used more quantitative
words.

Overall, the findings suggest that language variables related to
sentiment and cognition can explain a significant amount of the
variance in a number of self-reported survey variables related to
math self-concept, interest, and value. These variables have the
potential to not only better explain the constructs of Math Identity,
but also have the potential to be useful for student interventions.

The findings from this study indicate that students who produce
more positive language e-mails within the Foundations system are
more likely to have a positive Math Identity. Conversely, those
that use more negative language are more likely to have lower
Math Identity. However, it is not just positive and negative terms
that are related to Math Identity. Students with stronger Math
Identity use more respectful language, less power-related
language, and language that is more calm. Lastly, students with
stronger Math Identity were more likely to use more sophisticated
words or words related to accomplishing goals.

The findings from this study also suggest little overlap between
the language features that predict Math Identity and those that
predict math success even though we see links between our Math
Identity variables and math success within the system. While there
are some similarities between self-concept scores and math scores
with respect to phonological neighbors, these features differ in
their parts of speech (content versus function words). In general,
most predictors of math success are related to linguistic features
(lexical, syntactic, and cohesion features) while predictors of
Math ldentity are related to sentiment and cognition features. In
total, these sentiment and cognition features provide a profile of
students within the system that have high math interest.

Using the models reported here, a number of different
interventions could be developed for students identified as likely
having low math interest. These interventions could be as simple
as having the Genie send an e-mail to students that provides
statistics on their successes within the system, their perseverance
in answering problems, or simply the number of problems they
have attempted or accurately solved over a specific time period.
Students could also be asked to correspond with the Genie using
metacognitive strategies related to self-assessment and goal-
setting activities, as this corresponds with both the interest models
we developed here and with long-standing interventions designed
to support self-efficacy and interest (cf. [21]). Interventions such
as these may assist students in more critically thinking about
themselves in relation to math and in better understanding their
math knowledge and acquisition.

While the Math Identity profiles developed should be strong
enough to drive interventions, the models report only medium
effect sizes. Thus, much variance remains to be identified within
the existing survey data. Some of that variance may emerge in
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language features that are not yet captured by NLP tools, while
other variance may be related to demographic or other click-
stream data available within the system such as the number of
messages sent and received by the students within the e-mail
system, hours spent on-line within the tutoring system, and
number of objectives met within the system. Thus, the findings
here should be seen as preliminary with implications for future
development.
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ABSTRACT

Interactive learning environments facilitate learning by pro-
viding hints to fill the gaps in the understanding of a con-
cept. Studies suggest that hints are not used optimally by
learners. Either they are used unnecessarily or not used at
all. It has been shown that learning outcomes can be im-
proved by providing hints when needed. An effective hint-
taking prediction model can be used by a learning environ-
ment to make adaptive decisions on whether to withhold or
provide hints. Past work on student behavior modeling has
focused extensively on the task of modeling a learner’s state
of knowledge over time, referred to as knowledge tracing.
The other aspects of a learner’s behavior such as tendency
to use hints has garnered limited attention. Past knowledge
tracing models either ignore the questions where a hint was
taken or label hints taken as an incorrect response. We pro-
pose a multi-task memory-augmented deep learning model
to jointly predict the hint-taking and the knowledge tracing
task. The model incorporates the effect of past responses as
well as hints taken on both the tasks. We apply the model
on two datasets — ASSISTments 2009-10 skill builder dataset
and Junyi Academy Math Practicing Log. The results show
that deep learning models efficiently leverage the sequential
information present in a learner’s responses. The proposed
model significantly out-performs the past work on hint pre-
diction by at least 12% points. Moreover, we demonstrate
that jointly modeling the two tasks improves performance
consistently across the tasks and the datasets, albeit by a
small amount.

1. INTRODUCTION

*These authors contributed equally
fWork done during an internship at Adobe Research

E-learning is changing knowledge creation and sharing in a
profound way by bringing personalized learning experiences
to a learner’s device. Assessments in the form of quizzes or
assignments form an important component of an e-learning
software. A personalized e-learning environment identifies
the gaps in understanding of a concept and effectively uses
learning aids such as hints to fill these gaps. Knowledge trac-
ing is the task of estimating a learner’s state of knowledge
over time with the goal of predicting the performance of the
learner in future assessments. Knowledge tracing is used for
deciding which question to ask in an adaptive learning envi-
ronment. Current set of knowledge tracing models neither
incorporate the effect of a learning aid on the level of under-
standing of a concept nor predict whether a learner is likely
to use a learning aid.

A learning aid, common to many interactive learning en-
vironments, is the option to take a hint during an assess-
ment [3]. However, the data shows that learners tend to use
hints inappropriately. One problem is that of abusing hints
[2]. They tend to spend less time on solving the assessment
and opt for hint without attempting to solve the problem.
Figure 1 shows the percentage of responses with correct an-
swers, incorrect answers, and percent directly opted for hint
by each question. The z-axis is sorted by the percent of cor-
rect responses for a question in increasing order. The data
for this chart is from ASSISTments dataset [14] for 2009-
2010.) As expected, % hint taken is negatively correlated
with % correct. In other words, more learners tend to take
hints on difficult questions. However, as Figure 2 shows, the
hint takers tend to spend less time on a question than the
learners who attempt the question, irrespective of whether
the question is correctly or incorrectly answered. The re-
search on this subject shows that the learners who attempt
a question tend to have a higher probability of achieving
proficiency in the subject [19]. Also, the learners who use
hints very frequently tend to have the lowest learning rate
[13]. Section 3 presents a review of the literature on hints
as a learning aid. The literature shows that hints are an im-
portant learning aid but offering hints indiscriminately can
lead to poor learning outcomes. A personalized e-learning

!The dataset is available at https://sites.google.com/
site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.
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environment can use likelihood of taking a hint and the ef-
fect of taking a hint on learning to decide whether to show a
hint. For example, the environment can proactively suggest
hints to students who are stuck with a concept and have a
low likelihood of taking a hint themselves.

Another reason to model the hint-taking behavior is to im-
prove the performance of a knowledge tracing model. The
existing knowledge tracing models do not model the hint-
taking behavior. Section 2 presents the past work on knowl-
edge tracing and hint-taking prediction. Traditional knowl-
edge tracing models either tag a hint taken as an incorrect
response or remove the data point where hints were taken.
The two responses, i.e. attempting to solve a question and
taking a hint directly, tend to result in different learning out-
comes. Hence, conflating an incorrect response with a hint
taken can deteriorate model performance. We show that
explicitly modeling the hint-taking behavior improves per-
formance of the model. Additionally, a higher propensity to
take hints might be informative about the likelihood of an-
swering questions correctly [19, 13]. Hence, throwing away
the data points where hints were taken is akin to throw-
ing away useful information. Conversely, knowledge tracing
tasks contain information about whether a student is likely
to take a hint. The synergies between the knowledge trac-
ing and the hint-taking task motivates the application of a
multi-task learning model [8]. Another important model-
ing consideration is the parameterization of the skill level.
A knowledge tracing model is parameterized by deciding
the level of heterogeneity in a learner’s skill level and the
question difficulty parameters. In the traditional knowledge
tracing models, one might represent the skill level using one
common parameter for all concepts or use a different param-
eter for each concept or a group of concepts clustered based
on domain knowledge. Recently, deep learning based mod-
els have been used for knowledge tracing [23, 16, 34] which
automatically capture the dependencies between different
concepts based on the student response sequences. We ex-
tend the memory-augmented deep learning model proposed
by Zhang et al. [34] to include hints taken in the past as
an input and the prediction of hint-taking as an auxiliary
task. We call this model Colearn. Section 4 describes the
proposed model. Section 6 describes the evaluation method-

ology and estimation approach, including how the model
hyperparameters are set.

The proposed model is compared with the baseline models
from traditional approaches as well as deep learning based
approaches. Section 7 describes the baseline models. We
perform experiments on two popular datasets — ASSIST-
ments 2009-2010 skill builder dataset and Junyi Academy
Math Practicing Log. Section 5 describes the two datasets.
Both the datasets contain information on whether a hint
was taken. ASSISTments dataset contains the information
whether a learner first attempted a question or directly took
a hint. However, Junyi dataset contains noisy information
on hints taken as it contains information on whether a hint
was taken regardless of whether a hint was taken first or the
question was attempted prior to it. The importance of this
distinction is supported by past studies.

Results show that a memory-augmented deep learning model
improves hint prediction performance from 79.10% to 91.12%

on ASSISTments dataset and from 77.62% to 92.31%. Colearn,

which is a multi-task memory-augmented deep learning model,
further improves, by a small margin, the performance of the
hint-taking prediction task by 0.63% and 0.03% point, re-
spectively for the two datasets. Additionally, Colearn im-
proves the performance on the knowledge tracing task for
ASSISTment dataset by 0.25% point and for Junyi dataset
by 0.18% points. Note that the baseline model for knowledge
tracing is another memory-augmented deep learning model.
Although the effect on performance is small, a benefit of the
joint modeling of the two tasks is that we can work with
only one model instead of two while training and scoring.

One of the criticisms of the deep learning based approaches
is that the estimated parameters do not enhance our under-
standing of how the world works. We try to understand the
meaning of the estimated parameters, especially the ques-
tion embedding vectors, in Section 7.3. The analysis shows
that a question embedding tends to capture question’s diffi-
culty.

In summary, the main contributions of this work are four-
fold. First, we show a large improvement in the perfor-
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mance of the hint-taking prediction task by using a memory-
augmented deep learning model. Second, we motivate joint
modeling of knowledge tracing and hint-taking prediction
tasks which have been modeled separately in the prior work.
Third, we extend a recent memory-augmented deep learn-
ing model for knowledge tracing to the task of hint-taking
prediction. The proposed model, Colearn, incorporates the
sequence of correct, incorrect response as well as hint-taking
behavior on past questions as inputs. The model adds the
hint-taking prediction as an auxiliary task. Fourth, we ex-
tensively evaluate the proposed model on two real-world
datasets and show that our approach outperforms the com-
petitive baselines on both the tasks.

2. RELATED WORK

This paper builds on the literature on knowledge tracing
and on learning aids such as hints. Knowledge tracing in an
interactive learning environment is an extensively studied
area. Different approaches have been proposed in past.

Item Response Theory or IRT models the probability
that a student answers a question correctly as a function of
the following two parameters: one representing the student’s
skill level and the second representing the question difficulty
[12]. The probability that a student answers a question cor-
rectly decreases with the question difficulty and increases
with the student skill level, all else being equal. The stu-
dent skill level and question difficulty are scalars which are
estimated from data. Recent extensions to IRT, such as Hi-
erarchical IRT, partition questions into groups, e.g. based on
concepts covered, and model student skill level and item dif-
ficulty for each group separately [30]. However, these mod-
els do not use the information present in the sequence of
responses. This results in incorrect responses followed by
correct responses to be treated the same as the reverse se-
quence. Intuitively, a knowledge tracing model should put
more weight on the performance on recent responses.

Bayesian Knowledge Tracing or BKT is another widely-
used model. It uses information in the sequence of responses.
BKT uses a Hidden Markov Model with the student skill as
the latent variable and the responses as the observed vari-
ables [11]. One reason for the popularity of BKT is that,
unlike IRT, it models student’s skill in each concept sepa-
rately. This information can be used by a learning system
to personalize a learning activity. For example, a learning
system can repeat a concept, switch to a new concept or
skip a concept altogether based on the estimates of the skill
level attained in the concepts.

Deep Learning based approaches have been employed
due to the flexibility these approaches provide in modeling
the skill of a student and the difficulty level of a question.
Piech et al. [23] use Long Short-Term Memory (LSTM)
cells to model sequence of student responses. They show
significant improvement over BKT in predicting the student
responses on many datasets. There has been concern voiced
due to the lack of interpretability of the Deep Learning based
approaches. Khajah et al. [16] show that DKT’s perfor-
mance can be matched by modifying BKT model. However,
matching DKT’s performance required significant domain

knowledge on the processes involved in the learning process
and insights from DKT model [16]. On the other hand, a
Deep Learning based model performs well even without ex-
plicitly building a domain specific knowledge into the model.
Memory-augmented neural networks, proposed for this task
by Zhang et al. [34], provide even more flexibility to model
student skill and question difficulty. A similar network ar-
chitecture has been used for question-answering on free-form
text documents [20].

Hints as a study help strategy has been extensively stud-
ied. The literature on how to provide hints has focused on
whether to provide hints on-demand or proactively. Duong
et al. [13] propose a model incorporating hint usage infor-
mation in knowledge tracing. However, they do not use this
information to predict the probability that a user will take
a hint or not. Castro et al. [9] use a technique called tabling
method to predict whether a student will attempt or take a
hint in the next question. The model does not consider the
complete sequence of student responses in the past and it
is difficult to train for the longer sequences. This results in
poor performance of the model.

In summary, there is rich literature on predicting the like-
lihood of a correct response and some recent work in pre-
dicting hint usage. However, the literature, to the best of
our knowledge, has not modeled these two related prob-
lems jointly. Past work on multi-task learning (MTL) [8]
suggests that adding an auxiliary task can help in improv-
ing the performance on both the tasks. MTL has shown
considerable benefits in many domains including computer
vision [21], natural language processing [17], health diag-
nostics [35], among others. Our proposed model includes
effect of hints on future probability of answering a question
correctly. This information can be used to decide when to
provide a hint on a particular question.

Our Contribution: We extend the model proposed by
Zhang et al. [34]. We include the hint usage information
by changing the encoding of the inputs to the network. In
addition, we add the components which share the network
weights for the auxiliary task of predicting the probability of
taking a hint. This results in increased prediction accuracy
for the tasks of whether the learner will take a hint as well
as whether a learner will answer a question accurately.

3. BACKGROUND

There is a large literature on hints as a learning aid that
provides motivation for the joint modeling of item response
and hint usage. The literature shows that hints are impor-
tant but prone to misuse if provided indiscriminately. The
research also shows that attempting a question and taking a
hint directly have different implications for learning a con-
cept.

Mathews et al. [19] shows that learners who first attempt to
solve a question tend to learn by themselves and have higher
probability to master the knowledge. This result has a basis
in the theory that the process of attempting a question acti-
vates self-explanation, which is an important meta-cognitive
skill [4, 10, 7, 22, 25, 29]. While hints are useful learning
aid, the research on how hints are used show that easy ac-
cess to hints may lead to sub-optimal outcomes. In studies
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of help-seeking from human tutors, it has been found that
those who need help the most are the least likely to ask for
it [15, 24, 26]. Computer-based help systems can poten-
tially improve the use of help [32]. Given that many learn-
ing environments provide some form of on-demand help, it
might seem that effective use of help would be an important
factor influencing the learning results obtained with these
systems. However, there is evidence that learners are not
using the help facilities offered by learning environments ef-
fectively [3]. They often ignore the help facilities or use them
in ways that are not likely to help learning. They frequently
use the system’s on-demand hints to get answers, without
trying to understand how the answers are derived or the rea-
sons behind the answers [1]. It is shown that the learners
who opt for hints very frequently tend to have the lowest
learning rate [13]. On the other hand, there is also evidence
that, when used appropriately, on-demand help in an inter-
active learning environment can have a positive impact on
performance [1, 5] and learning [27, 31, 32]. Also, provid-
ing tutoring with respect to student’s help-seeking behavior
helps them to become better help seekers and thus better
future learners [6]. A request for help is appropriate when
a student is stuck while solving a tutor problem but not
when she has not yet thought about the problem. Further,
students should carefully read and interpret the help given
by the system. Aleven et al. [2] described a model of help-
seeking behavior within a cognitive tutor. The authors have
created a taxonomy of errors in student’s help-seeking be-
havior. Based on the frequency of the meta-cognitive bugs
defined by their model, it was observed that 36% of the ac-
tions taken by students were classified as help abuse bugs
and 19% of the actions as help avoidance. To make a better
tutoring system which can guide the students in regulating
their help-seeking behavior, it is essential to incorporate the
effect of hints in knowledge tracing. Traditional knowledge
tracing models do not take the hint usage into account.

3.1 Notations

Next, we introduce notations for the joint model. Let the
interactions of a learner till time 7" are denoted by X =
(z1,22,23,...,27). Here, each interaction x: is an encod-
ing representing the tuple (g¢, 7+, h¢) containing an identifier
for the question attempted ¢, a binary indicator r:, encod-
ing the response, and another binary indicator h;, encoding
hint usage. The hint usage variable is positive only if the
hint was taken directly instead of attempting the question
first. Let @ = {q+}+ be the set of distinct questions. The in-
teraction tuple can contain additional information collected
such as time taken to attempt, type of question, concepts
involved in the question and so on. The task of a knowledge
tracing model is to predict the probability of correctly an-
swering a question q € Q,t > T, i.e. Prob(ry = 1|qy, X).
And, the task of predicting a hint usage model is to esti-
mate Prob(hy = 1|gy, X). Both of these tasks are super-
vised learning problems and can be modeled using a binary
classifier. Instead of building two separate models for these
tasks, we model them jointly within a deep learning based
classification framework.

4. MODEL

Zhang et al. [34] proposed a memory-augmented neural net-
work model, called Dynamic Key-Value Memory Networks
or DKVMN, for knowledge tracing. This model performed bet-

ter than the baseline models on three real-world datasets.
This model is used as a baseline for the proposed multi-task
model due its many favorable properties. It does not require
extensive feature engineering or metadata information such
as mapping of items to skills and the model offers flexibil-
ity in adding more tasks as well as inputs. We first give a
brief description of their model, followed by our modifica-
tions. Reader is referred to Zhang et al. [34] for further
implementation details regarding the original model.

4.1 Dynamic Key-Value Memory Networks,

DKVMN

The neural network is designed to store the knowledge state
of a learner based on past interactions. This is done using a
memory component which works like a key-value store. Each
attempted question is mapped to a set of concepts which are
the keys in the memory component. The corresponding val-
ues are a learner’s knowledge state in each of these concepts.
The network has a mechanism to update the states because
of learner’s response to the question. The key-value pairs are
modeled using vectors instead of scalars for more represen-
tational flexibility. So, for each question the output from the
memory component gives a learner’s knowledge state. This
is compared with the difficulty level of the question, which
is the output of another component, to arrive at probability
of correctly answering the question. All operations are im-
plemented using differentiable operators like multiplication,
addition, sigmoid function on matrices so that the network
can be trained end-to-end using gradient descent optimiza-
tion techniques.

4.2 Proposed Model, colearn

The DKVMN model does not consider the effect of taking hints
during assessment. It considers hint usage as an incorrect
attempt by the learner, as is the standard approach in ex-
isting models. However, the update in knowledge state of a
learner is different when a question is attempted as opposed
to when a hint is taken without any attempt. We modify
DKVMN to incorporate hint information by changing the input
and output layers of the model. Figure 3 shows the modified
network. Next, we describe the components of DKVMN and
our modifications to it.

4.2.1 Input Layer

In the update phase of the model, instead of using one-hot
encoding of (q¢,7¢), we encode (g¢,7¢, ht) into a vector of
length 2|Q| + 1, where Q is the set of distinct questions.
The first |Q| dimensions are a one-hot vector representing
the correct attempt on the question, i.e. in case of a cor-
rect attempt, the vector has 1 at the index of the question
and has 0 everywhere else. Similarly, the next |Q| dimen-
sions encode incorrect attempt. The last dimension of the
vector is a binary value indicating whether a hint is taken.
This input encoding changes the way the value vectors in
the memory component are changed due to the information
whether a hint is used or not is also present. An example of
the input encoding is illustrated in Table 1 where there is a
total of two exercises.

We tried different ways of representing the three outcomes,
viz. correct response, incorrect response, and hint taken.
These included one-hot encoding with all three outcomes
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Figure 3: Architecture of the neural network for joint modelling of knowledge state and hint use.

Knowledge tracing and Hint-Taking tasks.

Response Encoding
DKVMN Colearn
Q2-Correct | (0,1,0,0) (0,1,0,0,0)
Q2-Incorrect | (0,0,0,1) (0,0,0,1,0)
Q2-Hint - (0,0,0,0,1)
Q1-Hint - (0,0,0,0,1)

Table 1: Response encoding in case of two exercise tags

with a length of 3|Q|. The chosen encoding gave the best re-
sults in the experiments. This encoding represents response
on two different questions where hints are taken with the
same vector (see example in Table 1). Since the network
already incorporates index of the current question as a sep-
arate input, using |@Q| extra dimensions for hint encoding in
update phase adds more parameters which are not required.

4.3 Key-Value Store

Key-value memory networks, introduced in [20], have an ex-
plicit memory component which is an array of pairs of mem-
ory slots where each slot is a real-valued vector. Given a
query, the relevant information is fetched from the slots us-
ing an attention-based mechanism depending on which slots
are relevant for that query. The mechanism has three major
components which are described next.

e Key Hashing: The key part of the pairs holds the static
information representing the various hidden concepts us-
ing vectors. Each of the key vectors (Mk(l)7 ., MP (n))
represents a concept.

o Key Addressing: Given the t** question answered by a
student, the relevance of each concept in that question is
found out using an attention mechanism. Each question
is first converted into an embedding

k; = Aq, 1)

KT and HT refer to

and the weight of each concept ¢; in ¢; is given by
wy (i) = Softmax(k; " M* (7)) (2)

where A is the question embedding matrix, q, denotes the
one-hot encoded question, MF* (7) denotes the key vector
of the i*" concept and Softmax(z;) = %'/ . e". The
question embedding vector k; obtained from matrix A,
the key matrix M* are shown in yellow color and attention
weight vector wy = (w¢(1),...,w¢(n)) is shown in orange
in Figure 3.

Value Reading: Given the weight w,(¢) of each concept
c; in question ¢: given by Equation 2, the student’s skill
in that question is calculated as the weighted sum of the
knowledge in each of the concepts, as taken from value
matrix M{. The value matrix is shown in pink color in
Figure 3. The student’s skill in the question ¢ is returned
as

st = Z MY (3) * we(7) 3)

This skill is then used to make predictions about the stu-
dent’s response correctness and hint usage.

Value Writing: Once we get student’s actual response
to the question, knowledge state is updated. This part is
shown in green color in Figure 3. The update in each of
the concept ¢;’s value vectors are also weighted according
to the calculated weight wy(i) of the concept (2). The
student’s response is encoded in a vector, x; of size 2|Q|+1
to represent a correct attempt or an incorrect attempt or
a hint taken.

x; = encoded tuple(gs, ¢, he)

This encoding, described in 4.2, is then converted into an
embedding v, given by

Vi = BXt

where B is the response embedding matrix. When updat-
ing the student’s knowledge state, the memory is erased
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first before new information is added.
The erase vector e; is calculated as

e = Sigmoid(ETVt + be)

where E is a linear transformation matrix, b, is the bias
and Sigmoid(z;) = 1/(1 + ™).
The addition vector a; is calculated as

a; = Tanh(DTvt + ba)

where D is a linear transformation matrix, b, is the bias
and Tanh(z;) = (7" — e~ %) /(e” + €™ %).
After the ¢! response, the value matrix is updated as

MY (3) = My_1(i) © [1 — we(i)er] + we(i)ay

Thus, the model adds and forgets student knowledge in
concepts as more and more assessments are attempted.

4.4 Final Predictions

The final predictions for both, correct attempt and hint-
taking, probabilities are calculated by applying two separate
linear transformations followed by a sigmoid activation on
f; which is given by

f, = Tanh(W7 * (s¢|[ke¢) + by) (4)

Here, Wy is a linear transformation, s; is the final read
knowledge state of the student in question q, illustrated
earlier in Equation 3, k; is the question embedding in Equa-
tion 1, by is the bias and || is the concatenation operator.
The final probabilities for a correct-attempt and hint-taking
are

P2 = Sigmoid(W * f; + b}) (5)

PP = Sigmoid(W7  f, + bl) (6)

where both WX, WY are linear transformations, and b,
b;} are bias vectors.

4.4.1 Prediction Loss at Output Layer:

The output layer of DKVMN predicts the probability whether
a question will be answered correctly. For the task of pre-
dicting whether a hint will be taken in the question, the
factors like the knowledge state of the learner, the difficulty
level of the question and past hint-taking behavior are im-
portant. Since the first two are already being modeled by
DKVMN, we learn both the tasks simultaneously by using a
multi-task learning approach. As shown in Equation 6, the
final output layer of Colearn adds a linear transformation of
f; followed by a sigmoid activation to predict the hint-taking
task. The loss is given by taking a weighted sum of losses
from knowledge tracing and hint-taking prediction and is
evaluated as

act _pred

L = aicross_entropy (pi, p¥ act ppredy

)+aocross_entropy (py, Dy

where p?™°? is given in Equation 5 and p}™*“ in Equation 6 are

the probabilities predicted at the output layer. The actual
values p2°* and pi° are 0 or 1 depending on the observed

response. The cross entropy function

cross_entropy (p™**, p”**) = p**log(p™*)+(1-p"")log(1-p™*")

We set both a1 = a2 = 1 to give equal weight to the knowl-
edge tracing and hint-taking prediction tasks. This loss is

backpropagated to update the network weights. When a
learner takes a hint, only the loss of the hint-taking predic-
tion is propagated. In other words, the loss for the knowl-
edge tracing task is 0 in this case. The network weights,
except the final output layer, are shared between the two
tasks (See Figure 3). Multi-task learning acts as a regu-
larizer for learning network weights as with the same set
of weights the network should maximize two objectives. It
also encourages sharing of knowledge across tasks through
sharing of network weights. Experimental results demon-
strate that the network trained using multi-task learning
marginally outperforms current state-of-the-art models on
both the tasks.

S. DATASETS

To evaluate the performance of the model we used the fol-
lowing two datasets:

e ASSISTments 2009-2010 skill builder dataset?: AS-
SISTments [14] is an online tutoring system which can
be used by teachers for grade school-level Mathematics
instruction and evaluation. The system can be used to
identify common wrong answers and see student-reports
for assignments in a class. The dataset contains activity
logs of students solving exercises on the system and it is
widely-used as a benchmark dataset for knowledge trac-
ing [23, 34]. Log data includes information such as student
responses, time spent on exercise, chronological order of
attempts, if a hint is taken, tagged skill for an exercise.
We use the updated version of this dataset. It corrects an
issue, identified by Xiong et al. [33], with duplicated rows
in the original version. We use the skill tag corresponding
to an exercise as its identifier in the input to the models.
Thus, the set of distinct questions, @, is same as the set of
distinct skill tags in the dataset. All rows with an empty
skill tag are removed. Some rows contain invalid values
in the column specifying student’s first action i.e. values
other than the permissible ones — {attempt, hint}. These
transactions are removed. In case a student has multiple
actions on the same exercise, we know whether the first
action was a correct attempt, an incorrect attempt or a
hint request. For the hint-taking prediction task, only the
rows with the first action as a hint request are taken as a
positive label.

e Junyi Academy Math Practicing Log®: Junyi Academy*

is an e-learning platform, like Khan Academy, where stu-
dents can practice exercises on various subjects including
Mathematics, Biology, Computer Science. Like ASSIST-
ments, the dataset contains attempt, hint taken, time
spent, and skill tag information for an exercise. It has
transactions for around 200,000 students. To the best of
our knowledge, it is one of the largest student interac-
tion datasets. As part of the data cleaning process, rows
which contained non-binary values in the columns speci-
fying whether hint was used or not and whether question

2ASSISTments 2009-2010 skill builder dataset is available
at https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data/skill-builder-data-2009-2010
3Junyi Academy Math Practicing Log is available at
datashop.web.cmu.edu/DatasetInfo?datasetId=1198

4https://www.junyiacademy.org/
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was answered correctly or not were removed. Students
with only one transaction in the dataset are removed. If
a student requests a hint as one of the actions on a par-
ticular exercise, we do not know whether the hint was
requested as the first action or it was requested after one
or more incorrect attempts. In other words, we only know
whether a hint request was one of the actions performed
by the student. Therefore, for the hint-taking prediction
task, all transactions which contain a hint request, irre-
spective of being the first action or not, are assigned the
positive label. Note that this adds noise to the hint-taking
label for this dataset.

The statistics comparing the two datasets are provided in
Table 2.

Statistic Datasets
ASSISTments Junyi

# of Students 4,151 199, 549

# of Exercise/Skill Tags 111 722

# of Concept Tags — 40

# of Records 325,637 25,628,935

% of Attempts (Both Correct 92.78% 93.56%

and Incorrect)
% of Hints 7.22% 6.44%

Table 2: Aggregate statistics from the two datasets

For extracting labels for the prediction tasks, it is assumed
that a question is attempted only once. If a hint is taken first
then the response is labeled as hint-taken. Else, the response
is marked as correct or incorrect based on the outcome. So,
if there are instances where multiple responses for a question
are observed, we keep the first response on each question and
remove subsequent responses. This is done to conform with
the standard practice followed while evaluating knowledge
tracing models. However, responses to subsequent attempts
can also be incorporated in our setup.

6. EVALUATION METHODOLOGY

In each dataset, students and the corresponding transactions
are randomly split into two parts — 80% for training and 20%
for testing. Training set is further split, out of which 80%
(i.e. 64% of total) is used for training the models. The
rest 20% (i.e. 16% of total), called validation set, is used to
tune hyperparameters of the models. Trained models with
different values of hyperparameters are evaluated on the val-
idation set in order to select the best hyperparameters.

6.1 Accuracy Metric

Both the prediction tasks are considered in a classification
setting — answering a question correctly or not and taking
a hint on a question or not. Hence, we compare the model
performance based on Area under ROC curve (AUC) which
is a standard classification metric. For knowledge tracing
task, we follow the same evaluation procedure as followed
by [23, 30, 34]. The model is trained using transactions
from the training set. During the testing phase, the model
is updated after each question response from the testing set.
The updated model is used to perform the prediction for the
next question.

6.2 Hyperparameter Tuning

Hyperparameters are learned using the validation set. We
used Bayesian Optimization [28] to tune the hyperparam-
eters for Colearn model. The model required several hy-
perparameters which cannot be set by hand easily. The
method uses Bayesian techniques instead of gradient-based
techniques to optimize the unknown function from the hy-
perparameter space to validation loss. The objective is to
find the set of hyperparameter values which minimizes the
validation loss while evaluating the model for only a small
number of hyperparameter combinations. The tuned hyper-
parameters are:

Number of value vectors: Since the number of value vec-
tors represent the number of ‘hidden’ concepts, this cannot
be set by hand. The values were varied from 5 to 50 vectors.

Key vector size: The size of each key vector depends on
efficient representation of the difficulty of questions and their
similarity to the hidden concepts. The size was varied from
10 to 200.

Value vector size: The value vectors are a representation
of the different concepts and an efficient representation de-
pends on the size of these vectors. The size was varied from
10 to 200.

Hyper-parameters obtained for Colearn model are as follows
—number of value vectors are 20 and 5 for ASSISTments and
Junyi respectively, key vector size (i.e. question embedding
size) is 50 for both, value vector size (i.e. question-attempt
embedding size) is 200 and 100 for ASSISTments and Junyi
respectively.

6.3 Training details

Stochastic gradient descent with momentum and norm-clipping

was employed to train the weights of the network. The mo-
mentum was set to be 0.9 throughout the training and the
norm was clipped to a threshold of 50.0. The learning rate
was initialized as 5% 1072 and annealed after every 20 epochs
till the learning rate reached 10~°. Since the sequences of
responses varied in length, the sequence length was fixed to
200 and 500 in ASSISTments and Junyi, respectively, with
appropriate truncation or padding. Batch size for stochastic
gradient descent is fixed to 32 and number of epochs is set
to 100. Network weights corresponding to the epoch with
least validation loss are taken for testing.

After training, learned weight values for the key and value
matrices are saved and loaded at beginning of testing each
student sequence. Key matrix is kept unchanged through-
out the sequence, whereas the value matrix is updated in-
dependently for each student sequence as more actions are
observed.

To check for robustness to initialization of network weights,
we perform training 5 times with different random seeds
(to get {AUC;}5_1). We report the average (i.e. AUC =
: 37, AUC;) and standard deviation (i.e. (% S (AUC;—

AUC)Z]%) of test AUC values across the 5 models.

7. RESULTS AND DISCUSSION
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Model Datasets
ASSISTments Junyi
Colearn 91.75 4+ 0.07% 92.34 £ 0.009%
DKVMN-hints | 91.124+0.06%  92.31 £0.01%
HH (n=3) 77.69% 76.66%
HH (n=4) 79.10% 77.62%

Table 3: Hint-taking Prediction task. Performance
(AUC values) of proposed approach (Colearn) compared
with the baselines on two datasets.

To the best of our knowledge, no prior work models both of
the prediction tasks jointly. Therefore, we report compar-
isons with prior work for each task separately. The Colearn
results reported are for the model jointly trained on both
the tasks.

7.1 Hint-taking Prediction

7.1.1 Baselines

Castro et al. [9] proposed a method called Hint-History
model (HH) for predicting student actions on next question
i.e. whether student will take a hint or attempt the next
question. The method considers the sequence of n most re-
cent student actions for predicting action on the next ques-
tion. They use a technique called tabling method which
counts the number of times a sequence resulted in a par-
ticular action in the training set. For instance, while mak-
ing a prediction for a student who has taken two hints in a
row followed by an attempt, the method finds students with
same action sequence in the training set and uses the next-
action probability for them as the predicted value in current
case i.e. calculate number of times students with this action
sequence took hint on the next question divided by total
number of such students in the training dataset. These sim-
ple approaches have been used for knowledge tracing tasks
[13] as well.

The tabling method is compared with two approaches that
are proposed in this paper. The first one is using DKVMN [34]
model with class labels being hint-taking indicators instead
of question correctness (referred to as DKVMN-hints). The
second one is Colearn.

7.1.2  Results

Table 3 summarizes the results. We compare with HH model
for two different values of length of action sequences, n =
3,4. DKVMN-hints shows 12% points improvement in AUC
on ASSISTments dataset and 15% on Junyi datset. Colearn
further improves the AUC on the two datasets. A memory-
augmented deep learning model considers longer term de-
pendencies in student sequences instead of taking a fixed-
length history, as is the case with HH. It can also effectively
model student-specific variations from individual sequences
whereas HH model output is based only on population-level
statistics. Lastly, multi-task training, Colearn model, also
helps to increase performance on the task by a small margin
due to the synergies across the tasks.

7.2 Knowledge Tracing
7.2.1 Baselines

Model Datasets

ASSISTments Junyi

Colearn | 81.48 +0.04% 80.56 % 0.009%
DKVMN 81.23 £0.02%  80.38 £ 0.007%
HIRT 77.40% 79.45%

IRT 76.51% 77.46%

Table 4: Knowledge Tracing task. Performance
(AUC values) of proposed approach (Colearn) compared
with the baselines on two datasets.

We compare our model with three competitive baselines
namely DKVMN [34], IRT [30] and Hierarchical IRT (HIRT) [30].
In IRT, student skill level and item difficulty are modeled
separately and probability of answering correctly is taken
as a pre-determined function of these two quantities such
as sigmoid or logistic. In HIRT, related items are grouped
together (e.g. those belonging to same concept) and the
difficulty of each item is distributed normally around a per-
group mean, which is distributed normally around a hyper-
prior. DKVMN model was shown to outperform BKT [11]
and DKT [16], hence we do not compare with those mod-
els. For DKVMN, best performing hyperparameters reported
in [34] were taken. Note that the best-reported AUC of
DKVMN (81.57%) on ASSISTments dataset differs from what
we report for their model (81.23%), for the same hyperpa-
rameters. This results from different train-test set propor-
tions, i.e. 20% sequences in test as compared to 30% used
by Zhang et al. We could replicate DKVMN results using code
published by the authors® on the dataset split provided by
them. For IRT and HIRT models we use the code published
by the authors®. For the baselines, the transactions where
hints are taken are labelled as incorrect responses. This is
the same approach followed in the baseline publications.

7.2.2  Results

The AUC values for the different methods on both datasets
for knowledge tracing are shown in Table 4. The AUC value
for deep learning models is sensitive to the initial values
of network weights. Hence, we report average and stan-
dard deviation (separated by +) of the AUC from five, ran-
domly initialized, models. Colearn improves test set AUC
on ASSISTments dataset by 4% points and on Junyi by 1%
points as compared to HIRT method. The improvement due
to multi-task model is consistent across datasets and tasks,
albeit small. This means that students’ past hint taking
behaviour is not predictive of question correctness. Fac-
tors such as difficulty of the question and correctness on
past attempts mostly can explain their future performance.
Interestingly, performance increase is less in case of Junyi
dataset than ASSISTments dataset in both the tasks. As
discussed earlier, the way hint information is available in
Junyi dataset adds some noise to the training signals. In
cases where student takes a hint, we do not know whether
hint was the first action before any attempt or was taken
after making incorrect attempt(s). This might be the rea-
son why we get relatively less advantage from incorporating
hint information in Junyi dataset.

Shttps://github. com/jennyzhang0215/DKVMN
Shttps://github.com/Knewton/edm2016
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Figure 4: t-SNE visualizations of question representation for Junyi dataset. Color denotes difficulty (in (a)) and concepts (in

(b)) of the questions.

7.3 Discussion on Learned Representations
We have shown that the Colearn model performs better
than the baseline models. In this section we explore the
meaning of the estimated parameters. Specifically, how can
we use the estimated parameters to represent a question and
what does the representation represent?

To get representation for each question, g:, we use a ques-
tion’s attention weights over the concepts in the key matrix.
Each question is represented by a vector of length equal to
the number of latent concepts where the value corresponding
to each latent concept in the vector is given by Equation 2.
This representation is obtained assuming that a student has
not yet started to answer any question. Recall that, before
the start of an assessment, the value matrix is set to the
initial value matrix, M{. This initial matrix is part of the
parameter set and it is estimated. The question represen-
tation is a vector that is based on the performance of all
students, questions, and responses in the training set but
not specific to any one student.

To understand how the question representations are related
to each other, we visualize them using t-SNE [18]. Figure 4a
and Figure 4b present the t-SNE visualizations of the ques-
tion representations of the exercise tags in Junyi dataset.
ASSISTments dataset is not used for this analysis because it
does not contain the concepts for the exercise tag. Each dot
in the scatter diagram represents a single exercise tag. The
only difference between the two panels is the color used to
represent each tag. In Figure 4a each exercise tag is colored
according to the difficulty level of the question, with blue
color representing the easiest and red color representing the
most difficult exercise tags. The difficulty level is estimated
using the fraction of correct responses in each question tag.
The color of a dot in Figure 4b represents the concept of the
exercise tag. There are 40 concepts for 722 exercise tags in
Junyi dataset which include concepts like fractions, algebra,
trigonometry.

One of the hypothesis is that the question representation
captures the concept map [34]. If this was the case then the
exercise tags within a concept should be close in the question

representation space. However, Figure 4b shows that the
exercise tags within a concept do not cluster together. In
fact, the exercise tags seem to be randomly scattered in the
question representation space. On the other hand the color
of the exercise tags in Figure 4a shows a definite pattern
with the easiest question tags towards the left and the most
difficult ones towards the right. This shows that the question
representation vectors tend to capture the difficulty level
of an exercise tag. Note that, the question representation
vector might capture other aspects such as prerequisite map.
However, a complete in-depth analysis is out of the scope of
this paper and left for future explorations.

8. CONCLUSION

Assessments (specifically, formative ones) are an important
part of an interactive learning system as they help learners
to gauge their progress. If a learner is stuck at a particular
question, many learning platforms provide learning aids in
the form of hints. Predicting when to provide an option of
taking an hint is essential to regulating its excessive use or
to avoid underuse. The probability of taking a hint relates
to modeling the knowledge state of a learner during an as-
sessment, which has been studied separately as knowledge
tracing. Hence, we jointly modeled the hint-taking predic-
tion task along with the knowledge tracing task. Through
experiments we showed that our approach outperforms the
baseline hint-taking prediction models and marginally im-
prove on baseline knowledge tracing models. The approach
proposed in the paper can be easily extended to incorporate
other types of learning aids such as interactive tutorials,
links to reading material and videos.

Better knowledge tracing and hint-taking models allow an
e-learning system to make decisions such as number of ques-
tions to ask, the sequence of questions and whether to show a
hint based on learner’s proficiency. Such decisions affect the
long-term learning outcomes. Future work involves integrat-
ing the predictions for the two tasks to develop strategies for
optimizing long-term learning outcomes. High accuracy on
both the tasks, as demonstrated, will allow to build student
simulators for evaluating such strategies.
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ABSTRACT

Work-integrated learning, also known as co-operative educa-
tion, allows students to alternate between on-campus classes
and off-campus work terms. This provides an enhanced
learning experience for students and a talent pipeline for
employers. We observe that co-operative job postings are a
rich source of information about the required skills, working
environment and company culture. We present a text min-
ing methodology to extract and cluster informative terms
from unstructured job descriptions, and we demonstrate the
utility of our methodology on a co-op job posting corpus
from a large North American university.

Keywords
work-integrated learning, co-operative education, text min-
ing, Latent Semantic Analysis (LSA)

1. INTRODUCTION

The World Association for Cooperative and Work-integrated
Education reports that 275 institutions from 37 countries of-
fer co-operative education (co-op) programs, also referred to
as work-integrated learning programs’| Students enrolled in
co-op programs usually alternate between on-campus classes
and off-campus work terms at participating employers. Co-
operative education has become popular for a number of
reasons: it provides an enhanced learning experience for stu-
dents, a talent pipeline for employers, and a recruiting tool
for institutions.

Concurrent with the popularity of work-integrated learning
is the desire to understand the co-op job market: students
want to know what types of jobs are available and what
skills could make them more employable; employers want to
know what competition they are facing and how to attract
top talent; and institutions want to align curricula with job
market needs.

"http://www.waceinc.org/global _institutions.html

In this paper, we propose to answer the above questions by
mining co-operative job postings. We make two contribu-
tions: 1) a text mining methodology to extract informative
terms from job descriptions in order to understand a co-op
job market, and 2) a case study using real data to demon-
strate our methodology.

In practice, job descriptions are written directly by em-
ployers, and therefore they are not standardized or well-
structured. In particular, job descriptions may include in-
formation that is unrelated to the nature of the job such as
website URLs, contact emails, and of course common En-
glish words. Our technical challenge, therefore, is to extract
and cluster useful information, such as required skills, work-
ing environment and company culture.

We address this challenge by designing a text mining
methodology to understand a co-op job market through job
postings. We start by building a parser that extracts rele-
vant attributes from unstructured job descriptions. We then
identify frequently occurring attributes in job titles and de-
scriptions, and we employ Latent Semantic Analysis (LSA)
and k-means clustering over the extracted attributes to char-
acterize the types of available jobs.

To demonstrate the utility of our methodology, we analyze
nearly 30,000 co-op job postings from a large North Ameri-
can university. We identify sought-after skills and mindsets,
we identify the types of jobs available to junior and senior
undergraduate students, and we discuss trends over time.
We argue that our findings provide actionable insights for
students, employers and the institution.

The remainder of this paper is organized as follows. Sec-
tion [2| discusses related work; Section [3]| describes our data
and methodology; Section [4] describes the experimental re-
sults; and Section [5| concludes the paper with the implica-
tions of our findings and directions for future work.

2. RELATED WORK

This paper is related to three bodies of work: text mining,
co-operative education and workforce studies. We use stan-
dard parsing and information retrieval techniques, and do
not make any new algorithmic contributions in text mining.
Instead, our contribution is to apply these techniques to a
new application domain in order to obtain new insight.
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Prior work on co-operative education has focused on its im-
pact on students’ skills (especially soft skills such as leader-
ship and entrepreneurship), grades and post-graduate em-
ployment; see, e.g., . There has also been
research on what makes co-op students successful and what
workplace competencies are expected (see, e.g., [@
31]), understanding competition for co-op jobs (see, e.g.,
), and assessing the overall co-op process and expe-
rience (see, e.g., ) These works are orthogonal to
ours, which studies a different problem of understanding a
co-op job market in terms of the types of available jobs and
the required skills and attitudes.

Prior research on job advertisements studied how to write
them in order to attract qualified applicants (see, e.g.,
)7 and how to match job descriptions with qualified
resumes (see, e.g., [9,[19]). Moreover, job descriptions have
been studied from a gender perspective, e.g., by counting
the occurrences of masculine and feminine words . While
these works investigated how job descriptions could attract
or match applicants, we study a different problem of under-
standing a co-op market through job descriptions.

Workforce literature has applied machine learning to im-
prove recruitment, reduce turnover and understand work
profiles , Machine learning algorithms have been ap-
plied to understand the factors affecting work performance
and retention . Furthermore, Aken et al. cluster Informa-
tion Technology job postings on job websites to understand
the work profiles prevalent in the market . Our research
extends this analysis to understand the work profiles of var-
ious industries (not only Information Technology) in a co-
operative education setup and how they have changed over
time. Not limiting the scope to broad work profiles, our
research also highlights the specific skills and attitudes re-
quired by various industries.

3. DATA AND METHODOLOGY

We obtained two datasets from a large undergraduate North
American institution: 12,066 job postings corresponding to
all co-op jobs that were advertised and filled in 2004, and
17,057 job postings corresponding to all co-op jobs that were
advertised and filled in 2014. The job postings are written
in English. Most of these positions were located in North
America, with a small number of overseas jobs. We use
the 2014 data to characterize the current co-op job market
and we compare with the 2004 data to analyze trends over
time. Each record in our datasets contains the following
information:

e A job title, up to 50 characters long, which generally
consists of the position and/or the nature of the work.
Common titles include Web Developer, Engineering
Intern and Planning Assistant.

e A job description, with unlimited length and no stan-
dardized structure or formatting.

e The year of study of the successful candidate who se-
cured the job. We refer to jobs obtained by first and
second year students as junior jobs or lower-year jobs,
and those obtained by third and fourth year students
as senior jobs or upper-year jobs.

Note: EMPLOYMENT BASED IN THE USA* This work opportunity will be based in the USA; therefore all
applicants must determine whether they are eligible to work in the USA.

Aqua Book Club (ABC), is a global eReading service <href=www.abc.ca. Ranked Ist in Bloomberg
Magazine’s annual ranking of startups, we have a strong employee culture that promotes teamwork and open
communication.

ABC is looking for Javascript HTMLS/CSS/RoR experts who are obsessed with technology and who love what
they do. As part of our small team of software engi you will be responsible for architecting and
implementing the UI designs, and working with other members on the team to integrate the the application into
our platform.Deep understanding of the front end web, from delivery to working with Ajax is required.
Experience in Ruby on Rails or other MVC web frameworks is a plus.

Applications are due by 05/30/2014 12 a.m. Applications wont be accepted after that. Attaching a transcript is
highly recommended. (Include #503482 in the name) - Currently enrolled in BASc or CS at the Intermediate
level with the Co-op option — Students who have taken ¢s326 will be prefered

At ABC, you will get a chance to work closely with the CEO Tim while having the flexibility you need to make
areal contribution to our system. If you have a past history of are un-put by chall arc a team-
player and have demonstrated ability to learn rapidly on the job, we want to talk to you. Other perks: - Get to
work on really challenging and diverse problems in a casual - We have a ping-pong and a foosball
table (We will surely beat you in ping pong)! - A well stocked fridge - free lunch on release days!!! ie we’re
basicaly a really F*U*N place to work. The office is located downtown and is casily reached by TTC.

Join us for the Evening Happy Hour on Friday, May 23rd 2014, 7:30 pm. Check out the Facebook event page
here: https://www.facebook.com/events/573997/.

& it 1 free to contact Ruby
Smith (rsmith@abc.com) or Jason Pinn (jason@abc.com) for any questions you have about working at ABC.

*#*Apply asap! ***

Figure 1: An anonymized job description

e The academic program of the successful candidate.

Since the job postings in our dataset do not include indus-
try or discipline labels, we use the academic program of the
student who obtained the job as a proxy. The institution
provided us with a mapping from students’ academic pro-
grams to job disciplines; e.g., positions filled by Computer
Science or Software Engineering students are classified as
Information Technology jobs. In our case study, we focus on
the largest discipline in the institution’s co-op market: Infor-
mation Technologies (IT). We also point out interesting find-
ings from other major disciplines: Finance, Health Studies,
Arts, Biology, Environmental Studies, Chemical Engineer-
ing, Civil Engineering, Electrical Engineering and Mechani-
cal Engineering.

Figure [1| shows an anonymized example of a job description
from our dataset. It includes the following information:

e Technical skills: Javascript, Ruby on Rails
e Soft skills: team player, ability to learn
e Job duties: architecting and implementing Ul designs

e Desired mindset and attitude: obsessed with technol-
ogy

e Perks: ping-pong and foosball table, free lunch

e Company culture: casual environment

However, there is also some content that does not describe
the job itself: names of people and locations, URLs, email
addresses, HTML tags, timestamps, special formatting, and,
of course, common English words. The first part of our
methodology, therefore, is a parser that extracts job-related
attributes from unstructured job descriptions. The parser,
implemented in Python, consists of the following steps.
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1. Using regular expression matching, we remove URLs,
HTML tags, phone numbers and other numbers,
email addresses, timestamps, administrative annota-
tions added by the institution (such as the text follow-
ing “Note:” in Figure7 formatting characters such as
bullet points, and sequences of special characters serv-
ing as separators (such as the sequences of dashes and
hashtags in Figure .

2. We tokenize the remaining text and remove special
characters embedded in words (such as F*U*N in Fig-
ure [1)). To remove unimportant terms, we build a vo-
cabulary, called Remowve-List, consisting of common
English word rmsspelhngéﬁ and abbrev1at10naE|, as
well as manually-curated lists of company names, lo-
cations, addresses and persons’ names appearing in the
institution’s co-op system.

3. We have to be careful to not remove informative terms.
For example, “Ajax” is a city in Canada and is there-
fore in Remowve-List. However, Ajax is also a Web de-
velopment toolkit. To address this problem, we cre-
ate another vocabulary called Keep-List, of words that
should not be removed. This vocabulary consists of
skills found on a resume help Web siteﬂ and job du-
ties from the Canadian National Occupation Classifi-
catiorEl Note that Keep-List only contains a subset
of words we are interested in; e.g., it is missing many
specific technical skills, perks and company culture de-
scriptors.

4. We stem the remaining tokens using the NLTK snow-
ball stemmer E] and we remove stop words. Finally, we
leverage our domain knowledge by converting impor-
tant terms that can be written in different ways into a
standard form; e.g., “java-script” and “javascript” both
map to “javascript”.

At the end of the parsing process, each job description is
reduced to its stemmed words, minus those in Remowe-List
but not in Keep-List. In the remainder of the paper, we will
refer to these stemmed words as “words”, “terms”, “tokens”
and “attributes” interchangeably.

The second part of our methodology is designed to analyze
the extracted job attributes. We do this in two ways:

1. To identify popular skills, attitudes, working environ-
ment and perks, we report attributes that occur at
least once in a large percentage of job descriptions.
Notably, and in contrast to other text mining applica-
tions, we do not count the number of occurrences of an

Zhttp://www.lextutor.ca/freq/lists_download/
longman_3000_list.pdf
“https://en.wikipedia.org/wiki/Wikipedia:Lists_of_
common_misspellings/For_machines
“https://media.gcflearnfree.org/ctassets/modules/
48/common_abbr . png

https://www.thebalance. com/
list-of-the-best-skills-for-resumes-2062422
°http://noc.esdc.gc.ca/English/noc/welcome.aspx?
ver=16
Twww.nltk.org/_modules/nltk/stem/snowball.html

Table 1: Top 10 frequent tokens in IT job titles

Token Freq. in 2014 Token Freq. in 2004
softwar 45% develop 3%
develop 44% softwar 27%
analyst 8% analyst 17%

applic 7% programm 11%

web 5% assist 9%
support 4% web 8%
assist 4% support 7%
programm 4% applic 6%
system 3% system 6%
quality 3% specialist 4%

attribute within a posting—we observed that important
job requirements such as knowledge of the “Java’” pro-
gramming language are usually mentioned only once.
We also identify attributes mentioned by more junior
than senior jobs (and vice versa), and we compare at-
tributes mentioned by more jobs in 2014 than 2004
(and vice versa) to characterized trends over time.

2. We use clustering to identify the different types of
available co-op jobs within a discipline. Following pre-
vious work on text clustering 10} 23] [24], we start by
applying Latent Semantic Analysis (LSA) to the job
descriptions, with each job description represented as
a job wvector. The ith coordinate of a job vector is
equal to the inverse document frequency (IDF) of the
ith word in the set of possible words, provided that
this word is mentioned in the given job description at
least once (and zero otherwise). Following previous
work, we use LSA to reduce the dimensionality of job
vectors from the number of distinct words down to one
hundred [28]. Each reduced dimension corresponds to
a latent concept in the data. We then run k-means
clustering on the transformed job vectors, and we re-
port a few top terms (again, ranked by IDF) from each
cluster centroid as representatives.

4. RESULTS

In this section, we demonstrate the utility of our methodol-
ogy. We show in-depth results for the largest discipline in
our dataset: Information Technologies (IT), including fre-
quent term analysis (Section, analysis of significant dif-
ferences in term frequencies between 2014 and 2004 and be-
tween senior and junior jobs (Section , and clustering
analysis (Section . We summarize our results for other
disciplines in Section

4.1 Frequent Term Analysis

Table [1| shows the top 10 attributes occurring in the most
IT job titles in 2014 and 2004; for example, the first row
indicates that the token “softwar” appears at least once in
45% of job titles in 2014 and 37% in 2004. Not surprisingly,
nearly half the titles mention software development.

Table[2]shows the top 25 attributes occurring in the most IT
job descriptions in 2014 and 2004. Overall, most IT co-op
jobs appear to be software developer jobs. In 2014, hard-
ware was mentioned in only 14% of the postings and embed-
ded systems in 7%; in 2004, these percentages were slightly
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Table 2: Top 25 frequent attributes in I'T job descriptions

Token Freq. in 2014 Token Freq. in 2004
develop 91% develop 80%
team 84% applic 65%
softwar 76% softwar 62%
applic 66% system 61%
design 65% team 61%
product 62% program 54%
program 60% design 53%
system 58% communic 50%
project 53% comput 49%
comput 52% product 47%
test 50% support 43%
build 48% test 43%
communic 48% servic 42%
web 47% project 41%
code 46% lead 39%
help 46% excel 39%
learn 45% solut 38%
servic 44% web 38%
java 43% tool 3%
manag 43% assist 36%
creat 43% busi 36%
solut 42% manag 35%
technic 42% java, 35%
tool 41% custom 34%
excel 40% oper 33%

higher, at 22 and 9, respectively (and the actual number of
hardware and embedded systems jobs was slightly higher in
2004). Furthermore, about half the job descriptions men-
tion testing. Notably, mentions of some soft skills such as
communication are more frequent than mentions of specific
technical skills such as Java in both years.

By inspecting other frequent attributes, we obtain the fol-
lowing insights about frequently mentioned programming
languages, platforms and applications in 2014:

e Programming languages: Java (43%), C++ (33%),
JavaScript (31%), C (24%), Python (22%), C# (20%),
HTML (19%), CSS (17%), PHP (12%), .NET (12%),
jQuery (10%), Perl (10%), XML (9%), Ruby (9%)

e Development: web (47%), mobile (32%), game (12%)

e Databases: database (29%), SQL (26%), mySQL (8%),
Oracle (7%)

e Mobile applications: android (19%), iPhone (7%)

Operating Systems: linux (21%), unix (13%), i0S
(14%)

e User-centered development: user (35%), agile (18%),
deploy (16%)

e Other applications: server (29%), distributed (17%),
security (17%), cloud (9%), graphic development (8%),
big data (4%)

Concepts: OOP (Object-Orient Programming) (24%),
algorithms (18%), scalable (14%)

In terms of the working environment and company culture,
the strongest result is that the word “team” is very fre-
quent, suggesting a collaborative environment. Other fre-
quent terms include challenging (32%), dynamic (20%), fun
(16%), flexible (15%) and diverse (12%). Amenities such as
free food, foosball and ping-pong tables are also frequent.
The word start-up is mentioned in 11% of the job postings.

We also note the occurrence of mindset-related terms such as
learn (45%), innovation (32%), passion (25%), focus (23%),
creativity (22%), motivation (20%), love (15%) and enjoy
(10%).

Similarly, for 2004, we identify the following frequently men-
tioned programming languages, platforms and applications:

e Programming languages: Java (35%), C++ (31%), C
(21%), HTML (22%), XML (15%), ASP.NET (12%),
Perl (11%), .NET (10%), JavaScript (10%), JSP (8%),
C# (T%)

e Development: web (38%), mobile (10%), game (5%)

e Databases: database (30%), SQL (27%), Oracle
(13%), mySQL (2%)

e Operating Systems: unix (22%), linux (15%)

e User-centered development: user (21%), deploy (7%),
agile (0.5%)

e Other applications: server (25%), security (15%),
graphic development (10%)

e Concepts: OOP (13%), algorithms (7%), scalable (4%)

Compared to 2014, the word “team” was again frequent in
2004, but words related to mindset, company culture and
perks were less frequent.

Our results indicate that IT positions focus on soft-
ware rather than hardware, especially web and Java
development. The work environment appears team-
oriented. In 2014, descriptions of mindset and com-
pany culture are appearing frequently.

4.2 Significant Differences

Next, we investigate the differences between 2014 and 2004
IT job descriptions which we began to see in the previous
section. Table |3| summarizes the results by listing 20 at-
tributes with most significant differences in frequencies be-
tween 2004 and 2014 (on the left), and 2014 and 2004 (on
the right). We define a difference in frequencies, abbreviated
A, as the percentage of job postings mentioning an attribute
in one year minus the percentage of job postings mention-
ing this attribute in the other year. Both lists are sorted
by A, and all results shown are statistically significant with
P-values less than 0.05 using a proportion test [13]. We omit
the analysis of job title differences between 2004 and 2014
which gave similar results. We also show a Venn diagram
in Figure[2] which illustrates the overlap among the top 100
frequent attributes in 2004 and 2014 IT jobs.
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Table 3: Differences in frequency between job description
attributes of 2004 and 2014 IT

Table 4: Differences in frequency between job description
attributes of junior and senior jobs in 2014 IT

Token 2004 2014 A Token 2014 2004 A Token Jr.  Sr. A Token Sr. Jr. A

assist 36% 22% 14% build 48% 15% 33% document  29% 16% 13% c++ 46% 21% 24%
asp 12% 2% 10% help 46% 19% 26% support 2% 31% 11% algorithm 28% 9%  20%
internet 18% 9% 9% team 84% 61% 24% assist 27% 16% 11% scale 28% 9% 19%
unix 22% 13% 8% code 46% 24% 22% communic  53% 43% 10% scienc 49% 31% 1%
hardwar 22% 14% 8%  mobil 32% 10% 22% manag 48% 38% 10% featur  39% 22% 1%
sort 8% 0% 8% javascript 31% 10% 21% test 54% 45% 9% python 31% 14% 16%
clarifi 8% 1% 8% passion 25% 5% 20% report 26% 17% 9% scalabl  23% 7% 16%
interperson 18% 10% 7%  featur 30% 10% 20% busi 42% 34% 9%  build 57% 41% 15%
oper 33% 26% 7%  creat 43% 23% 20% written 21% 13% 8% code 54% 40% 15%
msaccess 8% 1% 7% python 22% 3% 19% activ 23% 15% 8% complex 27% 13% 13%
manufactur 10% 4% 6% learn 45% 26% 19% educ 17% 10% 7% comput 59% 46% 13%
cost 11% 5% 6% collabor 23% 5% 18% standard 15% 8% "% ¢ 31% 18% 13%
xml 15% 9% 6% agil 18% 0% 18% interperson  13% 6% 7% product 69% 57% 13%
support 43% 37% 6% product 62% 47% 16% instal 9% 3% ™% structur 21% 9% 12%
expens 8% 2% 6% contribut 27% 12% 15% troubleshoot 15% 9% 6%  field 23% 11% 12%
intranet % 1% 6% problem 34% 19% 15% msoffic 8% 2% 6% java 50% 38% 12%
oracl 13% ™% 5% improv = 25% 10% 15% summari 24% 18% 6% data 42% 30% 12%
prepar 11% 6% 5% solv 20% 6% 15% execut 15% 9% 6% distribut 23% 12% 11%
supervis 12% 7% 5% app 15% 1% 14% detail 11% 5% 6% search  16% 6% 10%
xp 8% 3% 5% peopl 33% 18% 14% account 12% 6% 6% problem 40% 29% 10%
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Figure 2: Overlap between the top 100 most frequent
attributes of IT jobs in 2004 and 2014

Our results suggest that 2004 job postings include more
entry-level positions (suggested by attributes such as “as-
sist”, “support”, “prepare”, “arrange” and “document”), and
mention technologies and software popular at the time such
as ASP, XML, Windows XP and Microsoft Access. Addi-
tionally, the fraction of hardware-oriented jobs was higher in
2004. On the other hand, job postings in 2014 include words
representing current technologies such as mobile, Javascript,
Python, agile and app (and, further in the list, scalable and
distributed systems). Notably, many soft skills and mindset-
related terms are more frequent in 2014: “passion”, “cre-
ate”, “learn”, “collaborate” and “contribute”. Although not
shown in Table other terms that are more frequent in
2014 include company culture descriptors such as “innova-
tive” “challenging”, “fun” and “diverse”.

The next important difference is that between junior and
senior jobs. Table@ shows two lists: top terms appearing in
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Figure 3: Overlap between the top 100 most frequent
attributes of Junior and Senior IT jobs in 2014

more junior than senior jobs (on the left), and top terms ap-
pearing in more senior than junior jobs (on the right), both
in 2014 and both sorted by the difference of percentages. Ta-
bleshows the same two lists, but for 2004. Figuresand@
show Venn diagrams that illustrate the overlap among the
top 100 frequent terms from junior and senior jobs in 2014
and 2004, respectively.

We observe that in 2014, junior jobs are more likely to be
entry-level documentation, testing or troubleshooting jobs.
Junior job postings are more likely to mention soft skills such
as communication and interpersonal skills. In terms of spe-
cific technologies, junior jobs mention HTML, SQL and Web
5 percent more frequently than senior jobs. On the other
hand, senior jobs in 2014 mention technical concepts and
specific programming languages such as algorithms, scala-
bility, data, C++, C and Python. Other interesting differ-
ences not shown in the table are OOP (9% more frequent
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Table 5: Differences in frequency between job description
attributes of junior and senior jobs in 2004 IT

Token Jr.  Sr. A Token Sr.  Jr. A
maintain 23% 14% 9%  c++ 45% 21% 24%
support 4% 38% 9% ¢ 32% 14% 18%
updat 13% 5% 8% design 63% 46% 17%
html 26% 18% 8%  cost 20% 5% 14%
excel 43% 35% 8%  clarifi 16% 2% 14%
msoffic 13% 5% 8% expens 16% 2% 14%
troubleshoot 14% 7% 8% arrang 1% 4% 13%
document  30% 23% 7% sort 16% 3% 13%
user 24% 17% 7%  solut 44% 33% 11%
qualiti 26% 20% 6% challeng 29% 19% 10%
report 26% 20% 6% develop 85% T76% 9%
web 40% 34% 6% linux 20% 11% 9%
mainten 14% 8% 6% complex 16% 7% 9%
instal 13% 7% 6% algorithm 12% 3% 9%
interperson  20% 15% 5%  unix 271% 18% 9%
server 27% 22% 5%  code 29% 21% 8%
hardwar 24% 19% 5% lead 44% 36% 8%
Xp 10% 5% 5%  innov 27% 19% 8%
time 31% 26% 5% oop 18% 10% 8%
offic 21% 17% 5%  scale 11% 3% 8%
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Figure 4: Overlap between the top 100 most frequent
attributes of Junior and Senior IT jobs in 2004

than in junior jobs), linux (8%), cloud (8%), security (7%)
and data science (5%).

We observe similar patterns in Table [f] and Figure [ In
2004, junior jobs also included terms suggesting entry-level
positions, whereas senior jobs included more mentions of
programming languages and computing concepts.

To summarize, there are clear differences between
2014 and 2004 IT jobs, and between junior and se-
nior jobs. In addition to differences due to new tech-
nologies, soft skills, mindset and company culture are
more frequently mentioned in 2014. In both years,
junior IT jobs are more likely to mention documenta-
tion, testing and troubleshooting, whereas senior jobs
are more likely to mention technical concepts.

Table 6: Largest clusters of 2014 IT jobs

Label Tokens in cluster centroid %All %Jr. %Sr.

Web javascript, html, web, css,
Development 54l C#, server, java, net,  22% 64% 36%
P jquery

c++, ¢, languag, linux,

Programming python, oop, scienc, 21% 46% 54%
algorithm, perl, script
Start-up startup, python, javascript,

featur, code, web, love, 18% 39% 61%

Culture .
stack, fun, passion
Business sql, analyst, test, solut,
Analyst c#, script, execut, ﬁpanm, 16% 69% 31%
document, busi
Mobile 10, android, mobil, app,

¢ platform java, agil, iphon, 10% 61% 39%
devic, ¢

hardwar, troubleshoot,

configur, instal7 network,

desktop, server, user, xp, 6% 87%
resolut

Developmen

System Ad-
ministrator

13%

4.3 Clustering Analysis

After investigating frequently occurring terms, we now clus-
ter the I'T job descriptions to understand the types of avail-
able jobs. We experimented with different numbers of clus-
ters between 2 and 30. We present results using ten clusters;
using fewer clusters led to different types of jobs being as-
signed to the same cluster, whereas using more clusters led
to similar types of jobs belonging to multiple clusters.

Table [f] shows the six largest clusters in 2014 sorted by size;
the remaining four clusters had under 2% of the total num-
ber of jobs each. We report the representative tokens of each
cluster centroid, a manually-assigned label summarizing the
tokens, and three percentages: the percentage of all jobs
assigned to this cluster, and the percentages of junior and
senior jobs within this cluster. We highlight the higher of
the last two percentages in bold font to indicate whether a
cluster consists of more junior or senior jobs.

Based on the clustering results, we characterize the IT co-
op market as follows. The five largest clusters cover 87%
of IT jobs, spanning web development (22%), programming
(21%), start-ups (18%), business analysis (16%) and mo-
bile development (10%). The junior vs. senior split evident
in the clustering is consistent with our earlier results from
Section troubleshooting jobs are mostly filled by junior
students, whereas jobs mentioning company culture, many
of which are startups, are filled by senior students.

Table [7] shows the 7 largest IT clusters in 2004; the remain-
ing three clusters are small and one of them contains job
postings from a specific large employer at the time. There
is no longer a start-up cluster with mentions of the working
environment, and there is an emphasis on hardware in the
last cluster. These results align with our earlier results from

Section E11

To summarize, our clustering methodology segments
the IT job market into web development jobs, general
software development jobs, data analysis jobs, mobile
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Table 7: Largest clusters of 2004 IT jobs

Label Tokens in cluster centroid %All %Jr. %Sr.

Software  java, test, sql, tool, server,
Development  qualiti, softwar, autom, 20% 61% 39%

and Testing custom, solut

Web html, sql, web, asp,
javascript, server, java, 19% 66% 34%

Development xml, databas, net
scienc, databas, model,
comput, analysi, group,
Databases research, data: tool, 15% 57% 43%
msaccess
] c++, sort, clarifi, expens,
De\%/l?)tegllent arrang, cost, gui, code, 15% 40% 60%
p java, softwar
network, hardwar,
System Ad- troubleshoot, instal, user,
ministrator configur, xp, desktop, 9% 87% 13%

msoffic, problem
perl, script, Tanguag, unix,

Programming ¢, java, rank, c++, % 57% 43%
enterpris, linux
Embedded video, digit, hardwar, c,

Systems and multimedia, debug, embed, 7% 36% 64%
Graphics devic, c++, graphic

development jobs and troubleshooting jobs. Mentions
of mindset and work environments in 2014 are fre-
quent enough to create a separate cluster for these
jobs.

4.4 Analysis of Other Disciplines

In this section, we apply our text mining methodology to
the other disciplines in our dataset. As before, we structure
the results into frequent term analysis, difference analysis
(2014 vs. 2004 and junior vs. senior jobs), and clustering
analysis to characterize the types of available jobs within
each discipline. We focus on job description analysis and
only mention the results of job title analysis if they lead to
additional insight.

4.4.1 Frequent Term Analysis

Overall, all the other disciplines have frequent mentions of
soft skills (“team”, “communication”, “leadership”) and basic
computing skills (databases and Microsoft Office) in both
2004 and 2014. Below, we highlight additional frequent
terms for each discipline.

Finance: soft skills indicating client relationships (“client”,
“interpersonal”; “relationship”); finance-specific technical
skills (“audit”, “tax”, risk assessment, asset valuation, mar-
ket analysis); formal office working environment (“bank”,
“Oiﬁce”)

Health Studies: soft skills (“active students”, indi-
cating physical fitness); health-specific terms (“patient”,
“care”, “kinesiology”, “therapy”, “injury”, “rehabilitation”,

“ergonomics”, “physiotherapy”, “recreation”)

Arts: tokens related to editorial, technical and content writ-
ing (“edit”, “write”, “english”, “proofread”, “content”); addi-
tionally, media and social media were frequently mentioned

in 2014.

Biology: discipline-specific technical terms (“molecu-
lar”, “chemistry”, “microbiology”, “biochemistry”, “disease”,
“cell”, “tissue”, “DNA”, “genetics”, “pharmaceutical”); lab-

oriented work environment (“research”; “lab”; “technician”)

Environmental Studies: discipline-specific terms (GIS
(Geographic Information System), “water”, “land”, “soil”,
113 99 L SR EN1Y YRA13 M Y. 3

map”, “survey”, “sample”, “policy”); field work environment
(“field”, “site”). Frequent words in job titles: “assistant”,
113 ) «“. It ” 13 ” 13 ” [13 9
planner”, “technician”, “research”, “analyst”, “inspector”,

“project”, “management”.

Chemical Engineering: Discipline-specific technical
terms (“chemistry”, “process”, “manufacturing”, “equip-
ment”, “sample”’, “procedure”, process improvement,
“safety”); lab-oriented work environment (chemical plants,
research labs). Additionally, frequent in 2014: project man-
agement; frequent in 2004: field-work.

Civil Engineering: construction-related tokens (“design”,
“AutoCAD?”, “site”, “field”, “concrete”, “safety”); graphic de-
sign (“graphic”, “PhotoShop”).

Electrical Engineering: discipline-specific technical skills
(“electrical”, “hardware”, “power”, “schematic”, “control”,
“embedded”, “circuit”); computing skills (“code”, Web, Java,

” W

SQL). Frequent terms in job titles: “design”, “quality”, “as-

” VPN

surance”, “testing”, “research”.

Mechanical Engineering: discipline-specific terms

(“equipment”, “assembly”, “robot”, “circuit”, “material”,
“CAD?”, “SolidWorks”, “AutoCAD?”, “control”, “process”, “im-
provement”, “maintenance”, “draw”, “prototype”’, “test”,

“troubleshoot”, “safety”); work environment (“plant”, “shop”,

“floor”, “manufacturing”).

4.4.2  Significant Differences

Next, we highlight differences in frequent terms between
2004 and 2014. Overall, we observed that each discipline had
more mentions of soft skills, and more mentions of project
management and IT-related terms in 2014. Additional dif-
ferences are summarized below for each discipline.

Finance: 2004 jobs mention actuarial science more; 2014
jobs mention risk management and assessment, “equity”,
“trade”; “client” and “interaction” more. Additionally, 2014
jobs mention concepts related to data analysis (e.g., Mi-
crosoft Excel and VBA).

Health Studies: 2014 jobs include more research related
terms: “research”;, “summary”, “data”, “review”, “cancer”.
2004 jobs have more mentions of “recreation”, “kinesiology”,
“outdoor”, “therapy” and “teach”. In particular, “cancer” ap-
pears in 6% more job postings in 2014 than in 2004.

Arts: more 2014 jobs mention market analysis and media-

related terms: “media”, “project”, “management”, “Power-

Point”, “client” and “relationship”. 2004 jobs mention more
P13 SRS

writing-related terms such as “history”, “newsletter”, “proof-
read”, “French” and HTML.

Biology: 2014 job postings include more research and
project management positions, and mention computing
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skills and clinic more often. 2004 job postings mention lab-

oratory terms including “technique”, “microbiology”, “sam-

”

ple”, “gel”, “biochemistry”, “microbe”, HPLC (High Perfor-
mance Liquid Chromatography blood test), “bacteria”.

Environmental Studies: 2014 jobs mention project man-
agement, clients, research and computing skills more often.
2004 jobs mention “educate”, “air”, “waste”, “treatment”, “re-
cycle” and ground water. It is interesting to note that “sus-
tain” (sustainability) is mentioned 7% more often in 2014
than in 2004.

Chemical Engineering: 2014 jobs mention project man-
agement terms (e.g., “manage”, “report”, “project”, “main-
tain”), “safety”, “energy”, “oil”, “gas”, “petroleum” and “sand”
more often than 2004 jobs. On the other hand, 2004 jobs
mention more computing skills and laboratory-specific terms

(“lab”, “technician”, “sample”, “treatment”).

Civil Engineering: 2014 jobs mention more software
(“software” and “AutoCAD” are mentioned 21% and 8%
more often, respectively, in 2014 than in 2004). 2004 jobs
mention “cost” and “expense” more often than 2014 jobs. It
is interesting to note that “safety” is mentioned 13% more
often in 2014 than in 2004.

Electrical Engineering: 2014 jobs mention “passion” and
computing skills related to web development, core program-
ming languages and mobile development. 2004 jobs mention
more “manufacturing”, “graphic”, “multimedia”, “processor”,
“hardware”, “VHDL” (a hardware description language) and

“Unix”.

Mechanical Engineering: 2014 jobs mention research
(suggested by “lab”, ‘“research”, “simulate”, “electron”),
client-oriented development (“client”, “customize”) and com-
puting terms (Python, Java, “mobile”). 2004 jobs are more
likely to mention mechanical engineering terms: “blueprint”,
“draw”, “cost”, “weld”, “hydraulics”, “gear”. It is interesting
to note that “quality” is mentioned 9% more in 2014 than
in 2004. While both AutoCAD and SolidWorks are CAD
software, SolidWorks is mentioned 11% more in 2014 while
AutoCAD is mentioned 5% more in 2004.

Next, we compare the differences between tokens in junior
and senior jobs in each discipline. Overall, more senior
jobs across all disciplines mention project management or
deal with advanced concepts of the field (either through ap-
plications or research). Junior jobs appear to have more
clerical work, computing-related responsibilities or mention
less advanced concepts of the discipline (including testing,
field work and lab work). We provide additional discipline-
specific details below.

Finance: Senior jobs require more technical knowledge of
the field (“audit”, “invest”, “risk” “management”). Junior
jobs have a more clerical (“document”, “arrange”, “English”)
and computing (HTML, Java, databases) focus. Senior
jobs are more likely to mention “commitment”, “dynamism”,
“client” and “interaction”. Additionally, senior jobs in 2004
mention more mathematical and statistical terms than ju-
nior jobs in 2004.

Health Studies: Senior jobs mention more research. Ju-
nior jobs mention more field work.

Arts: Senior jobs mention more project management (sug-
gested by “manage”, “PowerPoint”, “client”, “workload”,
“process”, “improvement”). Junior jobs mention more cler-
ical work, “English”, “Web”, “research” and “customer ser-
vice”. Additionally, senior jobs in 2004 appear to include
more business analyst and editor roles than junior jobs in

2004.

Biology: Senior jobs mention more “research”, “hospital”
and technical terms including “genetics”, “therapy”, “can-
cer”, “cardiovascular”, “nanomedicine”, “biomaterial” and “in
vitro”. Junior jobs are more likely to mention “office”, “as-

sistant”; “support” and “campaign”.

Environmental Studies: Senior job titles indicate more
planner and analyst positions with more project manage-
ment, policy-making and GIS terms mentioned in the de-
scriptions. Junior job titles indicate more lab technician,
inspector, and surveyor positions with more “lab”, “survey”,
“test” and “outdoor” mentioned in the descriptions. 2004
senior jobs additionally mention environmental concepts in-
VN3 7« ”

cluding “ground”, “water”, “remedy”, “contaminate”, “river”,
“hydrology” and “hydrogeology”.

Chemical Engineering: Senior jobs mention a more in-
dustrial working environment with more mentions of “en-
ergy”, “product”, “design”, “cost”, “process”, “improvement”
and “optimization”. Junior jobs mention laboratory-specific
terms (“research”; “sample”, “record”) more often. In 2004,

senior jobs mentioned more chemical manufacturing terms.

Civil Engineering: Senior jobs mention more “modelling”,
“design”, “client”, “interaction” and “software”. Junior jobs
mention more “inspection”, “field”; “survey”, data recording
and clerical work. 2014 senior jobs have more mentions of

project management.

Electrical Engineering: Senior jobs mention more electri-
cal concepts (“power”, “circuit”, “embedded”, “distributed”,
PCB (Printed Circuit Board), “sensor”, “chip”, “schematic”).
Junior jobs mention more quality assurance and basic com-
puting terms (“web”, “program”) as well as more clerical
work. In addition, junior jobs in 2004 contain system ad-
ministrator positions and senior jobs in 2004 mention more
programming languages (C++ and C).

Mechanical Engineering: Senior jobs are more likely
to mention project management, designing and imple-
mentation.  Junior jobs have more clerical (e.g., “up-
date”, “arrange”, “email”, “written”), computing (marked by
“database”, “Web”, SQL, HTML, Java) and field-work, and
requirement collection terms (“client”, “custom”, “meet”).
Junior jobs in 2004 do not mention client interaction; in-

stead they mention testing.

4.4.3 Clustering Analysis

Finally, we apply our clustering methodology to each disci-
pline, both for 2014 and 2004. Our clustering results provide
additional support for the findings in Section[£:4-1]and[£4:2]
Additionally, the main benefit of clustering is that it reveals
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the different types of available jobs in each discipline. We
discuss these findings below.

Finance: In 2014, the largest clusters were: several clus-
ters mentioning finance-specific skills such as “trade”, “eq-
uity”, “tax”; “reconciliation”, “pension”, asset valuation, risk
management, “forecast”, “causality” and “insurance” (63%);
financial documentation (15%); and Web software develop-
ment (10%). The jobs clustered under finance-specific skills
were dominated by senior students, with the clerical (docu-
mentation) and IT (web development) clusters dominated by
junior students. This result aligns with our analysis of sig-
nificant differences from the previous section. Furthermore,
in 2004, the largest clusters relate to financial analysis and
documentation (51%), actuarial work including “valuation”
and “pension” (18%), “tax” and “audit” (14%), and “causal-
ity” and “insurance” (5%). Thus, the 2004 clusters focus
more on documentation and appear to describe a narrower
range of jobs. All clusters except the last one mentioned
have an equal split of junior and senior jobs.

Health Studies: The largest clusters in 2014 are related
to organizing community events (21%), recreation camps for
adults and children (14%) and therapy (13%), and are dom-
inated by junior jobs. Smaller clusters dominated by se-
nior jobs are related to research, cancer patient care and
advanced aspects of health studies, including biomechanics,
anatomy and statistics. The 10 clusters in 2004 are similar
but exhibit equal proportions of junior and senior jobs in
recreation, leisure and patient care.

Arts: The largest job clusters in 2014 include writing online
content (24%), organizing events and providing customer
service (22%), and writing, proofreading and summarizing
research material (13%). These clusters have an almost
even split of junior and senior jobs. Other clusters include
project management (indicated by “stakeholder”, “Power-
Point”, “present”), market analysis (“campaign”, “blog”,
“promote”), content writing (“Drupal”, WCMS, standing for
Web Content Management System), library liaisons and
teaching (adult education, names of courses), which are
dominated by senior students. Additionally, 52% of the jobs
in 2004 fall in one cluster characterized by preparing En-
glish material for education and research on various topics
including policy and politics. Other clusters include publish-
ing newsletters and articles (with “graphics”) (12%), office
assistant positions (indicated by words such as “multitask”,
“file”, “compile”, “photocopy” and “fax”) (8%), teaching and
business analysis. Most of the clusters have an almost even
split between junior and senior jobs. It appears that the
Internet and social media have created new Arts jobs.

Biology: Our clustering results identify jobs in various
fields of this discipline (microbiology, molecular biology, ge-
netics, biochemistry), using various techniques (chromatog-
raphy, electrophoresis).

Environmental Studies: The largest clusters in 2014
include project management (31%), education/research
(25%), survey (18%), urban planning (13%) and advanced
topics including GIS, cartography and geospatial analysis.
(13%). On the other hand, half the jobs in 2004 mention
educating people (largest cluster). While 8% of the jobs are

related to advanced concepts, the other three clusters in-
volve urban planning (20%), hydrogeology (14%) and waste
water treatment (12%).

Chemical Engineering: Clustering 2014 Chemical jobs
reveals additional insight: there is a cluster of jobs related
to mechanical aspects of chemical plants, including the term
“equipment”. Additionally, a cluster with “nanotechnology”,
“lab”, “material” and “physics” includes 10% of 2014 jobs.
While 8% of the jobs are related to energy sources (includ-
ing “oil”, “gas”, “petroleum”, “sand” and “biofuel”), 5% of the
jobs revolve around “emission”; “environment”, “pollution”,
“regulation” and greenhouse gases. Similar to 2014, 2004
clustering also contains clusters related to the mechanics of
chemical plants, process improvement and research. It is in-
teresting to note the differences in the field of application in
both the years. While 2014 concentrates on nanotechnology,
energy and emissions, 2004 deals with pharmaceuticals and
waste water treatment.

Civil Engineering: Consistent with the previous section,
junior students dominate the clusters including on-site field
work (data collection and inspection), and senior students
dominate the design clusters.

Electrical Engineering: The types of jobs in 2014 include
System development (18%), web development (14%), elec-
trical drawing (12%), PCB and circuit design (12%), sys-
tem administration (9%), quality assurance (9%), simula-
tion/research (8%), power (8%), embedded systems (8%)
and research on advanced topics including transmitters, ef-
fect on climate, power grids, etc. (2%). In line with the
findings of the previous section, there is a higher propor-
tion of junior jobs in computing and system administra-
tion, and a higher proportion of senior jobs in core elec-
trical clusters including circuit design and embedded sys-
tems. The main types of jobs in 2004 are related to power
systems (26%), IT (19%), project management (18%), cir-
cuit design (15%), multimedia/graphics (6%), and transmis-
sion/telecommunication (4%).

Mechanical Engineering: Three-quarters of both 2004
and 2014 Mechanical Engineering jobs fall in the mechanical
drawing cluster. While the other quarter of 2004 jobs men-
tion plant-related terms including “assembly”, “weld” and
“motor”, the other quarter of 2014 jobs is related to comput-
ing (“hardware”, “automate”, C++, Java, C, “web”, “code”).
Clustering 2014 jobs further reveals a 60-20-20 split among
mechanical drawing, embedded systems and web develop-
ment jobs.

To summarize, our clustering methodology identi-
fies the types of available jobs in various disciplines.
Through frequent term analysis, we found that soft
skills and basic computing skills appear to be impor-
tant in all disciplines in the 2014 job dataset.

S. DISCUSSION AND CONCLUSIONS

In this paper, we presented a text mining methodology to
extract, compare and cluster important terms from freetext
job descriptions. Our method identifies required skills as
well as working environment and company culture descrip-
tors. To demonstrate the utility of our methodology, we
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analyzed a dataset containing nearly 30,000 undergraduate
co-operative job postings from two years: 2004 and 2014.
Our main findings are as follows.

e As expected in an undergraduate co-op marketplace,
there are many assistant and junior positions, but less
so in 2014 than in 2004.

e Basic computing skills are needed in almost all disci-
plines and at all levels. In other words, many non-IT
disciplines appear to be trending towards IT.

e Soft skills are mentioned frequently by job postings
from all disciplines, and more so in 2014 than in 2004.
For example, over all disciplines, “team” was men-
tioned 20% more often in 2014 than in 2004. (in 71%
vs. 51% of all job postings). These findings agree with
those reported in |3} 8,/15]. Besides teamwork, commu-
nication and leadership were frequently mentioned in
job postings across all disciplines, with I'T postings ad-
ditionally mentioning mindset-related terms (passion
and love for the work), Finance jobs mentioning inter-
personal relationships and Health Studies jobs recruit-
ing active students.

e Regardless of discipline, lower-year positions were and
are more clerical and/or involve more basic comput-
ing. Upper year positions tend to mention advanced
concepts and solution methods.

e We identified several trends over time by compar-
ing 2004 jobs with 2014 jobs. For example, IT jobs
now emphasize mobile and cloud computing, Arts jobs
involve social media and Chemical Engineering jobs
mention sustainable energy.

e Job postings from different disciplines suggest different
working environments: plants in Chemical and Me-
chanical Engineering, labs in Biology, and casual, fun
and collaborative environments in IT.

We emphasize that our results should be interpreted care-
fully due to the following factors.

e Diversity in size and age of companies, e.g., the I'T dis-
cipline has many modern companies that emphasize a
fun work culture, while other disciplines such as Fi-
nance have more traditional companies which might
emphasize client relationships.

e Incorrect job descriptions which may not reflect the
true nature of the job; e.g., employers may write or
modify the job descriptions to suit the company’s pub-
lic image.

Nevertheless, we believe that our findings are of interest to
students, employers and the institution. We provide several
examples of actionable insights below.

e We can provide students with a better understanding
of co-op opportunities in various disciplines and there-
fore help them select the right academic program and
career.

e In particular, we suggest that all students, regardless of
discipline, acquire basic computer programming skills,
which should help them secure co-op positions in their
junior years.

e The institution can use our findings to manage the
expectations of junior students. As we showed, it may
take until senior years to obtain a co-op position that
fully utilizes advanced discipline-specific skills.

e The institution may use frequently appearing job at-
tributes and the clustering of jobs in various disciplines
to produce more effective promotional material for its
co-op programs and to help attract strong students.

With the help of our findings, the institution can make
an informed decision about how to change academic
curricula to align with employers’ needs. For exam-
ple, as all disciplines seem to emphasize teamwork,
the institution can incorporate more team exercises in
the curriculum. Hackathons and other competitions
could be organized to foster passion and other mindset-
related skills for IT students, while mock client meet-
ings could be arranged for Finance students so that
they could hone their interpersonal skills. New tools
and methods may be introduced in courses when the
corresponding terms begin to appear in job descrip-
tions.

e Employers may examine our findings to understand
which skills are in high demand and to understand the
extent of competition in the co-op market.

e Our lists of frequent attributes may be used to re-
design the way employers submit job postings. For
instance, separate fields (outside the job description)
may be added for required skills and company culture
descriptions, with drop-down lists populated with fre-
quent terms obtained through our methodology. Ad-
ditionally, our clustering methodology can be used to
segment the job descriptions to make it easier for stu-
dents to find jobs they are interested in.

Naturally, there is more data-driven work that can be done.
The goal of a successful co-op system is to match the right
student with the right employer. Thus, our long-term re-
search objective is to minimize the gap between employers’
needs and students’ talents. In this paper, we focused on job
descriptions, which provide an indication of what co-op em-
ployers are looking for and what working environments they
offer. In future work, we will characterize what students
have to offer by mining resumes. Furthermore, we plan to
study the gap between what employers want and what is be-
ing taught in schools (e.g., by comparing job postings with
course descriptions). Another interesting research direction
is to determine if students are likely to obtain full-time jobs
at one of their co-op employers after graduating. Finally,
we are interested in comparing our job postings with those
from other institutions worldwide. For example, the knowl-
edge of foreign languages did not appear to be important in
our dataset but it may be important in other countries.
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ABSTRACT

It is well known that post-secondary science and engineer-
ing programs attract fewer female students. In this pa-
per, we analyze gender differences through text mining of
over 30,000 applications to the engineering faculty of a
large North American university. We use syntactic and se-
mantic analysis methods to highlight differences in motiva-
tion, interests and background. Our analysis leads to three
main findings. First, female applicants demonstrate a wider
breadth of experience, whereas male applicants put a greater
emphasis on technical depth. Second, more female appli-
cants demonstrate a greater desire to serve society. Third,
female applicants are more likely to mention personal influ-
ences for studying engineering.

Keywords
Gender differences, engineering, admissions, text mining,
clustering.

1. INTRODUCTION

The failure of science and engineering programs to attract
equal numbers of women and men is well-documented; only
23% of women with high scores in mathematics pursue Sci-
ence, Technology, Engineering and Mathematics (STEM)
degrees as compared to 45% of men with the same scores
[9]. As a result, there has been a great deal of research on
understanding why this is the case; see, e.g., 1} [3} |4} [13] 18]
19| [20]. The major findings of prior work are that women
are less likely to pursue STEM degrees because they do not
see how this leads to societal improvement, and that women
are more often led to study engineering because of influences
from family and friends. Prior work has also found that the
gender gap in STEM fields is not due to a difference in tech-
nical ability.

One weakness of existing work is that it is based on small
datasets collected through surveys and longitudinal studies.
In this paper, we present a large-scale text mining study of

this topic. Our analysis is enabled by a unique dataset of
over 30,000 undergraduate applications to the engineering
faculty of a large North American university. Applicants
are required to describe why they are interested in study-
ing engineering, and provide other relevant information such
as reading interests, extracurricular activities and program-
ming experience. Our goal is to determine whether female
applicants identify different reasons for applying to an engi-
neering program, and whether female applicants have differ-
ent technical and extracurricular backgrounds.

To answer these questions, we use text mining to extract
the reasons why students apply to engineering programs.
As in other text mining applications, challenges arise due
to the ambiguity of natural language. To overcome these
challenges, we rely on word embeddings and clustering to
partition the text into semantically meaningful groups. We
also analyze gender differences in programming languages
and extracurricular activities through classification models
and word frequency analyses. To the best of our knowledge,
there is no prior work on large-scale text mining to obtain
insights about students’ motivation and interests.

The main findings of this paper are that women differentiate
themselves through breadth of experience and men differen-
tiate themselves through technical depth; women more often
display a desire to serve society; and that women are more
likely to mention interpersonal relationships when discussing
their engineering goals.

The remainder of this paper is organized as follows. Sec-
tion [2| summarizes related work; Section [3| discusses our
dataset and methodology; Section [ presents our results;
Section [5]discusses the implications of our findings; and Sec-
tion [6] concludes the paper with directions for future work.

2. RELATED WORK

There are three areas of work on gender differences in STEM.
First are qualitative studies on small populations of students
through interviews and surveys. Second are statistical stud-
ies that use census data or other summary data. Third, there
are data mining studies on student performance. These
works span students who are in high school, already en-
rolled in STEM programs, and who are working in a STEM
profession.

First, we discuss qualitative survey-based studies.
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Diekman et al. [3]| studied 360 students from STEM and
non-STEM fields consisting of 57.5% women. Each partici-
pant was asked about their mathematics and science expe-
rience and their perception of the degree to which different
careers fulfill their personal goals. Participants’ answers re-
flected that STEM careers impede communal-goal endorse-
ment, which refers to how much a field enables achieving
the goal of helping people and society. It was found that
gender can predict communal-goal endorsement, and that
communal-goal endorsement can negatively predict interest
in STEM and positively predict interest in female-dominated
programs with higher accuracy than other metrics such as
gender or self-efficacy. Eccles [4] found similar results on
a larger, more comprehensive dataset. They presented a
longitudinal study of 1500 participants from south eastern
Michigan from 6th grade to adulthood. They found that the
main source of gender differences in entry to STEM careers
is not gender differences in mathematical ability, but differ-
ences in inclinations towards society-oriented jobs. Women
who aspire to math-related or engineering careers place a
lower value on society-oriented job characteristics than their
female colleagues who did not aspire to STEM careers.

Matusovich et al. [13] examined gender differences in val-
ues, but only within engineering. The study was conducted
on 6 women and 5 men who majored in engineering. Each
student was interviewed once a year throughout their under-
graduate degree, and asked how his or her values affect their
decision to earn an engineering degree. Values were classi-
fied under 4 groups: Attainment (ability to see oneself as an
engineer), Cost (time and effort involved in their studies),
Interest (enjoyment of understanding how math and science
can be applied to every day life), and Utility (potential for
future earnings). It was found that women were less likely
to see themselves as engineers but continued to pursue an
engineering degree due to the other values.

More reasons to pursue engineering were observed by
Smith [19]. Smith interviewed 17 women who were studying
engineering at four different colleges in the United States.
Smith observed that participants were influenced to study
engineering by family or friends. These influences played
a pivotal role in helping the women build self confidence
in their mathematical and science ability. They found an
expression of “love” towards mathematics in many cases, de-
spite the fact that these courses were also considered diffi-
cult. An interest in physics was found to be instrumental in
their decision to study engineering. Women chose engineer-
ing because it allowed them to utilize the concepts covered
in physics without having to major in physics. However,
gender differences were not considered.

In terms of quantitative studies based on summary statis-
tics, Hango [9] found that while mathematical ability plays
a role, it does not explain gender differences in STEM ca-
reer choices. Women with high mathematical ability are
less likely to enter STEM fields than even men with a lower
mathematical ability. He also supported the findings of Ec-
cles suggesting that the gender gap in STEM programs is
due to other factors.

There is prior work on gender differences in STEM using
data mining techniques 16} |5, (10} [12]. However, these find-

ings focus on student performance, whereas our work focuses
on students’ motivations for studying STEM, and their non-
academic experiences and backgrounds.

Finally, there exists work on gender differences in comput-
ing, but it focuses on attitudes toward computing and pro-
ficiency with basic tasks |20} |1, [18]. Instead, we focus on
reported programming language knowledge.

To the best of our knowledge, our work is the first one that
conducts a data driven analysis of the reasons why students
want to pursue engineering, and calculates the gender dif-
ferences in these reasons. We also study past employment
experiences, and programming knowledge in an effort to cap-
ture a more holistic view of the personalities of women and
men who apply to engineering. In our conclusions, we verify
some of the results of previous studies, and add to others.

3. DATA AND METHODOLOGY
3.1 Data

Our dataset comes from the engineering faculty of a large
North American university. It contains all applications —
both accepted and rejected — to the 14 available engineering
programs from 2013 to 2016 inclusive. Table [I] shows the
number of applications and the gender distribution of the
applicants to each program, sorted by percentage of female
students. The dataset includes gender, first choice program,
and short free text responses to the following fields:

1. Engineering interests and goals: explain why you are
interested in engineering and the specific program to
which you applied.

2. Reading interests: discuss a book or an article you
enjoyed or that has had an impact on you (preferably
something that was not part of a course at school).

3. List any extracurricular activities or areas of signifi-
cant interest.

4. List any jobs you held throughout high school.

5. Only mandatory for applicants to Software Engineer-
ing: list any programming experience you have.

6. Additional information: tell us anything else about
yourself that you would like us to know when we review
your application.

We report results for three groups of applicants: Biomedical
and Environmental Engineering (BEE), Software Engineer-
ing (SE) and all other programs (OTHER). We initially an-
alyzed applications to each program separately but observed
applicants to programs within OTHER to be similar in the
trends they display. Notably, the gender split in BEE is eq-
uitable, unlike other programs which are male-dominated.
Furthermore, SE has unique application requirements (pro-
gramming knowledge) and requires additional analysis.
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Table 1: Gender breakdown by program

Table 2: Families of programming languages

Program Applicants % Women % Men Family Constituent Programming Languages
Environmental 1021 53% 47% Java java, bluej, jython, android
Biomedical 2015 52% 48% C++ c++, beta
Chemical 3612 38% 62% Python python
System Design 957 38% 62% HTML/CSS html, html5, css, css3
Management 1040 36% 64% C ) C, objective-C, robotc .
Civil 3375 28% 72% Jave'LScrlpt javascript, jscript, jquery, angularjs
Geological 361 25% 75% Turing turing, touring
Nanotechnology 1670 24% 76% C# c#f, visual cf
Electrical 3782 17% 83% Php php
Computer 3931 16% 84% SQL sql, pl/sql ) .
Software 3635 14% 36% Other .net, ada, alice, applescript, bash, etc
Mechanical 5473 12% 38%
Mechatronics 2886 12% 38%
Total 33758 23% 7% 3.2.2  Analysis of Programming Experience

3.2 Methodology

We use syntactic and semantic methods to analyze the free
text responses. Syntactic methods identify words mentioned
by more men or women, or words that can predict gender.
Additionally, we apply semantic methods to “Engineering
Interests and Goals” to capture context and extract the rea-
sons why men and women want to study engineering.

3.2.1 Syntactic Analysis

For each of the six free text fields, we first perform standard
pre-processing: we remove stop words, tokenize the text,
and stem the tokens using the NLTK snowball stemmelﬂ
We then perform two syntactic analyses on each field:

Document Frequencies: we identify words used at least
once by a larger fraction of men or women (where each re-
sponse is considered a document). We only report statis-
tically significant differences with a P-value of 0.05 using a
proportion test [6].

Gender Prediction: we build classifiers to predict gen-
der based on the words or contiguous sequences of words
(bigrams and trigrams) appearing in a free text response.
Following previous work on text classification, we use logis-
tic regression |8] where the dependent variable is gender, and
the explanatory variables correspond to the possible words
(or word bigrams/trigrams), and their values correspond to
their TF-IDF scores 15, 21]. To calculate a TF-IDF score
for a given word and a given response, we divide the num-
ber of times the word appears in the response by the Inverse
Document Frequency - the fraction of responses in the entire
dataset containing this word. TF-IDF is a useful measure
because it balances the uniqueness of a term in the corpus
and the importance of the term to the specific document.
For each free text field except programming experience, we
report the F-measure, which is the weighted harmonic mean
of precision and recall |2, and accuracy, both calculated us-
ing 10-fold cross validation. We use oversampling for SE
and OTHER to control for gender imbalance; otherwise, a
classifier that always predicts gender as “male” would have
a high accuracy on any male-dominated dataset.

"http://www.nltk.org/_modules/nltk/stem/snowball.html

In the “Programming Experience” field, SE applicants are
asked to list their programming experience. The structure
of this question elicits not only specific programming lan-
guages, but also encourages applicants to share details about
their programming experience. Thus, in addition to the doc-
ument frequency analysis mentioned earlier, we perform the
following detailed analyses:

e Programming Language analysis: we calculate the
number of responses that mention a given program-
ming language. We start with a list of known lan-
guages from Wikipedi;fl We then add common mis-
spellings of these languages, and we group them into
families in consultation with a domain expert. Table[2]
shows the language families whose frequencies we will
report.

e Programming Concept analysis: we compile a list of
computing concepts, a sample of which is shown in
Table |3} group them into categories, and calculate the
number of responses that mention a given concept.

e Learning Method analysis: we compile a list of on-
line programming courses, and common variations of
“high school”, “self taught”, “higher education”, and
“employment”. We then categorize these terms accord-
ing to how an applicant learned programming: “on-
line”, “high school”, “self taught”, “higher education”,
“work”, and “other”. Finally, we calculate the number

of responses that mentioned each learning method.

e Experience analysis: we extract the amount of expe-
rience reported by an applicant by searching for the
words “hour”; “day”, “month”, “year”, as well as com-
mon abbreviations and misspellings of these words.
We use the token immediately preceding these words
to determine the length of time. We convert all of the

times into months.

3.2.3 Semantic Analysis of Engineering Interests

Using the responses to “Engineering Interests and Goals”,
we want to identify the reasons why students apply to en-
gineering programs. However, reasons cannot be inferred

*https://en.wikipedia.org/wiki/List_of_programming languages
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Table 3: Sample of programming concepts

Concept Category Constituent Concepts

Basic array, list, loop, if-statement

Data Structures stack, queue, linked list

Sorting merge sort, bubble sort, quick sort
Searching linear, binary, breadth first searches
(0]0) object, class, abstraction, encapsulation
Data Science machine learning, NLP

Other storage, memory management

Table 4: Nine questions used with the QA API

Question No. Question Variant

Table 5: Sentences extracted from a particular response
using all 9 question variants

Question No. Answer produced by the QA API

1 future entrepreneurship ventures

2 designing & building complicated solutions
3 future entrepreneurship ventures

4 intellectual curiosity and satisfaction

is core to my personality

5 i think i fit in well in the tight culture of
the engineering class

6 intellectual curiosity and satisfaction
is core to my personality

Why are you interested in Engineering?

What inspired you to study Engineering?

What do you find inspiring about Engineering?
What are the reasons you like Engineering?

Why do you feel the need to pursue Engineering?
Why are you passionate about Engineering?
Why does Engineering interest you?

Why do you want to study Engineering?

Why do you like Engineering?

C OO W -

simply by counting occurrences of certain keywords; for ex-
ample, family influence may be expressed by using words
such as “father”, “mother”, “uncle”, or simply, “family”. Fur-
thermore, an applicant may mention things other than the
exact reason as to why they are interested in engineering
in their response. Our semantic approach deals with these
issues through the use of Question Answering to isolate top-
ics being mentioned that could be considered indicative of
reasons, followed by Clustering using Word Embeddings to
analyze these. Figure [I| shows the steps in our semantic
analysis, and they are explained in detail below.

1. Question Answering (QA): Here, we extract sen-
tences that are most likely to contain the topics indicative
of the applicants’ underlying reasons for applying to engi-
neering. We use a state of the art QA network [17] which
is available as an open source APIE Given a question and a
text document, this QA API extracts a sentence that may
answer the question. However, we discovered that while
asking the question that directly appeared on the entrance
application - why are you interested in engineering - yielded
some relevant sentences, there were additional relevant sen-
tences that were not identified. To address this problem, we
consulted with domain experts at the institution and for-
mulated additional variants of this question. Depending on
the applicant, not every variant identified a unique sentence.
Overall, we observed that the number of unique sentences
extracted per applicant plateaued at nine question variants.
Table@lists the nine variants we use and Tablegives an ex-
ample of the sentences extracted from a particular response
using each question.

2. Stop Word Removal: Next, we remove stop words
from the sentences extracted in the previous step because
these do not contain any meaningful information about the
underlying reasons. Similarly, we remove words excessively

3https://github.com/allenai/bi-att-flow

8 intellectual curiosity and satisfaction
is core to my personality

know people much closer

NeB I

it’s the best program available

used by both genders such as “engineering” and the name
of the university. This step happens after QA because QA
requires the complete text, stop words included, as input.

3. Sentence Vector Computation: At this point, each
response has produced up to nine relevant sentences. We
use word embeddings to capture semantic proximity between
sentences. Specifically, we use the word2vec model [14],
trained on the Google news corpuq’} to convert each word
into a 300-dimensional vector that encodes the underlying
semantics. We then use the average of all word vectors in a
sentence as its sentence vector. If two sentence vectors are
close, the sentences are also semantically similar (7], [11].

4. Clustering of Sentence Vectors: Next, we cluster
the sentence vectors received from the previous step using
K-Means clustering with Euclidean distance as the similar-
ity metric and K = 200, where K is the number of clus-
ters (the rationale behind this choice of K will be discussed
shortly). The clusters converge around similar topics. For
example, sentences containing words related to family such
as “brother”; “father”, or “sister” have similar word vectors
and are more likely to be assigned to the same cluster. Note
that this would not be the case had we clustered the sen-
tences themselves according to their syntactic similarity.

5. Cluster Representative Extraction: After comput-
ing clusters of sentence vectors, we extract representative
words from each cluster to identify the topic of that clus-
ter. First, we map sentence vectors back to the original sen-
tences, which creates 200 sets of sentences, one set for each
cluster. We then tokenize and stem the text in each set, as
described in Section [B.2.1] The word2vec model consumes
unstemmed words, compelling us to postpone tokenization
and stemming until this step. The trigrams in each set are
ranked using their TF-IDF scores calculated considering all
200 sets as the corpus. Finally, we represent each cluster
with a list of 10 top ranking trigrams, an example of which
is shown in Table [6l

“https://code.google.com/archive/p/word2vec/
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Figure 1: Semantic analysis methodology

Table 6: An example of ten trigrams representing a cluster

j=s}
o
=
~

Trigram

solv problem solv
problem solv problem
enjoy problem solv
problem solv enjoy
enjoy solv problem
love solv problem
problem solv love
love problem solv
problem problem solv
solv problem problem

QOO Uk WN

—_

Table 7: Examples of a mixed cluster using K = 50 and its
pure equivalent using K = 200

Mixed Cluster (50 Clusters) Pure Cluster (200 Clusters)

kid work day kid work day
apart tri togeth young age father
love thing apart visit construct site
countless hour spent watch father work
use everi day older brother mechan
pay close attent dad electr took
decid high school work day dad
work day saw like help father
day day basi expos young age
year high school uncl civil engin

Choice of K: In Step 4, we experimented with values of K
ranging from 50 to 200. When choosing a small K and pro-
ceeding to Step 5 with fewer clusters, many clusters were
represented by trigrams that were not semantically similar
enough to warrant being in the same cluster, and some un-
common trigrams were overpowered by extremely common
ones. Thus, some nuanced topics were lost as they could
not form a cluster of their own. Larger values of K resulted
in the splitting out of semantically similar topics. These re-
sulted in pure but redundant clusters, i.e., several clusters
representing the same topic. For instance, Table [7] shows
a cluster of mixed topics on the left when K is 50, and a
rather pure cluster on the right when K is 200. A bigger K
made it possible for topics like “kid work day” to be grouped

with similar semantic contexts like “watch father work”. The
topics on the right consistently speak of the influence of a
family member, indicative of family influence as a reason
for engineering, whereas no single reason can be deduced
from the cluster on the left. The first K value that pro-
duced adequately pure clusters was 200. Thus, the decision
was made to stop testing larger values and creating further
unnecessary redundancy. To eliminate the unnecessary re-
dundancies at K = 200, the clusters were merged in Step
6.

6. Cluster Merging: At this point we have 200 clusters of
sentences, where each cluster is represented by the 10 high-
est ranking trigrams. To make the clusters interpretable
and to group them under more general topics, we manually
merge similar clusters based on their 10-trigram representa-
tions to produce ten final clusters. This process of merging
follows the Card-sorting approach. Card-sorting has been
widely used to systematically derive taxonomies from data,
to reach a higher level of abstraction, and identify common
themes [22]. For instance, it can be used to sort responses
to an open-ended question into bins to deduce themes over
the responses. We perform card-sorting on the representa-
tive trigrams, then we brand each of the ten final themes
with human interpretable labels and consider these our final
topics. In this process, a number of small clusters whose
representatives were vague were disregarded, but even then,
99.5% of applicants were labelled with at least one topic.
Table shows two examples of representatives of vague clus-
ters. Since the QA in Step 1 used questions probing the
reasons why the applicant was applying to engineering, our
topics can be considered indicative of the same.

Table [g] shows the final set of topics along with sample tri-
gram representations of clusters that were classified under
each topic. Technical Interests refers to characteristics in-
herent to engineering along with topics related to specific
engineering disciplines. For instance, the trigram “water
treatment plant” in Table [J] is part of Technical Interests
while being specifically related to Environmental Engineer-
ing.

All the sentences classified under a specific topic in Table
[0 are tracked back to the applicants who mentioned them.
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Table 8: Examples of discarded vague clusters

Example #1 Example #2

appli program appli
appli chemic program
program appli appli
program program appli
program appli program
program appli electr
appli mechan program
mechan program appli
appli electr program
program appli chemic

pursu decid pursu
experi inspir pursu
pursu motiv pursu
pursu passion believ
pursu wish pursu
encourag pursu pursu
hope continu pursu
encourag pursu believ
passion inspir pursu
desir pursu educ

The statistics presented in the next section are based on
the number of applicants who mention a given topic, and
hence indicate the same underlying reason for their interest
in engineering

4. RESULTS

We now describe our results, treating applicants to BEE,
SE and OTHER separately, as mentioned in Section [3-1}
Section presents syntactic (word frequencies and logistic
regression) and semantic (question answering & clustering)
results for “Engineering Interests and Goals”. Section [LF|
describes the detailed analyses of programming experience
(only for applicants to SE). The remaining sections discuss
the results of frequency analysis and logistic regression for
the remaining fields: job titles, reading interests, extracur-
ricular activities, and additional information.

4.1 Engineering Interests and Goals
4.1.1 Syntactic Analysis

Document Frequencies: Overall, there are more terms
that are used predominantly by women, indicating that
women use a wider variety of terms. We see more women
using non technical terms to express themselves, and men
using more technical terms.

In BEE, more men mention “mechanical” (11.5% of men vs.
8.2% of women), and “compute” (8.5% of men vs. 5.3% of
women. More women mention “health” (16.4% of women vs.
10.6% of men), “improve” (23.6% of women vs. 18% of men),
“love” (24.8% of women vs. 20.5% of men), and “research”
(20.6% of women vs. 16.5% of men).

In SE, more men mention “system” (14.2% of men vs. 9.6%
of women), “problem” (25.5% of men vs. 20.9% of women),
“game” (19.1% of men vs. 14.9% of women), and “goal”
(25.7% of men vs. 21.5% of women). More women mention
“science” (49.9% of women vs. 43.0% of men), “research”
(11.0% of women vs. 6.9% of men), “challenge” (18.6% of
women vs. 14.7% of men), and “people” (20% of women vs.
16.3% of men).

In the OTHER group of engineering programs, more men
mention “mechanical” (28.9% of men vs. 7.5% of women),
“compute” (25.8% of men vs. 17.2% of women), “robot”
(16.2% of men vs. 9.9% of women),“car” (9.9% of men vs.
4.1% of women), and “goal” (24.3% of men vs. 19.4% of
women). More women mention “chemical” (21.9% of women
vs. 10.7% of men), “science” (41% of women vs. 32.6%

Table 9: The final set of ten topics, with representative
word trigrams of the clusters classified under each topic

Reason Trigrams (stemmed)
Famil follow footstep father
amuly older brother mechan

improv peopl live
make world better
make contribut societi

Contribution to Society

attend open hous

Outreach talk student professor

creat new technolog
water treatment plant
use dismantl toy
develop medic technolog

Technical Interests

math physic chemistri

Love of Science -
S love math scienc

book watch video
robot competit team
particip extracurricular activ

Extracurriculars

leadership communic skill

Prior Accomplishments profici skill mathemat

talk physic teacher
high school student

pursu graduat studi
job opportun engin
futur career goal

High School

Professional Development

began young age

Childhood Dream dream childhood dream

Table 10: F-Measure/Accuracies for predicting gender
using Engineering Interests & Goals (in %)

Group Unigram Bigram Trigram
BEE 60/60.7 60/59.1 57/58
OTHER 72/78.8 76/80.4 80/77.3
SE 88/86 98/97.2 94/94

of men), “creative” (16.1% of women vs. 10.2% of men),
“study” (30.7% of women vs. 25.3% of men), and “love”
(24.2% of women vs. 19.4% of men).

Logistic Regression: Table [I0] shows the results for pre-
dicting gender using words from responses to “Engineering
Interests and Goals”. The predictive power of logistic re-
gression decreases with increasing gender balance within a
group, even after oversampling to compensate for the initial
gender imbalance. In other words, in programs with an even
gender split, it is more difficult to guess the gender.

4.1.2  Semantic Analysis

We classified the sentences extracted from students’ re-
sponses under one of ten topics shown in Table @ Table
[[T] shows the percentage of applicants to BEE who men-
tioned each topic. The most common topics are Technical
Interests and Love of Science. More women mention Love
of Science, which is statistically significant with a P-value
of 0.03. No other topic had a statistically significant gen-
der difference. On average, female students in this group
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Table 11: BEE applicants’ topics

Table 13: OTHER applicants’ topics

Topic %All %Women %Men P-value

Topic %All %Women %Men P-value

Family 10.9% 11.3% 10.5% 0.47

Contribution to Society 20.7% 20.5% 20.9% 0.77
Outreach 8.5% 9.3% 7.7% 0.12

Technical Interests 86.8% 86.8% 86.8% 0.97

Love of Science 32.3% 34.1% 30.4% 0.03
Extracurriculars 5.7% 5.6%  5.9% 0.69

Prior Accomplishments 6.1%  5.9%  6.3% 0.61
High School 8.8% 8.4% 9.2% 0.46

Professional Development 25.3% 25.9% 24.7% 0.47
Childhood Dream 2.5% 2.7%  22% 0.32

Family 12.3% 13.0% 12.1% 0.064

Contribution to Society14.7% 16.1% 14.3% 0.00
Outreach 8.1% 9.9% 7.6% 0.00

Technical Interests 88.4% 89.0% 88.3% 0.149

Love of Science22.7% 26.6% 21.7% 0.00
Extracurriculars 9.0% 7.8% 9.3% 0.00

Prior Accomplishments 6.6%  7.0% 6.5% 0.18
High School 10.3%  9.8% 10.5% 0.13

Professional Development 26.6% 27.5% 26.3% 0.07
Childhood Dream 3.7% 3.0% 3.9% 0.00

Table 12: SE applicants’ topics

Table 14: Female students’ topics across all groups

Topic %All %Women %Men P-value

Topic % SE % BEE % OTHER

Family 7.6% 11.0% 7.0% 0.00

Contribution to Society 12.1% 12.5% 12.0% 0.77
Outreach 8.7%  9.1%  8.6% 0.703

Technical Interests 92.6% 92.3% 92.6% 0.77

Love of Science 13.9% 16.6% 13.4% 0.05
Extracurriculars 9.2%  10.9% 9.0% 0.17

Prior Accomplishments 6.1%  7.1%  5.9% 0.30
High School 11.0% 12.9% 10.7% 0.15

Professional Development 25.0% 27.7% 24.6% 0.13
Childhood Dream 2.7%  2.8%  2.6% 0.87

Family 11.1% 11.3%  13.0%
Contribution to Society 12.5% 20.5% 16.1%
Outreach  9.1% 9.3% 9.9%

Technical Interests 92.3% 86.8% 89.0%

Love of Science 16.6% 34.1% 26.6%
Extracurriculars 10.9% 5.6% 7.8%

Prior Accomplishments  7.1% 5.9% 7.0%
High School 12.9%  8.4% 9.8%

Professional Development 27.7%  25.9% 27.5%
Childhood Dream  2.8% 2.7% 3.0%

mention 2.12 topics whereas male students mention 2.05, a
statistically insignificant difference with a P-value of 0.06.

Tableshows the percentage of applicants to SE who men-
tioned each reason. The most common reasons are Techni-
cal Interests and Professional Development. Women men-
tion Family more frequently than men, which is statisti-
cally significant with a P-value of 0.00. No other reason had
a statistically significant gender difference. On average, fe-
male students in this program mention 2.04 reasons whereas
male students mention 1.87, a statistically significant differ-
ence with a P-value of 0.00.

Table [I3] shows the percentage of applicants to OTHER en-
gineering programs who mentioned each topic. The most
common topics are Technical Interests and Professional De-
velopment. Female students mention Contribution to So-
ciety, Outreach, and Love of Science more than male
students, which is statistically significant with a P-value of
0.00. Male students mention Extracurriculars and Child-
hood Dream more than female students, which is statis-
tically significant with a P-value of 0.00. No other topic
had a statistically significant gender difference. On average,
female students in this group mention 2.1 topics whereas
male students mention 2.0 reasons, a statistically significant
difference with a P-value of 0.00.

Table [14] highlights the differences between women who ap-
plied to BEE vs. women who applied to SE vs. women who
applied to OTHER programs. The bold values show per-
centage differences from the other two groups that are sta-
tistically significant with a P-value of less than 0.05. Female
applicants to SE, BEE, and OTHER, programs differ from
each other in their mentions of Contribution to Society,

Technical Interests, Love of Science, and Extracur-
riculars with a P-value of less than 0.05. Mentions of High
School are only different in SE applicants compared to other
groups, which is statistically significant with a P-value of
less than 0.05. No other topic had a statistically significant
difference.

Tablehighlights the differences between men who applied
to BEE vs. men who applied to SE vs. men who applied to
OTHER. The bold values show percentage differences from
the other two groups that are statistically significant with a
P-value of less than 0.05. Male applicants to SE, BEE, and
OTHER programs differ from each other in their mentions
of Contribution to Society and Love of Science with a
P-value of less than 0.05. Mentions of Family and Techni-
cal Interests are only different for SE applicants compared
to applicants to other programs, which is statistically sig-
nificant with a P-value of less than 0.05. Mentions of Ex-
tracurriculars are different for BEE applicants compared
to applicants to other program groups, which is statistically
significant with a P-value of less than 0.05. No other topic
had a statistically significant difference.

4.2 Reading Interests

Document Frequencies: Overall, men tend to report
reading technical content such as research papers and women
report reading novels and writing that has a societal focus.
Words that are predominantly used by men include “arti-
cle” (17.6% of men vs. 13.4% of women), “enjoy” (29.5%
of men vs. 25.6% of women), “compute” (5.6% of men vs.
2.2% of women), and “science” (12.3% of men vs. 10.3%
of women). Words that are predominantly used by women
include “love” (20.3% of women vs. 12.6% of men), “novel”
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Table 15: Male students’ topics across all groups

Topic % SE % BEE % OTHER

Family 7.0% 10.5% 12.1%

Contribution to Society 12.0% 20.9%  14.3%
Outreach 8.6%  7.7% 7.6%

Technical Interests 92.6% 86.8% 88.3%

Love of Science 13.4% 30.4%  21.7%
Extracurriculars  9.0%  5.9% 9.3%

Prior Accomplishments 5.9%  6.3% 6.5%
High School 10.7%  9.2% 10.5%

Professional Development 24.6% 24.7% 26.3%
Childhood Dream 2.7%  2.2% 3.9%

Table 16: F-Measures/Accuracies for predicting gender
using words from Reading Interests (in %)

Group Unigram Bigram Trigram
BEE 64/63 62/60 60/54.2
OTHER 79/77.8 93/89.8 95/91.8
SE 92/88.9 96/95.6 93/91.8

(31.2% of women vs. 24.6% of men), “character” (20.3% of
women vs. 15.2% of men), “women” (6.1% of women vs.
1.1% of men), “people” (29.1% of women vs. 24.9% of men),
and “family” (10.7% of women vs. 6.8% of men).

Logistic Regression: The results for predicting gender
based on Reading Interests are shown in Table[T6] As before,
the predictive power of logistic regression decreases with in-
creasing gender balance within the group.

4.3 Extracurricular Activities

Document Frequencies: Overall, male applicants’ ex-
tracurricular activities have a technical focus, and female
applicants have a wide breadth of experiences ranging from
leadership to artistic pursuits.

In BEE, more men mention “robot” (7% of men vs. 3.6%
of women) and “coach” (7.1% of men vs. 4.8% of women).
More women mention “dance” (8.7% of women vs. 1.7% of
men), “art” (11.3% of women vs. 6.9% of men), “council”
(21.5% of women vs. 15.6% of men), and “lead” (21.1% of
women vs. 16.8% of men).

In SE, more men mention “compute” (20.9% of men vs.
13.7% of women). More women mention “art” (14.5% of
women vs. 4.8% of men), “council” (20.5% of women vs.
11.9% of men), “dance” (8.3% of women vs. 2.2% of men),
and “lead” (18.7% of women vs. 14.3% of men).

In the OTHER group of engineering programs, more men
mention “robot” (11.1% of men vs. 6.3% of women), “com-
pute” (5.8% of men vs. 2.4% of women). More women men-
tion “dance” (10.7% of women vs. 2.1% of men), “council”
(20% of women vs. 12.1% of men), “art” (11.9% of women
vs. 4.8% of men), “volunteer” (22.9% of women vs. 16.3%

of men), and “lead” (19% of women vs. 13.1% of men).

Logistic Regression: The results for predicting gender
based on Extracurricular Activities are shown in Table [[7

Table 17: F-Measures/Accuracies for predicting gender
using words from Extracurricular Activities (in %)

Group Unigram Bigram Trigram
BEE 72/72.9 69/66.6 62/59.5
OTHER 81/81.1 80/77.8 78/71.4
SE 85/83.3 85/82 94/93.4

Table 18: F-Measures/Accuracies for predicting gender
using words from Job Titles (in %)

Group Unigram Bigram Trigram
BEE 59/57.9 58/52.6 63/51
OTHER 65/61.5 64/59.1 67/61.9
SE 67/63.7 66/58.7 68/51.7

The predictive power of logistic regression decreases with
increasing gender balance within the group.

4.4 Job Titles

Document Frequencies: Across all programs, men are
more likely to mention terms that imply technical work or
manual labour, whereas women are more likely to mention
terms that imply customer service and caring professions.
Example words in job titles from male applicants include
“referee” (4.1% of men vs. 2% of women), “labor” (2.6% of
men vs. 0.5% of women), and “technician” (3.1% of men vs.
1.2% of women). Example words in job titles from female
applicants include “cashier” (12.8% of women vs. 6.8% of
men), “teacher” (6.2% of women vs. 2.7% of men), and
“assist” (17.6% of women vs. 14.3% of men).

Logistic Regression: As shown by the logistic regression
scores in Table Job Titles do not provide as much pre-
dictive power as other fields.

4.5 Programming Experience
4.5.1 Syntactic Analysis

Document Frequencies: In general, women use more non
technical terms, and men use more technical terms. Exam-
ples of terms that are more commonly used by male appli-
cants include “game” (30.8% of men vs. 22.3% of women)
and “develop” (21.5% of men vs. 14.4% of women), and
terms more commonly used by female applicants include
“mark” (39.9% of women vs. 30.6% of men) and “attend”
(4.2% of women vs. 1.4% of men). Through manual inspec-
tion, we discovered that “mark” was used in the context of
earning a certain mark in a course. “attend” was used to
indicate attendance in a programming workshop or event.

Logistic Regression: As shown in Table the words
used to describe programming experience can be used to
predict the gender of the applicant.

4.5.2 Programming Languages

Table [20]shows a comparison of specific language knowledge
between male and female applicants. All languages except
for SQL are slightly skewed toward male applicants; how-
ever, only Java, C++4, C, Turing, C# have statistically
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Table 19: F-Measures/Accuracies for predicting SE
applicants’ gender using Programming Experience (in %)

Table 21: F-Measures/Accuracies for predicting gender
using Additional Information (in %)

Group Unigram Bigram Trigram Group Unigram Bigram Trigram
SE 91/88.8 98/98 97/95.7 BEE 60/58.4 52/51.3 53/50
OTHER 78/77.3 81/77 93/89.2
SE 86/83.7 93/86.3 93/95.2

Table 20: Comparison of reported programming language
knowledge

Language % Women % Men Difference P-value

Java 58.9% 65.6% -6.7% 0.00

C++ 23.3% 28.5% -5.2% 0.01
Python 25.1% 28.1% -3.0% 0.18
HTML/CSS 19.0% 19.5% -0.5% 0.75

Basic 16.1% 18.6% -2.5% 0.114

C 12.5% 17.0% -4.5% 0.01
JavaScript 12.7% 15.0% -2.3% 0.17
Turing 10.8% 14.3% -3.5% 0.03
C# 6.1% 9.4% -3.3% 0.01

Php 3.9% 8.3% -4.4% 0.00

SQL 3.9% 3.2% -0.7% 0.50
Other 31.1% 16.4% -3.3% 0.07
None 4.7% 3.2% +1.4% 0.07

significant differences with a P-value of less than 0.05. In
these cases, we only see differences ranging from 4% to 6%.

Men on average report experience with 2.43 programming
languages, whereas women report experience with 2.05 lan-
guages, a significant result with a P-value of less than 0.05.

4.5.3 Programming Concepts

Among applicants who mentioned specific programming
concepts, women reported Basic Language Knowledge,
which includes loops, if-statements, and variables, 14% more
than male applicants did. This result is significant with a
P-value of less than 0.05.

There are small differences in mentions of data science,
object oriented programming, sorting, searching, and data
structures. However, these results were not statistically sig-
nificant, so we cannot conclude that there is a gender differ-
ence in any mention of programming concepts.

4.5.4 Learning Method

We found that men were slightly more likely to learn how to
program through employment or self-learning, and women
were more likely to learn how to program in high school,
through higher education, and through online courses. This
result is not statistically significant with a P-value of greater
than 0.05, so we cannot conclude that there is a gender dif-
ference in how men and women learn how to program.

4.5.5 Experience

On average, women report 6 months of programming experi-
ence, and men report 8 months of programming experience.
This result is not significant with a P-value of greater than
0.05, so we cannot conclude that there is a gender difference
in the amount of experience within applicants to SE.

4.6 Additional Information

Document Frequencies: We see a difference in word
choice between men and women when answering a question
with no restrictions on the content of their answer.

In BEE, more men mention “sport” (10.9% of men vs. 7.1%
of women) and “compute” 4.7% of men vs. 2.3% of women).
More women mention “educate” (17.2% of women vs. 12.2%
of men), “science” (17.9% of women vs. 13.4% of men),
“develop” (15.1% of women vs. 10.7% of men), “community”
(14.8% of women vs. 10.8% of men), and “create” (8.5% of
women vs. 5.0% of men).

In SE, more men mention “compute”’ (27.8% of men vs.
20.8% of women) and “game” (9.2% of men vs. 3.8% of
women). More women mention “attend” (16.7% of women
vs. 10.4% of men), “English” (12.8% of women vs. 7.2% of
men), “study” (21.5% of women vs. 16.5% of men), “parent”
(8.7% of women vs. 3.7% of men), “love” (14.2% of women
vs. 10.1% of men), and “creative” (8.7% of women vs. 4.6%
of men).

In the OTHER programs, more men mention “sport” (10.2%
of men vs. 5.7% of women) and “team” (16.3% of men
vs. 12.4% of women). More women mention “art” (7.3%
of women vs. 3.3% of men), “volunteer” (9.9% of women vs.
6.4% of men), and “passion” (13.6% of women vs. 10.4% of
men).

Logistic Regression: The results for predicting gender
based on Additional Information are shown in Table 21l As
before, the predictive power of logistic regression decreases
with increasing gender balance within the group.

S. DISCUSSION

5.1 Similarities

Regardless of gender, the most commonly mentioned topic
in responses to “Why are you interested in engineering?”
is Technical Interests. Female and male applicants seem to
share the same interest in Engineering in all program groups.
SE applicants show more technical interest in engineering
than other programs.

In general, female and male applicants to SE mention the
same motivation for studying engineering. Family is more
popular among female applicants, not because female appli-
cants to SE mention it more compared to other programs,
but because male applicants talk about it less than men in
other programs, as can be seen in Tables [I5] and [T4]

In SE, we do not see a large gender gap in self reported pro-
gramming experience, as shown in Table This suggests
that students who are exposed to computer science do not
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differentiate themselves through the number of languages
they learn, nor in the amount of programming experience.

In BEE, the differences between female and male applicants
are minimal. We see evidence for this in the semantic anal-
ysis presented in Section 4.1.2 where there is only one topic
that shows a gender difference, and we observe this in our
inability to reliably predict gender based on any question as

shown in Tables @ and @

Based on Tables and Contribution to Society and
Engineering Interests are inversely proportional, regardless
of gender.

5.2 Differences
5.2.1 Depth vs. Breadth

The overarching gender difference throughout the analysis
is that men differentiate themselves through depth of ex-
perience, and women through breadth of experience. To
study engineering, all applicants must demonstrate knowl-
edge in mathematics and sciences through their academic
work. However, we see male applicants differentiating them-
selves by highlighting their initiative to acquire more techni-
cal skills through their work experience, extracurricular ac-
tivities, reading interests, and the topics they mention when
asked why they are studying engineering. Female applicants
differentiate themselves through demonstrating a wide range
of experiences and capabilities. This is suggested by the fact
that women mention a wider variety of topics when asked
why they are studying engineering, their extracurricular ac-
tivities place an emphasis on leadership and artistic pursuits,
they often take service jobs, and they choose to discuss more
non technical reading material.

In SE, men are more likely to report technical extracurricu-
lars, as seen in Section 4.3, even though there is only a small
gender difference in the reported amount of programming
experience. This provides further justification that women
differentiate themselves through breadth of experience even
when they are extremely technically focused.

The gender difference in depth versus breadth is much
smaller in BEE. The difference in the number of topics men-
tioned between men and women is the smallest across these
two programs. We also only see a statistically significant
difference between men and women in one topic, love of sci-
ence, which is extremely common across all applicants. The
small difference is consistent with our inability to predict
gender in BEE.

We also see this in the syntactic analysis of reasons, where
women mention “improve” and “health” more in the BEE
group, and “people” more in the SE group. It is an interest-
ing difference because BEE includes programs that focus on
helping others, and SE is often the farthest removed from
directly working with people.

5.2.2  Desire to Serve Society

Women show a stronger desire to contribute to society and
improve the world around them. We see this in their mo-
tivation to study engineering in “Engineering Interests and
Goals” in the OTHER group of programs where they are

more likely to mention “Contribution to society”. We also
see this in the syntactic analysis of this field where they men-
tion “improve” and “health” in the BEE group, and “people”
in the SE group. This is also evident in their work experience
where women mention “assist” and “teacher” more often than
men. Finally, we see this in extracurricular activities, where
women mention “volunteer” more frequently than men. Our
findings in this section agree with |3}, 4].

5.2.3 Influence

Women are more likely to mention personal influences in
their decision to study engineering. This is prevalent in
SE, where women mention “Family” reasons more than men.
This expands on the findings in [19].

6. CONCLUDING REMARKS

The main findings of this paper are that men differentiate
themselves through having technical depth in their experi-
ences, and women differentiate themselves through having a
breadth of experiences. We see similar behavior in Software
Engineering, even though women and men show similar lev-
els of technical know-how. We see smaller gender differences
in applicants to Biomedical and Environmental Engineering
where there is gender equity. Finally, women mention more
of a desire to serve society, and they mention more interper-
sonal reasons for studying engineering than men.

We infer that in order to attract more women to study en-
gineering, it must be presented as a profession that can help
others and allow for a broad range of careers and learning
opportunities. A key part in fostering this new image of en-
gineering lies in encouragement from family and role models
who practice engineering.

6.1 Future Work

In future work, we intend to conduct data driven analysis
of gender differences at various stages in STEM students’
academic careers; e.g., investigating the effects of university-
sponsored outreach and mentorship programs on applicants,
and correlating depth and breadth of expression at the time
of admission to academic and career success. We also plan
to investigate and compare gender differences in graduate
school applications to those in undergraduate applications.
We also want to expand the scope of our studies to include
non STEM programs in our analysis, and conduct compar-
isons of differences in STEM vs. non-STEM programs.

7. REFERENCES

[1] T. Busch. Gender differences in self-efficacy and
attitudes toward computers. Journal of Educational
Computing Research, 12(2):147-158, 1995.

[2] N. Chinchor. Muc-4 evaluation metrics. In Proc. of the
4th Conf. on Message Understanding, 1992.

[3] A. B. Diekman, E. R. Brown, A. M. Johnston, and
E. K. Clark. Seeking congruity between goals and
roles: A new look at why women opt out of science,
technology, engineering, and mathematics careers.
Psychological Science, 21(8):1051-1057, 2010.

[4] J. Eccles. Where are all the women? gender
differences in participation in physical science and
engineering. In Why aren’t more women in science?:

Proceedings of the 11th International Conference on Educational Data Mining 53



[10]

[11]

[12]

[13]

[14]

Top researchers debate the evidence, pages 199-210.
American Psychological Association, 2007.

M. Feng, J. Roschelle, C. Mason, and R. Bhanot.
Investigating gender differences on homework in
middle school mathematics. In Proc. of the Int. Conf.
on Educational Data Mining (EDM), pages 364-369,
2016.

J. L. Fleiss, B. Levin, and M. C. Paik. Determining
sample sizes needed to detect a difference between two
proportions. In Statistical Methods for Rates and
Proportions, pages 64-85. John Wiley & Sons, Inc.,
2004.

P. W. Foltz, W. Kintsch, and T. K. Landauer. The
measurement of textual coherence with latent semantic
analysis. Discourse Processes, 25(2-3):285-307, 1998.
A. Genkin, D. D. Lewis, and D. Madigan. Large-scale
bayesian logistic regression for text categorization.
Technometrics, 49(3):291-304, 2007.

D. Hango. Gender differences in science, technology,
engineering, mathematics, and computer science
(STEM) programs at university. Insights on Canadian
Society, 12 2013.

S. Hussain, J. Hazarika, and P. Buragohain.
Educational data mining on performance of under
graduate students of dibrugarh university using r.
International Journal of Computer Applications,
114(11):10-16, 2015.

T. K. Landauer and S. T. Dumais. A solution to
Plato’s problem: The latent semantic analysis theory
of acquisition, induction, and representation of
knowledge. Psychological Review, 104:211-240, 04
1997.

Z. J. Kovacic. Early prediction of student success:
Mining students enrollment data. In Proc. of
Informing Science & IT Education Conference
(InSITE), 2010.

H. M. Matusovich, R. A. Streveler, and R. L. Miller.
Why do students choose engineering? a qualitative,
longitudinal investigation of students’ motivational
values. Journal of Engineering Education,
99(4):289-303, 2010.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
Neural Information Processing Systems 26, pages
3111-3119. Curran Associates, Inc., 2013.

J. Ramos. Using TF-IDF to determine word relevance
in document queries. In Proc. of the Instructional
Conf. on Machine Learning, volume 242, pages
133-142, 2003.

M. Saarela and T. Karkkainen. Discovering
gender-specific knowledge from finnish basic education
using PISA scale indices. In Proc. of the Int. Conf. on
Educational Data Mining (EDM), pages 60-67, 2014.
M. J. Seo, A. Kembhavi, A. Farhadi, and

H. Hajishirzi. Bidirectional attention flow for machine
comprehension. CoRR, abs/1611.01603, 2016.

L. Shashaani. Gender differences in computer
attitudes and use among college students. Journal of
Educational Computing Research, 16(1):37-51, 1997.
A.Y. Smith. They chose to major in engineering: A
study of why women enter and persist in

20]

(21]

(22]

undergraduate engineering programs. PhD thesis, 2012.
A. Sullivan and M. U. Bers. Girls, boys, and bots:
Gender differences in young children’s performance on
robotics and programming tasks. Journal of
Information Technology Education: Innovations in
Practice, 15:145-165, 2016.

B. Trstenjak, S. Mikac, and D. Donko. KNN with
TF-IDF based framework for text categorization.
Procedia Engineering, 69:1356-1364, 2014.

T. Zimmermann. Card-sorting: From text to themes.
In Perspectives on Data Science for Software
Engineering, pages 137-141. Elsevier Science, 2016.

Proceedings of the 11th International Conference on Educational Data Mining 54



A Comparison of Features for the Automatic Labeling of
Student Answers to Open-ended Questions

Jesus Gerardo Alvarado

Mantecon
University of Ottawa
800 King Edward Avenue.
Ottawa, Canada.
+1 613 668 7214

jalva06l@uottawa.ca

Jelena Jovanovic
University of Belgrade
Jove llica 154.
11000 Belgrade, Serbia.
+381 11 3950 853

jelena.jovanovic@fon.bg.ac.rs

ABSTRACT

The automatic evaluation of text-based assessment items, such as
short answers or essays, is an open and important research
challenge. In this paper, we compare several features for the
classification of short open-ended responses to questions related
to a large first-year health sciences course. These features include
a) traditional n-gram models; b) entity URIs (Uniform Resource
Identifier) and c) entity mentions extracted using a semantic
annotation API; d) entity mention embeddings based on GloVe,
and e) entity URI embeddings extracted from Wikipedia. These
features are used in combination with classification algorithms to
discriminate correct answers from incorrect ones. Our results
show that, on average, n-gram features performed the best in
terms of precision and entity mentions in terms of fl-score.
Similarly, in terms of accuracy, entity mentions and n-gram
features performed the best. Finally, features based on dense
vector representations such as entity embeddings and mention
embeddings obtained the best fl-score for predicting correct
answers.

Keywords

Short open-ended responses, N-gram models, Entity URIs, Entity
Mentions, Entity embeddings, Mention embeddings.

1. INTRODUCTION

Due to the growth of Massive Open Online Courses (MOOCS)
and increased class sizes in traditional higher education settings,
the automatic evaluation of answers to open-ended questions has
become an important challenge and one which has yet to be fully
resolved. On the other hand, it has been shown that open-ended
assessments are better able to capture a higher level of
understanding of a subject than other machine-scored assessment
items [24]. Still, MOOCs usually rely on multiple-choice
questions since the evaluation of open-ended assessments
requires more resources in massive online courses [32]. The
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human effort required to manually evaluate students' answers has
escalated with the spread of large-scale courses that enroll several
hundred, or even thousands of students. To tackle this challenge,
we analyze textual responses to a set of open-ended questions
designed to encourage deep responses from students. We explore
the use of vector space models (VSMs) that represent each answer
with a real-valued vector, and evaluate those models on the task
of classifying student responses into correct and not-correct. In
particular, we examine and evaluate different feature sets that can
be automatically derived from students' answers and used to
represent those answers as vectors in a high dimensional space.
The examined features do not require handcrafting based on the
particularities of specific questions. Our main objective is to
examine and compare the predictive power of different text
features, automatically extracted from a corpus of answers to
open-ended questions, on multiple classification algorithms.

We build VSMs using different text representations that result in
either a sparse VSM (e.g., n-gram based VSM) or a dense VSM
(e.g., VSM based on word embeddings). For sparse VSMs, we
explore traditional n-gram features (unigrams, bigrams, trigrams,
and n-grams that combine all of the previous features). We also
investigate the usefulness of semantic annotations of students’
responses for the classification task. Semantic annotation adds
machine-readable meaning in the form of entities [21]. Hence, it
enables the association of students' answers with vectors of
domain-specific entities. Semantic annotators often rely on open
Web-based knowledge bases such as DBpedia [13], an RDF
representation of Wikipedia's semi-structured content. For
example, given the entity Aorta, identified by a semantic
annotator, we obtain its associated Web resource from DBpedia
(http://dbpedia.org/page/Aorta), which further links to other
related entities and properties from DBpedia. We make use of two
semantic annotators: DBpedia Spotlight [19] and TAGME [6].
We query each annotator with the students’ responses to obtain
entities mentioned in the response. For each entity, we take the
entity label and use it as entity mention feature, whereas the
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entity’s Uniform Resource ldentifier (URI) is used as entity URI
feature.

To build a dense VSM, we rely on the entity mentions identified
through semantic annotation and pre-trained word and entity
embeddings. In particular, we retrieve vector representations of
entity mentions using a GloVe model pre-trained on Wikipedia
dumps [23]. Thus, our fourth feature set consists of entity mention
embeddings based on GloVe. Finally, we represent entity URIs
using a Wiki2Vec model trained on Wikipedia dumps to obtain
another dense VSM. Hence, entity URI embeddings extracted
from Wikipedia constitute our fifth feature set.

Given the short length of most answers and large vocabularies
providing sparse vectors, we decided to include the last two sets
of features to produce dense vector representations. In fact, dense
vectors have shown an increase in performance for several natural
language processing tasks [15]. Both GloVe [23] and Word2vec
models [20] learn vector representations of words (called word
embeddings) based on context. In total, we compare five types of
features (n-gram, entity mentions, entity URIs, mention
embeddings and entity embeddings) to train classification models
to automatically label each student answer as correct or incorrect.

The rest of the paper is structured as follows: In Section 2, we
present related work on automatic short answer grading. Then, we
introduce our methodology, including the corpus description, our
analysis pipeline and an in-depth description of our features.
Section 5 describes the results of our experiments followed by the
analysis of the effect of feature selection on our classifiers in
Section 6. Finally, we discuss our findings and conclude the paper
in Section 7 and 8.

2. RELATED WORK

One of the hot topics in the field of educational data mining is
automatic short answer (response) grading (ASAG). In general,
there are two kinds of ASAG approaches: response-based and
reference-based [27]. In this paper, we analyze students' answers
based on the response-based approach, which focuses only on
students’ answers. In contrast, reference-based ASAG also rely
on the comparison of the student answer to the model answer.

Burrows et al. [4] classified all types of approaches to ASAG into
five categories (eras): Concept mapping [8, 10, 12], Information
extraction [5], Corpus-based methods [11], Machine learning, and
Evaluation [28, 30]. In the Machine Learning approach, which is
the approach followed in this study, the trend is to build models
(supervised or unsupervised) through data mining and natural
language processing techniques in order to assess students'
answers.

ASAG systems can also be categorized into semi-automatic
(teacher-assisted) and fully-automatic systems. In semi-automatic
systems, students' answers are processed (clustered) to facilitate
the grading process. For example, Basu [1] applied k-medoids
clustering to students' answers to ease the grading process. In
another work, Jayashankar [9] proposed an integration of data
mining and word clouds to help teachers evaluate student answers
through visualization.

Fully-automatic systems produce grades for each student, with or
without additional feedback. Several features are considered in
training these systems: lexical features (e.g. word length),
syntactic features (e.g. sentence length and part-of-speech),
semantic features (e.g. semantic annotations and triples),
discursive features (e.g. referential expressions), statistical

features (e.g. language modelling like n-grams and embeddings),
and similarity features (e.g. cosine similarity).

McDonald et al. [17, 18] evaluated Naive Bayes and Max Ent
classifiers using a number of features like bag of words, word
length, and word and character n-grams. Madnani et al. [14] used
these types of features in combination with triples to examine the
performance (accuracy) of 8 different classifiers and regressors
(linear and nonlinear). In another work, Riordan et al. [26]
combined n-gram features, answer length, and word and character
embeddings to compare the performance of SVM (as a baseline)
with neural architectures. In several approaches, features based
on the similarity between the students’ responses and the teacher's
response were used together with n-grams. For example,
Sakaguchi et al. [27] used stacked generalization [31] to integrate
response-based and reference-based models. In particular,
Sakaguchi et al. first built a classifier based on sparse response-
based features (e.g. character n-gram and word n-gram); the
obtained predictions were combined with dense reference-based
features (e.g. BLEU [22]) to build another stacked classifier. Both
classifiers were built as support vector regression (SVR) models.
Zhang et al. [33] compared Deep Belief Networks (DBN) [2] to
five classifiers such as Naive Bayes and Logistic Regression. The
classifiers were trained on features extracted from three models,
namely the Question model (e.g. question difficulty), the Student
model (e.g. probability that a student learned a concept based on
the student’s past performance), and the Answer model (e.g.
length difference between student answer and model answer).
The DBN performed better than the other classifiers in terms of
accuracy, precision, and F-measure, but not recall. Roy et al. [25]
developed an ASAG system that can grade answers in different
domains. They relied on an ensemble classifier of student answers
(question-specific approach) and a numeric classifier based on the
similarity score between the model answer and students’ answers
(question-agnostic approach). Their features were words, n-
grams, and similarity scores between student answers and model
answer. Finally, Tack et al. [29] used ensemble learning of five
classifiers based on lexical features (e.g., word length), syntactic
features (e.g., sentence length), discursive features (e.g., number
of referential expressions), and a number of psycholinguistic
norms.

In this work, we follow the response-based approach as we build
classifiers based on students” answers. Our approach differs from
previous works in that we carry out ASAG (and more specifically
classification) by comparing six classifiers trained with both
sparse vector representations (based on n-grams and entities) and
dense vectors representations (GloVe, Word2Vec). One
additional difference is the use of semantic annotations (entity
mentions and entity URISs) to build some of our vector space
models. Finally, the features used in this work do not necessitate
a huge feature engineering effort as they come directly from text
or from the use of a semantic annotation APl and an embedding
model.

3. METHODOLOGY

We first give a description of the corpus used in our experiments,
then we detail our overall approach as well as the metrics used in
the evaluation phase. This is followed by an in-depth explanation
of our features.

3.1 Corpus Description
Our data set is extracted from a corpus of student short-answer
question (SAQ) responses drawn from a first-year human biology

Proceedings of the 11th International Conference on Educational Data Mining 56



course (McDonald [16]). Among multiple elements in our data
set, our experiments are based only on the labeled student
responses to the survey and model answers (expected answers to
the questions). Student SAQ responses and associated metadata
were collected through a dialog system.

From the initial data set, we selected a sub-set of student answers
based on the following criteria:

e Answers from the year 2012 only as this year is the one with
the highest participation; out of 15,758 answers collected
over 4 years, 7,548 originate from 2012.

e  Out of the 42 different unique questions, we only use 6
questions that provide a reasonable number of responses as
well as lengthy (deep) responses. We avoided questions that
do not encourage answers that display deep understanding of
the topic (e.g., yes-no questions, calculation questions or
multiple choice questions).

The questions asked are designed to encourage deep responses
from students [3]. The students are expected to explain or
describe the knowledge obtained during the course in their own
words rather than giving answers by the book. Table 1 presents
the questions used in the study and their expected answers.

Table 1. Survey questions

ID Question Model Answer
Q.1 | HR or heart rate is the You could measure their
number of times the heart pulse.

beats each minute. A
normal adult HR is
around 72 beats/min. How
would you check
someone's HR?

Q.2 What is the pulse?

The pulse is a pressure wave
or a pulsatile wave generated
by the difference between
systolic and diastolic
pressures in the aorta.
Q.3 | Inotropic state is a term Contractility is the force or

that is sometimes used to pressure generated by the
describe the contractility heart muscle during
of the heart. Can you contraction.
describe what is meant by
contractility?

Q.4 | If you were 'building’ a You'd probably want to put
human being and you them near vital organs and at
wanted to position the main outflow from the

receptors in the body to heart. It turns out that the
monitor blood pressure, main human baroreceptors are
where would you put located in the carotid sinuses
them? and aortic arch.
Q.5 | What feature of artery Artery walls are thick and
walls allows us to feel the strong and not very compliant
pulse?
Q.6 [Can you explain why you | You cannot feel a pulse in
cannot feel a pulse in veins because the blood flow
someone's vein? in veins is not pulsatile

The resulting sub-set amounts to 1,876 answers from 218 students
to 6 questions. Note that not all students answered all the
questions. Completing responses was voluntary, which accounts
for the variability in the number of responses received to each
question. In addition, the nature and quality of the responses are

not necessarily representative of the class as a whole. Table 2
presents descriptive statistics on the students’ answers to the
selected subset of questions used in all the experiments.

Table 2. Statistics on students’ answers per question

Question | Avg. Min. | Max. | Answers | Correct
words | words | words (%)
Q.1 6 1 36 243 65.43%
Q.2 9 1 82 422 17.54%
Q.3 6 1 31 316 33.86%
Q.4 4 1 34 151 54.97%
Q.5 3 1 27 171 25.15%
Q.6 9 1 34 361 31.86%

Each of these questions is associated with a set of students’
answers. As an example, for question Q.6, we present the
expected answer (i.e. Model answer), a deep response (Student
Answer 1), and a simpler response (Student Answer 2):

Model Answer: You cannot feel a pulse in veins because the
blood flow in veins is not pulsatile

Student Answer 1: The wave motion associated with the heart
beat is stopped by the arteries and capillaries. Therefore, the vein
has no pulse.

Student Answer 2: The blood flow is continuous.

Both student answers were labeled as correct by the human
markers. Student Answer 1 would be considered a deeper answer
than Student Answer 2, because it makes explicit the reasoning
behind the answer, thus suggesting a better understanding of the
topic.

The students’ responses were manually evaluated by human
markers with expertise in the domain of human biology. The
annotators assigned a label negotiated through discussion. Such
labels describe different aspects of an answer like quality of the
response or correctness [16]. For example, answers may be
labelled as incorrect, incomplete, and display disinterest in
responding (dont-know label), among others. Further details on
the labels used can be found in McDonald [16]. Table 3 displays
some of those answers and the assigned labels.

Table 3. Student Answers sample

Question Student Answer Label
Q.5 Lack of elastic tissue incorrect
Q.6 idk lol dont-know
Q4 In major arteries of the body, such as ok

the common carotid or the aortic arch
Q.3 ability to change volume incomplete

Q.6 Mentricle contracts blood ejected into | correct

aorta, expanding vessel and increase

pressure in vessel, wave of pressure
cane felt is pulse

For all of our experiments, we used model answer (expected
answer) and student answers and re-labeled them as correct or
not-correct. Correct answers comprise model answers plus all
answers labeled as correct or ok. All other answers were re-
labeled as not-correct. The resulting data set is composed of 65%
not-correct answers and 35% correct answers.
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3.2 Overall Approach

Our general approach can be described as follows:

1. Data pre-processing: in this step, we perform lemmatization
and removal of punctuation marks and stop words (NLTK1
stop words list) from the selected answers.

2. Feature extraction: We consider five types of features: n-
gram, entity URIs, entity mentions, URI embeddings, and
mention embeddings, which are detailed in section 4. We
extract n-grams, entity URIs and entity mentions from
student responses. Then, entity mentions are used to query a
pre-trained GloVe model [23] to obtain mention
embeddings. Likewise, entity URIs are used to query a pre-
trained Wiki2Vec model [34] to obtain entity embeddings.
Both GloVe and Wiki2Vec are pre-trained on Wikipedia.

3. Vector space model (VSM): For n-gram features, entity
mentions, and entity URIS, we compute a vector
representation of each answer by extracting a vocabulary
from all students’ answers and using TF-IDF as the
relevance metric to weight each feature in an answer. As for
mention embeddings and entity embeddings, we generate
VSMs by averaging embeddings over all mentions or URIs
appearing in an answer. The output from this step is one
VSM representation of all answers for each feature type.

4. Classification task: we run several classification algorithms:
the ZeroR algorithm as our baseline, Logistic regression, K-
nearest neighbors (IBK), Decision trees (J48), Naive Bayes,
Support vector machine (SVM), and Random forest. We
train each classifier using the entire data set of answers
regardless of the question to which they belong. The
rationale is that all answers belong to the same domain, and
thus can be expected to be in a shared semantic space.

3.3 Evaluation Metrics
The evaluation is performed through 10-fold cross validation on
each classifier. The metrics used for this purpose include:

e Accuracy: Percentage of correctly classified answers.

e  Area Under the Curve (AUC): Probability that a classifier
will rank a randomly chosen positive instance higher than a
randomly chosen negative instance.

e  Precision: Fraction of correctly classified answers within all
classified instances.

e  Recall: Fraction of relevant answers successfully retrieved.

e  Fl-score: Weighted harmonic mean of the precision and
recall. It represents how precise and complete a classifier is.

4. FEATURE DESCRIPTION

4.1 N-gram Features

We create a vector representation for each answer based on n-
grams. Table 4 shows some descriptive statistics on the obtained
n-grams. We perform four experiments using different n-grams:
unigrams, bigrams, trigrams, and the combination of all of them.
To that end, four VSMs are built, one per n-gram group. Each
vector holds the TF-IDF value of each item found in the answers.
TF-1DF is calculated with the formula:

1 https://www.nltk.org/

thidfij = ¢f; X (logiige+1)

Where tfijis the total number of occurrences of the term i in the
student answer j, ng is the total number of documents (i.e.
answers) and df; is the number of documents (i.e. answers)
containing the term i.

Table 4. Total number of n-grams in answers for all
questions

Answers Unigrams Bigrams [Trigrams
Unigue 700 2114 4750
Total 6364 2589 3383

4.2 Entity URI Features

These features are based on entity URIs extracted from answers
using two semantic annotators: DBpedia Spotlight and TAGME
(see Sect. 1). The basic unit in the built VSM is the URI of a
DBpedia resource (e.g. http://dbpedia.org/page/Baroreceptor).
We send get requests to both annotators with the answers to be
analyzed, and receive, for each answer, a list of entity mentions
and their associated URIs. Table 5 shows statistics on the number
of entity URIs and mentions (lowercase) retrieved by each of the
two annotators.

Table 5. Number of entity URIs and mentions on all answers

Semantic Entities Mentions
Annotator
Unique Total Unique Total
Spotlight 143 1620 188 1620
TAGME 876 5054 806 5054

Table 6 provides an example of retrieved entity mentions and
URIs for an answer to Q.2.

Table 6. Sample of retrieved entity URIs

Answer |Semantic Mention URI
Annotator
Recoil Spotlight | Recoil | dbpedia.org/page/Recoil
caused by Avrteries | dbpedia.org/page/Artery
pressure in | TAGME | Recoil | dbpedia.org/page/Recoil
arteries Pressure dbpedia.org/page/Pressure
Avrteries | dbpedia.org/page/Artery

We build a vector representation of each answer for each of the
following configurations (i.e., vocabularies):

e  Spotlight_URI: Set of entity URISs retrieved from all answers
using DBpedia Spotlight.

e  TAGME_URI: Set of entity URIs retrieved from all answers
using TAGME.

e Intersection: Set intersection between the entity URIs
retrieved from all answers with both tools.

e Union: Set union between the entity URIs retrieved from all
answers with both tools.

This produces four VSMs based on entity URIs. The resulting
VSMs use TF-IDF as the metric for estimating the value of each
entity URI for each answer.
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4.3 Entity Mention Features

We use the annotations retrieved by Spotlight and TAGME,
selecting entity mentions as the basic units for building VSMs. A
mention is a sequence of words spotted in an answer and
associated to a URI. This means that an entity mention can be a
unigram, but also a bigram or trigram. We compute the TF-IDF
of each entity mention present in an answer to build its vector
representation. As in entity URI features, we have one vocabulary
per configuration with four VSMs as the final output. The
available configurations, based on mentions, used to build a
vector representation of each answer, are analogous to those
described for entity URIs, except that they are based on mentions
(Spotlight_Mention, TAGME_Mention, Intersection and Union).

4.4 Entity Embedding Features

For this set of features, we rely on the Wiki2Vec2 model, a
Word2Vec implementation pre-trained on Wikipedia, where
Wikipedia hyperlinks are replaced with DBpedia entities (URIs).
The model was presented by Zhou et al. [34] and is based on 100-
dimensional vectors. Word2Vec models can either learn to
predict a word given its context (CBOW) or predict a context
given a target word (Skip-gram) [20]. This creates a vector space
in which similar words or entities are close to each other.
Likewise, Wiki2Vec creates a vector space model in which
similar DBpedia entities are close to each other. Given that our
entity URIs reference DBpedia resources, we consider it a
suitable match. For each configuration, we query the Wiki2Vec
model with the entity URIs found in each answer to obtain their
corresponding embeddings. Table 7 shows the percentage of
entity URIs that are associated with an embedding vector in the
Wiki2Vec model per configuration. We also show the percentage
for the GloVe model which is presented in section 4.5.

Table 7. Coverage of entity URIs and mentions on their
corresponding models (Wiki2Vec and GloVe)

Configuration [% of entity URIs % of entity
in Wiki2Vec  |mentions in GloVe
Spotlight_URI 97.5 % 50.46%
TAGME_URI 93.94 % 62.16%
Intersection 97.11 % 49%
Union 94.63 % 65.10%

For each configuration, we have one VSM. In each VSM, we
aggregate the entity embeddings per answer by calculating the
average of the entity URI vectors. This produces a single
embedding that represents the answer.

4.5 Mention Embedding Features

For the mention embedding features, we rely on word
embeddings, where each word is an entity mention instead of an
entity URI. We use the GloVe model [23] trained using
Wikipedia dumps from 2014 and build vectors with 100
dimensions (as for entity URI embeddings). Unlike Word2Vec,
GloVe is a count-based model derived from a co-occurrence
matrix. We query the GloVe model with the entity mentions found
in each answer. The coverage of the model is given in Table 7.
For each configuration, we have one VSM where each answer is
represented as the average of the entity mention vectors.

2 https://github.com/idio/wiki2vec

5. RESULTS

For each feature set, we trained six classification algorithms, and
evaluated 120 different models. Due to the space limit, we present
only the top two performing classifiers (Random forest and SVM)
in terms of overall accuracy for each of our feature sets. ZeroR is
also included as the baseline.

5.1 N-gram Results

Table 8 shows the accuracy (ACC) and AUC obtained using n-
gram features. Overall, the accuracy and AUC obtained with
Random forest were always higher than with SVM. In particular,
unigrams obtained the best accuracy of 88.40% as well as the
highest AUC (.95) using Random forest.

Table 8. Accuracy & AUC using n-gram features

N-gram Random SVM ZeroR
Forest
ACC | AUC | ACC | AUC | ACC | AUC
% % %

Unigrams | 88.40 95 | 8444 | 82 65.1 .50

Bigrams | 81.97 87 | 79.93 73 65.1 .50

Trigrams | 72.84 68 | 7212 | 61 65.1 .50

N-grams | 85.58 93 8425 | .80 65.1 .50

Table 9 shows additional results for models cross-validated with
n-gram features. For the correct label, our best classifier was
Random forest using unigrams for the f1-score (.82) and trigrams
or n-grams for best precision (.93). For the not-correct label,
again, Random forest got the best results, using unigrams for both
fl-score (.91) and precision (.88).

Table 9. Precision, recall & f1-score using n-gram features

Label Classifier |N-gram Precision Recall |F1
Correct Random  Unigrams .89 g7 .82
Forest Bigrams .92 .53 |.67
Trigrams 93 .24 .38

N-grams .93 .63 |.75

SVM Unigrams 79 a6 |77

Bigrams .85 51 |.64

Trigrams .88 23 .37

N-grams .86 .65 |.74

ZeroR Unigrams 0 0 0

Bigrams 0 0 0

Trigrams 0 0 0

N-grams 0 0 0

Not- Random  Unigrams .88 95 |91
correct Forest Bigrams .79 98 |.88
Trigrams 71 99 .83

N-grams .83 .98 .90

SVM Unigrams .87 .89 |.88

Bigrams 79 95 |.86

Trigrams 71 .98 .82

N-grams .84 95 .89

ZeroR Unigrams .65 1 .79

Bigrams .65 1 .79

Trigrams .65 1 .79

N-grams .65 1 .79
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A visible drop in recall from unigrams to trigrams (difference of
.53) can be spotted for the correct label in both SVM and Random
Forest. Based on the number of elements in each n-gram feature
(Table 4), we observe that the amount of bigrams and trigrams is
notably lower than unigrams. This can, at least partially, explain
the lower recall using these features. Another noticeable result is
that while the results obtained with Random Forest and SVM
exceed the baseline for the correct label in terms of precision,
recall and fl-score, the results for the not-correct label are closer
to the baseline.

5.2 Entity Mention Results

The highest accuracy among these feature sets was achieved by
Random Forest with the Union configuration (88.58%), as shown
on Table 10. Again, Random forest outperformed SVM in terms
of accuracy and AUC for each configuration.

Table 10. Accuracy & AUC using Entity mentions

Tool Random Forest SVM ZeroR
ACC | AUC |ACC |AUC |ACC |AUC
% % %

Spotlight |78.61 .78 75.05 | .67 |[65.1 | .50
Mention
TAGME |88.52 .95 85.22 | .83 |[65.1 | .50
Mention
Intersection |78.48 17 75 .67 |65.1 .50
Union 88.58 .95 85.34 | .83 |65.1 | .50

Given that our Random forest classifier performed better in
general for entity mentions, we based our following analysis on
its results (Table 11). For the correct label, the use of
TAGME_Mention or Union provided the highest f1-score (.83),
but the use of TAGME_Mention alone provided slightly better
precision (.87). On the not-correct label, once again,
TAGME_Mention and the Union achieved the highest f1-score
(.91), but this time the Union alone gave slightly better precision
(.90).

Table 11. Precision, recall & f1-score using Entity mentions

Label |Classifier Tool Precision | Recall F1
Correct | Random | Spotlight .85 A7 .61
Forest Mention
TAGME .87 .79 .83
Mention
Intersection .84 .48 .61
Union .86 .80 .83
SVM Spotlight 77 40 .53
Mention
TAGME .81 .75 .78
Mention
Intersection 77 .40 .53
Union .81 .76 .78
ZeroR Spotlight 0 0 0
Mention
TAGME 0 0 0
Mention
Intersection 0 0 0
Union 0 0 0
Not- | Random Spotlight a7 .96 .85
correct Forest Mention
TAGME .89 .94 91
Mention

Intersection a7 .95 .85
Union .90 .93 .91
SVM Spotlight 75 94 .83
Mention
TAGME .87 91 .89
Mention
Intersection 74 .93 .83
Union .87 91 .89
ZeroR Spotlight .65 1 .79
Mention
TAGME .65 1 .79
Mention
Intersection .65 1 .79
Union .65 1 .79

An explanation for the difference in performance between
Spotlight_Mention and TAGME_Mention is the amount of
mentions retrieved by each of the semantic annotators. Spotlight
provided fewer annotations for the same answers than TAGME.
In addition, our manual inspection of annotations revealed that
TAGME tended to produce more accurate annotations than
Spotlight. This suggests that higher quantity and quality of
semantic annotations leads to a feature set that successfully
differentiates between correct and not-correct answers.

5.3 Entity URI Results

The results presented in Table 12 show that Random forest
provided highest accuracy and AUC on each configuration. The
best accuracy and AUC were achieved by Random forest with
TAGME_URI (86.60% and .94, respectively).

Table 12. Accuracy & AUC using Entity URIs

Tool Random SVM ZeroR
Forest
ACC |AUC |ACC |AUC |ACC |AUC
% % %
Spotlight |80.55 | .84 |77.60 | .75 |[60.8 | .45
URI
TAGME (86.60 | .94 |84.74 | .82 65.1 45
URI
Intersection |77.03 | .82 |76.44 | .74 59 .45
Union 86.50 | .94 (8280 | .80 |[63.6 | .45

We notice that in terms of accuracy and AUC, TAGME_URI and
Union on Random forest are slightly lower than
TAGME_Mention and Union for Entity mention features.

Focusing on Random forest as the best performing classifier, we
observe that for the correct label, the use of TAGME_URI and
union of entity URIs provided the best f1-score of .80 (Table 13).
In terms of precision, the union of entity URIs had a better
performance (.86). For the not-correct label, again on Random
forest, TAGME_URI and the Union configurations get better f1-
score (.90). This time TAGME_URI alone provided the best
precision (.88) for this label.

We observed that in some cases, the same mention was associated
to different entity URIs in two different answers and that only one
of the URIs was correct. When this happens, it affects the quality
of the vector representation of student answers by increasing the
number of URIs in the VSM vocabulary, thus making the
representation even sparser.
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Table 13. Precision, recall & f1-score using Entity URIs

Label |Classifier Tool Precision | Recall | F1
Correct | Random [Spotlight URI .82 .64 72
Forest [TAGME URI .84 .76 .80
Intersection a7 .63 .69

Union .86 .76 .80

SVM  [Spotlight URI a7 .62 .68
TAGME URI .81 73 a7

Intersection a7 .61 .68

Union .80 71 75

ZeroR  [Spotlight URI 0 0 0
TAGME URI 0 0 0

Intersection 0 0 0

Union 0 0 0

Not- | Random [Spotlight URI .80 91 .85
correct Forest [TAGME URI .88 .92 .90
Intersection 77 .87 .82

Union .87 .93 .90

SVM  [Spotlight URI .78 .88 .83
TAGME URI .86 91 .89

Intersection .76 .87 .81

Union .84 .90 .87

ZeroR  [Spotlight URI 61 1 .76
TAGME URI .65 1 .79

Intersection .59 1 74

Union .64 1 .78

5.4 Entity Embedding Results

Among models trained using entity embeddings, the highest
accuracy and AUC were achieved by Random forest with the
TAGME_URI configuration, as shown in Table 14. For this
feature set, we observe that Random forest has higher accuracy
with  TAGME_URI and Union than SVM on the same
configurations; but SVM gets higher accuracy than Random
forest using Spotlight_URI and Intersection. However, the AUC
for Random forest is still higher than for SVM in all the
configurations. We can also observe an increase in accuracy and
in AUC (although modest) for the baseline.

Table 14. Accuracy & AUC using Entity embeddings

Tool Random SVM ZeroR
Forest
ACC |AUC |ACC |AUC |ACC |AUC
% % %

Spotlight URI [80.13 | .86 |[81.13 | .71 735 .50
TAGME URI (82.67 | .90 |75.46 | .70 63.7 .50
Intersection |76.43 | .81 |79.64 | .66 74.6 .49
Union 82.45 | .89 (80.79 | .69 735 .50

Further inspection of the results obtained on cross-validated
models (Table 15) reveals that this time, the highest results differ
between classification algorithms. For the correct label, we
obtained better f1-score with Random forest using the union of
entity embeddings (.89). However, SVM provided better
precision using Spotlight (.88). The not-correct label had both the
best precision (.85 using the union of entity embeddings) and f1-
score (.87 using TAGME_URI) results using Random forest.

Table 15. Precision, recall & fl-score using Entity

embeddings
Label [Classifier Tool Precision [Recall | F1
Correct | Random |Spotlight URI .83 92 .87
Forest |TAGME URI 85 64 |.73
Intersection .81 90 |[.85
Union .82 97 |.89
SVM  |Spotlight URI .88 92 |.88
TAGME URI 74 50 |.60
Intersection .82 .93 |.88
Union .82 94 |.88
ZeroR  |Spotlight URI 73 1 .85
TAGME URI 0 0 0
Intersection 75 1 .86
Union 73 1 .86
Not- | Random |Spotlight URI .68 47 | .56
correct | Forest |TAGME URI .82 93 .87
Intersection .56 37 |.44
Union .85 41 |55
SVM Spotlight URI .70 .50 |.58
TAGME URI .76 90 |.82
Intersection .67 .39 |.50
Union 72 45 |55
ZeroR  |Spotlight URI 0 0 0
TAGME URI .64 1 .78
Intersection 0 0 0
Union 0 0 0

Even though TAGME_URI provided better precision for the
correct label, the union of entity embeddings got better f1-score
and recall. The increase in f1-score can be related to the amount
of entity URIs provided by the Union (set union of entity URIs
from DBpedia Spotlight and TAGME). This suggests that more
entities have a positive effect on performance. Similarly, as in
accuracy, there was an increase in precision and f1-score on both
labels for the baseline classifier.

5.5 Mention Embedding Results

Table 16 shows that when mention embeddings were used as
features, SVM achieved the highest accuracy of 81.79% with the
Union configuration. This is the first time that Random forest is
surpassed by SVM in terms of accuracy, However, Random forest
is still outperforming SVM in terms of AUC.

Table 16. Accuracy & AUC using mention embeddings

Tool Random SVM ZeroR
Forest
ACC |AUC |ACC |AUC |ACC |AUC
% % %

Spotlight 7483 | .74 |75.83 | .63 |73.50 | .50
Mention
TAGME [80.85 | .85 [79.66 | .76 [63.69 | .50
Mention
Intersection [78.50 | .73 |79.52 | .68 |74.40 | .48
Union 79.80 | .86 [81.79 | .71 |73.50 | .49

As in entity embeddings, the highest results differ between
classification algorithms. Table 17 presents detailed results for
the performance of Random forest and SVM using mention
embeddings. For the correct label, the Random forest classifier
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with the union of mention embeddings had f1-score of .88 (the
highest F1 value). For precision, SVM did better with either the
intersection or union of mention embeddings (.83). The not-
correct label had both best precision (.86 using
TAGME_Mention) and f1-score (.83 using the union of mention
embeddings) with the SVM classifier.

Table 17. Precision, recall & f1-score using mention

embeddings
Label Classifier Tool Precision | Recall F1
Correct | Random | Spotlight .78 91 .84
Forest Mention
TAGME .82 .61 .70
Mention
Intersection .81 .93 .87
Union .80 .98 .88
SVM Spotlight .80 .90 .85
Mention
TAGME .78 61 .69
Mention
Intersection .83 .92 .87
Union .83 .94 .88
ZeroR Spotlight .73 1 .85
Mention
TAGME 0 0 0
Mention
Intersection 74 1 .85
Union 73 1 .85
Not- Random | Spotlight .55 .30 .39
correct Forest Mention
TAGME .81 .92 .86
Mention
Intersection .64 .36 .46
Union .83 .30 A4
SVM Spotlight 57 .36 A4
Mention
TAGME .80 .90 .85
Mention
Intersection .65 A4 52
Union .75 .48 .58
ZeroR Spotlight 0 0 0
Mention
TAGME .64 1 .78
Mention
Intersection 0 0 0
Union 0 0 0

6. FEATURE SELECTION

In this section, we describe the results obtained when applying
two feature selection methods to our dataset: mean decrease
impurity (MDI) and mean decrease accuracy (MDA). Both
methods employ random trees to measure the importance of a
feature [7]. We trained different classifiers with the selected
features and compared their results to the same classifiers without
feature selection.

First, we calculated the MDA and MDI scores for each feature in
our data set and kept only features with scores strictly higher than
0. Negative or zero MDA/MDI values were either detrimental or
unhelpful to the performance of the classifiers. Table 18 shows
the number of features before and after feature selection.

Table 18. Number of remaining features with and without
(WFS) feature selection

Technique
Features WES MDA MDI
N-gram 700 90 |205
Entity Mention 665 99 |179
Entity URI 875 109 |236
Entity Embedding 100 83 84
Mention Embedding 300 161 |117

Then, we trained and evaluated Random Forest, SVM, and ZeroR
classifiers using each of the top performing configurations per
feature set in terms of fl-score to compare the results obtained
with and without feature selection. The obtained results (Figure
1) show that in most cases, feature selection led to a slight
increase in the accuracy of our classifiers. Specifically, MDA
improved the accuracy of the classifiers in every case by as much
as 4.9 for SVM using mention embeddings as features. However,
overall Random forest generally remained the best, in terms of
accuracy, with and without feature selection.
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o RandomForest
235
£3 SVM
- £ [
w ZeroR
. RandOmFOreSt [
c £
23 [
3 SVM
L O
E = [
w ZeroR
[y 5
S RandomForest
g |
= SVM
2
E ZerorR N
1
— RandomForest
o4
2 [
2 SVM
€
w Zeror O
1
RandomForest
% 1
5 SVM
z
Zeror O
60 70 80 90

s WFS = MDA = MDI

Figure 1. Accuracy without feature selection (WFS) versus
MDA & MDI

7. DISCUSSION

Overall, our Random forest classifiers proved the best in terms of
accuracy and AUC. The only exception is with mention
embeddings in which SVM did better in terms of accuracy by at
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most 1 percentage point. Therefore, we base our conclusions only
on Random forest.

In terms of accuracy, there was not much difference between
several feature sets as shown on Figure 2. The two best feature
sets for accuracy were entity mentions with the union (88.58%)
or TAGME configurations (88.52%) and n-gram features with the
unigrams configuration (88.40%); these feature sets achieved the
highest AUC (.95), as well.

In terms of precision (Figure 3), n-grams outperformed other
feature sets for the correct label (.93) and entity mentions
obtained the best results for the not-correct label using the union
and TAGME configurations (.90, .89).

For F1-score (Figure 4), entity embeddings achieved the highest
score for the correct label (.89 using the union configuration)
closely followed by mention embeddings (union). Entity
mentions (using the union or TAGME -configurations) and
unigrams did better for not-correct (.91) followed by entity URIs
(.90 with TAGME and union) and n-grams.
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Figure 2. Accuracy results

When considering which class (correct, not-correct) we were best
able to predict in terms of precision (Figure 3), we found that the
detection of correct answers was better than not-correct answers,
with differences ranging from .01 to .25 with Random forest. N-
gram features were better at detecting correct answers than not-
correct ones; while entity mentions did better for the not-correct
(using union or TAGME) label. In 14 out of our 20 possible
configurations, the classifiers were more precise in detecting
correct answers. This is the case despite the unbalanced ratio of
35% correct answers and 65% not-correct answers used for
training. When we focus on the fl-score (Figure 4) we obtain
better results for the not-correct label. We observe that the union
configuration for entity embeddings and mention embeddings is
the best for correct answers while entity mentions (TAGME or
union) followed by unigrams outperform the other features for the
not-correct answers.

On average, unigrams are the best at differentiating between
correct and not-correct labels in terms of precision while entity
mentions (either with TAGME or Union) is preferred in terms of
fl-score.

The best configuration based on semantic annotations depends on
the considered evaluation metric. Based on accuracy, features that
use mentions (entity mentions and mention embeddings)
performed better with either union or TAGME. The feature sets
that use URIs (entity URIs and entity embeddings) performed
better with URIs obtained using TAGME. In both cases, the use
of TAGME alone obtains either the best result or is very close to
the highest value. For fl-score, the use of TAGME for entity
mentions and entity URIs provided the same results as the union
for both labels; additionally, TAGME and union are also the best
configurations for both entity mentions and entity URIs. Entity
embeddings and mention embeddings had their best f1-score on
the correct label using the union, but better f1-score for not-
correct using TAGME alone. When we average the f1-score for
both labels, we obtain higher results with TAGME. The reason
for very similar results with TAGME and the union is that the
annotations provided by Spotlight were often a subset of those
provided by TAGME.
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Figure 3. Precision results for Random forest

Both entity and mention embeddings performed worse than n-
gram features and semantic annotations models based on
accuracy. However, one interesting observation is that, for the
correct label, entity and mention embeddings outperformed all
features on fl-score (Figure 4). Entity embeddings obtained
slightly better results (precision, f1-score and accuracy) compared
to mention embeddings.

Our feature selection efforts show that MDI did not consistently
improve the overall accuracy of our classifiers. It was the MDA
feature selection technique which provided improvement in all
the cases. The increase in accuracy ranged from .3% to 4.9%.
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Figure 4. F1-score results for Random Forest

8. CONCLUSION

In this paper, we compared several vector-based feature sets
coupled with classifiers for the ASAG task.

In general, we showed that on average, entity mention features
(TAGME or union) are the top features in terms of f1-score while
n-gram features (unigrams) are the best in terms of precision. For
the detection of correct answers, we showed that n-gram features
(trigrams and n-grams) and features based on embeddings (entity
and mention embeddings with the union configuration) are the
most effective in terms of precision and f1-score respectively. In
terms of semantic annotations, TAGME provided the best
accuracy for each feature with the exception of entity mentions,
where the union configuration slightly outperformed TAGME
alone. Finally, the MDA feature selection technique slightly
improved the accuracy of all the classifiers.

One of the main limitations of this study is the unbalanced set of
labeled answers available in the corpus. Another limitation is
associated with the configuration of semantic annotators as we
only tested the default level of confidence for each annotator. One
additional limitation, for mention embeddings specifically, is the
relatively low coverage obtained using GloVe. We plan to address
these limitations in future work by testing the proposed features
against other available ASAG datasets. We also intend to
experiment with varying the level of confidence and similar
parameters of the semantic annotators. Another important step
will be to exploit a combination of the current features to benefit
from their respective strengths for the correct and not correct
labels. Finally, we will explore other methods for response
classification using additional features that exploit model answers
and deep learning architectures.
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ABSTRACT

Knowledge of prerequisite dependencies is crucial to several as-
pects of learning, from the organization of learning content to the

selection of personalized remediation or enrichment for each learner.

As the amount of content is scaled up, however, it becomes increas-
ingly difficult to manually specify all of the prerequisites among the
different content parts, necessitating automation. Since existing ap-
proaches to automatically inferring prerequisite dependencies rely
on analysis of content (e.g., topic modeling of text) or performance
(e.g., quiz results tied to content) data, they are not feasible in cases
where courses have no assessments or only short content pieces
(e.g., short video segments). In this paper, we propose an algo-
rithm that extracts prerequisite information using learner behav-
ioral data instead of content and performance data, and apply it
to an online short course. By modeling learner interaction with
course content through a recurrent neural network-based architec-
ture, our algorithm characterizes the prerequisite structure as latent
variables, and estimates them from learner behavior. Through eval-
uation on a dataset of roughly 12,000 learners in a course we hosted
on our platform, we show that our algorithm excels at both predict-
ing behavior and revealing fine-granular insights into prerequisite
dependencies between content segments, with validation provided
by a course administrator. Our approach of content analytics using
large-scale behavioral data complements existing approaches that
focus on course content and/or performance data.

1. INTRODUCTION

Recent advances in machine learning and big data have provided
opportunities to revamp the traditional “one-size-fits-all” approach
to education. Researchers have developed methods that analyze
massive learner and content data to provide personalized recom-
mendations on what actions learners should take, e.g., to read a
section of a textbook, watch a lecture video, or work on a prac-

Mung Chiang
College of Engineering
Purdue University
chiang@purdue.edu

tice question [19,24]. By catering to the needs of each individual
learner, such personalization methods can enhance learning effi-
cacy; see [1] for an overview.

By specifying an ordering of which learning content should be
used before others, content prerequisite structures provide impor-
tant guidance for the design of personalization algorithms. These
structures may be defined at multiple levels of granularity, from
across courses to within single pieces of learning content (e.g.,
between chunks of a video), or for specific units of knowledge
(often termed “knowledge components”, “skills”, or “concepts”).
Roughly speaking, learning content is deemed the prerequisite of
another if it contains knowledge that learners have to master before
studying the other. For example, Calculus is a prerequisite of Dif-
ferential Equations at the granularity of different courses; learners
should master the former before they learn the latter.

Several works have demonstrated the utility of prerequisite struc-
tures to learning and personalization. For one, [32] showed that
when instructors do not take these prerequisite structures into ac-
count when designing their course curriculums, learners do not
perform as well. Also, [33] showed that learners with high mas-
tery of prerequisite knowledge are much less likely to become con-
fused in learning tasks, compared to those with low mastery. More-
over, the works in [4, 37] showed that an important feature in the
prediction of a learner’s first responses on a particular skill is the
learner’s demonstrated mastery level on prerequisite skills. But ex-
isting methods for extracting prerequisites suffer from important
drawbacks that we will describe next.

1.1 Existing Methods for Prerequisite Struc-

ture Extraction
Explicit prerequisite structures, like those in [32], are labor-intensive
to construct manually and rarely available in practice, especially
when considering fine-granular prerequisites (e.g., between file seg-
ments). Inexplicit structures on the other hand, such as tables of
contents in textbooks [18] and knowledge graphs constructed from
large databases [3], typically only contain weak information about
prerequisites: they offer some information on how learning con-
tent should be ordered, but do not necessarily impact learner per-
formance or behavior. This observation has motivated the devel-
opment of automated methods for extracting explicit prerequisite
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structures from data. Existing methods of automation can be di-
vided into two main categories based on the type of data they use:
(i) learner data and (ii) content data.

Methods in the first category use one form of learner data al-
most exclusively: learner performance, which usually consists of
learners’ responses to assessment/quiz questions. These methods
have used several different models/algorithms to make inferences
from performance data, including causal graphs [28], structural
expectation-maximization [9], Bayesian estimation [14], hypoth-
esis testing [6], probabilistic association rules [10], convex opti-
mization [27], correlation/regression analysis [7], and approximate
Kalman filtering [21].

As for the second category, methods have leveraged several forms
of content data and metadata. [18], for instance, proposed using
the organization and unit titles in online textbooks to classify be-
tween prerequisite and outcome concepts. Others have involved
Wikipedia, either using the content on wiki pages to aid the extrac-
tion of concept maps in textbooks [34,35] or extracting prerequisite
structures among the pages themselves [22,31]. While [22] ana-
lyzed the links between pages, [31] uses both textual content and
the page creation and modification logs to extract prerequisites.

The major downside of these existing automation methods is that
they require substantial learner performance or content data, which
is not always available or accessible. Corporate training, for ex-
ample, is a learning scenario in which many courses have few if
any assessments; performance is in many cases assigned as a sin-
gle satisfactory/unsatisfactory outcome at the end of the course [8].
Methods that extract prerequisite structures based on learner per-
formance data, then, are not applicable in these settings. On the
other hand, in many interactive learning environments like educa-
tional games [23], content data is limited and not easily parsable; in
these settings, methods to infer prerequisites based on content data
(especially text) are not applicable. Moreover, in any learning sce-
nario, as the level at which prerequisites are desired becomes more
fine-grained, the amount of content data available in each content
piece becomes smaller.

As a result, there is a need to develop methods that can extract
prerequisite structures from sources of data that (i) are abundant
in different learning scenarios and (ii) can be captured within fine-
granular pieces of content, especially in settings where content and
performance data are limited.

1.2 Our Method and Contributions

In this paper, we develop the first methodology to extract prereq-
uisite structures from large-scale learner behavioral data, using a
novel recurrent neural network (RNN)-based probabilistic model.
Behavioral data measures learner interaction with course material,
typically in the form of clickstream logs that are generated based on
each mouse click; in this way, it can be captured on small pieces of
content in any online learning scenario. We demonstrate the ability
of our model to identify prerequisites between fine-granular content
segments in the setting of online short-courses, where performance
and content data are limited; for our particular dataset, the entire
course is less than 15 minutes in duration, and while the 12,000
learners do not respond to any assessment questions, they generate
almost 900,000 clickstreams.

Specifically, our methodology consists of three main steps:

Feature engineering. First, we analyze the behavioral data cap-
tured by our online learning platform in terms of a set of learning
features (Section 2). These features summarize a learner’s behavior
on each segment of content that they visit as one of four states: low
or high engagement if they studied the segment, and skipping back
or forward otherwise. In deriving the formulas to convert from data
to features, we consider cases of off-task behavior (e.g., idle time)
that should be filtered out. We also consider content features in our
model; since the content data is sparse, we embed each segment
according to pre-trained statistical language models.

Modeling and inference. Second, we infer the parameters
of our probabilistic model through training and validation on the
dataset. The RNN-based learner model we propose (Section 3)
consists of two main parts: (i) a latent knowledge state transition
model, which considers how a learner’s knowledge state changes
based on the segment visited and behavior exhibited, and (ii) a
learner behavior model, which characterizes the probability that the
learner exhibits a particular behavior based on their current knowl-
edge gaps. Our model parameters are trained by minimizing cross-
entropy loss in the prediction of learner behavior on segments they
visit.

Prerequisite analysis. Third, we analyze prerequisite infor-
mation for our dataset by examining a model parameter matrix
that specifies dependencies between segments (20 second chunks
of video in this course). To establish reliability, we start by evalu-
ating the performance of our model in predicting behavior on our
dataset (Section 4.2); in doing so, we find that it can obtain over
85% accuracy and significant improvements over baselines. Then,
we visualize the prerequisite matrix, discuss its insights it provides,
and verify them through a questionnaire provided to a course ad-
ministrator (Section 4.3).

At the end, we also describe how our model parameters can drive
content personalization. More generally, we believe that this work
will motivate a new research thrust in using human behavior to
aid content analytics: such approaches have the potential to ben-
efit applications that involve large-scale human-content interaction
but have only limited content data.

2. BEHAVIORS AND CONTENT:
DATA AND FEATURES

In this section, we detail our methods for processing learner behav-
ioral data. We first discuss the specific course dataset we consider,
then the data capture, and finally the computation of features from
this data that are used in our prerequisite identification algorithm.

2.1 Course and Enrollment

The dataset we use comes from an online course on the topic of
product development that we hosted on our course delivery plat-
form. This course consists of 4 sequential videos that we divide
into a total of 36 segments, with each segment spanning 20 seconds;
totaling less than 15 minutes, this qualifies as a short-course [8].

We let s = 1,2,...,S denote the index of the segments in the course
sequence. Our evaluation will focus on the roughly 12,000 learners
who enrolled in this course over a six-month period in 2017.
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Figure 1: Visualization of the topic distributions across video seg-
ments in the course, as inferred by LDA. We see that videos tend to
cover disparate sets of topics; therefore, this analysis does not help
us to extract prerequisite structures.

2.2 Data Capture

We focus on two types of data captured by the platform: (i) video-
watching clickstreams, which log each learner’s interactions with
the video player, and (ii) transcripts of the course content, mea-
sured in words. In total, this data consists of roughly 900,000 click-
streams and 1,700 words across the video segments.

Given such a limited text repository, relying on topic models alone
to extract prerequisite structures is infeasible. Nonetheless, we in-
corporate content data as one component of our methodology, since
we seek to use any data sources available to aid the performance of
our model. In later sections, we will experimentally validate the
impact of this input on model performance, and the possibility of
replacing it with other data.

Video-watching clickstreams. The data capture architecture
for our platform is event-driven, i.e., each event that a learner makes
is recorded. The following is the space of actions available to a
learner on the video scrub bar: Play (P1), Pause (Pa), Skip forward
(Sf), and Skip backward (Sb). There are also actions available out-
side of the scrubber: Enter video (En), Exit video (Ex), Window
foreground (Wf), and Window background (Wx), where Wf and Wx
dictate whether the course application is the current selection on
the device. Formally, the ith event created by learner u in the course
will be in the format

Ey(i) =< v(i),a(i),s'(i),s(0), p(i),b(i) >,

where v(i) is the video ID and a(i) is the type of action. s(i) is the
segment of the video player immediately after e(i) was fired, while
s’ (i) is the one immediately before. p(i) is the UNIX timestamp (in
seconds) of this event, and b(i) € {playing, paused} is the binary
state of the video player immediately after i happens.

For a video with multiple segments, when the learner plays through
the end of s, an event with a(i) = play, s'(i) = s, and s(i) = s + 1
will be generated.

Course content. The videos originate in .mp4 format for deliv-
ery to learners. To obtain the text transcripts, we divide videos to
length of 20-second long segments and employ open source speech-
to-text conversion software, creating one output for each segment
and further correcting any translation mistakes manually. Con-
cretely, the output for segment s in the bag-of-words representation
x; over a dictionary 2" = {wy,ws,...}, where x,(k) is the number
of times word wy, € 2" appears in s.

To further motivate our behavior-based approach to inferring pre-
requisites, in Figure 1 we show the progression of topics through
the segments in the course as inferred by the latent Dirichlet alloca-
tion (LDA) topic analysis algorithm [2]. LDA extracts document-
topic and topic-word distributions from a corpus of text separated
into documents; here, segments are treated as separate documents,
and the segment-topic distributions are plotted. According to this
model, each video focuses on fairly independent topics, with min-
imal overlap (e.g., the segments in the first video focus heavily
on topic 3, while those in the third focus almost entirely on topic
5). This analysis shows how topic analysis alone provides lim-
ited insights into prerequisite structures which likely extend across
videos, a point we will verify later in our model evaluation.

2.3 Feature Construction
‘We construct two types of features from our data: (i) video-watching
behaviors and (ii) text embedding vectors. The behaviors are learner-
specific, while the text vectors are not.

Video-watching behaviors. Let s(u,t) denote the segment
learner u visited at time index ¢ € {1,...,T,}, with T,, being the
total number of (not necessarily unique) segments u visited. The
time instance here increments whenever the learner transitions to a
different segment, i.e., s(u,t) # s(u,7 +1). In our model, we con-
sider the behavior of learner u at time  as a feature f,; € %, where
# = {LE,HE, SB,SF} is a set of four states summarizing behavior
on a segment: Low Engagement (LE), High Engagement (HE), Skip
Back (SB), and Skip Forward (SF).

fus 1s determined by analyzing the set of measurements E, ; that
occur for learner u during time 7. Letting i(r) and i(t + 1) be the
indices of the events where u transitions to s(u,7)! and s(u,z + 1),
respectively, then E,, , = {E, (i) : i(t) <i <i(t+1)}. From this, we
first calculate the time spent on s(u, ) by aggregating the changes in
timestamps between sequential events in E,, ;, excluding any points
of the app in the background that indicate learner off-task behavior:

Y, min(p(i+1)—p(i).T),
ii+1€E,,
a(i)#Wx
where 7, = 300 sec is an upper bound for idle time on each 20
second segment.

My(ur) =

If my(, 1) <3, then we infer that the learner has skipped over s(u,t);
in this case, if s(u,r + 1) > s(u,t), then it is a forward skip and
fuy = SF, whereas if s(u,r + 1) < s(u,t) then it is backwards and
fus = SB. On the other hand, if my, ) > 3, then the learner has
engaged with the segment; similar to [8], we quantify engagement
on s(u,t) as

l+ms(u,t)/"_15 *
esun ) = ()

lin other words, i(f) =i : s (i) # s(u,1),s(i) = s(u,1).
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Figure 2: Roll-out visualization of the architecture of our RNN-based learner behavior model. At time # + 1, we use the observed learner
behavior f,, at time ¢, the learner’s prior knowledge state A, ;, and the knowledge contained in the previous segment s(u,¢) to update their
current knowledge state. Then, we calculate the prerequisite knowledge gap and the learning goal knowledge gap using the prerequisite
structure R among segments, which decide the learner’s behavior at time ¢ + 1. Latent variable dependencies are denoted by solid arrows,

while the prerequisite dependencies are denoted by dashed arrows.

where i is the expected time spent on s, and o € (0, 1] is a param-
eter for the diminishing marginal returns of time spent on engage-
ment.” Intuitively, M) > My gives e, ) > 1. With this—and
My, ) = 3—we specify: if ey, ;) < 1, then engagement is low and
fus = LE, whereas if s(ut) = 1 itis high and f;,; = HE.

Course content embeddings. We now detail our approach to
processing course content data into features. As discussed, due to
the limited textual information in this application, applying stan-
dard natural language processing methods (such as word count
techniques [17] and LDA) may not be sufficient. Instead, we re-
sort to statistical language models that are pre-trained on web-scale
data; in particular, we use GloVe embeddings [26], a word-to-
vector mapping pre-trained on the Wikipedia 2014 and Gigaword
5 datasets. These embeddings are well suited as inputs to RNNs,
since the Euclidean distance (or cosine similarity) between GloVe
vectors provide useful insights into the linguistic similarities be-
tween the corresponding words [26].

Specifically, we seek a vector representation ys for segment s that
quantifies the material covered in s based on the bag-of-words
Xs. We first map each word wy € 2 to its corresponding vector
¥ € R1%0 in the pre-trained GloVe library,> where 100 is the choice
of dimension in the pre-trained embedding. We then aggregate the
word vectors in s to obtain the embedding y, = ¥ X, (k) - yx € R1%0.
To reduce the number of parameters under consideration, we fur-
ther perform dimensionality reduction of y, via principal compo-
nent analysis (PCA) [15], obtaining ys € RP fora parameter D; y,
is taken as the top-D principal components of the PCA. We will
consider the choice of D in our experiments section.

3. RNN-BASED MODEL

‘We now propose an RNN-based probabilistic model for learner be-
havior that uses the features defined in Section 2. The reason that

2For the 20 sec video segments in this course, we set 7y = 20 and
a = 0.1 by default.

3nttps://nlp.stanford.edu/projects/glove/

we choose RNN as a basis is that it is often used to model sequen-
tial data, such as text [13, 16] and user purchasing activities [25],
which is characteristic of learner behavioral sequences as well.

Our overall model architecture is visualized in Figure 2. It consists
of two main parts described in this section: (i) a latent knowledge
state transition model, and (ii) a learner behavior model.

3.1 Latent Knowledge State Transition Model
The state transition model is similar to that of generic RNNs.
In our context, the transition is induced by gaining knowledge
from watching a video segment. Letting h,, € RX denote the K-
dimensional knowledge state vector of learner u at time ¢, we model
the transition as

hy; =6 (Why,—1+1,-1+b), )

where W € REK*K denotes the state transition parameter matrix and
b € RX denotes the bias vector. ¢ (-) is a nonlinear function, for
which we will test a range of possible nonlinearities later in the
experiments section. I, ;1 is defined as

1= eu,tflUYs(u,l— 1)

to quantify the amount of knowledge the learner acquires from
watching segment s(u,7 — 1) (a setting that follows [211); Uy, ;1)
captures the knowledge contained in this segment, since y(, ;1 is
its GloVe embedding and U € RX*? s the input parameter matrix
that maps its text embedding to latent knowledge, while e, ;1 is the
scalar engagement variable which dictates the amount of Uy, ;1)
transferred to the learner. We parameterize e, ; with the behavioral
feature f,;:

e, if fu, =HE
euy =13 e if fu; =LE
0 if fus € {SB,SF}.

Here, e, ¢; € [0, 1] are parameters that characterize specific engage-
ment levels that HE and LE correspond to in our model. If a learner
skips a video segment, their engagement level is zero, so no knowl-
edge is gained.

Proceedings of the 11th International Conference on Educational Data Mining 69


https://nlp.stanford.edu/projects/glove/

Note that this characterization of engagement differs from that de-
scribed in [8,20]. In our model, when there is no knowledge input
(I,;—1 =0), W and b can be used to characterize other causes of
knowledge state transition, e.g., forgetting. For another example on
the relationship between engagement and learning, see [29].

3.2 Learner behavior model
The behavior model concerns the feature variable f, ;. We model
the probability that a learner selects each f € . with the following
softmax distribution:

ev?f- [ngz.r ZZ‘.;]T+df

P(fur=f)= @

Yres ev.7’ g, 20 )T +dp’

where the variables are g, ; € RK, Zys € RK, vy € R2K and dy e R.
The vectors v and the biases dr, together with latent state variables
8., and z,,;, decide learner behaviors on each video segment. g, ;
denotes the prerequisite knowledge gap and z, ; denotes the learn-
ing goal knowledge gap; they are defined from the knowledge state
transition model as follows:

Prerequisite knowledge gap: gu 1 *= Py(,.1) — Tu, is the prerequisite
knowledge gap vector. p,; denotes the required knowledge level of
segment s, and r,; denotes the portion of learner u’s knowledge
state at time 7 that is relevant to the prerequisite requirement of
segment s(u,1). Concretely, r,; is defined as

t—1
Fyp = Z Rs(u,r),s(u.t) Ay,

7=1

where the matrix R € {Ry U0}5*S, at the core of our model,
characterizes the prerequisite structure among segments. A large
value of R; ¢ implies segment s is a strong prerequisite of s, while
R; ¢ = 0 means s is not a prerequisite of s’. Note that the nonnega-
tivity constraint placed on the prerequisite structure matrix is nec-
essary for interpretability of the model parameters, since reversing
the sign of every parameter would lead to the same data likelihood,
rendering the model unidentifiable in the absence of this constraint.

Learning goal knowledge gap: 7,,; := ¢, —h, ;| denotes the learn-
ing goal knowledge gap vector. ¢, characterizes the learning goal
of learner u, i.e., a target knowledge state that they are satisfied
upon reaching, while h,,,_; denotes their previous knowledge state.
In general, ¢, can either be personally imposed (e.g., in optional,
recreational learning) or externally enforced (e.g., in institutional-
ized learning); for the course in this paper, it is the latter.

Model intuition. Our model is based on the intuition that there
are two factors driving a learner’s behavior while watching a par-
ticular video segment. The setup of these two factors enables us
to extract the prerequisite dependencies (R) among video segments
by observing the sequences of learner behaviors.

The first factor, parameterized by the prerequisite knowledge gap
vector g, characterizes whether the learner possesses enough
prerequisite knowledge to master the current segment. This gap
is given by the difference between the knowledge level required
to master the current segment (py(,,)) and the learner’s accumu-
lated knowledge from prerequisite segments (ry;). The learner
would have gained such knowledge by exhibiting high engage-
ment (f,, = HE) on the prerequisite segments; if they do not have
enough, they are more likely to skip backwards (f,,; = SB) to study

further.

The second factor, parameterized by the learning goal knowl-
edge gap vector z,;, characterizes whether the learner has already
reached their learning goal. This gap is given by the difference
between the goal (¢,) and the learner’s previous knowledge state
(hy;—1). If the learner has already accumulated enough knowl-
edge, they are more likely to exhibit low engagement (f,,; = LE) or
to skip forward (f;; = SF).

Parameter inference. We estimate the latent model parame-
ters, i.e., the input, transition, and output parameters U, W, and
v, the biases b, the latent engagement level parameters e, and e;,
the learning goal vectors ¢, and the prerequisite structure matrix R
by using the Adagrad optimizer [11] to minimize the cross-entropy
loss [12] on the observed behavior sequences. The cross-entropy
loss is the standard loss function for categorical data (each category
corresponds to a behavior in . = {LE, HE, SB, SF}). We implement
our inference algorithm in TensorFlow.*

4. EXPERIMENTS

In this section, we evaluate our model proposed in Section 3 on the
product development course. We first describe our experimental
setup, including training/validation and tuning procedures. Then,
we investigate the ability of our model to predict learner behavior
on future video segments, compared to baselines. Once we have
established model quality, we perform an exploratory analysis of
the prerequisite structure information in the model, and present the
results from sharing these insights with a course administrator.

4.1 Experimental Setup

Training and validation. We partition the original dataset to
two parts: (i) the training set, which is used to train models, and (ii)
the validation set, which is used to evaluate prediction performance.
‘We randomly select 90% of the learners to form the training set and
use the remaining 10% as the test set.

In each training epoch, we randomly select 800 learners from the
training set and use their behavioral data to calculate the gradient
of the overall cross-entropy loss with respect to our model parame-
ters. We then take a gradient step using the Adagrad optimizer [11]
and evaluate the prediction performance of our model on the vali-
dation set. Note that since the learners in the validation set are not
used in our training procedure, we do not have estimates of their
target knowledge state vector ¢,. Therefore, we take the average
of the estimated target knowledge state vectors over learners in the
training set and use it for learners in the validation set.

Metrics. We report the performance of our proposed model and
baselines using two standard evaluation metrics on the validation
dataset: (i) the cross entropy loss, and (ii) prediction accuracy,
which is simply the percent of behaviors that are predicted cor-
rectly. Lower loss and higher accuracy implies better performance.

Baselines. We focus on shallow RNN-type networks as base-
lines, since (i) they have been widely used to model sequential data

4https://www.tensorflow.org/
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and (ii) they have a similar architecture to our model, thereby pro-
viding a fair comparison.

First, we consider an RNN model with content GloVe embeddings
¥s as input and learner behaviors f,; as output, which we refer to
as RNN-G:

hu-,f = G(Uys(u.t) +Whu,t71 +b)
ev7f-h“«’+b.f

P(fus=1)= Vi, by

Yreze! :

In RNN-G, the input at every time step does not contain the
learner’s actual behavior in the last time step. Such a setting can
be disadvantageous when the input provides only limited informa-
tion on the current output. To investigate this, we also consider an
RNN model that feeds the ground truth behavior from the last time
step (fu,—1) back into the model as input at the current time step,
which we refer to as RNN-F:

hu,t = O-(Ufu,lfl +Wh,”,1 +b)
eV;hu.erf

P(fur=1)= VI, +b

Ypeze!/ 4

Here, we slightly abuse notation, using f, ;| € {0, l}|‘§z| to denote
the one-hot-encoded vector version of the observed learner action
at time r — 1 [12]. Note that this network structure has been used
to model sequential data, e.g., text; this technique is sometimes
referred to as teacher forcing [36].

These two baselines—RNN-G and RNN-F—can both use informa-
tion from previous time steps for the prediction of learner behavior
at the current time step. In some sequential prediction tasks, only
recent information is needed, whereas in other scenarios, long-term
dependencies must be considered; the latter may especially be true
in learning given how material builds on itself [38]. Since neither
RNN-G nor RNN-F support the use of information from several
time steps back, we will also consider the long short-term memory
(LSTM) network as a baseline algorithm, which we will refer to as
LSTM. Similar to RNN-F, we use previous learner behavior as the
input to the next time step in LSTM. The comparison between our
model and LSTM will show which is better at storing and retrieving
information from further back in time.

Parameter tuning. Several parameters must be tuned to opti-
mize the performance of each model. First is the dimension of
the latent knowledge state vector K, which applies to all models:
we sweep over K € {5,10,...,55}. Second is the dimension of
the GloVe embedding D, for our model and RNN-G: we consider
D € {5,10,...,45}, where D corresponds to the top-D principal
components of the PCA on the segment vectors.

We also examine the performance of our model with different
choices of the nonlinearity function ¢(-). For this, we use the
nonlinearities built in to TensorFlow: rectified linear units (relu),
exponential linear units (elu), hyperbolic tangent (tanh), soft plus
(softplus), and no nonlinearity (identity).

Through our experiments, we found that a constant learning rate of
0.01 and a total of 300-500 training epochs consistently led to the
best results, for all three baseline algorithms. As a result, we will
not perform more than 350 training epochs, since the performance

e—e Training Loss
+—+ Validation Accuracy
v— Validation Loss |

~--0-u-—u-

0 40 80 120 160 200 240 280 320
Number of Epoch

Figure 3: Performance of our model against the number of training
epochs. While the training loss continues to decrease, the valida-
tion loss stabilizes quickly after approximately 200 epochs.

does not significantly improve after that.

4.2 Prediction Performance

We consider model performance against several parameters. When
parameters are constant, they take the default values of K = 45,
D =30, and o = tanh.

Varying number of training epochs. In Figure 3, we plot
the cross entropy loss on both the training and validation sets, as
well as the accuracy on the validation set, as the number of training
epochs is varied for our model. We see that (i) the training loss
exhibits a continually decreasing trend with minimal fluctuations,
while (ii) the validation loss drops quickly initially but stabilizes
after around 200 epochs, and (iii) the validation accuracy stabilizes
quickly after about 20 epochs. Since the performance on the vali-
dation set remains stable after a large number of epochs, we con-
clude that our model does not easily overfit. In fact, implementing
dropout regularization [30] showed minimal impact on the perfor-
mance of our model. Therefore, we did not use dropout or any
other form of regularization in our other experiments.

Varying latent knowledge state dimension K. In Figure 4,
we plot (a) the cross entropy loss and (b) the accuracy of all four
models on the validation set against the dimension of the hidden
layer K. Overall, we see that our model outperforms every base-
line for each choice of K, and significantly so on the cross entropy
loss metric, which demonstrates the ability of our model to accu-
rately predict learner behavior. While all models show improving
performance as K increases, after K = 10 the improvement for our
model is minimal. The fact that both our model uses the same input
information yet outperforms RNN-F justifies our particular design
choices involving the prerequisite knowledge gap and learning goal
knowledge gap vectors.

We also see that RNN-G performs significantly worse than RNN-
F. This observation suggests that the features given by the content
data provide only limited information on learner behavior, which
validates our conjecture that the learning content itself (i.e., the
video transcripts) is a very limited data source. Finally, we note
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Figure 4: Prediction performance on the validation set as the dimension of the latent knowledge state vector (K) is varied. Our model
outperforms all baselines in each case tested, especially on the cross entropy loss metric, indicating an overall ability to predict learner
behavior. Moreover, the performance of our model is robust to the choice of K.

that among the baselines, LSTM slightly outperforms RNN-F, in-
dicating that in our application of online learning, there is benefit
to preserving information on behavior further back in time.

Varying input dimension D. In Figure 5, we plot (a) the cross
entropy loss and (b) the accuracy of our proposed model and RNN-
G against the dimension of the input GloVe embedding D on the
validation set. Overall, we see that the performance of both models
is insensitive to the choice of D. One possible explanation is that
even with very low-dimensional input (i.e., taking only the top few
principal components), the embeddings still encapsulate the video
transcript text effectively. To investigate this, in Figure 5, we label
the percentage of variance explained by the top-D principal com-
ponents of the GloVe embedding for every value of D. We see that
the top-5 principal components (i.e., D = 5) explain about 95% of
the total variance, which explains why increasing D beyond D =5
does not further improve the performance. This observation on the
percentage of variance explained provides more evidence that the
information contained in the textual content is limited.

Varying nonlinearity . In Table 1, we tabulate the cross en-
tropy loss and accuracy of our model on the validation set using
the different non-linearity functions ¢. Overall, while the elu non-
linearity achieves the best performance when considering both met-
rics, every choice of nonlinearity leads to very similar performance.
This suggests that our model is robust to the choice of nonlinearity
in the latent knowledge state transition.

4.3 Prerequisite Structure Analysis

Having established overall model quality, we now analyze the ex-
tracted prerequisite structure, i.e., the model matrix R. In doing so,
we will consider several examples that illustrate how the course was
constructed, referring to the video titles and segment transcripts as
needed. We then validate the insights through the results of a ques-
tionnaire on some of the particular findings that was provided to a
course administrator. This administrator possesses intimate knowl-
edge of the course content and how it was constructed.

To derive the insights, we consider two different cases of the ma-
trix: (a) R across the entire course, obtained from extracting the
prerequisite structure between all video segments, and (b) R" for
each video v, from estimating the structure between segments in
each video separately. Case (a) uses the results for K =45, D =
30, o = tanh from the previous experiment, while case (b) is a new
experiment with these settings.

4.3.1 Insights: Full course matrix

Figure 6(a) visualizes R across the course. We focus on a few
key findings here, some across videos and some for individual seg-
ments. First is that segments in the last two videos have substan-
tially more prerequisites than those in the first two. The only seg-
ment with significant prerequisites in the first two is Segment 8§,
while the only one without significant prerequisites in the second
two is Segment 13. At a high level, then, we can infer that the first
two videos are laying the groundwork for material covered later on.
This makes sense considering even just the titles of the videos, with
the first two geared towards explaining the “vision” and reasoning
for the development of this product, and the later two expounding
on the product’s “features” and technical description.

For individual segments, consider Segment 8 from the previous dis-
cussion. This segment has all previous ones as prerequisites, with
some more significant than others. The transcript for this segment
indicates a discussion on the demand for this type of product over
the next several years, which is traditionally viewed as “problem-
atic,” so it makes sense that learners should study Segments 0 to 7
first to understand the “vision” of this version of the product to mit-
igate the problem. Segments 1, 4, and 6 discuss “problem mitiga-
tion” in particular, consistent with them being larger prerequisites.
Another interesting case is Segment 26, for which there are several
prerequisite segments throughout the course, but the one immedi-
ately previous is not as significant. Segment 26 actually continues
with the theme of “problem mitigation,” which is discussed in Seg-
ment 24 but not in Segment 25. Segments 4, 11, and 19 reference
the particular method of “problem mitigation,” which is also con-

SWe omit exact video titles and transcripts in this section to pre-
serve anonymity, but provide enough context for the key points.
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Figure 5: Prediction performance on the validation set as the dimension of the input word embedding (D) is varied for both our model and
RNN-F. For each point, we label the percentage of variance in the input explained by the top-D principal components. The performance
remains largely unchanged as D increases in each case, which is consistent with over 98% of the variance being explained by the top-5

principal components (i.e., D =5).

Activation Functions | Formula Accuracy  Cross Entropy Loss
relu o(x)=xifx>0,0(x)=0ifx<0 0.861 0.444
tanh ox) = F& 0.861 0.445
elu o(x)=xifx>0,0(x)=€e"—1ifx<0 0.861 0.443
softplus o(x)=In(l4+¢) 0.861 0.447
identity o(x)=x 0.860 0.454

Table 1: Performance of our model with different choices of nonlinearity o (-). Except for the identity (no nonlinearity) which performs
worse, all nonlinearities lead to a similar performance, implying that our model is robust to the choice of nonlinearity.

sistent with them being strong prerequisites to Segment 26.

4.3.2 Insights: Individual video matrices

Figure 6(b) visualizes R" for separate videos v. Compared with
Figure 6(a), it is easier to compare segments within videos, but the
relative magnitudes of prerequisites between videos is lost. For
Video 4, we see that prerequisites within the video tend to become
weaker as the video progresses, which is not obvious in Figure 6(a).
For example, while Segment 23 has a heavy dependence on Seg-
ment 22, Segment 34 is only lightly dependent on a few segments
in the video. Being close to the end, Segment 34 is summarizing
information across the course, which is evident through its prereq-
uisites in Figure 6(a). The inferred relation between Segments 23
and 24 is consistent with both of these segments’ transcripts dis-
cussing particular technologies in the new product.

Another insight is that with the exception of Video 3, the last seg-
ment in each video has only light prerequisites within the video.
Intuitively, we would expect last segments to summarize the ma-
terial covered in the video, but such a review may not constitute
a strong prerequisite. The transcript of Video 3’s concluding Seg-
ment 21, on the other hand, indicates that it is a continuation of the
“product features” discussion.

4.3.3 Questionnaire and response

The questionnaire provided to the course administrator began with
a brief description of the algorithm and purpose. It then included a
visualization of the R matrix, and an enumeration of several state-

ments drawn from our insights ranging from conclusions on partic-
ular segments to general trends across multiple segments. A sample
statement provided is “this segment does not have any prerequi-
sites, i.e., studying prior segments is not helpful to its understand-
ing.” The task of the course administrator was to indicate their level
of agreement with each statement on a five-point Likert Scale, from
1 (strong disagreement) to 5 (strong agreement).

80% of the responses we obtained to the statements were in the
range of 4-5. This indicates that the course administrator generally
agreed with the the prerequisite dependencies extracted by our al-
gorithm, and in turn gives additional validity to our proposed model
in terms of its ability to generate human-interpretable insights.

The disagreements tended to be for statements that compared the
magnitude to which two particular segments were prerequisites to
another segment, i.e., claiming that one was a stronger prerequisite
to the segment than the other. Since the agreements, by contrast,
were on more general statements concerning the existence and/or
strength of prerequisites to a given segment or group of segments
(e.g., “segment 1 is a strong prerequisite to segment 2”, “segments
in part 1 of the course tend to have more dependencies than seg-
ments in part 3”), our algorithm may not differentiate magnitudes
of prerequisites for a particular segment well. There are several
possible reasons for this. One is the method used to segment the
content: rather than choosing uniform 20 second chunks of video,
for example, it may be desirable to incorporate segmentation into
the modeling procedure, e.g., by maximizing the difference in pre-
requisites between adjacent segments. Another is the treatment and
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Figure 6: Visualizations of the prerequisite matrices extracted in two ways: (a) R across the entire course, and (b) R” for each video
v separately. The (s,s")th entry (the entry on the sth row and s'th column, with s < s’) characterizes how much segment s serves as a
prerequisite of segment s’. The solid lines delineate the four different videos.

presentation of the values comprising the R matrix: rather than re-
porting these as real numbers, it may be desirable to group them
into relative magnitudes, e.g., low/medium/high or a simple binary
indicator of whether there is a noteworthy dependency. Educators
may be more interested in broader distinctions.

5.  CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a recurrent neural network-based
model to extract prerequisite structure among fine-granular pieces
of learning content. We modeled such prerequisite structure infor-
mation as latent variables, and extracted it from learner behavioral
data. We applied our model to an online course dataset that con-
tains the clickstream activity behavioral data from 12,000 learners
watching course videos. Our experiments showed that our model
significantly outperforms baseline models in predicting learner be-
havior and, more importantly, that it effectively extracts both intra-
and inter-video prerequisite dependencies among video segments;
we were able to verify these insights through responses to a ques-
tionnaire provided to a course administrator. More generally, our
work demonstrated that large-scale learner behavioral data can of-
fer interesting insight into learning content; therefore, it is impor-
tant to use learner behavioral data to aid content analytics, espe-
cially when content data is sparse and learner performance data is
unavailable.

There are several avenues of future work. One is experimen-
tally testing whether the extracted prerequisite structure can lead
to better personalized remediation or enrichment activities selec-
tion [5, 19,27]. Another is adapting our model to other content
types, e.g., educational games [23]. Also, one can try to adapt out
model to extract prerequisite structures in longer (e.g., semester-
long) courses by aggregating learner behavior at a higher granular-
ity level, and compare the results against that obtained via tradi-
tional, content data-based methods. Moreover, to further improve
the insights provided by our model, two approaches can be inves-
tigated as discussed: incorporating segmentation into the model it-
self to e.g., maximize the difference in prerequisites between adja-
cent segments, and grouping the values in the R matrix into discrete
categories. Finally, additional slack variables can be incorporated
into to our model to allow variation in learner behaviors; learners

sometimes make poor assessments about their prerequisite knowl-
edge and are unable to navigate across the course efficiently.

In particular, for personalization, note that the prerequisite struc-
tures (the R matrix) our model extracts can drive automated content
individualization. For example, when learner u reaches segment s
at time ¢, a course delivery system could check whether the pre-
requisite knowledge gap g, > 0. If not, then a combination of
segments s for which R, ¢ is high and engagement e; is low (i.e.,
significant prerequisites that the learner has not studied) can be dis-
played first. The system could then update g, , as these prerequi-
sites are studied, and “unlock” the segment s" once the learner has
engaged with them enough (when the prerequisite knowledge gap
g, diminishes). We are currently implementing such a method.
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ABSTRACT

Adaptive online courses are designed to automatically customize
material for different users, typically based on data captured dur-
ing the course. Assessing the quality of these adaptive courses,
however, can be difficult. Traditional assessment methods for (ma-
chine) learning algorithms, such as comparison against a ground
truth, are often unavailable due to education’s unique goal of affect-
ing both internal user knowledge, which cannot be directly mea-
sured, as well as external, measurable performance. Traditional
metrics for education like quiz scores, on the other hand, do not
necessarily capture the adaptive course’s ability to present the right
material to different users. In this work, we present a mathematical
framework for developing scalable, efficiently computable metrics
for these courses that can be used by instructors to gauge the effi-
cacy of the adaptation and their course content. Our metric frame-
work takes as input a set of quantities describing user activities in
the course, and balances definitions of user consistency and over-
all efficacy as inferred by the quantity distributions. We support
the metric definitions by comparing the results of a comprehensive
statistical analysis with a sample metric evaluation on a dataset of
roughly 5,000 users from an online chess platform. In doing so, we
find that our metrics yield important insights about the course that
are embedded in the larger statistical analysis, as well as additional
insights into student drop-off rates.

1. INTRODUCTION

Online learning has become a popular way for universities, corpo-
rations, and other institutions to offer full classes and certification
programs at scale to students outside the traditional campus set-
ting. Yet students in these courses, particularly in those with open
enrollment such as Massive Open Online Courses (MOOCs), often
exhibit a wide range of backgrounds, degrees of preparedness, and
goals. For example, while some may wish to indulge a personal
interest, others may wish to refresh their memory of the course ma-
terial in preparation for a job [11].

Adaptive online courses automatically individualize the content pre-
sented to users, and thus hold promise of accommodating student
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heterogeneity at scale [4]. These course delivery systems may lever-
age a wide array of measurements to personalize material, such as
user performance on assessments and user behavior exhibited while
interacting with content and in discussion forums [4]. Both of these
forms of data — behavioral and performance — have been shown to
be predictive of learning outcomes [2, 6], indicating that they con-
tain information about whether a user’s goals have been met. Fully
analyzing the different types of user behavior and performance in
a course, however, may prove to be overwhelming to an instruc-
tor, and may require significant knowledge of statistics in order to
properly interpret the analysis.

Thus, it is useful to develop summary metrics that break down in-
sights from user data into a few easily understandable statistics,
particularly for large-scale online courses. Such metrics may also
allow direct comparisons of the effectiveness of different courses,
or of different units within a course. In this work, we propose
a mathematical framework and guidelines for such metrics, and
demonstrate particular versions of them on a MOOC dataset.

1.1 Research Challenges and Metric Require-

ments

Education influences both (i) externally observable activity dur-
ing a course (e.g., performance on quizzes) and (ii) internal user
states during and after a course (e.g., knowledge transfer from the
course to the workplace) [12]. Any metrics for online (or offline)
course efficacy should account for changes in both, but internal
changes cannot be observed directly and are often approximated
by responses to quiz questions, which are themselves external. For
this reason, it is nearly impossible to define a single “ground truth”
measure of course quality through conventional learning measure-
ments [24]. Online courses can compensate for this difficulty by
collecting many different types of user data, including both user
performance as well as user behavioral measurements, which can
give a rich picture of how users benefit from the content. At the
same time, integrating insights from heterogeneous sources of learn-
ing data is itself a challenging task [2].

Adaptive online courses add a further challenge beyond heteroge-
neous data: unlike non-adaptive courses, they are designed to offer
users a consistent experience. A course evaluation criterion must
then account for not only overall course efficacy, but also its con-
sistency across users: such consistency encapsulates how well the
adaptation can account for different users and helps to ensure ro-
bustness to new, possibly different users joining the system [9]. We
therefore identify the following three research challenges:
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C1. Incorporating heterogeneous user data: There are at least
three types of user data: (i) behavioral, e.g., clickstream measure-
ments on course content, (ii) performance, both within and external
to the course, and (iii) navigation, measuring how closely users fol-
low their adaptation path. A metric should be able to combine all or
only a subset of this data, and/or other sources, depending on what
data is available.

Each of these three measurement types can provide different in-
sights into course efficacy. For instance, some users may obtain
high quiz performance while spending a minimal amount of time
engaging with the content. This would indicate “success” if a user
simply wished to master the course material, but “failure” if he/she
also wanted to be intellectually challenged [4]. The navigation data
could shed light on this distinction: those who deviate from the
recommended path are probably searching for additional material,
while those following it are satisfied with the content provided [2].
By combining different types of user measurements, a metric can
account for the fact that a low score in one type may not necessarily
indicate an ineffective course.

C2. Balancing user consistency with efficacy: Both adaptive and
non-adaptive online courses can be evaluated with the user mea-
surements. In either case, high performance may indicate that the
course was effective. However, the multiple paths through the ma-
terial in the case of an adaptive course should also ensure a consis-
tent user experience [4]; high-performing users do not necessarily
indicate that the adaptation mechanism succeeded. A metric must
thus incorporate consistency as well as an efficacy score.

C3. Online computations: Users generally take weeks or months
to complete an online course, which can result in long evaluation
cycles if the metric value can only be computed once the course
has ended (e.g., with A/B testing or surveys). A metric that can
be computed efficiently and regularly updated as users progress
through the course is desirable. This online capability would al-
low instructors to receive feedback as the course progresses, giving
them a better opportunity to address weaknesses revealed before
the course completes.

1.2 Our Contributions

In this work, we formulate a mathematical framework for metrics
that address challenges C1-C3. Our framework takes as input a
set of user characteristics derived from observed data of an online
course, and we quantify several example characteristics (e.g., path
deviation, engagement). To demonstrate our solution, we leverage
data from a course that we hosted for Velocity Chess, a popular
online chess competition platform that teaches users techniques for
playing the game. With this dataset, we compare a comprehensive
statistical analysis of the course data with an instance of our metric,
and show that the metric provides insights that are difficult to glean
from the analysis alone.

More specifically, our work answers the following questions:

(i) How to define metrics that addresses the three challenges? We
begin in the next section by presenting our metric framework. To
address C2, it includes statistical factors for (i) the consistency of
learning characteristics over different users and course units, and
(ii) the overall efficacy of the course as indicated by the actual char-
acteristic values. In doing so, to address C1, we account for the fact
that different quantities may have different relationships with effi-
cacy; for example, while efficacy is generally linear in quiz perfor-

mance, i.e., higher performance is a positive indicator, the relation-
ship with time spent is concave, i.e., excessively high time spent
indicates confusion. Our metric parameters can also be flexibly
chosen to consider different subsets of the quantities, and to induce
different priorities on consistency and efficacy. Finally, given the
fine-granular timescale at which certain types of learning data are
captured, the metric can be computed at any point in the course,
addressing C3.

(ii) How to quantify characteristics to be assessed by the metrics?
After presenting the metric framework, we derive formulas for sev-
eral learning quantities that characterize user actions associated
with efficacy in a course. We consider three categories of quan-
tities in particular: behavioral (e.g., engagement and time spent on
content), performance (e.g., quiz scores and knowledge transfer),
and navigation (e.g., deviation from recommendations). While the
exact formulas we present for these quantities are specific to the
data capture formats of our system, they are readily extensible to
other collection mechanisms and content formats too. In perform-
ing a statistical analysis of our dataset in terms of these quantities,
we observe that (i) while behavior and performance tend to increase
throughout the course, they exhibit high variance in different units,
and (ii) little correlation exists between most quantities. (i) and (ii)
indicate potential room for improvement in terms of efficacy and
consistency, respectively.

(iii) How do the insights of the metrics compare to those revealed
through full statistical analyses? We then evaluate an instance of
our metrics on this dataset, and compare the findings to those of the
more comprehensive statistical analysis. Our metric shows that (i)
50% of the users attain less than 16% of the maximum observed
metric value, and (ii) a considerable number of users are highly en-
gaged in the course, but performance tends to be low. Both insights
are consistent with the findings from the statistical analysis. Addi-
tionally, we find that the metric output contains more insight into
learner attrition rates than do other course quantities. Overall, we
find that our metric can successfully quantify course consistency
and effectiveness, giving instructors straightforward statistics that
allow them to improve future versions of the course.

We finally review related work on metrics for online courses and
recommendation platforms more generally, and then discuss im-
plications and extensions of the work before concluding the pa-
per. In particular, though our metric is designed for adaptive online
courses, it is applicable to any personalized recommender system
in which multiple signals can give insight into efficacy.

2. OUR COURSE METRIC FRAMEWORK

In this section, we present our metric framework for evaluating
adaptive online courses. We first formalize the general architecture
of adaptive courses and then specify the combination of consistency
and efficacy mathematically.

2.1 Course Architecture and Metric Input

‘We assume that any adaptive course is organized into a set of units
% , with u € % denoting a particular unit u. Within each u there
can be one or more content files that a user is expected to study,
e.g., videos or PDF documents. At the end of u, there may be an
assessment quiz consisting of a series of questions. We assume that
the course captures user behavior while interacting with the content
in u as well as user performance on the corresponding quiz.

Generally speaking, the adaptation logic of the course will recom-
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mend for each user a sequence of units U, = (uy(1),...,ur(t)) to
visit, with u, (i) € % denoting the one recommended at time i. This
may be different than the actual chronology U, = (uq(1), ...,ua(t4))
of the units that the user chooses to visit. The determination of
ur(i) may in general be based on analysis of the user’s actions in
ug(1),...,uq(i—1), including but not limited to their behaviors from
interacting with the content, their performance on the quizzes, and
potentially sources of data external to the course that are available
to the system. Note that certain units may appear multiple times in
U, or U,, as users may or may be recommended to repeat/revisit
one or more units.

2.1.1 Quantities Q

Our metric takes as input a set of characteristics regarding users
in the course to be jointly assessed, which we refer to as the set
of quantities Q. Each quantity ¢ € O can belong to one of at least
three categories: behavioral, performance, or navigation, with the
latter involving differences between U, and U,. The instructor can
choose (i) which characteristics are to be used as quantities in Q,
and (ii) whether each ¢ is for a particular unit « or across all units
in the course. For instance, Q could be just time spent 7}, in a single
unit u, or Q = {71, 1>, ...,81,42, ...} could be the time spent 7;, and
assessment grades g, over all units u in the course.

In this way, the quantities are representative of the (heterogeneous)
user feedback to be analyzed by the metric. We discuss the defini-
tion of particular quantities for our dataset and data capture system
in the next section.

2.2 Distribution-based Metric Framework
The metric framework must use the quantities to determine course
consistency and efficacy.

2.2.1 Quantifying Consistency

We incorporate a measure of consistency through the distribution
of the quantities Q over users. We construct this distribution over
a discretized set of possible quantity combinations, i.e., all feasible
combinations of quantities that users could exhibit.

Formally, let 2" denote the support of the distribution, i.e., the set
of feasible outcomes (note that our empirical samples may cover
only a subset of the theoretically feasible outcomes). Further, let
x = (x1,%2,....X|g|) € £  be a particular point in the support, with
X4 being the value of quantity g at this point. The empirical cumu-
lative distribution function (CDF) Fp(x) over the set of quantities Q
is then obtained as Fy(x) = wlv—l Yyea Hyq < x4 VYq} along with
the associated probability distribution function fp(x). Here, 1 is
the indicator function, and since fp(x) is defined over a finite sup-
port we have Y.c 9~ fo(x) = L.

We wish for the consistency measure to be maximized when the
distribution fp(x) is concentrated at a single point. To this end, we
define the consistency measure

My(2) =}, h(fo())

xeZ

where h is a differentiable, strictly convex function on [0, 1] with
h(0) = 0 (no density at x should map to no change in the measure).
Strict convexity of & ensures that as density is distributed across
more points, the consistency Mé(ﬁt’ ) will decrease, a property that
we prove formally in our online technical report (see Proposition
1) [7]. We could set i(x) = x2, for example.

2.2.2 Combining Efficacy and Consistency

The consistency measure M&(,%” ) does not carry any information
about efficacy: it can be maximized if users concentrate at any
point x € Z°, regardless of how effective the course is for users
at that point. Our metric framework must also incorporate the ac-
tual quantity values x4. To do this, we modify Mg (2") by scaling

the (fp(x)) by a function of the observed xg:
My(2) = ¥, X 2wk (folx) (1)

xeZ qeQ

We suppose that z,(x,) > 0 for each x € 2. Different choices of
the function z, can then put greater or lesser emphasis on consis-
tency over quantity monotonicity.

Choosing z,. For a given distribution fp(x), Mf, is monotonically
increasing in z4(x4) for each x,. While different values of x for a
given individual user would change the estimated distribution fp,
we suppose that there are sufficiently many users that these changes
are small and do not affect M?¥,’s overall monotonicity. The function
z4 must therefore be chosen separately for each quantity ¢ to map
more effective x4 to a higher z(x,).

For quantities that are monotonically related to course effective-
ness, e.g., quiz performance, we can take z4(x) = x. Most of the
quantities g we consider in this work fall into this category, but two
of them do not. The first is time spent: a course is ineffective for
users who spend an excessively short or long amount of time on
it [1,2]. The second is deviation from the adaptive course’s recom-
mended path: some deviation from the recommended path can be
helpful, particularly to review additional content, but an excessive
amount indicates the adaptation is not meeting users’ needs. Thus,
if g represents either of these quantities, we should take z, to be a
function that initially increases with x; and then decreases, e.g., a
gamma function.

The z; must also have a component to adjust how much we wish
to emphasize consistency compared to monotonicity. For instance,
if we define z,(x,;) = (14 x,4)* for the parameter a € [0,0), then
at o = 0 we would only consider consistency (z4 = 1). As ot — oo,
the z4 term in M7, would dominate the A(fp) term, and a larger
concentration of users at a more effective point x € 2~ would re-
sult in a larger marginal increase in M?,, when compared with the
increase at a smaller value of o. Thus, for larger values of «, the
metric would attain a greater value if a few users have a very posi-
tive experience, compared to if all users have a consistent, moder-
ately positive experience. We formally quantify this insight in our
online technical report (see Proposition 2) [7] by considering, for
each value of «, the set of quantity values x for which a consistent
experience concentrated at x yields a higher metric value than an
inconsistent, uniform distribution of user characteristics over the
entire set of feasible quantity values 2.

3. DERIVING QUANTITIES FROM DATA

In this section, we derive several specific quantities from learning
data that can form the set Q in our metric framework. We do so
based on data formats from our course delivery system, consider-
ing the case of an adaptive online course we hosted for Velocity
Chess, an open chess competition website. We will categorize user
activities into three main quantity types: navigation, behavioral,
and performance.

While formulating the quantities, we also perform a comprehen-
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Figure 1: The course consists of seven units: a welcome unit (unit 0), the diagnostic test (unit 1), four core units (units 2-5), and a completion
page (unit 6). The adaptation logic is also indicated in the diagram. The percentages indicate the fraction of times that recommendation was
made, e.g., in unit 3, a user will answer the quiz and be recommended to advance to unit 4 57% of the time (as opposed to failing the quiz or

dropping off before finishing the quiz).

sive statistical analysis of the dataset. In doing so, we make three
main findings: (i) many users deviate significantly from their rec-
ommended paths, (ii) there is high variability in user behavior and
performance, and (iii) user activity and performance tend to in-
crease later in the course. In the next section, we will see that our
metric framework also reveals these insights.

Statistical tests. In certain cases, we will run statistical tests to
compare distributions of quantities so as to derive qualitative in-
sights into the course efficacy. For these, we will report the p-value
(p) and the corresponding test — Wilcoxon Rank Sum (WRS), F-
test of Variance, or Pearson correlation [21] — in the description.

3.1 Course Structure and Data Capture

The course we analyze teaches users the Pins strategy for playing
chess, from beginner to advanced levels, individualizing the ma-
terial based on the user’s inferred level. It was open to all site
users starting in December 2015; we consider the data collected
over the one-year time period from December 2015 to 2016, com-
prising 4,877 enrolled users.

The course architecture and adaptation logic are defined in Fig-
ure 1. The content is divided into six units u = 0,...,6. The core
material of the course is contained in Units 2-5, which are of in-
creasing difficulty. Each of these “core units” is comprised of a
series of slides and ends with a quiz; after completing the quiz, the
course’s adaptation logic directs users to a new unit based on their
quiz performance. For instance, an average performer may be rec-
ommended to proceed to the next unit, but a user who failed the
quiz may be asked to repeat that unit. Unit 1 is a diagnostic test
that all users take, based on the results of which the adaptation will
recommend a core unit to start at.

Clickstream event capture. Each slide in the course is either
video-based or text-based. For video slides, the user has a scroll
bar to navigate the video, and all playback events are captured by
the system; these consist of pause, play, scrub (either forward or
backward), and replay (i.e., starting the slide over), together with
the position of the video at which the event occurs. For text slides,
there is a single playback event when the user accesses it. In both

cases, a slide change event is generated when the user moves to a
new slide. Slide IDs and UNIX timestamps of all events are also
recorded; the IDs include both the previous (immediately before
event) and next (immediately after) slides, which differ for change
events.

The system also records user navigation events independent of par-
ticular units: unit enter and exit, course login and logout, and
application foreground (fgnd) and background (bgnd), i.e.,
when the application is the current active tab on the user’s com-
puter. Using these events, we are able to infer a user’s navigation
between units and their behavior within units. For their quiz perfor-
mance, we use the response events that the system collects after a
user answers a question, indicating whether the answer was correct
or not.

3.2 Quantifying User Navigation

We first investigate user progression through the course units, and
use that to define a navigation quantity. Recall that while the sys-
tem itself generates an adaptation path U, for each user, the user’s
chosen path U, may deviate from the system recommendation. We
count a unit as “visited” in U, if the user spent at least 5 seconds
on the material in the unit; time spent on the unit’s material is itself
a quantity defined in later sections.

Unit-to-unit transitions. 2,186 out of 4,877 users entered the di-
agnostic test (unit 1) from the introduction (unit 0). For subse-
quent units, the percentages in Figure 1 summarize the users’ rec-
ommended paths U,:

Skill branching: Of the 1,310 users who completed the diagnos-
tic test, the majority (68%) were placed either at the most begin-
ner or the most advanced level. This heterogeneity is common in
MOOCs.

Repeating vs. advancing: When placed in core unit u, the frac-
tion recommended to advance to u + 1 as the next step increased
in u (40% to 70%). As users get further through the course, they
are more motivated to finish (25% of those who accessed the di-
agnostic test ended up finishing). Interestingly, very few users are
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Figure 2: Comparison between (a) user navigation and (b) recommended navigation between units. A point (j,i) in the diagram is the
fraction of times unit j was selected while starting on unit i. (c) gives the difference in fractions, illustrating a strong deviation between actual
and recommended transitions between units. This is supported by (d) the empirical CDF of the Levenshtein distance d between actual and

recommended sequences.

recommended to repeat the core units (less than 3.7% in each case).
The remaining users dropped out; we will investigate drop-off fur-
ther in the next section.

Figures 2a-c show the discrepancies in unit-to-unit transitions be-
tween user behavior U, (a) and system recommendations U, (b),
with the difference between the fractions plotted in (c). In the core
units, the vast majority of recommendations are to advance from u
to u+ 1, as discussed above. Users’ actual paths, on the other hand,
are more diverse: there are visibly more repetitions than the system
recommends, and also occasional skips back to prior units. Thus,
many users likely feel the need for more course content review than
is recommended.

Path deviation quantity. We quantify navigation as users’ devia-
tion from their recommended paths through the course. To do this,

recall the notation U, = (uy(1),...,ur(t;)) and Uy = (ug(1), ..., uq(ta)).

For this course, we always have 7, > ¢, because navigation can only
add steps to the recommended path; users cannot skip units unless
recommended. From this, we define the path deviation quantity

1
d=—v(Uy,,U,
‘Ua‘V( a r)

where v(-) is the Levenshtein (edit) distance between the two se-
quences [26]. We choose Levenshtein rather than other distance
metrics, e.g., longest common subsequence, because it allows for
insertion, deletion, and substitution operations in between strings.
In our application, insertion captures users adding additional revis-
ing units into U, from U,, and substitution captures them choosing
to visit different units than those recommended. Division by |U,|
ensures that d € [0,1).

Figure 2d gives the cumulative distribution function (CDF) of the
quantity d over users in the dataset.! The mean deviation is 0.36,
which can be interpreted as user paths being 36% different from
the recommendations on average. On the one extreme, about 22%
of users follow the recommendations exactly (i.e., d = 0), while on
the other hand, 25% of users deviate by 56% or more.

3.3 Quantifying User Behavior
‘We derive three quantities of user behavior within units: time spent,
completion rate, and engagement.

'In this plot, we only consider users with |U,| > 2, i.e., those who
proceeded past the diagnostic test.

3.3.1 Defining Behavioral Quantities

Let E = (ey,...,en) be the sequence of n clickstream events gen-
erated by a user in the course. For each event ¢, let s(e;) denote
its next slide ID, i.e., the ID immediately after. We write s € S, to
denote that slide s appears in unit u.

Time spent. Let #(e;) be the timestamp of event ¢;. The time
registered for the interval between e; and ey | is:
7, - dmin(t(exr) —1(ex), 1), if e, # bgnd
k= .
0, otherwise
In other words, we do not consider time intervals for which the
app is in the background, and set the parameter T = 600 seconds
to upper bound the time between actions, capping excessively long

intervals when the user likely walked away. From these intervals,
the time spent on slide s, 7, and the time in unit u, 7;,, are

=Y T T.=)T,

k: s(ex)=s SES,

since s(e;) = s implies that 7} is time spent on s.

Completion rate. Completion of slide s is a binary measure, de-
fined as Ry = 1 if Ty > € and 0 otherwise. We set € = 5 sec so that
if the user spent at least 5 seconds on s it is considered completed.
From this, the completion rate of unit u is defined as

1

:mzRﬁ

SES,

Ry

where |S,| is the number of slides in u. Note that R, is between 0
(no slides completed) and 1 (all completed).

Engagement. Let 7; be the “expected” time spent on slide s. Fol-
lowing the method proposed in [6], we calculate the engagement of
a user on unit u as

a o
e, = min <y><Ru>< H (71+§/TS> ) 1>.

SES,

Here, oo > 0 models the diminishing marginal return on time spent,
i.e., more time spent on the same slide counts incrementally less
towards engagement. The division by 2 makes the computation
relative to a user who spends the expected Ty = T; on each slide.
v € (0,1] is a constant that controls the overall spread of the dis-
tribution; a user who registers the expected time spent and 100%
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Figure 3: Distributions of time spent, completion rate, and engagement across units in our dataset. Each quantity is considered both (i) for
all user visits to a unit in a-c and (ii) for all visits past the first one (i.e., repeating) in d-f. The core units 2-5 each exhibit significant variation

in user behavior.

completion on each slide will have e, = 7. By default, we set y =1,
o =0.1, and T, = 60 sec.?

All three behavioral quantities — time spent 7, completion rate R,,,
and engagement e, — have been defined here on a per-unit basis.
We also consider them at a course level to get a complete picture of
overall behavior. For these details, see online technical report [7].

3.3.2  Behavioral Analysis

Figure 3 gives boxplots of the three behavioral quantities in our
dataset, across units. For each quantity, we show behavior over all
user Vvisits to units, as well as repeating visits only.

We first observe that behavior in the core units exhibits high varia-
tion in each of the quantities. The interquartile ranges (IQR) of R,
and e, are between 0.75 and 0.90, out of a maximum range of 1.0.
The ratio of the IQR to the median — a non-parametric coefficient
of variation [21] — is larger than 1.2 in each case, up to 4.6 for time
spent in unit 4. The IQRs for time spent are up to 275 sec.

Also, user activity tends to increase in later core units (WRS p <
0.033). While time spent (7;,) is reasonably consistent in units 2
to 5 — with medians around 60 sec — completion rate (R,) and en-
gagement (e,) both increase considerably from units 3 to 5. In
particular, the median R, rises from 0.42 to 0.63 and the median
e, increases from 0.43 to 0.71. The WRS p-values associated with
these changes are significant (p < 0.033) in each case. Combined
with the consistent values of 7;,, this implies that users are distribut-
ing their time more evenly across slides in later units. This is some-
what surprising because the later material is more challenging, so
we would expect certain slides to require more time.

For repetitions, the median 7, drops by < 25 seconds, while R,
and e, drop more substantially, from 0.17 to 0.39 depending on
the unit. The small drops in time spent indicate that users spend a
significant amount of time repeating. Coupled with large declines
in completion rate, this implies that overall, users are focusing on

21 minute is the approximate median of time spent on each slide in
the dataset.
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a more specific set of slides while repeating. Large variations in
behavior, however, remain: the third quartiles of R, and e, barely
move at all.

3.4 Quantifying User Performance
We derive two quantities for user performance: quiz performance
and earned virtual currency (called vChips).

3.4.1 Defining Performance Quantities

Quiz performance. Let .4, = {ny,ny,...} denote the set of ques-
tions in the question bank for unit #. Upon a user’s /th visit to the
quiz for u, they will be given a random subset .#;! C A, of these
questions to answer. The number of points earned on the /th visit
to u is calculated as pf, =Y, pﬂl, where plq = 1 if the user answered
question ¢ correctly on the /th attempt, and O otherwise. The total
points earned on u is then p, =Y, pfl, and the total points earned in
the course is p. = Y, p,. From this, the user’s quiz grade on u, g,
and grade in the course, g., are

gu:pu/Nlu gc:pc/NCa

where N, =Y |e/1{41 | is the total number of questions answered by
user in unit u, and N, = Y, N, is the total number given to the
user in the course. In this way, g, and g, are between 0 (no points
received) and 1 (all questions answered correctly). Note that, due
to question randomization and course adaptivity, Ji{f, Ny, and N,
will vary for each user.

vChips. Velocity Chess awards users vChips® — a form of virtual
currency — based on their activity and performance on the site. The
vChips can be obtained by winning chess games, winning prizes in
tournaments, finishing daily challenges, and correctly solving chess
puzzles. They can thus measure players’ chess skill in practice.

3.4.2  Performance Analysis

Figure 4 gives the distributions of the performance quantities g,,
gc, and vChips. Boxplots of g, are shown in (a) for each unit that
has a quiz, while CDFs of g, and vChips are given in (b) and (c).

3https ://www.velocitychess.com/faq
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Figure 4: Distributions of quiz grades across units, quiz grades across the course, and vChips for users in our dataset. Quiz performance
improves in later units, exhibiting significant variation throughout, though less-so than the behaviors in Figure 3. The vChips have a high

concentration around 1,000 chips.

Just as user activity increased in later units, we find that user quiz
scores increase further into the course (WRS p < 0.026). The me-
dian grade in (a) rises monotonically from 0.78 in unit 1 to 0.9 in
unit 5. Despite the increase in difficulty, the users reaching later
units are likely more knowledgeable and can thus perform better.

We also find that users’ performance is less variable than their
behavior (F-test p < 5.19 x 1073 with the exception of 7,): the
IQRs for unit grades g, range from 0.20 to 0.44, with correspond-
ing IQR-to-median ratios between 0.22 and 0.57. These ratios are
smaller than those observed in Figure 3. The vChips have even less
variation: with a median of 1,000 and an IQR of 75 chips, the ratio
is only 0.075. The vChips have a heavy tail as well, with the mean
being 3,271.

3.5 Quantity Correlations

The above analysis indicates that there is high variability in users’
behavior and performance quantities unit-by-unit as well as in their
vChips and path deviation quantities over the full course. Taken
alone, however, any one of these quantities fails to capture the di-
versity of users taking open online courses. Since our metric frame-
work in Section 2 seeks to aggregate them into an overall measure
of efficacy, we also considered the correlation between the dif-
ferent quantities, both between quantities of the same type (Sec.
3.5.1) and between those of different types (Sec. 3.5.2). Overall,
we found that most of the quantities exhibit little correlation, i.e.,
each provides unique information on the diversity of users taking
open online courses [11]. In this section, we will present the most
interesting of these findings; for the full set of scatterplots and cor-
responding statistical analysis, see our technical report [7].

Normalizing behavioral quantities. To perform this correlation
analysis, we consider each user’s quantity values at the course level.
To translate the three per-unit behavioral quantities — time spent 7,
completion rate R, and engagement e, — to per-course, we sum all
of these quantities over all units of the course for each user,4 and
then normalize over the number of units visited. For completeness,
we also considered the number of units suggested by the adapta-
tion algorithm. Formally, let U, C U, be the set of unique units
visited by a user, and U,’ C U, be the set of units recommended.
The normalized quantities are defined as

1 1
X = W;xu, Xp= m;xu,
where x,, denotes the quantity (7, Ry, or e,) for unit u, as defined
in Section 3. The normalization for x¢ ensures that the R. and e,
quantities still lie in [0, 1]. x%., on the other hand, will become larger
than x{ when a user takes the initiative of visiting units that were
not recommended, i.e., that they could have skipped.

4Given the variability between units observed in Section 3, we con-
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3.5.1 Correlations within Quantity Types

Figure 5 plots the course-level behavioral quantities against one an-
other, normalizing by actual path (x&). We see immediately in Fig-
ure 5(a) that there is not a strong relationship between time spent
T, and completion rate R., with a Pearson correlation coefficient
r < 0.4. Those with completion of 100%, in fact, have the highest
variation in time spent, perhaps due to them viewing more slides:
users’ variation in the time spent on each slide would then accumu-
late over more slides, leading to higher overall variability.

Figure 5(b), on the other hand, shows a strong positive correlation
between completion rate and engagement e, with r > 0.95. This
is expected since engagement is defined to be linear in R,,. Specifi-
cally, several users have moderate e, and high R.: they would have
low T, to pull the engagement level down. Figure 5 shows a posi-
tive correlation between e, and T, as well, though not as strong, and
we can see cases where a low time spent corresponds to a moderate
engagement value. Overall, we conclude that though engagement
is a combination of completion rate and time spent, each of the
three quantities gives important information on user behavior.

As for the performance quantities, Figure 6 gives a scatterplot of
quiz score g. against vChips. We see that vChips and quiz scores
are only weakly positively correlated. The positive association is
intuitive, because we would expect those answering the questions
correctly to be more skilled in chess and thus to have the potential
to win more games. On the other hand, the lack of strength is sur-
prising. There are many uncontrolled factors outside of the course
that could affect this, though, such as whether the strategy taught
in the course (pins) is useful in a given situation.

3.5.2  Correlations Between Quantity Types

From analysis between quantity types, our key finding is that the
only significant correlation is a positive one between engagement
and quiz score, while the rest of the pairs — distance vs. engage-
ment, vChips vs. time spent, and so on — only have minor asso-
ciations, if any. This can be seen in Figure 7, which gives scat-
terplots of selected pairs — vChip and engagement in (a), quiz and
engagement in (b), and quiz and distance d in (c) — with behav-
iors normalized by recommended path (x.). The scatterplot in (b)
has a correlation coefficient of r > 0.75, meaning that users who
complete more slides and/or spend more time on each slide tend to
have improved quiz scores. Figure 7(a), on the other hand, shows
that users’ vChips are only weakly positively correlated with their
behavior: users with higher engagement do tend to have slightly
more vChips, but there are still many instances of low engagement
users earning among the most vChips (potentially those with prior
knowledge of the pins tactic) and users with high time spent earning
the least vChips (potentially those who struggle with the course).

sider per-unit, per-user quantities in Section 2.

82



Time
5e+02
40 80

I I |

I

Completion

5e-01
0

80

40
) N N |

Engagement

Completion

(a) Time spent and completion (r = 0.395)

Engagement

(b) Completion and engagement (r = 0.959)

5e-01 5e+00 5e+01 5e+02 5e+03

Time Spent (sec)

(c) Engagement and time spent (r = 0.490)

Figure 5: Scatterplots of the behavioral quantities, normalized by the number of units visited (i.e., x2). The correlation between completion

and engagement is strong, but weaker for the other two pairs.

1e+05
1

VChip
1

1e+01
1

Quiz
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and quiz score g.. There is not a strong correlation between them
(r=0.138).

We also found a weak negative correlation between distance and
the behavioral and performance quantities; the case of distance and
quiz score is plotted in Figure 7(c). Users who followed the adap-
tation algorithm’s recommendations, then, have a mild tendency to
be more engaged, spend more time, and obtain higher grades than
those who deviate from the recommendations. On the other hand,
a greater deviation can still lead to lower course activity and grades
for some users, and there are different users over the full range of
possible completion rates, engagement, and time spent that cover
the full range of possible distances. This emphasizes again that the
navigation quantity conveys different information than the perfor-
mance and behavioral quantities.

4. METRIC EVALUATION

The statistical analysis in the previous section revealed that while
activity and performance tend to increase further in the course,
there is high variability in the quantities overall, and thus room
for improvement in consistency and efficacy. In this section, we
first perform an evaluation of the course using our proposed metric
framework, and show that it also leads to these conclusions. We
then consider course drop-off rates, and find that our metric yields
better insight into this than do the quantities.

4.1 Course Consistency and Efficacy

Before presenting the results, we first specify particular inputs and
parameters of M7, in (1), as well as a sampling procedure to aid in
the quantity distribution estimation.

Input quantities Q. The input to Mé is user data on a set of quan-
tities Q. Based on the definitions in the previous section, the full
set of quantities Q takes each quantity at the unit-level except dis-
tance d and vChips which are only defined over the entire course,
i.e., Q= {{eu,Ru,Ty,8u Yu},d,vChip}. We also consider different
subsets of Q in our evaluation, e.g., behavior quantities only.

Functions z; and h. M, requires z4(x) and h(x) for efficacy and

consistency. For all metric variations, we take h(x) = x>. We use
z4(x) = x when ¢ is an engagement ¢,,, completion rate R,,, perfor-
mance g,, or vChip quantity, as higher values of these quantities
generally indicate a more effective course. We use the gamma dis-
tribution z,(x) = kae*§ for the distance d and time spent T,
quantities, reflecting the non-monotonic relationship of these quan-
tities with the course efficacy. We choose 6 and k as the squared
root of the median value of each quantity, so that g attains its max-
imum value at the median.

Sampling for f(x). To estimate the distribution fp(x) of possible
metric values, we first perform random sampling on the realized
values of Q to better estimate the properties of the metric output.
Similar to bootstrapping [8], for ¢ € O we uniformly at random
sample non-zero quantity values x € x, for each of the users. We
take only nonzero values since zero quantity values correspond to
inactive users, who may have dropped out of the course or skipped
that unit. We take 100 different samples, and combine each with the
original dataset to estimate the distribution fp and in turn calculate
the metric values Mp,.

4.1.1 Results and Discussion

Our evaluation results of M7, for the full quantity set as well as
subsets are given in Figure 8. Each circle in each distribution plot
of Figure 8 represents the metric value from one sample. These
plots are the subject of the following discussion.

All quantities. We first consider the metric values over all units and
quantities Q. Figure 8a shows the distributions for M?, across sam-
ples. We see that many (roughly 50%) of the samplings yield fairly
low metric values that are < 1. Considering that roughly 20% of
the samples have an output of 6 or higher, meaning that a majority
of cases yield less than 17% of the maximum value, this indicates
room for improvement in terms of overall efficacy and consistency,
as we concluded from the statistical analysis. Other samples show
clear concentrations around 4 and 6, perhaps due to different quan-
tities concentrating at these values. We also further analyzed the
metric in terms of its two constituent pieces — actual quantity values
and user consistency — to see whether one had a larger bearing on
these low metric values. In doing so, we found that both contribute
to low values, confirming room for improvement in both areas; for
the corresponding plots, see our online technical report [7].

Behavioral vs. performance quantities. We next compare the
metric outputs for the behavior and performance quantities only, in
Figures 8b and 8c respectively. Since these quantities reflect differ-
ent aspects of user activities, we would expect their metric distri-
butions to differ, and we see that this is indeed the case. Also, we
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observe that the metric values are more varied for behavior than
they are for performance, which is consistent with our finding of
high variability in behavioral quantities from the statistical analy-
sis. Most users’ performance metric values are low, concentrating
around 0.2, suggesting poor performance and/or little user consis-
tency. Recalling from Figure 4 that many users performed well on
quizzes, this suggests that these low metric values are likely due to
low consistency in scoring, rather than poor quiz scores. The be-
havioral metric values, on the other hand, suggest high behavioral
quantities and/or high consistency in behavior. The high variability
we observed in Figure 3 suggests that effective behaviors contribute
to these higher values. This conclusion is consistent with the fact
that several units show 25% of users obtaining the highest possible
engagement and completion rates, whereas time spent is concen-
trated around its center.

Unit by unit quantities. To analyze differences between units, we
also compute the metric over each individual quantity for each core
unit. The results are shown in Figure 8d. We see that the distri-
butions are fairly similar for units 2 to 4, exhibiting a fairly wide
range of values in each case. As in the distributions over the full
course in Figure 8a-c, there is a large concentration of metric val-
ues around smaller values, particularly 0. However, the maximum
metric values are around 2.5, indicating that some users do have an
effective experience in certain units. Indeed, users in unit 5 tend to
have the highest values, with roughly 75% of them > 0.5. This is
consistent with the conclusion from the statistical analysis that user
activity and performance tend to increase further in the course.

Overall, these findings indicate that the course is effective at engag-
ing users (Figure 8b), but — at least based on quizzes and vChips —
there is room for improvement in teaching them how to play chess
(Figure 8c). Given the free and open nature of Velocity Chess’s
platform, many users likely took the course more out of interest in
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chess and less out of a desire to memorize chess strategies, which
may explain why users’ performance is more inconsistent and less
indicative of an effective course than their behavior.

4.2 Course Drop-off

We finally validate our metric by comparing it to user drop-off
statistics. High drop-off rates are a notorious issue facing open
online courses today [3]; we saw in the statistical analysis that our
dataset does face this problem particularly in the first three units.

In Table 1, we compare three sets of values across the different
units: (i) mean values of behavioral quantities, (ii) metric calcu-
lations on the corresponding quantities, and (iii) drop-off percent-
ages, defined as the percentage of users for whom this unit was the
furthest visited. Recall that Figure 8d also illustrated the metric
values for different units, showing each unit tending to exhibit low
values, at least on average.

Overall, we find that the metrics contain better insight into drop-
off than do the behavioral quantities. Unit 1 experienced a high
drop-oft while the behavioral quantities e, and R, in Units O and
1 were fairly high. In particular, on average learners completed al-
most half of the content in Unit O and Unit 1, while almost half of
the learners never proceeded past Unit 1. Such drop-off tendencies
are difficult to observe from looking at the mean behavioral quan-
tities in Table 1. The metric functions Mé, on the other hand, tell
another story; in particular, M3 and Mgu in Units 0 and 1 are low
when compared to the average 'values of R, and ¢,. We therefore
conclude that when learners are highly likely to drop off, MJT'“ and
fe“ tend to signal lower quality than do 7, and R,.
On the other hand, we see that M?, and the behavioral quantities
demonstrate similar trends in the second half of the course, where
dropoffs are lower. Looking at learner behavioral quantities after
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Item UnitO0 Unitl Unit2 Unit3 Unit4 Unit5 Unit6
Mean Time spent (7,) 0.32 0.10 0.05 0.04 0.04 0.08 0.05
Value Engagerr}ent (ey) 61.6 46.9 9.82 7.40 8.97 1044 15.71
Completion rate (R,) 41.89 4216 8.36 6.59 7.63 9.79 14.15
Metric Time spent (M%, (Z2)) 0.04 0.03 0.05 0.05 0.05 0.05 0.03
Value Engagement (Mg'“(%)) 21.10 2231 4.14 4.33 3.86 3.78 5.90
Completion rate (Mfeu (Z)) | 414 15.12 433 4.39 4.07 4.24 5.40
Drop-off 04%  450% 149% 7.1% 4.0% 52% -

Table 1: Metric comparison with quantities and drop-off rates. The first row of the table entries gives the average learner behavioral quantities,
the second row gives the metrics Mz) on the corresponding behavioral quantities, and the third gives the drop-off percentages. The low metric
values in Units 0 and 1, compared with the corresponding behavioral quantity values, are consistent with these units experiencing high

drop-ofts.

Unit 2, we observe that 7, R, e, are generally low, as many learn-
ers fail to engage with the course content. The same trend can be
observed in the metric values. Interestingly, however, the M7, do
tend to increase as the drop-off lessens from Units 3-6, even though
our metric was not designed to incorporate this explicitly.

S. RELATED WORK

Learning and content analytics. Recent research in online learn-
ing has focused on developing analytics for instructors [2]. Ma-
chine learning techniques such as collaborative filtering and prob-
abilistic graphical models have been applied to predict students’
abilities to answer questions correctly [17,23] or their final grades
[16, 19]. Other studies have shown that student behaviors display
patterns that are significantly associated with learning outcomes
[2,10]. User-content interactions and Social Learning Networks
(SLN) have also been used to predict student dropoffs [18, 22],
while SPARFA-Trace [13] was developed to track student concept
knowledge throughout a course. Few works, however, have studied
the efficacy of the course itself, our goal in this work.

Adaptive learning evaluation. Developing course efficacy metrics
is particularly important for the growing number of adaptive online
courses. For example, MIIC [4] and LS-Plan [14] are all adaptive
course delivery platforms that support user- or system-defined in-
dividualization across different materials. We can use our metric
to improve adaptation algorithms and user experiences. The two
most common evaluation mechanisms for adaptive online courses
are (i) A/B testing of adaptation versus control group and (ii) user
surveys. Although A/B testing [4] allows researchers to test the ef-
fect of controlled variations, it is difficult to incorporate additional
variables afterwards. Surveys can be used to supplement A/B test-
ing [25], but these rely on user recollections and also cannot be
computed at arbitrary points during the course. Our metric frame-
work, in contrast, is easily applicable to different input variables
and can be computed at any time during the course.

Online personalization metrics. Substantial amounts of research
have been poured into online personalization for applications out-
side of education, particularly on recommendation systems that
predict individual user preferences (see [5] for a survey). Tradi-
tionally, these systems have been evaluated with metrics like accu-
racy and RMSE on a holdout set. Yet these techniques have been
criticized as being too distant from the actual user experience [15].
Therefore, newer metrics aim to incorporate factors such as diver-
sity, novelty, and coverage [9,20]. Still, each of these metrics tends
to focus on the final results of the prediction without taking into
consideration users’ prior and subsequent experience with the sys-
tem. They are also difficult to apply to online courses, which aim

to change users’ internal knowledge states in ways that are not di-
rectly observable.

6. DISCUSSION AND CONCLUSION

We developed a metric framework for adaptive online courses that
quantifies both the consistency of users’ experiences in the course
and the effectiveness of the course across multiple users. To mea-
sure effectiveness, we incorporated multiple quantities that describe
the full range of user experiences, from their navigation through the
adaptive course to their performance on quizzes and external tasks
to their interaction with the course material. A statistical analy-
sis of these quantities showed little consistency between different
users’ experiences and suggested that the course adaptation may
not have been effective for many users: many users exhibited poor
performance despite spending large amounts of time on the course,
and others exhibited high performance but barely engaged with the
material. Applying specific instances of our metric to the dataset
showed that the metric contained many of the same insights as a
statistical analysis, and revealed additional findings consistent with
drop-off rates.

A full statistical analysis likely contains more insights than any sin-
gle metric can provide. Defining a unified metric framework, how-
ever, not only allows us to more compactly represent a course’s
effectiveness, it also allows for direct, quantitative comparisons be-
tween different units of a course or even different iterations of a
course. This information can then be used by an instructor to im-
prove the material, either in the current or future offerings. While
traditional A/B testing requires the instructor to vary one charac-
teristic of the course at a time — which can be inefficient and result
in an uneven course experience for different users — our approach
enables instructors to estimate the marginal benefits of different in-
terventions, allowing for more rapid and dynamic changes.

Our metric framework is not restricted to adaptive online courses:
it can accommodate different quantities that may have distinct re-
lationships to course effectiveness. Indeed, it can even be used for
other types of personalized recommendation systems in which mul-
tiple quantities can give different insights into the recommenda-
tion effectiveness. For instance, users’ ratings of a movie on Net-
flix may contrast with the time spent watching the movie, yield-
ing contradictory information for the recommendation algorithm.
Adaptive online courses are, however, perhaps more likely to ex-
hibit such contradictory information than other recommendation
settings, and online education presents other unique challenges that
require the development of new metrics. The challenges of per-
sonalization in different applications motivate the consideration of
such metrics more generally.
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ABSTRACT

Performance prediction has emerged as one of the most pop-
ular approaches to leverage large volume of online learning
data. In the majority of current works, performance pre-
diction is based on students’ past activities in graded learn-
ing resources (such as problems and quizzes), while their
activities in non-graded resources (such as reading mate-
rial) are ignored. In this paper, we introduce an approach
that can take advantage of students’ work with non-graded
learning resources, as auziliary data, in order to predict stu-
dents’ performance in graded resources. This approach can
discover the hidden inter-relationships between learning re-
sources of different types, only using student activity data.
Based on our experiments, the proposed approach can signif-
icantly reduce the error of student performance prediction,
compared to baseline algorithms, while discovering meaning-
ful and surprising relationships among learning resources.

Keywords

student modeling, learning material correlation discovery

1. INTRODUCTION AND RELATED WORK

The learning data abundance, due to popularity of Massive
Open Online Courses (MOOCs), introduces new opportuni-
ties and challenges for the educational data mining (EDM)
field. On one hand, larger volumes of student data can
increase performance of traditional EDM approaches. For
example, a performance prediction approach that is popu-
lar in the area of intelligent tutoring systems, offers a good
basis for learning personalization. If the data-driven per-
formance model predicts that some problem will be solved
by the current student with a high probability, this prob-
lem could be skipped in favor of a more challenging one.
If the expected performance is low, students could be of-
fered some help and supplementary material. MOOC-scale
data can help improving performance prediction making this
approach more usable. On the other hand, data coming
from modern MOQOCs is usually more heterogeneous and

Peter Brusilovsky
School of Information Sciences
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too complicated for traditional EDM approaches. Unlike
conventional Intelligent Tutoring Systems (ITS), that are
mostly based on problem-solving, MOOCs offer students to
learn and assess their knowledge using a variety of learning
resources, such as reading materials, lecture videos, assign-
ments, exams, graded quizzes, and discussions. This leads to
various types of learning activities for students. With that
heterogeneity, come interesting challenges: how to use infor-
mation about student work with diverse learning resources
to assess student knowledge or predict student performance?
what is the relationship between concepts that are offered
in different learning resource types?

A number of research projects, focused on alternative learn-
ing resources, demonstrated that many kinds of resources
could considerably contribute to student learning. For ex-
ample, Najar et al. studied effect of adaptive worked exam-
ples versus unsupported problem solving and showed that
adaptive worked examples can lead to faster and more effec-
tive learning |[Najar et al. 2014]. Also, Agrawal et al. showed
that enriching textbooks with additional forms of content,
such as images and videos, increases the helpfulness of learn-
ing material [Agrawal et al. 2014). This indicates that ig-
noring the interaction between various types of resources
limits our understanding of students’ learning behavior and
the efficiency of mining and analytical tasks, such as stu-
dent knowledge modeling or performance prediction. Addi-
tionally, understanding inter-relationships between different
resource types and student activities can help instructors
in having more well-informed decisions on their course de-
sign. Modeling such inter-relationships in students’ data can
provide a unified view to data heterogeneity and present a
better understanding of student learning, by modeling these
different resource types that present student activities.

While there are some studies in the literature on impact
of various learning resources on learning, the relationship
between learning resource types and their effect on predict-
ing student performance is under-investigated. For example,
Wen and Rosé studied student patterns across different ac-
tivity types and concluded that these patterns can provide
insights into different activity distributions between high-
grade and low-grade students [Wen and Rosé 2014]. How-
ever, their goal was not to predict student grades from their
activities. Velasquez et al. [Velasquez et al. 2014] identi-
fied learning aid use patterns using cluster analysis. They
showed that high use of learning aids is significantly corre-
lated with students’ exam performance. But, they did not
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predict student performance. Sao Pedro et al. [Sao Pedro
et al. 2013] extended Bayesian Knowledge Tracing by condi-
tioning the learning on whether the students received scaf-
folding in a topic or not. This model uses extra context infor-
mation (topics) in addition to student performance, does not
discover the relationship between learning resource types,
and does not distinguish between different learning resources.
Jiff and Peldnek studied learning resource similarities |Jiff
and Pelanek 2017|, but it was on graded resources, not con-
sidering resource types, and not predicting student perfor-
mance.

One reason for unpopularity of using heterogeneous resources
for predicting student performance is their potential conflict-
ing effects. For example, Beck et al. investigated if provid-
ing assistance (help) to students benefits them using experi-
mental trials, Bayesian Evaluation and Assessment frame-
work, and learning decomposition |Beck et al. 2008|. In
their studies, experimental trials and learning decomposi-
tion showed that assistance hurts students’ learning. How-
ever, the Bayesian Evaluation and Assessment framework
found that assistance promoted students’ long-term learn-
ing. More recently, Huang et al. discovered that adaptation
of their framework (FAST) for student modeling by includ-
ing various activity types may lead researchers to contra-
dictory conclusions |[Huang et al. 2015]. More specifically,
they studied the impact of example usage on student learn-
ing. In one of their formulations student example activity
suggests a positive association with model parameters, such
as probability of learning, while in another formulation this
type of activity has a negative association with model pa-
rameters. Also, Hosseini et al. concluded that annotated
examples show a negative relationship with students’ learn-
ing, because of a selection effect: while annotated students
may help students to learn, weaker students may study more
annotated examples |[Hosseini et al. 2016].

Another complication for considering heterogeneous resources
is the difficulty in interpreting students’ observed activities.
In graded resource types, such as assignments and quizzes,
a student’s score explicitly represents her knowledge on the
topic. Whereas in other resource types, such as reading ma-
terial, there is no direct evaluation or explicit observation
of student’s knowledge. Hence, measuring the effect of such
learning resources on students’ knowledge, and thus predict-
ing their future performance, would be a challenging task.

In this paper we propose an approach motivated by canon-
ical correlation analysis (CCA) to discover the interaction
between different learning resource types, using student ac-
tivities, and to predict student performance on different
learning resources. Our proposed approach can uncover la-
tent relationships among subsets of learning recourses from
different types and can quantify these relationships. Our
analysis on two real-world datasets demonstrates that the
discovered relationships are meaningful and can be used for
course design and adaptive learning purposes. Addition-
ally, the proposed approach can use student interactions
with one auziliary learning resource (such as examples) to
predict students performance on another target learning re-
source type (such as problems). Our experiments on four
real-world datasets show that our approach can efficiently
use the extra information provided by auxiliary learning re-

sources and significantly improve the student performance
prediction error over the baseline models.

2. THE APPROACH

Our proposed approach is inspired by Canonical Correla-
tion Analysis (CCA) [Hotelling 1936|, which is a multi-
variate statistical model that studies the interrelationships
among sets of multiple dependent and independent vari-
ables. CCA’s goal is to find linear projections of these vari-
able sets into a shared latent space such that the correlation
between these projections are maximized. In this research,
we use CCA as our main tool: we propose to find the rela-
tionship between students’ ungraded activities (as indepen-
dent variables) and students’ graded activities (as dependent
variables) using CCA. Our final goal is to propose a model
for predicting student performance using pairs of resource
types, motivated by the discovered relationships.

Our reason for choosing CCA as inspiration is twofold. First,
CCA provides different views to the same data samples.
Since we have the same students interacting with multiple
resource types (e.g., examples and problems), we need to
have a tool to model these interactions at the same time,
while distinguishing between distinct resource types (as dif-
ferent views). Other factor analysis models, such as Princi-
pal Component Analysis (PCA), operate on one single view
of the data and are not appropriate for our problem. Second,
because of having multiple learning resources within each re-
source type (e.g., multiple problems and multiple examples)
and several students (as datapoints) we need a multi-variate
statistical model to capture the two-dimensional variability
in the data. Bivariate or simpler multivariate models such as
correlation or regression analysis can only capture the data
variance for one dependent variable at a time and thus miss
the variability of either students or learning material. We
first give a brief background on CCA and then explain how
to model and solve our problems using it.

CCA. If matrix X,,xn» represents n data samples and m
variables and matrix Y, x» contains the values for p variables
of same n data samples, CCA aims to find linear transfor-
mations, w, and w,, such that the correlation between pro-
jections of X and Y through w, and wy (reflected as p in
Equation [1)) is maximized.

o wIXYTw,
P I XX Tw,) (wlYY Twy)

(1)

Since multiplication of w, and w, by a constant does not
change the value of p in Equation [1} the problem of finding
w, and wy can be formulated as in Equation

max wz;XYTwy
e 2)
subject to wIXXTw, = 1,w§YYTwy =1

Adding the regularization parameters to Equation[2] for con-
trolling over-fitting of p, Sun et al. show that this regularized-
CCA problem can be represented as in Equation [3] and
solved using a least squares approach [Sun et al. 2008|. The
formulation for wy is a symmetrical version of Equation [3

XYT(vy") 'y XTw, = n(XXT + A)w, (3)

In addition to w, and w, that produce the maximum corre-
lation p, there can be other projection vector pairs that can
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map X and Y matrices with correlations less than or equal
to p. The optimization problem in Equation [ finds these
multiple projection vectors for X (in matrix Wy).

max Trace(W, XY T (YY) 'y X" W,)
’ (4)
subject to WIxx"w, =1

2.1 Relation Discovery between Learning Re-

source Types

As students work with various learning resources that are
provided in an online course or a tutoring system, they gain
more knowledge about the concepts presented in the course
and can tackle more complicated problems. Knowing the
relationship between different learning resource types and
the way they interact in affecting students’ knowledge can
help better course design.Having the learning material from
one resource type (e.g., problems) as one set of variables and
learning material from another type (e.g., examples) as the
other set of variables, we can interpret canonical correlation
as a measure of relatedness between resource types.

More specifically, to map our problem to the CCA setting,
we suppose that there are n students that have at least one
activity in each of the resource types. For example, these
students may have tried some problems and studied some
examples in the course. We represent the students’ perfor-
mance on problems as a matrix Y,xn,, with n students, p
problems, and Y; ; representing the student j’s score in quiz
i. This score can be a grade or pass/fail indicator. Similarly,
students’ example activities can be represented as another
matrix X,,xn, with n students, m examples, and X; ; as an
indication that user j has read example ¢. Given these two
activity matrices, we use CCA to find linear transformations
W and W, and canonical correlations P as in Equation [4}

Formulating our problem as an instance of CCA, W, and
W, can represent linear transformation matrices that map
the original activity matrices X and Y into a shared latent
space. These projections are scaled based on the canoni-
cal correlation values in a diagonal matrix P.x., in which
each of the diagonal elements are equivalent to the canoni-
cal correlation value p; for each projection vector pair W,
and Wy, ;. Meanwhile, the projection matrices W, . and
Wy, .. are representations of learning resources, projected
into the shared space. Having this shared component space,
we can compare and relate activities that are present in the
two resource types.

s

In other words, each learning material ¢ from the auxiliary
learning resource in matrix X, will be represented as a 1 X ¢
vector W, . and each learning material j from the target
learning resource in matrix Y, will be represented as a 1 X ¢
vector Wy, .. So, we can find the most similar resources from
different types by looking at the cosine similarity between
those vectors in the shared component space.

Note that this is different from simply comparing matrices X
and Y in the shared student space by calculating their cosine
similarity. Here, we have the canonical correlation effect on
finding similar learning resources. To be more clear, if we
suppose that wf X XTw, = 1 and wy TyyTw, =1 (by which
we transformed Equation l 1| to Equation ', then we have:

p=wr XY w, (5)

p in Equation [f] is equivalent to p in Equation [I] scaled
by its denominator. Now, if we left-multiply both sides of
~!. and right-multiply both sides of it by
wy_l, we achieve XY7T = wf_l pwy_l. Equivalently, when
having multiple canonical correlations, we can see that:

xyT =wl"pw, ! (6)

Equation |5 by wT

Equation |§| shows the relationship between the projection
matrices with the cosine similarity of X and Y (XY7T).
Clearly, Y XT and WwaT are not equal.

2.2 Inter-Activity Performance Prediction
Predicting how a student performs on a problem can help
teachers to adjust the course material based on students’
predicted performance and can lead to personalized learn-
ing. Also, it can guide students towards a structured and
effective learning. As in many prediction problems, educa-
tional data is usually incomplete: not all students try all
resources. We focus on predicting students’ scores for the
first time that they try a problem. Thus, the problem of
predicting students’ performance can be interpreted as es-
timating the missing values in the student activity matrix
(Y) that is described in the beginning of Section

As proposed in Section 2.1} we can find the relationship be-
tween sets of learning resources of two types using CCA.
Thus, if we know students’ performance on auxiliary learn-
ing resources in matrix X and their performance in the tar-
get learning resource in matrix Y, we can understand how
students’ activities on auxiliary learning resources affect the
same students’ performance on the target learning resources.
When the student activity matrix (V') is incomplete, we can
estimate w, and wy by calculating the canonical correlations
between the auxiliary activity matrix X and the incomplete
target activity matrix Y to achieve the estimated projection
vectors W, and w,. Using these prOJectlon vectors, we can
estimate a complete activity matrix Y as in Equation |7] l

Y = W, pu, X (7

Here, student activities in the auxiliary learning resource are
mapped to the shared latent space, scaled by the canonical
correlation factor p, and then mapped back to the target
learning resource space. In case of calculating multiple (c)
projection vector pairs (W, . and WyPXC), with canoni-
cal correlations represented in Fex., we estimate students’
performance (Y') as in Equation

Y = W,PWIX (8)

3. DATASETS

We use four datasets from two online platforms for our
experiments. The anonymized data represent log files of
student interaction with course resources (activities), and
their performance in them. Each of these platforms allow
their students to learn from multiple learning resource types
that calls for modeling inter-activity relations. The first two
datasets are richer since they have learning resource names,
topics, and contents although we do not use them for the
discovery and prediction purposes. The third and fourth
datasets are larger, from a MOOC platform, with more vari-
ation in learning resource types. However, we do not have
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access to these learning resources beyond their assigned IDs.
In the following sections, we describe each of these datasets.

Table 1: Statistics of Mastery Grids datasets

students | prob. Parsons | annot. | anim.
prob. exam. exam.
number 319 37 43 58 53
Python | average
activity 65.5 147.5 112.3 97.2 93.8
records
density 0.34 0.46 0.35 0.30 0.29
number 206 113 - 101 50
Java average
activity 127.2 108.3 - 93.9 89.7
records
density 0.78 0.53 - 0.47 0.44

Table 2: Statistics of Canvas Network datasets
quiz- . discus.
students X assign. .
assign. topics
Business and number 232 32 38 34
Management average
activity 62.7 208.1 190.8 18.9
records
density 0.60 0.89 0.82 0.08
Professions and number 1160 18 26 70
. . average
Applied Sciences | iioiee | 16.25 427.3 | 3725 21.1
records
density 0.14 0.37 0.32 0.02

3.1 Mastery Grids Datasets

Our first two datasets are collected from an online intelli-
gent tutoring system, Mastery Grids [Loboda et al. 2014].
This system provides personalized access to three types of
interactive content for Java programming and four types of
content for Python programming. Parameterized semantic
problems, annotated examples (code snippets with explana-
tions), and animated examples (interactive simulations that
visually demonstrate the runtime behavior of a code snip-
pet) are the three types of resources that are available for
both Java and Python courses. In addition to those, Python
course includes the so-called Parsons problems originally in-
troduced in [Parsons and Haden 2006].

The parameterized semantic problems (problems, for short)
are generated by QuizJet and QuizPet system
from a pool of parameterized questions on Java and
Python programming. As a result, the same problem can be
attempted multiple times by students with various parame-
ters. We only consider students’ first attempt on each prob-
lem for our experiments. Annotated examples presented
by WebEx allow students to interactively explore line-by-
line explanation of code snippets [Brusilovsky and Yudelson|
. Working with animated examples, which are gener-
ated using Jsvee library [Sirkié 2016], students can execute a
Java or Python program visually, observing internal opera-
tion, such as variable assignments and printing on a console.
In Parsons problems, students are asked to solve a program-
ming task by selecting and sorting provided code lines.

Mastery Grids groups different learning resources into mul-
tiple learning topics. Although this system offers a recom-
mended topic sequence in its interface, the students are free

to select and work on any of the topics and learning resources
at any given time. The Java dataset from this system is
collected from Fall and Spring semesters of 2016. Among
all of the students, we selected the ones who have at least
one activity in each of the problems, annotated examples,
and animated examples. A summary of statistics for these
datasets are shown in Table[I] The Python dataset about
two times sparser than the Java dataset in terms of num-
ber of all activities per student. Among different resource
types, the density of student activities on problems are the
closest between the two datasets. In both of the datasets,
student activities on problems are the densest and activities
on animated examples are the most sparse.

3.2 Canvas Network Datasets

Our third and fourth datasets are publicly available from
Canvas Network (http://canvas.net| . Can-
vas Network hosts many freely available open online courses
in which it offers multiple leaning resource types. More
specifically, in addition to learning modules, each course can
have different types of assignments, discussions, and pop-
quizzes. Participants are not limited to a specific sequence of
learning material or assignments. Categories of the learning
resources include “assignments”, “quiz-assignments”, “pop-
quizzes”, “discussions”, and “wikis”. The dataset is anonymized
such that student IDs, course names, discussion contents,
submission contents, and course contents are not available.

Course assignments can be quiz-style (“quiz-assignment”) or
in longer format, for which students submit a text or video
file (“assignments”). We choose two of the offered courses
in Canvas Network as the third and fourth datasets for our
experiments. These two courses are selected because they
provide multiple learning resource types and have more ac-
tive students in all of these resource types. The first course
is in the “Professions and Applied Sciences” field and the
second course is in the “Business and Management” field.

Since assignments, quiz-assignments, and discussions have
the most activities, we focus on these resource types in our
experiments. Among these three, assignments and quiz-
assignments are graded. For consistency, we normalize stu-
dents’ grades between zero and one based on their maximum
possible grade. For discussions, we consider a binary vari-
able representing if a student has posted a message or not.
We select the students who have at least one activity in each
of these learning resources. A summary of statistics for these
datasets is shown in Table[2] Discussion topics have the least
dense activity matrices in the two datasets. They are very
sparse compared to student activities on assignments and
quiz-assignments. Comparing the two datasets from Canvas
Network, overall student activities in professional and ap-
plied sciences domain course is very sparse. But, the density
of student activities on all resources in business and manage-
ment domain course is comparable with the datasets from
Mastery Grids system. However, the distribution of student
activities among various resource types are more skewed in
the Canvas Network datasets.

4. EXPERIMENTS

4.1 Experiment Setup

Per the proposed model in Section[2} element X; ; in activity
matrix X represents the result of student j’s first attempt
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on learning resource 7. This activity result can be different
for different learning resource types. For graded learning re-
sources, such as assignments and quiz-assignments, we use
the normalized score of students; for problems and Parsons
problems with success or failure feedback, we use binary
scores; and for non-graded activities, such as reading an an-
notated example or posting in a discussion forum, we use a
binary indicator that shows the students’ attempt. We use
average imputation for missing values.

For prediction experiments, we follow a 5-fold user strati-
fied separation of the student performance data to perform
cross-validation on it. Particularly, in each round of exper-
iments, we select 20% of students as test students, 15% of
them for validation purposes, and 65% of them as train. Our
task is to predict test students’ performance on activities in
a target learning resource type, observing 20% of these stu-
dents’ activities, and the training data. In the CCA-based
proposed approach, the training data includes all students’
activities in the auxiliary learning resource type, in addition
to observed activities of students in the target resources. We
repeat each round of the experiments for 5 times.

Since only quiz-assignments and assignments are graded in
the Canvas Network datasets, and only problems and Par-
sons problems are graded in the Mastery Grids datasets, we
define the prediction tasks on these resource types. Discus-
sions from the Canvas Network datasets and examples (an-
notated and animated) from the Mastery Grids datasets are
only used as auxiliary resources. Note that each of graded re-
source types (quiz-assignments, assignments, problems, and
Parsons problems) can also be used as an auxiliary resource
for another type of graded resource in the same dataset.

Baselines. In previous works, collaborative filtering meth-
ods have been proved successful in predicting students per-
formance |Thai-Nghe et al. 2011| [Sahebi et al. 2014]. Since
our proposed approach is similar to these approaches in
discovering latent relationships among learning resources,
through factorizing activity matrices, we choose two settings
of SVD++ algorithm [Koren et al. 2009 as our baselines.
To study if adding student activities in auxiliary resource
type would help better estimation of students performance
in the target resource type, we compare our approach with
single-resource SVD++ algorithm. In this setting we run
SVD++ algorithm only on the target learning resource ma-
trix, assuming that we do not have the information on stu-
dent activities in the auxiliary resource types, and compare
the results with our proposed method. To understand our
CCA-based method’s efficiency on capturing important rela-
tionships between different learning resource types, we com-
pare it with a paired-resource setting of SVD++ algorithm.
Particularly, we merge the two auxiliary and target learning
resource types into one set of learning materials (represented
by one matrix) and run the SVD++ algorithm on this aug-
mented matrix. Note that our proposed method factorized
two separate matrices at the same time but SVD++ can
only factorize one matrix.

Since the student activity datasets are biased towards stu-
dent success (e.g., average grade for problems in the Python
dataset is 0.67 out of 1), we compare the methods with an
average baseline. To do this, we use the training dataset

average as the predicted performance for all of the students
in each of the 5 data splits.

4.2 Discovering Relationships between Learn-

ing Resource Types

One of our goals in this paper is to understand relationships
and interactions between sets of learning resources with var-
ious types. CCA has the ability to represent each pair of
learning resource types in the same latent space. This en-
ables us to relate learning material of different types only
based on student activities, without relying on their content
or presented concepts. Since the Mastery Grid datasets pro-
vide learning resource names and topics we can confirm the
discovered relationships by comparing them with learning
resource topic similarities. These topics have been manu-
ally assigned to learning resources by experts, during course
design in Mastery Grids. In order to take a deeper look at
the discovered similarities, we study the top similar learning
resources of different types in the same course (as shown in
Table [3]). To calculate these similarities, we look at projec-
tions of each learning resource in the shared latent space, W
and W, and calculate the cosine similarity between them, as
mentioned in Section 2.1l We look at the most similar learn-
ing resources of each course in the following.

The Java Dataset. For the Java dataset, we can calcu-
late the cosine similarity of problems with animated exam-
ples and problems with annotated examples. We can see
the most similar problems and animated examples in rows
1-4 of Table As we can see, three of these four learn-
ing resource pairs are from the same expert-labeled topic.
For example, both problem “§jWhilel” and animated example
“ae_while_demo” are about “while loops” in Java. This shows
that our approach can accurately figure out the most similar
problems and animated examples, only based on student ac-
tivities and their performance, not knowing about their topic
or content. However, the resources in row 3 are from differ-
ent expert-labeled topics “boolean expressions” and “switch”.
While these two are not exactly the same, the switch expres-
sions in Java use boolean expressions in their conditional
statements. So these two topics are closely related to each
other: if a student cannot understand the “boolean expres-
sions” topic, understanding the “switch” topic would be dif-
ficult for this student.

The most similar Java annotated examples and problems,
found by CCA projection matrices, are listed in rows 5-8.
Here, we do not see the obvious similarities that was ap-
parent between animated examples and problems. In row
5, there is topic similarity between the problem with “loops
do-while” topic and the annotated example with “loops for”
topic: both of them are about loops in Java. For row 8, we
know that Java for loops use “arithmetic operations” in their
conditional statement. However, topics for similar resources
discovered in rows 6 and 7 look irrelevant. Row 6’s prob-
lem is labeled by experts with the “interfaces” topic, while
the similar annotated example is labeled with the “variables”
topic. Likewise, the problem topic in row 7 is “interfaces”,
while the topic of similar annotated example is “objects”.

To gain more insight about these learning resources, we
looked at their contents. We discovered that although the
general topics for these problems and their discovered anno-
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Table 3: Most similar learning materials of different types, from Java and Python

similarity using CCA projection vectors.

courses, according to their

material
course row
type
anim.
prob. . . . .
prob. name prob. topic anim. exam. topic anim. eram. name exam.
prob. ID D
& . 1 14 jArrayList5 ArrayList ArrayList ae_arraylist2_v2 3
anm. 2 18 jBoolean_Operators Boolean expressions Switch ae_switch_demo?2 44
Java eram. 3 65 jMathFuc2 Arithmetic operations Arithmetic operations ae_arithmetic_v2 1
4 100  jWhilel Loops while Loops while ae_while_demo 49
annot.
prob . .
prob. name prob. topic annot. exam. topic annot. exam. name exam.
prob. ID D
fnnot 5 37 jDowhilel Loops do_while Loops for forl_v2 28
: 6 57 jInterfacesl Interfaces Variables PrintTester 78
exam. 7 61 jInterfacesb Interfaces Objects AccessorMutatorDemo 1
8 63 jMathCeil Arithmetic operations Loops for JavaTutorial 4_6_8 57
annot.
prob. . .
prob. D prob. name prob. topic annot. exam. topic annot. exam. name exam.
& ID
annot. 9 3 qg-py-arithmeticl Variables Variables pytl.3 5
exam. 10 |21 q-py-nested_if_elifl if_statements values_references pytt10.25 58
11 |23 q-py-obj_accountl classes_objects Lists pyt7.2 53
anim
prob. . . . .
prob. D prob. name prob. topic anim. exam. topic anim. eram. name exam
& ID
anim. 12 |7 g-py-dict_accessl dictionary loops ae_adl_while 39
Puthon, | €58™ 13 |29 q-py-outputl output_formatting variables ae_adl_arithmetics2 1
Y 14 |10 q-py-fun_carl functions exceptions ae_adl_tryexcept2 34
rob pars.
prob. p prob. name prob. topic pars. prob. topic pars. prob. name prob.
& D D
pars. 15 |10 q-py-fun_carl functions exceptions ps_python_try_adding 38
prob. 16 |12 q-py-if_elifl if_statements loops combo_python_while 9
17 |35 q-py-swapl variables variables combo_swap 11
pars. annot
pars. prob. | pars. prob. name pars. prob. topic annot. exam. topic annot. exam. name exam.
prob. ID ID
& 18 |1 combo_avg variables variables pyt2.1 32
annot. 19 14 ps_python_addition variables variables pytl.2 4
exam. 20 |41 ps_return_bigger_or_none functions functions pyt10.7 30
pars anim.
pars. prob. | pars. prob. name pars. prob. topic anim. exam. topic anim. exam. name exam.
prob. ID ID
& 21 1 combo_avg variables variables ae_python_assignment 40
anim. 22 12 ps_hello variables variables ae_adl_arithmetics2 1
exam. 23 143 ps_simple_params functions functions ae_adl_returnvalue 29
public class Tester { . . . .
public static void main(String[] args) { the designers of Java course were interested in the mentioned
Mechanism mechl = new Computer(2.0, 2.0, true); topics while designing these learning resources, we are dis-
Mechanism mech? =

new Car{"Honda", 2);

Computer comp = (Computer) mechl;

System.out.println(comp.getProcessorSpeed()};
System.out.println(comp.reportProblems());

System.out.println(({(Car) mech2).getBrand()):
System.out.println(mech2.reportProblems());
}
}

What is the output?
Be careful of the whitespace(space, newline) in your answer.

Figure 1: Content of problem with “Interfaces” topic
(row 6 of Table (3]

tated examples are not the same, they include very sim-
ilar concepts. For example, Figure |l| shows the content
for problem “jInterfaces1” (topic: “interfaces”), and Figure
[] shows the content for annotated example “PrintTester”
(topic: “variables”). As we can see, the concept of printing
an output in the console is very important in both of these
learning resources. Interestingly, it appears that although
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covering other possible “latent topics” for them. Another
factor in these newly-found relations can be the mixed rela-
tionship of annotated examples with students performance.
Hosseini et al. have studied the use and impact of annotated
and animated examples in the same online tutoring system
and concluded that students are likely to learn more from
animated examples |[Hosseini et al. 2016|. Particularly, they
showed that although more views of animated examples is
associated with a higher course grade, the number of views
on annotated examples has a negative effect on it. A possible
reason is the negative process of associating examples with
poor knowledge: students with poor knowledge are more
likely to study annotated examples. This association can
potentially overcome the positive impact of learning from
annotated examples and lead to a negative impact. Also,
they show that animated examples provided better impact
on problem solving success and post-test scores.

The Python Dataset. We study 5 pairs of resource types
and the cosine similarities between Wys and Wi 's in the
Python dataset: problems vs. animated examples, problems
vs. annotated examples, Parsons problems vs. animated
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public class PrintTester
public static weid main (String([] args)
1

o System.out.println(3 + 4);

System.out.println("Hello™);

=] System.out.println ("World!"™);

o System.ocut.print ("0

o System.out.println(3 + 4);

~ "y

System.out.println("Goodbye") ;

Figure 2: Content of annotated example with “Vari-
ables” topic (row 6 of Table

class RAccount:
def _ init_ (self, deposit=0}):
self.balance = deposit

def deposit{self, sum):
self.balance += sum

def withdraw(self, sum):
self.balance -= sum

def get_balance(self):
return self.balance

def main():
accounts = {}
accounts[0] = Account()
accounts[l] = Account(379)

accounts[0].deposit(379)

accounts[l].deposit(379)

accounts[0].withdraw(379-50)

accounts[l].withdraw(379-100)

print(accounts[0].get_balance() + accounts[l].get_balance())
main()

What is the ocutput?

Be careful of the whitespace(space,newline) in your answer.

Figure 3: Content of problem with “classes_objects”
topic (row 11 of Table (3))

examples, Parsons problems vs. annotated examples, and
problems vs. Parsons problems. Samples of discovered sim-
ilar learning resources are shown in Table [3]

As shown in rows 9-11, the first problem and its matched
annotated example have the same topic of “variables”. But,
the next two pairs do not have a common topic. We study
the content of these learning resources to understand the
nature of their similarity. For example, if we look at row 11,
we see that annotated example “pyt7.2” has topic of “lists”.
Now if we look at problem “q_py_obj_account1” with topic of
“classes_objects” in Figure |[3] we can see that this problem
uses lists (accounts variable) in it. We avoid showing the
content for the pair in row 10 due to space limits.

Rows 12-14 show similar animated examples and problems
in the Python dataset. To show the similarities between
concepts used in these animated examples and problems, we
look at one pair: problem “q_py_fun_carl” with topic “func-
tions” (Figure [4) and animated example “ae_adl_tryexcept2”
with topic “exceptions” (Figure . We can see that there

is a function call and a function definition in this animated
example (Figure . Consequently, although this animated
example is not designed to teach the “function” topic and de-
spite of it being labeled with the “exceptions” topic only, the
discovered similarities show the associations between stu-
dents’ learning of functions and this animated example.

The most similar problems and Parsons problems are shown
in rows 15-17 of Table [3] Two of the top similar pairs are
from the same (“variables”) or related (“if statements” and
“loops”) topics. The resources in row 15 are from different
topics: a “functions” problem and an “exceptions” Parsons
problem. But, as can be seen in Figures E| and@the Parsons
problem includes a function definition. So, students can
learn about functions while executing this animated example
that is about exceptions.

def fuel{gallcns, gas, tank size):
gas = min(gallons + gas, tank size)
return gas
gas = 50-42
gallons = fuel(25, gas, 50)
print(gallons)

What is the output?

Be careful of the whitespace(space,newline) in your anewer.

Figure 4: Content of problem with “functions” topic
(rows 14 and 15 of Table

1 def average(a, b):

2 sum = int(a) + int(b)

3 return sum / 2

4

& def main():

7 try:

] avg = average("1", "two")
9 print{"Avg is:", avg)

10 except ValueError:

1 print("Error occcurred!™)
12

13

=) 14 main()

Figure 5: Content of animated example with “ex-
ceptions” topic (row 14 of Table

Drag from here

print("Can only add numbers together.")
except TypeError:

return a + b

def add_two_numbers(a,b):

try:

New instance Get feedback

Construct a function that adds two numbers together and handles non-numeric input.

Figure 6: Content of Parsons problem with “Excep-
tions” topic (row 15 of Table

Finally, as we can see in rows 18-23, analogous samples of
Parsons problems vs annotated examples, and Parsons prob-
lems vs animated examples are all from the same topics.
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One may think that the discovered similarities are a result
of topic arrangements in the course design and conclude that
we can find these similar learning resources by only looking
at the co-occurrence of student activities in two learning
resource types, e.g., by calculating the cosine similarities
between learning resources in the original student-space, or
matrices X and Y. However, looking at some of the discov-
ered similarities, such as the second row of Table reassures
us that our approach can find the relationships beyond their
trivial co-occurrence. As we have mentioned, the “switch”
and “boolean Expressions” topics are not the same, but are
very related. In the Mastery Grids interface, these two top-
ics are not placed right next to each other. But, another
topic (“if-else” topic) is placed between them. This means
that the discovered similarity is not solely based on activity
co-occurrence due to topic placement in Mastery Grids.

To discover what we can gain from trivial co-occurrences,
without using our proposed method, we looked at samples
of the most similar learning resources, based on the cosine
similarity between student activities in the original student
space (similarity between matrices X and Y'). In this case,
the most similar discovered learning resource pairs are ei-
ther placed closely in the same topic (and thus, may happen
due to the students following the sequence imposed by learn-
ing resource arrangements in the interface), or do not have
any meaningful content-based relationship. For example,
the most similar animated example that is discovered in stu-
dent space for the “jBoolean_Operators” problem (problem
in row 2 of Table [3)) is labeled with the “primitive data types”
topic, demonstrating “Double” and “Short” data types.

To summarize, the discovered CCA-based similarities in both
datasets are meaningful. Some of the related learning re-
source pairs are from the same topics, others are related in
the concepts or sub-topics that they present. In general,
this is a very promising result, especially for applications in
which the learning resource contents are difficult to analyze
and compare. Discovering these similarities, instructors can
rearrange their learning material in ways that most bene-
fits students’ learning. Also, it can be used for multi-source
knowledge modeling of students. Namely, we can model stu-
dent knowledge in shared concepts between problems and
animated examples and understand how a student’s abil-
ity in a learning recourse type (e.g., to solve a problem)
increases by trying another learning resource of a different
type (e.g., a related animated example).

4.3 Predicting Student Performance Using Aux-

iliary Resource Types
Using the formulation proposed in Section [2.2] our goal here
is to predict students’ performance using auxiliary learn-
ing resource types and compare it with similar baseline ap-
proaches. We measure performance of the proposed and

baseline approaches using Root Mean Squared Error (RMSE).

This measure quantifies the average difference between ac-
tual students’ score and their predicted performance.

Mastery Grids Datasets For the Java programming dataset,

we run two sets of experiments. The first set of experi-
ments is on predicting students performance on problems,
using their activities on annotated examples as auxiliary
data (“annotated examples — problems”). In the second

set of experiments, we use animated example activities as
the auxiliary resource for predicting students performance
on problems (“animated examples — problems”). As men-
tioned before, we compare the results of our proposed ap-
proach with single-resource SVD-++ —only using student logs
on problems— and paired-resource SVD++ —with the same
input as our proposed approach—.

For the Python programming dataset, we run six sets of
experiments. Having problems and Parsons problems as
target learning resource types, we use annotated examples
and animated examples as the auxiliary learning resources.
Additionally, problems may help us in predicting students’
performance in Parsons problems, and vice versa.

Table [] shows the RMSE of CCA-based and baseline ap-
proaches for these sets of experiments on both of Mastery
Grids datasets. The numbers in parentheses report the 95-
percentile confidence interval for the reported errors. As
we can see here, our CCA-based approach performs signifi-
cantly better than the baselines in all of the experiment se-
tups in both datasets. As our proposed approach performs
better than single-resource SVD++, we can conclude than
adding the auxiliary data significantly improves student per-
formance prediction. On the other hand, we can see that the
proposed CCA-based approach works better than SVD++
in the multi-recourse setting using the same set of auxil-
iary and target data. Therefore, we can conclude that our
approach is a better fit for effectively using auxiliary data.

Comparing the two settings for SVD++, in the Python
dataset single-resource SVD++ performs as good as, or sig-
nificantly better than paired-resource SVD++4. Specifically,
for combinations “animated examples — problems” and “an-
notated examples — problems”, paired-resource SVD-++ has
a significantly higher error than single-resource SVD++.
This confirms our findings in Section [£:2]about smaller simi-
larities between problems and examples in the Python dataset.
As expected in biased datasets, we can see that average base-
line is working very well. Comparing with paired-resource
SVD-++, its error is significantly lower in four of the exper-
iments on the Python dataset. Single-resource SVD++ is
significantly better than (in “animated examples — prob-
lems”, “annotated examples — problems”, and “problems —
Parsons problems”) or similar to the average baseline.

In contrast, in the Java dataset, the average baseline has
slightly, but significantly, higher error than the proposed ap-
proach and the other two baselines for “annotated examples
— problems”. For “animated examples — problems”, the av-
erage baseline has better predictions compared to the other
two baselines. Also, paired-resource SVD++ works signif-
icantly better than single-resource SVD++ for “annotated
examples — problems”. This shows that paired-resource
SVD-++ is not consistent on different datasets, even if sim-
ilar learning resource types are used, and to be able to take
advantage of auxiliary information, a more advanced ap-
proach, such as the proposed one, is needed.

Canvas Network datasets. Canvas Network datasets give
us the opportunity to test our approach on more varied
data of MOOCSs and in different domains. Notably, “Profes-
sions and Applied Sciences” data has more users and is very
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Table 4: RMSE for student performance prediction task on Mastery Grids datasets.

anim. example annot. example pars. prob. anim. example annot. example prob.
— problem — problem — problem — pars. prob. — pars. prob. — pars. prob.
paired-
resource | 0.4148 (0.0097) | 0.4159 (0.0057) - - - -
CCA
Java -
paired-
resource 0.5304 (0.0127) 0.4696 (0.0047) - - - -
SVD++
single-
resource 0.5178 (0.0214) 0.4537 (0.0119) - - - -
SVD++
e | 04859 (0.0071) | 0.4854 (0.0039) - - - -
aseline
paired-
resource | 0.4584 (0.0035) | 0.4566 (0.0024) | 0.4579 (0.007) | 0.4122 (0.0081) | 0.4098 (0.0043) | 0.4105 (0.0075)
Python ccA
paired-
resource | 0.516 (0.0124) 0.5122 (0.0156) | 0.5524 (0.0083) 0.5213 (0.022) 0.456 (0.0084) 0.4954 (0.0123)
SVD++
single-
resource | 0.4921 (0.0147) 0.4921 (0.0147) | 0.4921 (0.0147) | 0.4409 (0.0059) 0.4409 (0.0059) 0.4409 (0.0059)
SVD++
e | 0.4961 (0.0024) 0.4972 (0.0036) | 0.4957 (0.0014) | 0.4724 (0.0056) 0.4716 (0.0047) 0.4723 (0.0072)
Table 5: RMSE for student performance prediction task on Canvas Network datasets, using discussions,
quiz-assignments, and assignments as auxiliary resources.
quiz-assignments discussions assignments — discussions —
— assignments — assignments quiz-assignments quiz-assignments
g%rzd;“o‘““ 0.1073 (0.0209) | 0.1093 (0.0163) | 0.0911 (0.0124) | 0.1207 (0.0109)
. -based
Business and aired-resource
Management SVDJrJr 0.1871 (0.0143) 0.1569 (0.0115) 0.1696 (0.0111) 0.1903 (0.0085)
single-resource
SVD++ 0.1890 (0.0208) 0.1890 (0.0208) 0.1532 (0.0125) 0.1532 (0.0125)
i"e'a.ge 0.1741 (0.0182) 0.1741 (0.0182) 0.1752 (0.0118) 0.1752 (0.0118)
aseline
paired-resource | o 1964 (0.0085) | 0.1252 (0.0049) | 0.1252 (0.0035) | 0.1287 (0.0105)
. CCA-based
Professions and palred-Tesource
Applied Sciences SVD++ 0.2070 (0.0112) 0.1897 (0.0140) 0.2039 (0.0211) 0.3254 (0.0171)
single-resource
SVD++ 0.5235 (0.0196) 0.5235 (0.01960) 0.2057 (0.0176) 0.2057 (0.0176)
z"cr‘"‘.gc 0.4596 (0.0019) 0.4596 (0.0019) 0.3838 (0.0037) 0.3838 (0.0037)
aseline

sparse compared to all other datasets. For Canvas Network
datasets we run four sets of experiments. In the first two
sets, we use quiz-assignments and discussions as auxiliary
resources to predict students’ performance in assignments.
In the third and fourth sets of experiments we predict stu-
dents’ grade in quiz-assignments using general assignments
and discussions as auxiliary resources.

Table [f] shows RMSE of all approaches on both “Profes-
sions and Applied Sciences” and “Business and Management”
datasets. Similar to our results on the Mastery Grids dataset,
we can see that the proposed approach can effectively use
auxiliary resources to provide better estimation of student
performance in all resource pairs. Comparing paired-resource
SVD++ to single-resource SVD++-, we can see that in most
of the experiments their error is not significantly different.
Only for “quiz-assignments — assignments” and “discussions

— assignments”, in “Professions and Applied Sciences” dataset,

paired-resource SVD++ is significantly better than single-
resource SVD++. Comparing the average baseline results,
it’s error is significantly higher than (in “Professions and Ap-

plied Sciences” dataset) or similar to paired-resource SVD-++.

Whereas compared to single-resource SVD++, it works bet-

ter in predicting assignments, and worse in predicting quiz-
assignments. This is because there is more variation in stu-
dents’ scores in quiz-assignments.

In addition to the way different courses are designed and
learning resources are prepared, one of the reasons behind
the different results between the two datasets can be due
to the variations between two course datasets. For exam-
ple, having more students and being sparser may lead to
added value of auxiliary information in the “Professions and
Applied Sciences” dataset (Table . In other words, effec-
tiveness of adding auxiliary data for the task of performance
prediction depends on the dataset and its characteristics.

S. CONCLUSIONS

We proposed an approach inspired by canonical correlation
analysis for discovering interrelationships between learning
resources of different types, only using student performance
in them. This approach can also be used to predict students’
performance. That is to say, we can predict students’ per-
formance in one type of learning resources, with the help of
student activities in another resource type. We evaluated
the proposed approach with four datasets and two tasks.
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For the task of finding learning resource interrelationships,
we evaluated our approach on the Java programming dataset
with three resource types, and the Python programming
dataset with four resource types. Finding the most simi-
lar resources of different types, only based on student ac-
tivities, we showed that our approach is very promising in
detecting these similarities, especially for learning resources
that have been proved to have a positive effect on students’
learning. Also, we found that our approach goes beyond the
designated topics for learning resources and discovers latent
similarities that provide clues of their content similarity.

Having four datasets from two online learning systems, we
ended up with 16 total experiment sets for predicting stu-
dent performance in paired resource types. We compared
our proposed approach with an average baseline and two al-
gorithmic baselines: one using student activities in both aux-
iliary and target resource types (paired resource SVD++),
and one with using student activities in only target resource
type (single resource SVD++). The experiments showed
that our proposed approach can significantly improve esti-
mation of student grades in all setups and datasets. This
success is in part due to the extra information from the aux-
iliary resource types on students’ performance: in three out
of 16 setups, the baseline algorithm with auxiliary data per-
formed better than the baseline algorithm without auxiliary
data . However, in two of the setups the baseline with aux-
iliary data performed significantly worse than the baseline
without it. Meanwhile, the proposed approach performed
better than both baselines in all of the 16 experiments. It
showed that better performance of the proposed approach is
not only because of having extra information, but also be-
cause of its ability to use latent interrelationships between
auxiliary and target resource types, in a more efficient way.
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ABSTRACT

Massive Open Online Courses (MOOCs) are designed on the
assumption that good students will help poor students thus
offloading the individual support tasks from the instructor
to the class. However prior research has shown that this is
not always true. Students in MOOCs tend to form distinct
sub-communities and their grades are closely correlated with
those of their closest peers. That work, however, was only
based on analyzing the final social network in a MOOC. In
this paper, we study the evolution of these co-performing
clusters over time. We explore a longitudinal approach to
detect how students form their social connections on the dis-
cussion forum and we show that students form close coequal
communities early in the course and maintain them over the
duration of the course.

Keywords
MOOC, social network analysis, community detection, fo-
rum participation

1. INTRODUCTION

One promise of Massive Open Online Courses (MOOCsS) is
that we can provide high-quality educational content to stu-
dents around the world at relatively low cost. The broad
goal of MOOC s is to scale instruction by allowing expert
instructors to provide guidance to hundreds or even thou-
sands of students at a time. Such large-scale education has
the potential to be revolutionary both for individual stu-
dents and for educational systems. The current generation
of MOOQOCs are designed to achieve this scaling by outsourc-
ing much of the individual support tasks to students. That
is, rather than capping enrollment to ensure that the instruc-
tor and TAs can support every students’ needs, MOOCSs pro-
vide online forums that encourage students to share common
questions and to provide collaborative guidance or to ben-
efit from each others’ interactions with the limited support
staff. Thus it is tacitly assumed that students will have com-
mon issues and that good students will help poor students

NCSU, Raleigh, NC, USA
cflynch@ncsu.edu

NCSU, Raleigh, NC, USA
tmbarnes@ncsu.edu

with course content, assignments, logistics, and other issues.
The role of instructors and TAs is then often to curate help
rather than authoring it.

In a prior study Brown et al. examined the formation of
communities in a large scale MOOC on Big Data in Educa-
tion [3]. They extracted social networks from the online
course forum and analyzed the connections between stu-
dents. Contrary to the implicit assumption described above,
they found that the social connections were not evenly dis-
tributed. Nor did they find that the lower-performing stu-

dents made persistent connections with their higher-performing

peers. Instead they found that the students formed distinct
sub-communities and that their performance in the course
was strongly correlated with that of their closest neighbors.
In followup work, Brown et al. also found that these com-
munities were not aligned with students’ shared backgrounds
nor were they apparently driven by shared course goals [2].
They further found that these results were stable even af-
ter the instructional staff and other highly-connected or hub
students were factored out. Thus the authors concluded that
the pattern of students’ social relationships can be used to
predict their performance and that interventions which tar-
get those social relationships may help students to improve
either by selecting good peers or by flagging isolated and
poorly-performing groups for individual attention.

That work, however, was limited by the fact that it only used
the final social network from the course. Thus when eval-
uating students’ performance the authors included all posts
and social interactions that had developed over the duration
of the course. In order to provide useful guidance during the
course and to provide reliable information to instructors, we
must show that it is possible to detect these relationships
based upon partially-formed networks. In general most stu-
dents’ patterns of help-seeking change over the duration of
the course. Students often drop out of courses, particularly
MOOCs, or taper off their involvement as they lose interest.
Students also face difficulties in courses that may make them
scale up their communication as the course becomes more
challenging. It may be the case that the network structure
will change radically over the course of the class and that
any early detection model or instructor dashboard will be
erratic, invalid, or simply out of date.

In this work, we expand upon the prior work of Brown et al.
by examining the growth of the students’ social relationships
over time, in the same MOOC. To that end we segmented
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the forum data by time and performed a sequential analysis
of the evolving social network. Our goal in this work will
be to address the following questions: First, are students’
social groups stable over time? And if so, how early in the
course do these observed grade relationships hold? Second,
can we use partial social networks to help inform instructors
and students in MOOCs? If the answer to these questions is
true then it may be possible to develop effective social inter-
vention systems that could use students’ posting behaviors
to flag students that need attention, or to generate strategic
advice on where or how often to post questions. Section 2
provides some background on social network analysis in ed-
ucation. Section 3 describes the dataset we use in our work.
In Sections 4 and 5 we present our analysis and results. And
finally in section 6 we present our conclusions and discuss
our future work.

2. BACKGROUND
2.1 MOOCs, Forums, Students Performance

According to Seaton et al. most of the time students spend
on MOOCs is spent viewing the lecture videos, complet-
ing mastery assignments, and reading the discussion forums
[21). Very little time is spent on external or ‘off-platform’
activities. Thus, the discussion forums provide a rich and
useful window into the students’ primary course activities.
Stahl et al. [24] illustrated how students collaborate to cre-
ate knowledge through this interaction. They argued that
students’ forum activities are not only beneficial for the in-
dividual discussants but also serve to structure the class as
a whole. Each student’s activity level varies as does their
impact on the course. Huang et al. for example, specifi-
cally investigated the behavior of high-volume posters in 44
MOOC-related forums. These ‘super-posters’ tend to en-
roll in more courses and generally perform better on aver-
age |12]. Moreover, by actively engaging in many conversa-
tions, they add to the overall volume of the course discus-
sion and they tend to leave fewer questions unanswered in
the forums. They also found that, despite their high out-
put, these super-posters did not act to suppress the activ-
ity of other less-active users. Rienties et al. [19] examined
the way in which students structure their social interactions
online. They found that allowing students to self-select col-
laborators in a MOOC is more conducive to learning than
random assignment of partners. In another study, Van Dijk
et al|25] found that simple peer instruction is significantly
less effective in the absence of a group discussion step, thus
reinforcing the importance of a shared class forum.

Prior researchers have also examined the general dynamics
of the student forums. Boroujeni et al. examined the re-
lationship between students’ temporal patterns, discussion
content and social structures emerging from the forums [23].
They found that for MOOCs lasting eight weeks, the pace of
students’ posts remained high during the first 3 weeks and
then tapered down gradually until the class ended. They
also found that this pattern was affected by the assignment
dates and other deadlines as well as the overall volume of the
posts in each thread. Furthermore, they tracked the network
attributes over time by using one-week network slices based
upon a sliding window. The slice for each day of the course
(d>6) was built from forum activities during the preceed-
ing 7 days ([d-6, d]). For each network slice, the attributes
included node counts, edge counts, average degree, density,

etc. They found that, with the exception of density, the
attributes decreased over time. Density, ratio of the num-
ber of edges in the graph and the number of edges possible,
by contrast, increased sharply at the end of course. Zhu et
al. explored a longitudinal approach to combine student en-
gagement, performance, and social connections by applying
exponential random graph models [29]. They analyzed the
relationship between the social networks on a week-by-week
basis and they found that students’ individual assignment
scores were all positively related to being more active in the
social network.

Rosé et al.|20] examined students’ evolving social interac-
tions in MOOCs using a Mixed-Membership Stochastic Block
model which seeks to detect partially overlapping communi-
ties. Their specific focus in the analysis was on identifying
the students who were most likely to drop out. They found
that it was possible to predict whether or not a student
would drop out based upon their membership in a commu-
nity. Students who actively participated in the forums early
on in the course were less likely to drop out later on. More-
over, they found that one specific sub-community was much
more prone to dropout than the remainder of the class. This
suggests that the forum communities do align by stability
and thus that social relationships can reflect the students’
relative level of motivation as well as their overall experi-
ence in the course. This is akin to the ’emotional contagion’
model used in the Facebook mood manipulation study by
Kramer, Guillroy, and Hancock [16].

Dawson et al. [6] elaborated the use of social networks to
provide guidance. They provided feedback to students and
instructors based upon the students’ ego-social network (i.e.
their neighborhood). They explored differences in the net-
work composition for low- and high-performing students to
identify patterns of behaviours which may influence the stu-
dents’ learning. They found that the ego-social networks
of low- and high-performing students had significant dif-
ferences, and it was possible to identify different types of
students based upon their ego-network. They also found
that the instructors were equally likely to show up in high-
performing students’ local networks as in those of the low-
performing students. Their results indicated that instruc-
tors could adjust their teaching methods based upon this
network structure.

2.2 Communities

There has also been prior research specifically on how stu-
dents connect within sub-communities and with the instruc-
tor. Insa et al. showed that in a traditional course (contain-
ing both face-to-face lectures and lab sessions), the student’s
seating position can affect their final grade |13]. They sug-
gested that physical proximity to the instructor increased
performance. According to Golder et al., an analysis of stu-
dents’ Facebook messages showed that the students will mes-
sage one another more often during weekday afternoons than
over the weekend [9]. This produced a distinct temporal pat-
tern in their communication and community structure.

The motivation for any student to join a MOOC can vary
widely. This can in turn create several distinct classes of
participants with their own unique behaviors. Anderson et
al., for example, argued that MOOC participants can be
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partitioned into 5 distinct categories based on the number of
lectures that they watched and on the assignments that they
submitted: viewers, solvers, all-rounders, collectors, and by-
standers [1]. They also found that the more assignments a
student completed and the more lectures that they viewed,
the higher their final grade would be. Interestingly, while
students who received a ‘B’ grade showed a small decrease
in their homework submissions relative to ‘A’ students, the
amount of time that those students spent watching lectures
was substantially lower. In related work by Liu et al. how-
ever, the authors found that some of these behavioral differ-
ences were consistent with the students’ cultural background
which may affect not just their motivation but their expec-
tations and habits [18].

Other authors have examined the relationship between stu-
dents’ academic performance and their social network rela-
tionships. Eckles et al. used network analysis on survey
data to identify at-risk students who were more likely to
drop out [7]. Kovanovic et al. analyzed how a student’s
relative centrality in their social network will affect their
academic performance [15]. They found that more central
students were typically higher performers than their less-
connected peers. Finally, Zhang et al. constructed student
social networks based upon the comments and replies that
had been posted to the forum [2§|. By analyzing the relative
in- and out-degree of the vertices, they were able to identify
a small amount of users who answered a large proportion of
the questions. This allowed them to find key students in the
course.

2.3 Student Behaviours

In their analysis of student behaviors, Anderson et al. found
that the number of students who watched lecture videos
and finished assignments decreased over the duration of the
course, suggesting that some students changed their minds
about the class or simply changed their habits during it |1].
Ye et al. performed a similar study, in which they examined
a 10-week computer science MOOC [27]. At the end of week
4, 60% of the students who had only watched lectures but
had not participated in other ways had dropped out of the
course, while only 20% of the students who had submitted
assignments and completed quizzes along with viewing had
done so.

Given that a large number of MOOC registrants in a given
course drop (1}, 27], studying the causes of this dropout and
preventing it is an important issue. Kloft et al. sought to
predict dropout behaviors in a 12-week course based upon
the students’ click-stream data using a Support Vector Ma-
chine [14]. They identified two peak dropout points, one
during the first two weeks of the course, and the second at
the end of weeks 11 and 12. Students were unlikely to drop
in the middle of the course and thus if they made it through
the early stages and the final crunch then they would likely
complete. Halawa et al. used a specialized definition of
drop out as a student being absent from the course for more
than 1 month or if they viewed less than half of the lec-
ture videos [10]. With this definition they found that the
percentage of students absent from the course sharply de-
creased from 36.4% to 13.8% after week 3. Hoskins , by con-
trast, focused exclusively on quizzes as performance-based
indicators. They provided a web dashboard for students

to self-assess their performance. By comparing students’
self-assessments with their grades they found that low per-
forming students tended to drop out more than their higher-
performing peers [11].

Unlike the prior studies of students’ performance on MOOCs
we constructed a temporal social network structure to exam-
ine how and when MOOC students established their social
connections with differently-performing peers, how their so-
cial connections changed over time, and the correlation be-
tween these community connections and their intermediate
and final performance. We found MOOC students formed
their social structures early in the course and that these re-
lationships are stable over time.

3. DATA SET

In this study we used data from a 2013 course on “Big Data
in Education” that was offered by the Teachers College at
Columbia University and hosted on the Coursera platform.
This was an 8-week course that was designed to cover all
of the requisite material for a single-semester graduate-level
course on Educational Data Mining (EDM) and Big Data
analysis in education. This included studying core methods
such as student modeling and introducing students to basic
data collection and data analysis techniques such as logging
and visualization. This iteration of the MOOC ran from Oc-
tober 24, 2013 to December 26, 2013. The course itself was
structured around weekly lecture videos and individual as-
signments or quizzes which contributed to the students’ final
grade. The weekly assignments were structured around data
analysis tasks with students being tasked with conducting
some analysis discussed in class and then answering numeric
or multiple-choice questions about it. The students were re-
quired to complete each assignment within two weeks of its
being given out. They were also given up to three attempts
per assignment.

The course had a total enrollment of over 48,000 students,
but a much smaller number of active participants. 13,314
students watched at least one video while 1,242 watched all
of them. A total of 1,380 students completed at least one as-
signment, and 778 made at least one post or comment in the
forum. Of those students who made posts, 426 completed
at least one class assignment A total of 638 students com-
pleted the online course and received a certificate (meaning
that some were able to earn a certificate without partici-
pating in forums at all). In order to receive a certificate
students were required to earn an overall grade average of
70% or above on the assignments [26].

4. METHODS

We began our analysis by clustering the count of students’
submissions for each assignment by date in order to under-
stand when students completed their assignments and how
the submission patterns might indicate their working habits.
Unsurprisingly the assignment submissions peaked right be-
fore each due date with few if any late submissions. To make
our analysis consistent we broke the 8-week course into 2-
week chunks and we split our analysis at weeks 2 (start), 4
(midterm), 6 (third quarter), and 8 (final). This decision
was based upon the fact that students worked across weeks,
and on prior literature that pegged the two- and four-week
boundaries as crucial times for dropout (e.g. [14, 27]).
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This partitioning yielded four distinct datasets representing
the cumulative forum discussion up to that point in the class.
We extracted a social network from each of these datasets
using the same approach applied by Brown et al. |3} [2].
In this approach we generated a raw social network for the
course where each node represents a single participant (stu-
dent, TA, or instructor). We then labeled the student nodes
with their cumulative performance up to the specified time
step. Thus, the week 2 dataset was labelled using their cu-
mulative performance up to the end of week 2. The Coursera
forums operate as standard threaded forums. Users have the
ability to start new threads by making an initial post. They
can also add posts to the end of an existing thread or add a
specific reply below a given post.

In order to build social network from the discussion forum,
we treated participants as nodes and their communications
as edges. More specifically, for each comment in a thread,
we added a directed arc from the author’s node to nodes
representing the author of each comment that precedes it
in the thread, with the exception of self-loops. So all of
the contributors to a thread, including the originator, will
be connected to one another. This approach is based upon
the assumption that students read the thread before con-
tributing to it and that a post represents a contribution to
the whole conversation. The average length of each thread
in our dataset was seven posts. Thus we treat each reply
as evidence of an implicit social connection between the in-
dividual author and their conversational peers. Such im-
plicit social relationships have been explored in the context
of recommender systems to detect strong communities of re-
searchers [4]. The resulting networks form a multigraph with
each edge representing a single communicative act. As our
goal is to focus on social relationships we then modified this
graph by eliminating all isolated nodes, and by collapsing
the parallel edges to produce a weighted undirected simple
graph representing connections between students.

In addition to analyzing the connections between students,
we also sought to analyze the impact of the instructional
staff and the active hub students on their social structure.
We therefore generated three different graphs for each of the
datasets: ALL which is the complete graph with all non-
isolated nodes; Student, which eliminates the instructional
staff; and No Hub, which removes both the instructional
staff and the highly active 'hub’ students. Since MOOCs
are an at-will course students often drop out and we cannot
always distinguish intentional dropouts from unintentional
failure. In one typical dataset, for example, more than 80%
of the students received a grade of 0 [1]. Therefore we also
constructed graphs for students with and without students
who received a grade of 0. While it is true that the final
grade is only accessible at the end of the course we do not
believe that this limits the generality of our results. By
identifying features that are consistent with 0 performance
we can develop predictive models that will work in real-time.

4.1 Best-Friend Regression

Fire et al. modeled students’ social interactions for grade
prediction in a traditional classroom [8]. They found that in
traditional classes the students’ grades are closely correlated
with those of their closest neighbor or “best friend”. That
research was based upon self-reported relationship data, but

Brown et al. were able to show that it also applied in an
online context [2]. In that analysis they used the weighted
network to identify each students’ “Best Friend” (BF) or
closest peer by connections. They then showed that the
same result held for this network structure as well.

4.2 Community Detection

We applied the Girvan-Newman algorithm to find social
clusters within our graph. In order to identify the ideal
number of clusters we used the “natural cluster number”
approach described in [3]. That approach is based upon
the modularity score of candidate clusters. Given a graph
that has been clustered into sub-communities, the modu-
larity of the graph is measured by the ratio of intra-cluster
to inter-cluster connections, that is, how strongly individual
students are associated with their cluster associates rela-
tive to the rest of the class. Graphs with high modularity
have very strong within-cluster connections and relatively
sparse connections across the groups. As the graphs are
partitioned into smaller and smaller communities the mod-
ularity score will grow rapidly until we reach an inflection
point or a point of diminishing returns at which point each
additional sub-cluster makes little difference to or even re-
duces the modularity score. In the natural cluster approach,
we iteratively cluster the graph into higher numbers of com-
munities and plot the modularity score over number of clus-
ters. We then examine this curve to find the inflection point
and use that value. Th