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Preface 
 
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of 
the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. The 
conference, held July 15th through 18th, 2018, follows ten previous editions (Wuhan 2017, Raleigh 2016, 
Madrid 2015, London 2014, Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010, Cordoba, 
2009 and Montreal 2008).  
 
This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of 
these, 23 were accepted as full papers and 37 accepted as short papers. All total, the combined acceptance 
rate of long and short papers is 41%. The acceptance rate for long papers is 16%. An additional 32 papers 
were accepted to the poster track.  
 
This year's conference features three invited talks: Tiffany Barnes, Professor at North Carolina State 
University in Raleigh, NC; Jodi Forlizzi, Geschke Director of the HCI Institute and Professor at Carnegie 
Mellon University; and Jim Larimore, Chief Officer of Center for Equity in Learning at ACT, Inc.  
 
Together with the Journal of Educational Data Mining (JEDM), the EDM 2018 conference supports a 
JEDM Track that provides researchers a venue to deliver more substantial mature work than is possible in 
a conference proceeding and to present their work to a live audience. Three such papers are featured this 
year. The papers submitted to this track followed the JEDM peer review process.  
 
The main conference invited contributions to an Industry Track in addition to the main track. The EDM 
2018 Industry Track received ten submissions of which six were accepted, a tangible improvement over 
last year, with only four submissions total, all of which were accepted. This expansion of the industry 
track represents an intentional goal to better connect industry researchers with the academic research 
community. 
 
The EDM conference continues its tradition of providing opportunities for young researchers to present 
their work and receive feedback from their peers and senior researchers. The doctoral consortium this 
year features 14 such presentations, more than double compared to the prior year. In addition to the main 
program, there are four workshops: Educational Data Mining in Computer Science Education (CSEDM), 
Proposal Policy & EDM: Norms, Risks, and Safeguards, replicate.education: A Workshop on Large Scale 
Education Replication, and Scientific Findings from the ASSISTments Longitudinal Data. 
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regular program committee members and reviewers, without whose expert input this conference would 
not be possible. Finally, we thank the entire organizing team and all authors who submitted their work to 
EDM 2018.  
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Best Paper Selection 

 
The two program chairs selected five best paper nominees based on the reviews and meta-reviews for 
each of those papers. The nominees were then sent to the members of the best paper awards committee. 
Each committee member read and ranked each one of the nominees. Ranking was compiled and the Best 
Paper Award was attributed to the most highly ranked paper. Next, the Best Student Paper award was 
attributed to the most highly ranked remaining paper that was also authored by a student.  
 
Best Paper Award Committee: 
Michel Desmarais 
Tiffany Barnes 
Roger Azevedo 
Agathe Merceron 
Kalina Yacef 
 
Best Paper Nominees:  
 
Predicting Quitting in Students Playing a Learning Game. Shamya Karumbaiah, Ryan S Baker, Valerie 
Shute 
 
An Open Vocabulary Approach for Estimating Teacher Use of Authentic Questions in Classroom 
Discourse. Connor Cook, Andrew Olney, Sean Kelly, Sidney D'Mello 
 
Impact of Corpus Size and Dimensionality of LSA Spaces from Wikipedia Articles on AutoTutor Answer 
Evaluation. Zhiqiang Cai, Art Graesser, Leah Windsor, Qinyu Cheng, David Shaffer, Xiangen Hu 
 
Studying Affect Dynamics and Chronometry Using Sensor-Free Detectors. Anthony F. Botelho, Ryan 
Baker, Jaclyn Ocumpaugh, Neil Heffernan 
 
Understanding Student Procrastination via Mixture Models. Jihyun Park, Renzhe Yu, Fernando 
Rodriguez, Rachel Baker, Padhraic Smyth, Mark Warschauer 
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ABSTRACT
Instructional Systems Design is the practice of creating of
instructional experiences that make the acquisition of knowl-
edge and skill more efficient, effective, and appealing [18].
Specifically in designing courses, an hour of training mate-
rial can require between 30 to 500 hours of effort in sourcing
and organizing reference data for use in just the preparation
of course material. In this paper, we present the first sys-
tem of its kind that helps reduce the effort associated with
sourcing reference material and course creation. We present
algorithms for document chunking and automatic genera-
tion of learning objectives from content, creating descriptive
content metadata to improve content-discoverability. Unlike
existing methods, the learning objectives generated by our
system incorporate pedagogically motivated Bloom’s verbs.
We demonstrate the usefulness of our methods using real
world data from the banking industry and through a live
deployment at a large pharmaceutical company.

1. INTRODUCTION
Recent estimates suggest that on average, an organization
spends nearly $1200 per year, per employee for training.1

Apart from the costs incurred in delivering training, signif-
icant costs are associated with instruction design activities
such as sourcing and preparation of course materials. Cur-
rently, most of these activities are very human-intensive in
nature, and they rely on the experience and expertise lev-
els of instruction designers and intense reviews by subject-
matter experts (SMEs) to achieve acceptable quality levels.

∗Utkarsh carried out this work during his employment with
IBM Research.
1https://www.td.org/Publications/Magazines/TD/TD-
Archive/2014/11/2014-State-of-the-Industry-Report-
Spending-on-Employee-Training-Remains-a-Priority.

Figure 1: Typical course creation workflow

1.1 Course Creation: Workflow and Challenges
Figure 1 shows the typical steps involved in creating a new
course. In the first step, instructional designers search for
existing learning content that can be used for reference while
developing the course. The learning objectives of the new (to
be designed) course informs this search process. Reference
materials may include existing courses and resources as well
as other informal learning materials, such as those available
in the form of media articles, blogs etc.

In the next step, the new course is designed and implemented
by: extracting the relevant parts of the selected reference
content, transforming them appropriately, and combining
with newly developed materials to meet the overall training
objectives. The new course content is finalized with SME
review and approval. Finally, the course is uploaded to a
repository for access by end users such as instructors and
employees.

The average time taken to produce an hour of material this
way can vary between 50 to 300 hours depending on the
nature of the course being created.2 The efficiency with
which a new course can be assembled rests on two critical
factors: (a) the ability to quickly locate an existing reference
material, which is relevant to a learning objective that is part
of the planned new course; and (b) the ability to identify
(and eventually extract) appropriate parts of this material
for use within the new course.

2https://www.td.org/Publications/Newsletters/Learning-
Circuits/Learning-Circuits-Archives/2009/08/Time-to-
Develop-One-Hour-of-Training.
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1.2 Contributions
In this paper, we present the first system of its kind that
helps reduce the effort associated with sourcing reference
material and course creation. We present algorithms for
document chunking and automatically generating learning
objectives from content as well as creating descriptive con-
tent meta-data that improves content-discoverability. Our
novel methods for document chunking incorporate syntactic
and stylistic features from text as well as a semantic vector-
based representation of document text to identify meaning-
ful chunks. Each chunk is physically persisted and a learning
objective consisting of Bloom’s verb [3] along with a descrip-
tive keyphrase is generated and associated with each chunk.
To the best of our knowledge, we are the first to gener-
ate learning objectives incorporating Bloom’s verbs and our
system is the first of its kind that directly addresses the
challenges in instruction design.

We describe experiments using real-world data from two in-
dustries: banking and pharmaceutical. Our results on data
from the banking industry shows that our document chunk-
ing methods are useful for instruction designers. We report
an average user rating of 2 out of 3 in a blind study to
assess the quality of chunks and an F1 score of 0.62 com-
puted against expert generated gold standard chunks. Fur-
thermore, in the challenging problem of generating learning
objectives, the output from our system has an F1 score of
0.70 for predicting Bloom’s verbs with an average user rat-
ing of 2.2 (out of 3) for the associated keyphrase. We also
present details of a live deployment of our solution at a large
pharmaceutical company.

2. RELATED WORK
To the best of our knowledge, our system is the first (com-
mercial or prototype) that can automatically chunk/segment3

learning material and label them with system-generated course
objectives. We highlight some related work directly relevant
to the subcomponents of document chunking and learning
objective generation.

Document chunking: Broadly, most methods for chunk-
ing/segmentation of text rely on detecting changes in vocab-
ulary usage patterns [11, 14, 15], identifying topical shifts
[6, 7, 23], or employing graph based techniques to identify
boundaries [9, 28]. The TextTiling [11] document segmen-
tation algorithm uses shifts in vocabulary patterns to mark
segment boundaries. Works such as Riedl and Biemann [25]
adapt the TextTiling algorithm to work on topics generated
by Latent Dirichlet Allocation. Glavis et al.[9] use a graph
based representation of documents based on semantic relat-
edness of sentences to identify document segments. More re-
cent work [1, 2] uses semantic distance computed based on
vector embeddings to identify chunk/segment boundaries.
Our work on document chunking is based on this direction
of research. We use file format specific APIs to physically
persist document chunks, retaining any stylistic and presen-
tation elements from the original document.

Learning Objective generation: Most learning manage-
ment solutions either rely on user provided learning objec-

3We use the word “chunk” and “segment” interchangeably,
though a document chunk further refers to a physical em-
bodiment of a document segment

tives or automated methods to label documents with existing
learning objectives specified in curricula [4]. Methods such
as Bhartiya et al. [2] and Contractor et al. [5] use a curricu-
lum hierarchy to label learning material with learning objec-
tives. Milli and Hearst [22] simplify the problem of generat-
ing course objectives by directly using document keyphrases
as learning objectives. Similarly, Lang et al. [16] and Rouly
et al. [26] simplify generating objectives using topic model-
ing to identify candidate learning objectives, where Lang et
al. [16] also suggest a system to match topics with Bloom’s
verbs. In contrast, we associate keyphrases with Bloom’s
verbs [3] and rerank them to select the best candidates for
use as learning objectives. To the best of our knowledge, we
are the first to generate pedagogically motivated learning
objectives incorporating Bloom’s verbs.

3. DOCUMENT CHUNKING
Course materials can often be very large and monolithic,
covering a great number of topics and learning objectives,
which makes consumption difficult. To make these course
materials more discoverable, we automatically segment courses
into smaller chunks that can persist independently in the
course repository. We present three chunking approaches in
the following sections.

3.1 Structure guided (syntactic-chunker)
Section headings are often the most natural chunk bound-
aries as they reflect the organization of content by the doc-
ument creator. Formats such as Microsoft Word have an
underlying XML structure that allows us to create these
natural chunks easily. However, for PDF documents, there
is no encoded document structure information, but we can
recover the section titles by analyzing the font sizes of text.
To build the syntactic-chunker, we use a combination
of Apache PDFBox4 for PDF documents, Aspose APIs5 for
Microsoft Office documents and Apache Tika6 for all other
document formats.

Algorithm 1 details the syntactic chunking algorithm where
we do not have markers for the section headings. The al-
gorithm aims to find the font size of the largest heading in
the document for chunking. The syntactic-chunker first
groups the lines in the document by their font size (sequen-
tially). For each of these font groups, the algorithm gath-
ers statistics on the chunks that would be created for each
group’s font size. The largest font size (i.e. the top most sec-
tion titles) is then chosen from the groups that satisfies the
heuristics given in the chunking hyperparameters. An exam-
ple heuristic is whether the number of chunks created by this
font size is between 3 and 20, which is the number of sections
or subsections we expect a document or a chapter to contain
on average. The significant heuristics/hyperparameters for
this algorithm are given in Table 1.

Finally, the line indices marking the start of the section
headings are recovered through the font groups created ear-
lier. These starting line indices are then further processed
in the main algorithm for creating the physical chunks or
storing the metadata.

4https://pdfbox.apache.org/
5https://docs.aspose.com/dashboard.action
6https://tika.apache.org/
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Algorithm 1: Syntactic chunking algorithm

Input : A path to the document
Output: A list of indices to lines/pages in the document

marking the start of a chunk
1 LoadParameters(“syntactic”)
2 pdf ← LoadDocument()

3 lineText ← ExtractOnEachLine(“text”, pdf)
4 lineFS ← ExtractOnEachLine(“fontsize”, pdf)

// Font groups are contiguous groups of lines.

5 fgs ← [(i, k − 1) | lineFS[i] = lineFS[j], i ≤ j < k]
// Create chunk statistics for each font group

6 for i, j ∈ fgs.length, i = j do
7 while lineFS[fgs[i]] ≥ lineFS[fgs[j]] do
8 cStats[lineFS[fgs[i]]] += GetStats(fgs[j])
9 j ← j + 1

10 end

11 end
// Select candidates from heuristics

12 cs ← [fg | Heuristics(fg, cStats[fg]),∀fg ∈ fgs]
13 chunkingFontSize ← LargestFontSize(cs)

// Return the chunk start boundaries

14 chunkStartIndices ←
[fg.startIndex | lineFS[fg] = chunkingFontSize, ∀fg ∈ fgs]

Hyperparameter Value Description

font_group_lines [1,3] Minimum and maximum
number of consecutive lines
(of the same font size) to
collapse.

n_chunks [3, 20] Minimum and maximum
number of resulting chunks
for each font size.

min_section_

title_length
2 Minimum number of char-

acters for a chunk’s start-
ing line.

Table 1: Syntactic-chunker hyperparameters.

Hyperparameter Value Description

min_par_to_stop 80 Threshold for the mini-
mum number of lines to
stop chunking.

trim_par 4 Proportion of starting
and ending lines to ignore
when searching for a chunk
boundary.

word2vec_model enwiki Pre-trained word2vec
model.

max_vocab 1000 Number of most frequent
word types to include from
pre-trained word2vec
model.

Table 2: Semantic-chunker hyperparameters.

3.2 Topically guided (semantic-chunker)
Some document styles have ambiguous semantic separation
of content, such as presentation slides, informal articles, and
blogs. These document styles often have repeated font sizes
and text that do not provide distinguishing characteristics
for syntactic chunking. For example, presentation slides
often have repeated font sizes for slide titles, causing the
syntactic-chunker to create a separate chunk for each

Algorithm 2: Semantic/hybrid chunking algorithm

Input : A path to the document
Output: A list of indices to lines/pages in the document

marking the start of a chunk
1 LoadParameters(“semantic”/“hybrid”)
2 pdf ← LoadDocument()
3 lineText ← ExtractOnEachLine(“text”, pdf)

// Vectorize words using pre-trained word vectors

4 lineVectors ← Vectorize(lineText)

/* Modifications for the hybrid algorithm */
5 lineFS ← ExtractOnEachLine(“fontsize”, pdf)

// Create font groups.

6 fgs ← [(i, k − 1) | lineFS[i] ≡ lineFS[j], i ≤ j < k]
// Vectorize the font groups

7 fgsV ← [VectorSum(Vectorize(∀lineText ∈ fg)) | ∀fg ∈ fgs]
// Similar logic to the semantic algorithm

8 lineVectors ← fgsV

// Return the chunk start boundaries (function below)
9 chunkStartIndices ← FindSegments(lineVectors, startIndex)

/* Divide and conquer strategy */
10 Function FindSegments(lineVectors, startIndex):
11 n ← Size(lineVectors)

// Create the search area with the
numParagraphsInChunk hyperparameter

12 x ← n/numParagraphsInChunk
13 y ← n/(1− (1/numParagraphsInChunk))
14 bestIndex ← (x+ y)/2
15 bestScore ← 1.0
16 sumTop ← VectorSum(lineVectors[1, x])
17 sumBot ← VectorSum(lineVectors[x+ 1, n])

18 for x ≤ i < y do
19 sumTop ← VectorSum(sumTop, lineVectors[i])
20 sumBot ← VectorSubtract(sumBot, n)
21 cos ← Cosine(sumTop, sumBot)
22 if cos < bestScore then
23 bestIndex ← i
24 bestScore ← cos
25 end
26 chunkIndices.append([bestIndex + startIndex ])
27 topVectors ← lineVectors[1, bestIndex]
28 botVectors ← lineVectors[bestIndex + 1, n]

// Hyperparameter minNumberOfLines as the
stopping condition

29 if Size(topVectors) > minNumberOfLines then
30 chunkIndices.appendAll(FindSegments(topVectors,

startIndex))
31 end
32 if Size(botVectors) > minNumberOfLines then
33 chunkIndices.appendAll(FindSegments(botVectors,

bestIndex + startIndex))
34 end
35 end
36 return chunkIndices

slide. For these documents, their text content is more useful
for inferring chunk boundaries than syntactic markers.

To chunk these documents, we use a divide-and-conquer ap-
proach based on topical or content shifts. We represent the
content using mean bag-of-word embeddings, which are pre-
trained word2vec embeddings [20, 21].7 We tokenise words
using whitespace, and discard common symbols such as com-

7Word embeddings are trained on English Wikipedia.
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mas and periods. When computing the mean embedding,
stopwords are excluded.8 The divide-and-conquer method
first identifies a boundary that separates a document into
two partitions that have the maximum cosine distance us-
ing the vector embeddings (providing topical diversity), and
then recursively creates subpartitions until a minimum text
length is reached. The search strategy is simpler compared
to dynamic programming and iterative improvement tech-
niques typically used in the literature [1] but we found this
divide-and-conquer strategy performs encouragingly.

The pseudocode and hyperparameters for the semantic-
chunker algorithm with modifications to create the hybrid-
chunker are in Algorithm 2 and Table 2, respectively. Both
algorithms share similar hyperparameters and similar divide-
and-conquer logic but on different data structures.

3.3 Hybrid method (hybrid-chunker)
The semantic-chunker relies purely on content informa-
tion for chunking, ignoring potentially usable structural in-
formation. From preliminary experiments, we observed that
the semantic-chunker occasionally partitions documents
at arbitrary positions in the text. For example, a few lines
after the start of a new section where the topical shift should
be stronger. To resolve this, we developed a hybrid method
that uses both structural and content information. Similar
to the syntactic-chunker, we record font sizes for each
line, and gather lines that share a similar font size into a
data structure. With these data structures, we apply the
same divide-and-conquer approach used in the semantic-
chunker to recursively partition the document into multi-
ple chunks. This forces the chunker to create partitions at
natural text boundaries, when this information is available.

4. LEARNING OBJECTIVE GENERATION
Traditionally, learning objectives associated with courses are
generated manually and are presented in a sentence-like struc-
ture. An example from a K-12 Science curriculum in the US:
Conduct an investigation to determine whether the mixing
of two or more substances results in new substances.9

Automatically generating these objectives can be posed as
summarization problem where the task is to identify the
“learning skill” imparted by the document. However, infer-
ring a skill requires an in-depth understanding of the con-
cepts presented, how they relate with each other, and in
courses–such as those that teach soft-skills or behavioural
skills–the relationships may be more abstract. Thus, in or-
der to generate tractable yet usable learning objectives, we
generate short sentences that are prefixed by a verb from the
Bloom’s taxonomy followed by a keyphrase. Recent work
such as Milli and Hearst [22] contends with simply using
keyphrases as learning objectives.

4.1 Candidate Keyphrase Selection
Existing methods for keyphrase extraction use a variety of
different approaches. Some methods rely on supervision to

8We use mallet’s stopword list: https://github.com/mimno/
Mallet/blob/master/stoplists/en.txt
9Sources: https://www.cs.ox.ac.uk/teaching/courses/2015-
2016/ml/, https://www.nextgenscience.org/topic-arrangement/
5structure-and-properties-matter.

Method % Useful Keyphrases

Watson NLU 66
Modified TextRank [4] 51

Table 3: Percentage proportion of keyphrases iden-
tified by instructional designers as being “useful” for
possible inclusion in learning objectives

extract keyphrases [13, 27, 29], while unsupervised methods
often rely on graph-based ranking [19] or topic-based clus-
tering [10, 17]. For our work, we rely on an accessible and
effective keyphrase extraction method: IBM Watson Natu-
ral Language Understanding (NLU)10 to extract keyphrases.
NLU is one of many commercially available general purpose
keyphrase extraction methods that performs effectively in
general keyphrase extraction tasks [8, 12]. We also eval-
uated other methods such as a variant of TextRank [19],
which has been used in extracting keyphrases from educa-
tion material [4]. We chose NLU for the rest of this paper
after a blind user study on 243 document chunks indicated
a strong preference for these keyphrases as compared to the
method employed by Contractor et al. [4]. Table 3 shows
the proportion of useful keyphrases11 for two keyphrase ex-
traction methods. Further details and results are given in
Section 5.3.

As seen from Table 3, not all keyphrases extracted are useful
for inclusion in learning objectives. Thus, to select candidate
keyphrases for learning objectives from a general keyphrase
list, we rank and select them using a combination of factors:

1. Keyphrase score (α): A score between 0-1 returned by
the NLU indicating the importance of a keyphrase (1 =
most important).

2. N-gram TF-IDF score (β): We compute an N-gram
level TF-IDF score for each keyphrase using a large do-
main specific background corpus for IDF score computa-
tion.

3. Inverse chunk frequency (γ): We compute a chunk-
level modified IDF score for each keyphrase where the
IDF score is computed at the keyphrase level using sibling
chunks of a given chunk.

4. Google N-gram score (φ): The Google Books N-gram
service12 returns the log-likelihood of a given N-gram
from a language model trained on the Google Books cor-
pus. We use the (normalized) rank for a keyphrase within
a chunk as the N-gram score.

5. Word token level overlap with document section
titles (θ): Tokens in a section title are likely to contain
mentions of important concepts and this acts as a useful
signal for selecting keyphrases for learning objectives.

10https://natural-language-understanding-demo.mybluemix.
net/

11“Usefulness” is defined in terms of possible inclusion of a
keyphrase in a learning objective, and not in terms of the
“quality” of a keyphrase in a general keyphrase extraction
task.

12https://books.google.com/ngrams.
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α β γ φ θ

bank 0 0.5 0 0.5 0
pharma 0.26 0.32 0 0.32 0.1

Table 4: Hyperparameter values for bank and pharma

data for keyphrase re-ranking: α: orignal keyphrase
score, β: N-gram TF-IDF score, γ: Inverse Chunk
Frequency, φ: Google N-gram score, θ: Overlap with
words in section titles.

Figure 2: A representative taxonomy of Bloom’s
verbs

Let weight wi be associated with each scoring factor fi,
where there are N factors. The weights of each factor is

normalized to sum to 1.0 (i.e.
∑N

i=0 wi = 1.0). Let K
(j)
s

denote the set of top-k keyphrases selected by the system
for the j-th chunk (based on decreasing order of the score∑N

i=0 wifi). Let the average user rating (see Section 5.3)

associated with the keyphrase set K
(j)
s be denoted by sj .

Our goal is to select values of wi that maximises sj for all
training examples:

max

∑M
j=1 sj

M
(1)

where M is the number of training examples. The values for
k and parameters wi are estimated using grid search.

The tuned hyperparameters for the keyphrase selection are
given in Table 4. We found that γ is not useful in these data
sets, but maybe useful in other document collections where
learning objectives are derived from a few chunks.

4.2 Bloom’s Verbs Association
Bloom [3] proposes a taxonomy for promoting learning in-
stead of rote memorization. Bloom’s taxonomy aims to cap-
ture the whole pedagogy of learning, teaching, and process-
ing information in a list of “action” verbs. These verbs (re-
ferred to as Bloom’s verbs) characterize the activity involved
in learning concepts.

Figure 2 shows a representative view of Bloom’s taxonomy.
For example, the verb knowledge has a list of child verbs
such as identify and select. Similarly, other top-level verbs
have their own set of verbs. We experiment with a subset
of 10 verbs, as recommended by SMEs. We also explore an-
other more condensed list as suggested by the same SMEs
to investigate the potential of hierarchical options. We col-
lapse the 10 verbs belonging to the same parent, resulting in
4 higher-level verb classes in Bloom’s taxonomy. The verb

Distribution
Original List Collapsed List bank pharma

identify

knowledge

542 323
define 85 12
recall 36 11

recognize 35 31
select 6 1
list 1 8

describe understand 144 166
explain 127 65
outline analyze 11 40

determine apply 5 5

Table 5: Bloom’s verbs used for generating Learn-
ing Objectives and their distribution from a ran-
dom sample of 100 chunks. Each chunk often has
more than one keyphrase describing it, requiring the
SMEs to suggest a matching Bloom’s verb.

classes used in our experiments are given in Table 5.

To associate a verb from Bloom’s taxonomy with a keyphrase
learning objective, we train a multilayer perceptron (MLP)
to predict a verb given a document (or chunk) and a can-
didate keyphrase. Thus, the MLP consists of two fully con-
nected (dense) layers with ReLU activation functions[24] in
each node. The input of the network is the mean bag-of-
words embedding of the document text and the keyphrase.

Word embeddings are pre-trained word2vec embeddings
[20, 21] trained on the English Wikipedia. Word embeddings
are kept static and not updated during back-propagation.13

This approach of predicting bloom verbs was found to be
very effective as shown in Section 5.3.

Two examples of generating learning objectives are shown
in Table 6. They show the pairing of a Bloom’s verb with
various keyphrases. These pairings are presented to SMEs
to evaluate, where their ratings allow us to determine the
final rankings to select the most appropriate candidates as
learning objectives for a piece of text. Note that the text in
the examples (from a document chunk) has been truncated
for presentation.

5. EXPERIMENTS
5.1 Data sets
We evaluate our chunking and learning objective systems
on real-world documents from two industries: banking and
finance (henceforth bank) and pharmaceuticals (henceforth
pharma). Table 7 summarizes the word statistics of the two
document collections used in our experiments.

The bank data set serves as our initial dataset for tuning
and testing our methodology, which has a mix of 15 “for-
mal” (e.g. Microsoft Word style) documents and 15 “infor-
mal” (e.g. HTML, MediaWiki style, Microsoft PowerPoint
slides) documents.

The pharma data is a set of client-provided documents with a

13We also experimented with updating the embeddings
(Facebook’s fastText), but found little improvement and
thus chose the simpler static model with fewer parameters.
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Bloom’s Keyphrase Avg.
Verb Rating
describe ach payments 3
explain ach transaction flow 2.5
describe ACH transactions 2.5
identify ACH network 2
identify ACH networks 2
identify ACH payment request 2
describe ACH payments industry 2
explain internal ach transaction 2
identify traditional ACH payments 2
identify ACH 1

Text
ACH Payments In this section we are going to take a look at
a payment type generically known as small value electronic
credit transfers, although they are referred to with a number
of different names, including automated clearing house or
ACH transactions, automatic clearing payments, electronic
clearing payments and giro payments. . . .

Bloom’s Keyphrase Avg.
Verb Rating
explain consumer payments 3
define Large value payments 2
describe payments industry 2
define Small value payments 2
identify consumer bill payments 1.5
recall consumer payments operations 1.5
identify corporate-to-corporate payments 1.5
identify interbank payments 1.5
explain payments 1.5
identify banks 1

Text
Business Overview Why focus on consumer payments?
There are two sides to this question. First, why do banks
focus on consumer payments? There are several reasons:
Banks cannot accept consumer deposits without providing
payment services linked to those accounts. While consumer
deposits have always been important, they have never been
as important as they are today. . . .

Table 6: Examples of generating learning objectives
and their average ratings from SMEs.

similar distinction of formal and informal documents. The
pharma data set consists of 382 courses containing 408 doc-
uments, where most courses only have one document. We
develop our methodology on the bank data set and pursue a
deployment on the pharma data set (detailed in Section 6).
The remainder of this section describes our experimental
results on the bank data set.

5.2 Evaluation: Document Chunking
For tuning and evaluation, we require gold standard chunks
for the bank documents. To this end, we ask SMEs to chunk14

these documents manually, resulting in 243 chunks in to-
tal for the 30 documents. The documents were chunked
by SMEs (with inter-annotator disagreements of the chunk
boundaries resolved) based on their understanding of the
subject from an instructional design perspective. The SMEs
opted for page level chunks and thus we build our measure
of quality at the page level.

To measure the quality of our system against SMEs, we
compute the average F1 score on their list of chunk bound-

14Chunks are contiguous breaks in the document, so chunk
boundaries can be succinctly described and compared using
the starting line/page number for each chunk.

bank pharma

No. Documents 30 408
No. Word Tokens 376,570 1,251,712

Vocabulary Size 32,598 92,890

Table 7: Data set statistics.

aries. We omit the first chunk boundary as it always starts
at page 1, and penalise duplicate page numbers (i.e. multi-
ple sections on the same page). To illustrate the evaluation
method, we give an example:

system chunks = [1, 4, 4]

human chunks = [1, 3, 4]

where each number in the list denotes the starting page num-
ber of a chunk. We omit the first chunk, yielding:

system chunks = [4, 4]

human chunks = [3, 4]

Precision of the system is therefore 1/2 = 0.5 (the second
starting page number “4” is penalised), the recall is 1/2 =
0.5, and thus F1 = 0.5.

There are a number of hyper-parameters for our chunking
methods, which are available in Tables 1 and 2. We tune
them manually based on the F1 score using a small labeled
development set. Given the tuned models, we apply them
to the bank documents.

From the chunking performance in Table 8, we found that
for formal documents, the syntactic-chunker (relying on
the font size to detect natural chunk boundaries) has the
highest accuracy for formal content. In contrast, for the
informal content, where structural information may not be
very indicative of natural chunk boundaries, we find that
the semantic-chunker gives better results as expected.

In order to qualitatively assess the results of our systems, we
also evaluate them with a blind user study. Two expert in-
structional designers were presented the output of chunks by
different chunking algorithms in random order and without
information on the underlying algorithm. Each designer was
asked to rate a chunk output with 1 (poor), 2 (acceptable),
and 3 (good) based on their quality and usefulness from an
Instructional Design point of view. Due to complexity and
unsupervised nature of the task, ratings above 1 are strongly
encouraging.

As seen in Table 8, the average ratings for all our best sys-
tems is greater than 1.5 indicating our system generated
chunks could be acceptable and useful for instructional de-
signers. Furthermore, we find that the scores from the user
study reinforce the assessment that formal content (with
well structured natural chunk boundaries) are reliably chun-
ked using the syntactic-chunker algorithm while informal
content is better chunked using the semantic-chunker al-
gorithm.

Surprisingly, we find that the hybrid-chunker chunking
algorithm performs poorly on informal content compared to
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System Doc Type F1 Avg. Rating

syntactic-
chunker

Formal 0.62 2.17
Informal 0.31 2.00

Combined 0.47 2.08

semantic-
chunker

Formal 0.08 1.36
Informal 0.20 1.67

Combined 0.14 1.51

hybrid-
chunker

Formal 0.21 1.49
Informal 0.05 1.77

Combined 0.13 1.63

Table 8: Results for Document Chunking on the bank

data set. Bold values indicate the best performance
for that system.

the semantic-chunker. However, the average user evalu-
ation rating shows that the resulting chunks are highly ac-
ceptable, as expected from initial trials in designing this
algorithm. Our inspection shows that increasingly the gran-
ularity from lines to font groups simply means the desired
chunk boundaries are often missed (and they are near misses),
and that fewer chunks are created. We reason that fewer
chunks are favorable to users when the document does not
have clear chunking boundaries because of simplicity. Fur-
thermore, our F1-score measure is strict, meaning near misses
for chunk boundaries are also heavily penalized, but the
chunk boundaries of the hybrid-chunker algorithm may
be acceptable to the user. We also experimented with alter-
native methods such as repositioning the chunk start indices
from the semantic-chunker to match boundaries given by
the syntactic-chunker, but the resulting chunks were not
favored by the SMEs in initial trials.

Overall, the syntactic-chunker performs well on both for-
mal and informal documents for the bank data set. On
inspection of the informal documents, some contain suffi-
cient structure for the syntactic-chunker to infer the de-
sired chunking boundaries, whereas documents with non-
usable structures, the semantic-chunker provides more
favorable chunking boundaries. We also reason that the
higher ratings for the syntactic-chunker is due to the
syntactic-chunker finding section headings for chunking
boundaries, which seems to be preferred by users, whereas
another grouping of pages for the chunk may be more ap-
propriate. These chunking systems provide variety, ensuring
that we have a suitable set of chunks for any document.

5.3 Evaluation: Learning Objective Genera-
tion

To collect annotation for evaluation and for training the
Bloom’s verb MLP and for keyphrase selection, we present
to SMEs: a document chunk (manually chunked by differ-
ent SMEs in Section 5.2) and the top-10 NLU generated
keyphrases and ask them to (1) rate the keyphrase in terms
of usefulness as a learning objective suffix on an ordinal scale
from 1–3 (same as chunking evaluation) and (2) select an ap-
propriate Bloom’s verb (out of 10 verbs) for the particular
keyphrase.

We randomly sample from the full 243 document chunks
and collect annotations for 100 chunks, where each chunk is

P@1 P@3 P@5

Avg. Rating 1.97 2.23 2.20
Precision 0.5 0.5 0.45

Table 9: bank: Candidate Keyphrase Selection for
Learning Objective Generation

annotated by 2 SMEs. We aggregate these keyphrase rat-
ings by taking the mean rating. For Bloom’s verb selection,
we ask the judges to agree on a particular verb if there is
discrepancy. To generate gold standard for the condensed
verbs (4 classes), we map the original 10 classes to the 4
classes, as given in Table 5.

5.3.1 Candidate Keyphrase Selection
We use 10-fold cross-validation at the chunk level for our
experiments. We select the top-k keyphrases for each chunk
as candidates for the learning objectives of that chunk. From
Equation 1, the tuning of factor weights is based on the
average user rating of these top-k keyphrases.

We evaluate the quality of candidate keyphrase selection us-
ing the average user rating of the selected keyphrases, and
Precision@N defined as

P@N =
kg ∩ ks
|ks|

(2)

where kg is the set of gold standard keyphrases that have an
average user rating of at least 1.515, and ks is the set of top-
k keyphrases selected by the system. This measure shows
whether our selection methods are returning the keyphrases
that are relevant for each chunk as determined by the SMEs.

From Table 9 our keyphrase selection method has a P@5 of
0.45 with a high average user rating. This means that 45%
of the top 5 keyphrases selected contain the gold standard
keyphrases.

5.3.2 Selecting Bloom’s Verbs
Given a document and its verbs from the Bloom taxonomy,
we train an MLP and optimise its hyperparameters based
on 10-fold cross-validation at the chunk level. We use the
evaluation metric of mean F1 score over the 10-folds.16 We
use 2 test sets: (1) all keyphrases and (2) top-5 keyphrases
predicted by our system. Note that in each fold, the training
data remains the same, but test set (2) is a subset of (1).

We present the classification performance of Bloom’s verbs
in Table 10. As expected, the performance in the 4-class
prediction task is better than the 10-class prediction due to
less confusion amongst classes. Baseline experiments where
we assign the majority class for all predictions show a con-
sistent 0.10 drop in F1-score for both the 4-class and 10-class
prediction scores.

15We want our system to select only good quality keyphrases.
16For a particular fold, we compute weighted F1, where it is
weighted by the number of true instances for each class.
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Test Set F1
4-Class 10-Class

All KP 0.69 0.51
System Top-5 KP 0.70 0.53

Table 10: bank: Bloom’s verb (BV) prediction per-
formance. “KP” denotes keyphrase.

P@1 P@3 P@5

Avg. Rating 1.24 1.35 1.38
Precision 0.1 0.3 0.32

Table 11: pharma: Candidate Keyphrase Selection for
Learning Objective Generation

6. DEPLOYMENT
Making content discoverable is a key challenge faced by tal-
ent development teams in organizations worldwide. Our sys-
tem addresses this challenge and is currently being piloted
at one of the world’s largest pharmaceutical companies to
help organize their learning content.

Experiments and Tuning: Using the pharma data shared
by the pharmaceutical company (statistics in Table 7), we
repeated the bank data set experiments on this data. The
pharmaceutical SMEs only wanted generation of document
level learning objectives, and not document chunking. Thus,
we describe only the experiments for this task. As with the
bank experiments, we ask SMEs to rate predicted keyphrases
and select the appropriate verb (from the Bloom’s taxon-
omy) given a document17 and keyphrase.18 For learning
objective keyphrase selection and Bloom’s verb prediction,
we train and tune the systems with 10-fold cross-validation
as before.

Keyphrase selection and Bloom’s verb prediction performance
for pharma are presented in Table 11 and Table 12. We find
that our candidate keyphrase average rating and precision
is lower than what was seen for banking data. We hypoth-
esize a reason for this is due to the extremely dense and
domain specific content as well as the requirement of com-
plete documents without chunking when generating learning
objectives.

Furthermore, many documents from the pharmaceutical com-
pany refer to chemical compounds and chemical formulae,
which resulted in skewed TF-IDF weights while selecting
candidate keyphrases. Our hypothesis is also backed by
the score weights for TF-IDF become less important for
pharma data as compared to bank data. We note that the
Google N-grams scores were useful for re-ranking keyphrases
in both domains. The results also suggest that domain-
specific adaption of keyphrase extraction methods (eg. su-
pervised methods) may be required for learning objective
generation in content that is very technical.

17These were the original documents and were not chunked.
18We collect annotations for a random 25% subset of the 408
(original) documents, as SMEs simply did not have the time
to evaluate all documents due to their length.

Test Set F1
4-Class 10-Class

All KP 0.66 0.50
Top-5 System KP 0.71 0.48

Table 12: pharma: Bloom verb prediction perfor-
mance. “KP” denotes keyphrase.

System
Avg. Time Per

Document (seconds)
bank pharma

syntactic-chunker 0.41 0.20
semantic-chunker 0.40 0.20
hybrid-chunker 0.49 0.27

keyphrase 0.02 0.02
keyphrase Reranking 0.03 0.02

bloom-verb 0.05 0.04

Table 13: Throughput: Document Chunking,
Keyphrase generation, candidate keyphrase selec-
tion, and bloom verb prediction (in seconds)

For Bloom’s verb prediction (Table 12), we see a marginally
lower performance, but the trend largely remains the same.

6.1 Commercial Deployment
A collection of over 20, 000 learning courses have been la-
beled with learning objectives generated by our system and
are being imported into existing learning management sys-
tems used by the organization. This is to help the organiza-
tion retrieve courses efficiently, identify similar course mate-
rial and prioritize new course development as it allows them
identify gaps in their course material by checking course ob-
jectives not covered existing in course material. We briefly
describe the architecture of our full system as this is the
eventual deployment goal.

6.2 System Architecture
Broadly, the system consists of three subsystems (see Fig-
ure 3): (1) UI and Business logic layer, which exposes
interfaces for search and enforces business logic for user ac-
cess; (2) Data Analytics layer, which are Web services
for document chunking, keyphrase extraction, learning ob-
jective generation. Additional web services that generate
different metadata can be easily plugged in and integrated
into our system; and (3) Data Storage and Search, where
we use Apache Solr to store all generated metadata and
document text and to enable search. An illustration of the
architecture is presented in Figure 3. Physical documents
can either be stored locally or can be accessed via remote
requests to learning management systems. Data ingestion
from formal course repositories as well as informal sources
(web based or Intranet) are supported.

We use document format specific APIs to physically persist
document chunks in their original file formats. Our system
exposes a simple search interface by which users can query
the system using learning objectives. The system allows
refinement of search results and also defines user workspaces
where course packages can be created and shared.
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Figure 3: High-level architecture diagram

Table 13 summarizes the average throughput for each of our
components (computed on an Intel i5 6300 2.4 Ghz CPU
with 8 GB RAM), demonstrating its speed and ease of scal-
ability for large scale processing.

7. DISCUSSION AND CONCLUSION
In this paper, we presented the first system that automat-
ically chunks learning material and generates learning ob-
jectives derived from content. It consists of modular sub-
components that require little training data for adaptation.
The cloud based web service architecture enables effective
use of each of its capabilities.

Our system uses a state-of-the-art embedding-based approach
to chunk learning material into meaningful chunks. It also
uses generic structural features from the document to guide
chunking. It employs a novel methodology for generating
learning objectives, which combines automatically generated
verbs from Bloom’s taxonomy and extracted keyphrases.

Our system’s capabilities are being used by a large pharma-
ceutical company to organize learning material. We present
detailed experiments on two different domains that demon-
strate the applicability of our work.

In future work, we look to extend the work with improve-
ments to our document ingestion capabilities, such as sup-
porting images and videos using OCR and extracting head-
ers and footers, and tabulated data. We would also like to
add capabilities that aid instructional designers with other
aspects of course design, such as discovering similar courses,
summarizing documents, and improving learning objective
generation to support a wider set of verbs from Bloom’s
taxonomy as well as supervised approaches for keyphrase
generation in highly technical domains.
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ABSTRACT 
A number of studies have demonstrated strong links between 
students' language features (as found in spoken and written 
production) and their math performance. However, no studies 
have examined links between the students’ language features and 
measures of their Math Identity. This project extends prior studies 
that use natural language processing (NLP) features to examine 
student language features and math performance, replicating their 
analyses. The study then uses NLP features to model students’ 
Math Identity. Specifically, the study compares performance on 
basic math skills within an online math tutoring system to both 
student language (as captured in emails to a virtual pedagogical 
agent) and to survey measures of Math Identity (math self 
concept, interest, and value). Language features were analyzed by 
a number of NLP tools that extracted information related to text 
cohesion, lexical sophistication, and sentiment. The findings 
indicate weak to medium relationships between math scores and 
Math Identity and language features were able to predict a 
significant amount of the variance in each Math Identity variable 
and in math scores. The potential for these measures to inform 
interventions for students with lower Math Identity is discussed. 

Keywords 

Natural language processing (NLP), math, math identity, student 
success, on-line learning 

1. INTRODUCTION 
Educational Data Mining (EDM) has, among its many 
applications, been employed to better understand student-level 
differences that are important to personalization efforts in 
educational settings [1, 2]. These include efforts to better 
understand constructs like student engagement (e.g., [3]), self-
efficacy [4], and self-concept [5]. Many of these studies have 
relied upon sensors (e.g. posture sensors, vocal recognition, 
heartbeat, video, sweat/skin conductance, EEG), which can 
sometimes make it challenging to implement interventions in situ. 
Research using student interaction data has become more common 
even when modeling highly qualitative constructs like student 
engagement (c.f., [3]), but to date, much of these efforts have 
focused on temporally short variables (e.g., state-based variables 
like behaviors and affect), rather than on trait-based variables such 
as identity, which are larger in scope and duration. 

Work in related research areas has shown results that suggest that 
trait-based variables may be a promising area for investigation. 
Within the EDM community, there is now a growing body of 
research on identity-related constructs, such as motivation and 
self-regulated learning strategies (cf. [6]). Meanwhile, the related 
field of Natural Language Processing (NLP) has demonstrated 
relationships between language use and personality characteristics 
(cf.,[7, 8]). Detecting a construct like identity, which underlies 
motivation and goals [9], could further advance efforts toward 
personalized learning within educational setting, including the 
development of effective intervention strategies. 
Identity, broadly, refers to a person’s sense of who they are and 
the development of an identity permits people to make predictions 
about their abilities to navigate different aspects of their life (cf. 
[9]). While identity is the focus of this study, we do not attempt to 
investigate all aspects of student identity, but instead focus 
specifically on how they identify with math. Math Identity is often 
described as “the association between math and the self” [10], a 
definition that might be paraphrased as the degree to which one 
considers oneself to be a math person. We do so within the 
context of Reasoning Mind, a blended learning curriculum that 
offers significant metacognitive support to K-6th grade students 
through an on-line learning platform [11]  
Specifically, we use language features produced in within-system 
emails to predict three aspects of Math Identity in self-reported 
survey data: math self-concept, math interest, and math value. 
These constructs have been used to understand social influences 
on mathematic achievement in previous studies of identity (e.g., 
[12]). In addition, we examine links between math success in the 
system and the three Math Identity scales. We also use language 
features in the language produced by students to model math 
success, math value, math self-concept, and math interest. Our 
goal is to examine the potential for linguistic predictors within 
student data to identify math success and identity. If successful, 
such linguistic predictors could be used to better identify students 
in need of intervention. 

2. Language and Math Ability 
The body of research demonstrating connections between 
proficiency in language and math skills continues to grow, 
becoming more robust as researchers explore the potential 
underlying causes. Early studies focused on links between scores 
on math and language tests. For instance, [13] found that students 
who scored high on an algebra test also scored well on language 
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tests. Using a more difficult algebra test produced a stronger 
relationship between algebraic notation and language ability. 
Similarly, [14] reported links between language and math skills, 
but also found that language skills differed in their degree of 
relation with math knowledge. For example, general verbal ability 
was indirectly related with symbolic number skills while 
phonological skills were directly related to arithmetic knowledge. 
Other research has focused on more indirect links between math 
and language skills, such as reading ability. For example, 
Hernandez [15] found significant positive correlations between 
reading and math scores in standardized tests. Based on these 
findings, Hernandez recommended that reading skills and reading 
strategies should be factored into math instructions to increase 
math ability, especially for poor readers. In another study, 
LeFevre et al. [16] reported that language ability was positively 
related to number naming, but that non-language abilities such as 
quantitative skills and spatial attention were stronger predictors of 
math ability than language abilities. 
A number of recent studies have begun to examine links between 
the language features found in students’ language production and 
their success in math learning using NLP tools. For instance, 
Crossley et al. [17] examined linguistic and non-linguistic features 
of elementary student discourse while students were engaged in 
collaborative problem solving within an on-line math tutoring 
system. NLP tools that reported on affect, text cohesion, and 
lexical sophistication were used to extract linguistic information 
from transcribed student speech. These language features along 
with a variety of non-linguistic features such as gender, age, 
grade, and school were used to predict pre- and post-test math 
scores. The results showed that language features related to 
cohesion, affect, and lexical proficiency explained around 30% of 
the variance in students’ math scores, while the selected non-
language features were not significant predictors. A second study 
by Crossley and colleagues examined students’ forum posts in an 
online tutoring system. Using these posts, Crossley et al. [18] 
investigated relationships between math success, click-stream data 
within the system, and language features reported by NLP tools 
for students in a university level blended math class (i.e., a class 
with both on-line and traditional face to face instruction). The 
study found that math success was best predicted by a non-
language feature (days on the system) and language features 
related to affect (egotism), syntactic complexity and text cohesion. 
Specifically, more complex syntactic structures and fewer explicit 
cohesion devices equated to higher course performance. The 
linguistic model also indicated that less self-centered students and 
students using words related to tool use were more successful. In 
addition, the results indicated that students that are more active in 
on-line discussion forums are more likely to be successful. In a 
final study, Crossley and Kostyuk [19] examined links between 
the language features of young students’ language production 
(grades 2nd through 5th) while e-mailing a virtual pedagogical 
agent in an online math tutoring system, and success within that 
system. Using NLP tools that reported language features related to 
affect, lexical sophistication, and text cohesion, Crossley and 
Kostyuk found that students who expressed more certainty in their 
writing and followed standardized language patterns scored higher 
in math assessments. In addition, students from higher grades who 
met more objectives, received more messages from teachers, and 
sent fewer messages to the agent, performed better on math 
problems. 
Overall, these studies demonstrate that features from students’ 
language productions can be used to predict math success (i.e., 
performance) in a variety of domains and across a number of ages 

and proficiency levels. In general, older students who produce 
more complex language, which is more positive and less self-
centered, tend to have stronger math skills. For younger students, 
adherence to expected language patterns relates to higher math 
performance. However, to our knowledge, no research has 
attempted to extend this approach to predicting larger student 
identity features that are trait-based such as Math Identity. 

3. Math Identity 
Math Identity, or the degree to which one considers oneself a 
“math person,” has become an area of interest among social 
scientists hoping to better understand what drives students to enter 
Science, Technology, Engineering, and Math (STEM) fields (cf. 
[20]). However, broader issues of self-definition (identity) are not 
new to educational research, especially when considering long-
term development. For example, Bandura’s research [21] on self-
efficacy discusses the role of self-attributional processes 
(including a wide range of self-definitions studied by Bem, [22] 
many of which are directly related to educational identities. In this 
research, a student’s cognitive appraisal (self-evaluation of 
ability) is thought to be susceptible to a form of confirmation bias 
where the student ignores demonstrable achievements and 
improvements when they contrast with a previously established 
self-definition [21]. Bandura’s observations on the role of self-
definitions in the development of self-efficacy are highly 
compatible with other research paradigms, which describe identity 
as an anchor that people use to understand their own interests and 
abilities [23]. This may explain Bandura’s findings that students 
who show improvement that is contrary to self-appraisals often 
attribute their performance to environmental factors rather than to 
their own persistence [21].  
Constructs considered to be a core part of one’s identity are long 
thought to start developing in adolescence ([24]. There is some 
support that Math Identity should be included in this timeframe 
with research suggesting that it develops early in life. For 
instance, [25] showed that students who start in a non-STEM 
degree program rarely transfer into a STEM program (despite the 
high frequency of major changes more generally). Similarly, 
within the EDM community, student engagement indicators in 
middle school online mathematics tutors have been shown to 
correlate with college enrollment more generally [26], and with 
STEM-major enrollment more specifically [27]. Math Identity is 
most often studied through ethnographic studies (e.g., [28]), 
implicit association tests (e.g., [29, 10]), and surveys (e.g., [30, 
31]). 
In this study, we operationalize Math Identity as math self-
concept, math interest, and math value. We defined these 
constructs using self-report scales adapted from Ryan & Ryan 
[12], who examined how these constructs performed during 
conditions likely to trigger stereotype threat effects. While these 
are well-established constructs in research on the effects of social 
evaluations of mathematics, they are not unique to research on 
identity. In addition to their appearance in Bandura’s work, they 
appear in Eccles’ [32] expectancy value theory, where self-
efficacy (among a variety of other factors) is hypothesized to 
influence both intrinsic value (interest) and utility value (the 
usefulness of the task). We discuss each of these briefly below. 

3.1.1 Math Self-Concept 
Research in self-concept overlaps considerably with two related 
constructs—identity and self-efficacy—because all three are 
related to the mental schema a person uses when calculating their 
ability to negotiate different challenges in their lives. In general, 
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social-psychologists are more likely to refer to the concept of 
identity when discussing issues related to social processes, while 
they are more likely to use the term self-concept when discussing 
internal mental processes ([9]). 
In education research, self-concept and self-efficacy are often 
used to discuss domain-specific evaluations (e.g., self-concept in 
mathematics), and they are sometimes used synonymously. 
However, there are education researchers who draw a distinction 
between these two constructs, limiting the term self-efficacy to 
self-evaluations of specific tasks, often specifying that it must be 
measured directly after the task has been completed [33, 34]. For 
example, they might use a Likert scale administered after each 
math problem to measure self-efficacy by asking a student to 
indicate his/her confidence that each problem had been completed 
correctly.  
In this research tradition, self-concept is a broader measure of 
ability within the domain, where its meaning more closely 
approaches its use among social-psychologists, who tend to define 
it as a theory of self (e.g., [35]) which often operates below the 
level of consciousness, guiding people’s interpretations and 
expectations of external events (cf. [9]).  For example, in a 
situation where a student failed a task in a domain for which they 
have high self-concept, they might be more willing to retry than 
someone with low self-concept. Alternatively, they might 
interpret the task as flawed since their performance did not match 
the expectations created by their self-concept. 
Like researchers who study educational outcomes, social 
psychologists tend to believe that people develop self-concept 
from experience, so that those with more shallow or limited 
experiences are likely to be more susceptible to changes in self-
concept [35]. For example, academic self-concept tends to be 
positively correlated with achievement indices, [36], but there 
appears to be some reciprocity in this relationship. High self-
concept can make students more likely to persist through difficult 
mathematics instruction, leading to improved academic outcomes. 
However, repeated failure could theoretically lower self-concept, 
particularly if a student did not have other mastery experiences in 
mathematics to serve as a sort of buffer.  

3.1.2 Interest in Mathematics 
Motivational research defines interest as the propensity to engage 
with a particular subject over time through both affective and 
cognitive components [37]. Studies on the relationship of interest 
to other constructs such as self-concept have repeatedly found that 
self-concept drives intrinsic interest in a given subject [38, 39], 
with theorists suggesting that as self-efficacy increases, it 
becomes safe for the ego to become invested in a particular topic 
[40]. 
Researchers have identified a number of simple strategies that 
appear to increase interest in the classroom, such as creating more 
challenging tasks for students or adding variety to the ways in 
which a student is asked to perform a task. However, others 
caution that some of these strategies may only improve situational 
interest (e.g., [37]), suggesting that intrinsic interest (which they 
refer to as individual interest) is almost always self-driven, 
possibly because it seems to be fed by increased self-efficacy. 
Others researchers have found that interest is highly susceptible to 
contextual effects that vary from student to student (cf. [39]). 
Researchers in Career Theory (e.g., [41]) have found that interest, 
like self-efficacy, is directly responsive to performance success 
and failure. 

Interest is an important complement to self-concept when defining 
Math Identity, since its development is known to improve self-
regulatory strategies [37]. Students with a stronger sense of 
interest in a subject are more likely to persist when confronted 
with frustrating challenges [42, 37; 43], so that strengthening 
skills in mathematics is a self-feeding cycle. Eccles’ [32] 
discussion of identity development mentions this cycle and state 
that enjoyable or pleasant experiences with a subject are likely 
necessary to develop the persistence needed to become an expert 
in that subject.  

3.1.3 Value of Mathematics 
Math value is the degree to which a student thinks that math is or 
will be useful to their life. Like self-concept and interest, value 
(utility) has been linked to motivation in a number of different 
research traditions. Among social psychologists, research has 
shown that value is influenced by self-concept, and, in turn, that 
value positively influences the kind of goal-setting practices that 
lead to increased effort [44]. However, research also finds that 
(perhaps more than self-concept or interest), parents can have a 
substantial effect on math value [44, 45], which suggests the 
construct could also be more susceptible to other social pressures 
or interventions. Cumulatively, these findings suggest that value is 
often the last component of Math Identity to develop unless 
external influences (e.g., parents) are involved. 

4. Current Study 
A number of studies have demonstrated strong links between 
students' linguistic knowledge and affect (as found in language 
production), and their success in math. However, to our 
knowledge, no studies have examined the links between the 
linguistic features in student language production and variables 
related to Math Identity. In the current study, we attempt to 
replicate previous studies that have investigated how linguistic 
features and affective aspects of students’ language production 
can predict success. More importantly, we also derive models of 
math identify based on student survey responses related to math 
value, interest, and self-concept. To derive our language features 
of interest, we analyzed the language produced by students 
sending email messages to a virtual pedagogical agent within an 
online math tutoring system. We analyzed the language using a 
number of NLP tools in order to extract language information 
related to text cohesion, lexical sophistication, and sentiment. 
While our primary interest is in using NLP features to predict 
variables related to math value, interest, and self-concept, we are 
also interested in studying the links between NLP features and 
accuracy scores on beginning level math problems within the 
online tutoring system. Thus, in this study, we address two 
research questions:  
1. Are linguistic features significant predictors of self-reported 

student traits related to math value, interest, and self-
concept? 

2. Are linguistic factors significant predictors of math 
performance in an on-line tutoring environment? 

5. METHOD 
5.1 Reasoning Mind  
We collected data from Reasoning Mind's Foundations product, 
which is a blended learning mathematics program used in grades 
2-5. Foundations students learn math in an engaging, animated 
world at their own pace, while teachers use the system's real-time 
data to provide one-on-one and small-group interventions [46]. 
The algorithms and pedagogical logic underlying Foundations 
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(previously called Genie 2) are described in detail by Khachatryan 
et al. [11].  
The main study mode in Foundations, Guided Study, consists of a 
sequenced curriculum divided into objectives, each of which 
introduces a new topic (e.g., the distributive property) using 
interactive explanations, presents problems of increasing 
difficulty on the topic, and reviews previously studied topics. 
Within Guided Study, every student completes problems 
addressing the basic knowledge and skills required in the 
objective. These basic problems (known as A Level problems) 
typically require only a single step to solve and are the lowest of 
three possible difficulty levels. Students who do well on A Level 
problems may also proceed to problems of higher difficulty that 
require two or three steps to solve (B Level and C Level 
problems) within the objective. They may also access the higher-
level problems in an independent study mode called Wall of 
Mastery. Other modes in Foundations allow students to play math 
games against classmates, tackle challenging problems and 
puzzles, and use points earned by solving math problems to buy 
virtual prizes. 
Foundations uses animated characters to provide a backstory to 
the mathematics being learned and to deliver emotional support. 
The main character is the Genie, a pedagogical agent who 
encourages students throughout their work in the system. Students 
are also able to send emails to the Genie. These messages are 
answered in character by part-time Reasoning Mind employees 
who reference an extensive biography of the Genie and project a 
consistent, warm, and encouraging persona, model a positive 
attitude toward learning, and emphasize the importance of 
practice and challenging work for success. The Genie email 
system is a popular component of the system, having received 
129,879 messages from 38,940 different students in the 2016-17 
academic year. 

5.2 Participants 
The students sampled in this study came from a large sample of 
Foundations students in the 2016-17 academic year, who had 
written messages for the Genie in the email system. The dates 
sampled were from August 1, 2016 to June 17, 2017. There were 
a total of 34,602 such students. The students were from 462 
different schools located in 99 different districts, most of which 
were located in Texas. This analysis samples students in 4th-5th 
grades because their writing skills are developed enough to be 
captured by NLP tools. We also included only those students that 
had completed the post-test survey (discussed in the next sub-
section) and those students that had attempted A Level problems. 
This subset of the data consisted of 970 students.  

5.3 Survey Data 
The measures used in the present study consisted of three 4-point 
scales adapted from [47] and administered at the start/end of the 
2016/2017 school year. The first was mathematics self-concept, 
which comprised five items that captured the degree to which the 
student see themselves as a “math person” (e.g., “I have always 
been good at math”). The second was interest in mathematics, 
which consisted of three items that capture intrinsic curiosity or 
enjoyment of mathematics (e.g., “How much do you like math?”). 
The last scale measured value of mathematics and consisted of 
five items that captured the degree to which students find math to 
be useful (e.g., “How important is it to you to get good grades in 
math class?”). The Cronbach α of these scales were 0.72, 0.69, 
and 0.72, respectively. 

5.4 Final Corpus 
Our language sample for this analysis consisted of messages sent 
from the students to the Genie. Because many messages contained 
few words, we aggregated all e-mails sent by each student to 
create a representation of an individual student’s linguistic 
activity.  
We then implemented data cleaning procedures to reduce the 
amount of noise in the data. First, all the data was cleaned of non-
ASCII characters that could interfere with the NLP tools. Second, 
all texts were automatically spell-checked and corrected using an 
open-source Python spelling correction library, in addition to 
several Python text-cleaning scripts that we developed. 
Furthermore, several measures were taken to clean the texts, 
including removing random, non-math symbols such as “#”, “@”, 
and “&”, as well as omitting repeating words, excessively long 
words, words with repeating characters, such as “wooorrrddd”, 
and mixed-type words, such as “$word$”, (with the exceptions of 
currencies, percentages, timestamps, and ordinals). Next, all non-
dictionary, invalid words were removed from the data. This was 
accomplished by first checking each word against synsets in 
WordNet, and if a match could not be found, then checking if it 
consisted of all consonants (always invalid), or if any pair of 
characters (digraph) in the word were invalid in the English 
language. Words that met either two of these conditions were 
removed. Lastly, all texts were cleaned of repeating, non-
overlapping groups of words, such as “this word this word this 
word”. Only word groups of lengths two, three, and four were 
removed by this approach.  
Finally, we removed data from students who had produced fewer 
than 150 words in writing to the Genie (calculated after cleaning). 
This cut-off ensures that students produced a large enough 
language sample to provide a clear representation of their 
linguistic ability including bag-of-word assumptions for Latent 
Dirichlet Allocation (LDA) analyses. This left us with data from 
351 students for analyses. 

5.5 Natural Language Processing Tools 
We used several NLP tools to assess the linguistic features in the 
aggregated posts of sufficient length. These included the Tool for 
the Automatic Analysis of Lexical Sophistication (TAALES) [48], 
the Tool for the Automatic Analysis of Cohesion (TAACO) [49], 
the Tool for the Automatic Analysis of Syntactic Sophistication 
and Complexity (TAASSC) [50], and the SEntiment ANalysis and 
Cognition Engine (SEANCE) [51]. In addition, we developed 
specific indices related to topics commonly discussed with the 
Genie e-mail system using Latent Dirichlet Allocation (LDA). 
Thus, the selected NLP features consisted of language variables 
related to lexical sophistication, text cohesion, syntactic 
complexity sentiment analysis, and topic similarity respectively. 
The features are discussed in greater detail below. 

5.5.1 TAALES 
TAALES reports on a number of indices related to basic lexical 
information (e.g., the number of tokens, and types), lexical 
frequency, lexical range, lexical registers, word information 
features (e.g., concreteness, meaningfulness, polysemy [the 
number of senses a word has]), and psycholinguistic variables. 
For instance, the tool uses the Kucera-Francis corpus to compute 
the number of registers (e.g., humor academic, or fiction registers) 
that words occur in (a measure of register specificity). The tool 
also reports on a number of phonological, orthographic, and 
phonographic neighborhood effects that calculate how many near 
neighbors based on sound or spelling that a word has. TAALES 
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also reports on variables that measure how long a word takes to 
name, how accurately words are pronounced, and how many 
senses a word contains (i.e., polysemy). 

5.5.2 TAACO 
TAACO incorporates a variety of classic and recently developed 
indices related to text cohesion. For a number of indices, the tool 
incorporates the Stanford part of speech (POS) tagger [52] and 
synonym sets from the WordNet lexical database [53]. TAACO 
provides linguistic counts for both sentence and paragraph 
markers of cohesion and incorporates WordNet synonym sets. 
Specifically, TAACO calculates type token ratio (TTR) indices, 
sentence overlap indices that assess local cohesion, paragraph 
overlap indices that assess global cohesion, and a variety of 
connective indices such as logical connectives (e.g., also, next, so) 
and sentence linking connectives (e.g., but, if, then). 

5.5.3 TAASSC 
TAASSC measures large and fined grained clausal and phrasal 
indices of syntactic complexity and usage-based 
frequency/contingency indices of syntactic sophistication. 
TAASSC includes indices measured by Lu’s [54] Syntactic 
Complexity Analyzer (SCA) and a number of pre-developed fine-
grained indices or clausal complexity and phrasal complexity, The 
SCA measures are classic measures of syntax based on t-unit 
analyses [19] where t-units are defined as a dominant and 
subordinate clause. For instance, SCA measures the number of 
complex t-units in a text (i.e., T-units that includes both an 
independent and a dependent clause). The fine-grained clausal 
indices calculate the average number of particular structures per 
clause and dependents per clause. The fine-grained phrasal indices 
measure noun phrase types and phrasal dependent types.  

5.5.4 SEANCE 
SEANCE is a sentiment analysis tool that relies on a number of 
pre-existing sentiment, social positioning, and cognition 
dictionaries. SEANCE contains a number of pre-developed word 
vectors that measure sentiment, cognition, and social order. These 
vectors are taken from freely available source databases. For 
many of these vectors, SEANCE also provides a negation feature 
(i.e., a contextual valence shifter) that ignores positive terms that 
are negated (e.g., not happy). SEANCE also includes a part of 
speech (POS) tagger. Examples of affective variables reports by 
SEANCE include positive and negative polarity metrics, terms 
related to arousal (as compared to calmness), and respect terms. 
Cognition examples include words related to socially defined 
ways of doing work, acts and methods to accomplish goals, time 
and space, and quantity. 

5.5.5 Latent Dirichlet Allocation (LDA) features 
We developed measures of domain topicality for the messages 
found in the corpus using LDA. LDA is a computational modeling 
technique used to infer underlying topics through a generative 
probabilistic process. We conducted an LDA analysis on the 
entire corpus of student messages to the Genie and fit 200 topics 
to the data - the optimal number of topics was inferred using 
Hierarchical Dirichlet processes [55]. Using these latent topics, 
each word is perceived as a probability distribution across all 
topics; if irrelevant for a topic, the corresponding weight is 0, 
whereas more relevant topics for a given word have higher 
probabilities. These word weights were then used to create topic 
distributions for each student in order to identify how strongly 
student language overlapped with topics covered in the entire 
Genie message corpus. 

5.6 Statistical Analysis 
We first calculated correlations between the students’ accuracy on 
A Level problems and their survey scores for Math Identity (self 
concept, interest, and value). These relationships allow us to  
better understand how basic math skills interacted with student 
survey responses for Math Identity.  
We followed this up by calculating linear models to assess the 
degree to which linguistic features in the students’ emails to the 
Genie, along with other behaviors (e.g., question/note posted, 
questions answered, site visits) were predictive of students’ math 
skills and their self-reported Math Identity. As part of this 
analysis, we first checked that all variables were normally 
distributed. For the linguistic variables, we tested only those 
variables that showed at least a small effect size (r > .100) with 
the response variable. We also controlled for multicollinearity 
between all the linguistic and non-linguistic variables (r ≥ .700) 
such that if two or more variables were highly similar, all but one 
of the variables (the one with the strongest relationship with the 
response variable) were removed from the analysis.  
We cross-validated our results by dividing data into training and 
test sets based on a 67/33 split. We used stepwise linear models 
on the training set to find the best fitting models for each analysis. 
After model selection, coefficients were checked for suppression 
and visual inspection of residuals distribution for non-
standardized variables was conducted. To obtain a measure of 
effect sizes, we computed correlations between the fitted and 
observed values, resulting in an overall R2 value for the fixed 
factors in the training set. The model from the training set was 
used to derive an r and R2 value for the test data.  

6. RESULTS 
6.1 Correlations 
Pearson correlations were conducted among the response 
variables to assess links between Math Identity and math scores. 
The results, reported in Table 1, indicate that all three Math 
Identity variables were positively and significantly correlated with 
performance on A level math problems. Medium effects were 
found for self-concept. Weak effects were found for interest and 
value. None of the Math Identity variables were strongly 
associated with one another (i.e., r < .500), although correlations 
with interest approached that threshold for both self-concept (r = 
.489) and value (r = .491). 

Table 1. Correlations between response variables 

Variable Self-concept Interest  Value 

A level score 0.341** 0.205** 0.145* 

Self Concept 

 
0.489** 0.309** 

Interest     0.491** 

Note * p < .010, **p < .001 

6.2 Linear Model for Self-Concept 
A linear model to predict students’ self-concept including 
linguistic, affect, and click-stream variables yielded a significant 
model, F(5, 242) = 2.861, p < .001, r = .356, r2 = .127 (see Table 
2 for details). Two linguistic variables: Phonographic neighbors, 
function words and word naming accuracy, function words were 
significant predictors as were three affective variables: Methods 
and goals words, words related to work, and polarity verbs. No 
click-stream variables were significant predictors. The 
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combination of the five variables accounted for 13% of the 
variance in the students’ self-concept scores. Cross-validating the 
model on the test set yielded r = .371, r2 = .138, demonstrating 
that the combination of the five variables accounted for 14% of 
the variance in the student samples comprising the test set. 

Table 2. Linguistic model for predicting self-concept scores 

Fixed Effect Coefficient Std. 
Error t 

(Intercept) 61.518 21.309 2.887** 
Phonographic Neighbors: 
Function words -0.284 0.081 -3.512*** 
Acts and methods terms to 
accomplish goals 9.441 3.113 3.033** 
Words related to work -6.609 2.342 -2.822** 
Polarity verbs 0.247 0.087 2.857** 
Word naming accuracy: 
Function words -57.807 21.413 -2.700** 

Note * p < .050, ** p < .010, ***p < .001 

6.3 Linear Model for Interest 
A linear model using linguistic and click-stream variables to 
predict students’ interest yielded a significant model, 
F(4, 218) = 4.943, p < .001, r = .419, r2 = .176 (see Table 3 for 
details).. Four affective variables were significant predictors in the 
model: Hu Liu negative terms, power words, arousal ratings, and 
words related to methods and goal. No click-stream variables 
were significant predictors. The combination of the four variables 
accounted for 17% of the variance in the students' interest scores. 
Using the model from the training set on the samples in the test 
set yielded r = .360, r2 = .130, demonstrating that the combination 
of the four variables accounted for 13% of the variance in the 
student samples comprising the test set. 

Table 3. Linguistic model for predicting interest scores 

Fixed Effect Coefficient Std. 
Error t 

(Intercept) 3.523 0.137 25.708*** 
Hu Liu negative terms -0.928 0.201 -4.612*** 
Power words -8.440 3.335 -2.531** 
Arousal ratings -9.407 3.336 -2.820** 
Acts and methods terms to 
accomplish goals 8.056 2.951 2.730** 

Note * p < .050, ** p < .010, ***p < .001 

6.4 Linear Model for Value 
A linear model to predict students’ math value using linguistic and 
click-stream variables yielded a significant model, 
F(3, 217) = 7.843, p < .001, r = .313, r2 = .098 (see Table 4 for 
details).. Three variables were significant predictors in the model: 
polarity verbs component score (verbs related to polarity, aptitude, 
and pleasantness), time and space terms, and words related to 
respect. No click-stream variables were significant predictors. The 
combination of the three affect variables accounted for 10% of the 
variance in the students' math value scores. Using the model from 
the training set on the samples in the test set yielded r = .303, 
r2 = .091, demonstrating that the combination of the five variables 

accounted for 9% of the variance in the student samples 
comprising the test set. 

Table 4. Linguistic model for predicting value scores 

Fixed Effect Coefficient Std. 
Error t 

(Intercept) 3.301 0.082 40.254** 
Polarity verbs 0.15 0.048 3.107** 
Time/space terms 2.932 1.048 2.799** 
Respect words 4.776 2.119 2.254* 

Note * p < .050, ** p < .010, ***p < .001 

6.5 Linear Model for Math Success 
A linear model to predict math success including linguistic and 
click-stream variables yielded a significant model, 
F(5, 217) = 9.130, p < .001, r = .417, r2 = .174 (see Table 5 for 
details).. Five linguistic variables were significant predictors in 
the model: Kucera-Francis categories, phonological neighbors 
distances, complex t-units, polysemy (adverbs), and quantitative 
terms. No click-stream variables were significant predictors. The 
combination of the five variables accounted for 17% of the 
variance in the students A level math scores. Using the model 
from the training set on the samples in the test set yielded 
r = .378, r2 = .143, indicating that the combination of the five 
variables accounted for 14% of the variance in the student 
samples comprising the test set. 

Table 5. Linguistic model for predicting math scores 

Fixed Effect Coefficient Std. 
Error T 

(Intercept) 33.544 15.331 3.508*** 
Kucera-Francis categories 2.721 0.776 2.12* 
Phonological neighbor 
Levenshtein distances 15.225 7.18 -2.701** 
Complex T-units -5.256 1.946 -3.019** 
Polysemy (adverbs) -1.212 0.401 2.348** 
Quantitative terms 62.983 26.82 3.508** 
Note * p < .050, ** p < .010, ***p < .001 

7. DISCUSSION AND CONCLUSION 
Investigating the degree to which students identify with math 
(e.g., their Math Identity) can provide important information 
related to student-level differences which in turn could allow for 
personalization efforts within educational settings. The purpose of 
this study was to examine links between students’ self-reported 
Math Identity (e.g., math self-concept, value, and interest) and 
language features found in student e-mails within an on-line math 
tutoring system. The study also examined links between student 
math scores and self-reported Math Identity and between math 
scores and language features. Overall, we find weak to medium 
relationships between Math Identity variables and math scores. 
Additionally, language features were able to explain a significant 
amount of variance for each Math Identity variable and for student 
math scores. These findings are discussed below along with 
implications for better understanding Math Identity and 
developing pedagogical interventions within Reasoning Mind’s 
Foundation system. 
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Our first analysis examined links between A level math scores 
within the Foundations system and student’s self-reported Math 
Identity variables (self concept, interest and value). All of the 
Math Identity variables were positively correlated with each other 
as well as with the math-performance metric, although this effect 
was stronger for self-concept than for interest or value. The 
correlation matrix in Table 1 provides evidence that the Math 
Identity variables self-reported by the students were related to 
math ability within the system. 

Our next goal was to investigate if linguistic models could be 
developed for each of the Math Identity variables. Specifically, 
we were interested in examining links between the words and 
language structures produced by the student in their e-mails to the 
Genie and their self-ratings of self-concept, interest, and value. 
Our model of student ratings for self-concept explained 14% of 
the variance in the test set (r = .371). The model was informed by 
five language features. Three sentiment and cognition features 
were reported by SEANCE while two features related to lexical 
sophistication were reported by TAALES. Polarity verbs were 
again positively related to a math identify variable indicating that 
students who used more positive verbs reported higher math self-
concept. Additionally, students who produced more words related 
to accomplishing goals (e.g., build, make, and formulate) reported 
higher self-concept. Conversely, words related to ways of doing 
work were negatively associated with self-concept. This may be 
an effect of the word grade, which is included in this category and 
was common in the e-mails (i.e., students worried about low 
grades). Two lexical indices for function words were also 
negatively predictive of self-concept scores: phonographic 
neighbors and word naming accuracy. These findings suggest that 
students with higher self-concept produced function words that 
had fewer neighbors and lower word naming accuracy. In both 
cases, the results indicate that students producing more 
sophisticated function words had greater self-concept.  

Our model for math interest explained 13% of the variance in the 
test set (r = .360) and included only sentiment and cognition 
variables reported by SEANCE. These variables indicate that 
students with greater math interest used fewer negative terms, 
fewer words related to arousal (i.e., more words related to 
calmness), and more words related to acts and methods to 
accomplish goals, which was also a predictor of self-concept 
scores. Lastly, words related to power yielded a negative co-
efficient with math interest scores. This finding suggests that 
students that use power words (e.g., force and command) have 
lower interest in math. 

With respect to students’ ratings of their math value, language 
features were able to predict about 9% of the variance in student 
test set ratings. (r = .303). Three features were positive predictors 
of value: polarity verbs, time/space terms, and respect terms. All 
variables were reported by SEANCE and were related to either 
sentiment or cognition. The results show that students that 
reported higher math value produced language in their e-mails 
that included more positive verbs and showed greater respect 
through the use of terms such as honor, admire, and respect. In 
addition, these students produced more words related to time and 
space. Time words include prepositions such as across and above 
but also space verbs that may be related to math concepts 
including circle, curve, and distance.  

Finally, we developed a model to predict math success (i.e., scores 
on A Level problems). This model explained 14% of the variance 
in math scores (r = .378) using lexical features, a measure of 
syntactic complexity, and a measure of cognition. The three 

lexical indices included the number of registers in which a word 
occurs, phonological neighbors based on Levenshtein distances 
(i.e., words that words that require more substitutions, insertions, 
or deletion operations to transform that word into its closest 
phonologic neighbors), and the polysemy value of adverbs. The 
first index suggests that students with high math scores produced 
words that were found across a variety of registers. The second 
and third indices indicate that students with higher math scores 
produced more sophisticated language (i.e., adverbs with fewer 
senses and words that required more operations to find a 
phonological neighbor). Students with higher math scores also 
produced fewer complex sentences (sentences with an 
independent and dependent clause) and used more quantitative 
words. 

Overall, the findings suggest that language variables related to 
sentiment and cognition can explain a significant amount of the 
variance in a number of self-reported survey variables related to 
math self-concept, interest, and value. These variables have the 
potential to not only better explain the constructs of Math Identity, 
but also have the potential to be useful for student interventions.  

The findings from this study indicate that students who produce 
more positive language e-mails within the Foundations system are 
more likely to have a positive Math Identity. Conversely, those 
that use more negative language are more likely to have lower 
Math Identity. However, it is not just positive and negative terms 
that are related to Math Identity. Students with stronger Math 
Identity use more respectful language, less power-related 
language, and language that is more calm. Lastly, students with 
stronger Math Identity were more likely to use more sophisticated 
words or words related to accomplishing goals.  

The findings from this study also suggest little overlap between 
the language features that predict Math Identity and those that 
predict math success even though we see links between our Math 
Identity variables and math success within the system. While there 
are some similarities between self-concept scores and math scores 
with respect to phonological neighbors, these features differ in 
their parts of speech (content versus function words). In general, 
most predictors of math success are related to linguistic features 
(lexical, syntactic, and cohesion features) while predictors of 
Math Identity are related to sentiment and cognition features. In 
total, these sentiment and cognition features provide a profile of 
students within the system that have high math interest.  

Using the models reported here, a number of different 
interventions could be developed for students identified as likely 
having low math interest. These interventions could be as simple 
as having the Genie send an e-mail to students that provides 
statistics on their successes within the system, their perseverance 
in answering problems, or simply the number of problems they 
have attempted or accurately solved over a specific time period. 
Students could also be asked to correspond with the Genie using 
metacognitive strategies related to self-assessment and goal-
setting activities, as this corresponds with both the interest models 
we developed here and with long-standing interventions designed 
to support self-efficacy and interest (cf. [21]). Interventions such 
as these may assist students in more critically thinking about 
themselves in relation to math and in better understanding their 
math knowledge and acquisition.  

While the Math Identity profiles developed should be strong 
enough to drive interventions, the models report only medium 
effect sizes. Thus, much variance remains to be identified within 
the existing survey data. Some of that variance may emerge in 
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language features that are not yet captured by NLP tools, while 
other variance may be related to demographic or other click-
stream data available within the system such as the number of 
messages sent and received by the students within the e-mail 
system, hours spent on-line within the tutoring system, and 
number of objectives met within the system. Thus, the findings 
here should be seen as preliminary with implications for future 
development. 
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ABSTRACT
Interactive learning environments facilitate learning by pro-
viding hints to fill the gaps in the understanding of a con-
cept. Studies suggest that hints are not used optimally by
learners. Either they are used unnecessarily or not used at
all. It has been shown that learning outcomes can be im-
proved by providing hints when needed. An effective hint-
taking prediction model can be used by a learning environ-
ment to make adaptive decisions on whether to withhold or
provide hints. Past work on student behavior modeling has
focused extensively on the task of modeling a learner’s state
of knowledge over time, referred to as knowledge tracing.
The other aspects of a learner’s behavior such as tendency
to use hints has garnered limited attention. Past knowledge
tracing models either ignore the questions where a hint was
taken or label hints taken as an incorrect response. We pro-
pose a multi-task memory-augmented deep learning model
to jointly predict the hint-taking and the knowledge tracing
task. The model incorporates the effect of past responses as
well as hints taken on both the tasks. We apply the model
on two datasets – ASSISTments 2009-10 skill builder dataset
and Junyi Academy Math Practicing Log. The results show
that deep learning models efficiently leverage the sequential
information present in a learner’s responses. The proposed
model significantly out-performs the past work on hint pre-
diction by at least 12% points. Moreover, we demonstrate
that jointly modeling the two tasks improves performance
consistently across the tasks and the datasets, albeit by a
small amount.

1. INTRODUCTION
∗These authors contributed equally
†Work done during an internship at Adobe Research

E-learning is changing knowledge creation and sharing in a
profound way by bringing personalized learning experiences
to a learner’s device. Assessments in the form of quizzes or
assignments form an important component of an e-learning
software. A personalized e-learning environment identifies
the gaps in understanding of a concept and effectively uses
learning aids such as hints to fill these gaps. Knowledge trac-
ing is the task of estimating a learner’s state of knowledge
over time with the goal of predicting the performance of the
learner in future assessments. Knowledge tracing is used for
deciding which question to ask in an adaptive learning envi-
ronment. Current set of knowledge tracing models neither
incorporate the effect of a learning aid on the level of under-
standing of a concept nor predict whether a learner is likely
to use a learning aid.

A learning aid, common to many interactive learning en-
vironments, is the option to take a hint during an assess-
ment [3]. However, the data shows that learners tend to use
hints inappropriately. One problem is that of abusing hints
[2]. They tend to spend less time on solving the assessment
and opt for hint without attempting to solve the problem.
Figure 1 shows the percentage of responses with correct an-
swers, incorrect answers, and percent directly opted for hint
by each question. The x-axis is sorted by the percent of cor-
rect responses for a question in increasing order. The data
for this chart is from ASSISTments dataset [14] for 2009-
2010.1 As expected, % hint taken is negatively correlated
with % correct. In other words, more learners tend to take
hints on difficult questions. However, as Figure 2 shows, the
hint takers tend to spend less time on a question than the
learners who attempt the question, irrespective of whether
the question is correctly or incorrectly answered. The re-
search on this subject shows that the learners who attempt
a question tend to have a higher probability of achieving
proficiency in the subject [19]. Also, the learners who use
hints very frequently tend to have the lowest learning rate
[13]. Section 3 presents a review of the literature on hints
as a learning aid. The literature shows that hints are an im-
portant learning aid but offering hints indiscriminately can
lead to poor learning outcomes. A personalized e-learning

1The dataset is available at https://sites.google.com/
site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.
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Figure 1: Percent of correct attempts, incorrect attempts,
hints opted for each question in ASSISTments data. The ques-
tions are sorted by % correct responses.
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Figure 2: The box plot shows the distribution of time taken
to attempt a question when response was correct (in green
color), incorrect (in red), and when hint was taken (in blue).
x-axis is sorted from lowest % correct on left to highest in
right.

environment can use likelihood of taking a hint and the ef-
fect of taking a hint on learning to decide whether to show a
hint. For example, the environment can proactively suggest
hints to students who are stuck with a concept and have a
low likelihood of taking a hint themselves.

Another reason to model the hint-taking behavior is to im-
prove the performance of a knowledge tracing model. The
existing knowledge tracing models do not model the hint-
taking behavior. Section 2 presents the past work on knowl-
edge tracing and hint-taking prediction. Traditional knowl-
edge tracing models either tag a hint taken as an incorrect
response or remove the data point where hints were taken.
The two responses, i.e. attempting to solve a question and
taking a hint directly, tend to result in different learning out-
comes. Hence, conflating an incorrect response with a hint
taken can deteriorate model performance. We show that
explicitly modeling the hint-taking behavior improves per-
formance of the model. Additionally, a higher propensity to
take hints might be informative about the likelihood of an-
swering questions correctly [19, 13]. Hence, throwing away
the data points where hints were taken is akin to throw-
ing away useful information. Conversely, knowledge tracing
tasks contain information about whether a student is likely
to take a hint. The synergies between the knowledge trac-
ing and the hint-taking task motivates the application of a
multi-task learning model [8]. Another important model-
ing consideration is the parameterization of the skill level.
A knowledge tracing model is parameterized by deciding
the level of heterogeneity in a learner’s skill level and the
question difficulty parameters. In the traditional knowledge
tracing models, one might represent the skill level using one
common parameter for all concepts or use a different param-
eter for each concept or a group of concepts clustered based
on domain knowledge. Recently, deep learning based mod-
els have been used for knowledge tracing [23, 16, 34] which
automatically capture the dependencies between different
concepts based on the student response sequences. We ex-
tend the memory-augmented deep learning model proposed
by Zhang et al. [34] to include hints taken in the past as
an input and the prediction of hint-taking as an auxiliary
task. We call this model Colearn. Section 4 describes the
proposed model. Section 6 describes the evaluation method-

ology and estimation approach, including how the model
hyperparameters are set.

The proposed model is compared with the baseline models
from traditional approaches as well as deep learning based
approaches. Section 7 describes the baseline models. We
perform experiments on two popular datasets – ASSIST-
ments 2009-2010 skill builder dataset and Junyi Academy
Math Practicing Log. Section 5 describes the two datasets.
Both the datasets contain information on whether a hint
was taken. ASSISTments dataset contains the information
whether a learner first attempted a question or directly took
a hint. However, Junyi dataset contains noisy information
on hints taken as it contains information on whether a hint
was taken regardless of whether a hint was taken first or the
question was attempted prior to it. The importance of this
distinction is supported by past studies.

Results show that a memory-augmented deep learning model
improves hint prediction performance from 79.10% to 91.12%
on ASSISTments dataset and from 77.62% to 92.31%. Colearn,
which is a multi-task memory-augmented deep learning model,
further improves, by a small margin, the performance of the
hint-taking prediction task by 0.63% and 0.03% point, re-
spectively for the two datasets. Additionally, Colearn im-
proves the performance on the knowledge tracing task for
ASSISTment dataset by 0.25% point and for Junyi dataset
by 0.18% points. Note that the baseline model for knowledge
tracing is another memory-augmented deep learning model.
Although the effect on performance is small, a benefit of the
joint modeling of the two tasks is that we can work with
only one model instead of two while training and scoring.

One of the criticisms of the deep learning based approaches
is that the estimated parameters do not enhance our under-
standing of how the world works. We try to understand the
meaning of the estimated parameters, especially the ques-
tion embedding vectors, in Section 7.3. The analysis shows
that a question embedding tends to capture question’s diffi-
culty.

In summary, the main contributions of this work are four-
fold. First, we show a large improvement in the perfor-
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mance of the hint-taking prediction task by using a memory-
augmented deep learning model. Second, we motivate joint
modeling of knowledge tracing and hint-taking prediction
tasks which have been modeled separately in the prior work.
Third, we extend a recent memory-augmented deep learn-
ing model for knowledge tracing to the task of hint-taking
prediction. The proposed model, Colearn, incorporates the
sequence of correct, incorrect response as well as hint-taking
behavior on past questions as inputs. The model adds the
hint-taking prediction as an auxiliary task. Fourth, we ex-
tensively evaluate the proposed model on two real-world
datasets and show that our approach outperforms the com-
petitive baselines on both the tasks.

2. RELATED WORK
This paper builds on the literature on knowledge tracing
and on learning aids such as hints. Knowledge tracing in an
interactive learning environment is an extensively studied
area. Different approaches have been proposed in past.

Item Response Theory or IRT models the probability
that a student answers a question correctly as a function of
the following two parameters: one representing the student’s
skill level and the second representing the question difficulty
[12]. The probability that a student answers a question cor-
rectly decreases with the question difficulty and increases
with the student skill level, all else being equal. The stu-
dent skill level and question difficulty are scalars which are
estimated from data. Recent extensions to IRT, such as Hi-
erarchical IRT, partition questions into groups, e.g. based on
concepts covered, and model student skill level and item dif-
ficulty for each group separately [30]. However, these mod-
els do not use the information present in the sequence of
responses. This results in incorrect responses followed by
correct responses to be treated the same as the reverse se-
quence. Intuitively, a knowledge tracing model should put
more weight on the performance on recent responses.

Bayesian Knowledge Tracing or BKT is another widely-
used model. It uses information in the sequence of responses.
BKT uses a Hidden Markov Model with the student skill as
the latent variable and the responses as the observed vari-
ables [11]. One reason for the popularity of BKT is that,
unlike IRT, it models student’s skill in each concept sepa-
rately. This information can be used by a learning system
to personalize a learning activity. For example, a learning
system can repeat a concept, switch to a new concept or
skip a concept altogether based on the estimates of the skill
level attained in the concepts.

Deep Learning based approaches have been employed
due to the flexibility these approaches provide in modeling
the skill of a student and the difficulty level of a question.
Piech et al. [23] use Long Short-Term Memory (LSTM)
cells to model sequence of student responses. They show
significant improvement over BKT in predicting the student
responses on many datasets. There has been concern voiced
due to the lack of interpretability of the Deep Learning based
approaches. Khajah et al. [16] show that DKT’s perfor-
mance can be matched by modifying BKT model. However,
matching DKT’s performance required significant domain

knowledge on the processes involved in the learning process
and insights from DKT model [16]. On the other hand, a
Deep Learning based model performs well even without ex-
plicitly building a domain specific knowledge into the model.
Memory-augmented neural networks, proposed for this task
by Zhang et al. [34], provide even more flexibility to model
student skill and question difficulty. A similar network ar-
chitecture has been used for question-answering on free-form
text documents [20].

Hints as a study help strategy has been extensively stud-
ied. The literature on how to provide hints has focused on
whether to provide hints on-demand or proactively. Duong
et al. [13] propose a model incorporating hint usage infor-
mation in knowledge tracing. However, they do not use this
information to predict the probability that a user will take
a hint or not. Castro et al. [9] use a technique called tabling
method to predict whether a student will attempt or take a
hint in the next question. The model does not consider the
complete sequence of student responses in the past and it
is difficult to train for the longer sequences. This results in
poor performance of the model.

In summary, there is rich literature on predicting the like-
lihood of a correct response and some recent work in pre-
dicting hint usage. However, the literature, to the best of
our knowledge, has not modeled these two related prob-
lems jointly. Past work on multi-task learning (MTL) [8]
suggests that adding an auxiliary task can help in improv-
ing the performance on both the tasks. MTL has shown
considerable benefits in many domains including computer
vision [21], natural language processing [17], health diag-
nostics [35], among others. Our proposed model includes
effect of hints on future probability of answering a question
correctly. This information can be used to decide when to
provide a hint on a particular question.

Our Contribution: We extend the model proposed by
Zhang et al. [34]. We include the hint usage information
by changing the encoding of the inputs to the network. In
addition, we add the components which share the network
weights for the auxiliary task of predicting the probability of
taking a hint. This results in increased prediction accuracy
for the tasks of whether the learner will take a hint as well
as whether a learner will answer a question accurately.

3. BACKGROUND
There is a large literature on hints as a learning aid that
provides motivation for the joint modeling of item response
and hint usage. The literature shows that hints are impor-
tant but prone to misuse if provided indiscriminately. The
research also shows that attempting a question and taking a
hint directly have different implications for learning a con-
cept.

Mathews et al. [19] shows that learners who first attempt to
solve a question tend to learn by themselves and have higher
probability to master the knowledge. This result has a basis
in the theory that the process of attempting a question acti-
vates self-explanation, which is an important meta-cognitive
skill [4, 10, 7, 22, 25, 29]. While hints are useful learning
aid, the research on how hints are used show that easy ac-
cess to hints may lead to sub-optimal outcomes. In studies
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of help-seeking from human tutors, it has been found that
those who need help the most are the least likely to ask for
it [15, 24, 26]. Computer-based help systems can poten-
tially improve the use of help [32]. Given that many learn-
ing environments provide some form of on-demand help, it
might seem that effective use of help would be an important
factor influencing the learning results obtained with these
systems. However, there is evidence that learners are not
using the help facilities offered by learning environments ef-
fectively [3]. They often ignore the help facilities or use them
in ways that are not likely to help learning. They frequently
use the system’s on-demand hints to get answers, without
trying to understand how the answers are derived or the rea-
sons behind the answers [1]. It is shown that the learners
who opt for hints very frequently tend to have the lowest
learning rate [13]. On the other hand, there is also evidence
that, when used appropriately, on-demand help in an inter-
active learning environment can have a positive impact on
performance [1, 5] and learning [27, 31, 32]. Also, provid-
ing tutoring with respect to student’s help-seeking behavior
helps them to become better help seekers and thus better
future learners [6]. A request for help is appropriate when
a student is stuck while solving a tutor problem but not
when she has not yet thought about the problem. Further,
students should carefully read and interpret the help given
by the system. Aleven et al. [2] described a model of help-
seeking behavior within a cognitive tutor. The authors have
created a taxonomy of errors in student’s help-seeking be-
havior. Based on the frequency of the meta-cognitive bugs
defined by their model, it was observed that 36% of the ac-
tions taken by students were classified as help abuse bugs
and 19% of the actions as help avoidance. To make a better
tutoring system which can guide the students in regulating
their help-seeking behavior, it is essential to incorporate the
effect of hints in knowledge tracing. Traditional knowledge
tracing models do not take the hint usage into account.

3.1 Notations
Next, we introduce notations for the joint model. Let the
interactions of a learner till time T are denoted by X =
(x1, x2, x3, . . . , xT ). Here, each interaction xt is an encod-
ing representing the tuple (qt, rt, ht) containing an identifier
for the question attempted qt, a binary indicator rt, encod-
ing the response, and another binary indicator ht, encoding
hint usage. The hint usage variable is positive only if the
hint was taken directly instead of attempting the question
first. Let Q = {qt}t be the set of distinct questions. The in-
teraction tuple can contain additional information collected
such as time taken to attempt, type of question, concepts
involved in the question and so on. The task of a knowledge
tracing model is to predict the probability of correctly an-
swering a question qt′ ∈ Q, t′ > T , i.e. Prob(rt′ = 1|qt′ , X).
And, the task of predicting a hint usage model is to esti-
mate Prob(ht′ = 1|qt′ , X). Both of these tasks are super-
vised learning problems and can be modeled using a binary
classifier. Instead of building two separate models for these
tasks, we model them jointly within a deep learning based
classification framework.

4. MODEL
Zhang et al. [34] proposed a memory-augmented neural net-
work model, called Dynamic Key-Value Memory Networks
or DKVMN, for knowledge tracing. This model performed bet-

ter than the baseline models on three real-world datasets.
This model is used as a baseline for the proposed multi-task
model due its many favorable properties. It does not require
extensive feature engineering or metadata information such
as mapping of items to skills and the model offers flexibil-
ity in adding more tasks as well as inputs. We first give a
brief description of their model, followed by our modifica-
tions. Reader is referred to Zhang et al. [34] for further
implementation details regarding the original model.

4.1 Dynamic Key-Value Memory Networks,
DKVMN

The neural network is designed to store the knowledge state
of a learner based on past interactions. This is done using a
memory component which works like a key-value store. Each
attempted question is mapped to a set of concepts which are
the keys in the memory component. The corresponding val-
ues are a learner’s knowledge state in each of these concepts.
The network has a mechanism to update the states because
of learner’s response to the question. The key-value pairs are
modeled using vectors instead of scalars for more represen-
tational flexibility. So, for each question the output from the
memory component gives a learner’s knowledge state. This
is compared with the difficulty level of the question, which
is the output of another component, to arrive at probability
of correctly answering the question. All operations are im-
plemented using differentiable operators like multiplication,
addition, sigmoid function on matrices so that the network
can be trained end-to-end using gradient descent optimiza-
tion techniques.

4.2 Proposed Model, Colearn
The DKVMN model does not consider the effect of taking hints
during assessment. It considers hint usage as an incorrect
attempt by the learner, as is the standard approach in ex-
isting models. However, the update in knowledge state of a
learner is different when a question is attempted as opposed
to when a hint is taken without any attempt. We modify
DKVMN to incorporate hint information by changing the input
and output layers of the model. Figure 3 shows the modified
network. Next, we describe the components of DKVMN and
our modifications to it.

4.2.1 Input Layer
In the update phase of the model, instead of using one-hot
encoding of (qt, rt), we encode (qt, rt, ht) into a vector of
length 2|Q| + 1, where Q is the set of distinct questions.
The first |Q| dimensions are a one-hot vector representing
the correct attempt on the question, i.e. in case of a cor-
rect attempt, the vector has 1 at the index of the question
and has 0 everywhere else. Similarly, the next |Q| dimen-
sions encode incorrect attempt. The last dimension of the
vector is a binary value indicating whether a hint is taken.
This input encoding changes the way the value vectors in
the memory component are changed due to the information
whether a hint is used or not is also present. An example of
the input encoding is illustrated in Table 1 where there is a
total of two exercises.

We tried different ways of representing the three outcomes,
viz. correct response, incorrect response, and hint taken.
These included one-hot encoding with all three outcomes
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Figure 3: Architecture of the neural network for joint modelling of knowledge state and hint use. KT and HT refer to
Knowledge tracing and Hint-Taking tasks.

Response Encoding
DKVMN Colearn

Q2-Correct (0, 1, 0, 0) (0, 1, 0, 0, 0)
Q2-Incorrect (0, 0, 0, 1) (0, 0, 0, 1, 0)

Q2-Hint – (0, 0, 0, 0, 1)
Q1-Hint – (0, 0, 0, 0, 1)

Table 1: Response encoding in case of two exercise tags

with a length of 3|Q|. The chosen encoding gave the best re-
sults in the experiments. This encoding represents response
on two different questions where hints are taken with the
same vector (see example in Table 1). Since the network
already incorporates index of the current question as a sep-
arate input, using |Q| extra dimensions for hint encoding in
update phase adds more parameters which are not required.

4.3 Key-Value Store
Key-value memory networks, introduced in [20], have an ex-
plicit memory component which is an array of pairs of mem-
ory slots where each slot is a real-valued vector. Given a
query, the relevant information is fetched from the slots us-
ing an attention-based mechanism depending on which slots
are relevant for that query. The mechanism has three major
components which are described next.

• Key Hashing: The key part of the pairs holds the static
information representing the various hidden concepts us-
ing vectors. Each of the key vectors (Mk(1), . . . ,Mk(n))
represents a concept.

• Key Addressing: Given the tth question answered by a
student, the relevance of each concept in that question is
found out using an attention mechanism. Each question
is first converted into an embedding

kt = Aqt (1)

and the weight of each concept ci in qt is given by

wt(i) = Softmax(kt
TMk(i)) (2)

where A is the question embedding matrix, qt denotes the
one-hot encoded question, Mk(i) denotes the key vector
of the ith concept and Softmax(xi) = exi/

∑
j e

xj . The
question embedding vector kt obtained from matrix A,
the key matrix Mk are shown in yellow color and attention
weight vector wt = (wt(1), . . . , wt(n)) is shown in orange
in Figure 3.

• Value Reading: Given the weight wt(i) of each concept
ci in question qt given by Equation 2, the student’s skill
in that question is calculated as the weighted sum of the
knowledge in each of the concepts, as taken from value
matrix Mv

t . The value matrix is shown in pink color in
Figure 3. The student’s skill in the question qt is returned
as

st =

n∑
i=1

Mv
t (i) ∗ wt(i) (3)

This skill is then used to make predictions about the stu-
dent’s response correctness and hint usage.

• Value Writing: Once we get student’s actual response
to the question, knowledge state is updated. This part is
shown in green color in Figure 3. The update in each of
the concept ci’s value vectors are also weighted according
to the calculated weight wt(i) of the concept (2). The
student’s response is encoded in a vector, xt of size 2|Q|+1
to represent a correct attempt or an incorrect attempt or
a hint taken.

xt = encoded tuple(qt, rt, ht)

This encoding, described in 4.2, is then converted into an
embedding vt, given by

vt = Bxt

where B is the response embedding matrix. When updat-
ing the student’s knowledge state, the memory is erased
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first before new information is added.
The erase vector et is calculated as

et = Sigmoid(ETvt + be)

where E is a linear transformation matrix, be is the bias
and Sigmoid(xi) = 1/(1 + exi).
The addition vector at is calculated as

at = Tanh(DTvt + ba)

where D is a linear transformation matrix, ba is the bias
and Tanh(xi) = (exi − e−xi)/(exi + e−xi).
After the tth response, the value matrix is updated as

Mv
t (i) = Mv

t−1(i)� [1− wt(i)et] + wt(i)at

Thus, the model adds and forgets student knowledge in
concepts as more and more assessments are attempted.

4.4 Final Predictions
The final predictions for both, correct attempt and hint-
taking, probabilities are calculated by applying two separate
linear transformations followed by a sigmoid activation on
ft which is given by

ft = Tanh(WT
f ∗ (st||kt) + bf ) (4)

Here, Wf is a linear transformation, st is the final read
knowledge state of the student in question qt illustrated
earlier in Equation 3, kt is the question embedding in Equa-
tion 1, bf is the bias and || is the concatenation operator.
The final probabilities for a correct-attempt and hint-taking
are

ppredr = Sigmoid(WT
r ∗ ft + br

p) (5)

ppredh = Sigmoid(WT
h ∗ ft + bh

p) (6)

where both WT
r , WT

h are linear transformations, and br
p,

bh
p are bias vectors.

4.4.1 Prediction Loss at Output Layer:
The output layer of DKVMN predicts the probability whether
a question will be answered correctly. For the task of pre-
dicting whether a hint will be taken in the question, the
factors like the knowledge state of the learner, the difficulty
level of the question and past hint-taking behavior are im-
portant. Since the first two are already being modeled by
DKVMN, we learn both the tasks simultaneously by using a
multi-task learning approach. As shown in Equation 6, the
final output layer of Colearn adds a linear transformation of
ft followed by a sigmoid activation to predict the hint-taking
task. The loss is given by taking a weighted sum of losses
from knowledge tracing and hint-taking prediction and is
evaluated as

L = α1cross entropy(pactr , ppredr )+α2cross entropy(pacth , ppredh )

where ppredr is given in Equation 5 and ppredh in Equation 6 are
the probabilities predicted at the output layer. The actual
values pactr and pacth are 0 or 1 depending on the observed
response. The cross entropy function

cross entropy(pact, ppred) = pactlog(ppred)+(1−pact)log(1−ppred)

We set both α1 = α2 = 1 to give equal weight to the knowl-
edge tracing and hint-taking prediction tasks. This loss is

backpropagated to update the network weights. When a
learner takes a hint, only the loss of the hint-taking predic-
tion is propagated. In other words, the loss for the knowl-
edge tracing task is 0 in this case. The network weights,
except the final output layer, are shared between the two
tasks (See Figure 3). Multi-task learning acts as a regu-
larizer for learning network weights as with the same set
of weights the network should maximize two objectives. It
also encourages sharing of knowledge across tasks through
sharing of network weights. Experimental results demon-
strate that the network trained using multi-task learning
marginally outperforms current state-of-the-art models on
both the tasks.

5. DATASETS
To evaluate the performance of the model we used the fol-
lowing two datasets:

• ASSISTments 2009-2010 skill builder dataset2: AS-
SISTments [14] is an online tutoring system which can
be used by teachers for grade school-level Mathematics
instruction and evaluation. The system can be used to
identify common wrong answers and see student-reports
for assignments in a class. The dataset contains activity
logs of students solving exercises on the system and it is
widely-used as a benchmark dataset for knowledge trac-
ing [23, 34]. Log data includes information such as student
responses, time spent on exercise, chronological order of
attempts, if a hint is taken, tagged skill for an exercise.
We use the updated version of this dataset. It corrects an
issue, identified by Xiong et al. [33], with duplicated rows
in the original version. We use the skill tag corresponding
to an exercise as its identifier in the input to the models.
Thus, the set of distinct questions, Q, is same as the set of
distinct skill tags in the dataset. All rows with an empty
skill tag are removed. Some rows contain invalid values
in the column specifying student’s first action i.e. values
other than the permissible ones – {attempt, hint}. These
transactions are removed. In case a student has multiple
actions on the same exercise, we know whether the first
action was a correct attempt, an incorrect attempt or a
hint request. For the hint-taking prediction task, only the
rows with the first action as a hint request are taken as a
positive label.

• Junyi Academy Math Practicing Log3: Junyi Academy4

is an e-learning platform, like Khan Academy, where stu-
dents can practice exercises on various subjects including
Mathematics, Biology, Computer Science. Like ASSIST-
ments, the dataset contains attempt, hint taken, time
spent, and skill tag information for an exercise. It has
transactions for around 200,000 students. To the best of
our knowledge, it is one of the largest student interac-
tion datasets. As part of the data cleaning process, rows
which contained non-binary values in the columns speci-
fying whether hint was used or not and whether question

2ASSISTments 2009-2010 skill builder dataset is available
at https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data/skill-builder-data-2009-2010
3Junyi Academy Math Practicing Log is available at
datashop.web.cmu.edu/DatasetInfo?datasetId=1198
4
https://www.junyiacademy.org/
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was answered correctly or not were removed. Students
with only one transaction in the dataset are removed. If
a student requests a hint as one of the actions on a par-
ticular exercise, we do not know whether the hint was
requested as the first action or it was requested after one
or more incorrect attempts. In other words, we only know
whether a hint request was one of the actions performed
by the student. Therefore, for the hint-taking prediction
task, all transactions which contain a hint request, irre-
spective of being the first action or not, are assigned the
positive label. Note that this adds noise to the hint-taking
label for this dataset.

The statistics comparing the two datasets are provided in
Table 2.

Statistic Datasets
ASSISTments Junyi

# of Students 4, 151 199, 549
# of Exercise/Skill Tags 111 722
# of Concept Tags – 40
# of Records 325, 637 25, 628, 935
% of Attempts (Both Correct

and Incorrect)
92.78% 93.56%

% of Hints 7.22% 6.44%

Table 2: Aggregate statistics from the two datasets

For extracting labels for the prediction tasks, it is assumed
that a question is attempted only once. If a hint is taken first
then the response is labeled as hint-taken. Else, the response
is marked as correct or incorrect based on the outcome. So,
if there are instances where multiple responses for a question
are observed, we keep the first response on each question and
remove subsequent responses. This is done to conform with
the standard practice followed while evaluating knowledge
tracing models. However, responses to subsequent attempts
can also be incorporated in our setup.

6. EVALUATION METHODOLOGY
In each dataset, students and the corresponding transactions
are randomly split into two parts – 80% for training and 20%
for testing. Training set is further split, out of which 80%
(i.e. 64% of total) is used for training the models. The
rest 20% (i.e. 16% of total), called validation set, is used to
tune hyperparameters of the models. Trained models with
different values of hyperparameters are evaluated on the val-
idation set in order to select the best hyperparameters.

6.1 Accuracy Metric
Both the prediction tasks are considered in a classification
setting — answering a question correctly or not and taking
a hint on a question or not. Hence, we compare the model
performance based on Area under ROC curve (AUC) which
is a standard classification metric. For knowledge tracing
task, we follow the same evaluation procedure as followed
by [23, 30, 34]. The model is trained using transactions
from the training set. During the testing phase, the model
is updated after each question response from the testing set.
The updated model is used to perform the prediction for the
next question.

6.2 Hyperparameter Tuning
Hyperparameters are learned using the validation set. We
used Bayesian Optimization [28] to tune the hyperparam-
eters for Colearn model. The model required several hy-
perparameters which cannot be set by hand easily. The
method uses Bayesian techniques instead of gradient-based
techniques to optimize the unknown function from the hy-
perparameter space to validation loss. The objective is to
find the set of hyperparameter values which minimizes the
validation loss while evaluating the model for only a small
number of hyperparameter combinations. The tuned hyper-
parameters are:

Number of value vectors: Since the number of value vec-
tors represent the number of ‘hidden’ concepts, this cannot
be set by hand. The values were varied from 5 to 50 vectors.

Key vector size: The size of each key vector depends on
efficient representation of the difficulty of questions and their
similarity to the hidden concepts. The size was varied from
10 to 200.

Value vector size: The value vectors are a representation
of the different concepts and an efficient representation de-
pends on the size of these vectors. The size was varied from
10 to 200.

Hyper-parameters obtained for Colearn model are as follows
– number of value vectors are 20 and 5 for ASSISTments and
Junyi respectively, key vector size (i.e. question embedding
size) is 50 for both, value vector size (i.e. question-attempt
embedding size) is 200 and 100 for ASSISTments and Junyi
respectively.

6.3 Training details
Stochastic gradient descent with momentum and norm-clipping
was employed to train the weights of the network. The mo-
mentum was set to be 0.9 throughout the training and the
norm was clipped to a threshold of 50.0. The learning rate
was initialized as 5∗10−2 and annealed after every 20 epochs
till the learning rate reached 10−5. Since the sequences of
responses varied in length, the sequence length was fixed to
200 and 500 in ASSISTments and Junyi, respectively, with
appropriate truncation or padding. Batch size for stochastic
gradient descent is fixed to 32 and number of epochs is set
to 100. Network weights corresponding to the epoch with
least validation loss are taken for testing.

After training, learned weight values for the key and value
matrices are saved and loaded at beginning of testing each
student sequence. Key matrix is kept unchanged through-
out the sequence, whereas the value matrix is updated in-
dependently for each student sequence as more actions are
observed.

To check for robustness to initialization of network weights,
we perform training 5 times with different random seeds
(to get {AUCi}5i=1). We report the average (i.e. AUC =
1
5

∑5
i=1 AUCi) and standard deviation (i.e. [ 1

5

∑5
i=1(AUCi−

AUC)2]
1
2 ) of test AUC values across the 5 models.

7. RESULTS AND DISCUSSION
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Model Datasets
ASSISTments Junyi

Colearn 91.75± 0.07% 92.34± 0.009%
DKVMN–hints 91.12± 0.06% 92.31± 0.01%
HH (n=3) 77.69% 76.66%
HH (n=4) 79.10% 77.62%

Table 3: Hint-taking Prediction task. Performance
(AUC values) of proposed approach (Colearn) compared
with the baselines on two datasets.

Model Datasets
ASSISTments Junyi

Colearn 81.48± 0.04% 80.56± 0.009%
DKVMN 81.23± 0.02% 80.38± 0.007%
HIRT 77.40% 79.45%
IRT 76.51% 77.46%

Table 4: Knowledge Tracing task. Performance
(AUC values) of proposed approach (Colearn) compared
with the baselines on two datasets.

To the best of our knowledge, no prior work models both of
the prediction tasks jointly. Therefore, we report compar-
isons with prior work for each task separately. The Colearn

results reported are for the model jointly trained on both
the tasks.

7.1 Hint-taking Prediction
7.1.1 Baselines

Castro et al. [9] proposed a method called Hint-History
model (HH) for predicting student actions on next question
i.e. whether student will take a hint or attempt the next
question. The method considers the sequence of n most re-
cent student actions for predicting action on the next ques-
tion. They use a technique called tabling method which
counts the number of times a sequence resulted in a par-
ticular action in the training set. For instance, while mak-
ing a prediction for a student who has taken two hints in a
row followed by an attempt, the method finds students with
same action sequence in the training set and uses the next-
action probability for them as the predicted value in current
case i.e. calculate number of times students with this action
sequence took hint on the next question divided by total
number of such students in the training dataset. These sim-
ple approaches have been used for knowledge tracing tasks
[13] as well.

The tabling method is compared with two approaches that
are proposed in this paper. The first one is using DKVMN [34]
model with class labels being hint-taking indicators instead
of question correctness (referred to as DKVMN–hints). The
second one is Colearn.

7.1.2 Results
Table 3 summarizes the results. We compare with HH model
for two different values of length of action sequences, n =
3, 4. DKVMN–hints shows 12% points improvement in AUC
on ASSISTments dataset and 15% on Junyi datset. Colearn
further improves the AUC on the two datasets. A memory-
augmented deep learning model considers longer term de-
pendencies in student sequences instead of taking a fixed-
length history, as is the case with HH. It can also effectively
model student-specific variations from individual sequences
whereas HH model output is based only on population-level
statistics. Lastly, multi-task training, Colearn model, also
helps to increase performance on the task by a small margin
due to the synergies across the tasks.

7.2 Knowledge Tracing
7.2.1 Baselines

We compare our model with three competitive baselines
namely DKVMN [34], IRT [30] and Hierarchical IRT (HIRT) [30].
In IRT, student skill level and item difficulty are modeled
separately and probability of answering correctly is taken
as a pre-determined function of these two quantities such
as sigmoid or logistic. In HIRT, related items are grouped
together (e.g. those belonging to same concept) and the
difficulty of each item is distributed normally around a per-
group mean, which is distributed normally around a hyper-
prior. DKVMN model was shown to outperform BKT [11]
and DKT [16], hence we do not compare with those mod-
els. For DKVMN, best performing hyperparameters reported
in [34] were taken. Note that the best-reported AUC of
DKVMN (81.57%) on ASSISTments dataset differs from what
we report for their model (81.23%), for the same hyperpa-
rameters. This results from different train-test set propor-
tions, i.e. 20% sequences in test as compared to 30% used
by Zhang et al. We could replicate DKVMN results using code
published by the authors5 on the dataset split provided by
them. For IRT and HIRT models we use the code published
by the authors6. For the baselines, the transactions where
hints are taken are labelled as incorrect responses. This is
the same approach followed in the baseline publications.

7.2.2 Results
The AUC values for the different methods on both datasets
for knowledge tracing are shown in Table 4. The AUC value
for deep learning models is sensitive to the initial values
of network weights. Hence, we report average and stan-
dard deviation (separated by ±) of the AUC from five, ran-
domly initialized, models. Colearn improves test set AUC
on ASSISTments dataset by 4% points and on Junyi by 1%
points as compared to HIRT method. The improvement due
to multi-task model is consistent across datasets and tasks,
albeit small. This means that students’ past hint taking
behaviour is not predictive of question correctness. Fac-
tors such as difficulty of the question and correctness on
past attempts mostly can explain their future performance.
Interestingly, performance increase is less in case of Junyi
dataset than ASSISTments dataset in both the tasks. As
discussed earlier, the way hint information is available in
Junyi dataset adds some noise to the training signals. In
cases where student takes a hint, we do not know whether
hint was the first action before any attempt or was taken
after making incorrect attempt(s). This might be the rea-
son why we get relatively less advantage from incorporating
hint information in Junyi dataset.

5https://github.com/jennyzhang0215/DKVMN
6https://github.com/Knewton/edm2016
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Figure 4: t-SNE visualizations of question representation for Junyi dataset. Color denotes difficulty (in (a)) and concepts (in
(b)) of the questions.

7.3 Discussion on Learned Representations
We have shown that the Colearn model performs better
than the baseline models. In this section we explore the
meaning of the estimated parameters. Specifically, how can
we use the estimated parameters to represent a question and
what does the representation represent?

To get representation for each question, qt, we use a ques-
tion’s attention weights over the concepts in the key matrix.
Each question is represented by a vector of length equal to
the number of latent concepts where the value corresponding
to each latent concept in the vector is given by Equation 2.
This representation is obtained assuming that a student has
not yet started to answer any question. Recall that, before
the start of an assessment, the value matrix is set to the
initial value matrix, Mv

0 . This initial matrix is part of the
parameter set and it is estimated. The question represen-
tation is a vector that is based on the performance of all
students, questions, and responses in the training set but
not specific to any one student.

To understand how the question representations are related
to each other, we visualize them using t-SNE [18]. Figure 4a
and Figure 4b present the t-SNE visualizations of the ques-
tion representations of the exercise tags in Junyi dataset.
ASSISTments dataset is not used for this analysis because it
does not contain the concepts for the exercise tag. Each dot
in the scatter diagram represents a single exercise tag. The
only difference between the two panels is the color used to
represent each tag. In Figure 4a each exercise tag is colored
according to the difficulty level of the question, with blue
color representing the easiest and red color representing the
most difficult exercise tags. The difficulty level is estimated
using the fraction of correct responses in each question tag.
The color of a dot in Figure 4b represents the concept of the
exercise tag. There are 40 concepts for 722 exercise tags in
Junyi dataset which include concepts like fractions, algebra,
trigonometry.

One of the hypothesis is that the question representation
captures the concept map [34]. If this was the case then the
exercise tags within a concept should be close in the question

representation space. However, Figure 4b shows that the
exercise tags within a concept do not cluster together. In
fact, the exercise tags seem to be randomly scattered in the
question representation space. On the other hand the color
of the exercise tags in Figure 4a shows a definite pattern
with the easiest question tags towards the left and the most
difficult ones towards the right. This shows that the question
representation vectors tend to capture the difficulty level
of an exercise tag. Note that, the question representation
vector might capture other aspects such as prerequisite map.
However, a complete in-depth analysis is out of the scope of
this paper and left for future explorations.

8. CONCLUSION
Assessments (specifically, formative ones) are an important
part of an interactive learning system as they help learners
to gauge their progress. If a learner is stuck at a particular
question, many learning platforms provide learning aids in
the form of hints. Predicting when to provide an option of
taking an hint is essential to regulating its excessive use or
to avoid underuse. The probability of taking a hint relates
to modeling the knowledge state of a learner during an as-
sessment, which has been studied separately as knowledge
tracing. Hence, we jointly modeled the hint-taking predic-
tion task along with the knowledge tracing task. Through
experiments we showed that our approach outperforms the
baseline hint-taking prediction models and marginally im-
prove on baseline knowledge tracing models. The approach
proposed in the paper can be easily extended to incorporate
other types of learning aids such as interactive tutorials,
links to reading material and videos.

Better knowledge tracing and hint-taking models allow an
e-learning system to make decisions such as number of ques-
tions to ask, the sequence of questions and whether to show a
hint based on learner’s proficiency. Such decisions affect the
long-term learning outcomes. Future work involves integrat-
ing the predictions for the two tasks to develop strategies for
optimizing long-term learning outcomes. High accuracy on
both the tasks, as demonstrated, will allow to build student
simulators for evaluating such strategies.
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ABSTRACT
Work-integrated learning, also known as co-operative educa-
tion, allows students to alternate between on-campus classes
and off-campus work terms. This provides an enhanced
learning experience for students and a talent pipeline for
employers. We observe that co-operative job postings are a
rich source of information about the required skills, working
environment and company culture. We present a text min-
ing methodology to extract and cluster informative terms
from unstructured job descriptions, and we demonstrate the
utility of our methodology on a co-op job posting corpus
from a large North American university.

Keywords
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1. INTRODUCTION
The World Association for Cooperative and Work-integrated
Education reports that 275 institutions from 37 countries of-
fer co-operative education (co-op) programs, also referred to
as work-integrated learning programs1. Students enrolled in
co-op programs usually alternate between on-campus classes
and off-campus work terms at participating employers. Co-
operative education has become popular for a number of
reasons: it provides an enhanced learning experience for stu-
dents, a talent pipeline for employers, and a recruiting tool
for institutions.

Concurrent with the popularity of work-integrated learning
is the desire to understand the co-op job market: students
want to know what types of jobs are available and what
skills could make them more employable; employers want to
know what competition they are facing and how to attract
top talent; and institutions want to align curricula with job
market needs.

1http://www.waceinc.org/global_institutions.html

In this paper, we propose to answer the above questions by
mining co-operative job postings. We make two contribu-
tions: 1) a text mining methodology to extract informative
terms from job descriptions in order to understand a co-op
job market, and 2) a case study using real data to demon-
strate our methodology.

In practice, job descriptions are written directly by em-
ployers, and therefore they are not standardized or well-
structured. In particular, job descriptions may include in-
formation that is unrelated to the nature of the job such as
website URLs, contact emails, and of course common En-
glish words. Our technical challenge, therefore, is to extract
and cluster useful information, such as required skills, work-
ing environment and company culture.

We address this challenge by designing a text mining
methodology to understand a co-op job market through job
postings. We start by building a parser that extracts rele-
vant attributes from unstructured job descriptions. We then
identify frequently occurring attributes in job titles and de-
scriptions, and we employ Latent Semantic Analysis (LSA)
and k-means clustering over the extracted attributes to char-
acterize the types of available jobs.

To demonstrate the utility of our methodology, we analyze
nearly 30,000 co-op job postings from a large North Ameri-
can university. We identify sought-after skills and mindsets,
we identify the types of jobs available to junior and senior
undergraduate students, and we discuss trends over time.
We argue that our findings provide actionable insights for
students, employers and the institution.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work; Section 3 describes our data
and methodology; Section 4 describes the experimental re-
sults; and Section 5 concludes the paper with the implica-
tions of our findings and directions for future work.

2. RELATED WORK
This paper is related to three bodies of work: text mining,
co-operative education and workforce studies. We use stan-
dard parsing and information retrieval techniques, and do
not make any new algorithmic contributions in text mining.
Instead, our contribution is to apply these techniques to a
new application domain in order to obtain new insight.
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Prior work on co-operative education has focused on its im-
pact on students’ skills (especially soft skills such as leader-
ship and entrepreneurship), grades and post-graduate em-
ployment; see, e.g., [2, 14, 21, 26, 29]. There has also been
research on what makes co-op students successful and what
workplace competencies are expected (see, e.g., [6, 7, 16, 20,
30, 31]), understanding competition for co-op jobs (see, e.g.,
[17, 27]), and assessing the overall co-op process and expe-
rience (see, e.g., [12, 18]). These works are orthogonal to
ours, which studies a different problem of understanding a
co-op job market in terms of the types of available jobs and
the required skills and attitudes.

Prior research on job advertisements studied how to write
them in order to attract qualified applicants (see, e.g., [4,
11, 22]), and how to match job descriptions with qualified
resumes (see, e.g., [9, 19]). Moreover, job descriptions have
been studied from a gender perspective, e.g., by counting
the occurrences of masculine and feminine words [25]. While
these works investigated how job descriptions could attract
or match applicants, we study a different problem of under-
standing a co-op market through job descriptions.

Workforce literature has applied machine learning to im-
prove recruitment, reduce turnover and understand work
profiles [1, 5]. Machine learning algorithms have been ap-
plied to understand the factors affecting work performance
and retention [5]. Furthermore, Aken et al. cluster Informa-
tion Technology job postings on job websites to understand
the work profiles prevalent in the market [1]. Our research
extends this analysis to understand the work profiles of var-
ious industries (not only Information Technology) in a co-
operative education setup and how they have changed over
time. Not limiting the scope to broad work profiles, our
research also highlights the specific skills and attitudes re-
quired by various industries.

3. DATA AND METHODOLOGY
We obtained two datasets from a large undergraduate North
American institution: 12,066 job postings corresponding to
all co-op jobs that were advertised and filled in 2004, and
17,057 job postings corresponding to all co-op jobs that were
advertised and filled in 2014. The job postings are written
in English. Most of these positions were located in North
America, with a small number of overseas jobs. We use
the 2014 data to characterize the current co-op job market
and we compare with the 2004 data to analyze trends over
time. Each record in our datasets contains the following
information:

• A job title, up to 50 characters long, which generally
consists of the position and/or the nature of the work.
Common titles include Web Developer, Engineering
Intern and Planning Assistant.

• A job description, with unlimited length and no stan-
dardized structure or formatting.

• The year of study of the successful candidate who se-
cured the job. We refer to jobs obtained by first and
second year students as junior jobs or lower-year jobs,
and those obtained by third and fourth year students
as senior jobs or upper-year jobs.

Figure 1: An anonymized job description

• The academic program of the successful candidate.

Since the job postings in our dataset do not include indus-
try or discipline labels, we use the academic program of the
student who obtained the job as a proxy. The institution
provided us with a mapping from students’ academic pro-
grams to job disciplines; e.g., positions filled by Computer
Science or Software Engineering students are classified as
Information Technology jobs. In our case study, we focus on
the largest discipline in the institution’s co-op market: Infor-
mation Technologies (IT). We also point out interesting find-
ings from other major disciplines: Finance, Health Studies,
Arts, Biology, Environmental Studies, Chemical Engineer-
ing, Civil Engineering, Electrical Engineering and Mechani-
cal Engineering.

Figure 1 shows an anonymized example of a job description
from our dataset. It includes the following information:

• Technical skills: Javascript, Ruby on Rails

• Soft skills: team player, ability to learn

• Job duties: architecting and implementing UI designs

• Desired mindset and attitude: obsessed with technol-
ogy

• Perks: ping-pong and foosball table, free lunch

• Company culture: casual environment

However, there is also some content that does not describe
the job itself: names of people and locations, URLs, email
addresses, HTML tags, timestamps, special formatting, and,
of course, common English words. The first part of our
methodology, therefore, is a parser that extracts job-related
attributes from unstructured job descriptions. The parser,
implemented in Python, consists of the following steps.
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1. Using regular expression matching, we remove URLs,
HTML tags, phone numbers and other numbers,
email addresses, timestamps, administrative annota-
tions added by the institution (such as the text follow-
ing “Note:” in Figure 1), formatting characters such as
bullet points, and sequences of special characters serv-
ing as separators (such as the sequences of dashes and
hashtags in Figure 1).

2. We tokenize the remaining text and remove special
characters embedded in words (such as F*U*N in Fig-
ure 1). To remove unimportant terms, we build a vo-
cabulary, called Remove-List, consisting of common
English words2, misspellings3 and abbreviations4, as
well as manually-curated lists of company names, lo-
cations, addresses and persons’ names appearing in the
institution’s co-op system.

3. We have to be careful to not remove informative terms.
For example, “Ajax” is a city in Canada and is there-
fore in Remove-List. However, Ajax is also a Web de-
velopment toolkit. To address this problem, we cre-
ate another vocabulary called Keep-List, of words that
should not be removed. This vocabulary consists of
skills found on a resume help Web site5 and job du-
ties from the Canadian National Occupation Classifi-
cation6. Note that Keep-List only contains a subset
of words we are interested in; e.g., it is missing many
specific technical skills, perks and company culture de-
scriptors.

4. We stem the remaining tokens using the NLTK snow-
ball stemmer 7 and we remove stop words. Finally, we
leverage our domain knowledge by converting impor-
tant terms that can be written in different ways into a
standard form; e.g., “java-script” and “javascript” both
map to “javascript”.

At the end of the parsing process, each job description is
reduced to its stemmed words, minus those in Remove-List
but not in Keep-List. In the remainder of the paper, we will
refer to these stemmed words as “words”, “terms”, “tokens”
and “attributes” interchangeably.

The second part of our methodology is designed to analyze
the extracted job attributes. We do this in two ways:

1. To identify popular skills, attitudes, working environ-
ment and perks, we report attributes that occur at
least once in a large percentage of job descriptions.
Notably, and in contrast to other text mining applica-
tions, we do not count the number of occurrences of an

2http://www.lextutor.ca/freq/lists_download/
longman_3000_list.pdf
3https://en.wikipedia.org/wiki/Wikipedia:Lists_of_
common_misspellings/For_machines
4https://media.gcflearnfree.org/ctassets/modules/
48/common_abbr.png
5https://www.thebalance.com/
list-of-the-best-skills-for-resumes-2062422
6http://noc.esdc.gc.ca/English/noc/welcome.aspx?
ver=16
7www.nltk.org/_modules/nltk/stem/snowball.html

Table 1: Top 10 frequent tokens in IT job titles

Token Freq. in 2014 Token Freq. in 2004

softwar 45% develop 37%
develop 44% softwar 27%
analyst 8% analyst 17%
applic 7% programm 11%

web 5% assist 9%
support 4% web 8%

assist 4% support 7%
programm 4% applic 6%

system 3% system 6%
quality 3% specialist 4%

attribute within a posting–we observed that important
job requirements such as knowledge of the “Java” pro-
gramming language are usually mentioned only once.
We also identify attributes mentioned by more junior
than senior jobs (and vice versa), and we compare at-
tributes mentioned by more jobs in 2014 than 2004
(and vice versa) to characterized trends over time.

2. We use clustering to identify the different types of
available co-op jobs within a discipline. Following pre-
vious work on text clustering [10, 23, 24], we start by
applying Latent Semantic Analysis (LSA) to the job
descriptions, with each job description represented as
a job vector. The ith coordinate of a job vector is
equal to the inverse document frequency (IDF) of the
ith word in the set of possible words, provided that
this word is mentioned in the given job description at
least once (and zero otherwise). Following previous
work, we use LSA to reduce the dimensionality of job
vectors from the number of distinct words down to one
hundred [28]. Each reduced dimension corresponds to
a latent concept in the data. We then run k-means
clustering on the transformed job vectors, and we re-
port a few top terms (again, ranked by IDF) from each
cluster centroid as representatives.

4. RESULTS
In this section, we demonstrate the utility of our methodol-
ogy. We show in-depth results for the largest discipline in
our dataset: Information Technologies (IT), including fre-
quent term analysis (Section 4.1), analysis of significant dif-
ferences in term frequencies between 2014 and 2004 and be-
tween senior and junior jobs (Section 4.2), and clustering
analysis (Section 4.3). We summarize our results for other
disciplines in Section 4.4.

4.1 Frequent Term Analysis
Table 1 shows the top 10 attributes occurring in the most
IT job titles in 2014 and 2004; for example, the first row
indicates that the token “softwar” appears at least once in
45% of job titles in 2014 and 37% in 2004. Not surprisingly,
nearly half the titles mention software development.

Table 2 shows the top 25 attributes occurring in the most IT
job descriptions in 2014 and 2004. Overall, most IT co-op
jobs appear to be software developer jobs. In 2014, hard-
ware was mentioned in only 14% of the postings and embed-
ded systems in 7%; in 2004, these percentages were slightly
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Table 2: Top 25 frequent attributes in IT job descriptions

Token Freq. in 2014 Token Freq. in 2004

develop 91% develop 80%
team 84% applic 65%

softwar 76% softwar 62%
applic 66% system 61%
design 65% team 61%

product 62% program 54%
program 60% design 53%

system 58% communic 50%
project 53% comput 49%
comput 52% product 47%

test 50% support 43%
build 48% test 43%

communic 48% servic 42%
web 47% project 41%
code 46% lead 39%
help 46% excel 39%

learn 45% solut 38%
servic 44% web 38%

java 43% tool 37%
manag 43% assist 36%

creat 43% busi 36%
solut 42% manag 35%

technic 42% java 35%
tool 41% custom 34%

excel 40% oper 33%

higher, at 22 and 9, respectively (and the actual number of
hardware and embedded systems jobs was slightly higher in
2004). Furthermore, about half the job descriptions men-
tion testing. Notably, mentions of some soft skills such as
communication are more frequent than mentions of specific
technical skills such as Java in both years.

By inspecting other frequent attributes, we obtain the fol-
lowing insights about frequently mentioned programming
languages, platforms and applications in 2014:

• Programming languages: Java (43%), C++ (33%),
JavaScript (31%), C (24%), Python (22%), C# (20%),
HTML (19%), CSS (17%), PHP (12%), .NET (12%),
jQuery (10%), Perl (10%), XML (9%), Ruby (9%)

• Development: web (47%), mobile (32%), game (12%)

• Databases: database (29%), SQL (26%), mySQL (8%),
Oracle (7%)

• Mobile applications: android (19%), iPhone (7%)

• Operating Systems: linux (21%), unix (13%), iOS
(14%)

• User-centered development: user (35%), agile (18%),
deploy (16%)

• Other applications: server (29%), distributed (17%),
security (17%), cloud (9%), graphic development (8%),
big data (4%)

• Concepts: OOP (Object-Orient Programming) (24%),
algorithms (18%), scalable (14%)

In terms of the working environment and company culture,
the strongest result is that the word “team” is very fre-
quent, suggesting a collaborative environment. Other fre-
quent terms include challenging (32%), dynamic (20%), fun
(16%), flexible (15%) and diverse (12%). Amenities such as
free food, foosball and ping-pong tables are also frequent.
The word start-up is mentioned in 11% of the job postings.

We also note the occurrence of mindset-related terms such as
learn (45%), innovation (32%), passion (25%), focus (23%),
creativity (22%), motivation (20%), love (15%) and enjoy
(10%).

Similarly, for 2004, we identify the following frequently men-
tioned programming languages, platforms and applications:

• Programming languages: Java (35%), C++ (31%), C
(21%), HTML (22%), XML (15%), ASP.NET (12%),
Perl (11%), .NET (10%), JavaScript (10%), JSP (8%),
C# (7%)

• Development: web (38%), mobile (10%), game (5%)

• Databases: database (30%), SQL (27%), Oracle
(13%), mySQL (2%)

• Operating Systems: unix (22%), linux (15%)

• User-centered development: user (21%), deploy (7%),
agile (0.5%)

• Other applications: server (25%), security (15%),
graphic development (10%)

• Concepts: OOP (13%), algorithms (7%), scalable (4%)

Compared to 2014, the word “team” was again frequent in
2004, but words related to mindset, company culture and
perks were less frequent.

Our results indicate that IT positions focus on soft-
ware rather than hardware, especially web and Java
development. The work environment appears team-
oriented. In 2014, descriptions of mindset and com-
pany culture are appearing frequently.

4.2 Significant Differences
Next, we investigate the differences between 2014 and 2004
IT job descriptions which we began to see in the previous
section. Table 3 summarizes the results by listing 20 at-
tributes with most significant differences in frequencies be-
tween 2004 and 2014 (on the left), and 2014 and 2004 (on
the right). We define a difference in frequencies, abbreviated
∆, as the percentage of job postings mentioning an attribute
in one year minus the percentage of job postings mention-
ing this attribute in the other year. Both lists are sorted
by ∆, and all results shown are statistically significant with
P-values less than 0.05 using a proportion test [13]. We omit
the analysis of job title differences between 2004 and 2014
which gave similar results. We also show a Venn diagram
in Figure 2, which illustrates the overlap among the top 100
frequent attributes in 2004 and 2014 IT jobs.
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Table 3: Differences in frequency between job description
attributes of 2004 and 2014 IT

Token 2004 2014 ∆ Token 2014 2004 ∆

assist 36% 22% 14% build 48% 15% 33%
asp 12% 2% 10% help 46% 19% 26%
internet 18% 9% 9% team 84% 61% 24%
unix 22% 13% 8% code 46% 24% 22%
hardwar 22% 14% 8% mobil 32% 10% 22%
sort 8% 0% 8% javascript 31% 10% 21%
clarifi 8% 1% 8% passion 25% 5% 20%
interperson 18% 10% 7% featur 30% 10% 20%
oper 33% 26% 7% creat 43% 23% 20%
msaccess 8% 1% 7% python 22% 3% 19%
manufactur 10% 4% 6% learn 45% 26% 19%
cost 11% 5% 6% collabor 23% 5% 18%
xml 15% 9% 6% agil 18% 0% 18%
support 43% 37% 6% product 62% 47% 16%
expens 8% 2% 6% contribut 27% 12% 15%
intranet 7% 1% 6% problem 34% 19% 15%
oracl 13% 7% 5% improv 25% 10% 15%
prepar 11% 6% 5% solv 20% 6% 15%
supervis 12% 7% 5% app 15% 1% 14%
xp 8% 3% 5% peopl 33% 18% 14%

Figure 2: Overlap between the top 100 most frequent
attributes of IT jobs in 2004 and 2014

Our results suggest that 2004 job postings include more
entry-level positions (suggested by attributes such as “as-
sist”, “support”, “prepare”, “arrange” and “document”), and
mention technologies and software popular at the time such
as ASP, XML, Windows XP and Microsoft Access. Addi-
tionally, the fraction of hardware-oriented jobs was higher in
2004. On the other hand, job postings in 2014 include words
representing current technologies such as mobile, Javascript,
Python, agile and app (and, further in the list, scalable and
distributed systems). Notably, many soft skills and mindset-
related terms are more frequent in 2014: “passion”, “cre-
ate”, “learn”, “collaborate” and “contribute”. Although not
shown in Table 3, other terms that are more frequent in
2014 include company culture descriptors such as “innova-
tive”,“challenging”, “fun” and “diverse”.

The next important difference is that between junior and
senior jobs. Table 4 shows two lists: top terms appearing in

Table 4: Differences in frequency between job description
attributes of junior and senior jobs in 2014 IT

Token Jr. Sr. ∆ Token Sr. Jr. ∆

document 29% 16% 13% c++ 46% 21% 24%
support 42% 31% 11% algorithm 28% 9% 20%
assist 27% 16% 11% scale 28% 9% 19%
communic 53% 43% 10% scienc 49% 31% 17%
manag 48% 38% 10% featur 39% 22% 17%
test 54% 45% 9% python 31% 14% 16%
report 26% 17% 9% scalabl 23% 7% 16%
busi 42% 34% 9% build 57% 41% 15%
written 21% 13% 8% code 54% 40% 15%
activ 23% 15% 8% complex 27% 13% 13%
educ 17% 10% 7% comput 59% 46% 13%
standard 15% 8% 7% c 31% 18% 13%
interperson 13% 6% 7% product 69% 57% 13%
instal 9% 3% 7% structur 21% 9% 12%
troubleshoot 15% 9% 6% field 23% 11% 12%
msoffic 8% 2% 6% java 50% 38% 12%
summari 24% 18% 6% data 42% 30% 12%
execut 15% 9% 6% distribut 23% 12% 11%
detail 11% 5% 6% search 16% 6% 10%
account 12% 6% 6% problem 40% 29% 10%

Figure 3: Overlap between the top 100 most frequent
attributes of Junior and Senior IT jobs in 2014

more junior than senior jobs (on the left), and top terms ap-
pearing in more senior than junior jobs (on the right), both
in 2014 and both sorted by the difference of percentages. Ta-
ble 5 shows the same two lists, but for 2004. Figures 3 and 4
show Venn diagrams that illustrate the overlap among the
top 100 frequent terms from junior and senior jobs in 2014
and 2004, respectively.

We observe that in 2014, junior jobs are more likely to be
entry-level documentation, testing or troubleshooting jobs.
Junior job postings are more likely to mention soft skills such
as communication and interpersonal skills. In terms of spe-
cific technologies, junior jobs mention HTML, SQL and Web
5 percent more frequently than senior jobs. On the other
hand, senior jobs in 2014 mention technical concepts and
specific programming languages such as algorithms, scala-
bility, data, C++, C and Python. Other interesting differ-
ences not shown in the table are OOP (9% more frequent
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Table 5: Differences in frequency between job description
attributes of junior and senior jobs in 2004 IT

Token Jr. Sr. ∆ Token Sr. Jr. ∆

maintain 23% 14% 9% c++ 45% 21% 24%
support 47% 38% 9% c 32% 14% 18%
updat 13% 5% 8% design 63% 46% 17%
html 26% 18% 8% cost 20% 5% 14%
excel 43% 35% 8% clarifi 16% 2% 14%
msoffic 13% 5% 8% expens 16% 2% 14%
troubleshoot 14% 7% 8% arrang 17% 4% 13%
document 30% 23% 7% sort 16% 3% 13%
user 24% 17% 7% solut 44% 33% 11%
qualiti 26% 20% 6% challeng 29% 19% 10%
report 26% 20% 6% develop 85% 76% 9%
web 40% 34% 6% linux 20% 11% 9%
mainten 14% 8% 6% complex 16% 7% 9%
instal 13% 7% 6% algorithm 12% 3% 9%
interperson 20% 15% 5% unix 27% 18% 9%
server 27% 22% 5% code 29% 21% 8%
hardwar 24% 19% 5% lead 44% 36% 8%
xp 10% 5% 5% innov 27% 19% 8%
time 31% 26% 5% oop 18% 10% 8%
offic 21% 17% 5% scale 11% 3% 8%

Figure 4: Overlap between the top 100 most frequent
attributes of Junior and Senior IT jobs in 2004

than in junior jobs), linux (8%), cloud (8%), security (7%)
and data science (5%).

We observe similar patterns in Table 5 and Figure 4. In
2004, junior jobs also included terms suggesting entry-level
positions, whereas senior jobs included more mentions of
programming languages and computing concepts.

To summarize, there are clear differences between
2014 and 2004 IT jobs, and between junior and se-
nior jobs. In addition to differences due to new tech-
nologies, soft skills, mindset and company culture are
more frequently mentioned in 2014. In both years,
junior IT jobs are more likely to mention documenta-
tion, testing and troubleshooting, whereas senior jobs
are more likely to mention technical concepts.

Table 6: Largest clusters of 2014 IT jobs

Label Tokens in cluster centroid %All %Jr. %Sr.

Web
Development

javascript, html, web, css,
sql, c#, server, java, net,

jquery
22% 64% 36%

Programming
c++, c, languag, linux,

python, oop, scienc,
algorithm, perl, script

21% 46% 54%

Start-up
Culture

startup, python, javascript,
featur, code, web, love,

stack, fun, passion
18% 39% 61%

Business
Analyst

sql, analyst, test, solut,
c#, script, execut, financi,

document, busi
16% 69% 31%

Mobile
Development

io, android, mobil, app,
platform, java, agil, iphon,

devic, c
10% 61% 39%

System Ad-
ministrator

hardwar, troubleshoot,
configur, instal, network,
desktop, server, user, xp,

resolut

6% 87% 13%

4.3 Clustering Analysis
After investigating frequently occurring terms, we now clus-
ter the IT job descriptions to understand the types of avail-
able jobs. We experimented with different numbers of clus-
ters between 2 and 30. We present results using ten clusters;
using fewer clusters led to different types of jobs being as-
signed to the same cluster, whereas using more clusters led
to similar types of jobs belonging to multiple clusters.

Table 6 shows the six largest clusters in 2014 sorted by size;
the remaining four clusters had under 2% of the total num-
ber of jobs each. We report the representative tokens of each
cluster centroid, a manually-assigned label summarizing the
tokens, and three percentages: the percentage of all jobs
assigned to this cluster, and the percentages of junior and
senior jobs within this cluster. We highlight the higher of
the last two percentages in bold font to indicate whether a
cluster consists of more junior or senior jobs.

Based on the clustering results, we characterize the IT co-
op market as follows. The five largest clusters cover 87%
of IT jobs, spanning web development (22%), programming
(21%), start-ups (18%), business analysis (16%) and mo-
bile development (10%). The junior vs. senior split evident
in the clustering is consistent with our earlier results from
Section 4.2: troubleshooting jobs are mostly filled by junior
students, whereas jobs mentioning company culture, many
of which are startups, are filled by senior students.

Table 7 shows the 7 largest IT clusters in 2004; the remain-
ing three clusters are small and one of them contains job
postings from a specific large employer at the time. There
is no longer a start-up cluster with mentions of the working
environment, and there is an emphasis on hardware in the
last cluster. These results align with our earlier results from
Section 4.1.

To summarize, our clustering methodology segments
the IT job market into web development jobs, general
software development jobs, data analysis jobs, mobile
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Table 7: Largest clusters of 2004 IT jobs

Label Tokens in cluster centroid %All %Jr. %Sr.

Software
Development
and Testing

java, test, sql, tool, server,
qualiti, softwar, autom,

custom, solut
20% 61% 39%

Web
Development

html, sql, web, asp,
javascript, server, java,

xml, databas, net
19% 66% 34%

Databases

scienc, databas, model,
comput, analysi, group,

research, data, tool,
msaccess

15% 57% 43%

System
Development

c++, sort, clarifi, expens,
arrang, cost, gui, code,

java, softwar
15% 40% 60%

System Ad-
ministrator

network, hardwar,
troubleshoot, instal, user,

configur, xp, desktop,
msoffic, problem

9% 87% 13%

Programming
perl, script, languag, unix,

c, java, rank, c++,
enterpris, linux

7% 57% 43%

Embedded
Systems and

Graphics

video, digit, hardwar, c,
multimedia, debug, embed,

devic, c++, graphic
7% 36% 64%

development jobs and troubleshooting jobs. Mentions
of mindset and work environments in 2014 are fre-
quent enough to create a separate cluster for these
jobs.

4.4 Analysis of Other Disciplines
In this section, we apply our text mining methodology to
the other disciplines in our dataset. As before, we structure
the results into frequent term analysis, difference analysis
(2014 vs. 2004 and junior vs. senior jobs), and clustering
analysis to characterize the types of available jobs within
each discipline. We focus on job description analysis and
only mention the results of job title analysis if they lead to
additional insight.

4.4.1 Frequent Term Analysis
Overall, all the other disciplines have frequent mentions of
soft skills (“team”, “communication”, “leadership”) and basic
computing skills (databases and Microsoft Office) in both
2004 and 2014. Below, we highlight additional frequent
terms for each discipline.

Finance: soft skills indicating client relationships (“client”,
“interpersonal”, “relationship”); finance-specific technical
skills (“audit”, “tax”, risk assessment, asset valuation, mar-
ket analysis); formal office working environment (“bank”,
“office”)

Health Studies: soft skills (“active students”, indi-
cating physical fitness); health-specific terms (“patient”,
“care”, “kinesiology”, “therapy”, “injury”, “rehabilitation”,
“ergonomics”, “physiotherapy”, “recreation”)

Arts: tokens related to editorial, technical and content writ-
ing (“edit”, “write”, “english”, “proofread”, “content”); addi-
tionally, media and social media were frequently mentioned
in 2014.

Biology: discipline-specific technical terms (“molecu-
lar”, “chemistry”, “microbiology”, “biochemistry”, “disease”,
“cell”, “tissue”, “DNA”, “genetics”, “pharmaceutical”); lab-
oriented work environment (“research”, “lab”, “technician”)

Environmental Studies: discipline-specific terms (GIS
(Geographic Information System), “water”, “land”, “soil”,
“map”, “survey”, “sample”, “policy”); field work environment
(“field”, “site”). Frequent words in job titles: “assistant”,
“planner”, “technician”, “research”, “analyst”, “inspector”,
“project”, “management”.

Chemical Engineering: Discipline-specific technical
terms (“chemistry”, “process”, “manufacturing”, “equip-
ment”, “sample”, “procedure”, process improvement,
“safety”); lab-oriented work environment (chemical plants,
research labs). Additionally, frequent in 2014: project man-
agement; frequent in 2004: field-work.

Civil Engineering: construction-related tokens (“design”,
“AutoCAD”, “site”, “field”, “concrete”, “safety”); graphic de-
sign (“graphic”, “PhotoShop”).

Electrical Engineering: discipline-specific technical skills
(“electrical”, “hardware”, “power”, “schematic”, “control”,
“embedded”, “circuit”); computing skills (“code”, Web, Java,
SQL). Frequent terms in job titles: “design”, “quality”, “as-
surance”, “testing”, “research”.

Mechanical Engineering: discipline-specific terms
(“equipment”, “assembly”, “robot”, “circuit”, “material”,
“CAD”,“SolidWorks”,“AutoCAD”,“control”,“process”,“im-
provement”, “maintenance”, “draw”, “prototype”, “test”,
“troubleshoot”, “safety”); work environment (“plant”, “shop”,
“floor”, “manufacturing”).

4.4.2 Significant Differences
Next, we highlight differences in frequent terms between
2004 and 2014. Overall, we observed that each discipline had
more mentions of soft skills, and more mentions of project
management and IT-related terms in 2014. Additional dif-
ferences are summarized below for each discipline.

Finance: 2004 jobs mention actuarial science more; 2014
jobs mention risk management and assessment, “equity”,
“trade”, “client” and “interaction” more. Additionally, 2014
jobs mention concepts related to data analysis (e.g., Mi-
crosoft Excel and VBA).

Health Studies: 2014 jobs include more research related
terms: “research”, “summary”, “data”, “review”, “cancer”.
2004 jobs have more mentions of “recreation”, “kinesiology”,
“outdoor”, “therapy” and “teach”. In particular, “cancer” ap-
pears in 6% more job postings in 2014 than in 2004.

Arts: more 2014 jobs mention market analysis and media-
related terms: “media”, “project”, “management”, “Power-
Point”, “client” and “relationship”. 2004 jobs mention more
writing-related terms such as “history”, “newsletter”, “proof-
read”, “French” and HTML.

Biology: 2014 job postings include more research and
project management positions, and mention computing
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skills and clinic more often. 2004 job postings mention lab-
oratory terms including “technique”, “microbiology”, “sam-
ple”, “gel”, “biochemistry”, “microbe”, HPLC (High Perfor-
mance Liquid Chromatography blood test), “bacteria”.

Environmental Studies: 2014 jobs mention project man-
agement, clients, research and computing skills more often.
2004 jobs mention“educate”, “air”, “waste”, “treatment”, “re-
cycle” and ground water. It is interesting to note that “sus-
tain” (sustainability) is mentioned 7% more often in 2014
than in 2004.

Chemical Engineering: 2014 jobs mention project man-
agement terms (e.g., “manage”, “report”, “project”, “main-
tain”),“safety”,“energy”,“oil”,“gas”,“petroleum”and“sand”
more often than 2004 jobs. On the other hand, 2004 jobs
mention more computing skills and laboratory-specific terms
(“lab”, “technician”, “sample”, “treatment”).

Civil Engineering: 2014 jobs mention more software
(“software” and “AutoCAD” are mentioned 21% and 8%
more often, respectively, in 2014 than in 2004). 2004 jobs
mention “cost” and “expense” more often than 2014 jobs. It
is interesting to note that “safety” is mentioned 13% more
often in 2014 than in 2004.

Electrical Engineering: 2014 jobs mention “passion” and
computing skills related to web development, core program-
ming languages and mobile development. 2004 jobs mention
more “manufacturing”, “graphic”, “multimedia”, “processor”,
“hardware”, “VHDL” (a hardware description language) and
“Unix”.

Mechanical Engineering: 2014 jobs mention research
(suggested by “lab”, “research”, “simulate”, “electron”),
client-oriented development (“client”, “customize”) and com-
puting terms (Python, Java, “mobile”). 2004 jobs are more
likely to mention mechanical engineering terms: “blueprint”,
“draw”, “cost”, “weld”, “hydraulics”, “gear”. It is interesting
to note that “quality” is mentioned 9% more in 2014 than
in 2004. While both AutoCAD and SolidWorks are CAD
software, SolidWorks is mentioned 11% more in 2014 while
AutoCAD is mentioned 5% more in 2004.

Next, we compare the differences between tokens in junior
and senior jobs in each discipline. Overall, more senior
jobs across all disciplines mention project management or
deal with advanced concepts of the field (either through ap-
plications or research). Junior jobs appear to have more
clerical work, computing-related responsibilities or mention
less advanced concepts of the discipline (including testing,
field work and lab work). We provide additional discipline-
specific details below.

Finance: Senior jobs require more technical knowledge of
the field (“audit”, “invest”, “risk” “management”). Junior
jobs have a more clerical (“document”, “arrange”, “English”)
and computing (HTML, Java, databases) focus. Senior
jobs are more likely to mention “commitment”, “dynamism”,
“client” and “interaction”. Additionally, senior jobs in 2004
mention more mathematical and statistical terms than ju-
nior jobs in 2004.

Health Studies: Senior jobs mention more research. Ju-
nior jobs mention more field work.

Arts: Senior jobs mention more project management (sug-
gested by “manage”, “PowerPoint”, “client”, “workload”,
“process”, “improvement”). Junior jobs mention more cler-
ical work, “English”, “Web”, “research” and “customer ser-
vice”. Additionally, senior jobs in 2004 appear to include
more business analyst and editor roles than junior jobs in
2004.

Biology: Senior jobs mention more “research”, “hospital”
and technical terms including “genetics”, “therapy”, “can-
cer”, “cardiovascular”, “nanomedicine”, “biomaterial”and“in
vitro”. Junior jobs are more likely to mention “office”, “as-
sistant”, “support” and “campaign”.

Environmental Studies: Senior job titles indicate more
planner and analyst positions with more project manage-
ment, policy-making and GIS terms mentioned in the de-
scriptions. Junior job titles indicate more lab technician,
inspector, and surveyor positions with more “lab”, “survey”,
“test” and “outdoor” mentioned in the descriptions. 2004
senior jobs additionally mention environmental concepts in-
cluding “ground”, “water”, “remedy”, “contaminate”, “river”,
“hydrology” and “hydrogeology”.

Chemical Engineering: Senior jobs mention a more in-
dustrial working environment with more mentions of “en-
ergy”, “product”, “design”, “cost”, “process”, “improvement”
and “optimization”. Junior jobs mention laboratory-specific
terms (“research”, “sample”, “record”) more often. In 2004,
senior jobs mentioned more chemical manufacturing terms.

Civil Engineering: Senior jobs mention more “modelling”,
“design”, “client”, “interaction” and “software”. Junior jobs
mention more “inspection”, “field”, “survey”, data recording
and clerical work. 2014 senior jobs have more mentions of
project management.

Electrical Engineering: Senior jobs mention more electri-
cal concepts (“power”, “circuit”, “embedded”, “distributed”,
PCB (Printed Circuit Board), “sensor”, “chip”, “schematic”).
Junior jobs mention more quality assurance and basic com-
puting terms (“web”, “program”) as well as more clerical
work. In addition, junior jobs in 2004 contain system ad-
ministrator positions and senior jobs in 2004 mention more
programming languages (C++ and C).

Mechanical Engineering: Senior jobs are more likely
to mention project management, designing and imple-
mentation. Junior jobs have more clerical (e.g., “up-
date”, “arrange”, “email”, “written”), computing (marked by
“database”, “Web”, SQL, HTML, Java) and field-work, and
requirement collection terms (“client”, “custom”, “meet”).
Junior jobs in 2004 do not mention client interaction; in-
stead they mention testing.

4.4.3 Clustering Analysis
Finally, we apply our clustering methodology to each disci-
pline, both for 2014 and 2004. Our clustering results provide
additional support for the findings in Section 4.4.1 and 4.4.2.
Additionally, the main benefit of clustering is that it reveals

Proceedings of the 11th International Conference on Educational Data Mining 39



the different types of available jobs in each discipline. We
discuss these findings below.

Finance: In 2014, the largest clusters were: several clus-
ters mentioning finance-specific skills such as “trade”, “eq-
uity”, “tax”, “reconciliation”, “pension”, asset valuation, risk
management, “forecast”, “causality” and “insurance” (63%);
financial documentation (15%); and Web software develop-
ment (10%). The jobs clustered under finance-specific skills
were dominated by senior students, with the clerical (docu-
mentation) and IT (web development) clusters dominated by
junior students. This result aligns with our analysis of sig-
nificant differences from the previous section. Furthermore,
in 2004, the largest clusters relate to financial analysis and
documentation (51%), actuarial work including “valuation”
and “pension” (18%), “tax” and “audit” (14%), and “causal-
ity” and “insurance” (5%). Thus, the 2004 clusters focus
more on documentation and appear to describe a narrower
range of jobs. All clusters except the last one mentioned
have an equal split of junior and senior jobs.

Health Studies: The largest clusters in 2014 are related
to organizing community events (21%), recreation camps for
adults and children (14%) and therapy (13%), and are dom-
inated by junior jobs. Smaller clusters dominated by se-
nior jobs are related to research, cancer patient care and
advanced aspects of health studies, including biomechanics,
anatomy and statistics. The 10 clusters in 2004 are similar
but exhibit equal proportions of junior and senior jobs in
recreation, leisure and patient care.

Arts: The largest job clusters in 2014 include writing online
content (24%), organizing events and providing customer
service (22%), and writing, proofreading and summarizing
research material (13%). These clusters have an almost
even split of junior and senior jobs. Other clusters include
project management (indicated by “stakeholder”, “Power-
Point”, “present”), market analysis (“campaign”, “blog”,
“promote”), content writing (“Drupal”, WCMS, standing for
Web Content Management System), library liaisons and
teaching (adult education, names of courses), which are
dominated by senior students. Additionally, 52% of the jobs
in 2004 fall in one cluster characterized by preparing En-
glish material for education and research on various topics
including policy and politics. Other clusters include publish-
ing newsletters and articles (with “graphics”) (12%), office
assistant positions (indicated by words such as “multitask”,
“file”, “compile”, “photocopy” and “fax”) (8%), teaching and
business analysis. Most of the clusters have an almost even
split between junior and senior jobs. It appears that the
Internet and social media have created new Arts jobs.

Biology: Our clustering results identify jobs in various
fields of this discipline (microbiology, molecular biology, ge-
netics, biochemistry), using various techniques (chromatog-
raphy, electrophoresis).

Environmental Studies: The largest clusters in 2014
include project management (31%), education/research
(25%), survey (18%), urban planning (13%) and advanced
topics including GIS, cartography and geospatial analysis.
(13%). On the other hand, half the jobs in 2004 mention
educating people (largest cluster). While 8% of the jobs are

related to advanced concepts, the other three clusters in-
volve urban planning (20%), hydrogeology (14%) and waste
water treatment (12%).

Chemical Engineering: Clustering 2014 Chemical jobs
reveals additional insight: there is a cluster of jobs related
to mechanical aspects of chemical plants, including the term
“equipment”. Additionally, a cluster with “nanotechnology”,
“lab”, “material” and “physics” includes 10% of 2014 jobs.
While 8% of the jobs are related to energy sources (includ-
ing “oil”, “gas”, “petroleum”, “sand” and “biofuel”), 5% of the
jobs revolve around “emission”, “environment”, “pollution”,
“regulation” and greenhouse gases. Similar to 2014, 2004
clustering also contains clusters related to the mechanics of
chemical plants, process improvement and research. It is in-
teresting to note the differences in the field of application in
both the years. While 2014 concentrates on nanotechnology,
energy and emissions, 2004 deals with pharmaceuticals and
waste water treatment.

Civil Engineering: Consistent with the previous section,
junior students dominate the clusters including on-site field
work (data collection and inspection), and senior students
dominate the design clusters.

Electrical Engineering: The types of jobs in 2014 include
System development (18%), web development (14%), elec-
trical drawing (12%), PCB and circuit design (12%), sys-
tem administration (9%), quality assurance (9%), simula-
tion/research (8%), power (8%), embedded systems (8%)
and research on advanced topics including transmitters, ef-
fect on climate, power grids, etc. (2%). In line with the
findings of the previous section, there is a higher propor-
tion of junior jobs in computing and system administra-
tion, and a higher proportion of senior jobs in core elec-
trical clusters including circuit design and embedded sys-
tems. The main types of jobs in 2004 are related to power
systems (26%), IT (19%), project management (18%), cir-
cuit design (15%), multimedia/graphics (6%), and transmis-
sion/telecommunication (4%).

Mechanical Engineering: Three-quarters of both 2004
and 2014 Mechanical Engineering jobs fall in the mechanical
drawing cluster. While the other quarter of 2004 jobs men-
tion plant-related terms including “assembly”, “weld” and
“motor”, the other quarter of 2014 jobs is related to comput-
ing (“hardware”, “automate”, C++, Java, C, “web”, “code”).
Clustering 2014 jobs further reveals a 60-20-20 split among
mechanical drawing, embedded systems and web develop-
ment jobs.

To summarize, our clustering methodology identi-
fies the types of available jobs in various disciplines.
Through frequent term analysis, we found that soft
skills and basic computing skills appear to be impor-
tant in all disciplines in the 2014 job dataset.

5. DISCUSSION AND CONCLUSIONS
In this paper, we presented a text mining methodology to
extract, compare and cluster important terms from freetext
job descriptions. Our method identifies required skills as
well as working environment and company culture descrip-
tors. To demonstrate the utility of our methodology, we
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analyzed a dataset containing nearly 30,000 undergraduate
co-operative job postings from two years: 2004 and 2014.
Our main findings are as follows.

• As expected in an undergraduate co-op marketplace,
there are many assistant and junior positions, but less
so in 2014 than in 2004.

• Basic computing skills are needed in almost all disci-
plines and at all levels. In other words, many non-IT
disciplines appear to be trending towards IT.

• Soft skills are mentioned frequently by job postings
from all disciplines, and more so in 2014 than in 2004.
For example, over all disciplines, “team” was men-
tioned 20% more often in 2014 than in 2004. (in 71%
vs. 51% of all job postings). These findings agree with
those reported in [3, 8, 15]. Besides teamwork, commu-
nication and leadership were frequently mentioned in
job postings across all disciplines, with IT postings ad-
ditionally mentioning mindset-related terms (passion
and love for the work), Finance jobs mentioning inter-
personal relationships and Health Studies jobs recruit-
ing active students.

• Regardless of discipline, lower-year positions were and
are more clerical and/or involve more basic comput-
ing. Upper year positions tend to mention advanced
concepts and solution methods.

• We identified several trends over time by compar-
ing 2004 jobs with 2014 jobs. For example, IT jobs
now emphasize mobile and cloud computing, Arts jobs
involve social media and Chemical Engineering jobs
mention sustainable energy.

• Job postings from different disciplines suggest different
working environments: plants in Chemical and Me-
chanical Engineering, labs in Biology, and casual, fun
and collaborative environments in IT.

We emphasize that our results should be interpreted care-
fully due to the following factors.

• Diversity in size and age of companies, e.g., the IT dis-
cipline has many modern companies that emphasize a
fun work culture, while other disciplines such as Fi-
nance have more traditional companies which might
emphasize client relationships.

• Incorrect job descriptions which may not reflect the
true nature of the job; e.g., employers may write or
modify the job descriptions to suit the company’s pub-
lic image.

Nevertheless, we believe that our findings are of interest to
students, employers and the institution. We provide several
examples of actionable insights below.

• We can provide students with a better understanding
of co-op opportunities in various disciplines and there-
fore help them select the right academic program and
career.

• In particular, we suggest that all students, regardless of
discipline, acquire basic computer programming skills,
which should help them secure co-op positions in their
junior years.

• The institution can use our findings to manage the
expectations of junior students. As we showed, it may
take until senior years to obtain a co-op position that
fully utilizes advanced discipline-specific skills.

• The institution may use frequently appearing job at-
tributes and the clustering of jobs in various disciplines
to produce more effective promotional material for its
co-op programs and to help attract strong students.

• With the help of our findings, the institution can make
an informed decision about how to change academic
curricula to align with employers’ needs. For exam-
ple, as all disciplines seem to emphasize teamwork,
the institution can incorporate more team exercises in
the curriculum. Hackathons and other competitions
could be organized to foster passion and other mindset-
related skills for IT students, while mock client meet-
ings could be arranged for Finance students so that
they could hone their interpersonal skills. New tools
and methods may be introduced in courses when the
corresponding terms begin to appear in job descrip-
tions.

• Employers may examine our findings to understand
which skills are in high demand and to understand the
extent of competition in the co-op market.

• Our lists of frequent attributes may be used to re-
design the way employers submit job postings. For
instance, separate fields (outside the job description)
may be added for required skills and company culture
descriptions, with drop-down lists populated with fre-
quent terms obtained through our methodology. Ad-
ditionally, our clustering methodology can be used to
segment the job descriptions to make it easier for stu-
dents to find jobs they are interested in.

Naturally, there is more data-driven work that can be done.
The goal of a successful co-op system is to match the right
student with the right employer. Thus, our long-term re-
search objective is to minimize the gap between employers’
needs and students’ talents. In this paper, we focused on job
descriptions, which provide an indication of what co-op em-
ployers are looking for and what working environments they
offer. In future work, we will characterize what students
have to offer by mining resumes. Furthermore, we plan to
study the gap between what employers want and what is be-
ing taught in schools (e.g., by comparing job postings with
course descriptions). Another interesting research direction
is to determine if students are likely to obtain full-time jobs
at one of their co-op employers after graduating. Finally,
we are interested in comparing our job postings with those
from other institutions worldwide. For example, the knowl-
edge of foreign languages did not appear to be important in
our dataset but it may be important in other countries.
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ABSTRACT
It is well known that post-secondary science and engineer-
ing programs attract fewer female students. In this pa-
per, we analyze gender differences through text mining of
over 30,000 applications to the engineering faculty of a
large North American university. We use syntactic and se-
mantic analysis methods to highlight differences in motiva-
tion, interests and background. Our analysis leads to three
main findings. First, female applicants demonstrate a wider
breadth of experience, whereas male applicants put a greater
emphasis on technical depth. Second, more female appli-
cants demonstrate a greater desire to serve society. Third,
female applicants are more likely to mention personal influ-
ences for studying engineering.

Keywords
Gender differences, engineering, admissions, text mining,
clustering.

1. INTRODUCTION
The failure of science and engineering programs to attract
equal numbers of women and men is well-documented; only
23% of women with high scores in mathematics pursue Sci-
ence, Technology, Engineering and Mathematics (STEM)
degrees as compared to 45% of men with the same scores
[9]. As a result, there has been a great deal of research on
understanding why this is the case; see, e.g., [1, 3, 4, 13, 18,
19, 20]. The major findings of prior work are that women
are less likely to pursue STEM degrees because they do not
see how this leads to societal improvement, and that women
are more often led to study engineering because of influences
from family and friends. Prior work has also found that the
gender gap in STEM fields is not due to a difference in tech-
nical ability.

One weakness of existing work is that it is based on small
datasets collected through surveys and longitudinal studies.
In this paper, we present a large-scale text mining study of

this topic. Our analysis is enabled by a unique dataset of
over 30,000 undergraduate applications to the engineering
faculty of a large North American university. Applicants
are required to describe why they are interested in study-
ing engineering, and provide other relevant information such
as reading interests, extracurricular activities and program-
ming experience. Our goal is to determine whether female
applicants identify different reasons for applying to an engi-
neering program, and whether female applicants have differ-
ent technical and extracurricular backgrounds.

To answer these questions, we use text mining to extract
the reasons why students apply to engineering programs.
As in other text mining applications, challenges arise due
to the ambiguity of natural language. To overcome these
challenges, we rely on word embeddings and clustering to
partition the text into semantically meaningful groups. We
also analyze gender differences in programming languages
and extracurricular activities through classification models
and word frequency analyses. To the best of our knowledge,
there is no prior work on large-scale text mining to obtain
insights about students’ motivation and interests.

The main findings of this paper are that women differentiate
themselves through breadth of experience and men differen-
tiate themselves through technical depth; women more often
display a desire to serve society; and that women are more
likely to mention interpersonal relationships when discussing
their engineering goals.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes related work; Section 3 discusses our
dataset and methodology; Section 4 presents our results;
Section 5 discusses the implications of our findings; and Sec-
tion 6 concludes the paper with directions for future work.

2. RELATED WORK
There are three areas of work on gender differences in STEM.
First are qualitative studies on small populations of students
through interviews and surveys. Second are statistical stud-
ies that use census data or other summary data. Third, there
are data mining studies on student performance. These
works span students who are in high school, already en-
rolled in STEM programs, and who are working in a STEM
profession.

First, we discuss qualitative survey-based studies.
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Diekman et al. [3] studied 360 students from STEM and
non-STEM fields consisting of 57.5% women. Each partici-
pant was asked about their mathematics and science expe-
rience and their perception of the degree to which different
careers fulfill their personal goals. Participants’ answers re-
flected that STEM careers impede communal-goal endorse-
ment, which refers to how much a field enables achieving
the goal of helping people and society. It was found that
gender can predict communal-goal endorsement, and that
communal-goal endorsement can negatively predict interest
in STEM and positively predict interest in female-dominated
programs with higher accuracy than other metrics such as
gender or self-efficacy. Eccles [4] found similar results on
a larger, more comprehensive dataset. They presented a
longitudinal study of 1500 participants from south eastern
Michigan from 6th grade to adulthood. They found that the
main source of gender differences in entry to STEM careers
is not gender differences in mathematical ability, but differ-
ences in inclinations towards society-oriented jobs. Women
who aspire to math-related or engineering careers place a
lower value on society-oriented job characteristics than their
female colleagues who did not aspire to STEM careers.

Matusovich et al. [13] examined gender differences in val-
ues, but only within engineering. The study was conducted
on 6 women and 5 men who majored in engineering. Each
student was interviewed once a year throughout their under-
graduate degree, and asked how his or her values affect their
decision to earn an engineering degree. Values were classi-
fied under 4 groups: Attainment (ability to see oneself as an
engineer), Cost (time and effort involved in their studies),
Interest (enjoyment of understanding how math and science
can be applied to every day life), and Utility (potential for
future earnings). It was found that women were less likely
to see themselves as engineers but continued to pursue an
engineering degree due to the other values.

More reasons to pursue engineering were observed by
Smith [19]. Smith interviewed 17 women who were studying
engineering at four different colleges in the United States.
Smith observed that participants were influenced to study
engineering by family or friends. These influences played
a pivotal role in helping the women build self confidence
in their mathematical and science ability. They found an
expression of “love” towards mathematics in many cases, de-
spite the fact that these courses were also considered diffi-
cult. An interest in physics was found to be instrumental in
their decision to study engineering. Women chose engineer-
ing because it allowed them to utilize the concepts covered
in physics without having to major in physics. However,
gender differences were not considered.

In terms of quantitative studies based on summary statis-
tics, Hango [9] found that while mathematical ability plays
a role, it does not explain gender differences in STEM ca-
reer choices. Women with high mathematical ability are
less likely to enter STEM fields than even men with a lower
mathematical ability. He also supported the findings of Ec-
cles suggesting that the gender gap in STEM programs is
due to other factors.

There is prior work on gender differences in STEM using
data mining techniques [16, 5, 10, 12]. However, these find-

ings focus on student performance, whereas our work focuses
on students’ motivations for studying STEM, and their non-
academic experiences and backgrounds.

Finally, there exists work on gender differences in comput-
ing, but it focuses on attitudes toward computing and pro-
ficiency with basic tasks [20, 1, 18]. Instead, we focus on
reported programming language knowledge.

To the best of our knowledge, our work is the first one that
conducts a data driven analysis of the reasons why students
want to pursue engineering, and calculates the gender dif-
ferences in these reasons. We also study past employment
experiences, and programming knowledge in an effort to cap-
ture a more holistic view of the personalities of women and
men who apply to engineering. In our conclusions, we verify
some of the results of previous studies, and add to others.

3. DATA AND METHODOLOGY
3.1 Data
Our dataset comes from the engineering faculty of a large
North American university. It contains all applications –
both accepted and rejected – to the 14 available engineering
programs from 2013 to 2016 inclusive. Table 1 shows the
number of applications and the gender distribution of the
applicants to each program, sorted by percentage of female
students. The dataset includes gender, first choice program,
and short free text responses to the following fields:

1. Engineering interests and goals: explain why you are
interested in engineering and the specific program to
which you applied.

2. Reading interests: discuss a book or an article you
enjoyed or that has had an impact on you (preferably
something that was not part of a course at school).

3. List any extracurricular activities or areas of signifi-
cant interest.

4. List any jobs you held throughout high school.

5. Only mandatory for applicants to Software Engineer-
ing: list any programming experience you have.

6. Additional information: tell us anything else about
yourself that you would like us to know when we review
your application.

We report results for three groups of applicants: Biomedical
and Environmental Engineering (BEE), Software Engineer-
ing (SE) and all other programs (OTHER). We initially an-
alyzed applications to each program separately but observed
applicants to programs within OTHER to be similar in the
trends they display. Notably, the gender split in BEE is eq-
uitable, unlike other programs which are male-dominated.
Furthermore, SE has unique application requirements (pro-
gramming knowledge) and requires additional analysis.
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Table 1: Gender breakdown by program

Program Applicants % Women % Men

Environmental 1021 53% 47%
Biomedical 2015 52% 48%

Chemical 3612 38% 62%
System Design 957 38% 62%

Management 1040 36% 64%
Civil 3375 28% 72%

Geological 361 25% 75%
Nanotechnology 1670 24% 76%

Electrical 3782 17% 83%
Computer 3931 16% 84%

Software 3635 14% 86%
Mechanical 5473 12% 88%

Mechatronics 2886 12% 88%

Total 33758 23% 77%

3.2 Methodology
We use syntactic and semantic methods to analyze the free
text responses. Syntactic methods identify words mentioned
by more men or women, or words that can predict gender.
Additionally, we apply semantic methods to “Engineering
Interests and Goals” to capture context and extract the rea-
sons why men and women want to study engineering.

3.2.1 Syntactic Analysis
For each of the six free text fields, we first perform standard
pre-processing: we remove stop words, tokenize the text,
and stem the tokens using the NLTK snowball stemmer1.
We then perform two syntactic analyses on each field:

Document Frequencies: we identify words used at least
once by a larger fraction of men or women (where each re-
sponse is considered a document). We only report statis-
tically significant differences with a P-value of 0.05 using a
proportion test [6].

Gender Prediction: we build classifiers to predict gen-
der based on the words or contiguous sequences of words
(bigrams and trigrams) appearing in a free text response.
Following previous work on text classification, we use logis-
tic regression [8] where the dependent variable is gender, and
the explanatory variables correspond to the possible words
(or word bigrams/trigrams), and their values correspond to
their TF-IDF scores [15, 21]. To calculate a TF-IDF score
for a given word and a given response, we divide the num-
ber of times the word appears in the response by the Inverse
Document Frequency - the fraction of responses in the entire
dataset containing this word. TF-IDF is a useful measure
because it balances the uniqueness of a term in the corpus
and the importance of the term to the specific document.
For each free text field except programming experience, we
report the F-measure, which is the weighted harmonic mean
of precision and recall [2], and accuracy, both calculated us-
ing 10-fold cross validation. We use oversampling for SE
and OTHER to control for gender imbalance; otherwise, a
classifier that always predicts gender as “male” would have
a high accuracy on any male-dominated dataset.

1http://www.nltk.org/ modules/nltk/stem/snowball.html

Table 2: Families of programming languages

Family Constituent Programming Languages

Java java, bluej, jython, android
C++ c++, beta
Python python
HTML/CSS html, html5, css, css3
C C, objective-C, robotc
JavaScript javascript, jscript, jquery, angularjs
Turing turing, touring
C# c#, visual c#
Php php
SQL sql, pl/sql
Other .net, ada, alice, applescript, bash, etc

3.2.2 Analysis of Programming Experience
In the “Programming Experience” field, SE applicants are
asked to list their programming experience. The structure
of this question elicits not only specific programming lan-
guages, but also encourages applicants to share details about
their programming experience. Thus, in addition to the doc-
ument frequency analysis mentioned earlier, we perform the
following detailed analyses:

• Programming Language analysis: we calculate the
number of responses that mention a given program-
ming language. We start with a list of known lan-
guages from Wikipedia2. We then add common mis-
spellings of these languages, and we group them into
families in consultation with a domain expert. Table 2
shows the language families whose frequencies we will
report.

• Programming Concept analysis: we compile a list of
computing concepts, a sample of which is shown in
Table 3, group them into categories, and calculate the
number of responses that mention a given concept.

• Learning Method analysis: we compile a list of on-
line programming courses, and common variations of
“high school”, “self taught”, “higher education”, and
“employment”. We then categorize these terms accord-
ing to how an applicant learned programming: “on-
line”, “high school”, “self taught”, “higher education”,
“work”, and “other”. Finally, we calculate the number
of responses that mentioned each learning method.

• Experience analysis: we extract the amount of expe-
rience reported by an applicant by searching for the
words “hour”, “day”, “month”, “year”, as well as com-
mon abbreviations and misspellings of these words.
We use the token immediately preceding these words
to determine the length of time. We convert all of the
times into months.

3.2.3 Semantic Analysis of Engineering Interests
Using the responses to “Engineering Interests and Goals”,
we want to identify the reasons why students apply to en-
gineering programs. However, reasons cannot be inferred

2https://en.wikipedia.org/wiki/List of programming languages
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Table 3: Sample of programming concepts

Concept Category Constituent Concepts

Basic array, list, loop, if-statement
Data Structures stack, queue, linked list
Sorting merge sort, bubble sort, quick sort
Searching linear, binary, breadth first searches
OOP object, class, abstraction, encapsulation
Data Science machine learning, NLP
Other storage, memory management

Table 4: Nine questions used with the QA API

Question No. Question Variant

1 Why are you interested in Engineering?
2 What inspired you to study Engineering?
3 What do you find inspiring about Engineering?
4 What are the reasons you like Engineering?
5 Why do you feel the need to pursue Engineering?
6 Why are you passionate about Engineering?
7 Why does Engineering interest you?
8 Why do you want to study Engineering?
9 Why do you like Engineering?

simply by counting occurrences of certain keywords; for ex-
ample, family influence may be expressed by using words
such as “father”, “mother”, “uncle”, or simply, “family”. Fur-
thermore, an applicant may mention things other than the
exact reason as to why they are interested in engineering
in their response. Our semantic approach deals with these
issues through the use of Question Answering to isolate top-
ics being mentioned that could be considered indicative of
reasons, followed by Clustering using Word Embeddings to
analyze these. Figure 1 shows the steps in our semantic
analysis, and they are explained in detail below.

1. Question Answering (QA): Here, we extract sen-
tences that are most likely to contain the topics indicative
of the applicants’ underlying reasons for applying to engi-
neering. We use a state of the art QA network [17] which
is available as an open source API3. Given a question and a
text document, this QA API extracts a sentence that may
answer the question. However, we discovered that while
asking the question that directly appeared on the entrance
application - why are you interested in engineering - yielded
some relevant sentences, there were additional relevant sen-
tences that were not identified. To address this problem, we
consulted with domain experts at the institution and for-
mulated additional variants of this question. Depending on
the applicant, not every variant identified a unique sentence.
Overall, we observed that the number of unique sentences
extracted per applicant plateaued at nine question variants.
Table 4 lists the nine variants we use and Table 5 gives an ex-
ample of the sentences extracted from a particular response
using each question.

2. Stop Word Removal: Next, we remove stop words
from the sentences extracted in the previous step because
these do not contain any meaningful information about the
underlying reasons. Similarly, we remove words excessively

3https://github.com/allenai/bi-att-flow

Table 5: Sentences extracted from a particular response
using all 9 question variants

Question No. Answer produced by the QA API

1 future entrepreneurship ventures

2 designing & building complicated solutions

3 future entrepreneurship ventures

4 intellectual curiosity and satisfaction
is core to my personality

5 i think i fit in well in the tight culture of
the engineering class

6 intellectual curiosity and satisfaction
is core to my personality

8 intellectual curiosity and satisfaction
is core to my personality

7 know people much closer

9 it’s the best program available

used by both genders such as “engineering” and the name
of the university. This step happens after QA because QA
requires the complete text, stop words included, as input.

3. Sentence Vector Computation: At this point, each
response has produced up to nine relevant sentences. We
use word embeddings to capture semantic proximity between
sentences. Specifically, we use the word2vec model [14],
trained on the Google news corpus4, to convert each word
into a 300-dimensional vector that encodes the underlying
semantics. We then use the average of all word vectors in a
sentence as its sentence vector. If two sentence vectors are
close, the sentences are also semantically similar [7, 11].

4. Clustering of Sentence Vectors: Next, we cluster
the sentence vectors received from the previous step using
K-Means clustering with Euclidean distance as the similar-
ity metric and K = 200, where K is the number of clus-
ters (the rationale behind this choice of K will be discussed
shortly). The clusters converge around similar topics. For
example, sentences containing words related to family such
as “brother”, “father”, or “sister” have similar word vectors
and are more likely to be assigned to the same cluster. Note
that this would not be the case had we clustered the sen-
tences themselves according to their syntactic similarity.

5. Cluster Representative Extraction: After comput-
ing clusters of sentence vectors, we extract representative
words from each cluster to identify the topic of that clus-
ter. First, we map sentence vectors back to the original sen-
tences, which creates 200 sets of sentences, one set for each
cluster. We then tokenize and stem the text in each set, as
described in Section 3.2.1. The word2vec model consumes
unstemmed words, compelling us to postpone tokenization
and stemming until this step. The trigrams in each set are
ranked using their TF-IDF scores calculated considering all
200 sets as the corpus. Finally, we represent each cluster
with a list of 10 top ranking trigrams, an example of which
is shown in Table 6.

4https://code.google.com/archive/p/word2vec/
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Figure 1: Semantic analysis methodology

Table 6: An example of ten trigrams representing a cluster

Rank Trigram

1 solv problem solv
2 problem solv problem
3 enjoy problem solv
4 problem solv enjoy
5 enjoy solv problem
6 love solv problem
7 problem solv love
8 love problem solv
9 problem problem solv

10 solv problem problem

Table 7: Examples of a mixed cluster using K = 50 and its
pure equivalent using K = 200

Mixed Cluster (50 Clusters) Pure Cluster (200 Clusters)

kid work day
apart tri togeth
love thing apart

countless hour spent
use everi day

pay close attent
decid high school

work day saw
day day basi

year high school

kid work day
young age father

visit construct site
watch father work

older brother mechan
dad electr took
work day dad

like help father
expos young age
uncl civil engin

Choice of K: In Step 4, we experimented with values of K
ranging from 50 to 200. When choosing a small K and pro-
ceeding to Step 5 with fewer clusters, many clusters were
represented by trigrams that were not semantically similar
enough to warrant being in the same cluster, and some un-
common trigrams were overpowered by extremely common
ones. Thus, some nuanced topics were lost as they could
not form a cluster of their own. Larger values of K resulted
in the splitting out of semantically similar topics. These re-
sulted in pure but redundant clusters, i.e., several clusters
representing the same topic. For instance, Table 7 shows
a cluster of mixed topics on the left when K is 50, and a
rather pure cluster on the right when K is 200. A bigger K
made it possible for topics like “kid work day” to be grouped

with similar semantic contexts like“watch father work”. The
topics on the right consistently speak of the influence of a
family member, indicative of family influence as a reason
for engineering, whereas no single reason can be deduced
from the cluster on the left. The first K value that pro-
duced adequately pure clusters was 200. Thus, the decision
was made to stop testing larger values and creating further
unnecessary redundancy. To eliminate the unnecessary re-
dundancies at K = 200, the clusters were merged in Step
6.

6. Cluster Merging: At this point we have 200 clusters of
sentences, where each cluster is represented by the 10 high-
est ranking trigrams. To make the clusters interpretable
and to group them under more general topics, we manually
merge similar clusters based on their 10-trigram representa-
tions to produce ten final clusters. This process of merging
follows the Card-sorting approach. Card-sorting has been
widely used to systematically derive taxonomies from data,
to reach a higher level of abstraction, and identify common
themes [22]. For instance, it can be used to sort responses
to an open-ended question into bins to deduce themes over
the responses. We perform card-sorting on the representa-
tive trigrams, then we brand each of the ten final themes
with human interpretable labels and consider these our final
topics. In this process, a number of small clusters whose
representatives were vague were disregarded, but even then,
99.5% of applicants were labelled with at least one topic.
Table 8 shows two examples of representatives of vague clus-
ters. Since the QA in Step 1 used questions probing the
reasons why the applicant was applying to engineering, our
topics can be considered indicative of the same.

Table 9 shows the final set of topics along with sample tri-
gram representations of clusters that were classified under
each topic. Technical Interests refers to characteristics in-
herent to engineering along with topics related to specific
engineering disciplines. For instance, the trigram “water
treatment plant” in Table 9 is part of Technical Interests
while being specifically related to Environmental Engineer-
ing.

All the sentences classified under a specific topic in Table
9 are tracked back to the applicants who mentioned them.
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Table 8: Examples of discarded vague clusters

Example #1 Example #2

appli program appli
appli chemic program
program appli appli

program program appli
program appli program

program appli electr
appli mechan program
mechan program appli
appli electr program

program appli chemic

pursu decid pursu
experi inspir pursu
pursu motiv pursu

pursu passion believ
pursu wish pursu

encourag pursu pursu
hope continu pursu

encourag pursu believ
passion inspir pursu

desir pursu educ

The statistics presented in the next section are based on
the number of applicants who mention a given topic, and
hence indicate the same underlying reason for their interest
in engineering

4. RESULTS
We now describe our results, treating applicants to BEE,
SE and OTHER separately, as mentioned in Section 3.1.
Section 4.1 presents syntactic (word frequencies and logistic
regression) and semantic (question answering & clustering)
results for “Engineering Interests and Goals”. Section 4.5
describes the detailed analyses of programming experience
(only for applicants to SE). The remaining sections discuss
the results of frequency analysis and logistic regression for
the remaining fields: job titles, reading interests, extracur-
ricular activities, and additional information.

4.1 Engineering Interests and Goals
4.1.1 Syntactic Analysis
Document Frequencies: Overall, there are more terms
that are used predominantly by women, indicating that
women use a wider variety of terms. We see more women
using non technical terms to express themselves, and men
using more technical terms.

In BEE, more men mention “mechanical” (11.5% of men vs.
8.2% of women), and “compute” (8.5% of men vs. 5.3% of
women. More women mention “health” (16.4% of women vs.
10.6% of men), “improve”(23.6% of women vs. 18% of men),
“love” (24.8% of women vs. 20.5% of men), and “research”
(20.6% of women vs. 16.5% of men).

In SE, more men mention “system” (14.2% of men vs. 9.6%
of women), “problem” (25.5% of men vs. 20.9% of women),
“game” (19.1% of men vs. 14.9% of women), and “goal”
(25.7% of men vs. 21.5% of women). More women mention
“science” (49.9% of women vs. 43.0% of men), “research”
(11.0% of women vs. 6.9% of men), “challenge” (18.6% of
women vs. 14.7% of men), and “people” (20% of women vs.
16.3% of men).

In the OTHER group of engineering programs, more men
mention “mechanical” (28.9% of men vs. 7.5% of women),
“compute” (25.8% of men vs. 17.2% of women), “robot”
(16.2% of men vs. 9.9% of women),“car” (9.9% of men vs.
4.1% of women), and “goal” (24.3% of men vs. 19.4% of
women). More women mention “chemical” (21.9% of women
vs. 10.7% of men), “science” (41% of women vs. 32.6%

Table 9: The final set of ten topics, with representative
word trigrams of the clusters classified under each topic

Reason Trigrams (stemmed)

Family
follow footstep father
older brother mechan

Contribution to Society
improv peopl live
make world better

make contribut societi

Outreach
attend open hous

talk student professor

Technical Interests

creat new technolog
water treatment plant

use dismantl toy
develop medic technolog

Love of Science
math physic chemistri

love math scienc

Extracurriculars
book watch video

robot competit team
particip extracurricular activ

Prior Accomplishments
leadership communic skill

profici skill mathemat

High School
talk physic teacher
high school student

Professional Development
pursu graduat studi
job opportun engin

futur career goal

Childhood Dream
began young age

dream childhood dream

Table 10: F-Measure/Accuracies for predicting gender
using Engineering Interests & Goals (in %)

Group Unigram Bigram Trigram

BEE 60/60.7 60/59.1 57/58
OTHER 72/78.8 76/80.4 80/77.3
SE 88/86 98/97.2 94/94

of men), “creative” (16.1% of women vs. 10.2% of men),
“study” (30.7% of women vs. 25.3% of men), and “love”
(24.2% of women vs. 19.4% of men).

Logistic Regression: Table 10 shows the results for pre-
dicting gender using words from responses to “Engineering
Interests and Goals”. The predictive power of logistic re-
gression decreases with increasing gender balance within a
group, even after oversampling to compensate for the initial
gender imbalance. In other words, in programs with an even
gender split, it is more difficult to guess the gender.

4.1.2 Semantic Analysis
We classified the sentences extracted from students’ re-
sponses under one of ten topics shown in Table 9. Table
11 shows the percentage of applicants to BEE who men-
tioned each topic. The most common topics are Technical
Interests and Love of Science. More women mention Love
of Science, which is statistically significant with a P-value
of 0.03. No other topic had a statistically significant gen-
der difference. On average, female students in this group

Proceedings of the 11th International Conference on Educational Data Mining 49



Table 11: BEE applicants’ topics

Topic %All %Women %Men P-value

Family 10.9% 11.3% 10.5% 0.47
Contribution to Society 20.7% 20.5% 20.9% 0.77

Outreach 8.5% 9.3% 7.7% 0.12
Technical Interests 86.8% 86.8% 86.8% 0.97
Love of Science 32.3% 34.1% 30.4% 0.03

Extracurriculars 5.7% 5.6% 5.9% 0.69
Prior Accomplishments 6.1% 5.9% 6.3% 0.61

High School 8.8% 8.4% 9.2% 0.46
Professional Development 25.3% 25.9% 24.7% 0.47

Childhood Dream 2.5% 2.7% 2.2% 0.32

Table 12: SE applicants’ topics

Topic %All %Women %Men P-value

Family 7.6% 11.0% 7.0% 0.00
Contribution to Society 12.1% 12.5% 12.0% 0.77

Outreach 8.7% 9.1% 8.6% 0.703
Technical Interests 92.6% 92.3% 92.6% 0.77

Love of Science 13.9% 16.6% 13.4% 0.05
Extracurriculars 9.2% 10.9% 9.0% 0.17

Prior Accomplishments 6.1% 7.1% 5.9% 0.30
High School 11.0% 12.9% 10.7% 0.15

Professional Development 25.0% 27.7% 24.6% 0.13
Childhood Dream 2.7% 2.8% 2.6% 0.87

mention 2.12 topics whereas male students mention 2.05, a
statistically insignificant difference with a P-value of 0.06.

Table 12 shows the percentage of applicants to SE who men-
tioned each reason. The most common reasons are Techni-
cal Interests and Professional Development. Women men-
tion Family more frequently than men, which is statisti-
cally significant with a P-value of 0.00. No other reason had
a statistically significant gender difference. On average, fe-
male students in this program mention 2.04 reasons whereas
male students mention 1.87, a statistically significant differ-
ence with a P-value of 0.00.

Table 13 shows the percentage of applicants to OTHER en-
gineering programs who mentioned each topic. The most
common topics are Technical Interests and Professional De-
velopment. Female students mention Contribution to So-
ciety, Outreach, and Love of Science more than male
students, which is statistically significant with a P-value of
0.00. Male students mention Extracurriculars and Child-
hood Dream more than female students, which is statis-
tically significant with a P-value of 0.00. No other topic
had a statistically significant gender difference. On average,
female students in this group mention 2.1 topics whereas
male students mention 2.0 reasons, a statistically significant
difference with a P-value of 0.00.

Table 14 highlights the differences between women who ap-
plied to BEE vs. women who applied to SE vs. women who
applied to OTHER programs. The bold values show per-
centage differences from the other two groups that are sta-
tistically significant with a P-value of less than 0.05. Female
applicants to SE, BEE, and OTHER programs differ from
each other in their mentions of Contribution to Society,

Table 13: OTHER applicants’ topics

Topic %All %Women %Men P-value

Family 12.3% 13.0% 12.1% 0.064
Contribution to Society14.7% 16.1% 14.3% 0.00

Outreach 8.1% 9.9% 7.6% 0.00
Technical Interests 88.4% 89.0% 88.3% 0.149
Love of Science22.7% 26.6% 21.7% 0.00

Extracurriculars 9.0% 7.8% 9.3% 0.00
Prior Accomplishments 6.6% 7.0% 6.5% 0.18

High School 10.3% 9.8% 10.5% 0.13
Professional Development 26.6% 27.5% 26.3% 0.07

Childhood Dream 3.7% 3.0% 3.9% 0.00

Table 14: Female students’ topics across all groups

Topic % SE % BEE % OTHER

Family 11.1% 11.3% 13.0%
Contribution to Society 12.5% 20.5% 16.1%

Outreach 9.1% 9.3% 9.9%
Technical Interests 92.3% 86.8% 89.0%

Love of Science 16.6% 34.1% 26.6%
Extracurriculars 10.9% 5.6% 7.8%

Prior Accomplishments 7.1% 5.9% 7.0%
High School 12.9% 8.4% 9.8%

Professional Development 27.7% 25.9% 27.5%
Childhood Dream 2.8% 2.7% 3.0%

Technical Interests, Love of Science, and Extracur-
riculars with a P-value of less than 0.05. Mentions of High
School are only different in SE applicants compared to other
groups, which is statistically significant with a P-value of
less than 0.05. No other topic had a statistically significant
difference.

Table 15 highlights the differences between men who applied
to BEE vs. men who applied to SE vs. men who applied to
OTHER. The bold values show percentage differences from
the other two groups that are statistically significant with a
P-value of less than 0.05. Male applicants to SE, BEE, and
OTHER programs differ from each other in their mentions
of Contribution to Society and Love of Science with a
P-value of less than 0.05. Mentions of Family and Techni-
cal Interests are only different for SE applicants compared
to applicants to other programs, which is statistically sig-
nificant with a P-value of less than 0.05. Mentions of Ex-
tracurriculars are different for BEE applicants compared
to applicants to other program groups, which is statistically
significant with a P-value of less than 0.05. No other topic
had a statistically significant difference.

4.2 Reading Interests
Document Frequencies: Overall, men tend to report
reading technical content such as research papers and women
report reading novels and writing that has a societal focus.
Words that are predominantly used by men include “arti-
cle” (17.6% of men vs. 13.4% of women), “enjoy” (29.5%
of men vs. 25.6% of women), “compute” (5.6% of men vs.
2.2% of women), and “science” (12.3% of men vs. 10.3%
of women). Words that are predominantly used by women
include “love” (20.3% of women vs. 12.6% of men), “novel”
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Table 15: Male students’ topics across all groups

Topic % SE % BEE % OTHER

Family 7.0% 10.5% 12.1%
Contribution to Society 12.0% 20.9% 14.3%

Outreach 8.6% 7.7% 7.6%
Technical Interests 92.6% 86.8% 88.3%

Love of Science 13.4% 30.4% 21.7%
Extracurriculars 9.0% 5.9% 9.3%

Prior Accomplishments 5.9% 6.3% 6.5%
High School 10.7% 9.2% 10.5%

Professional Development 24.6% 24.7% 26.3%
Childhood Dream 2.7% 2.2% 3.9%

Table 16: F-Measures/Accuracies for predicting gender
using words from Reading Interests (in %)

Group Unigram Bigram Trigram

BEE 64/63 62/60 60/54.2
OTHER 79/77.8 93/89.8 95/91.8
SE 92/88.9 96/95.6 93/91.8

(31.2% of women vs. 24.6% of men), “character” (20.3% of
women vs. 15.2% of men), “women” (6.1% of women vs.
1.1% of men), “people” (29.1% of women vs. 24.9% of men),
and “family” (10.7% of women vs. 6.8% of men).

Logistic Regression: The results for predicting gender
based on Reading Interests are shown in Table 16. As before,
the predictive power of logistic regression decreases with in-
creasing gender balance within the group.

4.3 Extracurricular Activities
Document Frequencies: Overall, male applicants’ ex-
tracurricular activities have a technical focus, and female
applicants have a wide breadth of experiences ranging from
leadership to artistic pursuits.

In BEE, more men mention “robot” (7% of men vs. 3.6%
of women) and “coach” (7.1% of men vs. 4.8% of women).
More women mention “dance” (8.7% of women vs. 1.7% of
men), “art” (11.3% of women vs. 6.9% of men), “council”
(21.5% of women vs. 15.6% of men), and “lead” (21.1% of
women vs. 16.8% of men).

In SE, more men mention “compute” (20.9% of men vs.
13.7% of women). More women mention “art” (14.5% of
women vs. 4.8% of men), “council” (20.5% of women vs.
11.9% of men), “dance” (8.3% of women vs. 2.2% of men),
and “lead” (18.7% of women vs. 14.3% of men).

In the OTHER group of engineering programs, more men
mention “robot” (11.1% of men vs. 6.3% of women), “com-
pute” (5.8% of men vs. 2.4% of women). More women men-
tion “dance” (10.7% of women vs. 2.1% of men), “council”
(20% of women vs. 12.1% of men), “art” (11.9% of women
vs. 4.8% of men), “volunteer” (22.9% of women vs. 16.3%
of men), and “lead” (19% of women vs. 13.1% of men).

Logistic Regression: The results for predicting gender
based on Extracurricular Activities are shown in Table 17.

Table 17: F-Measures/Accuracies for predicting gender
using words from Extracurricular Activities (in %)

Group Unigram Bigram Trigram

BEE 72/72.9 69/66.6 62/59.5
OTHER 81/81.1 80/77.8 78/71.4
SE 85/83.3 85/82 94/93.4

Table 18: F-Measures/Accuracies for predicting gender
using words from Job Titles (in %)

Group Unigram Bigram Trigram

BEE 59/57.9 58/52.6 63/51
OTHER 65/61.5 64/59.1 67/61.9
SE 67/63.7 66/58.7 68/51.7

The predictive power of logistic regression decreases with
increasing gender balance within the group.

4.4 Job Titles
Document Frequencies: Across all programs, men are
more likely to mention terms that imply technical work or
manual labour, whereas women are more likely to mention
terms that imply customer service and caring professions.
Example words in job titles from male applicants include
“referee” (4.1% of men vs. 2% of women), “labor” (2.6% of
men vs. 0.5% of women), and “technician” (3.1% of men vs.
1.2% of women). Example words in job titles from female
applicants include “cashier” (12.8% of women vs. 6.8% of
men), “teacher” (6.2% of women vs. 2.7% of men), and
“assist” (17.6% of women vs. 14.3% of men).

Logistic Regression: As shown by the logistic regression
scores in Table 18, Job Titles do not provide as much pre-
dictive power as other fields.

4.5 Programming Experience
4.5.1 Syntactic Analysis
Document Frequencies: In general, women use more non
technical terms, and men use more technical terms. Exam-
ples of terms that are more commonly used by male appli-
cants include “game” (30.8% of men vs. 22.3% of women)
and “develop” (21.5% of men vs. 14.4% of women), and
terms more commonly used by female applicants include
“mark” (39.9% of women vs. 30.6% of men) and “attend”
(4.2% of women vs. 1.4% of men). Through manual inspec-
tion, we discovered that “mark” was used in the context of
earning a certain mark in a course. “attend” was used to
indicate attendance in a programming workshop or event.

Logistic Regression: As shown in Table 19, the words
used to describe programming experience can be used to
predict the gender of the applicant.

4.5.2 Programming Languages
Table 20 shows a comparison of specific language knowledge
between male and female applicants. All languages except
for SQL are slightly skewed toward male applicants; how-
ever, only Java, C++, C, Turing, C# have statistically
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Table 19: F-Measures/Accuracies for predicting SE
applicants’ gender using Programming Experience (in %)

Group Unigram Bigram Trigram

SE 91/88.8 98/98 97/95.7

Table 20: Comparison of reported programming language
knowledge

Language % Women % Men Difference P-value

Java 58.9% 65.6% -6.7% 0.00
C++ 23.3% 28.5% -5.2% 0.01

Python 25.1% 28.1% -3.0% 0.18
HTML/CSS 19.0% 19.5% -0.5% 0.75

Basic 16.1% 18.6% -2.5% 0.114
C 12.5% 17.0% -4.5% 0.01

JavaScript 12.7% 15.0% -2.3% 0.17
Turing 10.8% 14.3% -3.5% 0.03

C# 6.1% 9.4% -3.3% 0.01
Php 3.9% 8.3% -4.4% 0.00
SQL 3.9% 3.2% -0.7% 0.50

Other 31.1% 16.4% -3.3% 0.07
None 4.7% 3.2% +1.4% 0.07

significant differences with a P-value of less than 0.05. In
these cases, we only see differences ranging from 4% to 6%.

Men on average report experience with 2.43 programming
languages, whereas women report experience with 2.05 lan-
guages, a significant result with a P-value of less than 0.05.

4.5.3 Programming Concepts
Among applicants who mentioned specific programming
concepts, women reported Basic Language Knowledge,
which includes loops, if-statements, and variables, 14% more
than male applicants did. This result is significant with a
P-value of less than 0.05.

There are small differences in mentions of data science,
object oriented programming, sorting, searching, and data
structures. However, these results were not statistically sig-
nificant, so we cannot conclude that there is a gender differ-
ence in any mention of programming concepts.

4.5.4 Learning Method
We found that men were slightly more likely to learn how to
program through employment or self-learning, and women
were more likely to learn how to program in high school,
through higher education, and through online courses. This
result is not statistically significant with a P-value of greater
than 0.05, so we cannot conclude that there is a gender dif-
ference in how men and women learn how to program.

4.5.5 Experience
On average, women report 6 months of programming experi-
ence, and men report 8 months of programming experience.
This result is not significant with a P-value of greater than
0.05, so we cannot conclude that there is a gender difference
in the amount of experience within applicants to SE.

Table 21: F-Measures/Accuracies for predicting gender
using Additional Information (in %)

Group Unigram Bigram Trigram

BEE 60/58.4 52/51.3 53/50
OTHER 78/77.3 81/77 93/89.2
SE 86/83.7 93/86.3 93/95.2

4.6 Additional Information
Document Frequencies: We see a difference in word
choice between men and women when answering a question
with no restrictions on the content of their answer.

In BEE, more men mention “sport” (10.9% of men vs. 7.1%
of women) and “compute” 4.7% of men vs. 2.3% of women).
More women mention “educate” (17.2% of women vs. 12.2%
of men), “science” (17.9% of women vs. 13.4% of men),
“develop” (15.1% of women vs. 10.7% of men), “community”
(14.8% of women vs. 10.8% of men), and “create” (8.5% of
women vs. 5.0% of men).

In SE, more men mention “compute” (27.8% of men vs.
20.8% of women) and “game” (9.2% of men vs. 3.8% of
women). More women mention “attend” (16.7% of women
vs. 10.4% of men), “English” (12.8% of women vs. 7.2% of
men), “study” (21.5% of women vs. 16.5% of men), “parent”
(8.7% of women vs. 3.7% of men), “love” (14.2% of women
vs. 10.1% of men), and “creative” (8.7% of women vs. 4.6%
of men).

In the OTHER programs, more men mention “sport” (10.2%
of men vs. 5.7% of women) and “team” (16.3% of men
vs. 12.4% of women). More women mention “art” (7.3%
of women vs. 3.3% of men), “volunteer” (9.9% of women vs.
6.4% of men), and “passion” (13.6% of women vs. 10.4% of
men).

Logistic Regression: The results for predicting gender
based on Additional Information are shown in Table 21. As
before, the predictive power of logistic regression decreases
with increasing gender balance within the group.

5. DISCUSSION
5.1 Similarities
Regardless of gender, the most commonly mentioned topic
in responses to “Why are you interested in engineering?”
is Technical Interests. Female and male applicants seem to
share the same interest in Engineering in all program groups.
SE applicants show more technical interest in engineering
than other programs.

In general, female and male applicants to SE mention the
same motivation for studying engineering. Family is more
popular among female applicants, not because female appli-
cants to SE mention it more compared to other programs,
but because male applicants talk about it less than men in
other programs, as can be seen in Tables 15 and 14.

In SE, we do not see a large gender gap in self reported pro-
gramming experience, as shown in Table 20. This suggests
that students who are exposed to computer science do not
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differentiate themselves through the number of languages
they learn, nor in the amount of programming experience.

In BEE, the differences between female and male applicants
are minimal. We see evidence for this in the semantic anal-
ysis presented in Section 4.1.2 where there is only one topic
that shows a gender difference, and we observe this in our
inability to reliably predict gender based on any question as
shown in Tables 11, 18, 17, and 21.

Based on Tables 14 and 15, Contribution to Society and
Engineering Interests are inversely proportional, regardless
of gender.

5.2 Differences
5.2.1 Depth vs. Breadth

The overarching gender difference throughout the analysis
is that men differentiate themselves through depth of ex-
perience, and women through breadth of experience. To
study engineering, all applicants must demonstrate knowl-
edge in mathematics and sciences through their academic
work. However, we see male applicants differentiating them-
selves by highlighting their initiative to acquire more techni-
cal skills through their work experience, extracurricular ac-
tivities, reading interests, and the topics they mention when
asked why they are studying engineering. Female applicants
differentiate themselves through demonstrating a wide range
of experiences and capabilities. This is suggested by the fact
that women mention a wider variety of topics when asked
why they are studying engineering, their extracurricular ac-
tivities place an emphasis on leadership and artistic pursuits,
they often take service jobs, and they choose to discuss more
non technical reading material.

In SE, men are more likely to report technical extracurricu-
lars, as seen in Section 4.3, even though there is only a small
gender difference in the reported amount of programming
experience. This provides further justification that women
differentiate themselves through breadth of experience even
when they are extremely technically focused.

The gender difference in depth versus breadth is much
smaller in BEE. The difference in the number of topics men-
tioned between men and women is the smallest across these
two programs. We also only see a statistically significant
difference between men and women in one topic, love of sci-
ence, which is extremely common across all applicants. The
small difference is consistent with our inability to predict
gender in BEE.

We also see this in the syntactic analysis of reasons, where
women mention “improve” and “health” more in the BEE
group, and “people” more in the SE group. It is an interest-
ing difference because BEE includes programs that focus on
helping others, and SE is often the farthest removed from
directly working with people.

5.2.2 Desire to Serve Society
Women show a stronger desire to contribute to society and
improve the world around them. We see this in their mo-
tivation to study engineering in “Engineering Interests and
Goals” in the OTHER group of programs where they are

more likely to mention “Contribution to society”. We also
see this in the syntactic analysis of this field where they men-
tion “improve” and “health” in the BEE group, and “people”
in the SE group. This is also evident in their work experience
where women mention“assist”and“teacher”more often than
men. Finally, we see this in extracurricular activities, where
women mention “volunteer” more frequently than men. Our
findings in this section agree with [3, 4].

5.2.3 Influence
Women are more likely to mention personal influences in
their decision to study engineering. This is prevalent in
SE, where women mention “Family” reasons more than men.
This expands on the findings in [19].

6. CONCLUDING REMARKS
The main findings of this paper are that men differentiate
themselves through having technical depth in their experi-
ences, and women differentiate themselves through having a
breadth of experiences. We see similar behavior in Software
Engineering, even though women and men show similar lev-
els of technical know-how. We see smaller gender differences
in applicants to Biomedical and Environmental Engineering
where there is gender equity. Finally, women mention more
of a desire to serve society, and they mention more interper-
sonal reasons for studying engineering than men.

We infer that in order to attract more women to study en-
gineering, it must be presented as a profession that can help
others and allow for a broad range of careers and learning
opportunities. A key part in fostering this new image of en-
gineering lies in encouragement from family and role models
who practice engineering.

6.1 Future Work
In future work, we intend to conduct data driven analysis
of gender differences at various stages in STEM students’
academic careers; e.g., investigating the effects of university-
sponsored outreach and mentorship programs on applicants,
and correlating depth and breadth of expression at the time
of admission to academic and career success. We also plan
to investigate and compare gender differences in graduate
school applications to those in undergraduate applications.
We also want to expand the scope of our studies to include
non STEM programs in our analysis, and conduct compar-
isons of differences in STEM vs. non-STEM programs.
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ABSTRACT 

The automatic evaluation of text-based assessment items, such as 

short answers or essays, is an open and important research 

challenge. In this paper, we compare several features for the 

classification of short open-ended responses to questions related 

to a large first-year health sciences course. These features include 

a) traditional n-gram models; b) entity URIs (Uniform Resource 

Identifier) and c) entity mentions extracted using a semantic 

annotation API; d) entity mention embeddings based on GloVe, 

and e) entity URI embeddings extracted from Wikipedia. These 

features are used in combination with classification algorithms to 

discriminate correct answers from incorrect ones. Our results 

show that, on average, n-gram features performed the best in 

terms of precision and entity mentions in terms of f1-score. 

Similarly, in terms of accuracy, entity mentions and n-gram 

features performed the best. Finally, features based on dense 

vector representations such as entity embeddings and mention 

embeddings obtained the best f1-score for predicting correct 

answers. 

   

Keywords 

Short open-ended responses, N-gram models, Entity URIs, Entity 

Mentions, Entity embeddings, Mention embeddings. 

1. INTRODUCTION 
Due to the growth of Massive Open Online Courses (MOOCs) 

and increased class sizes in traditional higher education settings, 

the automatic evaluation of answers to open-ended questions has 

become an important challenge and one which has yet to be fully 

resolved. On the other hand, it has been shown that open-ended 

assessments are better able to capture a higher level of 

understanding of a subject than other machine-scored assessment 

items [24]. Still, MOOCs usually rely on multiple-choice 

questions since the evaluation of open-ended assessments 

requires more resources in massive online courses [32]. The 

human effort required to manually evaluate students' answers has 

escalated with the spread of large-scale courses that enroll several 

hundred, or even thousands of students. To tackle this challenge, 

we analyze textual responses to a set of open-ended questions 

designed to encourage deep responses from students. We explore 

the use of vector space models (VSMs) that represent each answer 

with a real-valued vector, and evaluate those models on the task 

of classifying student responses into correct and not-correct. In 

particular, we examine and evaluate different feature sets that can 

be automatically derived from students' answers and used to 

represent those answers as vectors in a high dimensional space. 

The examined features do not require handcrafting based on the 

particularities of specific questions. Our main objective is to 

examine and compare the predictive power of different text 

features, automatically extracted from a corpus of answers to 

open-ended questions, on multiple classification algorithms. 

We build VSMs using different text representations that result in 

either a sparse VSM (e.g., n-gram based VSM) or a dense VSM 

(e.g., VSM based on word embeddings). For sparse VSMs, we 

explore traditional n-gram features (unigrams, bigrams, trigrams, 

and n-grams that combine all of the previous features). We also 

investigate the usefulness of semantic annotations of students’ 

responses for the classification task. Semantic annotation adds 

machine-readable meaning in the form of entities [21]. Hence, it 

enables the association of students' answers with vectors of 

domain-specific entities. Semantic annotators often rely on open 

Web-based knowledge bases such as DBpedia [13], an RDF 

representation of Wikipedia's semi-structured content. For 

example, given the entity Aorta, identified by a semantic 

annotator, we obtain its associated Web resource from DBpedia 

(http://dbpedia.org/page/Aorta), which further links to other 

related entities and properties from DBpedia. We make use of two 

semantic annotators: DBpedia Spotlight [19] and TAGME [6]. 

We query each annotator with the students’ responses to obtain 

entities mentioned in the response. For each entity, we take the 

entity label and use it as entity mention feature, whereas the 
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entity’s Uniform Resource Identifier (URI) is used as entity URI 

feature.  

To build a dense VSM, we rely on the entity mentions identified 

through semantic annotation and pre-trained word and entity 

embeddings. In particular, we retrieve vector representations of 

entity mentions using a GloVe model pre-trained on Wikipedia 

dumps [23]. Thus, our fourth feature set consists of entity mention 

embeddings based on GloVe. Finally, we represent entity URIs 

using a Wiki2Vec model trained on Wikipedia dumps to obtain 

another dense VSM. Hence, entity URI embeddings extracted 

from Wikipedia constitute our fifth feature set. 

Given the short length of most answers and large vocabularies 

providing sparse vectors, we decided to include the last two sets 

of features to produce dense vector representations. In fact, dense 

vectors have shown an increase in performance for several natural 

language processing tasks [15]. Both GloVe [23] and Word2vec 

models [20] learn vector representations of words (called word 

embeddings) based on context. In total, we compare five types of 

features (n-gram, entity mentions, entity URIs, mention 

embeddings and entity embeddings) to train classification models 

to automatically label each student answer as correct or incorrect. 

The rest of the paper is structured as follows: In Section 2, we 

present related work on automatic short answer grading. Then, we 

introduce our methodology, including the corpus description, our 

analysis pipeline and an in-depth description of our features. 

Section 5 describes the results of our experiments followed by the 

analysis of the effect of feature selection on our classifiers in 

Section 6. Finally, we discuss our findings and conclude the paper 

in Section 7 and 8. 

2. RELATED WORK 
One of the hot topics in the field of educational data mining is 

automatic short answer (response) grading (ASAG). In general, 

there are two kinds of ASAG approaches: response-based and 

reference-based [27]. In this paper, we analyze students' answers 

based on the response-based approach, which focuses only on 

students’ answers. In contrast, reference-based ASAG also rely 

on the comparison of the student answer to the model answer.  

Burrows et al. [4] classified all types of approaches to ASAG into 

five categories (eras): Concept mapping [8, 10, 12], Information 

extraction [5], Corpus-based methods [11], Machine learning, and 

Evaluation [28, 30]. In the Machine Learning approach, which is 

the approach followed in this study, the trend is to build models 

(supervised or unsupervised) through data mining and natural 

language processing techniques in order to assess students' 

answers.  

ASAG systems can also be categorized into semi-automatic 

(teacher-assisted) and fully-automatic systems. In semi-automatic 

systems, students' answers are processed (clustered) to facilitate 

the grading process. For example, Basu [1] applied k-medoids 

clustering to students' answers to ease the grading process. In 

another work, Jayashankar [9] proposed an integration of data 

mining and word clouds to help teachers evaluate student answers 

through visualization.  

Fully-automatic systems produce grades for each student, with or 

without additional feedback. Several features are considered in 

training these systems: lexical features (e.g. word length), 

syntactic features (e.g. sentence length and part-of-speech), 

semantic features (e.g. semantic annotations and triples), 

discursive features (e.g. referential expressions), statistical 

features (e.g. language modelling like n-grams and embeddings), 

and similarity features (e.g. cosine similarity).  

McDonald et al. [17, 18] evaluated Naive Bayes and Max Ent 

classifiers using a number of features like bag of words, word 

length, and word and character n-grams. Madnani et al. [14] used 

these types of features in combination with triples to examine the 

performance (accuracy) of 8 different classifiers and regressors 

(linear and nonlinear). In another work, Riordan et al. [26] 

combined n-gram features, answer length, and word and character 

embeddings to compare the performance of SVM (as a baseline) 

with neural architectures. In several approaches, features based 

on the similarity between the students’ responses and the teacher's 

response were used together with n-grams. For example, 

Sakaguchi et al. [27] used stacked generalization [31] to integrate 

response-based and reference-based models. In particular, 

Sakaguchi et al. first built a classifier based on sparse response-

based features (e.g. character n-gram and word n-gram); the 

obtained predictions were combined with dense reference-based 

features (e.g. BLEU [22]) to build another stacked classifier. Both 

classifiers were built as support vector regression (SVR) models. 

Zhang et al. [33] compared Deep Belief Networks (DBN) [2] to 

five classifiers such as Naive Bayes and Logistic Regression. The 

classifiers were trained on features extracted from three models, 

namely the Question model (e.g. question difficulty), the Student 

model (e.g. probability that a student learned a concept based on 

the student’s past performance), and the Answer model (e.g. 

length difference between student answer and model answer). 

The DBN performed better than the other classifiers in terms of 

accuracy, precision, and F-measure, but not recall. Roy et al. [25] 

developed an ASAG system that can grade answers in different 

domains. They relied on an ensemble classifier of student answers 

(question-specific approach) and a numeric classifier based on the 

similarity score between the model answer and students’ answers 

(question-agnostic approach). Their features were words, n-

grams, and similarity scores between student answers and model 

answer. Finally, Tack et al. [29] used ensemble learning of five 

classifiers based on lexical features (e.g., word length), syntactic 

features (e.g., sentence length), discursive features (e.g., number 

of referential expressions), and a number of psycholinguistic 

norms.  

In this work, we follow the response-based approach as we build 

classifiers based on students’ answers. Our approach differs from 

previous works in that we carry out ASAG (and more specifically 

classification) by comparing six classifiers trained with both 

sparse vector representations (based on n-grams and entities) and 

dense vectors representations (GloVe, Word2Vec). One 

additional difference is the use of semantic annotations (entity 

mentions and entity URIs) to build some of our vector space 

models. Finally, the features used in this work do not necessitate 

a huge feature engineering effort as they come directly from text 

or from the use of a semantic annotation API and an embedding 

model.   

3. METHODOLOGY 
We first give a description of the corpus used in our experiments, 

then we detail our overall approach as well as the metrics used in 

the evaluation phase. This is followed by an in-depth explanation 

of our features. 

3.1 Corpus Description 
Our data set is extracted from a corpus of student short-answer 

question (SAQ) responses drawn from a first-year human biology 
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course (McDonald [16]). Among multiple elements in our data 

set, our experiments are based only on the labeled student 

responses to the survey and model answers (expected answers to 

the questions). Student SAQ responses and associated metadata 

were collected through a dialog system. 

From the initial data set, we selected a sub-set of student answers 

based on the following criteria:  

 Answers from the year 2012 only as this year is the one with 

the highest participation; out of 15,758 answers collected 

over 4 years, 7,548 originate from 2012.  

 Out of the 42 different unique questions, we only use 6 

questions that provide a reasonable number of responses as 

well as lengthy (deep) responses. We avoided questions that 

do not encourage answers that display deep understanding of 

the topic (e.g., yes-no questions, calculation questions or 

multiple choice questions). 

The questions asked are designed to encourage deep responses 

from students [3]. The students are expected to explain or 

describe the knowledge obtained during the course in their own 

words rather than giving answers by the book. Table 1 presents 

the questions used in the study and their expected answers. 

Table 1. Survey questions 

ID Question Model Answer 

Q.1 HR or heart rate is the 

number of times the heart 

beats each minute. A 

normal adult HR is 

around 72 beats/min. How 

would you check 

someone's HR? 

You could measure their 

pulse. 

Q.2 What is the pulse? The pulse is a pressure wave 

or a pulsatile wave generated 

by the difference between 

systolic and diastolic 

pressures in the aorta. 

Q.3 Inotropic state is a term 

that is sometimes used to 

describe the contractility 

of the heart. Can you 

describe what is meant by 

contractility? 

Contractility is the force or 

pressure generated by the 

heart muscle during 

contraction. 

Q.4 If you were 'building' a 

human being and you 

wanted to position 

receptors in the body to 

monitor blood pressure, 

where would you put 

them? 

You'd probably want to put 

them near vital organs and at 

the main outflow from the 

heart. It turns out that the 

main human baroreceptors are 

located in the carotid sinuses 

and aortic arch. 

Q.5 What feature of artery 

walls allows us to feel the 

pulse? 

Artery walls are thick and 

strong and not very compliant 

Q.6 Can you explain why you 

cannot feel a pulse in 

someone's vein? 

You cannot feel a pulse in 

veins because the blood flow 

in veins is not pulsatile 

 

The resulting sub-set amounts to 1,876 answers from 218 students 

to 6 questions. Note that not all students answered all the 

questions. Completing responses was voluntary, which accounts 

for the variability in the number of responses received to each 

question. In addition, the nature and quality of the responses are 

not necessarily representative of the class as a whole. Table 2 

presents descriptive statistics on the students’ answers to the 

selected subset of questions used in all the experiments. 

Table 2. Statistics on students’ answers per question 

Question Avg. 

words 

Min. 

words 

Max. 

words 

Answers Correct 

(%) 

Q.1 6 1 36 243 65.43% 

Q.2 9 1 82 422 17.54% 

Q.3 6 1 31 316 33.86% 

Q.4 4 1 34 151 54.97% 

Q.5 3 1 27 171 25.15% 

Q.6 9 1 34 361 31.86% 

 

Each of these questions is associated with a set of students’ 

answers. As an example, for question Q.6, we present the 

expected answer (i.e. Model answer), a deep response (Student 

Answer 1), and a simpler response (Student Answer 2): 

Model Answer: You cannot feel a pulse in veins because the 

blood flow in veins is not pulsatile 

Student Answer 1: The wave motion associated with the heart 

beat is stopped by the arteries and capillaries. Therefore, the vein 

has no pulse. 

Student Answer 2: The blood flow is continuous. 

Both student answers were labeled as correct by the human 

markers. Student Answer 1 would be considered a deeper answer 

than Student Answer 2, because it makes explicit the reasoning 

behind the answer, thus suggesting a better understanding of the 

topic.  

The students’ responses were manually evaluated by human 

markers with expertise in the domain of human biology. The 

annotators assigned a label negotiated through discussion. Such 

labels describe different aspects of an answer like quality of the 

response or correctness [16]. For example, answers may be 

labelled as incorrect, incomplete, and display disinterest in 

responding (dont-know label), among others. Further details on 

the labels used can be found in McDonald [16]. Table 3 displays 

some of those answers and the assigned labels. 

Table 3. Student Answers sample 

Question Student Answer Label 

Q.5 Lack of elastic tissue incorrect 

Q.6 idk lol dont-know 

Q.4 

 

In major arteries of the body, such as 

the common carotid or the aortic arch 

ok 

Q.3 ability to change volume incomplete 

Q.6 Ventricle contracts blood ejected into 

aorta, expanding vessel and increase 

pressure in vessel, wave of pressure 

cane felt is pulse 

correct 

 

For all of our experiments, we used model answer (expected 

answer) and student answers and re-labeled them as correct or 

not-correct. Correct answers comprise model answers plus all 

answers labeled as correct or ok. All other answers were re-

labeled as not-correct. The resulting data set is composed of 65% 

not-correct answers and 35% correct answers. 
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3.2 Overall Approach 
Our general approach can be described as follows: 

1. Data pre-processing: in this step, we perform lemmatization 

and removal of punctuation marks and stop words (NLTK1 

stop words list) from the selected answers.  

2. Feature extraction: We consider five types of features: n-

gram, entity URIs, entity mentions, URI embeddings, and 

mention embeddings, which are detailed in section 4. We 

extract n-grams, entity URIs and entity mentions from 

student responses. Then, entity mentions are used to query a 

pre-trained GloVe model [23] to obtain mention 

embeddings. Likewise, entity URIs are used to query a pre-

trained Wiki2Vec model [34] to obtain entity embeddings. 

Both GloVe and Wiki2Vec are pre-trained on Wikipedia. 

3. Vector space model (VSM): For n-gram features, entity 

mentions, and entity URIs, we compute a vector 

representation of each answer by extracting a vocabulary 

from all students’ answers and using TF-IDF as the 

relevance metric to weight each feature in an answer. As for 

mention embeddings and entity embeddings, we generate 

VSMs by averaging embeddings over all mentions or URIs 

appearing in an answer. The output from this step is one 

VSM representation of all answers for each feature type. 

4. Classification task: we run several classification algorithms: 

the ZeroR algorithm as our baseline, Logistic regression, K-

nearest neighbors (IBK), Decision trees (J48), Naïve Bayes, 

Support vector machine (SVM), and Random forest. We 

train each classifier using the entire data set of answers 

regardless of the question to which they belong. The 

rationale is that all answers belong to the same domain, and 

thus can be expected to be in a shared semantic space. 

3.3 Evaluation Metrics 
The evaluation is performed through 10-fold cross validation on 

each classifier. The metrics used for this purpose include: 

 Accuracy: Percentage of correctly classified answers. 

 Area Under the Curve (AUC): Probability that a classifier 

will rank a randomly chosen positive instance higher than a 

randomly chosen negative instance. 

 Precision: Fraction of correctly classified answers within all 

classified instances.  

 Recall: Fraction of relevant answers successfully retrieved. 

 F1-score: Weighted harmonic mean of the precision and 

recall. It represents how precise and complete a classifier is. 

4. FEATURE DESCRIPTION 

4.1 N-gram Features 
We create a vector representation for each answer based on n-

grams. Table 4 shows some descriptive statistics on the obtained 

n-grams. We perform four experiments using different n-grams: 

unigrams, bigrams, trigrams, and the combination of all of them. 

To that end, four VSMs are built, one per n-gram group. Each 

vector holds the TF-IDF value of each item found in the answers. 

TF-IDF is calculated with the formula: 

                                                                 

1 https://www.nltk.org/ 

tf-idfi, j = 𝑡𝑓𝑖,𝑗  ×  (log
1+𝑛𝑑

1+𝑑𝑓𝑖
+ 1) 

Where tfi,j is the total number of occurrences of the term i in the 

student answer j, 𝒏𝒅 is the total number of documents (i.e. 

answers) and 𝒅𝒇𝒊 is the number of documents (i.e. answers) 

containing the term i. 

Table 4. Total number of n-grams in answers for all 

questions 

Answers Unigrams Bigrams Trigrams 

Unique 700 2114 4750 

Total 6364 2589 3383 

 

4.2 Entity URI Features 
These features are based on entity URIs extracted from answers 

using two semantic annotators: DBpedia Spotlight and TAGME 

(see Sect. 1). The basic unit in the built VSM is the URI of a 

DBpedia resource (e.g. http://dbpedia.org/page/Baroreceptor). 

We send get requests to both annotators with the answers to be 

analyzed, and receive, for each answer, a list of entity mentions 

and their associated URIs. Table 5 shows statistics on the number 

of entity URIs and mentions (lowercase) retrieved by each of the 

two annotators.  

Table 5. Number of entity URIs and mentions on all answers 

Semantic 

Annotator 

Entities Mentions 

 Unique Total Unique Total 

Spotlight 143 1620 188 1620 

TAGME 876 5054 806 5054 

 

Table 6 provides an example of retrieved entity mentions and 

URIs for an answer to Q.2. 

Table 6. Sample of retrieved entity URIs 

Answer Semantic 

Annotator 

Mention URI 

Recoil 

caused by 

pressure in 

arteries 

Spotlight Recoil dbpedia.org/page/Recoil 

Arteries dbpedia.org/page/Artery 

TAGME Recoil dbpedia.org/page/Recoil 

Pressure dbpedia.org/page/Pressure 

Arteries dbpedia.org/page/Artery 

 

We build a vector representation of each answer for each of the 

following configurations (i.e., vocabularies): 

 Spotlight_URI: Set of entity URIs retrieved from all answers 

using DBpedia Spotlight. 

 TAGME_URI: Set of entity URIs retrieved from all answers 

using TAGME. 

 Intersection: Set intersection between the entity URIs 

retrieved from all answers with both tools. 

 Union: Set union between the entity URIs retrieved from all 

answers with both tools. 

This produces four VSMs based on entity URIs. The resulting 

VSMs use TF-IDF as the metric for estimating the value of each 

entity URI for each answer. 
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4.3 Entity Mention Features 
We use the annotations retrieved by Spotlight and TAGME, 

selecting entity mentions as the basic units for building VSMs. A 

mention is a sequence of words spotted in an answer and 

associated to a URI. This means that an entity mention can be a 

unigram, but also a bigram or trigram. We compute the TF-IDF 

of each entity mention present in an answer to build its vector 

representation. As in entity URI features, we have one vocabulary 

per configuration with four VSMs as the final output. The 

available configurations, based on mentions, used to build a 

vector representation of each answer, are analogous to those 

described for entity URIs, except that they are based on mentions 

(Spotlight_Mention, TAGME_Mention, Intersection and Union). 

4.4 Entity Embedding Features 
For this set of features, we rely on the Wiki2Vec2 model, a 

Word2Vec implementation pre-trained on Wikipedia, where 

Wikipedia hyperlinks are replaced with DBpedia entities (URIs). 

The model was presented by Zhou et al. [34] and is based on 100-

dimensional vectors. Word2Vec models can either learn to 

predict a word given its context (CBOW) or predict a context 

given a target word (Skip-gram) [20]. This creates a vector space 

in which similar words or entities are close to each other. 

Likewise, Wiki2Vec creates a vector space model in which 

similar DBpedia entities are close to each other. Given that our 

entity URIs reference DBpedia resources, we consider it a 

suitable match. For each configuration, we query the Wiki2Vec 

model with the entity URIs found in each answer to obtain their 

corresponding embeddings. Table 7 shows the percentage of 

entity URIs that are associated with an embedding vector in the 

Wiki2Vec model per configuration. We also show the percentage 

for the GloVe model which is presented in section 4.5. 

Table 7. Coverage of entity URIs and mentions on their 

corresponding models (Wiki2Vec and GloVe) 

Configuration % of entity URIs 

in Wiki2Vec 

% of entity 

mentions in GloVe 

Spotlight_URI 97.5 % 50.46% 

TAGME_URI 93.94 % 62.16% 

Intersection 97.11 % 49% 

Union 94.63 % 65.10% 

 

For each configuration, we have one VSM. In each VSM, we 

aggregate the entity embeddings per answer by calculating the 

average of the entity URI vectors. This produces a single 

embedding that represents the answer. 

4.5 Mention Embedding Features 
For the mention embedding features, we rely on word 

embeddings, where each word is an entity mention instead of an 

entity URI. We use the GloVe model [23] trained using 

Wikipedia dumps from 2014 and build vectors with 100 

dimensions (as for entity URI embeddings). Unlike Word2Vec, 

GloVe is a count-based model derived from a co-occurrence 

matrix. We query the GloVe model with the entity mentions found 

in each answer. The coverage of the model is given in Table 7.  

For each configuration, we have one VSM where each answer is 

represented as the average of the entity mention vectors. 

                                                                 

2 https://github.com/idio/wiki2vec 

5. RESULTS 
For each feature set, we trained six classification algorithms, and 

evaluated 120 different models. Due to the space limit, we present 

only the top two performing classifiers (Random forest and SVM) 

in terms of overall accuracy for each of our feature sets. ZeroR is 

also included as the baseline. 

5.1 N-gram Results 
Table 8 shows the accuracy (ACC) and AUC obtained using n-

gram features. Overall, the accuracy and AUC obtained with 

Random forest were always higher than with SVM. In particular, 

unigrams obtained the best accuracy of 88.40% as well as the 

highest AUC (.95) using Random forest. 

Table 8. Accuracy & AUC using n-gram features 

N-gram Random  

Forest 

SVM ZeroR 

ACC 

% 

AUC ACC 

% 

AUC ACC 

% 

AUC 

Unigrams 88.40 .95 84.44 .82 65.1 .50 

Bigrams 81.97 .87 79.93 .73 65.1 .50 

Trigrams 72.84 .68 72.12 .61 65.1 .50 

N-grams 85.58 .93 84.25 .80 65.1 .50 

 

Table 9 shows additional results for models cross-validated with 

n-gram features. For the correct label, our best classifier was 

Random forest using unigrams for the f1-score (.82) and trigrams 

or n-grams for best precision (.93). For the not-correct label, 

again, Random forest got the best results, using unigrams for both 

f1-score (.91) and precision (.88). 

Table 9. Precision, recall & f1-score using n-gram features 

Label Classifier N-gram Precision Recall F1 

Correct Random 

Forest 

Unigrams .89 .77 .82 

Bigrams .92 .53 .67 

Trigrams .93 .24 .38 

N-grams .93 .63 .75 

 SVM Unigrams .79 .76 .77 

Bigrams .85 .51 .64 

Trigrams .88 .23 .37 

N-grams .86 .65 .74 

 ZeroR Unigrams 0 0 0 

Bigrams 0 0 0 

Trigrams 0 0 0 

N-grams 0 0 0 

Not-

correct 

Random 

Forest 

Unigrams .88 .95 .91 

Bigrams .79 .98 .88 

Trigrams .71 .99 .83 

N-grams .83 .98 .90 

 SVM Unigrams .87 .89 .88 

Bigrams .79 .95 .86 

Trigrams .71 .98 .82 

N-grams .84 .95 .89 

 ZeroR Unigrams .65 1 .79 

Bigrams .65 1 .79 

Trigrams .65 1 .79 

N-grams .65 1 .79 
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A visible drop in recall from unigrams to trigrams (difference of 

.53) can be spotted for the correct label in both SVM and Random 

Forest. Based on the number of elements in each n-gram feature 

(Table 4), we observe that the amount of bigrams and trigrams is 

notably lower than unigrams. This can, at least partially, explain 

the lower recall using these features. Another noticeable result is 

that while the results obtained with Random Forest and SVM 

exceed the baseline for the correct label in terms of precision, 

recall and f1-score, the results for the not-correct label are closer 

to the baseline. 

5.2 Entity Mention Results 
The highest accuracy among these feature sets was achieved by 

Random Forest with the Union configuration (88.58%), as shown 

on Table 10. Again, Random forest outperformed SVM in terms 

of accuracy and AUC for each configuration. 

Table 10. Accuracy & AUC using Entity mentions 

Tool Random Forest SVM ZeroR 

ACC 

% 

AUC ACC 

% 

AUC ACC 

% 

AUC 

Spotlight 

Mention 

78.61 .78 75.05 .67 65.1 .50 

TAGME 

Mention 

88.52 .95 85.22 .83 65.1 .50 

Intersection 78.48 .77 75 .67 65.1 .50 

Union 88.58 .95 85.34 .83 65.1 .50 

 

Given that our Random forest classifier performed better in 

general for entity mentions, we based our following analysis on 

its results (Table 11). For the correct label, the use of 

TAGME_Mention or Union provided the highest f1-score (.83), 

but the use of TAGME_Mention alone provided slightly better 

precision (.87). On the not-correct label, once again, 

TAGME_Mention and the Union achieved the highest f1-score 

(.91), but this time the Union alone gave slightly better precision 

(.90).  

Table 11. Precision, recall & f1-score using Entity mentions 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight 

Mention 

.85 .47 .61 

TAGME 

Mention 
.87 .79 .83 

Intersection .84 .48 .61 

Union .86 .80 .83 

 SVM Spotlight 

Mention 

.77 .40 .53 

TAGME 

Mention 
.81 .75 .78 

Intersection .77 .40 .53 

Union .81 .76 .78 

 ZeroR Spotlight 

Mention 

0 0 0 

TAGME 

Mention 

0 0 0 

Intersection 0 0 0 

Union 0 0 0 

Not-

correct 

Random 

Forest 

Spotlight 

Mention 

.77 .96 .85 

TAGME 

Mention 

.89 .94 .91 

Intersection .77 .95 .85 

Union .90 .93 .91 

 SVM Spotlight 

Mention 

.75 .94 .83 

TAGME 

Mention 
.87 .91 .89 

Intersection .74 .93 .83 

Union .87 .91 .89 

 ZeroR Spotlight 

Mention 

.65 1 .79 

TAGME 

Mention 

.65 1 .79 

Intersection .65 1 .79 

Union .65 1 .79 

 

An explanation for the difference in performance between 

Spotlight_Mention and TAGME_Mention is the amount of 

mentions retrieved by each of the semantic annotators. Spotlight 

provided fewer annotations for the same answers than TAGME. 

In addition, our manual inspection of annotations revealed that 

TAGME tended to produce more accurate annotations than 

Spotlight. This suggests that higher quantity and quality of 

semantic annotations leads to a feature set that successfully 

differentiates between correct and not-correct answers.  

5.3 Entity URI Results 
The results presented in Table 12 show that Random forest 

provided highest accuracy and AUC on each configuration. The 

best accuracy and AUC were achieved by Random forest with 

TAGME_URI (86.60% and .94, respectively). 

Table 12. Accuracy & AUC using Entity URIs 

Tool Random 

Forest 

SVM ZeroR 

 ACC

% 

AUC ACC

% 

AUC ACC

% 

AUC 

Spotlight 

URI 

80.55 .84 77.60 .75 60.8 .45 

TAGME 

URI 
86.60 .94 84.74 .82 65.1 .45 

Intersection 77.03 .82 76.44 .74 59 .45 

Union 86.50 .94 82.80 .80 63.6 .45 

 

We notice that in terms of accuracy and AUC, TAGME_URI and 

Union on Random forest are slightly lower than 

TAGME_Mention and Union for Entity mention features.  

Focusing on Random forest as the best performing classifier, we 

observe that for the correct label, the use of TAGME_URI and 

union of entity URIs provided the best f1-score of .80 (Table 13). 

In terms of precision, the union of entity URIs had a better 

performance (.86). For the not-correct label, again on Random 

forest, TAGME_URI and the Union configurations get better f1-

score (.90). This time TAGME_URI alone provided the best 

precision (.88) for this label. 

We observed that in some cases, the same mention was associated 

to different entity URIs in two different answers and that only one 

of the URIs was correct. When this happens, it affects the quality 

of the vector representation of student answers by increasing the 

number of URIs in the VSM vocabulary, thus making the 

representation even sparser. 
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Table 13. Precision, recall & f1-score using Entity URIs 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight URI .82 .64 .72 

TAGME URI .84 .76 .80 

Intersection .77 .63 .69 

Union .86 .76 .80 

 SVM Spotlight URI .77 .62 .68 

TAGME URI .81 .73 .77 

Intersection .77 .61 .68 

Union .80 .71 .75 

 ZeroR Spotlight URI 0 0 0 

TAGME URI 0 0 0 

Intersection 0 0 0 

Union 0 0 0 

Not-

correct 

Random 

Forest 

Spotlight URI .80 .91 .85 

TAGME URI .88 .92 .90 

Intersection .77 .87 .82 

Union .87 .93 .90 

 SVM Spotlight URI .78 .88 .83 

TAGME URI .86 .91 .89 

Intersection .76 .87 .81 

Union .84 .90 .87 

 ZeroR Spotlight URI .61 1 .76 

TAGME URI .65 1 .79 

Intersection .59 1 .74 

Union .64 1 .78 

 

5.4 Entity Embedding Results 
Among models trained using entity embeddings, the highest 

accuracy and AUC were achieved by Random forest with the 

TAGME_URI configuration, as shown in Table 14. For this 

feature set, we observe that Random forest has higher accuracy 

with TAGME_URI and Union than SVM on the same 

configurations; but SVM gets higher accuracy than Random 

forest using Spotlight_URI and Intersection. However, the AUC 

for Random forest is still higher than for SVM in all the 

configurations. We can also observe an increase in accuracy and 

in AUC (although modest) for the baseline. 

Table 14. Accuracy & AUC using Entity embeddings 

Tool Random 

Forest 

SVM ZeroR 

ACC 

% 

AUC ACC 

% 

AUC ACC 

% 

AUC 

Spotlight URI 80.13 .86 81.13 .71 73.5 .50 

TAGME URI 82.67 .90 75.46 .70 63.7 .50 

Intersection 76.43 .81 79.64 .66 74.6 .49 

Union 82.45 .89 80.79 .69 73.5 .50 

 

Further inspection of the results obtained on cross-validated 

models (Table 15) reveals that this time, the highest results differ 

between classification algorithms. For the correct label, we 

obtained better f1-score with Random forest using the union of 

entity embeddings (.89). However, SVM provided better 

precision using Spotlight (.88). The not-correct label had both the 

best precision (.85 using the union of entity embeddings) and f1-

score (.87 using TAGME_URI) results using Random forest. 

Table 15. Precision, recall & f1-score using Entity 

embeddings 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight URI .83 .92 .87 

TAGME URI .85 .64 .73 

Intersection .81 .90 .85 

Union .82 .97 .89 

 SVM Spotlight URI .88 .92 .88 

TAGME URI .74 .50 .60 

Intersection .82 .93 .88 

Union .82 .94 .88 

 ZeroR Spotlight URI .73 1 .85 

TAGME URI 0 0 0 

Intersection .75 1 .86 

Union .73 1 .86 

Not-

correct 

Random 

Forest 

Spotlight URI .68 .47 .56 

TAGME URI .82 .93 .87 

Intersection .56 .37 .44 

Union .85 .41 .55 

 SVM Spotlight URI .70 .50 .58 

TAGME URI .76 .90 .82 

Intersection .67 .39 .50 

Union .72 .45 .55 

 ZeroR Spotlight URI 0 0 0 

TAGME URI .64 1 .78 

Intersection 0 0 0 

Union 0 0 0 

 

Even though TAGME_URI provided better precision for the 

correct label, the union of entity embeddings got better f1-score 

and recall. The increase in f1-score can be related to the amount 

of entity URIs provided by the Union (set union of entity URIs 

from DBpedia Spotlight and TAGME). This suggests that more 

entities have a positive effect on performance. Similarly, as in 

accuracy, there was an increase in precision and f1-score on both 

labels for the baseline classifier.  

5.5 Mention Embedding Results 
Table 16 shows that when mention embeddings were used as 

features, SVM achieved the highest accuracy of 81.79% with the 

Union configuration. This is the first time that Random forest is 

surpassed by SVM in terms of accuracy, However, Random forest 

is still outperforming SVM in terms of AUC. 

Table 16. Accuracy & AUC using mention embeddings 

Tool Random 

Forest 

SVM ZeroR 

ACC

% 

AUC ACC

% 

AUC ACC

% 

AUC 

Spotlight 

Mention 

74.83 .74 75.83 .63 73.50 .50 

TAGME 

Mention 

80.85 .85 79.66 .76 63.69 .50 

Intersection 78.50 .73 79.52 .68 74.40 .48 

Union 79.80 .86 81.79 .71 73.50 .49 

 

As in entity embeddings, the highest results differ between 

classification algorithms. Table 17 presents detailed results for 

the performance of Random forest and SVM using mention 

embeddings.  For the correct label, the Random forest classifier 
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with the union of mention embeddings had f1-score of .88 (the 

highest F1 value). For precision, SVM did better with either the 

intersection or union of mention embeddings (.83). The not-

correct label had both best precision (.86 using 

TAGME_Mention) and f1-score (.83 using the union of mention 

embeddings) with the SVM classifier. 

Table 17. Precision, recall & f1-score using mention 

embeddings 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight 

Mention 

.78 .91 .84 

TAGME 

Mention 
.82 .61 .70 

Intersection .81 .93 .87 

Union .80 .98 .88 

 SVM Spotlight 

Mention 

.80 .90 .85 

TAGME 

Mention 

.78 .61 .69 

Intersection .83 .92 .87 

Union .83 .94 .88 

 ZeroR Spotlight 

Mention 

.73 1 .85 

TAGME 

Mention 

0 0 0 

Intersection .74 1 .85 

Union .73 1 .85 

Not-

correct 

Random 

Forest 

Spotlight 

Mention 

.55 .30 .39 

TAGME 

Mention 

.81 .92 .86 

Intersection .64 .36 .46 

Union .83 .30 .44 

 SVM Spotlight 

Mention 

.57 .36 .44 

TAGME 

Mention 
.80 .90 .85 

Intersection .65 .44 .52 

Union .75 .48 .58 

 ZeroR Spotlight 

Mention 

0 0 0 

TAGME 

Mention 
.64 1 .78 

Intersection 0 0 0 

Union 0 0 0 

 

6. FEATURE SELECTION 
In this section, we describe the results obtained when applying 

two feature selection methods to our dataset: mean decrease 

impurity (MDI) and mean decrease accuracy (MDA). Both 

methods employ random trees to measure the importance of a 

feature [7]. We trained different classifiers with the selected 

features and compared their results to the same classifiers without 

feature selection.  

First, we calculated the MDA and MDI scores for each feature in 

our data set and kept only features with scores strictly higher than 

0. Negative or zero MDA/MDI values were either detrimental or 

unhelpful to the performance of the classifiers. Table 18 shows 

the number of features before and after feature selection. 

Table 18. Number of remaining features with and without 

(WFS) feature selection 

 Technique 

Features WFS MDA MDI 

N-gram 700 90 205 

Entity Mention 665 99 179 

Entity URI 875 109 236 

Entity Embedding 100 83 84 

Mention Embedding 300 161 117 

  

Then, we trained and evaluated Random Forest, SVM, and ZeroR 

classifiers using each of the top performing configurations per 

feature set in terms of f1-score to compare the results obtained 

with and without feature selection. The obtained results (Figure 

1) show that in most cases, feature selection led to a slight 

increase in the accuracy of our classifiers. Specifically, MDA 

improved the accuracy of the classifiers in every case by as much 

as 4.9 for SVM using mention embeddings as features. However, 

overall Random forest generally remained the best, in terms of 

accuracy, with and without feature selection. 

 

Figure 1. Accuracy without feature selection (WFS) versus 

MDA & MDI 

7. DISCUSSION  
Overall, our Random forest classifiers proved the best in terms of 

accuracy and AUC. The only exception is with mention 

embeddings in which SVM did better in terms of accuracy by at 
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most 1 percentage point. Therefore, we base our conclusions only 

on Random forest. 

In terms of accuracy, there was not much difference between 

several feature sets as shown on Figure 2. The two best feature 

sets for accuracy were entity mentions with the union (88.58%) 

or TAGME configurations (88.52%) and n-gram features with the 

unigrams configuration (88.40%); these feature sets achieved the 

highest AUC (.95), as well. 

In terms of precision (Figure 3), n-grams outperformed other 

feature sets for the correct label (.93) and entity mentions 

obtained the best results for the not-correct label using the union 

and TAGME configurations (.90, .89).  

For F1-score (Figure 4), entity embeddings achieved the highest 

score for the correct label (.89 using the union configuration) 

closely followed by mention embeddings (union). Entity 

mentions (using the union or TAGME configurations) and 

unigrams did better for not-correct (.91)   followed by entity URIs 

(.90 with TAGME and union) and n-grams. 

 

Figure 2. Accuracy results 

When considering which class (correct, not-correct) we were best 

able to predict in terms of precision (Figure 3), we found that the 

detection of correct answers was better than not-correct answers, 

with differences ranging from .01 to .25 with Random forest. N-

gram features were better at detecting correct answers than not-

correct ones; while entity mentions did better for the not-correct 

(using union or TAGME) label. In 14 out of our 20 possible 

configurations, the classifiers were more precise in detecting 

correct answers. This is the case despite the unbalanced ratio of 

35% correct answers and 65% not-correct answers used for 

training. When we focus on the f1-score (Figure 4) we obtain 

better results for the not-correct label. We observe that the union 

configuration for entity embeddings and mention embeddings is 

the best for correct answers while entity mentions (TAGME or 

union) followed by unigrams outperform the other features for the 

not-correct answers.  

On average, unigrams are the best at differentiating between 

correct and not-correct labels in terms of precision while entity 

mentions (either with TAGME or Union) is preferred in terms of 

f1-score. 

The best configuration based on semantic annotations depends on 

the considered evaluation metric. Based on accuracy, features that 

use mentions (entity mentions and mention embeddings) 

performed better with either union or TAGME. The feature sets 

that use URIs (entity URIs and entity embeddings) performed 

better with URIs obtained using TAGME. In both cases, the use 

of TAGME alone obtains either the best result or is very close to 

the highest value. For f1-score, the use of TAGME for entity 

mentions and entity URIs provided the same results as the union 

for both labels; additionally, TAGME and union are also the best 

configurations for both entity mentions and entity URIs. Entity 

embeddings and mention embeddings had their best f1-score on 

the correct label using the union, but better f1-score for not-

correct using TAGME alone. When we average the f1-score for 

both labels, we obtain higher results with TAGME. The reason 

for very similar results with TAGME and the union is that the 

annotations provided by Spotlight were often a subset of those 

provided by TAGME.  

 

Figure 3. Precision results for Random forest 

Both entity and mention embeddings performed worse than n-

gram features and semantic annotations models based on 

accuracy. However, one interesting observation is that, for the 

correct label, entity and mention embeddings outperformed all 

features on f1-score (Figure 4). Entity embeddings obtained 

slightly better results (precision, f1-score and accuracy) compared 

to mention embeddings.  

Our feature selection efforts show that MDI did not consistently 

improve the overall accuracy of our classifiers. It was the MDA 

feature selection technique which provided improvement in all 

the cases. The increase in accuracy ranged from .3% to 4.9%.  
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Figure 4. F1-score results for Random Forest 

 

8. CONCLUSION 
In this paper, we compared several vector-based feature sets 

coupled with classifiers for the ASAG task.  

In general, we showed that on average, entity mention features 

(TAGME or union) are the top features in terms of f1-score while 

n-gram features (unigrams) are the best in terms of precision. For 

the detection of correct answers, we showed that n-gram features 

(trigrams and n-grams) and features based on embeddings (entity 

and mention embeddings with the union configuration) are the 

most effective in terms of precision and f1-score respectively. In 

terms of semantic annotations, TAGME provided the best 

accuracy for each feature with the exception of entity mentions, 

where the union configuration slightly outperformed TAGME 

alone. Finally, the MDA feature selection technique slightly 

improved the accuracy of all the classifiers. 

One of the main limitations of this study is the unbalanced set of 

labeled answers available in the corpus. Another limitation is 

associated with the configuration of semantic annotators as we 

only tested the default level of confidence for each annotator. One 

additional limitation, for mention embeddings specifically, is the 

relatively low coverage obtained using GloVe. We plan to address 

these limitations in future work by testing the proposed features 

against other available ASAG datasets. We also intend to 

experiment with varying the level of confidence and similar 

parameters of the semantic annotators. Another important step 

will be to exploit a combination of the current features to benefit 

from their respective strengths for the correct and not correct 

labels. Finally, we will explore other methods for response 

classification using additional features that exploit model answers 

and deep learning architectures. 
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ABSTRACT
Knowledge of prerequisite dependencies is crucial to several as-
pects of learning, from the organization of learning content to the
selection of personalized remediation or enrichment for each learner.
As the amount of content is scaled up, however, it becomes increas-
ingly difficult to manually specify all of the prerequisites among the
different content parts, necessitating automation. Since existing ap-
proaches to automatically inferring prerequisite dependencies rely
on analysis of content (e.g., topic modeling of text) or performance
(e.g., quiz results tied to content) data, they are not feasible in cases
where courses have no assessments or only short content pieces
(e.g., short video segments). In this paper, we propose an algo-
rithm that extracts prerequisite information using learner behav-
ioral data instead of content and performance data, and apply it
to an online short course. By modeling learner interaction with
course content through a recurrent neural network-based architec-
ture, our algorithm characterizes the prerequisite structure as latent
variables, and estimates them from learner behavior. Through eval-
uation on a dataset of roughly 12,000 learners in a course we hosted
on our platform, we show that our algorithm excels at both predict-
ing behavior and revealing fine-granular insights into prerequisite
dependencies between content segments, with validation provided
by a course administrator. Our approach of content analytics using
large-scale behavioral data complements existing approaches that
focus on course content and/or performance data.

1. INTRODUCTION
Recent advances in machine learning and big data have provided
opportunities to revamp the traditional “one-size-fits-all” approach
to education. Researchers have developed methods that analyze
massive learner and content data to provide personalized recom-
mendations on what actions learners should take, e.g., to read a
section of a textbook, watch a lecture video, or work on a prac-

tice question [19, 24]. By catering to the needs of each individual
learner, such personalization methods can enhance learning effi-
cacy; see [1] for an overview.

By specifying an ordering of which learning content should be
used before others, content prerequisite structures provide impor-
tant guidance for the design of personalization algorithms. These
structures may be defined at multiple levels of granularity, from
across courses to within single pieces of learning content (e.g.,
between chunks of a video), or for specific units of knowledge
(often termed “knowledge components”, “skills”, or “concepts”).
Roughly speaking, learning content is deemed the prerequisite of
another if it contains knowledge that learners have to master before
studying the other. For example, Calculus is a prerequisite of Dif-
ferential Equations at the granularity of different courses; learners
should master the former before they learn the latter.

Several works have demonstrated the utility of prerequisite struc-
tures to learning and personalization. For one, [32] showed that
when instructors do not take these prerequisite structures into ac-
count when designing their course curriculums, learners do not
perform as well. Also, [33] showed that learners with high mas-
tery of prerequisite knowledge are much less likely to become con-
fused in learning tasks, compared to those with low mastery. More-
over, the works in [4, 37] showed that an important feature in the
prediction of a learner’s first responses on a particular skill is the
learner’s demonstrated mastery level on prerequisite skills. But ex-
isting methods for extracting prerequisites suffer from important
drawbacks that we will describe next.

1.1 Existing Methods for Prerequisite Struc-
ture Extraction

Explicit prerequisite structures, like those in [32], are labor-intensive
to construct manually and rarely available in practice, especially
when considering fine-granular prerequisites (e.g., between file seg-
ments). Inexplicit structures on the other hand, such as tables of
contents in textbooks [18] and knowledge graphs constructed from
large databases [3], typically only contain weak information about
prerequisites: they offer some information on how learning con-
tent should be ordered, but do not necessarily impact learner per-
formance or behavior. This observation has motivated the devel-
opment of automated methods for extracting explicit prerequisite
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structures from data. Existing methods of automation can be di-
vided into two main categories based on the type of data they use:
(i) learner data and (ii) content data.

Methods in the first category use one form of learner data al-
most exclusively: learner performance, which usually consists of
learners’ responses to assessment/quiz questions. These methods
have used several different models/algorithms to make inferences
from performance data, including causal graphs [28], structural
expectation-maximization [9], Bayesian estimation [14], hypoth-
esis testing [6], probabilistic association rules [10], convex opti-
mization [27], correlation/regression analysis [7], and approximate
Kalman filtering [21].

As for the second category, methods have leveraged several forms
of content data and metadata. [18], for instance, proposed using
the organization and unit titles in online textbooks to classify be-
tween prerequisite and outcome concepts. Others have involved
Wikipedia, either using the content on wiki pages to aid the extrac-
tion of concept maps in textbooks [34,35] or extracting prerequisite
structures among the pages themselves [22, 31]. While [22] ana-
lyzed the links between pages, [31] uses both textual content and
the page creation and modification logs to extract prerequisites.

The major downside of these existing automation methods is that
they require substantial learner performance or content data, which
is not always available or accessible. Corporate training, for ex-
ample, is a learning scenario in which many courses have few if
any assessments; performance is in many cases assigned as a sin-
gle satisfactory/unsatisfactory outcome at the end of the course [8].
Methods that extract prerequisite structures based on learner per-
formance data, then, are not applicable in these settings. On the
other hand, in many interactive learning environments like educa-
tional games [23], content data is limited and not easily parsable; in
these settings, methods to infer prerequisites based on content data
(especially text) are not applicable. Moreover, in any learning sce-
nario, as the level at which prerequisites are desired becomes more
fine-grained, the amount of content data available in each content
piece becomes smaller.

As a result, there is a need to develop methods that can extract
prerequisite structures from sources of data that (i) are abundant
in different learning scenarios and (ii) can be captured within fine-
granular pieces of content, especially in settings where content and
performance data are limited.

1.2 Our Method and Contributions
In this paper, we develop the first methodology to extract prereq-
uisite structures from large-scale learner behavioral data, using a
novel recurrent neural network (RNN)-based probabilistic model.
Behavioral data measures learner interaction with course material,
typically in the form of clickstream logs that are generated based on
each mouse click; in this way, it can be captured on small pieces of
content in any online learning scenario. We demonstrate the ability
of our model to identify prerequisites between fine-granular content
segments in the setting of online short-courses, where performance
and content data are limited; for our particular dataset, the entire
course is less than 15 minutes in duration, and while the 12,000
learners do not respond to any assessment questions, they generate
almost 900,000 clickstreams.

Specifically, our methodology consists of three main steps:

Feature engineering. First, we analyze the behavioral data cap-
tured by our online learning platform in terms of a set of learning
features (Section 2). These features summarize a learner’s behavior
on each segment of content that they visit as one of four states: low
or high engagement if they studied the segment, and skipping back
or forward otherwise. In deriving the formulas to convert from data
to features, we consider cases of off-task behavior (e.g., idle time)
that should be filtered out. We also consider content features in our
model; since the content data is sparse, we embed each segment
according to pre-trained statistical language models.

Modeling and inference. Second, we infer the parameters
of our probabilistic model through training and validation on the
dataset. The RNN-based learner model we propose (Section 3)
consists of two main parts: (i) a latent knowledge state transition
model, which considers how a learner’s knowledge state changes
based on the segment visited and behavior exhibited, and (ii) a
learner behavior model, which characterizes the probability that the
learner exhibits a particular behavior based on their current knowl-
edge gaps. Our model parameters are trained by minimizing cross-
entropy loss in the prediction of learner behavior on segments they
visit.

Prerequisite analysis. Third, we analyze prerequisite infor-
mation for our dataset by examining a model parameter matrix
that specifies dependencies between segments (20 second chunks
of video in this course). To establish reliability, we start by evalu-
ating the performance of our model in predicting behavior on our
dataset (Section 4.2); in doing so, we find that it can obtain over
85% accuracy and significant improvements over baselines. Then,
we visualize the prerequisite matrix, discuss its insights it provides,
and verify them through a questionnaire provided to a course ad-
ministrator (Section 4.3).

At the end, we also describe how our model parameters can drive
content personalization. More generally, we believe that this work
will motivate a new research thrust in using human behavior to
aid content analytics: such approaches have the potential to ben-
efit applications that involve large-scale human-content interaction
but have only limited content data.

2. BEHAVIORS AND CONTENT:
DATA AND FEATURES

In this section, we detail our methods for processing learner behav-
ioral data. We first discuss the specific course dataset we consider,
then the data capture, and finally the computation of features from
this data that are used in our prerequisite identification algorithm.

2.1 Course and Enrollment
The dataset we use comes from an online course on the topic of
product development that we hosted on our course delivery plat-
form. This course consists of 4 sequential videos that we divide
into a total of 36 segments, with each segment spanning 20 seconds;
totaling less than 15 minutes, this qualifies as a short-course [8].

We let s = 1,2, ...,S denote the index of the segments in the course
sequence. Our evaluation will focus on the roughly 12,000 learners
who enrolled in this course over a six-month period in 2017.
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Figure 1: Visualization of the topic distributions across video seg-
ments in the course, as inferred by LDA. We see that videos tend to
cover disparate sets of topics; therefore, this analysis does not help
us to extract prerequisite structures.

2.2 Data Capture
We focus on two types of data captured by the platform: (i) video-
watching clickstreams, which log each learner’s interactions with
the video player, and (ii) transcripts of the course content, mea-
sured in words. In total, this data consists of roughly 900,000 click-
streams and 1,700 words across the video segments.

Given such a limited text repository, relying on topic models alone
to extract prerequisite structures is infeasible. Nonetheless, we in-
corporate content data as one component of our methodology, since
we seek to use any data sources available to aid the performance of
our model. In later sections, we will experimentally validate the
impact of this input on model performance, and the possibility of
replacing it with other data.

Video-watching clickstreams. The data capture architecture
for our platform is event-driven, i.e., each event that a learner makes
is recorded. The following is the space of actions available to a
learner on the video scrub bar: Play (Pl), Pause (Pa), Skip forward
(Sf), and Skip backward (Sb). There are also actions available out-
side of the scrubber: Enter video (En), Exit video (Ex), Window
foreground (Wf), and Window background (Wx), where Wf and Wx

dictate whether the course application is the current selection on
the device. Formally, the ith event created by learner u in the course
will be in the format

Eu(i) =< v(i),a(i),s′(i),s(i), p(i),b(i)>,

where v(i) is the video ID and a(i) is the type of action. s(i) is the
segment of the video player immediately after e(i) was fired, while
s′(i) is the one immediately before. p(i) is the UNIX timestamp (in
seconds) of this event, and b(i)∈ {playing,paused} is the binary
state of the video player immediately after i happens.

For a video with multiple segments, when the learner plays through
the end of s, an event with a(i) = play, s′(i) = s, and s(i) = s+1
will be generated.

Course content. The videos originate in .mp4 format for deliv-
ery to learners. To obtain the text transcripts, we divide videos to
length of 20-second long segments and employ open source speech-
to-text conversion software, creating one output for each segment
and further correcting any translation mistakes manually. Con-
cretely, the output for segment s in the bag-of-words representation
xs over a dictionary X = {w1,w2, ...}, where xs(k) is the number
of times word wk ∈X appears in s.

To further motivate our behavior-based approach to inferring pre-
requisites, in Figure 1 we show the progression of topics through
the segments in the course as inferred by the latent Dirichlet alloca-
tion (LDA) topic analysis algorithm [2]. LDA extracts document-
topic and topic-word distributions from a corpus of text separated
into documents; here, segments are treated as separate documents,
and the segment-topic distributions are plotted. According to this
model, each video focuses on fairly independent topics, with min-
imal overlap (e.g., the segments in the first video focus heavily
on topic 3, while those in the third focus almost entirely on topic
5). This analysis shows how topic analysis alone provides lim-
ited insights into prerequisite structures which likely extend across
videos, a point we will verify later in our model evaluation.

2.3 Feature Construction
We construct two types of features from our data: (i) video-watching
behaviors and (ii) text embedding vectors. The behaviors are learner-
specific, while the text vectors are not.

Video-watching behaviors. Let s(u, t) denote the segment
learner u visited at time index t ∈ {1, ...,Tu}, with Tu being the
total number of (not necessarily unique) segments u visited. The
time instance here increments whenever the learner transitions to a
different segment, i.e., s(u, t) 6= s(u, t + 1). In our model, we con-
sider the behavior of learner u at time t as a feature fu,t ∈F , where
F = {LE,HE,SB,SF} is a set of four states summarizing behavior
on a segment: Low Engagement (LE), High Engagement (HE), Skip
Back (SB), and Skip Forward (SF).

fu,t is determined by analyzing the set of measurements Eu,t that
occur for learner u during time t. Letting i(t) and i(t + 1) be the
indices of the events where u transitions to s(u, t)1 and s(u, t + 1),
respectively, then Eu,t = {Eu(i) : i(t)≤ i < i(t +1)}. From this, we
first calculate the time spent on s(u, t) by aggregating the changes in
timestamps between sequential events in Eu,t , excluding any points
of the app in the background that indicate learner off-task behavior:

ms(u,t) = ∑
i,i+1∈Eu,t
a(i)6=Wx

min(p(i+1)− p(i),Tu) ,

where Tu = 300 sec is an upper bound for idle time on each 20
second segment.

If ms(u,t) < 3, then we infer that the learner has skipped over s(u, t);
in this case, if s(u, t + 1) > s(u, t), then it is a forward skip and
fu,t = SF, whereas if s(u, t + 1) < s(u, t) then it is backwards and
fu,t = SB. On the other hand, if ms(u,t) ≥ 3, then the learner has
engaged with the segment; similar to [8], we quantify engagement
on s(u, t) as

es(u,t)(m) =

(1+ms(u,t)/m̄s

2

)α

,

1in other words, i(t) = i : s′(i) 6= s(u, t),s(i) = s(u, t).
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Figure 2: Roll-out visualization of the architecture of our RNN-based learner behavior model. At time t + 1, we use the observed learner
behavior fu,t at time t, the learner’s prior knowledge state hu,t , and the knowledge contained in the previous segment s(u, t) to update their
current knowledge state. Then, we calculate the prerequisite knowledge gap and the learning goal knowledge gap using the prerequisite
structure R among segments, which decide the learner’s behavior at time t + 1. Latent variable dependencies are denoted by solid arrows,
while the prerequisite dependencies are denoted by dashed arrows.

where m̄s is the expected time spent on s, and α ∈ (0,1] is a param-
eter for the diminishing marginal returns of time spent on engage-
ment.2 Intuitively, ms(u,t) > m̄s gives es(u,t) > 1. With this—and
ms(u,t) ≥ 3—we specify: if es(u,t) < 1, then engagement is low and
fu,t = LE, whereas if es(u,t) ≥ 1 it is high and fu,t = HE.

Course content embeddings. We now detail our approach to
processing course content data into features. As discussed, due to
the limited textual information in this application, applying stan-
dard natural language processing methods (such as word count
techniques [17] and LDA) may not be sufficient. Instead, we re-
sort to statistical language models that are pre-trained on web-scale
data; in particular, we use GloVe embeddings [26], a word-to-
vector mapping pre-trained on the Wikipedia 2014 and Gigaword
5 datasets. These embeddings are well suited as inputs to RNNs,
since the Euclidean distance (or cosine similarity) between GloVe
vectors provide useful insights into the linguistic similarities be-
tween the corresponding words [26].

Specifically, we seek a vector representation ys for segment s that
quantifies the material covered in s based on the bag-of-words
xs. We first map each word wk ∈X to its corresponding vector
yk ∈R100 in the pre-trained GloVe library,3 where 100 is the choice
of dimension in the pre-trained embedding. We then aggregate the
word vectors in s to obtain the embedding ys =∑k xs(k) ·yk ∈R100.
To reduce the number of parameters under consideration, we fur-
ther perform dimensionality reduction of ys via principal compo-
nent analysis (PCA) [15], obtaining ys ∈ RD for a parameter D; ys
is taken as the top-D principal components of the PCA. We will
consider the choice of D in our experiments section.

3. RNN-BASED MODEL
We now propose an RNN-based probabilistic model for learner be-
havior that uses the features defined in Section 2. The reason that

2For the 20 sec video segments in this course, we set m̄s = 20 and
α = 0.1 by default.
3https://nlp.stanford.edu/projects/glove/

we choose RNN as a basis is that it is often used to model sequen-
tial data, such as text [13, 16] and user purchasing activities [25],
which is characteristic of learner behavioral sequences as well.

Our overall model architecture is visualized in Figure 2. It consists
of two main parts described in this section: (i) a latent knowledge
state transition model, and (ii) a learner behavior model.

3.1 Latent Knowledge State Transition Model
The state transition model is similar to that of generic RNNs.
In our context, the transition is induced by gaining knowledge
from watching a video segment. Letting hu,t ∈ RK denote the K-
dimensional knowledge state vector of learner u at time t, we model
the transition as

hu,t = σ
(
Whu,t−1 + lu,t−1 +b

)
, (1)

where W∈RK×K denotes the state transition parameter matrix and
b ∈ RK denotes the bias vector. σ(·) is a nonlinear function, for
which we will test a range of possible nonlinearities later in the
experiments section. lu,t−1 is defined as

lu,t−1 = eu,t−1Uys(u,t−1)

to quantify the amount of knowledge the learner acquires from
watching segment s(u, t−1) (a setting that follows [21]); Uys(u,t−1)
captures the knowledge contained in this segment, since ys(u,t−1) is
its GloVe embedding and U ∈ RK×D is the input parameter matrix
that maps its text embedding to latent knowledge, while eu,t−1 is the
scalar engagement variable which dictates the amount of Uys(u,t−1)
transferred to the learner. We parameterize eu,t with the behavioral
feature fu,t :

eu,t =

 eh if fu,t = HE

el if fu,t = LE

0 if fu,t ∈ {SB,SF}.

Here, eh,el ∈ [0,1] are parameters that characterize specific engage-
ment levels that HE and LE correspond to in our model. If a learner
skips a video segment, their engagement level is zero, so no knowl-
edge is gained.
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Note that this characterization of engagement differs from that de-
scribed in [8, 20]. In our model, when there is no knowledge input
(lu,t−1 = 0), W and b can be used to characterize other causes of
knowledge state transition, e.g., forgetting. For another example on
the relationship between engagement and learning, see [29].

3.2 Learner behavior model
The behavior model concerns the feature variable fu,t . We model
the probability that a learner selects each f ∈F with the following
softmax distribution:

P( fu,t = f ) =
evT

f [gT
u,t zT

u,t ]
T+d f

∑ f ′∈F evT
f ′ [g

T
u,t zT

u,t ]T+d f ′
, (2)

where the variables are gu,t ∈RK , zu,t ∈RK , v f ∈R2K , and d f ∈R.
The vectors v f and the biases d f , together with latent state variables
gu,t and zu,t , decide learner behaviors on each video segment. gu,t
denotes the prerequisite knowledge gap and zu,t denotes the learn-
ing goal knowledge gap; they are defined from the knowledge state
transition model as follows:

Prerequisite knowledge gap: gu,t := ps(u,t)−ru,t is the prerequisite
knowledge gap vector. ps denotes the required knowledge level of
segment s, and ru,t denotes the portion of learner u’s knowledge
state at time t that is relevant to the prerequisite requirement of
segment s(u, t). Concretely, ru,t is defined as

ru,t =
t−1

∑
τ=1

Rs(u,τ),s(u,t) · lu,τ ,

where the matrix R ∈ {R+ ∪ 0}S×S, at the core of our model,
characterizes the prerequisite structure among segments. A large
value of Rs,s′ implies segment s is a strong prerequisite of s′, while
Rs,s′ = 0 means s is not a prerequisite of s′. Note that the nonnega-
tivity constraint placed on the prerequisite structure matrix is nec-
essary for interpretability of the model parameters, since reversing
the sign of every parameter would lead to the same data likelihood,
rendering the model unidentifiable in the absence of this constraint.

Learning goal knowledge gap: zu,t := cu−hu,t−1 denotes the learn-
ing goal knowledge gap vector. cu characterizes the learning goal
of learner u, i.e., a target knowledge state that they are satisfied
upon reaching, while hu,t−1 denotes their previous knowledge state.
In general, cu can either be personally imposed (e.g., in optional,
recreational learning) or externally enforced (e.g., in institutional-
ized learning); for the course in this paper, it is the latter.

Model intuition. Our model is based on the intuition that there
are two factors driving a learner’s behavior while watching a par-
ticular video segment. The setup of these two factors enables us
to extract the prerequisite dependencies (R) among video segments
by observing the sequences of learner behaviors.

The first factor, parameterized by the prerequisite knowledge gap
vector gu,t , characterizes whether the learner possesses enough
prerequisite knowledge to master the current segment. This gap
is given by the difference between the knowledge level required
to master the current segment (ps(u,t)) and the learner’s accumu-
lated knowledge from prerequisite segments (ru,t ). The learner
would have gained such knowledge by exhibiting high engage-
ment ( fu,t = HE) on the prerequisite segments; if they do not have
enough, they are more likely to skip backwards ( fu,t = SB) to study

further.

The second factor, parameterized by the learning goal knowl-
edge gap vector zu,t , characterizes whether the learner has already
reached their learning goal. This gap is given by the difference
between the goal (cu) and the learner’s previous knowledge state
(hu,t−1). If the learner has already accumulated enough knowl-
edge, they are more likely to exhibit low engagement ( fu,t = LE) or
to skip forward ( fu,t = SF).

Parameter inference. We estimate the latent model parame-
ters, i.e., the input, transition, and output parameters U, W, and
v f , the biases b, the latent engagement level parameters eh and el ,
the learning goal vectors cu, and the prerequisite structure matrix R
by using the Adagrad optimizer [11] to minimize the cross-entropy
loss [12] on the observed behavior sequences. The cross-entropy
loss is the standard loss function for categorical data (each category
corresponds to a behavior in F = {LE,HE,SB,SF}). We implement
our inference algorithm in TensorFlow.4

4. EXPERIMENTS
In this section, we evaluate our model proposed in Section 3 on the
product development course. We first describe our experimental
setup, including training/validation and tuning procedures. Then,
we investigate the ability of our model to predict learner behavior
on future video segments, compared to baselines. Once we have
established model quality, we perform an exploratory analysis of
the prerequisite structure information in the model, and present the
results from sharing these insights with a course administrator.

4.1 Experimental Setup

Training and validation. We partition the original dataset to
two parts: (i) the training set, which is used to train models, and (ii)
the validation set, which is used to evaluate prediction performance.
We randomly select 90% of the learners to form the training set and
use the remaining 10% as the test set.

In each training epoch, we randomly select 800 learners from the
training set and use their behavioral data to calculate the gradient
of the overall cross-entropy loss with respect to our model parame-
ters. We then take a gradient step using the Adagrad optimizer [11]
and evaluate the prediction performance of our model on the vali-
dation set. Note that since the learners in the validation set are not
used in our training procedure, we do not have estimates of their
target knowledge state vector cu. Therefore, we take the average
of the estimated target knowledge state vectors over learners in the
training set and use it for learners in the validation set.

Metrics. We report the performance of our proposed model and
baselines using two standard evaluation metrics on the validation
dataset: (i) the cross entropy loss, and (ii) prediction accuracy,
which is simply the percent of behaviors that are predicted cor-
rectly. Lower loss and higher accuracy implies better performance.

Baselines. We focus on shallow RNN-type networks as base-
lines, since (i) they have been widely used to model sequential data

4https://www.tensorflow.org/
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and (ii) they have a similar architecture to our model, thereby pro-
viding a fair comparison.

First, we consider an RNN model with content GloVe embeddings
ys as input and learner behaviors fu,t as output, which we refer to
as RNN-G:

hu,t = σ(Uys(u,t)+Whu,t−1 +b)

P( fu,t = f ) =
evT

f hu,t+b f

∑ f ′∈F evT
f ′hu,t+b f ′

.

In RNN-G, the input at every time step does not contain the
learner’s actual behavior in the last time step. Such a setting can
be disadvantageous when the input provides only limited informa-
tion on the current output. To investigate this, we also consider an
RNN model that feeds the ground truth behavior from the last time
step ( fu,t−1) back into the model as input at the current time step,
which we refer to as RNN-F:

hu,t = σ(Ufu,t−1 +Whu,t−1 +b)

P( fu,t = f ) =
evT

f hu,t+b f

∑ f ′∈F evT
f ′hu,t+b f ′

.

Here, we slightly abuse notation, using fu,t−1 ∈ {0,1}|F | to denote
the one-hot-encoded vector version of the observed learner action
at time t− 1 [12]. Note that this network structure has been used
to model sequential data, e.g., text; this technique is sometimes
referred to as teacher forcing [36].

These two baselines—RNN-G and RNN-F—can both use informa-
tion from previous time steps for the prediction of learner behavior
at the current time step. In some sequential prediction tasks, only
recent information is needed, whereas in other scenarios, long-term
dependencies must be considered; the latter may especially be true
in learning given how material builds on itself [38]. Since neither
RNN-G nor RNN-F support the use of information from several
time steps back, we will also consider the long short-term memory
(LSTM) network as a baseline algorithm, which we will refer to as
LSTM. Similar to RNN-F, we use previous learner behavior as the
input to the next time step in LSTM. The comparison between our
model and LSTM will show which is better at storing and retrieving
information from further back in time.

Parameter tuning. Several parameters must be tuned to opti-
mize the performance of each model. First is the dimension of
the latent knowledge state vector K, which applies to all models:
we sweep over K ∈ {5,10, . . . ,55}. Second is the dimension of
the GloVe embedding D, for our model and RNN-G: we consider
D ∈ {5,10, . . . ,45}, where D corresponds to the top-D principal
components of the PCA on the segment vectors.

We also examine the performance of our model with different
choices of the nonlinearity function σ(·). For this, we use the
nonlinearities built in to TensorFlow: rectified linear units (relu),
exponential linear units (elu), hyperbolic tangent (tanh), soft plus
(softplus), and no nonlinearity (identity).

Through our experiments, we found that a constant learning rate of
0.01 and a total of 300-500 training epochs consistently led to the
best results, for all three baseline algorithms. As a result, we will
not perform more than 350 training epochs, since the performance

Figure 3: Performance of our model against the number of training
epochs. While the training loss continues to decrease, the valida-
tion loss stabilizes quickly after approximately 200 epochs.

does not significantly improve after that.

4.2 Prediction Performance
We consider model performance against several parameters. When
parameters are constant, they take the default values of K = 45,
D = 30, and σ = tanh.

Varying number of training epochs. In Figure 3, we plot
the cross entropy loss on both the training and validation sets, as
well as the accuracy on the validation set, as the number of training
epochs is varied for our model. We see that (i) the training loss
exhibits a continually decreasing trend with minimal fluctuations,
while (ii) the validation loss drops quickly initially but stabilizes
after around 200 epochs, and (iii) the validation accuracy stabilizes
quickly after about 20 epochs. Since the performance on the vali-
dation set remains stable after a large number of epochs, we con-
clude that our model does not easily overfit. In fact, implementing
dropout regularization [30] showed minimal impact on the perfor-
mance of our model. Therefore, we did not use dropout or any
other form of regularization in our other experiments.

Varying latent knowledge state dimension K. In Figure 4,
we plot (a) the cross entropy loss and (b) the accuracy of all four
models on the validation set against the dimension of the hidden
layer K. Overall, we see that our model outperforms every base-
line for each choice of K, and significantly so on the cross entropy
loss metric, which demonstrates the ability of our model to accu-
rately predict learner behavior. While all models show improving
performance as K increases, after K = 10 the improvement for our
model is minimal. The fact that both our model uses the same input
information yet outperforms RNN-F justifies our particular design
choices involving the prerequisite knowledge gap and learning goal
knowledge gap vectors.

We also see that RNN-G performs significantly worse than RNN-
F. This observation suggests that the features given by the content
data provide only limited information on learner behavior, which
validates our conjecture that the learning content itself (i.e., the
video transcripts) is a very limited data source. Finally, we note
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(a) Cross entropy loss (b) Accuracy

Figure 4: Prediction performance on the validation set as the dimension of the latent knowledge state vector (K) is varied. Our model
outperforms all baselines in each case tested, especially on the cross entropy loss metric, indicating an overall ability to predict learner
behavior. Moreover, the performance of our model is robust to the choice of K.

that among the baselines, LSTM slightly outperforms RNN-F, in-
dicating that in our application of online learning, there is benefit
to preserving information on behavior further back in time.

Varying input dimension D. In Figure 5, we plot (a) the cross
entropy loss and (b) the accuracy of our proposed model and RNN-
G against the dimension of the input GloVe embedding D on the
validation set. Overall, we see that the performance of both models
is insensitive to the choice of D. One possible explanation is that
even with very low-dimensional input (i.e., taking only the top few
principal components), the embeddings still encapsulate the video
transcript text effectively. To investigate this, in Figure 5, we label
the percentage of variance explained by the top-D principal com-
ponents of the GloVe embedding for every value of D. We see that
the top-5 principal components (i.e., D = 5) explain about 95% of
the total variance, which explains why increasing D beyond D = 5
does not further improve the performance. This observation on the
percentage of variance explained provides more evidence that the
information contained in the textual content is limited.

Varying nonlinearity σ . In Table 1, we tabulate the cross en-
tropy loss and accuracy of our model on the validation set using
the different non-linearity functions σ . Overall, while the elu non-
linearity achieves the best performance when considering both met-
rics, every choice of nonlinearity leads to very similar performance.
This suggests that our model is robust to the choice of nonlinearity
in the latent knowledge state transition.

4.3 Prerequisite Structure Analysis
Having established overall model quality, we now analyze the ex-
tracted prerequisite structure, i.e., the model matrix R. In doing so,
we will consider several examples that illustrate how the course was
constructed, referring to the video titles and segment transcripts as
needed. We then validate the insights through the results of a ques-
tionnaire on some of the particular findings that was provided to a
course administrator. This administrator possesses intimate knowl-
edge of the course content and how it was constructed.

To derive the insights, we consider two different cases of the ma-
trix: (a) R across the entire course, obtained from extracting the
prerequisite structure between all video segments, and (b) Rv for
each video v, from estimating the structure between segments in
each video separately. Case (a) uses the results for K = 45, D =
30, σ = tanh from the previous experiment, while case (b) is a new
experiment with these settings.

4.3.1 Insights: Full course matrix
Figure 6(a) visualizes R across the course. We focus on a few
key findings here, some across videos and some for individual seg-
ments. First is that segments in the last two videos have substan-
tially more prerequisites than those in the first two. The only seg-
ment with significant prerequisites in the first two is Segment 8,
while the only one without significant prerequisites in the second
two is Segment 13. At a high level, then, we can infer that the first
two videos are laying the groundwork for material covered later on.
This makes sense considering even just the titles of the videos, with
the first two geared towards explaining the “vision” and reasoning
for the development of this product, and the later two expounding
on the product’s “features” and technical description.5

For individual segments, consider Segment 8 from the previous dis-
cussion. This segment has all previous ones as prerequisites, with
some more significant than others. The transcript for this segment
indicates a discussion on the demand for this type of product over
the next several years, which is traditionally viewed as “problem-
atic,” so it makes sense that learners should study Segments 0 to 7
first to understand the “vision” of this version of the product to mit-
igate the problem. Segments 1, 4, and 6 discuss “problem mitiga-
tion” in particular, consistent with them being larger prerequisites.
Another interesting case is Segment 26, for which there are several
prerequisite segments throughout the course, but the one immedi-
ately previous is not as significant. Segment 26 actually continues
with the theme of “problem mitigation,” which is discussed in Seg-
ment 24 but not in Segment 25. Segments 4, 11, and 19 reference
the particular method of “problem mitigation,” which is also con-

5We omit exact video titles and transcripts in this section to pre-
serve anonymity, but provide enough context for the key points.
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(a) Cross entropy loss. (b) Prediction accuracy.

Figure 5: Prediction performance on the validation set as the dimension of the input word embedding (D) is varied for both our model and
RNN-F. For each point, we label the percentage of variance in the input explained by the top-D principal components. The performance
remains largely unchanged as D increases in each case, which is consistent with over 98% of the variance being explained by the top-5
principal components (i.e., D = 5).

Activation Functions Formula Accuracy Cross Entropy Loss
relu σ(x) = x if x ≥ 0, σ(x) = 0 if x < 0 0.861 0.444
tanh σ(x) = 1−e−x

1+e−x 0.861 0.445
elu σ(x) = x if x ≥ 0, σ(x) = ex−1 if x < 0 0.861 0.443

softplus σ(x) = ln(1+ e−x) 0.861 0.447
identity σ(x) = x 0.860 0.454

Table 1: Performance of our model with different choices of nonlinearity σ(·). Except for the identity (no nonlinearity) which performs
worse, all nonlinearities lead to a similar performance, implying that our model is robust to the choice of nonlinearity.

sistent with them being strong prerequisites to Segment 26.

4.3.2 Insights: Individual video matrices
Figure 6(b) visualizes Rv for separate videos v. Compared with
Figure 6(a), it is easier to compare segments within videos, but the
relative magnitudes of prerequisites between videos is lost. For
Video 4, we see that prerequisites within the video tend to become
weaker as the video progresses, which is not obvious in Figure 6(a).
For example, while Segment 23 has a heavy dependence on Seg-
ment 22, Segment 34 is only lightly dependent on a few segments
in the video. Being close to the end, Segment 34 is summarizing
information across the course, which is evident through its prereq-
uisites in Figure 6(a). The inferred relation between Segments 23
and 24 is consistent with both of these segments’ transcripts dis-
cussing particular technologies in the new product.

Another insight is that with the exception of Video 3, the last seg-
ment in each video has only light prerequisites within the video.
Intuitively, we would expect last segments to summarize the ma-
terial covered in the video, but such a review may not constitute
a strong prerequisite. The transcript of Video 3’s concluding Seg-
ment 21, on the other hand, indicates that it is a continuation of the
“product features” discussion.

4.3.3 Questionnaire and response
The questionnaire provided to the course administrator began with
a brief description of the algorithm and purpose. It then included a
visualization of the R matrix, and an enumeration of several state-

ments drawn from our insights ranging from conclusions on partic-
ular segments to general trends across multiple segments. A sample
statement provided is “this segment does not have any prerequi-
sites, i.e., studying prior segments is not helpful to its understand-
ing.” The task of the course administrator was to indicate their level
of agreement with each statement on a five-point Likert Scale, from
1 (strong disagreement) to 5 (strong agreement).

80% of the responses we obtained to the statements were in the
range of 4-5. This indicates that the course administrator generally
agreed with the the prerequisite dependencies extracted by our al-
gorithm, and in turn gives additional validity to our proposed model
in terms of its ability to generate human-interpretable insights.

The disagreements tended to be for statements that compared the
magnitude to which two particular segments were prerequisites to
another segment, i.e., claiming that one was a stronger prerequisite
to the segment than the other. Since the agreements, by contrast,
were on more general statements concerning the existence and/or
strength of prerequisites to a given segment or group of segments
(e.g., “segment 1 is a strong prerequisite to segment 2”, “segments
in part 1 of the course tend to have more dependencies than seg-
ments in part 3”), our algorithm may not differentiate magnitudes
of prerequisites for a particular segment well. There are several
possible reasons for this. One is the method used to segment the
content: rather than choosing uniform 20 second chunks of video,
for example, it may be desirable to incorporate segmentation into
the modeling procedure, e.g., by maximizing the difference in pre-
requisites between adjacent segments. Another is the treatment and
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(a) Full course R (b) Individual videos Rv

Figure 6: Visualizations of the prerequisite matrices extracted in two ways: (a) R across the entire course, and (b) Rv for each video
v separately. The (s,s′)th entry (the entry on the sth row and s′th column, with s < s′) characterizes how much segment s serves as a
prerequisite of segment s′. The solid lines delineate the four different videos.

presentation of the values comprising the R matrix: rather than re-
porting these as real numbers, it may be desirable to group them
into relative magnitudes, e.g., low/medium/high or a simple binary
indicator of whether there is a noteworthy dependency. Educators
may be more interested in broader distinctions.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a recurrent neural network-based
model to extract prerequisite structure among fine-granular pieces
of learning content. We modeled such prerequisite structure infor-
mation as latent variables, and extracted it from learner behavioral
data. We applied our model to an online course dataset that con-
tains the clickstream activity behavioral data from 12,000 learners
watching course videos. Our experiments showed that our model
significantly outperforms baseline models in predicting learner be-
havior and, more importantly, that it effectively extracts both intra-
and inter-video prerequisite dependencies among video segments;
we were able to verify these insights through responses to a ques-
tionnaire provided to a course administrator. More generally, our
work demonstrated that large-scale learner behavioral data can of-
fer interesting insight into learning content; therefore, it is impor-
tant to use learner behavioral data to aid content analytics, espe-
cially when content data is sparse and learner performance data is
unavailable.

There are several avenues of future work. One is experimen-
tally testing whether the extracted prerequisite structure can lead
to better personalized remediation or enrichment activities selec-
tion [5, 19, 27]. Another is adapting our model to other content
types, e.g., educational games [23]. Also, one can try to adapt out
model to extract prerequisite structures in longer (e.g., semester-
long) courses by aggregating learner behavior at a higher granular-
ity level, and compare the results against that obtained via tradi-
tional, content data-based methods. Moreover, to further improve
the insights provided by our model, two approaches can be inves-
tigated as discussed: incorporating segmentation into the model it-
self to e.g., maximize the difference in prerequisites between adja-
cent segments, and grouping the values in the R matrix into discrete
categories. Finally, additional slack variables can be incorporated
into to our model to allow variation in learner behaviors; learners

sometimes make poor assessments about their prerequisite knowl-
edge and are unable to navigate across the course efficiently.

In particular, for personalization, note that the prerequisite struc-
tures (the R matrix) our model extracts can drive automated content
individualization. For example, when learner u reaches segment s′

at time t, a course delivery system could check whether the pre-
requisite knowledge gap gu,t ≥ 0. If not, then a combination of
segments s for which Rs,s′ is high and engagement es is low (i.e.,
significant prerequisites that the learner has not studied) can be dis-
played first. The system could then update gu,t as these prerequi-
sites are studied, and “unlock” the segment s′ once the learner has
engaged with them enough (when the prerequisite knowledge gap
gu,t diminishes). We are currently implementing such a method.
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ABSTRACT
Adaptive online courses are designed to automatically customize
material for different users, typically based on data captured dur-
ing the course. Assessing the quality of these adaptive courses,
however, can be difficult. Traditional assessment methods for (ma-
chine) learning algorithms, such as comparison against a ground
truth, are often unavailable due to education’s unique goal of affect-
ing both internal user knowledge, which cannot be directly mea-
sured, as well as external, measurable performance. Traditional
metrics for education like quiz scores, on the other hand, do not
necessarily capture the adaptive course’s ability to present the right
material to different users. In this work, we present a mathematical
framework for developing scalable, efficiently computable metrics
for these courses that can be used by instructors to gauge the effi-
cacy of the adaptation and their course content. Our metric frame-
work takes as input a set of quantities describing user activities in
the course, and balances definitions of user consistency and over-
all efficacy as inferred by the quantity distributions. We support
the metric definitions by comparing the results of a comprehensive
statistical analysis with a sample metric evaluation on a dataset of
roughly 5,000 users from an online chess platform. In doing so, we
find that our metrics yield important insights about the course that
are embedded in the larger statistical analysis, as well as additional
insights into student drop-off rates.

1. INTRODUCTION
Online learning has become a popular way for universities, corpo-
rations, and other institutions to offer full classes and certification
programs at scale to students outside the traditional campus set-
ting. Yet students in these courses, particularly in those with open
enrollment such as Massive Open Online Courses (MOOCs), often
exhibit a wide range of backgrounds, degrees of preparedness, and
goals. For example, while some may wish to indulge a personal
interest, others may wish to refresh their memory of the course ma-
terial in preparation for a job [11].

Adaptive online courses automatically individualize the content pre-
sented to users, and thus hold promise of accommodating student

heterogeneity at scale [4]. These course delivery systems may lever-
age a wide array of measurements to personalize material, such as
user performance on assessments and user behavior exhibited while
interacting with content and in discussion forums [4]. Both of these
forms of data – behavioral and performance – have been shown to
be predictive of learning outcomes [2, 6], indicating that they con-
tain information about whether a user’s goals have been met. Fully
analyzing the different types of user behavior and performance in
a course, however, may prove to be overwhelming to an instruc-
tor, and may require significant knowledge of statistics in order to
properly interpret the analysis.

Thus, it is useful to develop summary metrics that break down in-
sights from user data into a few easily understandable statistics,
particularly for large-scale online courses. Such metrics may also
allow direct comparisons of the effectiveness of different courses,
or of different units within a course. In this work, we propose
a mathematical framework and guidelines for such metrics, and
demonstrate particular versions of them on a MOOC dataset.

1.1 Research Challenges and Metric Require-
ments

Education influences both (i) externally observable activity dur-
ing a course (e.g., performance on quizzes) and (ii) internal user
states during and after a course (e.g., knowledge transfer from the
course to the workplace) [12]. Any metrics for online (or offline)
course efficacy should account for changes in both, but internal
changes cannot be observed directly and are often approximated
by responses to quiz questions, which are themselves external. For
this reason, it is nearly impossible to define a single “ground truth”
measure of course quality through conventional learning measure-
ments [24]. Online courses can compensate for this difficulty by
collecting many different types of user data, including both user
performance as well as user behavioral measurements, which can
give a rich picture of how users benefit from the content. At the
same time, integrating insights from heterogeneous sources of learn-
ing data is itself a challenging task [2].

Adaptive online courses add a further challenge beyond heteroge-
neous data: unlike non-adaptive courses, they are designed to offer
users a consistent experience. A course evaluation criterion must
then account for not only overall course efficacy, but also its con-
sistency across users: such consistency encapsulates how well the
adaptation can account for different users and helps to ensure ro-
bustness to new, possibly different users joining the system [9]. We
therefore identify the following three research challenges:
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C1. Incorporating heterogeneous user data: There are at least
three types of user data: (i) behavioral, e.g., clickstream measure-
ments on course content, (ii) performance, both within and external
to the course, and (iii) navigation, measuring how closely users fol-
low their adaptation path. A metric should be able to combine all or
only a subset of this data, and/or other sources, depending on what
data is available.

Each of these three measurement types can provide different in-
sights into course efficacy. For instance, some users may obtain
high quiz performance while spending a minimal amount of time
engaging with the content. This would indicate “success” if a user
simply wished to master the course material, but “failure” if he/she
also wanted to be intellectually challenged [4]. The navigation data
could shed light on this distinction: those who deviate from the
recommended path are probably searching for additional material,
while those following it are satisfied with the content provided [2].
By combining different types of user measurements, a metric can
account for the fact that a low score in one type may not necessarily
indicate an ineffective course.

C2. Balancing user consistency with efficacy: Both adaptive and
non-adaptive online courses can be evaluated with the user mea-
surements. In either case, high performance may indicate that the
course was effective. However, the multiple paths through the ma-
terial in the case of an adaptive course should also ensure a consis-
tent user experience [4]; high-performing users do not necessarily
indicate that the adaptation mechanism succeeded. A metric must
thus incorporate consistency as well as an efficacy score.

C3. Online computations: Users generally take weeks or months
to complete an online course, which can result in long evaluation
cycles if the metric value can only be computed once the course
has ended (e.g., with A/B testing or surveys). A metric that can
be computed efficiently and regularly updated as users progress
through the course is desirable. This online capability would al-
low instructors to receive feedback as the course progresses, giving
them a better opportunity to address weaknesses revealed before
the course completes.

1.2 Our Contributions
In this work, we formulate a mathematical framework for metrics
that address challenges C1-C3. Our framework takes as input a
set of user characteristics derived from observed data of an online
course, and we quantify several example characteristics (e.g., path
deviation, engagement). To demonstrate our solution, we leverage
data from a course that we hosted for Velocity Chess, a popular
online chess competition platform that teaches users techniques for
playing the game. With this dataset, we compare a comprehensive
statistical analysis of the course data with an instance of our metric,
and show that the metric provides insights that are difficult to glean
from the analysis alone.

More specifically, our work answers the following questions:

(i) How to define metrics that addresses the three challenges? We
begin in the next section by presenting our metric framework. To
address C2, it includes statistical factors for (i) the consistency of
learning characteristics over different users and course units, and
(ii) the overall efficacy of the course as indicated by the actual char-
acteristic values. In doing so, to address C1, we account for the fact
that different quantities may have different relationships with effi-
cacy; for example, while efficacy is generally linear in quiz perfor-

mance, i.e., higher performance is a positive indicator, the relation-
ship with time spent is concave, i.e., excessively high time spent
indicates confusion. Our metric parameters can also be flexibly
chosen to consider different subsets of the quantities, and to induce
different priorities on consistency and efficacy. Finally, given the
fine-granular timescale at which certain types of learning data are
captured, the metric can be computed at any point in the course,
addressing C3.

(ii) How to quantify characteristics to be assessed by the metrics?
After presenting the metric framework, we derive formulas for sev-
eral learning quantities that characterize user actions associated
with efficacy in a course. We consider three categories of quan-
tities in particular: behavioral (e.g., engagement and time spent on
content), performance (e.g., quiz scores and knowledge transfer),
and navigation (e.g., deviation from recommendations). While the
exact formulas we present for these quantities are specific to the
data capture formats of our system, they are readily extensible to
other collection mechanisms and content formats too. In perform-
ing a statistical analysis of our dataset in terms of these quantities,
we observe that (i) while behavior and performance tend to increase
throughout the course, they exhibit high variance in different units,
and (ii) little correlation exists between most quantities. (i) and (ii)
indicate potential room for improvement in terms of efficacy and
consistency, respectively.

(iii) How do the insights of the metrics compare to those revealed
through full statistical analyses? We then evaluate an instance of
our metrics on this dataset, and compare the findings to those of the
more comprehensive statistical analysis. Our metric shows that (i)
50% of the users attain less than 16% of the maximum observed
metric value, and (ii) a considerable number of users are highly en-
gaged in the course, but performance tends to be low. Both insights
are consistent with the findings from the statistical analysis. Addi-
tionally, we find that the metric output contains more insight into
learner attrition rates than do other course quantities. Overall, we
find that our metric can successfully quantify course consistency
and effectiveness, giving instructors straightforward statistics that
allow them to improve future versions of the course.

We finally review related work on metrics for online courses and
recommendation platforms more generally, and then discuss im-
plications and extensions of the work before concluding the pa-
per. In particular, though our metric is designed for adaptive online
courses, it is applicable to any personalized recommender system
in which multiple signals can give insight into efficacy.

2. OUR COURSE METRIC FRAMEWORK
In this section, we present our metric framework for evaluating
adaptive online courses. We first formalize the general architecture
of adaptive courses and then specify the combination of consistency
and efficacy mathematically.

2.1 Course Architecture and Metric Input
We assume that any adaptive course is organized into a set of units
U , with u ∈ U denoting a particular unit u. Within each u there
can be one or more content files that a user is expected to study,
e.g., videos or PDF documents. At the end of u, there may be an
assessment quiz consisting of a series of questions. We assume that
the course captures user behavior while interacting with the content
in u as well as user performance on the corresponding quiz.

Generally speaking, the adaptation logic of the course will recom-
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mend for each user a sequence of units Ur = (ur(1), ...,ur(tr)) to
visit, with ur(i)∈U denoting the one recommended at time i. This
may be different than the actual chronology Ua = (ua(1), ...,ua(ta))
of the units that the user chooses to visit. The determination of
ur(i) may in general be based on analysis of the user’s actions in
ua(1), ...,ua(i−1), including but not limited to their behaviors from
interacting with the content, their performance on the quizzes, and
potentially sources of data external to the course that are available
to the system. Note that certain units may appear multiple times in
Ur or Ua, as users may or may be recommended to repeat/revisit
one or more units.

2.1.1 Quantities Q
Our metric takes as input a set of characteristics regarding users
in the course to be jointly assessed, which we refer to as the set
of quantities Q. Each quantity q ∈ Q can belong to one of at least
three categories: behavioral, performance, or navigation, with the
latter involving differences between Ua and Ur. The instructor can
choose (i) which characteristics are to be used as quantities in Q,
and (ii) whether each q is for a particular unit u or across all units
in the course. For instance, Q could be just time spent Tu in a single
unit u, or Q = {T1,T2, ...,g1,g2, ...} could be the time spent Tu and
assessment grades gu over all units u in the course.

In this way, the quantities are representative of the (heterogeneous)
user feedback to be analyzed by the metric. We discuss the defini-
tion of particular quantities for our dataset and data capture system
in the next section.

2.2 Distribution-based Metric Framework
The metric framework must use the quantities to determine course
consistency and efficacy.

2.2.1 Quantifying Consistency
We incorporate a measure of consistency through the distribution
of the quantities Q over users. We construct this distribution over
a discretized set of possible quantity combinations, i.e., all feasible
combinations of quantities that users could exhibit.

Formally, let X denote the support of the distribution, i.e., the set
of feasible outcomes (note that our empirical samples may cover
only a subset of the theoretically feasible outcomes). Further, let
x = (x1,x2, ...,x|Q|) ∈X be a particular point in the support, with
xq being the value of quantity q at this point. The empirical cumu-
lative distribution function (CDF) FQ(x) over the set of quantities Q
is then obtained as FQ(x) = 1

|X | ∑y∈X 1{yq ≤ xq ∀q} along with
the associated probability distribution function fQ(x). Here, 1 is
the indicator function, and since fQ(x) is defined over a finite sup-
port we have ∑x∈X fQ(x) = 1.

We wish for the consistency measure to be maximized when the
distribution fQ(x) is concentrated at a single point. To this end, we
define the consistency measure

Mc
Q(X ) = ∑

x∈X
h
(

fQ(x)
)

where h is a differentiable, strictly convex function on [0,1] with
h(0) = 0 (no density at x should map to no change in the measure).
Strict convexity of h ensures that as density is distributed across
more points, the consistency Mc

Q(X ) will decrease, a property that
we prove formally in our online technical report (see Proposition
1) [7]. We could set h(x) = x2, for example.

2.2.2 Combining Efficacy and Consistency
The consistency measure Mc

Q(X ) does not carry any information
about efficacy: it can be maximized if users concentrate at any
point x ∈ X , regardless of how effective the course is for users
at that point. Our metric framework must also incorporate the ac-
tual quantity values xq. To do this, we modify Mc

Q(X ) by scaling
the h( fQ(x)) by a function of the observed xq:

Ms
Q(X ) = ∑

x∈X
∑

q∈Q
zq(xq)h

(
fQ(x)

)
(1)

We suppose that zq(xq) ≥ 0 for each x ∈X . Different choices of
the function zq can then put greater or lesser emphasis on consis-
tency over quantity monotonicity.

Choosing zq. For a given distribution fQ(x), Ms
Q is monotonically

increasing in zq(xq) for each xq. While different values of x for a
given individual user would change the estimated distribution fQ,
we suppose that there are sufficiently many users that these changes
are small and do not affect Ms

Q’s overall monotonicity. The function
zq must therefore be chosen separately for each quantity q to map
more effective xq to a higher z(xq).

For quantities that are monotonically related to course effective-
ness, e.g., quiz performance, we can take zq(x) = x. Most of the
quantities q we consider in this work fall into this category, but two
of them do not. The first is time spent: a course is ineffective for
users who spend an excessively short or long amount of time on
it [1,2]. The second is deviation from the adaptive course’s recom-
mended path: some deviation from the recommended path can be
helpful, particularly to review additional content, but an excessive
amount indicates the adaptation is not meeting users’ needs. Thus,
if q represents either of these quantities, we should take zq to be a
function that initially increases with xq and then decreases, e.g., a
gamma function.

The zq must also have a component to adjust how much we wish
to emphasize consistency compared to monotonicity. For instance,
if we define zq(xq) = (1+ xq)

α for the parameter α ∈ [0,∞), then
at α = 0 we would only consider consistency (zq = 1). As α → ∞,
the zq term in Ms

Q would dominate the h( fQ) term, and a larger
concentration of users at a more effective point x ∈X would re-
sult in a larger marginal increase in Ms

Q, when compared with the
increase at a smaller value of α . Thus, for larger values of α , the
metric would attain a greater value if a few users have a very posi-
tive experience, compared to if all users have a consistent, moder-
ately positive experience. We formally quantify this insight in our
online technical report (see Proposition 2) [7] by considering, for
each value of α , the set of quantity values x for which a consistent
experience concentrated at x yields a higher metric value than an
inconsistent, uniform distribution of user characteristics over the
entire set of feasible quantity values X .

3. DERIVING QUANTITIES FROM DATA
In this section, we derive several specific quantities from learning
data that can form the set Q in our metric framework. We do so
based on data formats from our course delivery system, consider-
ing the case of an adaptive online course we hosted for Velocity
Chess, an open chess competition website. We will categorize user
activities into three main quantity types: navigation, behavioral,
and performance.

While formulating the quantities, we also perform a comprehen-
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Figure 1: The course consists of seven units: a welcome unit (unit 0), the diagnostic test (unit 1), four core units (units 2-5), and a completion
page (unit 6). The adaptation logic is also indicated in the diagram. The percentages indicate the fraction of times that recommendation was
made, e.g., in unit 3, a user will answer the quiz and be recommended to advance to unit 4 57% of the time (as opposed to failing the quiz or
dropping off before finishing the quiz).

sive statistical analysis of the dataset. In doing so, we make three
main findings: (i) many users deviate significantly from their rec-
ommended paths, (ii) there is high variability in user behavior and
performance, and (iii) user activity and performance tend to in-
crease later in the course. In the next section, we will see that our
metric framework also reveals these insights.

Statistical tests. In certain cases, we will run statistical tests to
compare distributions of quantities so as to derive qualitative in-
sights into the course efficacy. For these, we will report the p-value
(p) and the corresponding test – Wilcoxon Rank Sum (WRS), F-
test of Variance, or Pearson correlation [21] – in the description.

3.1 Course Structure and Data Capture
The course we analyze teaches users the Pins strategy for playing
chess, from beginner to advanced levels, individualizing the ma-
terial based on the user’s inferred level. It was open to all site
users starting in December 2015; we consider the data collected
over the one-year time period from December 2015 to 2016, com-
prising 4,877 enrolled users.

The course architecture and adaptation logic are defined in Fig-
ure 1. The content is divided into six units u = 0, ...,6. The core
material of the course is contained in Units 2-5, which are of in-
creasing difficulty. Each of these “core units” is comprised of a
series of slides and ends with a quiz; after completing the quiz, the
course’s adaptation logic directs users to a new unit based on their
quiz performance. For instance, an average performer may be rec-
ommended to proceed to the next unit, but a user who failed the
quiz may be asked to repeat that unit. Unit 1 is a diagnostic test
that all users take, based on the results of which the adaptation will
recommend a core unit to start at.

Clickstream event capture. Each slide in the course is either
video-based or text-based. For video slides, the user has a scroll
bar to navigate the video, and all playback events are captured by
the system; these consist of pause, play, scrub (either forward or
backward), and replay (i.e., starting the slide over), together with
the position of the video at which the event occurs. For text slides,
there is a single playback event when the user accesses it. In both

cases, a slide change event is generated when the user moves to a
new slide. Slide IDs and UNIX timestamps of all events are also
recorded; the IDs include both the previous (immediately before
event) and next (immediately after) slides, which differ for change
events.

The system also records user navigation events independent of par-
ticular units: unit enter and exit, course login and logout, and
application foreground (fgnd) and background (bgnd), i.e.,
when the application is the current active tab on the user’s com-
puter. Using these events, we are able to infer a user’s navigation
between units and their behavior within units. For their quiz perfor-
mance, we use the response events that the system collects after a
user answers a question, indicating whether the answer was correct
or not.

3.2 Quantifying User Navigation
We first investigate user progression through the course units, and
use that to define a navigation quantity. Recall that while the sys-
tem itself generates an adaptation path Ur for each user, the user’s
chosen path Ua may deviate from the system recommendation. We
count a unit as “visited” in Ua if the user spent at least 5 seconds
on the material in the unit; time spent on the unit’s material is itself
a quantity defined in later sections.

Unit-to-unit transitions. 2,186 out of 4,877 users entered the di-
agnostic test (unit 1) from the introduction (unit 0). For subse-
quent units, the percentages in Figure 1 summarize the users’ rec-
ommended paths Ur:

Skill branching: Of the 1,310 users who completed the diagnos-
tic test, the majority (68%) were placed either at the most begin-
ner or the most advanced level. This heterogeneity is common in
MOOCs.

Repeating vs. advancing: When placed in core unit u, the frac-
tion recommended to advance to u+ 1 as the next step increased
in u (40% to 70%). As users get further through the course, they
are more motivated to finish (25% of those who accessed the di-
agnostic test ended up finishing). Interestingly, very few users are
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(a) User navigation. (b) System recommendation. (c) Difference (a)−(b). (d) Distance CDF.

Figure 2: Comparison between (a) user navigation and (b) recommended navigation between units. A point ( j, i) in the diagram is the
fraction of times unit j was selected while starting on unit i. (c) gives the difference in fractions, illustrating a strong deviation between actual
and recommended transitions between units. This is supported by (d) the empirical CDF of the Levenshtein distance d between actual and
recommended sequences.

recommended to repeat the core units (less than 3.7% in each case).
The remaining users dropped out; we will investigate drop-off fur-
ther in the next section.

Figures 2a-c show the discrepancies in unit-to-unit transitions be-
tween user behavior Ua (a) and system recommendations Ur (b),
with the difference between the fractions plotted in (c). In the core
units, the vast majority of recommendations are to advance from u
to u+1, as discussed above. Users’ actual paths, on the other hand,
are more diverse: there are visibly more repetitions than the system
recommends, and also occasional skips back to prior units. Thus,
many users likely feel the need for more course content review than
is recommended.

Path deviation quantity. We quantify navigation as users’ devia-
tion from their recommended paths through the course. To do this,
recall the notation Ur =(ur(1), ...,ur(tr)) and Ua =(ua(1), ...,ua(ta)).
For this course, we always have ta ≥ tr because navigation can only
add steps to the recommended path; users cannot skip units unless
recommended. From this, we define the path deviation quantity

d =
1
|Ua|

v(Ua,Ur)

where v(·) is the Levenshtein (edit) distance between the two se-
quences [26]. We choose Levenshtein rather than other distance
metrics, e.g., longest common subsequence, because it allows for
insertion, deletion, and substitution operations in between strings.
In our application, insertion captures users adding additional revis-
ing units into Ua from Ur, and substitution captures them choosing
to visit different units than those recommended. Division by |Ua|
ensures that d ∈ [0,1).

Figure 2d gives the cumulative distribution function (CDF) of the
quantity d over users in the dataset.1 The mean deviation is 0.36,
which can be interpreted as user paths being 36% different from
the recommendations on average. On the one extreme, about 22%
of users follow the recommendations exactly (i.e., d = 0), while on
the other hand, 25% of users deviate by 56% or more.

3.3 Quantifying User Behavior
We derive three quantities of user behavior within units: time spent,
completion rate, and engagement.

1In this plot, we only consider users with |Ua|> 2, i.e., those who
proceeded past the diagnostic test.

3.3.1 Defining Behavioral Quantities
Let E = (e1, ...,en) be the sequence of n clickstream events gen-
erated by a user in the course. For each event ek, let s(ek) denote
its next slide ID, i.e., the ID immediately after. We write s ∈ Su to
denote that slide s appears in unit u.

Time spent. Let t(ek) be the timestamp of event ek. The time
registered for the interval between ek and ek+1 is:

Tk =

{
min(t(ek+1)− t(ek), τ) , if ek 6= bgnd

0, otherwise

In other words, we do not consider time intervals for which the
app is in the background, and set the parameter τ = 600 seconds
to upper bound the time between actions, capping excessively long
intervals when the user likely walked away. From these intervals,
the time spent on slide s, Ts, and the time in unit u, Tu, are

Ts = ∑
k: s(ek)=s

Tk, Tu = ∑
s∈Su

Ts,

since s(ek) = s implies that Tk is time spent on s.

Completion rate. Completion of slide s is a binary measure, de-
fined as Rs = 1 if Ts ≥ ε and 0 otherwise. We set ε = 5 sec so that
if the user spent at least 5 seconds on s it is considered completed.
From this, the completion rate of unit u is defined as

Ru =
1
|Su| ∑

s∈Su

Rs,

where |Su| is the number of slides in u. Note that Ru is between 0
(no slides completed) and 1 (all completed).

Engagement. Let T̄s be the “expected” time spent on slide s. Fol-
lowing the method proposed in [6], we calculate the engagement of
a user on unit u as

eu = min

(
γ×Ru×∏

s∈Su

(
1+Ts/T̄s

2

)α

, 1

)
.

Here, α ≥ 0 models the diminishing marginal return on time spent,
i.e., more time spent on the same slide counts incrementally less
towards engagement. The division by 2 makes the computation
relative to a user who spends the expected Ts = T̄s on each slide.
γ ∈ (0,1] is a constant that controls the overall spread of the dis-
tribution; a user who registers the expected time spent and 100%
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(a) Time spent Tu (b) Completion rate Ru (c) Engagement eu

(d) Time spent Tu (repeating) (e) Completion rate Ru (repeating) (f) Engagement eu (repeating)

Figure 3: Distributions of time spent, completion rate, and engagement across units in our dataset. Each quantity is considered both (i) for
all user visits to a unit in a-c and (ii) for all visits past the first one (i.e., repeating) in d-f. The core units 2-5 each exhibit significant variation
in user behavior.

completion on each slide will have eu = γ . By default, we set γ = 1,
α = 0.1, and T̄s = 60 sec.2

All three behavioral quantities – time spent Tu, completion rate Ru,
and engagement eu – have been defined here on a per-unit basis.
We also consider them at a course level to get a complete picture of
overall behavior. For these details, see online technical report [7].

3.3.2 Behavioral Analysis
Figure 3 gives boxplots of the three behavioral quantities in our
dataset, across units. For each quantity, we show behavior over all
user visits to units, as well as repeating visits only.

We first observe that behavior in the core units exhibits high varia-
tion in each of the quantities. The interquartile ranges (IQR) of Ru
and eu are between 0.75 and 0.90, out of a maximum range of 1.0.
The ratio of the IQR to the median – a non-parametric coefficient
of variation [21] – is larger than 1.2 in each case, up to 4.6 for time
spent in unit 4. The IQRs for time spent are up to 275 sec.

Also, user activity tends to increase in later core units (WRS p ≤
0.033). While time spent (Tu) is reasonably consistent in units 2
to 5 – with medians around 60 sec – completion rate (Ru) and en-
gagement (eu) both increase considerably from units 3 to 5. In
particular, the median Ru rises from 0.42 to 0.63 and the median
eu increases from 0.43 to 0.71. The WRS p-values associated with
these changes are significant (p ≤ 0.033) in each case. Combined
with the consistent values of Tu, this implies that users are distribut-
ing their time more evenly across slides in later units. This is some-
what surprising because the later material is more challenging, so
we would expect certain slides to require more time.

For repetitions, the median tu drops by < 25 seconds, while Ru
and eu drop more substantially, from 0.17 to 0.39 depending on
the unit. The small drops in time spent indicate that users spend a
significant amount of time repeating. Coupled with large declines
in completion rate, this implies that overall, users are focusing on

21 minute is the approximate median of time spent on each slide in
the dataset.

a more specific set of slides while repeating. Large variations in
behavior, however, remain: the third quartiles of Ru and eu barely
move at all.

3.4 Quantifying User Performance
We derive two quantities for user performance: quiz performance
and earned virtual currency (called vChips).

3.4.1 Defining Performance Quantities
Quiz performance. Let Nu = {n1,n2, ...} denote the set of ques-
tions in the question bank for unit u. Upon a user’s lth visit to the
quiz for u, they will be given a random subset N l

u ⊂Nu of these
questions to answer. The number of points earned on the lth visit
to u is calculated as pl

u = ∑q pl
q, where pl

q = 1 if the user answered
question q correctly on the lth attempt, and 0 otherwise. The total
points earned on u is then pu = ∑l pl

u, and the total points earned in
the course is pc = ∑u pu. From this, the user’s quiz grade on u, gu,
and grade in the course, gc, are

gu = pu/Nu, gc = pc/Nc,

where Nu = ∑l |N l
u | is the total number of questions answered by

user in unit u, and Nc = ∑u Nu is the total number given to the
user in the course. In this way, gu and gc are between 0 (no points
received) and 1 (all questions answered correctly). Note that, due
to question randomization and course adaptivity, N l

u , Nu, and Nc
will vary for each user.

vChips. Velocity Chess awards users vChips3 – a form of virtual
currency – based on their activity and performance on the site. The
vChips can be obtained by winning chess games, winning prizes in
tournaments, finishing daily challenges, and correctly solving chess
puzzles. They can thus measure players’ chess skill in practice.

3.4.2 Performance Analysis
Figure 4 gives the distributions of the performance quantities gu,
gc, and vChips. Boxplots of gu are shown in (a) for each unit that
has a quiz, while CDFs of gc and vChips are given in (b) and (c).

3https://www.velocitychess.com/faq

Proceedings of the 11th International Conference on Educational Data Mining 81

https://www.velocitychess.com/faq


(a) Unit quiz performance gu (b) Course quiz performance gc (c) vChips

Figure 4: Distributions of quiz grades across units, quiz grades across the course, and vChips for users in our dataset. Quiz performance
improves in later units, exhibiting significant variation throughout, though less-so than the behaviors in Figure 3. The vChips have a high
concentration around 1,000 chips.

Just as user activity increased in later units, we find that user quiz
scores increase further into the course (WRS p≤ 0.026). The me-
dian grade in (a) rises monotonically from 0.78 in unit 1 to 0.9 in
unit 5. Despite the increase in difficulty, the users reaching later
units are likely more knowledgeable and can thus perform better.

We also find that users’ performance is less variable than their
behavior (F-test p ≤ 5.19× 10−3 with the exception of Tu): the
IQRs for unit grades gu range from 0.20 to 0.44, with correspond-
ing IQR-to-median ratios between 0.22 and 0.57. These ratios are
smaller than those observed in Figure 3. The vChips have even less
variation: with a median of 1,000 and an IQR of 75 chips, the ratio
is only 0.075. The vChips have a heavy tail as well, with the mean
being 3,271.

3.5 Quantity Correlations
The above analysis indicates that there is high variability in users’
behavior and performance quantities unit-by-unit as well as in their
vChips and path deviation quantities over the full course. Taken
alone, however, any one of these quantities fails to capture the di-
versity of users taking open online courses. Since our metric frame-
work in Section 2 seeks to aggregate them into an overall measure
of efficacy, we also considered the correlation between the dif-
ferent quantities, both between quantities of the same type (Sec.
3.5.1) and between those of different types (Sec. 3.5.2). Overall,
we found that most of the quantities exhibit little correlation, i.e.,
each provides unique information on the diversity of users taking
open online courses [11]. In this section, we will present the most
interesting of these findings; for the full set of scatterplots and cor-
responding statistical analysis, see our technical report [7].

Normalizing behavioral quantities. To perform this correlation
analysis, we consider each user’s quantity values at the course level.
To translate the three per-unit behavioral quantities – time spent Tu,
completion rate Ru, and engagement eu – to per-course, we sum all
of these quantities over all units of the course for each user,4 and
then normalize over the number of units visited. For completeness,
we also considered the number of units suggested by the adapta-
tion algorithm. Formally, let U ′a ⊆ Ua be the set of unique units
visited by a user, and U ′r ⊆ Ur be the set of units recommended.
The normalized quantities are defined as

xa
c =

1
|U ′a|

∑
u

xu, xr
c =

1
|U ′r |

∑
u

xu,

where xu denotes the quantity (Tu, Ru, or eu) for unit u, as defined
in Section 3. The normalization for xa

c ensures that the Rc and ec
quantities still lie in [0,1]. xr

c, on the other hand, will become larger
than xa

c when a user takes the initiative of visiting units that were
not recommended, i.e., that they could have skipped.

4Given the variability between units observed in Section 3, we con-

3.5.1 Correlations within Quantity Types
Figure 5 plots the course-level behavioral quantities against one an-
other, normalizing by actual path (xa

c ). We see immediately in Fig-
ure 5(a) that there is not a strong relationship between time spent
Tc and completion rate Rc, with a Pearson correlation coefficient
r < 0.4. Those with completion of 100%, in fact, have the highest
variation in time spent, perhaps due to them viewing more slides:
users’ variation in the time spent on each slide would then accumu-
late over more slides, leading to higher overall variability.

Figure 5(b), on the other hand, shows a strong positive correlation
between completion rate and engagement ec, with r > 0.95. This
is expected since engagement is defined to be linear in Ru. Specifi-
cally, several users have moderate ec and high Rc: they would have
low Tc to pull the engagement level down. Figure 5 shows a posi-
tive correlation between ec and Tc as well, though not as strong, and
we can see cases where a low time spent corresponds to a moderate
engagement value. Overall, we conclude that though engagement
is a combination of completion rate and time spent, each of the
three quantities gives important information on user behavior.

As for the performance quantities, Figure 6 gives a scatterplot of
quiz score gc against vChips. We see that vChips and quiz scores
are only weakly positively correlated. The positive association is
intuitive, because we would expect those answering the questions
correctly to be more skilled in chess and thus to have the potential
to win more games. On the other hand, the lack of strength is sur-
prising. There are many uncontrolled factors outside of the course
that could affect this, though, such as whether the strategy taught
in the course (pins) is useful in a given situation.

3.5.2 Correlations Between Quantity Types
From analysis between quantity types, our key finding is that the
only significant correlation is a positive one between engagement
and quiz score, while the rest of the pairs – distance vs. engage-
ment, vChips vs. time spent, and so on – only have minor asso-
ciations, if any. This can be seen in Figure 7, which gives scat-
terplots of selected pairs – vChip and engagement in (a), quiz and
engagement in (b), and quiz and distance d in (c) – with behav-
iors normalized by recommended path (xr

c). The scatterplot in (b)
has a correlation coefficient of r > 0.75, meaning that users who
complete more slides and/or spend more time on each slide tend to
have improved quiz scores. Figure 7(a), on the other hand, shows
that users’ vChips are only weakly positively correlated with their
behavior: users with higher engagement do tend to have slightly
more vChips, but there are still many instances of low engagement
users earning among the most vChips (potentially those with prior
knowledge of the pins tactic) and users with high time spent earning
the least vChips (potentially those who struggle with the course).

sider per-unit, per-user quantities in Section 2.
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(a) Time spent and completion (r = 0.395) (b) Completion and engagement (r = 0.959) (c) Engagement and time spent (r = 0.490)

Figure 5: Scatterplots of the behavioral quantities, normalized by the number of units visited (i.e., xa
c ). The correlation between completion

and engagement is strong, but weaker for the other two pairs.

Figure 6: Scatterplot between the performance quantities, vChips
and quiz score gc. There is not a strong correlation between them
(r = 0.138).

We also found a weak negative correlation between distance and
the behavioral and performance quantities; the case of distance and
quiz score is plotted in Figure 7(c). Users who followed the adap-
tation algorithm’s recommendations, then, have a mild tendency to
be more engaged, spend more time, and obtain higher grades than
those who deviate from the recommendations. On the other hand,
a greater deviation can still lead to lower course activity and grades
for some users, and there are different users over the full range of
possible completion rates, engagement, and time spent that cover
the full range of possible distances. This emphasizes again that the
navigation quantity conveys different information than the perfor-
mance and behavioral quantities.

4. METRIC EVALUATION
The statistical analysis in the previous section revealed that while
activity and performance tend to increase further in the course,
there is high variability in the quantities overall, and thus room
for improvement in consistency and efficacy. In this section, we
first perform an evaluation of the course using our proposed metric
framework, and show that it also leads to these conclusions. We
then consider course drop-off rates, and find that our metric yields
better insight into this than do the quantities.

4.1 Course Consistency and Efficacy
Before presenting the results, we first specify particular inputs and
parameters of Ms

Q in (1), as well as a sampling procedure to aid in
the quantity distribution estimation.

Input quantities Q. The input to Ms
Q is user data on a set of quan-

tities Q. Based on the definitions in the previous section, the full
set of quantities Q takes each quantity at the unit-level except dis-
tance d and vChips which are only defined over the entire course,
i.e., Q = {{eu,Ru,Tu,gu ∀u},d,vChip}. We also consider different
subsets of Q in our evaluation, e.g., behavior quantities only.

Functions zq and h. Ms
Q requires zq(x) and h(x) for efficacy and

consistency. For all metric variations, we take h(x) = x2. We use
zq(x) = x when q is an engagement eu, completion rate Ru, perfor-
mance gu, or vChip quantity, as higher values of these quantities
generally indicate a more effective course. We use the gamma dis-
tribution zq(x) = 1

Γ(k)θ k xke−
x
θ for the distance d and time spent Tu

quantities, reflecting the non-monotonic relationship of these quan-
tities with the course efficacy. We choose θ and k as the squared
root of the median value of each quantity, so that gq attains its max-
imum value at the median.

Sampling for fQ(x). To estimate the distribution fQ(x) of possible
metric values, we first perform random sampling on the realized
values of Q to better estimate the properties of the metric output.
Similar to bootstrapping [8], for q ∈ Q we uniformly at random
sample non-zero quantity values x ∈ xq for each of the users. We
take only nonzero values since zero quantity values correspond to
inactive users, who may have dropped out of the course or skipped
that unit. We take 100 different samples, and combine each with the
original dataset to estimate the distribution fQ and in turn calculate
the metric values Ms

Q.

4.1.1 Results and Discussion
Our evaluation results of Ms

Q for the full quantity set as well as
subsets are given in Figure 8. Each circle in each distribution plot
of Figure 8 represents the metric value from one sample. These
plots are the subject of the following discussion.

All quantities. We first consider the metric values over all units and
quantities Q. Figure 8a shows the distributions for Ms

Q across sam-
ples. We see that many (roughly 50%) of the samplings yield fairly
low metric values that are < 1. Considering that roughly 20% of
the samples have an output of 6 or higher, meaning that a majority
of cases yield less than 17% of the maximum value, this indicates
room for improvement in terms of overall efficacy and consistency,
as we concluded from the statistical analysis. Other samples show
clear concentrations around 4 and 6, perhaps due to different quan-
tities concentrating at these values. We also further analyzed the
metric in terms of its two constituent pieces – actual quantity values
and user consistency – to see whether one had a larger bearing on
these low metric values. In doing so, we found that both contribute
to low values, confirming room for improvement in both areas; for
the corresponding plots, see our online technical report [7].

Behavioral vs. performance quantities. We next compare the
metric outputs for the behavior and performance quantities only, in
Figures 8b and 8c respectively. Since these quantities reflect differ-
ent aspects of user activities, we would expect their metric distri-
butions to differ, and we see that this is indeed the case. Also, we
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(a) vChip and engagement (r = 0.129) (b) Quiz and engagement (r = 0.758) (c) Distance and quiz (r =−0.131)

Figure 7: Scatterplots between selected quantities, with the Pearson correlation coefficient (r) reported for each. Behaviors are normalized
by the recommended path (xr

c). Most of the pairs of quantities exhibit little correlation.

(a) All quantities. (b) Behavioral quantities. (c) Performance quantities. (d) Unit-by-unit quantities.

Figure 8: Distributions of the metric values for 100 different samples. Each circle represents one sample of possible values of Q. (a) is
the CDF of Ms

Q considering all quantities. (b) and (c) are the distributions of the metric considering behavioral and performance quantities
separately. (d) are distributions of metric values Ms

Q (1) for each unit, in which Q is taken to be each individual quantity. The distributions
have a consistent shape for each unit, with over 80% of users experiencing low metric values.

observe that the metric values are more varied for behavior than
they are for performance, which is consistent with our finding of
high variability in behavioral quantities from the statistical analy-
sis. Most users’ performance metric values are low, concentrating
around 0.2, suggesting poor performance and/or little user consis-
tency. Recalling from Figure 4 that many users performed well on
quizzes, this suggests that these low metric values are likely due to
low consistency in scoring, rather than poor quiz scores. The be-
havioral metric values, on the other hand, suggest high behavioral
quantities and/or high consistency in behavior. The high variability
we observed in Figure 3 suggests that effective behaviors contribute
to these higher values. This conclusion is consistent with the fact
that several units show 25% of users obtaining the highest possible
engagement and completion rates, whereas time spent is concen-
trated around its center.

Unit by unit quantities. To analyze differences between units, we
also compute the metric over each individual quantity for each core
unit. The results are shown in Figure 8d. We see that the distri-
butions are fairly similar for units 2 to 4, exhibiting a fairly wide
range of values in each case. As in the distributions over the full
course in Figure 8a-c, there is a large concentration of metric val-
ues around smaller values, particularly 0. However, the maximum
metric values are around 2.5, indicating that some users do have an
effective experience in certain units. Indeed, users in unit 5 tend to
have the highest values, with roughly 75% of them > 0.5. This is
consistent with the conclusion from the statistical analysis that user
activity and performance tend to increase further in the course.

Overall, these findings indicate that the course is effective at engag-
ing users (Figure 8b), but – at least based on quizzes and vChips –
there is room for improvement in teaching them how to play chess
(Figure 8c). Given the free and open nature of Velocity Chess’s
platform, many users likely took the course more out of interest in

chess and less out of a desire to memorize chess strategies, which
may explain why users’ performance is more inconsistent and less
indicative of an effective course than their behavior.

4.2 Course Drop-off
We finally validate our metric by comparing it to user drop-off
statistics. High drop-off rates are a notorious issue facing open
online courses today [3]; we saw in the statistical analysis that our
dataset does face this problem particularly in the first three units.

In Table 1, we compare three sets of values across the different
units: (i) mean values of behavioral quantities, (ii) metric calcu-
lations on the corresponding quantities, and (iii) drop-off percent-
ages, defined as the percentage of users for whom this unit was the
furthest visited. Recall that Figure 8d also illustrated the metric
values for different units, showing each unit tending to exhibit low
values, at least on average.

Overall, we find that the metrics contain better insight into drop-
off than do the behavioral quantities. Unit 1 experienced a high
drop-off while the behavioral quantities eu and Ru in Units 0 and
1 were fairly high. In particular, on average learners completed al-
most half of the content in Unit 0 and Unit 1, while almost half of
the learners never proceeded past Unit 1. Such drop-off tendencies
are difficult to observe from looking at the mean behavioral quan-
tities in Table 1. The metric functions Ms

Q, on the other hand, tell
another story; in particular, Ms

Ru
and Ms

eu
in Units 0 and 1 are low

when compared to the average values of Ru and eu. We therefore
conclude that when learners are highly likely to drop off, Ms

Tu
and

Ms
Ru

tend to signal lower quality than do Tu and Ru.

On the other hand, we see that Ms
Q and the behavioral quantities

demonstrate similar trends in the second half of the course, where
dropoffs are lower. Looking at learner behavioral quantities after
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Item Unit 0 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Mean
Value

Time spent (Tu) 0.32 0.10 0.05 0.04 0.04 0.08 0.05
Engagement (eu) 61.6 46.9 9.82 7.40 8.97 10.44 15.71
Completion rate (Ru) 41.89 42.16 8.36 6.59 7.63 9.79 14.15

Metric
Value

Time spent (Ms
Tu
(X )) 0.04 0.03 0.05 0.05 0.05 0.05 0.03

Engagement (Ms
eu
(X )) 21.10 22.31 4.14 4.33 3.86 3.78 5.90

Completion rate (Ms
Ru
(X )) 4.14 15.12 4.33 4.39 4.07 4.24 5.40

Drop-off 0.4% 45.0% 14.9% 7.1% 4.0% 5.2% –

Table 1: Metric comparison with quantities and drop-off rates. The first row of the table entries gives the average learner behavioral quantities,
the second row gives the metrics Ms

Q on the corresponding behavioral quantities, and the third gives the drop-off percentages. The low metric
values in Units 0 and 1, compared with the corresponding behavioral quantity values, are consistent with these units experiencing high
drop-offs.

Unit 2, we observe that Tu, Ru, eu are generally low, as many learn-
ers fail to engage with the course content. The same trend can be
observed in the metric values. Interestingly, however, the Ms

Q do
tend to increase as the drop-off lessens from Units 3-6, even though
our metric was not designed to incorporate this explicitly.

5. RELATED WORK
Learning and content analytics. Recent research in online learn-
ing has focused on developing analytics for instructors [2]. Ma-
chine learning techniques such as collaborative filtering and prob-
abilistic graphical models have been applied to predict students’
abilities to answer questions correctly [17, 23] or their final grades
[16, 19]. Other studies have shown that student behaviors display
patterns that are significantly associated with learning outcomes
[2, 10]. User-content interactions and Social Learning Networks
(SLN) have also been used to predict student dropoffs [18, 22],
while SPARFA-Trace [13] was developed to track student concept
knowledge throughout a course. Few works, however, have studied
the efficacy of the course itself, our goal in this work.

Adaptive learning evaluation. Developing course efficacy metrics
is particularly important for the growing number of adaptive online
courses. For example, MIIC [4] and LS-Plan [14] are all adaptive
course delivery platforms that support user- or system-defined in-
dividualization across different materials. We can use our metric
to improve adaptation algorithms and user experiences. The two
most common evaluation mechanisms for adaptive online courses
are (i) A/B testing of adaptation versus control group and (ii) user
surveys. Although A/B testing [4] allows researchers to test the ef-
fect of controlled variations, it is difficult to incorporate additional
variables afterwards. Surveys can be used to supplement A/B test-
ing [25], but these rely on user recollections and also cannot be
computed at arbitrary points during the course. Our metric frame-
work, in contrast, is easily applicable to different input variables
and can be computed at any time during the course.

Online personalization metrics. Substantial amounts of research
have been poured into online personalization for applications out-
side of education, particularly on recommendation systems that
predict individual user preferences (see [5] for a survey). Tradi-
tionally, these systems have been evaluated with metrics like accu-
racy and RMSE on a holdout set. Yet these techniques have been
criticized as being too distant from the actual user experience [15].
Therefore, newer metrics aim to incorporate factors such as diver-
sity, novelty, and coverage [9,20]. Still, each of these metrics tends
to focus on the final results of the prediction without taking into
consideration users’ prior and subsequent experience with the sys-
tem. They are also difficult to apply to online courses, which aim

to change users’ internal knowledge states in ways that are not di-
rectly observable.

6. DISCUSSION AND CONCLUSION
We developed a metric framework for adaptive online courses that
quantifies both the consistency of users’ experiences in the course
and the effectiveness of the course across multiple users. To mea-
sure effectiveness, we incorporated multiple quantities that describe
the full range of user experiences, from their navigation through the
adaptive course to their performance on quizzes and external tasks
to their interaction with the course material. A statistical analy-
sis of these quantities showed little consistency between different
users’ experiences and suggested that the course adaptation may
not have been effective for many users: many users exhibited poor
performance despite spending large amounts of time on the course,
and others exhibited high performance but barely engaged with the
material. Applying specific instances of our metric to the dataset
showed that the metric contained many of the same insights as a
statistical analysis, and revealed additional findings consistent with
drop-off rates.

A full statistical analysis likely contains more insights than any sin-
gle metric can provide. Defining a unified metric framework, how-
ever, not only allows us to more compactly represent a course’s
effectiveness, it also allows for direct, quantitative comparisons be-
tween different units of a course or even different iterations of a
course. This information can then be used by an instructor to im-
prove the material, either in the current or future offerings. While
traditional A/B testing requires the instructor to vary one charac-
teristic of the course at a time – which can be inefficient and result
in an uneven course experience for different users – our approach
enables instructors to estimate the marginal benefits of different in-
terventions, allowing for more rapid and dynamic changes.

Our metric framework is not restricted to adaptive online courses:
it can accommodate different quantities that may have distinct re-
lationships to course effectiveness. Indeed, it can even be used for
other types of personalized recommendation systems in which mul-
tiple quantities can give different insights into the recommenda-
tion effectiveness. For instance, users’ ratings of a movie on Net-
flix may contrast with the time spent watching the movie, yield-
ing contradictory information for the recommendation algorithm.
Adaptive online courses are, however, perhaps more likely to ex-
hibit such contradictory information than other recommendation
settings, and online education presents other unique challenges that
require the development of new metrics. The challenges of per-
sonalization in different applications motivate the consideration of
such metrics more generally.
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ABSTRACT
Performance prediction has emerged as one of the most pop-
ular approaches to leverage large volume of online learning
data. In the majority of current works, performance pre-
diction is based on students’ past activities in graded learn-
ing resources (such as problems and quizzes), while their
activities in non-graded resources (such as reading mate-
rial) are ignored. In this paper, we introduce an approach
that can take advantage of students’ work with non-graded
learning resources, as auxiliary data, in order to predict stu-
dents’ performance in graded resources. This approach can
discover the hidden inter-relationships between learning re-
sources of different types, only using student activity data.
Based on our experiments, the proposed approach can signif-
icantly reduce the error of student performance prediction,
compared to baseline algorithms, while discovering meaning-
ful and surprising relationships among learning resources.

Keywords
student modeling, learning material correlation discovery

1. INTRODUCTION AND RELATED WORK
The learning data abundance, due to popularity of Massive
Open Online Courses (MOOCs), introduces new opportuni-
ties and challenges for the educational data mining (EDM)
field. On one hand, larger volumes of student data can
increase performance of traditional EDM approaches. For
example, a performance prediction approach that is popu-
lar in the area of intelligent tutoring systems, offers a good
basis for learning personalization. If the data-driven per-
formance model predicts that some problem will be solved
by the current student with a high probability, this prob-
lem could be skipped in favor of a more challenging one.
If the expected performance is low, students could be of-
fered some help and supplementary material. MOOC-scale
data can help improving performance prediction making this
approach more usable. On the other hand, data coming
from modern MOOCs is usually more heterogeneous and

too complicated for traditional EDM approaches. Unlike
conventional Intelligent Tutoring Systems (ITS), that are
mostly based on problem-solving, MOOCs offer students to
learn and assess their knowledge using a variety of learning
resources, such as reading materials, lecture videos, assign-
ments, exams, graded quizzes, and discussions. This leads to
various types of learning activities for students. With that
heterogeneity, come interesting challenges: how to use infor-
mation about student work with diverse learning resources
to assess student knowledge or predict student performance?
what is the relationship between concepts that are offered
in different learning resource types?

A number of research projects, focused on alternative learn-
ing resources, demonstrated that many kinds of resources
could considerably contribute to student learning. For ex-
ample, Najar et al. studied effect of adaptive worked exam-
ples versus unsupported problem solving and showed that
adaptive worked examples can lead to faster and more effec-
tive learning [Najar et al. 2014]. Also, Agrawal et al. showed
that enriching textbooks with additional forms of content,
such as images and videos, increases the helpfulness of learn-
ing material [Agrawal et al. 2014]. This indicates that ig-
noring the interaction between various types of resources
limits our understanding of students’ learning behavior and
the efficiency of mining and analytical tasks, such as stu-
dent knowledge modeling or performance prediction. Addi-
tionally, understanding inter-relationships between different
resource types and student activities can help instructors
in having more well-informed decisions on their course de-
sign. Modeling such inter-relationships in students’ data can
provide a unified view to data heterogeneity and present a
better understanding of student learning, by modeling these
different resource types that present student activities.

While there are some studies in the literature on impact
of various learning resources on learning, the relationship
between learning resource types and their effect on predict-
ing student performance is under-investigated. For example,
Wen and Rosé studied student patterns across different ac-
tivity types and concluded that these patterns can provide
insights into different activity distributions between high-
grade and low-grade students [Wen and Rosé 2014]. How-
ever, their goal was not to predict student grades from their
activities. Velasquez et al. [Velasquez et al. 2014] identi-
fied learning aid use patterns using cluster analysis. They
showed that high use of learning aids is significantly corre-
lated with students’ exam performance. But, they did not
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predict student performance. Sao Pedro et al. [Sao Pedro
et al. 2013] extended Bayesian Knowledge Tracing by condi-
tioning the learning on whether the students received scaf-
folding in a topic or not. This model uses extra context infor-
mation (topics) in addition to student performance, does not
discover the relationship between learning resource types,
and does not distinguish between different learning resources.
Jǐŕı and Pelánek studied learning resource similarities [Jǐŕı
and Pelánek 2017], but it was on graded resources, not con-
sidering resource types, and not predicting student perfor-
mance.

One reason for unpopularity of using heterogeneous resources
for predicting student performance is their potential conflict-
ing effects. For example, Beck et al. investigated if provid-
ing assistance (help) to students benefits them using experi-
mental trials, Bayesian Evaluation and Assessment frame-
work, and learning decomposition [Beck et al. 2008]. In
their studies, experimental trials and learning decomposi-
tion showed that assistance hurts students’ learning. How-
ever, the Bayesian Evaluation and Assessment framework
found that assistance promoted students’ long-term learn-
ing. More recently, Huang et al. discovered that adaptation
of their framework (FAST) for student modeling by includ-
ing various activity types may lead researchers to contra-
dictory conclusions [Huang et al. 2015]. More specifically,
they studied the impact of example usage on student learn-
ing. In one of their formulations student example activity
suggests a positive association with model parameters, such
as probability of learning, while in another formulation this
type of activity has a negative association with model pa-
rameters. Also, Hosseini et al. concluded that annotated
examples show a negative relationship with students’ learn-
ing, because of a selection effect: while annotated students
may help students to learn, weaker students may study more
annotated examples [Hosseini et al. 2016].

Another complication for considering heterogeneous resources
is the difficulty in interpreting students’ observed activities.
In graded resource types, such as assignments and quizzes,
a student’s score explicitly represents her knowledge on the
topic. Whereas in other resource types, such as reading ma-
terial, there is no direct evaluation or explicit observation
of student’s knowledge. Hence, measuring the effect of such
learning resources on students’ knowledge, and thus predict-
ing their future performance, would be a challenging task.

In this paper we propose an approach motivated by canon-
ical correlation analysis (CCA) to discover the interaction
between different learning resource types, using student ac-
tivities, and to predict student performance on different
learning resources. Our proposed approach can uncover la-
tent relationships among subsets of learning recourses from
different types and can quantify these relationships. Our
analysis on two real-world datasets demonstrates that the
discovered relationships are meaningful and can be used for
course design and adaptive learning purposes. Addition-
ally, the proposed approach can use student interactions
with one auxiliary learning resource (such as examples) to
predict students performance on another target learning re-
source type (such as problems). Our experiments on four
real-world datasets show that our approach can efficiently
use the extra information provided by auxiliary learning re-

sources and significantly improve the student performance
prediction error over the baseline models.

2. THE APPROACH
Our proposed approach is inspired by Canonical Correla-
tion Analysis (CCA) [Hotelling 1936], which is a multi-
variate statistical model that studies the interrelationships
among sets of multiple dependent and independent vari-
ables. CCA’s goal is to find linear projections of these vari-
able sets into a shared latent space such that the correlation
between these projections are maximized. In this research,
we use CCA as our main tool: we propose to find the rela-
tionship between students’ ungraded activities (as indepen-
dent variables) and students’ graded activities (as dependent
variables) using CCA. Our final goal is to propose a model
for predicting student performance using pairs of resource
types, motivated by the discovered relationships.

Our reason for choosing CCA as inspiration is twofold. First,
CCA provides different views to the same data samples.
Since we have the same students interacting with multiple
resource types (e.g., examples and problems), we need to
have a tool to model these interactions at the same time,
while distinguishing between distinct resource types (as dif-
ferent views). Other factor analysis models, such as Princi-
pal Component Analysis (PCA), operate on one single view
of the data and are not appropriate for our problem. Second,
because of having multiple learning resources within each re-
source type (e.g., multiple problems and multiple examples)
and several students (as datapoints) we need a multi-variate
statistical model to capture the two-dimensional variability
in the data. Bivariate or simpler multivariate models such as
correlation or regression analysis can only capture the data
variance for one dependent variable at a time and thus miss
the variability of either students or learning material. We
first give a brief background on CCA and then explain how
to model and solve our problems using it.

CCA. If matrix Xm×n represents n data samples and m
variables and matrix Yp×n contains the values for p variables
of same n data samples, CCA aims to find linear transfor-
mations, wx and wy, such that the correlation between pro-
jections of X and Y through wx and wy (reflected as ρ in
Equation 1) is maximized.

ρ =
wT

xXY
Twy√

(wT
xXXTwx)(wT

y Y Y Twy)
(1)

Since multiplication of wx and wy by a constant does not
change the value of ρ in Equation 1, the problem of finding
wx and wy can be formulated as in Equation 2.

max
wx,wy

wT
xXY

Twy

subject to wT
xXX

Twx = 1, wT
y Y Y

Twy = 1
(2)

Adding the regularization parameters to Equation 2, for con-
trolling over-fitting of ρ, Sun et al. show that this regularized-
CCA problem can be represented as in Equation 3, and
solved using a least squares approach [Sun et al. 2008]. The
formulation for wy is a symmetrical version of Equation 3.

XY T (Y Y T )−1Y XTwx = η(XXT + λI)wx (3)

In addition to wx and wy that produce the maximum corre-
lation ρ, there can be other projection vector pairs that can
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map X and Y matrices with correlations less than or equal
to ρ. The optimization problem in Equation 4 finds these
multiple projection vectors for X (in matrix Wx).

max
Wx

Trace(WT
x XY

T (Y Y T )−1Y XTWx)

subject to WT
x XX

TWx = I
(4)

2.1 Relation Discovery between Learning Re-
source Types

As students work with various learning resources that are
provided in an online course or a tutoring system, they gain
more knowledge about the concepts presented in the course
and can tackle more complicated problems. Knowing the
relationship between different learning resource types and
the way they interact in affecting students’ knowledge can
help better course design.Having the learning material from
one resource type (e.g., problems) as one set of variables and
learning material from another type (e.g., examples) as the
other set of variables, we can interpret canonical correlation
as a measure of relatedness between resource types.

More specifically, to map our problem to the CCA setting,
we suppose that there are n students that have at least one
activity in each of the resource types. For example, these
students may have tried some problems and studied some
examples in the course. We represent the students’ perfor-
mance on problems as a matrix Yp×n, with n students, p
problems, and Yi,j representing the student j’s score in quiz
i. This score can be a grade or pass/fail indicator. Similarly,
students’ example activities can be represented as another
matrix Xm×n, with n students, m examples, and Xi,j as an
indication that user j has read example i. Given these two
activity matrices, we use CCA to find linear transformations
Wx and Wy and canonical correlations P as in Equation 4.

Formulating our problem as an instance of CCA, Wx and
Wy can represent linear transformation matrices that map
the original activity matrices X and Y into a shared latent
space. These projections are scaled based on the canoni-
cal correlation values in a diagonal matrix Pc×c, in which
each of the diagonal elements are equivalent to the canoni-
cal correlation value ρi for each projection vector pair Wx:,i

and Wy:,i . Meanwhile, the projection matrices Wxm×c and
Wyp×c are representations of learning resources, projected
into the shared space. Having this shared component space,
we can compare and relate activities that are present in the
two resource types.

In other words, each learning material i from the auxiliary
learning resource in matrix X, will be represented as a 1× c
vector Wxi,: and each learning material j from the target
learning resource in matrix Y , will be represented as a 1× c
vector Wyj,: . So, we can find the most similar resources from
different types by looking at the cosine similarity between
those vectors in the shared component space.

Note that this is different from simply comparing matrices X
and Y in the shared student space by calculating their cosine
similarity. Here, we have the canonical correlation effect on
finding similar learning resources. To be more clear, if we
suppose that wT

xXX
Twx = 1 and wT

y Y Y
Twy = 1 (by which

we transformed Equation 1 to Equation 2), then we have:

ρ̂ = wT
xXY

Twy (5)

ρ̂ in Equation 5 is equivalent to ρ in Equation 1, scaled
by its denominator. Now, if we left-multiply both sides of

Equation 5 by wT
x

−1
, and right-multiply both sides of it by

wy
−1, we achieve XY T = wT

x
−1
ρwy

−1. Equivalently, when
having multiple canonical correlations, we can see that:

XY T = WT
x

−1
PWy

−1 (6)

Equation 6 shows the relationship between the projection
matrices with the cosine similarity of X and Y (XY T ).
Clearly, Y XT and WyW

T
x are not equal.

2.2 Inter-Activity Performance Prediction
Predicting how a student performs on a problem can help
teachers to adjust the course material based on students’
predicted performance and can lead to personalized learn-
ing. Also, it can guide students towards a structured and
effective learning. As in many prediction problems, educa-
tional data is usually incomplete: not all students try all
resources. We focus on predicting students’ scores for the
first time that they try a problem. Thus, the problem of
predicting students’ performance can be interpreted as es-
timating the missing values in the student activity matrix
(Y ) that is described in the beginning of Section 2.

As proposed in Section 2.1, we can find the relationship be-
tween sets of learning resources of two types using CCA.
Thus, if we know students’ performance on auxiliary learn-
ing resources in matrix X and their performance in the tar-
get learning resource in matrix Y , we can understand how
students’ activities on auxiliary learning resources affect the
same students’ performance on the target learning resources.
When the student activity matrix (Y ) is incomplete, we can
estimate wx and wy by calculating the canonical correlations
between the auxiliary activity matrix X and the incomplete
target activity matrix Y to achieve the estimated projection
vectors ŵx and ŵy. Using these projection vectors, we can

estimate a complete activity matrix Ŷ as in Equation 7.

Ŷ = ŵyρŵx
TX (7)

Here, student activities in the auxiliary learning resource are
mapped to the shared latent space, scaled by the canonical
correlation factor ρ, and then mapped back to the target
learning resource space. In case of calculating multiple (c)

projection vector pairs (Ŵxm×c and Ŵyp×c), with canoni-
cal correlations represented in Pc×c, we estimate students’
performance (Ŷ ) as in Equation 8.

Ŷ = ŴyPŴ
T
x X (8)

3. DATASETS
We use four datasets from two online platforms for our
experiments. The anonymized data represent log files of
student interaction with course resources (activities), and
their performance in them. Each of these platforms allow
their students to learn from multiple learning resource types
that calls for modeling inter-activity relations. The first two
datasets are richer since they have learning resource names,
topics, and contents although we do not use them for the
discovery and prediction purposes. The third and fourth
datasets are larger, from a MOOC platform, with more vari-
ation in learning resource types. However, we do not have
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access to these learning resources beyond their assigned IDs.
In the following sections, we describe each of these datasets.

Table 1: Statistics of Mastery Grids datasets

students prob.
Parsons
prob.

annot.
exam.

anim.
exam.

Python
number 319 37 43 58 53
average
activity
records

65.5 147.5 112.3 97.2 93.8

density 0.34 0.46 0.35 0.30 0.29

Java
number 206 113 - 101 50
average
activity
records

127.2 108.3 - 93.9 89.7

density 0.78 0.53 - 0.47 0.44

Table 2: Statistics of Canvas Network datasets

students
quiz-
assign.

assign.
discus.
topics

Business and
Management

number 232 32 38 34
average
activity
records

62.7 208.1 190.8 18.9

density 0.60 0.89 0.82 0.08

Professions and
Applied Sciences

number 1160 18 26 70
average
activity
records

16.25 427.3 372.5 21.1

density 0.14 0.37 0.32 0.02

3.1 Mastery Grids Datasets
Our first two datasets are collected from an online intelli-
gent tutoring system, Mastery Grids [Loboda et al. 2014].
This system provides personalized access to three types of
interactive content for Java programming and four types of
content for Python programming. Parameterized semantic
problems, annotated examples (code snippets with explana-
tions), and animated examples (interactive simulations that
visually demonstrate the runtime behavior of a code snip-
pet) are the three types of resources that are available for
both Java and Python courses. In addition to those, Python
course includes the so-called Parsons problems originally in-
troduced in [Parsons and Haden 2006].

The parameterized semantic problems (problems, for short)
are generated by QuizJet and QuizPet system [Hsiao et al.
2009] from a pool of parameterized questions on Java and
Python programming. As a result, the same problem can be
attempted multiple times by students with various parame-
ters. We only consider students’ first attempt on each prob-
lem for our experiments. Annotated examples presented
by WebEx allow students to interactively explore line-by-
line explanation of code snippets [Brusilovsky and Yudelson
2008]. Working with animated examples, which are gener-
ated using Jsvee library [Sirkiä 2016], students can execute a
Java or Python program visually, observing internal opera-
tion, such as variable assignments and printing on a console.
In Parsons problems, students are asked to solve a program-
ming task by selecting and sorting provided code lines.

Mastery Grids groups different learning resources into mul-
tiple learning topics. Although this system offers a recom-
mended topic sequence in its interface, the students are free

to select and work on any of the topics and learning resources
at any given time. The Java dataset from this system is
collected from Fall and Spring semesters of 2016. Among
all of the students, we selected the ones who have at least
one activity in each of the problems, annotated examples,
and animated examples. A summary of statistics for these
datasets are shown in Table 1. The Python dataset about
two times sparser than the Java dataset in terms of num-
ber of all activities per student. Among different resource
types, the density of student activities on problems are the
closest between the two datasets. In both of the datasets,
student activities on problems are the densest and activities
on animated examples are the most sparse.

3.2 Canvas Network Datasets
Our third and fourth datasets are publicly available from
Canvas Network (http://canvas.net) [Network 2016]. Can-
vas Network hosts many freely available open online courses
in which it offers multiple leaning resource types. More
specifically, in addition to learning modules, each course can
have different types of assignments, discussions, and pop-
quizzes. Participants are not limited to a specific sequence of
learning material or assignments. Categories of the learning
resources include “assignments”, “quiz-assignments”, “pop-
quizzes”,“discussions”, and“wikis”. The dataset is anonymized
such that student IDs, course names, discussion contents,
submission contents, and course contents are not available.

Course assignments can be quiz-style (“quiz-assignment”) or
in longer format, for which students submit a text or video
file (“assignments”). We choose two of the offered courses
in Canvas Network as the third and fourth datasets for our
experiments. These two courses are selected because they
provide multiple learning resource types and have more ac-
tive students in all of these resource types. The first course
is in the “Professions and Applied Sciences” field and the
second course is in the “Business and Management” field.

Since assignments, quiz-assignments, and discussions have
the most activities, we focus on these resource types in our
experiments. Among these three, assignments and quiz-
assignments are graded. For consistency, we normalize stu-
dents’ grades between zero and one based on their maximum
possible grade. For discussions, we consider a binary vari-
able representing if a student has posted a message or not.
We select the students who have at least one activity in each
of these learning resources. A summary of statistics for these
datasets is shown in Table 2. Discussion topics have the least
dense activity matrices in the two datasets. They are very
sparse compared to student activities on assignments and
quiz-assignments. Comparing the two datasets from Canvas
Network, overall student activities in professional and ap-
plied sciences domain course is very sparse. But, the density
of student activities on all resources in business and manage-
ment domain course is comparable with the datasets from
Mastery Grids system. However, the distribution of student
activities among various resource types are more skewed in
the Canvas Network datasets.

4. EXPERIMENTS
4.1 Experiment Setup
Per the proposed model in Section 2, element Xi,j in activity
matrix X represents the result of student j’s first attempt
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on learning resource i. This activity result can be different
for different learning resource types. For graded learning re-
sources, such as assignments and quiz-assignments, we use
the normalized score of students; for problems and Parsons
problems with success or failure feedback, we use binary
scores; and for non-graded activities, such as reading an an-
notated example or posting in a discussion forum, we use a
binary indicator that shows the students’ attempt. We use
average imputation for missing values.

For prediction experiments, we follow a 5-fold user strati-
fied separation of the student performance data to perform
cross-validation on it. Particularly, in each round of exper-
iments, we select 20% of students as test students, 15% of
them for validation purposes, and 65% of them as train. Our
task is to predict test students’ performance on activities in
a target learning resource type, observing 20% of these stu-
dents’ activities, and the training data. In the CCA-based
proposed approach, the training data includes all students’
activities in the auxiliary learning resource type, in addition
to observed activities of students in the target resources. We
repeat each round of the experiments for 5 times.

Since only quiz-assignments and assignments are graded in
the Canvas Network datasets, and only problems and Par-
sons problems are graded in the Mastery Grids datasets, we
define the prediction tasks on these resource types. Discus-
sions from the Canvas Network datasets and examples (an-
notated and animated) from the Mastery Grids datasets are
only used as auxiliary resources. Note that each of graded re-
source types (quiz-assignments, assignments, problems, and
Parsons problems) can also be used as an auxiliary resource
for another type of graded resource in the same dataset.

Baselines. In previous works, collaborative filtering meth-
ods have been proved successful in predicting students per-
formance [Thai-Nghe et al. 2011, Sahebi et al. 2014]. Since
our proposed approach is similar to these approaches in
discovering latent relationships among learning resources,
through factorizing activity matrices, we choose two settings
of SVD++ algorithm [Koren et al. 2009] as our baselines.
To study if adding student activities in auxiliary resource
type would help better estimation of students performance
in the target resource type, we compare our approach with
single-resource SVD++ algorithm. In this setting we run
SVD++ algorithm only on the target learning resource ma-
trix, assuming that we do not have the information on stu-
dent activities in the auxiliary resource types, and compare
the results with our proposed method. To understand our
CCA-based method’s efficiency on capturing important rela-
tionships between different learning resource types, we com-
pare it with a paired-resource setting of SVD++ algorithm.
Particularly, we merge the two auxiliary and target learning
resource types into one set of learning materials (represented
by one matrix) and run the SVD++ algorithm on this aug-
mented matrix. Note that our proposed method factorized
two separate matrices at the same time but SVD++ can
only factorize one matrix.

Since the student activity datasets are biased towards stu-
dent success (e.g., average grade for problems in the Python
dataset is 0.67 out of 1), we compare the methods with an
average baseline. To do this, we use the training dataset

average as the predicted performance for all of the students
in each of the 5 data splits.

4.2 Discovering Relationships between Learn-
ing Resource Types

One of our goals in this paper is to understand relationships
and interactions between sets of learning resources with var-
ious types. CCA has the ability to represent each pair of
learning resource types in the same latent space. This en-
ables us to relate learning material of different types only
based on student activities, without relying on their content
or presented concepts. Since the Mastery Grid datasets pro-
vide learning resource names and topics we can confirm the
discovered relationships by comparing them with learning
resource topic similarities. These topics have been manu-
ally assigned to learning resources by experts, during course
design in Mastery Grids. In order to take a deeper look at
the discovered similarities, we study the top similar learning
resources of different types in the same course (as shown in
Table 3). To calculate these similarities, we look at projec-
tions of each learning resource in the shared latent space, Wx

and Wy and calculate the cosine similarity between them, as
mentioned in Section 2.1. We look at the most similar learn-
ing resources of each course in the following.

The Java Dataset. For the Java dataset, we can calcu-
late the cosine similarity of problems with animated exam-
ples and problems with annotated examples. We can see
the most similar problems and animated examples in rows
1-4 of Table 3. As we can see, three of these four learn-
ing resource pairs are from the same expert-labeled topic.
For example, both problem“jWhile1”and animated example
“ae while demo”are about“while loops” in Java. This shows
that our approach can accurately figure out the most similar
problems and animated examples, only based on student ac-
tivities and their performance, not knowing about their topic
or content. However, the resources in row 3 are from differ-
ent expert-labeled topics“boolean expressions”and“switch”.
While these two are not exactly the same, the switch expres-
sions in Java use boolean expressions in their conditional
statements. So these two topics are closely related to each
other: if a student cannot understand the “boolean expres-
sions” topic, understanding the “switch” topic would be dif-
ficult for this student.

The most similar Java annotated examples and problems,
found by CCA projection matrices, are listed in rows 5-8.
Here, we do not see the obvious similarities that was ap-
parent between animated examples and problems. In row
5, there is topic similarity between the problem with “loops
do-while” topic and the annotated example with “loops for”
topic: both of them are about loops in Java. For row 8, we
know that Java for loops use “arithmetic operations” in their
conditional statement. However, topics for similar resources
discovered in rows 6 and 7 look irrelevant. Row 6’s prob-
lem is labeled by experts with the “interfaces” topic, while
the similar annotated example is labeled with the“variables”
topic. Likewise, the problem topic in row 7 is “interfaces”,
while the topic of similar annotated example is “objects”.

To gain more insight about these learning resources, we
looked at their contents. We discovered that although the
general topics for these problems and their discovered anno-
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Table 3: Most similar learning materials of different types, from Java and Python courses, according to their
similarity using CCA projection vectors.

course
material
type

row

Java

prob.
&
anim.
exam.

prob.
ID

prob. name prob. topic anim. exam. topic anim. exam. name
anim.
exam.
ID

1 14 jArrayList5 ArrayList ArrayList ae arraylist2 v2 3
2 18 jBoolean Operators Boolean expressions Switch ae switch demo2 44
3 65 jMathFuc2 Arithmetic operations Arithmetic operations ae arithmetic v2 1
4 100 jWhile1 Loops while Loops while ae while demo 49

prob.
&
annot.
exam.

prob.
ID

prob. name prob. topic annot. exam. topic annot. exam. name
annot.
exam.
ID

5 37 jDowhile1 Loops do while Loops for for1 v2 28
6 57 jInterfaces1 Interfaces Variables PrintTester 78
7 61 jInterfaces5 Interfaces Objects AccessorMutatorDemo 1
8 63 jMathCeil Arithmetic operations Loops for JavaTutorial 4 6 8 57

Python

prob.
&
annot.
exam.

prob.
ID

prob. name prob. topic annot. exam. topic annot. exam. name
annot.
exam.
ID

9 3 q py arithmetic1 Variables Variables pyt1.3 5
10 21 q py nested if elif1 if statements values references pytt10.25 58
11 23 q py obj account1 classes objects Lists pyt7.2 53

prob.
&
anim.
exam.

prob.
ID

prob. name prob. topic anim. exam. topic anim. exam. name
anim.
exam.
ID

12 7 q py dict access1 dictionary loops ae adl while 39
13 29 q py output1 output formatting variables ae adl arithmetics2 1
14 10 q py fun car1 functions exceptions ae adl tryexcept2 34

prob.
&
pars.
prob.

prob.
ID

prob. name prob. topic pars. prob. topic pars. prob. name
pars.
prob.
ID

15 10 q py fun car1 functions exceptions ps python try adding 38
16 12 q py if elif1 if statements loops combo python while 9
17 35 q py swap1 variables variables combo swap 11

pars.
prob.
&
annot.
exam.

pars.
prob.
ID

pars. prob. name pars. prob. topic annot. exam. topic annot. exam. name
annot.
exam.
ID

18 1 combo avg variables variables pyt2.1 32
19 14 ps python addition variables variables pyt1.2 4
20 41 ps return bigger or none functions functions pyt10.7 30

pars.
prob.
&
anim.
exam.

pars.
prob.
ID

pars. prob. name pars. prob. topic anim. exam. topic anim. exam. name
anim.
exam.
ID

21 1 combo avg variables variables ae python assignment 40
22 12 ps hello variables variables ae adl arithmetics2 1
23 43 ps simple params functions functions ae adl returnvalue 29

Figure 1: Content of problem with“Interfaces” topic
(row 6 of Table 3)

tated examples are not the same, they include very sim-
ilar concepts. For example, Figure 1 shows the content
for problem “jInterfaces1” (topic: “interfaces”), and Figure
2 shows the content for annotated example “PrintTester”
(topic: “variables”). As we can see, the concept of printing
an output in the console is very important in both of these
learning resources. Interestingly, it appears that although

the designers of Java course were interested in the mentioned
topics while designing these learning resources, we are dis-
covering other possible “latent topics” for them. Another
factor in these newly-found relations can be the mixed rela-
tionship of annotated examples with students performance.
Hosseini et al. have studied the use and impact of annotated
and animated examples in the same online tutoring system
and concluded that students are likely to learn more from
animated examples [Hosseini et al. 2016]. Particularly, they
showed that although more views of animated examples is
associated with a higher course grade, the number of views
on annotated examples has a negative effect on it. A possible
reason is the negative process of associating examples with
poor knowledge: students with poor knowledge are more
likely to study annotated examples. This association can
potentially overcome the positive impact of learning from
annotated examples and lead to a negative impact. Also,
they show that animated examples provided better impact
on problem solving success and post-test scores.

The Python Dataset. We study 5 pairs of resource types
and the cosine similarities between Wys and WT

x s in the
Python dataset: problems vs. animated examples, problems
vs. annotated examples, Parsons problems vs. animated
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Figure 2: Content of annotated example with “Vari-
ables” topic (row 6 of Table 3)

Figure 3: Content of problem with “classes objects”
topic (row 11 of Table 3)

examples, Parsons problems vs. annotated examples, and
problems vs. Parsons problems. Samples of discovered sim-
ilar learning resources are shown in Table 3.

As shown in rows 9-11, the first problem and its matched
annotated example have the same topic of “variables”. But,
the next two pairs do not have a common topic. We study
the content of these learning resources to understand the
nature of their similarity. For example, if we look at row 11,
we see that annotated example “pyt7.2” has topic of “lists”.
Now if we look at problem“q py obj account1”with topic of
“classes objects” in Figure 3, we can see that this problem
uses lists (accounts variable) in it. We avoid showing the
content for the pair in row 10 due to space limits.

Rows 12-14 show similar animated examples and problems
in the Python dataset. To show the similarities between
concepts used in these animated examples and problems, we
look at one pair: problem “q py fun car1” with topic “func-
tions” (Figure 4) and animated example “ae adl tryexcept2”
with topic “exceptions” (Figure 5). We can see that there

is a function call and a function definition in this animated
example (Figure 5). Consequently, although this animated
example is not designed to teach the“function”topic and de-
spite of it being labeled with the “exceptions” topic only, the
discovered similarities show the associations between stu-
dents’ learning of functions and this animated example.

The most similar problems and Parsons problems are shown
in rows 15-17 of Table 3. Two of the top similar pairs are
from the same (“variables”) or related (“if statements” and
“loops”) topics. The resources in row 15 are from different
topics: a “functions” problem and an “exceptions” Parsons
problem. But, as can be seen in Figures 4 and 6 the Parsons
problem includes a function definition. So, students can
learn about functions while executing this animated example
that is about exceptions.

Figure 4: Content of problem with “functions” topic
(rows 14 and 15 of Table 3)

Figure 5: Content of animated example with “ex-
ceptions” topic (row 14 of Table 3)

Figure 6: Content of Parsons problem with “Excep-
tions” topic (row 15 of Table 3)

Finally, as we can see in rows 18-23, analogous samples of
Parsons problems vs annotated examples, and Parsons prob-
lems vs animated examples are all from the same topics.
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One may think that the discovered similarities are a result
of topic arrangements in the course design and conclude that
we can find these similar learning resources by only looking
at the co-occurrence of student activities in two learning
resource types, e.g., by calculating the cosine similarities
between learning resources in the original student-space, or
matrices X and Y . However, looking at some of the discov-
ered similarities, such as the second row of Table 3, reassures
us that our approach can find the relationships beyond their
trivial co-occurrence. As we have mentioned, the “switch”
and “boolean Expressions” topics are not the same, but are
very related. In the Mastery Grids interface, these two top-
ics are not placed right next to each other. But, another
topic (“if-else” topic) is placed between them. This means
that the discovered similarity is not solely based on activity
co-occurrence due to topic placement in Mastery Grids.

To discover what we can gain from trivial co-occurrences,
without using our proposed method, we looked at samples
of the most similar learning resources, based on the cosine
similarity between student activities in the original student
space (similarity between matrices X and Y ). In this case,
the most similar discovered learning resource pairs are ei-
ther placed closely in the same topic (and thus, may happen
due to the students following the sequence imposed by learn-
ing resource arrangements in the interface), or do not have
any meaningful content-based relationship. For example,
the most similar animated example that is discovered in stu-
dent space for the “jBoolean Operators” problem (problem
in row 2 of Table 3) is labeled with the“primitive data types”
topic, demonstrating “Double” and “Short” data types.

To summarize, the discovered CCA-based similarities in both
datasets are meaningful. Some of the related learning re-
source pairs are from the same topics, others are related in
the concepts or sub-topics that they present. In general,
this is a very promising result, especially for applications in
which the learning resource contents are difficult to analyze
and compare. Discovering these similarities, instructors can
rearrange their learning material in ways that most bene-
fits students’ learning. Also, it can be used for multi-source
knowledge modeling of students. Namely, we can model stu-
dent knowledge in shared concepts between problems and
animated examples and understand how a student’s abil-
ity in a learning recourse type (e.g., to solve a problem)
increases by trying another learning resource of a different
type (e.g., a related animated example).

4.3 Predicting Student Performance Using Aux-
iliary Resource Types

Using the formulation proposed in Section 2.2, our goal here
is to predict students’ performance using auxiliary learn-
ing resource types and compare it with similar baseline ap-
proaches. We measure performance of the proposed and
baseline approaches using Root Mean Squared Error (RMSE).
This measure quantifies the average difference between ac-
tual students’ score and their predicted performance.

Mastery Grids Datasets For the Java programming dataset,
we run two sets of experiments. The first set of experi-
ments is on predicting students performance on problems,
using their activities on annotated examples as auxiliary
data (“annotated examples → problems”). In the second

set of experiments, we use animated example activities as
the auxiliary resource for predicting students performance
on problems (“animated examples → problems”). As men-
tioned before, we compare the results of our proposed ap-
proach with single-resource SVD++ –only using student logs
on problems– and paired-resource SVD++ –with the same
input as our proposed approach–.

For the Python programming dataset, we run six sets of
experiments. Having problems and Parsons problems as
target learning resource types, we use annotated examples
and animated examples as the auxiliary learning resources.
Additionally, problems may help us in predicting students’
performance in Parsons problems, and vice versa.

Table 4 shows the RMSE of CCA-based and baseline ap-
proaches for these sets of experiments on both of Mastery
Grids datasets. The numbers in parentheses report the 95-
percentile confidence interval for the reported errors. As
we can see here, our CCA-based approach performs signifi-
cantly better than the baselines in all of the experiment se-
tups in both datasets. As our proposed approach performs
better than single-resource SVD++, we can conclude than
adding the auxiliary data significantly improves student per-
formance prediction. On the other hand, we can see that the
proposed CCA-based approach works better than SVD++
in the multi-recourse setting using the same set of auxil-
iary and target data. Therefore, we can conclude that our
approach is a better fit for effectively using auxiliary data.

Comparing the two settings for SVD++, in the Python
dataset single-resource SVD++ performs as good as, or sig-
nificantly better than paired-resource SVD++. Specifically,
for combinations “animated examples→ problems” and “an-
notated examples→ problems”, paired-resource SVD++ has
a significantly higher error than single-resource SVD++.
This confirms our findings in Section 4.2 about smaller simi-
larities between problems and examples in the Python dataset.
As expected in biased datasets, we can see that average base-
line is working very well. Comparing with paired-resource
SVD++, its error is significantly lower in four of the exper-
iments on the Python dataset. Single-resource SVD++ is
significantly better than (in “animated examples → prob-
lems”, “annotated examples→ problems”, and “problems→
Parsons problems”) or similar to the average baseline.

In contrast, in the Java dataset, the average baseline has
slightly, but significantly, higher error than the proposed ap-
proach and the other two baselines for “annotated examples
→ problems”. For“animated examples→ problems”, the av-
erage baseline has better predictions compared to the other
two baselines. Also, paired-resource SVD++ works signif-
icantly better than single-resource SVD++ for “annotated
examples → problems”. This shows that paired-resource
SVD++ is not consistent on different datasets, even if sim-
ilar learning resource types are used, and to be able to take
advantage of auxiliary information, a more advanced ap-
proach, such as the proposed one, is needed.

Canvas Network datasets. Canvas Network datasets give
us the opportunity to test our approach on more varied
data of MOOCs and in different domains. Notably, “Profes-
sions and Applied Sciences” data has more users and is very
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Table 4: RMSE for student performance prediction task on Mastery Grids datasets.
anim. example
→ problem

annot. example
→ problem

pars. prob.
→ problem

anim. example
→ pars. prob.

annot. example
→ pars. prob.

prob.
→ pars. prob.

Java

paired-
resource
CCA

0.4148 (0.0097) 0.4159 (0.0057) - - - -

paired-
resource
SVD++

0.5304 (0.0127) 0.4696 (0.0047) - - - -

single-
resource
SVD++

0.5178 (0.0214) 0.4537 (0.0119) - - - -

average
baseline

0.4859 (0.0071) 0.4854 (0.0039) - - - -

Python

paired-
resource
CCA

0.4584 (0.0035) 0.4566 (0.0024) 0.4579 (0.007) 0.4122 (0.0081) 0.4098 (0.0043) 0.4105 (0.0075)

paired-
resource
SVD++

0.516 (0.0124) 0.5122 (0.0156) 0.5524 (0.0083) 0.5213 (0.022) 0.456 (0.0084) 0.4954 (0.0123)

single-
resource
SVD++

0.4921 (0.0147) 0.4921 (0.0147) 0.4921 (0.0147) 0.4409 (0.0059) 0.4409 (0.0059) 0.4409 (0.0059)

average
baseline

0.4961 (0.0024) 0.4972 (0.0036) 0.4957 (0.0014) 0.4724 (0.0056) 0.4716 (0.0047) 0.4723 (0.0072)

Table 5: RMSE for student performance prediction task on Canvas Network datasets, using discussions,
quiz-assignments, and assignments as auxiliary resources.

quiz-assignments
→ assignments

discussions
→ assignments

assignments →
quiz-assignments

discussions →
quiz-assignments

Business and
Management

paired-resource
CCA-based

0.1073 (0.0209) 0.1093 (0.0163) 0.0911 (0.0124) 0.1207 (0.0109)

paired-resource
SVD++

0.1871 (0.0143) 0.1569 (0.0115) 0.1696 (0.0111) 0.1903 (0.0085)

single-resource
SVD++

0.1890 (0.0208) 0.1890 (0.0208) 0.1532 (0.0125) 0.1532 (0.0125)

average
baseline

0.1741 (0.0182) 0.1741 (0.0182) 0.1752 (0.0118) 0.1752 (0.0118)

Professions and
Applied Sciences

paired-resource
CCA-based

0.1264 (0.0085) 0.1252 (0.0049) 0.1252 (0.0035) 0.1287 (0.0105)

paired-resource
SVD++

0.2070 (0.0112) 0.1897 (0.0140) 0.2039 (0.0211) 0.3254 (0.0171)

single-resource
SVD++

0.5235 (0.0196) 0.5235 (0.01960) 0.2057 (0.0176) 0.2057 (0.0176)

average
baseline

0.4596 (0.0019) 0.4596 (0.0019) 0.3838 (0.0037) 0.3838 (0.0037)

sparse compared to all other datasets. For Canvas Network
datasets we run four sets of experiments. In the first two
sets, we use quiz-assignments and discussions as auxiliary
resources to predict students’ performance in assignments.
In the third and fourth sets of experiments we predict stu-
dents’ grade in quiz-assignments using general assignments
and discussions as auxiliary resources.

Table 5 shows RMSE of all approaches on both “Profes-
sions and Applied Sciences”and“Business and Management”
datasets. Similar to our results on the Mastery Grids dataset,
we can see that the proposed approach can effectively use
auxiliary resources to provide better estimation of student
performance in all resource pairs. Comparing paired-resource
SVD++ to single-resource SVD++, we can see that in most
of the experiments their error is not significantly different.
Only for “quiz-assignments→ assignments” and “discussions
→ assignments”, in“Professions and Applied Sciences”dataset,
paired-resource SVD++ is significantly better than single-
resource SVD++. Comparing the average baseline results,
it’s error is significantly higher than (in“Professions and Ap-
plied Sciences”dataset) or similar to paired-resource SVD++.
Whereas compared to single-resource SVD++, it works bet-

ter in predicting assignments, and worse in predicting quiz-
assignments. This is because there is more variation in stu-
dents’ scores in quiz-assignments.

In addition to the way different courses are designed and
learning resources are prepared, one of the reasons behind
the different results between the two datasets can be due
to the variations between two course datasets. For exam-
ple, having more students and being sparser may lead to
added value of auxiliary information in the “Professions and
Applied Sciences” dataset (Table 2). In other words, effec-
tiveness of adding auxiliary data for the task of performance
prediction depends on the dataset and its characteristics.

5. CONCLUSIONS
We proposed an approach inspired by canonical correlation
analysis for discovering interrelationships between learning
resources of different types, only using student performance
in them. This approach can also be used to predict students’
performance. That is to say, we can predict students’ per-
formance in one type of learning resources, with the help of
student activities in another resource type. We evaluated
the proposed approach with four datasets and two tasks.
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For the task of finding learning resource interrelationships,
we evaluated our approach on the Java programming dataset
with three resource types, and the Python programming
dataset with four resource types. Finding the most simi-
lar resources of different types, only based on student ac-
tivities, we showed that our approach is very promising in
detecting these similarities, especially for learning resources
that have been proved to have a positive effect on students’
learning. Also, we found that our approach goes beyond the
designated topics for learning resources and discovers latent
similarities that provide clues of their content similarity.

Having four datasets from two online learning systems, we
ended up with 16 total experiment sets for predicting stu-
dent performance in paired resource types. We compared
our proposed approach with an average baseline and two al-
gorithmic baselines: one using student activities in both aux-
iliary and target resource types (paired resource SVD++),
and one with using student activities in only target resource
type (single resource SVD++). The experiments showed
that our proposed approach can significantly improve esti-
mation of student grades in all setups and datasets. This
success is in part due to the extra information from the aux-
iliary resource types on students’ performance: in three out
of 16 setups, the baseline algorithm with auxiliary data per-
formed better than the baseline algorithm without auxiliary
data . However, in two of the setups the baseline with aux-
iliary data performed significantly worse than the baseline
without it. Meanwhile, the proposed approach performed
better than both baselines in all of the 16 experiments. It
showed that better performance of the proposed approach is
not only because of having extra information, but also be-
cause of its ability to use latent interrelationships between
auxiliary and target resource types, in a more efficient way.
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P. Brusilovsky. 2015. Challenges of Using

Observational Data to Determine the Importance of
Example Usage. In International Conference on
Artificial Intelligence in Education. 633–637.
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ABSTRACT
Massive Open Online Courses (MOOCs) are designed on the
assumption that good students will help poor students thus
offloading the individual support tasks from the instructor
to the class. However prior research has shown that this is
not always true. Students in MOOCs tend to form distinct
sub-communities and their grades are closely correlated with
those of their closest peers. That work, however, was only
based on analyzing the final social network in a MOOC. In
this paper, we study the evolution of these co-performing
clusters over time. We explore a longitudinal approach to
detect how students form their social connections on the dis-
cussion forum and we show that students form close coequal
communities early in the course and maintain them over the
duration of the course.

Keywords
MOOC, social network analysis, community detection, fo-
rum participation

1. INTRODUCTION
One promise of Massive Open Online Courses (MOOCs) is
that we can provide high-quality educational content to stu-
dents around the world at relatively low cost. The broad
goal of MOOCs is to scale instruction by allowing expert
instructors to provide guidance to hundreds or even thou-
sands of students at a time. Such large-scale education has
the potential to be revolutionary both for individual stu-
dents and for educational systems. The current generation
of MOOCs are designed to achieve this scaling by outsourc-
ing much of the individual support tasks to students. That
is, rather than capping enrollment to ensure that the instruc-
tor and TAs can support every students’ needs, MOOCs pro-
vide online forums that encourage students to share common
questions and to provide collaborative guidance or to ben-
efit from each others’ interactions with the limited support
staff. Thus it is tacitly assumed that students will have com-
mon issues and that good students will help poor students

with course content, assignments, logistics, and other issues.
The role of instructors and TAs is then often to curate help
rather than authoring it.

In a prior study Brown et al. examined the formation of
communities in a large scale MOOC on Big Data in Educa-
tion [3]. They extracted social networks from the online
course forum and analyzed the connections between stu-
dents. Contrary to the implicit assumption described above,
they found that the social connections were not evenly dis-
tributed. Nor did they find that the lower-performing stu-
dents made persistent connections with their higher-performing
peers. Instead they found that the students formed distinct
sub-communities and that their performance in the course
was strongly correlated with that of their closest neighbors.
In followup work, Brown et al. also found that these com-
munities were not aligned with students’ shared backgrounds
nor were they apparently driven by shared course goals [2].
They further found that these results were stable even af-
ter the instructional staff and other highly-connected or hub
students were factored out. Thus the authors concluded that
the pattern of students’ social relationships can be used to
predict their performance and that interventions which tar-
get those social relationships may help students to improve
either by selecting good peers or by flagging isolated and
poorly-performing groups for individual attention.

That work, however, was limited by the fact that it only used
the final social network from the course. Thus when eval-
uating students’ performance the authors included all posts
and social interactions that had developed over the duration
of the course. In order to provide useful guidance during the
course and to provide reliable information to instructors, we
must show that it is possible to detect these relationships
based upon partially-formed networks. In general most stu-
dents’ patterns of help-seeking change over the duration of
the course. Students often drop out of courses, particularly
MOOCs, or taper off their involvement as they lose interest.
Students also face difficulties in courses that may make them
scale up their communication as the course becomes more
challenging. It may be the case that the network structure
will change radically over the course of the class and that
any early detection model or instructor dashboard will be
erratic, invalid, or simply out of date.

In this work, we expand upon the prior work of Brown et al.
by examining the growth of the students’ social relationships
over time, in the same MOOC. To that end we segmented
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the forum data by time and performed a sequential analysis
of the evolving social network. Our goal in this work will
be to address the following questions: First, are students’
social groups stable over time? And if so, how early in the
course do these observed grade relationships hold? Second,
can we use partial social networks to help inform instructors
and students in MOOCs? If the answer to these questions is
true then it may be possible to develop effective social inter-
vention systems that could use students’ posting behaviors
to flag students that need attention, or to generate strategic
advice on where or how often to post questions. Section 2
provides some background on social network analysis in ed-
ucation. Section 3 describes the dataset we use in our work.
In Sections 4 and 5 we present our analysis and results. And
finally in section 6 we present our conclusions and discuss
our future work.

2. BACKGROUND
2.1 MOOCs, Forums, Students Performance
According to Seaton et al. most of the time students spend
on MOOCs is spent viewing the lecture videos, complet-
ing mastery assignments, and reading the discussion forums
[21]. Very little time is spent on external or ‘off-platform’
activities. Thus, the discussion forums provide a rich and
useful window into the students’ primary course activities.
Stahl et al. [24] illustrated how students collaborate to cre-
ate knowledge through this interaction. They argued that
students’ forum activities are not only beneficial for the in-
dividual discussants but also serve to structure the class as
a whole. Each student’s activity level varies as does their
impact on the course. Huang et al. for example, specifi-
cally investigated the behavior of high-volume posters in 44
MOOC-related forums. These ‘super-posters’ tend to en-
roll in more courses and generally perform better on aver-
age [12]. Moreover, by actively engaging in many conversa-
tions, they add to the overall volume of the course discus-
sion and they tend to leave fewer questions unanswered in
the forums. They also found that, despite their high out-
put, these super-posters did not act to suppress the activ-
ity of other less-active users. Rienties et al. [19] examined
the way in which students structure their social interactions
online. They found that allowing students to self-select col-
laborators in a MOOC is more conducive to learning than
random assignment of partners. In another study, Van Dijk
et al[25] found that simple peer instruction is significantly
less effective in the absence of a group discussion step, thus
reinforcing the importance of a shared class forum.

Prior researchers have also examined the general dynamics
of the student forums. Boroujeni et al. examined the re-
lationship between students’ temporal patterns, discussion
content and social structures emerging from the forums [23].
They found that for MOOCs lasting eight weeks, the pace of
students’ posts remained high during the first 3 weeks and
then tapered down gradually until the class ended. They
also found that this pattern was affected by the assignment
dates and other deadlines as well as the overall volume of the
posts in each thread. Furthermore, they tracked the network
attributes over time by using one-week network slices based
upon a sliding window. The slice for each day of the course
(d>6) was built from forum activities during the preceed-
ing 7 days ([d-6, d]). For each network slice, the attributes
included node counts, edge counts, average degree, density,

etc. They found that, with the exception of density, the
attributes decreased over time. Density, ratio of the num-
ber of edges in the graph and the number of edges possible,
by contrast, increased sharply at the end of course. Zhu et
al. explored a longitudinal approach to combine student en-
gagement, performance, and social connections by applying
exponential random graph models [29]. They analyzed the
relationship between the social networks on a week-by-week
basis and they found that students’ individual assignment
scores were all positively related to being more active in the
social network.

Rosé et al.[20] examined students’ evolving social interac-
tions in MOOCs using a Mixed-Membership Stochastic Block
model which seeks to detect partially overlapping communi-
ties. Their specific focus in the analysis was on identifying
the students who were most likely to drop out. They found
that it was possible to predict whether or not a student
would drop out based upon their membership in a commu-
nity. Students who actively participated in the forums early
on in the course were less likely to drop out later on. More-
over, they found that one specific sub-community was much
more prone to dropout than the remainder of the class. This
suggests that the forum communities do align by stability
and thus that social relationships can reflect the students’
relative level of motivation as well as their overall experi-
ence in the course. This is akin to the ’emotional contagion’
model used in the Facebook mood manipulation study by
Kramer, Guillroy, and Hancock [16].

Dawson et al. [6] elaborated the use of social networks to
provide guidance. They provided feedback to students and
instructors based upon the students’ ego-social network (i.e.
their neighborhood). They explored differences in the net-
work composition for low- and high-performing students to
identify patterns of behaviours which may influence the stu-
dents’ learning. They found that the ego-social networks
of low- and high-performing students had significant dif-
ferences, and it was possible to identify different types of
students based upon their ego-network. They also found
that the instructors were equally likely to show up in high-
performing students’ local networks as in those of the low-
performing students. Their results indicated that instruc-
tors could adjust their teaching methods based upon this
network structure.

2.2 Communities
There has also been prior research specifically on how stu-
dents connect within sub-communities and with the instruc-
tor. Insa et al. showed that in a traditional course (contain-
ing both face-to-face lectures and lab sessions), the student’s
seating position can affect their final grade [13]. They sug-
gested that physical proximity to the instructor increased
performance. According to Golder et al., an analysis of stu-
dents’ Facebook messages showed that the students will mes-
sage one another more often during weekday afternoons than
over the weekend [9]. This produced a distinct temporal pat-
tern in their communication and community structure.

The motivation for any student to join a MOOC can vary
widely. This can in turn create several distinct classes of
participants with their own unique behaviors. Anderson et
al., for example, argued that MOOC participants can be
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partitioned into 5 distinct categories based on the number of
lectures that they watched and on the assignments that they
submitted: viewers, solvers, all-rounders, collectors, and by-
standers [1]. They also found that the more assignments a
student completed and the more lectures that they viewed,
the higher their final grade would be. Interestingly, while
students who received a ‘B’ grade showed a small decrease
in their homework submissions relative to ‘A’ students, the
amount of time that those students spent watching lectures
was substantially lower. In related work by Liu et al. how-
ever, the authors found that some of these behavioral differ-
ences were consistent with the students’ cultural background
which may affect not just their motivation but their expec-
tations and habits [18].

Other authors have examined the relationship between stu-
dents’ academic performance and their social network rela-
tionships. Eckles et al. used network analysis on survey
data to identify at-risk students who were more likely to
drop out [7]. Kovanovic et al. analyzed how a student’s
relative centrality in their social network will affect their
academic performance [15]. They found that more central
students were typically higher performers than their less-
connected peers. Finally, Zhang et al. constructed student
social networks based upon the comments and replies that
had been posted to the forum [28]. By analyzing the relative
in- and out-degree of the vertices, they were able to identify
a small amount of users who answered a large proportion of
the questions. This allowed them to find key students in the
course.

2.3 Student Behaviours
In their analysis of student behaviors, Anderson et al. found
that the number of students who watched lecture videos
and finished assignments decreased over the duration of the
course, suggesting that some students changed their minds
about the class or simply changed their habits during it [1].
Ye et al. performed a similar study, in which they examined
a 10-week computer science MOOC [27]. At the end of week
4, 60% of the students who had only watched lectures but
had not participated in other ways had dropped out of the
course, while only 20% of the students who had submitted
assignments and completed quizzes along with viewing had
done so.

Given that a large number of MOOC registrants in a given
course drop [1, 27], studying the causes of this dropout and
preventing it is an important issue. Kloft et al. sought to
predict dropout behaviors in a 12-week course based upon
the students’ click-stream data using a Support Vector Ma-
chine [14]. They identified two peak dropout points, one
during the first two weeks of the course, and the second at
the end of weeks 11 and 12. Students were unlikely to drop
in the middle of the course and thus if they made it through
the early stages and the final crunch then they would likely
complete. Halawa et al. used a specialized definition of
drop out as a student being absent from the course for more
than 1 month or if they viewed less than half of the lec-
ture videos [10]. With this definition they found that the
percentage of students absent from the course sharply de-
creased from 36.4% to 13.8% after week 3. Hoskins , by con-
trast, focused exclusively on quizzes as performance-based
indicators. They provided a web dashboard for students

to self-assess their performance. By comparing students’
self-assessments with their grades they found that low per-
forming students tended to drop out more than their higher-
performing peers [11].

Unlike the prior studies of students’ performance on MOOCs
we constructed a temporal social network structure to exam-
ine how and when MOOC students established their social
connections with differently-performing peers, how their so-
cial connections changed over time, and the correlation be-
tween these community connections and their intermediate
and final performance. We found MOOC students formed
their social structures early in the course and that these re-
lationships are stable over time.

3. DATA SET
In this study we used data from a 2013 course on “Big Data
in Education” that was offered by the Teachers College at
Columbia University and hosted on the Coursera platform.
This was an 8-week course that was designed to cover all
of the requisite material for a single-semester graduate-level
course on Educational Data Mining (EDM) and Big Data
analysis in education. This included studying core methods
such as student modeling and introducing students to basic
data collection and data analysis techniques such as logging
and visualization. This iteration of the MOOC ran from Oc-
tober 24, 2013 to December 26, 2013. The course itself was
structured around weekly lecture videos and individual as-
signments or quizzes which contributed to the students’ final
grade. The weekly assignments were structured around data
analysis tasks with students being tasked with conducting
some analysis discussed in class and then answering numeric
or multiple-choice questions about it. The students were re-
quired to complete each assignment within two weeks of its
being given out. They were also given up to three attempts
per assignment.

The course had a total enrollment of over 48,000 students,
but a much smaller number of active participants. 13,314
students watched at least one video while 1,242 watched all
of them. A total of 1,380 students completed at least one as-
signment, and 778 made at least one post or comment in the
forum. Of those students who made posts, 426 completed
at least one class assignment A total of 638 students com-
pleted the online course and received a certificate (meaning
that some were able to earn a certificate without partici-
pating in forums at all). In order to receive a certificate
students were required to earn an overall grade average of
70% or above on the assignments [26].

4. METHODS
We began our analysis by clustering the count of students’
submissions for each assignment by date in order to under-
stand when students completed their assignments and how
the submission patterns might indicate their working habits.
Unsurprisingly the assignment submissions peaked right be-
fore each due date with few if any late submissions. To make
our analysis consistent we broke the 8-week course into 2-
week chunks and we split our analysis at weeks 2 (start), 4
(midterm), 6 (third quarter), and 8 (final). This decision
was based upon the fact that students worked across weeks,
and on prior literature that pegged the two- and four-week
boundaries as crucial times for dropout (e.g. [14, 27]).
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This partitioning yielded four distinct datasets representing
the cumulative forum discussion up to that point in the class.
We extracted a social network from each of these datasets
using the same approach applied by Brown et al. [3, 2].
In this approach we generated a raw social network for the
course where each node represents a single participant (stu-
dent, TA, or instructor). We then labeled the student nodes
with their cumulative performance up to the specified time
step. Thus, the week 2 dataset was labelled using their cu-
mulative performance up to the end of week 2. The Coursera
forums operate as standard threaded forums. Users have the
ability to start new threads by making an initial post. They
can also add posts to the end of an existing thread or add a
specific reply below a given post.

In order to build social network from the discussion forum,
we treated participants as nodes and their communications
as edges. More specifically, for each comment in a thread,
we added a directed arc from the author’s node to nodes
representing the author of each comment that precedes it
in the thread, with the exception of self-loops. So all of
the contributors to a thread, including the originator, will
be connected to one another. This approach is based upon
the assumption that students read the thread before con-
tributing to it and that a post represents a contribution to
the whole conversation. The average length of each thread
in our dataset was seven posts. Thus we treat each reply
as evidence of an implicit social connection between the in-
dividual author and their conversational peers. Such im-
plicit social relationships have been explored in the context
of recommender systems to detect strong communities of re-
searchers [4]. The resulting networks form a multigraph with
each edge representing a single communicative act. As our
goal is to focus on social relationships we then modified this
graph by eliminating all isolated nodes, and by collapsing
the parallel edges to produce a weighted undirected simple
graph representing connections between students.

In addition to analyzing the connections between students,
we also sought to analyze the impact of the instructional
staff and the active hub students on their social structure.
We therefore generated three different graphs for each of the
datasets: ALL which is the complete graph with all non-
isolated nodes; Student, which eliminates the instructional
staff; and No Hub, which removes both the instructional
staff and the highly active ’hub’ students. Since MOOCs
are an at-will course students often drop out and we cannot
always distinguish intentional dropouts from unintentional
failure. In one typical dataset, for example, more than 80%
of the students received a grade of 0 [1]. Therefore we also
constructed graphs for students with and without students
who received a grade of 0. While it is true that the final
grade is only accessible at the end of the course we do not
believe that this limits the generality of our results. By
identifying features that are consistent with 0 performance
we can develop predictive models that will work in real-time.

4.1 Best-Friend Regression
Fire et al. modeled students’ social interactions for grade
prediction in a traditional classroom [8]. They found that in
traditional classes the students’ grades are closely correlated
with those of their closest neighbor or “best friend”. That
research was based upon self-reported relationship data, but

Brown et al. were able to show that it also applied in an
online context [2]. In that analysis they used the weighted
network to identify each students’ “Best Friend” (BF) or
closest peer by connections. They then showed that the
same result held for this network structure as well.

4.2 Community Detection
We applied the Girvan-Newman algorithm to find social
clusters within our graph. In order to identify the ideal
number of clusters we used the “natural cluster number”
approach described in [3]. That approach is based upon
the modularity score of candidate clusters. Given a graph
that has been clustered into sub-communities, the modu-
larity of the graph is measured by the ratio of intra-cluster
to inter-cluster connections, that is, how strongly individual
students are associated with their cluster associates rela-
tive to the rest of the class. Graphs with high modularity
have very strong within-cluster connections and relatively
sparse connections across the groups. As the graphs are
partitioned into smaller and smaller communities the mod-
ularity score will grow rapidly until we reach an inflection
point or a point of diminishing returns at which point each
additional sub-cluster makes little difference to or even re-
duces the modularity score. In the natural cluster approach,
we iteratively cluster the graph into higher numbers of com-
munities and plot the modularity score over number of clus-
ters. We then examine this curve to find the inflection point
and use that value. This is an exploratory approach similar
to exploratory Principal Components Analysis.

4.3 MOOCs, Forums, Student Performance
In MOOCs, the class forum is typically the only official way
for students to communicate with the instructors and with
each other. Thus, their activities on the forum represent a
mostly-complete record of their communicative actions and
it represents the best record of their questions and inter-
ests. So the dynamic of student forum activities represent
their real-time learning status. In order to investigate the
dynamics of the students’ forum activities and their rela-
tionship with the students’ social networks, we extracted
the number of posts and comments, the number of forum
users (who wrote posts) and the number of threads added
on a biweekly basis. We then analyzed the numbers in each
two-week pair to find the scale of the social network in each
case. We also explored how the social aspects of the discus-
sion forum changed over time, by calculating density, degree,
average path, diameter and other basic metrics. These net-
work attributes represent the evolving network structure.
Furthermore, we compared the scale of the dynamic net-
works and the network structures to determine when the
social networks stabilized. Finally, we analyzed the average
number of changes in the neighbors for each student to learn
how students selected their communities biweekly.

5. RESULTS & DISCUSSION
Table 1 shows the order (number of nodes) and size (number
of edges) of the graphs that we obtained at each cutoff point.
While the graphs grew monotonically in order and size over
the duration of the course, most of the connections between
the students were already established by the end of week
two. That is, the basic network structure, if not its weight,
was set early on.
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Table 1: Graph order and size for each cutoff.
Nodes Edges Comments

Week2 645 14,050 2,472
Week4 693 15,142 3,231
Week6 725 16,346 3,833
Week8 754 17,004 4,260

Figure 1: New participating students and connec-
tions every two weeks

At the end of the course, there were 55,179 registered users,
yet the final course graph contained only 754 participants,
751 of whom were students with 1 instructor and 2 Teaching
Assistants. Additionally, 304 of the 751 students obtained a
zero grade at the end of the course while 447 received non-
zero grades. Some of the forum participants did not com-
plete any assignments but still chose to discuss the course
topics with others. By the same token, some of the students
who completed work in this course did not participate in
the forum at all. There were 1,381 students who received a
non-zero final grade; 934 of these did not post in the forum,
while 304 zero final grade students did. It is conceivable
that when the students met with problems, they chose to
ask questions online, but participation in the course forum
was not a necessary condition for completion.

Figure 1 shows the number of new participants and new
connections added into the social network every two weeks.
We applied log scale for the y-axis to make the chart more
readable. As these results illustrate almost all students and
instructors had established their connections in this course
by the end of week two and only a few new connections
were made after that time. Additionally, the total number
of posts/comments made was 4,260; 2,472 of them (or 58%)
had been made at the end of week 2. In our later analy-
sis, we defined a distinct type of ’social connection’ post,
which includes student-initiated introductions to the class
as well as attempts to set up general social connections via
Facebook groups, Linkedin links, or other mechanisms. As
a results, we collected 182 ’social connection’ type of stu-
dent posts. However, even if we discount those ’introduce
yourself’ comments, it still shows that most of the posting
activity happened at the beginning of the course. One po-
tential explanation for this is that the students, particularly
those who did not plan to obtain a certificate, did most of

their work early and subsequently lost interest. Or, some
of the students worked in spurts and did not fit the sched-
ule over time. An ongoing analysis of the forum content has
shown that a number of the posts are also about early issues
such as course logistics and software, problems which may
be less relevant later on. Irrespective of the cause, the social
structure is well established early enough that information
based upon it can be used to advise students before it is too
late.

5.1 Best-Friend Regression
As part of our analysis we also replicated the Best-Friend
comparison used by Brown et al. Here we identified each
student’s closest neighbor in the course, ignoring teaching
staff, and we calculated a direct correlation between their
grades and those of their best friends. Because the data was
non-normal we used Spearman’s Rank Correlation Coeffi-
cient (ρ), a non-parametric measure of association [22, 5].
Our results are shown in Table 2. Because week 8 is the last
week of the course, the intermediate grade is the final grade.

Table 2: Correlation and p-values for Best Friends
analysis.

intermediate grade final grade
ρ p ρ p

Week2 0.25 < 0.001 0.27 < 0.001
Week2 non0 0.086 0.12 0.093 0.08
Week4 0.313 < 0.001 0.339 < 0.001
Week4 non0 0.145 0.005 0.158 0.002
Week6 0.42 < 0.001 0.437 < 0.001
Week6 non0 0.25 < 0.001 0.295 < 0.001
Week8 NA NA 0.44 < 0.001
Week8 non0 NA NA 0.29 < 0.001

As shown in Table 2, the students’ grade and their best
friends’ grades, both final and intermediate grades for each
bi-week, were strongly correlated, ρ was high, and significant
p < 0.001. However, the correlation ws affected by the clus-
ters of 0 grade students. After removing these students, the
correlations did not hold at a statistically-significant level
until the middle of the course. After week four, we found
a moderate correlation, ρ = 0.295, ρ = 0.25, ρ = 0.29 and
p < 0.001. Thus, the relationship between students’ grades
and those of their best friends were consistent from the tradi-
tional face-to-face class to MOOC but not immediately. Our
results show that MOOC students, except those who did not
submit any assignments, performed similarly to their closest
peers.

5.2 Community Detect
Figure 2 provides an example of the modularity curves both
with and without zero-score students. We selected natural
cluster numbers by finding the inflection points for modu-
larity score. Table 3 shows the selected number of natural
clusters based on each week’s intermediate grade and table
4 shows the number of clusters based upon the final grade.
From table 3 and table4, we found the maximum modular-
ity score for clusters decreases over time. As the modularity
score is designed to measure the cleanliness of dividing the
network into clusters, these results indicate that the connec-
tions between the individual students become more sparse
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Week 8

over time while the connections between the clusters of stu-
dents become more dense as the course progresses.

Interestingly, the curves for the ALL and Hub Student graph
are extremely similar, which indicates that hub-students
were those who kept a close connection with instructor and
TAs. As we anticipated, the non-zero students are the largest
group of students. The social network graph shows that
many of the zero-score students were only connected with
other zero-score students which supports our argument that
poor performing students are likely to connect with others
at the same performance level.

To assess cluster stability, we also calculated student-centric
cluster similarity metrics for the graphs. Tables 5 and 6
show the average number of neighbors that each student
loses, gains, or retains in their cluster from week to week.
That is, it shows how many former friends are now in a
different group, how many new friends are added, and how
many stay the same. These figures are shown for weeks 2-4,
4-6, and 6-8 for the all but the no-hub graphs. We excluded
the no-hub graphs from our analysis because the models
were constructed week by week, the specific hub students
did change over time(22% hub group changed from week2
to week8). We also generated the metrics for the social net-
works based upon the final grades and the weekly cumulative
grades. As the tables illustrate, the clusters lost members
in each week with the losses being highest in the jump from
week 2 to week 4, when the network is still growing quickly.
In the later weeks, the losses were smaller, particularly in
weeks 4-6. And, for all but the All NonZero graph, the stu-
dents gained few new neighbors, with most of the neighbors
being retained. As discussed above, the number of clusters
increased as the course went on. As these tables indicate

Table 3: Modularity and number of clusters for each
graph with intermediate grade

Graph Type Week2 Week4 Week6

All 112 177 200
Modularity 0.346 0.327 0.276
All non0 56 100 121
Modularity 0.276 0.195 0.122
Students 119 129 172
Modularity 0.414 0.419 0.393
Students non0 63 97 125
Modularity 0.436 0.346 0.266
Nonhub 63 67 69
Modularity 0.590 0.590 0.553
Nonhub non0 43 41 55
Modularity 0.613 0.490 0.396

Table 4: Modularity and number of clusters for each
graph with final grade

Graph Type Week2 Week4 Week6 Week8
All 112 177 200 212
Modularity 0.346 0.327 0.276 0.284
All non0 56 135 149 173
Modularity 0.257 0.202 0.161 0.103
Students 119 129 172 184
Modularity 0.414 0.419 0.393 0.390
Students non0 63 109 130 169
Modularity 0.439 0.351 0.304 0.224
Nonhub 63 67 69 79
Modularity 0.590 0.580 0.553 0.541
Nonhub non0 43 45 49 52
Modularity 0.570 0.478 0.407 0.437

Table 5: Average Dynamic Cluster Changes with
final grades

finalgrade all all non0
week lost∗ gain∗ overlap∗ lost gain overlap
2-4 11.7 1.75 29.6 8.46 2.63 9.94
4-6 1.75 1.75 28 2.53 17.9 9.3
6-8 1.9 3.27 26.74 9.86 36.3 16.9

students students non0
week lost gain overlap lost gain overlap
2-4 2.05 9.47 30.7 19.3 2.61 11.4
4-6 9.7 1.55 28.77 3.8 2.96 9.42
6-8 1.64 2.72 27.7 2.72 8.94 9.34

lost: average number of lost neighbors
gain: average number of new neighbors
overlap: average number of the same neighbors

the new clusters were generally subsets of the prior clus-
ters and did not present a remix of the prior neighborhoods.
The lone exception was the All NonZero graph which had
substantial gains in weeks 4-6 and 6-8. This suggests that
the lurkers and other non-certification-seeking students are
an important factor in the stability of the social networks;
thus, discarding them has a notable effect. However, more
analysis is required to understand just how they engender
this stability and just how widely distributed they are in the
clusters.
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Table 6: Average Dynamic Cluster Changes with
Intermediate Grades

intergrade all all non0
week lost gain overlap lost gain overlap
2-4 11.7 1.75 29.6 14.6 20.2 17.1
4-6 1.75 1.75 28 6.87 50 28.8
6-8 1.9 3.27 26.74 41.7 15.3 37.7

students students non0
week lost gain overlap lost gain overlap
2-4 2.05 9.47 30.7 20.5 3.2 11.2
4-6 9.7 1.55 28.77 3.28 17.5 10.3
6-8 1.64 2.72 27.7 17.3 8.2 10

5.3 Student Performance & Motivation
According to the social network graph, students clustered
into different clusters based on their connections and their
performance. In order to examine the grade distribution
of each cluster, we applied the Kruskal-Walls(KW) test to
evaluate the correlation between clusters and performance.
The KW test is a non-parametric rank-based similar to the
common Analysis of Variance [17]. The result for each graph
shown in table 7 - 8 while the ’F’ column value is Chi square.
We can see that for nonzero score students, their perfor-
mance was highly related with their clustered friends, but
when all students are included, the relationship becomes
weak. This result supports our hypothesis that students
will connect with similar performers, instead of helping poor
performing students or learning from good ones [26].

Table 7: KW test with intermediate grade

Graph Type
Week2 Week4 Week6
F P F P F P

all 207 < 0.001 270 < 0.001 315 < 0.001
all non0 74 0.04 133 0.07 129 0.25
students 218 < 0.001 228 < 0.001 285 < 0.001
students non0 55 0.69 118 0.06 142 0.12
nonhub 134 < 0.001 171 < 0.001 182 < 0.001
nonhub non0 53 0.1 47 0.18 90 0.001

Table 8: KW test with final grade

Graph Type
Week2 Week4 Week6
F P F P F P

all 210 < 0.001 273 < 0.001 319 < 0.001
all non0 70 0.19 154 0.1 168 0.12
students 223 < 0.001 239 < 0.001 293 < 0.001
students non0 80 0.06 127 0.1 164 0.01
nonhub 145 < 0.001 179 < 0.001 190 < 0.001
nonhub non0 44 0.2 58 0.06 67 0.03

Table 9: Forum attributes over time
Attribute Week2 Week4 Week6 Week8
Posts 2514 3231 3833 4233
Users 659 707 742 770
Threads 345 460 545 597

Table 9 is representative of the evolution of the forum at-
tributes over the 2 week intervals. The overall number of
posts, threads, and users increase over time. From the ta-
ble, we can see that the increase in the number of posts
and threads is stable from course start to end. By the end
of week 2, 59.4% of the posts had been added to the data

Table 10: Network attributes over time
Attribute Week2 Week4 Week6 Week8
Degree 21.783 21.850 22.546 22.552
Density 0.034 0.032 0.031 0.030
Avg path 2.607 2.535 2.492 2.490
Diameter 7 7 7 7
Connected component 82 88 89 98

and 57.8% of the threads were started in the course forum.
However, considering the number of users, 85.6% of the to-
tal forum users showed up by week 2. So, by one quarter
of the way through the class, most of the users had already
showed up in the forum, but fewer than 60% of posts and
thread had been initiated. Table 10 shows that the values
of the network attributes don’t have clear changes which
may indicate that the root social network structure doesn’t
change after week 2. Thus, the dynamics of the forum at-
tributes are consistent with our findings for the best friends
and community analysis over time, that the student forum
social network structure will develop as soon as week 2 and
will then become stable, with the small communities and
best friends only getting stronger.

6. CONCLUSION
Our goal in this paper was to address the potential utility
of social network information to guide students and instruc-
tors in MOOCs. As prior work has shown, students’ final
social network structures, particularly their closest neigh-
bors or“best friends”and their sub-clusters, can be analyzed
to predict their performance. However, in order to provide
meaningful guidance, or to help students and instructors im-
prove their performance before it is too late, it is necessary to
show that we can extract useful information from partially-
formed social networks. In this paper we have shown that
the structure of the students’ social networks can be ana-
lyzed to predict their performance even by the second week
in the course.

Consistent with the prior literature, we found that students
are most closely associated with similarly-performing peers
and it is possible to predict students’ performance based
upon their closest neighbors in the graph. Therefore, good
students are not necessarily connecting closely with poorer
performers, or spreading their help evenly across the class.
These results hold even if we remove the instructional staff,
hub students, and zero-grade students from the course.

These results suggest that it could be possible to use forum
data to identify isolated students or poorly-performing sub-
communities that are in need of help. It might also help
provide guidance to students who may not be seeking help
from the right places. By identifying students who are not
isolated, but who are not necessarily getting help from good
peers, we may be able to intervene to not only improve their
individual standing but also to improve the (social network)
structure of the course as a whole. These results also sug-
gest that we should consider mechanisms to encourage more
distributed feedback, such as explicit rewards for peer tu-
toring.

Interestingly, we found that students’ social behaviours are
consistent because, while students continue to contribute to

Proceedings of the 11th International Conference on Educational Data Mining 103



the course over time, the social structure of the course is
established relatively early. More than half of the forum
posts are made in the first two weeks of class. And few stu-
dents begin to participate on the forum after that point. It
is not the case that we have a dynamic graph which can be
analyzed differently at each stage. Rather, it appears that
the basic structure of the social relationships are fixed early
and then only grow stronger over time. While more analysis
is required to determine why this occurs, it suggests that
students’ initial impressions or choices have a strong impact
on their performance and that interventions which are de-
signed to change those habits may be beneficial. One avenue
of research that we are currently pursuing is to analyze the
content of the individual posts. If we can detect a change
in the nature or structure of the content or of the topics
being considered it might help to explain why the students’
progress appears to taper off so dramatically. At the same
time we plan to experiment with evaluating metrics of this
type for blended courses to see if similar dynamic results
hold in blended face-to-face and online contexts.

Furthermore, our results indicate that a social network anal-
ysis of the discussion forum data brings an unprecedented
opportunity for instructors to visualize students’ social struc-
tures and to form learning networks which allow them to
make changes to their teaching plans over time. For nonzero
grade students, the correlation between students’ grades and
their best friends’ grades is not reliable during the first 4
weeks of the course. However network features may be use-
ful for early detection of at-risk students. Real-time ego-
networks may also explain how low performance is related
to connections to other low performing students. This sug-
gests that it may be useful to incentivize high performing
students to make connections with lower performing student
threads.
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analyzing social network dataanderson. In
International Conference on Active Media Technology,
pages 584–595. Springer, 2012.

[9] S. A. Golder, D. M. Wilkinson, and B. A. Huberman.
Rhythms of social interaction: Messaging within a
massive online network. Communities and technologies
2007, pages 41–66, 2007.

[10] S. Halawa, D. Greene, and J. Mitchell. Dropout
prediction in moocs using learner activity features.
Experiences and best practices in and around MOOCs,
7, 2014.

[11] S. L. Hoskins and J. C. Van Hooff. Motivation and
ability: which students use online learning and what
influence does it have on their achievement? British
journal of educational technology, 36(2):177–192, 2005.

[12] J. Huang, A. Dasgupta, A. Ghosh, J. Manning, and
M. Sanders. Superposter behavior in mooc forums. In
Proceedings of the first ACM conference on Learning@
scale conference, pages 117–126. ACM, 2014.

[13] D. Insa, J. Silva, and S. Tamarit. Where you sit
matters how classroom seating might affect marks. In
Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 212–217. ACM, 2016.

[14] M. Kloft, F. Stiehler, Z. Zheng, and N. Pinkwart.
Predicting mooc dropout over weeks using machine
learning methods. In Proceedings of the EMNLP 2014
Workshop on Analysis of Large Scale Social
Interaction in MOOCs, pages 60–65, 2014.

[15] V. Kovanovic, S. Joksimovic, D. Gasevic, and
M. Hatala. What is the source of social capital? the
association between social network position and social
presence in communities of inquiry. 2014.

[16] A. D. Kramer, J. E. Guillory, and J. T. Hancock.
Experimental evidence of massive-scale emotional
contagion through social networks. Proceedings of the
National Academy of Sciences, 111(24):8788–8790,
2014.

[17] W. H. Kruskal and W. A. Wallis. Use of ranks in
one-criterion variance analysis. Journal of the
American statistical Association, 47(260):583–621,
1952.

[18] Z. Liu*, R. Brown*, C. F. Lynch, T. Barnes,
R. Baker, Y. Bergner, and D. Mcnamara. Mooc
learner behaviors by country and culture; an
exploratory analysis. In T. Barnes, M. Chi, and
M. Feng, editors, Proceedings of the 2016 Conference
on Educational Data Mining. International
Educational Data Mining Society, 2016.

[19] B. Rienties, P. Alcott, and D. Jindal-Snape. To let

Proceedings of the 11th International Conference on Educational Data Mining 104



students self-select or not: that is the question for
teachers of culturally diverse groups. Journal of
Studies in International Education, 18(1):64–83, 2014.

[20] C. P. Rosé, R. Carlson, D. Yang, M. Wen, L. Resnick,
P. Goldman, and J. Sherer. Social factors that
contribute to attrition in moocs. In Proceedings of the
first ACM conference on Learning@ scale conference,
pages 197–198. ACM, 2014.

[21] D. T. Seaton, Y. Bergner, I. Chuang, P. Mitros, and
D. E. Pritchard. Who does what in a massive open
online course? Commun. ACM, 57(4):58–65, Apr.
2014.

[22] P. Sedgwick. Spearman’s rank correlation coefficient.
BMJ: British Medical Journal (Online), 349, 2014.

[23] M. Shirvani Boroujeni, T. Hecking, H. U. Hoppe, and
P. Dillenbourg. Dynamics of mooc discussion forums.
In 7th International Learning Analytics and
Knowledge Conference (LAK17), number
EPFL-CONF-223718, 2017.

[24] G. Stahl, T. Anderson, and D. Suthers.
Computersupported collaborative learning: An
historical perspective, 2006. Cambridge handbook of
the learning sciences, pages 409–426, 2006.

[25] L. Van Dijk, G. Van Der Berg, and H. Van Keulen.
Interactive lectures in engineering education. European
Journal of Engineering Education, 26(1):15–28, 2001.

[26] Y. Wang and R. Baker. Content or platform: Why do
students complete moocs? Journal of Online Learning
and Teaching, 11(1):17, 2015.

[27] C. Ye and G. Biswas. Early prediction of student
dropout and performance in moocss using higher
granularity temporal information. Journal of Learning
Analytics, 1(3):169–172, 2014.

[28] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise
networks in online communities: structure and
algorithms. In Proceedings of the 16th international
conference on World Wide Web, pages 221–230. ACM,
2007.

[29] M. Zhu, Y. Bergner, Y. Zhang, R. Baker, Y. Wang,
and L. Paquette. Longitudinal engagement,
performance, and social connectivity: a mooc case
study using exponential random graph models. In
Proceedings of the Sixth International Conference on
Learning Analytics & Knowledge, pages 223–230.
ACM, 2016.

Proceedings of the 11th International Conference on Educational Data Mining 105



QuanTyler : Apportioning Credit for Student Forum
Participation

Ankita Bihani
Stanford University

Stanford, USA
ankitab@stanford.edu

Andreas Paepcke
Stanford University

Stanford, USA
paepcke@cs.stanford.edu

ABSTRACT
We develop a random forest classifier that helps assign aca-
demic credit for a student’s class forum participation. The
classification target are the four classes created by student
rank quartiles. Course content experts provided ground
truth by ranking a limited number of post pairs. We expand
this labeled set via data augmentation. We compute the
relative importance of the predictors, and compare perfor-
mance in matching the human expert rankings. We reach an
accuracy of 0.96 for this task. To test generality and scalabil-
ity, we trained the classifier on the archive of the Economics
Stack Exchange reputation data. We used this classifier to
predict the quartile assignments by human judges of forum
posts from a university Artificial Intelligence course. Our
first attempt at transfer learning reaches an average AUC of
0.66 on the augmented test set.

Keywords
Online Discussion Forum, MOOCs, residential courses, ran-
dom forest, credit computation, online learning, transfer
learning, instructor support, collaborative learning, grading,
crowdsourcing, forum assessment.

1. INTRODUCTION
Massively Open Online Courses (MOOCs) have in past years
provided content to populations outside traditional venues
of higher education. For these settings, online forum facil-
ities that are built into the course delivery platforms, such
as Coursera and Open edX are the primary means of com-
munication among learning peers, and for interacting with
instructors.

Beyond the practical needs for coordinating logistics in ge-
ographically distributed settings, online discussion forums
can serve pedagogical goals as well. Online asynchronous
discussion forums provide the basis for collaborative learn-
ing, which enhances critical thinking [10]. Students answer-
ing each others’ questions can be helpful for all parties [14].

Figure 1: Number of Piazza forum contributions and par-
ticipants per year for courses at our University

This support function is particularly useful in Science and
Engineering courses. But as discussion centric humanities
courses embrace distance learning, discussions on online fo-
rums will likely gain even more prominence.

However, it is not only in the context of distance learning
that forum facilities have found uses. Even when in person
class time is available, many residential college courses have
adopted the tool. The need for students to ask questions,
voice concerns, or to point out errors in course material are
as salient in residential settings as they are in less traditional
situations, such as distance learning [4]. Figure 1 shows the
rapid growth in the volume of contributions per year to Pi-
azza, just one of the several available online forum tools in
a large private university. Despite the fact that the total
number of Piazza participants were roughly the same from
2012 to 2017 (with a slight peak in 2013), the total volume
of contributions increased monotonically. It is possible that
this rapid increase in the volume of contributions per year
on Piazza stems from the increasing popularity and growing
adoption of the Piazza forum among students and instruc-
tors for collaborative discussions.

Given the importance of collaborative discussion in the learn-
ing process at both the theoretical and empirical level, in-
structors in at least some universities are assigning between
1% and 25% of their course grading component to online
forum contribution. Two primary challenges arise when ap-
portioning course credit to reward students’ forum contri-
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Figure 2: Block diagram of our proposed framework around
forum facilities.

bution. First, students can attempt to game the system.
On surveying some instructors, we learnt about instances
of students copying a peer’s forum posts, adding spaces or
other innocuous characters to fool automated contribution
counters. Thus, the system needs to be able to flag such
instances.

A second, more complicated problem is that of apportioning
fair credit to the students at the end of the quarter. Forum
contributions take many forms. Asking an insightful or in-
triguing question can contribute as much to the course as
providing answers. Taking the time to view other students’
contributions is a contribution as well. However, for courses
with hundreds of students, manual assessment of every fo-
rum post by each student in order to assign a forum partic-
ipation score is not feasible. On surveying some instructors,
we learnt that they instead develop ad–hoc formulae over the
participation statistics provided by the forums, hoping to
capture the right signals. This practice can not only lead to
non-uniform grading (based on diverging intuitions) across
courses, but also fail in rewarding students with a fair forum
participation credit commensurate with their effort.

In addition to the above two challenges, there is untapped
potential from today’s use of forum facilities. As courses
are offered repeatedly over the years, a treasure of course
knowledge accumulates in forum archives. The detection of
high value forum contributions can inform content selection
from such archives.

In an effort to address these problems we are developing a
coherent system for boosting the value of online discussion
forums. Figure 2 shows a block diagram of our proposed
system. In this paper, we focus on QuanTyler, the module
responsible for helping with automatic forum credit appor-
tioning. This component is highlighted in the figure. We
plan to make the operation of QuanTyler customizable by
instructors. For instance, instructors will be able to decide
the granularity of partitioning the class into their quantiles
of choice.

We begin with describing how we used human judgments to
establish ground truth of what a ‘good’ and credit-worthy
forum contribution looks like. This ground truth is used for
measuring success, and for training the models. At the heart

of our contribution are three experiments whose outcomes
are required to inform the development of the QuanTyler
module. These experiments are outlined below.

In the first experiment, we explore how students can be clas-
sified into quantiles based on their forum contributions, such
that the implied ranking matches the ground truth. We
show the hyperparameters needed to make a Random For-
est classifier work well in support of the post evaluation task.
We reached a high AUC measure in this task.

However, obtaining human judgments is expensive. At the
same time, this requirement for human judgment would limit
the ability to create classifiers for many courses. To break
out of this confinement, we examine how a much larger
source of labels for a forum-like enterprise might be used
for training, and to test generalizability.

To this purpose we used Stack Exchange, [2] which is an
online Q & A platform with millions of users. Stack Ex-
change is partitioned into sites for varying disciplines. We
chose the Economics archive [1], and used it as a source for
attempting transfer learning. In our second experiment we
trained a random forest model on Stack Exchange reputa-
tion data, and tried predicting the quality ratings of human
expert-rated forum posts in an Artificial Intelligence (AI)
class. While not as good a classifier as the one trained on
the forum data itself, this first attempt at transfer learning
reached an AUC = 0.66, which we hope to improve further
going forward. However, the data from Stack Exchange can-
not be used in its raw form to build a classifier, and we will
cover the required processing in Section 8.

In our third experiment, we demonstrated that (at least one
of) the ad–hoc formulas currently deployed at our university
diverges significantly from human experts’ judgment.

2. RELATED WORK
Online discussion forums empower students and instructors
to engage one another in ways that promote critical thinking,
collaborative problem solving, and knowledge construction
[20, 17]. Research has shown that linking some form of as-
sessment to forum participation is an important element in
promoting and enhancing online interactivity [16, 28].

Quantitative methods for content analysis are most widely
used in assessing effective forum participation. [7] presents
an overview of 15 different content analysis instruments used
in computer supported collaborative learning (CSCL) stud-
ies.

The model proposed by [12] is a common starting point in
many CSCL studies. In [12], the author presented a frame-
work and analytical model to evaluate computer-mediated
communication (CMC). The analytical model was developed
to highlight five key dimensions of the learning process exte-
riorized in messages: participation, interaction, social, cog-
nitive and metacognitive dimensions. Although this model
provides an initial framework for coding CMC discussions,
it lacks detailed criteria for systematic and robust classifica-
tion of electronic discourse [13].

Many researchers have strongly endorsed Social Network
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Analysis as a key technique in assessing the effectiveness
of forum interactions [6, 29, 8]. Social Network Analysis
is a research methodology that seeks to identify underly-
ing patterns of social relations based on the way actors are
connected with each other [25, 22].

In [18], the authors discuss a conceptual framework for as-
sessing quality in online discussion forums. Drawing on pre-
vious work [12, 19, 9], the authors propose three broad cat-
egories of criteria for assessing forum participation: content,
which demonstrates the type of skill shown by the learners,
interaction quality, which looks at the way learners interact
with each other in a constructive manner, and objective mea-
sures, which highlight the frequency or participation. These
three broad criteria are further divided, resulting in a total
of 11 criteria. In order to support educators, the framework
outlines a further sub classification, clearly indicating what
may be a poor, satisfactory, good or excellent performance
against each criterion. The primary limitation of this study
is that manual assessment by instructors is not feasible in
courses with hundreds of students.

In [24], the authors adopt a content analysis approach and
develop a coding scheme to analyze students’ discussion be-
haviors in order to categorize them as active, constructive
or interactive. However, the authors do not discuss how to
apportion forum participation credit based on the behaviors
depicted. One of their findings shows that higher quantity of
participation in the MOOC discussion forums is associated
with higher learning gains. In coherence with this finding,
we also include participation count as one of our potential
predictors.

To the best of our knowledge, the most closely related work
to our paper are [21] and [23].

In [21], the authors present the use of Social Network Analy-
sis (SNA) to examine the structure and composition of ties in
a given network, and provide insights into its structural char-
acteristics. In particular, the authors rely on two types of
networks: interaction network between students in a course,
and the network of terms used in their interactions. The dy-
namic visualization of interaction between participants and
the groups or communities formed can help the instructors
rank students based on their centrality in the students’ in-
teraction network. Visualizing the network of terms used
in an online discussion forum can be used to compare the
interest of different students and their relative engagement.

In [23], the author proposes the use of the following metrics
to assess forum participation: initiative, effectiveness–depth,
effectiveness–breadth, value, timeliness, participation, schol-
arship, style, and instructor points. Our system explicitly or
implicitly covers most of these measures and augments them
further by adding the crucial element of social network anal-
ysis to assess forum participation.

In contrast with both the aforementioned contributions, each
of which focuses on specific aspects for assessing forum par-
ticipation, our approach for assessing a student’s contri-
bution uses a combination of quality measures, quantita-
tive measures, engagement level measures and also measures
from social network analysis. The intent is to provide a

Figure 3: Sample annotated screenshot of the Piazza forum
facility.

holistic view of each student’s contribution. We develop a
system that the instructors can customize and easily use for
apportioning forum participation credit.

3. CURRENT PRACTICE
Many universities use the Piazza forum facility [27] for asyn-
chronous online discussions. In order to provide context for
the experiments below, we provide a brief overview of this
tool.

Piazza is a Q&A web service for online discussions, where
users can ask questions, answer questions, and post notes.
The user interface contains a dynamic list of posts, which are
question titles followed by a snippet of lines from the post.
For every question, there is a placeholder for the instructor’s
answer, which can only be edited by instructors. There is
also a students’ answer section where students collaborate
to construct a single answer. Students can upvote each oth-
ers’ questions or answers. Instructors can also endorse good
questions and answers, which are then highlighted as in-
structor endorsed. There is also a discussion segment for
follow-up threads. Figure 3 shows a snapshot of the Piazza
discussion forum.

On surveying several instructors who consider Piazza forum
participation in their grading scheme, we found that most
rely on the basic quantitative statistics that the forum ma-
chinery readily offers. The following were some of the grad-
ing schemes that are currently used by instructors at our
university for awarding forum participation grades:

Scheme 1 : In this scheme, scores of each student were cal-
culated using the following formula:

Score = 1 ∗ (no_questions_asked)+

4 ∗ (no_questions_answered)+

0.5 ∗ (other_contributions)
(1)

Scheme 2 : In this scheme, scores of each student were cal-
culated using the following formula:

Score = 3 ∗ (no_questions_answered)+

1 ∗ (no_followups)
(2)
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Anyone above the 90th percentile received full credit, and
all the other students received a score of 0.
Scheme 3 : Award full credit if at least one forum contribu-
tion was made, and the student was online on the forum for
at least x number of days, or viewed at least y posts. Here
x and y were set by the instructor using intuition.
Scheme 4 : Award full credit to a student if they made at
least one contribution to the forum.

All the above methods rely solely on the basic statistics di-
rectly provided by Piazza [27]. The concern, however, is
whether these methods accurately and meaningfully award
credit to the deserving students. Following are two major
limitations of using the current grading schemes:

• Lack of quality measures : All the 4 grading schemes de-
scribed above overlook the quality of contributions. This
exclusion negatively impacts the grades of the students
who post few, but very high quality contributions. More
importantly, relying solely on the quantity of the contri-
butions encourages posts that do not constitute mean-
ingful forum participation. This behavior, in turn, can
cause the forum’s quality to devolve.

• Reward not proportionate to effort : Most of these schemes
fail to award credit proportionate to the amount of ef-
fort and time the student invested. For instance, us-
ing the third or fourth scheme means that two students
with vastly varying quantity and quality of contributions
would be awarded the same score. Concretely, let us con-
sider two students A and B. Student A made only one
forum contribution during the course by posting a “+1”
to another student’s question. However, student B reg-
ularly made meaningful forum contributions throughout
the quarter. Using grading scheme 4, both would receive
equal credit. This lack of fairness can deter students
from engaging in meaningful forum contributions.

Despite the above limitations, instructors have no choice but
to rely on grading schemes like the ones discussed above.
The large volumes of forum posts that accumulate by the
end of the term make it impossible for the course staff to
manually go through them to apportion credit. However,
even if hypothetically, one were to have the course staff
manually go through each of the contributions, there is a
significant amount of subjectivity in assessing forum contri-
butions. Having TAs manually grade contributions would
lead to a lack of grading uniformity. A trivial contribution
according to one TA, might be a significant contribution to
another. Thus, there is a need for an automated way to
assess the forum participation of students using a holistic
grading scheme. Automation can lead to a standardized ap-
proach across the entire class.

The next sections discuss how we developed a system to
assess forum participation by each student at scale. We
go beyond the ready at hand statistics that are provided
by the forum, and additionally incorporate measures that
provide insight into the dynamics of students interacting in
the forum. These dynamics manifest in the social networks
that are created by the online interactions. We briefly review
candidate predictors in the next section.

4. POTENTIAL PREDICTORS
The measurements of predictors arise from the data sets gen-
erated by forum facilities during the length of an academic
term. Each offering of a course generates a separate data
set, such as the one we used from the AI course.

Quantitative measures: These measures reward based on
the volume of contributions made by an individual. As dis-
cussed in [24], higher forum participation count translates to
higher learning gains, hence we include quantitative features
in our list of potential predictors. These four predictors are:
number of questions asked, number of questions answered,
total number of contributions, and average post length by a
student.

Engagement level measures: In order to reward the stu-
dents who started important or intriguing threads, which in
turn engaged many students, the average number of collab-
orators in the threads started by the student was added as
a predictor. A second predictor, average number of views
received by a student’s questions was added for similar rea-
sons. Given that not everyone in the class might be comfort-
able actively posting on the forum, we use some metrics to
reward the passive engagement of the students. Some of the
students are great listeners; they view or follow most of the
posts, and are regularly online on the forum, which trans-
lates to passive forum participation. The two predictors we
used to apportion credit for passive collaboration on the fo-
rum are: total number of days a student was logged into the
forum, and the number of posts viewed by the student.

Quality measures: These measures are used to reward the
students based on the quality of their contributions. These
include upvotes and endorsement counts available in forum
datasets. Students can express appreciation for a post by
adding an upvote to the contribution. Instructors can ex-
plicitly endorse answers provided by students, marking those
answers as definitive. Upvotes and endorsements articulate
human judgments, and can be thought of as crowdsourcing
post quality assessment.

Another strength of quality measures is their robustness to
student cheating by flooding the forum with meaningless
threads to increase their contribution count. Our two quality
predictors are: number of endorsed answers by the student,
and total number of endorsements, including upvotes on the
questions, answers and instructors’ endorsements.

Social Network Analysis: As discussed in the Related
work section, Social Network Analysis (SNA) provides in-
sights to the student forum participation. A brief detour in
the following section provides background for the measures
we used for SNA.

In order to include the SNA component in our credit appor-
tioning system, the following networks were extracted from
the class forum dataset. In the definitions below, nodes
represent students and instructors. Typed edges represent
interactions that are possible in the forum. Link weights
encode the number of such interactions between the link’s
nodes.

Upvotes network : An upvotes network is extracted, where an
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edge from student A to student B indicates that A upvoted
B’s content at least once, and the weight of the edge encodes
the number of times A upvoted B’s content.

Endorsement network : An endorsement network is extracted,
where an edge from instructor A to student B indicates that
A endorsed B’s content at least once, and the weight of the
edge encodes the number of times A endorsed B’s content.

Combined upvotes and endorsement network : This construct
is a union of the above two networks. An edge from A to B
indicates that A either upvoted and/or endorsed B’s content
at least once, and the weight of the edge encodes the sum of
the upvotes and endorsements.

Interaction network : This graph models the interaction that
happened on the forum over the duration of the course. In
the interaction network, an edge from A to B indicates that
B responded at least once to a question that A posted.

We use these networks to derive our final two predictors:
degree centrality in the interaction network, and page rank
in the combined upvotes and endorsement network.

We calculate the degree centrality for every node in the in-
teraction network. Degree centrality measures the number
of links incident upon a node. Higher degree centrality of a
student implies that the student answered questions or re-
solved doubts for a large number of students. On a high
level, degree centrality in the interaction network translates
to the “helpfulness” and “resourcefulness” of the student. It
also captures the breadth of the student’s course knowledge.

Page rank in the combined upvotes and endorsement net-
work was used in order to capture importance in both up-
votes and endorsement information using a single metric.
Page rank can additionally help uncover influential or impor-
tant students in the network. Their reach extends beyond
their immediate neighbors, and is therefore not captured
by the earlier described upvote/endorsement measures. The
higher the page rank in the combined network, the more
“influential” the student.

5. GROUND TRUTH COLLECTION
In order to evaluate how effective each of the above predic-
tors is in informing credit apportioning, we obtained human
judgments by paying former students and teaching assistants
of the AI or a related class to render judgments over a sam-
ple of posts. Given the high course enrollment of 700+, not
all the posts could be evaluated. A survey instrument was
used to collect the judgments, and participants were paid a
$20 gift card. The number of posts sampled was limited by
this cost, and time capacity of the 24 participants we could
recruit.

Each item in the survey for the experts was a pair of two
posts by different students. The experts were asked to in-
dicate which of the two contributions was more helpful for
the class as a whole. (See the precise instructions below).
We chose this pairwise comparison method to economize on
raters’ time and attention, and because the derivation of full
rankings from pairwise comparisons is well studied [11, 15].

Table 1: Kendall tau distance between rankings created by
the 5 algorithms

Algo1 Algo2 Algo3 Algo4 Algo5

Algo1 1 0.8538 0.2213 0.7243 0.2268
Algo2 0.8538 1 0.2132 0.6621 0.2050
Algo3 0.2213 0.2132 1 0.2306 0.3064
Algo4 0.7243 0.6621 0.2306 1 0.2741
Algo5 0.2268 0.2050 0.3064 0.2741 1

The task in preparing the survey was to find forum contri-
bution pairs that would later help train an algorithm. The
challenge was to select a set of posts that would cover a
range of measures for all our candidate predictors, while be-
ing representative of the overall contributions. We describe
here how this selection was accomplished.

Four algorithms use a weighted combination of the above
explained candidate predictors.

• Alg 1: Using only quality measures and social network
analysis measures.

• Alg 2: Using only quantitative measures and engagement
level measures.

• Alg 3: Using all the measures with more emphasis placed
on quantitative measures.

• Alg 4: Using all the measures with more emphasis placed
on quality measures.

In addition, the current formula based grading scheme 1 that
is used by some instructors at our university is included as
a variant. Let us call this approach Alg 5:

Score = 1 ∗ (no_questions_asked)+

4 ∗ (no_questions_answered)+

0.5 ∗ (other_contributions)
(3)

All the above five algorithms are then separately used to
calculate each student’s score. Table 1 shows the Kendall
tau distance between the rankings created by each of the al-
gorithms. Most of the values in the table are low, indicating
low correlation between the rankings calculated by each of
the 5 algorithms. This result is intuitive because all the 5
algorithms were designed by us to capture slightly different
signals. As a next step, 10 new values are calculated, each
of which are absolute values of ranking differences between
one pair of rankings for the same student. Each algorithm
pair is processed. Thus, we have Alg1vsAlg2, Alg1vsAlg3,
Alg1vsAlg4, Alg1vsAlg5 and so on. For instance, if Student
ID# 500 was ranked 30 by Alg 1, and 300 by Alg 3, then
the Alg1vsAlg3 value for Student ID# 500 would be 270.

We then sort these ten rank differences in descending or-
der. The top entry in the 10 columns gives us the corner
cases, or students ‘of interest’. To sample student pairs, we
compare these students of interest with the students imme-
diately above and immediately below in the ranking by both
the algorithm rankings under consideration. We clarify the
procedure with the following example:
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Let us assume that student ID #10 had the maximum ab-
solute difference between ranking through Alg 1 and Alg 3.
Also, using Alg 1, student ID #400 is directly above stu-
dent ID #10 and student ID #5 is directly below student
ID #10 in the ranking. Finally, let us assume that using
Alg 3, student ID #20 is directly above student ID #10 and
student ID #557 is directly below student ID #10 in the
ranking. Then posts by the student ID pairs of interest for
which human judgment was solicited are: (10, 400), (10, 5),
(10, 20), (10, 557).

In addition to 40 such pairs of interest, additional student
pairs were randomly sampled. At most 4 question pairs and
4 answer pairs were sampled from all these selected student
pairs and presented to the experts. A total of 89 question
pairs and answer pairs were used. In order to avoid fatigu-
ing the experts, the set was partitioned into two batches
such that each question pair or answer pair was voted on by
at least 12 experts. The set of judged samples thus served
to inform boundary cases among available measures, rather
than to include every type of post. For example, there was
no attempt to cover all linguistic variations. The addition of
randomly sampled posts served to reach beyond this focus.

The survey instructions were as follows:
Each of the following sections presents one pair of questions
or answers that were posted to the course forum in the past.
We ask that you to indicate for each pair, the contribution
that might have been most helpful to the rest of the class.

One sample item from the survey is as follows:

Q1: I am very confused about alpha-beta pruning, as we do
not have example code from lecture. When we say we prune
certain leaf, what does it mean? Does it mean we do not
store that choices?
Q2: To create our own label, must it been binary label {1,-1}
or it can be multi-categories with labels of any number? Is
the feature still word counts or can be anything?
Which of the above two questions contributes more to the
class community?

Note that in all cases the experts who answered the sur-
veys were different from the experts whose endorsements we
counted when building the classifier.

In order to learn the experts’ intuition about which of the
predictors might be important in ranking students’ forum
contributions, the following related question was introduced
in the ranking survey once at a random time, with a facility
to drag the entries up and down to arrange the predictors
in decreasing order of relevance:

Imagine you had the following statistics about forum con-
tributions by all students at the end of the term. In your
opinion, which statistics are important to evaluate the fo-
rum contributions of students to the class. Please drag the
entries up and down to indicate their relative importance.
The first entry would be the most important.

• Number of questions asked by the student

• Number of questions answered by the student

Table 2: Experts’ intuitions for relative ordering of indicator
importance. Example: 57.1% of experts felt that the num-
ber of questions answered was the second-most important
indicator.

Rank Feature %support
1 # of endorsements 60.7
2 # of questions answered 57.1
3 # of Forum contributions 46.4
4 # of questions asked 46.4
5 # of posts viewed 60.7
6 # of days online 64.2

• Total number of posts viewed by the student

• Total number of days the student was online on the forum

• Total number of endorsements received by the student

• Total number of Forum contributions by the student (in-
cluding questions, answers, notes, follow-ups, etc.)

Based on the majority vote for every rank, we arrive at a
ranking order using the experts’ intuition. This ranking was
not used in any of the experiments below. The information
just illustrates the ‘gut’ feeling by our raters. The results are
summarized in Table 2. Rank 1 is the most important fea-
ture. The percentage of experts agreeing with each ranking
is also included.

6. EXPERIMENT PREPARATION
Given the pairwise rankings of posts by the experts we needed
to arrive at a ranking against which we could then train and
test. We generated this ranking using the Copeland method
[3]. The procedure counts the number of times a student’s
post was considered superior to the alternative post offered
to an expert. The number of losses are then subtracted from
these wins. Copeland ranking ties can be broken by a sec-
ond order Copeland approach [5]. However, we found that
forcing a complete order did not lead to good classification,
because the ties are a reflection of true similarity.

We included at most 4 question pairs and 4 answer pairs
from each sampled student in the survey. However, in most
cases the sampled students had less than 4 questions / 4
answers. The final result was a list of 37 students for which
we had rankings from twelve experts each. We collected
this large number of rankings for each student because of
the above mentioned subjectivity in evaluating posts. In
addition to the rankings, we also had the measures for all
our 12 candidate predictors for each of the 37 students .

Rather than attempting a regression, we formulated the
problem as one of classification into four classes: the rank
quartiles. This decision was based on the application of ap-
portioning credit. A granularity of four suffices, given that
forum participation is not the only source of credit for a
course. Partitioning a 5% course credit into 700 values is
not meaningful.

Given the sparsity of our human labeled set, we first aug-
mented the labeled data as follows. We partitioned the
ranked list of students into four roughly equal parts. Fig-
ure 4a shows the top two partitions using fictitious numbers
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for clarity.

Student
Rank P1 P2 P3
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1
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3 10 199 75 ...

...

Student
Rank P1 P2 P3

1

2

10 200 80 ...

1.5 10 201 83 ...
11 201 92 ...

a b

Figure 4: Augmentation occurs separately within each quan-
tile. Each column holds the measures of one predictor Pn.
The top two quantiles are shown. Part a: before augmenting
the top quantile; Part b: after augmentation.

We then determined the range of values for each predictor
within one quartile. Finally, we generated new rows within
each quartile by randomly choosing values for each of its
predictors from within the range of values that the predictor
took on within that quartile.

The four quantiles could not be filled equally because of the
ranking ties. Tied students should be in the same class,
rather than being split across quantile boundaries. When
such splitting occurred we moved all participants into one
of the quantiles, such that the fewest moves were required.
For example, if three of five students with rank seven were
assigned to quartile two, and two were assigned to quartile
three, all students ranked seven were moved to quartile two.

Finally, we set aside 30% of the resulting augmented set for
testing. We call these sets forumTrainAug and forumTes-
tAug. The corresponding putative responses are forumTrain-
Resp and forumTestResp. Our first exploration was to see
whether we could construct a classifier that would use pre-
dictor measures to assign each student to one of the quar-
tiles.

7. EXPERIMENT 1: QUANTILE PREDIC-
TION USING RANDOM FOREST

We started with a random forest (RF) of 10K trees in order
to understand how many trees are required for this classifi-
cation. Figure 5 shows the result of this investigation.

Table 3: Accuracy and Kappa by number of predictors per
tree

mtry Accuracy Kappa

2 0.89 0.85
7 0.88 0.85
12 0.88 0.84
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Figure 5: Classification errors by number of trees.

Each of the colored traces corresponds to one classifier. There
are four traces, one corresponding to each quartile. The
black line is the out-of-bag error. We see that after 6K trees
the classification error no longer fluctuates. We settled on
8K trees to handle high data fluctuations. The second hyper
parameter to tune, mtry, is the number of randomly chosen
predictors that are used in each tree. The setting mtry == 2
was optimal, although this parameter is robust; see Table 3.

The resulting model rf8K, trained on forumTrainAug with
10-fold cross validation repeated 3 times has the confusion
matrix shown in Table 4.

Table 4: Model RF8K predicting 308 augmented test set
outcomes. Accuracy: 0.94

RefQ1 RefQ2 RefQ3 Ref4 Class Error

PredQ1 76 0 2 0 0.03
PredQ2 1 77 0 14 0.16
PredQ3 0 0 75 0 0.00
PredQ4 1 0 1 62 0.02

Figure 6 shows the relative importance of our candidate pre-
dictors.

The chart shows the amount of decrease in accuracy that is
contributed by each of the predictors. The top three predic-
tors are the number of student answers that were endorsed
by an instructor, the total number of endorsements, and the
number of days the student was online on the forum. Note
that these predictors differ somewhat from those intuited by
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the experts, though there is some overlap.

Since there some of the predictors are partially covariant We
experimented using three predictors only, but the degrada-
tion was noticeable. It is also advantageous to retain pre-
dictors that are less easy to spam than time online. For
instance, the page rank predictor, while less important for
the classification, is more difficult to defraud.

Using rf8K we predicted forumTestResp. Figure 7 shows
ROC curves for each quartile predictor.

The prediction accuracy reaches 0.96. This result is encour-
aging in that it signals inroads towards apportioning fair
forum participation credit even for very large courses.

However, the result does not speak to generality. The model
was trained on a science forum data set, and its human la-
bels were few. The classifier would not be useful if new la-
bels needed to be created for each class. We therefore added
a second experiment to demonstrate how the approach be-
haves when training occurs on data of an unrelated domain,
and the resulting classifier is then used to predict forum par-
ticipation ranking.

8. EXPERIMENT 2: STACK EXCHANGE
TRANSFER LEARNING

Constructive activity on the Stack Exchange [2] forum earns
users reputation, which can be used as a surrogate for forum
participation credit. Among others, measures similar to the
Piazza statistics we used in Experiment 1 are available from
Stack Exchange, and we used those to predict reputation.
However, only one of these measures is used by Stack Ex-
change for their computation of reputation; SE’s algorithm
instead takes six other variables into account.

We obtained the Stack Exchange (SE) records for the site
dedicated to Economics [2].

We began with the data from about 5300 SE contributors.
In a first step we followed the same procedure as in Ex-
periment 1 to obtain optimal mtry and forest size values,
which were 2 and 4K respectively. After scaling, center-
ing, and partitioning into quartiles we set aside a 30% test
set (seTest) from the training set (seTrain). The respective
reputation responses are seTrainResp, and seTestResp.

Since the forum training set was not involved in the SE
training, we used the larger forumTrainResp as test target
for the SE-trained forest. Figure 8 shows the problematic
resulting AUC ROC curves.

We addressed the lower triangle Q3 curve by reversing that
classifier’s orientation. This step is an appropriate measure,
because the curve lies consistently below the diagonal, indi-
cating a true polarity issue. However, AUC values were low,
and further investigation uncovered the reason (Figure 9).
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Figure 6: Mean decrease in GINI (node purity) when remov-
ing individual predictors. Ordered from most important at
the top to least important.
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Figure 8: Initial AUC ROC from Stack Exchange-trained
random forest predicting forum contribution quality.
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Table 5: Confusion matrix for RF4K. OOB estimate of error
rate: 27.81%

Q1 Q2 Q3 Q4 Class error

Q1 502 25 83 313 0.46
Q2 3 859 1 34 0.04
Q3 149 6 716 29 0.20
Q4 126 230 9 539 0.40

Table 6: AUC Stack Exchange-trained model predicting fo-
rum post quality

Q1 Q2 Q3 Q4 Mean

forumTrainResp 0.72 0.62 0.64 0.76 0.69
forumTestResp 0.78 0.64 0.45 0.77 0.66
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Figure 9: Class imbalance with raw Stack Exchange data

The Figure 9 shows that quartile 2 is over-represented, while
quartile 3 suffers from a scarcity of examples. We balanced
the training set by subsampling the quartile 2 examples to
1200, and augmented quartile 3 examples analogously to our
process in Experiment 1.

The resulting 4K tree model, again trained with 10-fold cross
validation repeated three times yielded a training accuracy
of 0.72, and a kappa of 0.63. Table 5 shows the model’s
confusion matrix. When predicting seTest with this SE-
trained classifier, a satisfactory mean AUC of 0.93 resulted,
with classification behaviors shown in Figure 10.

Finally, with the SE model reasonably solid, we used this
model to once again predict both forumTrainResp and fo-
rumTestResp. Table 6 shows results.

An important question remains: how do the ad hoc formu-
las devised by instructors perform? Are they sufficient? A
final experiment tested the power of the informally designed
Scheme 1 to approach the human expert judgments. Exper-
iment 3 examines this question.
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Figure 10: ROC for predicting Stack Exchange reputation
from Stack Exchange-trained 4K random forest after attend-
ing to class imbalance.

9. EXPERIMENT 3: COMPARISON WITH
CURRENT PRACTICE

We computed the quartile predictions induced by Equa-
tion 1, and compared them against forumTestAug using
Cohen’s Kappa. This test returned a value of zero, evidence
that the equation does not generate the same quartile assign-
ments as the human experts. As a final check, we produced
the categorical 1/0 quartiles for forumTestAug from the
rf8K model, using 0.5 as the probability cutoff. The Co-
hen’s Kappa between our model’s prediction and the experts
was 0.94.

10. DISCUSSION
The average AUC of 0.66 when using the Stack Exchange
trained classifier on forum posts lags behind the classifier
that is specialized on forum post evaluation. However, as
a first step this result is encouraging. Forum assessment
is gaining enough importance, and human judgments are
expensive enough that training data from large, ready at
hand, and similar enough facilities is extremely attractive
for attempts in transfer learning.

Stack Exchange and other reputation incentivized systems
have accumulated enough labeled samples that alternatives
to random forests, such as neural nets, which require large
amounts of training data might be feasible as approaches
going forward.

11. CONCLUSION
Forum assessment is an active research area for good reason.
A growing number of schools and companies are offering
entire degree programs online, all of which require online
communication among students and instructors. Demand
for tools that help manage and assess forum activity is likely
to rise as online education continues to capture market share.

Given that our attempt at transfer learning worked reason-
ably well, exploring the use of neural networks for automatic
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forum participation grading is our next step. In addition,
the work described here has not yet leveraged the content of
the forum posts in assessing forum participation. In [26], the
authors show that computational linguistic models can help
in measuring learner motivation and cognitive engagement
from the text of the forum posts. Hence, we plan to lever-
age Natural Language Processing techniques to analyze the
content of the posts, and use those in apportioning forum
participation credit. As explained in the introduction, this
work is part of a larger effort that fills modules into a forum
centered architecture. The frequently asked questions mod-
ule and spam detection module will round out our efforts
going forward.
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ABSTRACT 

Automatic assessment of the quality of classroom discourse can 

have a transformative effect on research and practice on improving 

teaching effectiveness. We improve on a previous automated 

method to measure teacher authentic questions – open-ended 

questions without pre-scripted responses that predict student 

achievement growth – using classroom audio and expert question 

codes from two sources: (1) a large archival database of text 

transcripts of 428 class-sessions from 116 classrooms, and (2) a 

newly collected sample of 132 high-quality audio recordings with 

automatic speech recognition transcripts from 27 classrooms. 

Whereas previous work utilized a “closed vocabulary” approach, 

consisting of 732 pre-defined word, sentence, and discourse level 

features, the present “open vocabulary” approach exclusively 

utilized word and phrase counts from the transcripts themselves. 

The two approaches yielded substantial, but statistically equivalent, 

correlations with gold-standard human codes of authenticity 

(Pearson r’s of 0.396 vs. 0.424 and 0.602 vs. 0.613 for datasets 1 

and 2, respectively). Importantly, averaging estimates from the two 

approaches resulted in statistically significant improvements over 

either approach (r’s of 0.492 and 0.686 for datasets 1 and 2, 

respectively). We discuss implications of our findings for 

automated analysis of classroom discourse. 

Keywords 

Open vocabulary, authentic questions, classroom discourse 

1. INTRODUCTION 
(Example 1) 

Teacher: “How does a person become a noble?” 

Student: “They’re born into it.” 

Teacher: “They’re born into it, right? It’s by family. It gets passed 

down so if you’re a noble, your child would be a noble, their child 

would be…it’s a tradition, right?” 

 

(Example 2) 

Teacher:  “How did that make you guys feel, I mean what was your 

gut reaction to all that?”  

Student: “Ashamed.” 

Teacher: “Ashamed in what way?” 

 

Consider these discourse exchanges between a teacher and his/her 

students from an actual classroom. The first follows the oft-used, 

but ineffective, Initiate-Response-Evaluate (IRE) [40] mode of 

questioning. Now contrast this with the second case, where the 

teacher asks an open-ended question or a question without a pre-

scripted response. Although it only elicited a one-word answer 

from the student, the teacher withheld evaluation, instead building 

on the student’s response, thereby “opening up” the conversation. 

Such questions – called authentic questions — whose answers are 

not presupposed by the teacher (e.g. “Do you think Abigail is going 

to tell the truth?” [33]) are a core dimension of dialogic instruction 

related to student engagement and achievement growth [24, 25, 42], 

and are central to many conceptual models of effective discourse 

practices [39, 50, 63]. Prior research utilized expert human coders 

to identify discourse practices at the level of individual questions 

and thus provided exceptionally precise measures of instructional 

practice. Our goal is to precisely estimate the prevalence rate of 

teacher authentic questions using fully-automated methods. 

Why bother in the first place? It is because teacher observation has 

become increasingly central to educational research and school 

improvement efforts [2, 26, 28, 35, 58].  Observations of classroom 

practice are valuable because they identify specific domains of 

practice for improvement [36] and can target dimensions of 

schooling not captured by test scores, such as socialization 

processes in elementary school [32]. Classroom observations also 

enhance school principals’ role in managing teachers’ work [30]. 

Yet current in-person observational methods are logistically 

complex, require observer training, are an expensive allocation of 

administrators’ time [4], and simply do not scale.   

Can computers help? We think so, and report the results of ongoing 

research efforts to automate the analysis of teacher question-asking 

behavior, a common component across various well-known 

observation protocols (e.g., Domain 3 of Danielson’s Framework 

for Teaching [16]; PLATO’s Classroom Discourse Element [27]). 

Our specific emphasis on authentic questions is motivated by the 
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strong research base linking them to engagement and achievement 

as cited above. 

1.1 Related Work 
There has been considerable work on detecting questions from text 

[1], with fewer studies focusing on audio [8, 45, 61]. These studies 

also largely focus on general question detection from meetings and 

other interactions, which is quite different from the present goal of 

detecting authentic questions from real-world classrooms. 

Blanchard et al. [6] and Donnelly et al. [20] investigated question 

detection from classroom audio, but again, their emphasis was on 

discriminating questions from other utterances, which is a related 

but distinct problem from authenticity detection. There has also 

been research on automated analysis of teacher and student 

discourse [18, 19, 62], but these studies emphasize modeling of 

general instructional activities (e.g., distinguishing between lecture 

vs. group work vs. discussion) rather than authentic questions. 

To our knowledge, there have only been three studies germane to 

our goal of detecting authentic questions from classroom discourse. 

Samei et al. [53] focused on identifying authenticity from human-

transcribed questions from the Partnership for Literacy Study, a 

large sample of over 20,000 questions and associated “gold-

standard” human codes (see section 2.1). The authors repurposed 

features (e.g., part of speech tags) from an existing speech act 

classifier [44] to train a J48 classifier to detect authenticity of 

individual questions. They achieved a Cohen’s kappa of 0.34 and 

accuracy of 67%, which they deemed promising but in need of 

improvement. 

In a follow-up study, Samei et al. [54] focused on testing the 

generalizability of this model. They split the data based on whether 

it was collected in an urban or non-urban area and whether the 

teacher had been trained in dialogic practices (including the use of 

authentic questions and other effective teacher talk strategies). 

They found that classifiers trained on a subset (e.g. urban) and 

tested on the dual subset (e.g. non-urban) were fairly close in 

accuracy to one another, but that some subpopulations were more 

representative of the data than others, making them better for 

classifier training. 

Of utmost relevance to the present study is work by Olney et al. 

[43] on detecting authentic questions from the aforementioned 

Partnership dataset as well as a newly collected CLASS 5 dataset 

with automatic speech recognition (ASR) transcriptions (see 

Section 2.1). Their main goal was to address heavily imbalanced 

classes, which occur because of the relatively infrequent proportion 

of authentic questions (about 3%) compared to all teacher 

utterances. The class imbalance problem was so severe that they 

forewent identification of individual authentic questions, instead 

focusing on predicting the proportion of all utterances in a class 

session that were authentic questions. In other words, an utterance-

level binary prediction problem (i.e., labeling an utterance as an 

authentic question or not) was recast as the problem of predicting 

the proportion of authentic questions at the class level. 

Using a combination of 242 pre-defined features, extracted at the 

word, sentence, and discourse level, they first attempted 

aggregating utterance-level predictions of authentic questions, 

obtained with SMOTEBoost [11], to the class level. This yielded 

correlations of 0.27 and 0.44 between the predicted and actual 

(human-coded) authenticity proportions on the Class 5 and 

Partnership datasets, respectively. The difference in correlations 

was attributed to the differences in the degree of class imbalance 

across the two datasets because the Partnership data only contained 

instructional questions whereas the Class 5 data contained all 

teacher utterances. Next, they aggregated their utterance-level 

features to the class level (by taking their mean, sum, and standard 

deviation to yield 726 features) and then trained a M5P regression 

tree [23] on the resulting class-level features. The resulting 

correlation increased from 0.27 to 0.50 for the Class 5 dataset (with 

the most severe imbalance) but remained similar (0.42 vs. 0.44) for 

the Partnership dataset (with minor imbalance). Further 

refinements by Kelly et al. [37], including adding 6 new class-level 

features, resulted in correlations of 0.61 and 0.42 on the Class 5 and 

Partnership datasets, respectively.  

We attempt to improve on these results using an open vocabulary 

approach for class-level authenticity prediction. In an open 

vocabulary approach, the features used to train a classifier are 

determined from the data itself and are not pre-determined. To 

illustrate, albeit in a different domain, Schwartz et al. [56] used an 

open vocabulary approach to predict gender, age, and personality 

traits based on social media posts. They computed counts of words 

and phrases (i.e., n-grams) per participant, and then filtered phrases 

based on pointwise mutual information (PMI) [13, 38], which 

ensured that they only kept phrases with high informational value. 

They then normalized the word and phrase counts by the total 

number of words for each participant and applied the Anscombe 

transformation [3] to the normalized values to stabilize their 

variances. They also generated topics using Latent Dirichlet 

Allocation (LDA) [7, 59]. Using words, phrases, and topics as 

features, the authors were able to predict gender, age, and 

personality traits more accurately than a closed vocabulary 

approach using features from Linguistic Inquiry and Word Count 

(LIWC) [48, 49]. We apply a variant of this basic approach in the 

present study. 

1.2 Novelty and Contributions 
We expand on and improve upon previous work [43] on 

automatically estimating the proportion of authenticity in 

classroom discourse using the same datasets. We call this previous 

approach a closed vocabulary approach since the features are 

predefined and are independent of the dataset. An advantage of the 

closed vocabulary approach is that it is less likely to overfit to the 

dataset at hand because it does not directly encode (as features) 

specific words from the corpus. This might be particularly 

important in the case of classroom discourse because generalizable 

models should encode language that correlates with authentic 

questions vs. being specific to the particular topic being discussed 

in class (e.g., The American Civil War).  

In contrast, an open vocabulary approach uses counts of words and 

phrases found in the corpus. The vocabulary is “open” in that the 

features change depending on the corpus. A potential disadvantage 

of this approach is that it is more likely to overfit to the training 

dataset. However, we think this problem can be alleviated by 

careful selection of words and phrases for use as features. The 

advantage of this approach is that it ostensibly allows for the 

detection of a wider variety of instructional constructs due to a lack 

of pre-determined features. It also yields more interpretable models 

in that one can examine the specific words, phrases, and utterances 

that signal authenticity compared to some of the pre-defined 

features used in the closed vocabulary approach. 

Previous research [56] has indicated that an open vocabulary 

approach outperforms the closed vocabulary approach on a 

different task of gender, age, and personality prediction from social 

media. How might it fare for the present task of authenticity 

prediction and what are the words and phrases that signal 
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authenticity? Is there an advantage to combining both approaches? 

These are the questions that motivated the present study. 

2. METHOD 

2.1 Datasets 
CLASS 5 (new) data. CLASS 5 data were collected between 

January 2014 and May 2016 from 132 classes taught by 14 different 

teachers at seven schools in rural Wisconsin. The data consisted of 

in-class observations in the form of live coding of authenticity by 

trained researchers and subsequent offline refinement of the coding 

from recorded audio. Both teacher and school identifiers were 

preserved with the data. 

Given the logistical constraints of using individual microphones for 

each student, the recording instrumentation instead focused on 

high-quality teacher audio suitable for ASR (see [15] for a 

description of the setup). Classroom audio, which included both 

teacher and student speech, was recorded from a stationary 

boundary microphone, and is not of sufficient quality to be used for 

ASR; it is useful for marking when students speak but is not 

analyzed further here. Thus this dataset differs from the archival 

data (see below) in that the audio is automatically segmented into 

utterances, which are converted into transcripts using Bing Speech 

ASR with accompanying errors. Further, only teacher speech is 

transcribed, and the transcripts contain all utterances rather than 

just questions. 

Partnership (archival) data. The archival data was collected in 

the Partnership for Literacy Study (Partnership), a study of 

professional development, instruction, and literacy outcomes in 

middle school English and language arts classrooms. The study 

collected data from 7th- and 8th- grade English and language arts 

teachers in Wisconsin and New York State from 2001 to 2003. 

Over that two-year period, 119 classrooms in 21 schools were 

observed twice in the fall and twice in the spring. Three of the 

classrooms had missing question data and could not be used for this 

study, leaving us with 116 classrooms. Classroom observations for 

Partnership were conducted using a near-real-time computer-based 

annotation system [41]. The primary focus of the system was to 

annotate the dialogic properties of questions asked by both teachers 

and students. During this process, the instructional questions were 

transcribed by humans, and the transcriptions were mostly accurate, 

but not verbatim. Reliability studies indicate that raters agree on 

question properties approximately 80% of the time, with 

observation-level inter-rater correlations averaging approximately 

.95 [42].  

Table 1 shows a comparison of both datasets. Note that the same 

rubric was used to code authentic questions in both datasets. 

2.2 Natural Language Processing 
Closed vocabulary approach. The closed vocabulary approach 

used 732 specific features to predict the proportion of authentic 

questions in class sessions. This feature set includes specific words 

(like “Why” and “What”), part-of-speech tags, named entity type 

categorizations (such as PERSON, LOCATION, and DATE), 

syntactic dependencies (like subject, direct object, and indirect 

object), and discourse-level features (such as contrast and 

elaboration discourse relations, and joint, nucleus, and satellite 

elementary discourse units). There were 242 utterance-level 

features, which were aggregated at the class level by taking their 

mean, sum, and standard deviation [43]. Two more features were 

later added at the utterance level, leading to six more features at the 

class level, for a total of 732 class-level features [37]. 

Open vocabulary approach. The open vocabulary approach used 

a variable number of features depending on the dataset. This 

method was adapted from the open vocabulary language model 

developed by Park et al. [46]. To start, counts of words, two-word 

phrases, and three-word phrases were computed from the corpus. 

See Table 1 for a comparison of n-gram counts prior to filtering 

(see below).  

We used a stop word list from Pedregosa et al. [47] to filter out the 

most common English words (such as “the” and “and”), and so 

these words and phrases including them were filtered out. We also 

required each word or phrase to occur in at least some percentage 

of documents, which we call the cutoff (we investigated multiple 

cutoffs, with results shown in Section 3).  

We then calculated the pointwise mutual information (PMI) of each 

phrase, defined as: 

𝑝𝑚𝑖(𝑝ℎ𝑟𝑎𝑠𝑒) = log⁡(
𝑝(𝑝ℎ𝑟𝑎𝑠𝑒)

Π⁡𝑝(𝑤𝑜𝑟𝑑)
) 

where 𝑝(𝑝ℎ𝑟𝑎𝑠𝑒) is the probability of a phrase based on its relative 

frequency in the training data and Π⁡𝑝(𝑤𝑜𝑟𝑑) is the product of the 

probabilities of each word in the phrase in the training data. We 

filtered out phrases where the PMI was less than three times the 

number of words in the phrase [13, 38]. This helped ensure that we 

only used meaningful phrases (such as “language arts”), rather than 

phrases that were just the result of frequent words occurring next to 

one another (such as “next we will”). We experimented with PMI 

thresholds ranging from zero to four times the number of words in 

the phrase, but no difference in performance was observed. Cutoff 

and PMI filtering were based only on data in the training folds, 

ensuring that the test was not affected (see Section 2.3). 

Combined approach. We simply averaged predictions from the 

closed and open vocabulary approaches. 

Table 1. Summary of the two datasets 

Item Class 5 Partnership 

# Utterances 45,044 Unknown 

# Instructional Questions 4,377 25,711 

# Authentic Questions 1,510 12,862 

% Authentic Utterances 3% Unknown 

% Authentic Questions 34% 50% 

   

Unigrams 17,520 8,358 

Bigrams 152,023 61,460 

Trigrams 319,545 117,049 

Note. % Authentic Utterances refers to teacher utterances aligned 

with authentic questions. % Authentic Questions refers to 

instructional questions that were also authentic. N-gram counts are 

prior to filtering. 

2.3 Model Training 
We used M5P model trees, which are decision trees that have 

regression functions at each leaf node [23]. Starting at the root of 

the tree, decisions to follow a left or right branch are based on the 

value of a particular feature until a leaf with the appropriate 

regression model is reached. We chose the M5P model to enable 

comparisons with previous work [43]. 

All models used cross-validation, with selection of words and 

phrases to use as features for the open vocabulary approach based 

only on the training folds; we did not peek into the testing folds.  

For generalizability to new teachers, it was important that a teacher 
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would not appear in both the training and testing folds. For the 

CLASS 5 data, this was achieved using leave-one-teacher-out 

cross-validation. For the archival Partnership data, the mapping 

between teachers and data files was incomplete, and so the mapping 

between schools and data files was used instead. This leave-one-

school-out cross-validation assumes that a teacher did not transfer 

between schools during the study (a likely assumption), and in a 

sense is even more conservative than leave-one-teacher-out 

because it controls for similarities shared by teachers at the same 

school.  

It should be noted that the unit of analysis is always a class-session. 

That is, counts for the language model, feature aggregation, and 

authenticity aggregation are all done at the level of an individual 

class-session. 

 

 

 

 

 

 

 

 

2.4 Method Pseudocode 
Below is pseudocode outlining our method for teacher-level cross-validation. 

Aggregate utterance-level transcripts to the class session level 

For each cutoff percentage: 

For each teacher: 

Split data into training set (class sessions from other teachers) and 

test set (class sessions from this teacher) 

Get counts of n-grams (words, bigrams, and trigrams) for each class session in training set 

Remove n-grams that contain words from stop word list 

Remove n-grams that appear less than once in cutoff percentage of class sessions 

Filter phrases (bigrams and trigrams) using pointwise mutual information 

Get counts of kept n-grams for each class session in test set 

Train M5P model on n-gram counts from training set class sessions 

Use M5P model to predict authenticity on test set class sessions 

Pool class session authenticity predictions across teachers 

Compute correlation between predicted and actual authenticities for cutoff percentage

 

3. RESULTS 
Our outcome measure is the Pearson correlation between the 

computer- and human-coded estimates of proportion authenticity 

per class session. We recomputed the previous results [37] obtained 

with the closed vocabulary approach and replicated the previous 

findings. 

3.1 Cutoff Percentage (Open Vocabulary 

Approach) 
As mentioned in Section 2.2, we tested various cutoff percentages 

for the open vocabulary approach. As can be seen in Figure 1, the 

correlation starts out low as the model is overwhelmed by the sheer 

number of features (Figure 2). However, as the cutoff becomes 

more stringent and the number of features decreases, the results 

improve, until the correlations peaks at 0.602, achieved with 52 

features at an 82% cutoff. Beyond this point, the correlation steeply 

drops as too few features remain. 

We observed a different pattern for the Partnership data as noted in 

Figure 3 and Figure 4. Here, the results were less dependent on the 

number of features, though the best correlation of 0.396 was 

obtained at the 61% cutoff with only 6 features retained. It should 

be noted that we only considered up to a 70% cutoff for this dataset 

because there were only three remaining features beyond this point. 

This is unsurprising because the Partnership data, though more 

diverse, only contains questions compared to the full transcripts in 

the CLASS 5 dataset, and consequently contains far fewer unique 

n-grams (see Section 2.2). 

 

Figure 1. Correlation by cutoff % for Class 5 dataset 

Figure 2. # of features by cutoff % for Class 5 dataset 
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Figure 3. Correlation by cutoff % for the Partnership dataset 

Figure 4. # of features by cutoff % for the Partnership dataset 

3.2 Comparison with Closed Vocabulary 

Results 
For the Class 5 data, the best correlation of 0.602 obtained via the 

open vocabulary approach was significant (p < .001) and similar to 

the significant 0.613 (p < .001) correlation obtained from the closed 

vocabulary approach. Zou’s [66] test of the difference between two 

overlapping dependent correlations with one common variable (i.e., 

the gold-standard authenticity codes) indicated that the two 

correlation coefficients were statistically equivalent  at the p < .05 

level. A similar pattern of results was obtained for the Partnership 

data in that the significant 0.396 (p < .001) correlation from the 

open vocabulary approach was statistically equivalent to the 0.421 

significant (p < .001) correlation from the closed vocabulary 

approach at the p < .05 level. Subsequent results focus on these two 

“best” models.  

3.3 Combined Models 
The analyses thus far indicate that the closed and open vocabulary 

approaches were equally predictive of authenticity across both 

datasets. Authenticity estimates from both methods correlated at 

.559 (p < .001) and .371 (p < .001) for the Class 5 and Partnership 

datasets, respectively, suggesting some, but not substantial, 

redundancy. This raises the question of whether a combination of 

the two approaches might improve predictive power. 

We addressed this question by averaging the predictions of the two 

best models (we also attempted feature-level fusion, but this 

resulted in lower performance; results not shown here). For Class 

5, the combined model predicted authenticity with a significant 

correlation of .686 (p < .091), which was quantitatively and 

statistically higher (p < .05) than the 0.602 and 0.613 correlations 

obtained from the open and closed vocabulary approaches, 

respectively (see  Figure 5).  

 

 

Figure 5. Comparison of closed, open, and combined models 

These results can be visualized as a density plot (see left of Figure 

6). The plot illustrates smoothed histograms of class-level 

computer- and human-provided proportional authenticity 

estimates. We note the combined model tends to slightly 

overestimate the mean compared to the human-coded data. Its 

predictions are also less positively skewed, ostensibly because it 

underpredicts some cases with considerable human-coded 

authenticity (also see right of Figure 6). 

A similar pattern of results was obtained for the Partnership data. 

Specifically, the combined model’s correlation of .492 was 

significant (p < .001) and also significantly higher (p < .05) than 

the 0.396 and 0.421 correlations obtained from the open and closed 

vocabulary approaches, respectively (see Figure 5). As noted in the 

density plot in Figure 7, the combined model is “peakier” with a 

reduced range in either direction compared to the human-coded 

data. The model has difficulty with cases associated with very low 

and very high human-coded authenticity (see scatterplot in Figure 

7).
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Figure 6. Density plot and scatter plot showing the resulting predictions from combining both the open and closed vocabulary 

models on the Class 5 dataset compared to human codes.

 

 

Figure 7. Density plot and scatter plot showing the resulting predictions from combining both the open and closed vocabulary 

models on the Partnership dataset compared to human codes. 
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3.4 Feature Analysis 
We investigated the features (words and phrases) from the best 

open vocabulary model in the form of word clouds1 scaled using 

correlations of individual features with authenticity rather than by 

absolute frequency in the corpus. Figure 8 shows words that 

positively correlate with authenticity for the Class 5 dataset. The 

words “Question,” “Maybe,” and “Ok” correlated most strongly 

with authenticity (correlation values of .254, .229, and .219 

respectively). These words are used to ask questions, indicate 

uncertainty, or to accept another’s response. This might suggest the 

teacher is setting the stage for open dialogue, which is precisely 

what authentic questioning signals. 

 

Figure 8. Words that are positively correlated with 

authenticity in the Class 5 dataset. 

Alternatively, the words “Need,” “Work,” and “Doing” were most 

negatively correlated with authenticity (correlation values of -.383, 

-.330, and -.302 respectively) – see Figure 9 for the full word cloud. 

These words might be more likely to occur during non-dialogic 

activities, such as lecture or individual work. 

 

Figure 9. Words and phrases that are negatively correlated 

with authenticity for the Class 5 dataset. 

For the Partnership dataset, only “Like,” “Think,” and “Say” were 

positively correlated with authenticity (correlation values of .177, 

.158, and .055 respectively). It is plausible that these terms 

accompany more open-ended authentic questions (e.g., “Why do 

you like the last story?” or “What do you think about that?” or “Why 

did you say that?”) compared to their non-authentic counterparts 

that solicit specific responses (e.g., “What do we know about the 

beginning?” – these are all hypothetical examples). 

There were also only three words that negatively correlated with 

authenticity. “Does” was more strongly correlated than “Know” 

and “Did” (correlation values of -.246, -.062, and -.032 

respectively). “Does” might be more likely to accompany 

information-seeking questions, such as “What does mandible 

                                                                 

1 Word clouds were generated via https://worditout.com 

mean?” or “How does Jim know he is in danger?” compared to 

more authentic questions. Of course, these are only speculative 

suggestions that need to be verified by more systematic analyses. 

4. DISCUSSION 
We addressed the task of automated prediction of the proportion of 

authentic questions in a class session from real-world classroom 

discourse. We compared a previous closed vocabulary approach to 

an open vocabulary approach, combined the two, and tested them 

on two datasets. In the remainder of this section, we discuss our 

main findings, possible applications of this work, as well as 

limitations and directions for future work. 

4.1 Main Findings 
We found that the open and closed vocabulary approaches yielded 

equitable performance on both datasets, but a simple combination 

of the two resulted in statistically better results. This suggests that 

knowledge of the domain, as reflected in some of the closed 

vocabulary features (the question specific ones), is very important, 

but missed patterns can be captured using the open vocabulary 

approach. Thus, the combined approach capitalized on the strengths 

while mitigating the weaknesses of each individual approach.  

The fact that the result replicated across two rather different 

datasets increases our confidence in the findings. This is 

particularly important because the datasets differ in a number of 

substantial ways – for example, one contained ASR transcripts of 

entire class sessions while the other contained human transcriptions 

of question text; one was much more variable, larger in size, and 

was validated at the school-level compared to the smaller, more 

homogenous dataset that was validated at the teacher level. 

The open vocabulary approach provided key insights into the 

specific words used to guide its predictions. Of particular interest 

was the fact that the word “think” was positively correlated with 

authenticity in both datasets, but the word “like” was negatively 

correlated with authenticity in one and positively in another. This 

suggests the importance of examining the broader context in which 

these words appear. 

4.2 Applications 
Like anyone, teachers need feedback to improve. But in contrast to 

an expert musician or athlete who receives continual feedback 

across the countless hours spent in practice for the occasional 

performance, a teacher delivers approximately 1,000 

“performances” a year with almost no feedback [22, 60]. Given the 

pivotal role of feedback to learning [5, 14, 21, 57], the lack of 

immediate and objective feedback is a critical barrier that needs to 

be cracked if we are truly going to innovate teaching. 

Accordingly, one key application of our work is in an automated 

teacher feedback system with the goal of improving teaching 

effectiveness and consequently student learning. Such a system 

needs to be able to detect different measures of teaching 

effectiveness beyond authentic questions (e.g., goal clarity, 

disciplinary concepts, strategy use, elaborated feedback), and the 

open vocabulary approach is particularly suited for this task. 

Ultimately, we envision technology that will autonomously analyze 

teachers’ behaviors as they go about their daily activities, both 

within and beyond the classroom. The technology would provide 

formative feedback (i.e., feedback aimed at improvement rather 
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than evaluation [57]), which the teacher can use as a form of DIY 

(do it yourself) professional development or share with support 

staff. The feedback can enable reflective practice, defined as 

thoughtfully considering one's own actions and experiences to 

refine one’s skill in a selected discipline [55]. Due to its emphasis 

on contextualized analysis and metacognition, reflective practice 

holds great promise in improving teaching effectiveness [9, 10], 

which should result in positive downstream influences on student 

achievement given the robust relationship between the two [12, 17, 

29, 34, 51, 52, 65].  

Such a technology can also be used to streamline research into 

teaching effectiveness, which currently relies on cumbersome 

human observation (see the introduction). Going beyond question 

authenticity, at a broader level, such a technology could be used to 

advance basic research on student-teacher discourse, essentially 

opening up the methods of “big data” science to real-world 

classrooms. 

4.3  Limitations & Future Work 
One limitation of this study is the amount and variety of classroom 

transcriptions with corresponding authenticity labels. The Class 5 

dataset was collected in a very limited geographical location. The 

Partnership dataset, although much more variable in terms of the 

sample, only included transcriptions of questions rather than 

transcriptions of all teacher utterances. 

Our models also detect authenticity at the level of an entire class 

session, rather than at the individual utterance level. Finer grain size 

is needed to provide actionable feedback to teachers, at least with 

respect to the vision articulated above. We also did not correlate 

our results with more objective measures, particularly achievement 

growth, due to a lack of available data. 

In addition to addressing the aforementioned limitations, future 

work should include using the open vocabulary approach to predict 

measures beyond authenticity. We are taking a step in this direction 

by re-coding current CLASS 5 audio as well as collecting new 

audio files and coding them for the following broader dimensions 

of discourse linked, or hypothesized to be linked, to student 

achievement growth: goal clarity, disciplinary concepts, and 

strategy use for teacher-led discourse, and challenge, connection, 

and elaborated feedback for transactional discourse.  

We are also streamlining the data collection process, essentially 

providing usable tools for teachers to collect their own data, and 

have collected over 65 hours of audio (in about two months) using 

this approach. When coupled with existing data from CLASS 5, we 

estimate that the combined datasets will be sufficiently large to 

experiment with deep natural language processing methods, such 

as long short-term recurrent neural networks [31] and hierarchical 

attention networks [64]. 

4.4 Concluding Remarks 
We applied an open vocabulary approach to the task of predicting 

authentic questions in classroom discourse and compared it to a 

previous closed vocabulary approach applied to the same problem. 

We found that the two approaches yielded equivalent performance, 

but a combination led to higher accuracies than either method 

alone. We achieved a correlation of close to 0.70 on real-world 

audio, which suggests that fully-automated methods might 

complement or even replace humans on the difficult task of 

determining the level of dialogism in classroom discourse. 
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ABSTRACT 

Latent Semantic Analysis (LSA) plays an important role in 

analyzing text data from education settings. LSA represents 

meaning of words and sets of words by vectors from a k-dimensional 

space generated from a selected corpus. While the impact of the 

value of k has been investigated by many researchers, the impact of 

the selection of documents and the size of the corpus has never been 

systematically investigated. This paper tackles this problem based 

on the performance of LSA in evaluating learners’ answers to 

AutoTutor, a conversational intelligent tutoring system. We report 

the impact of document sources (Wikipedia vs TASA), selection 

algorithms (keyword based vs random), corpus size (from 2000 to 

30000 documents) and number of dimensions (from 2 to 1000). Two 

AutoTutor tasks are used to evaluate the performance of different 

LSA spaces: a phrase level answer assessment (responses to focal 

prompt questions) and a sentence level answer assessment 

(responses to hints). We show that a sufficiently large (e.g., 20,000 

to 30,000 documents) randomly selected Wikipedia corpus with 

high enough dimensions (about 300) could provide a reasonably 

good space. A specifically selected domain corpus could have 

significantly better performance with a relatively smaller corpus size 

(about 8000 documents) and much lower dimensionality (around 

17).  The widely used TASA corpus (37,651 documents 

scientifically sampled) performs equally well as a randomly selected 

large Wikipedia corpus (20,000 to 30,000) with a sufficiently high 

dimensionality (e.g., k>=300). 

Keywords 

AutoTutor, LSA, TASA, Wikipedia, corpus size, dimensionality 

1. INTRODUCTION 

1.1 Latent Semantic Analysis in Education 

Data Mining 
Text mining is one of the most important tasks in education data 

mining [21]. Education text data could be textual learning content 

presented to learners, essays from learners, solutions to problems, 

answers to questions, conversations between collaborators, and so 

on. Researches have shown that analyzing such text data is crucial 

for improving education quality and reducing education cost. For 

example, Graesser et al.   [9] reported that scaling texts to match the 

reading level and reading style of learners could facilitate the 

learning process. Foltz et al. [19] showed that automatic essay 

grading could greatly reduce teachers’ workload. Wiemer-Hasting 

et al. [24] and Graesser et al. [10] showed that automatic answer 

evaluation makes it possible for intelligent environments to give 

immediate feedback to learners’ text inputs. LSA (latent semantic 

analysis) plays an important role in all these text analysis tasks.  

LSA is a method that extracts the meaning of words from a large 

body of texts (corpus) [15]. The mathematics behind LSA is 

surprisingly simple. The extraction process is just counting the 

number of occurrences of each word in each document, resulting in 

a word-document matrix, with rows representing words and 

columns representing documents. Thus, each row of the matrix is 

actually a vector representation of a word in a high dimensional 

space (the number of dimensions equals the number of documents). 

The raw occurrence counts are usually transformed by certain 

weighting method, such as TFIDF or Log-Entropy (see e.g., [14, 

16]). After the transformation, a matrix entry has a higher value if 

the corresponding word is unevenly distributed in the corpus and 

frequent in the document corresponding to the column the word 

entry is in. A dimension reduction technique, namely, singular value 

decomposition, is applied to the weighted matrix to produce vector 

representations for words (as well as documents) with lower 

dimensionality. Weighted sum of word vectors is often used to form 

vector representations of phrases, sentences, paragraphs and 

documents. Different weight  algorithms and their effects can be 

found in McNamara et al. [17]. More details on LSA vector space 

generation  can be found in Landauer et al. [15]. 
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With vector representations, the similarity of the meaning of two 

texts can be computed as the cosine between two vectors. This 

similarity measure has been widely used in many applications. For 

example, Coh-Metrix (cohmetrix.com) measures text cohesion by 

computing the average LSA cosine between sentence vectors and 

paragraph vectors [11]. AutoTutor (autotutor.org) evaluates 

learners’ text inputs by computing the cosine between the input text 

vector and the ideal answer vector [4]. The Intelligent Essay 

Assessor [19] uses LSA cosine between vectors of target essay and 

pre-scored essays as one of the most important predictor in 

automatic essay scoring. 

The number of dimensions of LSA vector spaces, usually denoted 

by k, has been investigated by many researchers. The most 

influential study is probably the one published by Landauer and 

Dumais in 1997 [14]. They generated an LSA space from 30,473 

encyclopedia articles and then applied the vectors in a TOEFL (Test 

of English as a Foreign Language) word comparison task. They 

found that the value of k had large impact on the LSA performance 

and the best choice was about 300. This value, k=300, has been used 

as a magic number in many later applications. However, researchers 

also reported a large range of optimal values of k (from 6 to over 

1000), depending on the corpus used for generating the LSA space 

and the specific task the LSA was applied to. A long list of studies 

can be found in Bradford (2008) [2].  

In addition to dimensionality, the size and the content of the corpus 

used for LSA space generation also influences the performance of 

LSA. Researchers reported the use of different corpora, such as 

Touchstone Applied Science Association (TASA) corpus 

(http://lsa.colorado.edu/spaces.html), the Corpus of Contemporary 

American English (COCA) [7], Encyclopedia, and so on. The size 

of reported corpora varied from hundreds to hundreds of thousands 

of documents. Some studies reported the optimal values of k for 

different corpora with very different sizes. For example, 

Kontostathis (2007) [13] reported a study on 7 corpora with sizes 

varying from 1033 to  348,566 documents. While the optimal value 

of k for each corpus was reported, no corpus size effect was 

considered. A recent study reported by Crossley et al. (2017) [6] 

showed significant performance differences of two corpora with 

different sizes (44K vs 55K documents) and the same k =300, 

assuming 300 is the optimal value. However, they did not consider 

the real optimization of the value k for each corpus. Furthermore, 

the two corpora, TASA and COCA, contain different kinds of 

articles. It is not clear whether it was the corpus size or any other 

document features (e.g. genre, readability, concreteness, cohesion, 

formality, etc.) that caused the performance difference. 

The size of data that needs to be stored for the word vectors of an 

LSA space is proportional to the product of number of words and 

the value of k. When performance is guaranteed, a small corpus with 

a small k would save both storage and computation cost in using 

LSA. Searching for an optimal corpus size to generate an LSA space 

is a task that needs to be accomplished together with the 

optimization of k. That is, it is an optimization problem involving 

two parameters, which unfortunately is more difficult and 

computationally more expensive.  An added difficulty is to control 

other document features when the corpus size varies. One way to 

control the document features is to systematically sample articles 

from a particular single source to form corpora of different sizes.  In 

this paper, we will focus on sampling corpora from Wikipedia. 

1.2 Latent Semantic Analysis for AutoTutor 

Answer Evaluation 
AutoTutor is a conversational intelligent tutoring system. Since the 

late 1990s, many AutoTutor systems have been developed, targeting 

different domains, including computer literacy, physics, critical 

thinking, and electronics. AutoTutor has become an ideal platform 

for collecting text data from learners and a testbed for natural 

language processing technologies.  

AutoTutor helps learners learn by holding a conversation between 

computer agents (one or more) and human learners, targeting the 

solution to specific problems. AutoTutor usually starts a 

conversation with a deep “main question”, to which the ideal answer 

is often about a paragraph in length. The goal of the conversation is 

to help a learner construct an answer semantically equivalent to the 

prepared ideal answer. To learners who cannot meet the goal at the 

first try, AutoTutor asks follow-up questions that target missing 

information. There are two types of such AutoTutor follow-up 

questions. One is called “hint”, to which the answer is about a 

sentence long. Another is called “prompt”, to which the answer is 

usually a word or a phrase. An AutoTutor conversation ends either 

when the goal is met or the prepared questions are exhausted. The 

following is an excerpt of an AutoTutor conversation in a 

Newtonian physics system. 

AutoTutor [main question]: Suppose a boy is in a free-falling 

elevator and he holds his keys motionless right in front of his face 

and then lets go. What will happen to the keys? Explain why.  

Student [first try]: The keys will move up since the elevator is 

falling and the keys are in the elevator, the keys will go in the 

opposite direction of the free falling elevator. 

AutoTutor [feedback]: Umm, that is an interesting answer! 

AutoTutor [hint]: What can you say about the vertical velocity of 

the keys? 

Student [response to hint]: The vertical velocity will be at a 

constant acceleration of 9.8. 

AutoTutor [feedback]: OK. See if you can get this. 

AutoTutor [prompt]: The boy and his keys have the same initial 

vertical what? 

Student [response to prompt]: Velocity. 

 

In each conversation turn, AutoTutor evaluates the learner’s input 

and makes decisions on the selection of feedback type and the next 

move (asking a new question or ending the conversation). With the 

help of regular expressions, LSA plays an important role in 

matching the meaning of the learner’s input with prepared answers. 

The mathematical AutoTutor assessment models, normally a 

combination of LSA and regular expressions, can be found in Cai et 

al. (2011) [5]. 

When an AutoTutor application is developed, an LSA space 

generated from a domain specific corpus is often needed, because 

the meaning of words may differ from domain to domain. For 

example, the meaning of the word “force”, according to Oxford 

Dictionary (https://en.oxforddictionaries.com) could be defined as 

“strength or energy as an attribute of physical action or movement” 

or “an organized body of military personnel or police”. When an 

LSA space is generated, the meaning of a word can usually be 

observed by the “nearest neighbors”, namely, the words with highest 

LSA cosine with the target word. Table 1 shows 5 nearest neighbors 

of the word “force” from three different LSA spaces: a Wikipedia 

space targeting Newtonian physics articles (4000 documents, 17 

dimensions), a randomly sampled Wikipedia space (4000 articles, 

17 dimensions) and the TASA corpus (37651 articles, 300 

dimensions). It looks obvious that the meaning of “force” in the 
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targeted corpus and TASA is more of the sense in Newtonian 

physics, while in the random Wikipedia space, the meaning is more 

of the sense in military.  

Table 1. Nearest neighbors of “force” in different spaces 

Corpus Docs Dim Nearest Neighbors 

Targeted 4000 17 exert, act, pull, experience, push  

Random 4000 17 
belligerent, offensive, gun, 

command, patrol 

TASA 37651 300 
unbalanced, exert, centripetal, 

turntable, Newton 

 

It has long been believed that the performance of LSA depends on 

the selection of corpus. Cai et al [5] showed that, with a well selected 

corpus, LSA could be used together with regular expressions to 

build a model that evaluates learners’ responses in AutoTutor almost 

as good as human. However, it has never been reported about the 

combined impact of the article selection, the size of the corpus and 

the optimization of k for the LSA component. 

1.3 Wikipedia as Document Source for Corpus 

Sampling 
In order to investigate the impact of document selection and corpus 

size, we need a reliable document source that contains enough many 

articles for different domains. Wikipedia (Wikipedia.org) is an ideal 

source for this. By the end of 2017, the English Wikipedia had about 

5.6 million content articles, containing almost everything. New 

articles are still being added.  

There are reports on LSA spaces generated from Wikipedia. For 

example, Ștefănescu et al. (2014) [22] compared the performance of 

Wikipedia spaces with TASA spaces on a word similarity task. 

However, they did not consider the “domain” specificity and the 

impact of the corpus size. They took all documents in Wikipedia as 

a whole for LSA space generation, taking into account of different 

filtering strategies, resulting in huge spaces.   

1.4 Rational and Research Questions 
Researchers have believed that the corpus used to generate an LSA 

space should align with the targeted domain. Gotoh et al. (1997) [8] 

showed a typical way of constructing a domain specific corpus: 

finding articles labeled in a category, such as “natural science”, 

“world affairs”, “arts”, and so on. The targeted domain is then 

represented as a mixture of such categories. People are often 

convinced that domain specific spaces are needed from seeing 

“nearest neighbors” that show different meaning representations 

(see Table 1). However, several questions remain unanswered. For 

a given task, is it really necessary to generate a domain specific 

space? In other words, does a domain specific space perform 

significantly better than a generic space? A related question 

immediately emerges: how do we measure the “domain 

specificity”? How do we know the degree to which a corpus is 

targeting a given domain? Furthermore, what do we mean by a 

“domain”? How should a domain be defined or specified? There are 

also practical application questions related to this. For example, 

would a domain specific space save storage and computation costs 

with better or equivalent accuracy in performing a given task? 

Answers to these questions are important. If we know a generic 

space (e.g. TASA) can work as well as a domain specific space, we 

will not need to spend time and resources to generate new spaces. 

Domain spaces are needed only if they perform significantly better 

or can save storage and computation time without sacrificing 

performance. 

2. METHOD 

2.1 AutoTutor Data 
We compared the performance of LSA spaces on evaluating 

learners’ responses to a Newtonian physics AutoTutor. The data 

contained responses of college students to 10 problems about 

Newtonian physics. Table 2 shows the number of hints and prompts 

and the number of responses in each of the 10 problems. There were 

114 hints and 133 prompts in total. This resulted in 4941 hint 

responses and 2643 prompt responses. On average, there were about 

43 responses per hint and 20 responses per prompt. The reason why 

there were more hint responses was that AutoTutor conversations 

started with a hint, followed by a prompt, then another hint followed 

by another prompt, and so on. An AutoTutor conversation ended 

when a learner’s responses covered all aspects of the ideal answer. 

Thus, if the conversation ended after a prompt, the number of hint 

responses and prompt responses in that conversation would be the 

same. However, if the conversation ended after a hint, the number 

of hint responses would be one more than the number of prompt 

responses in that conversation. The ratio of prompt responses to hint 

responses depends on the number of “hint-prompt” cycles that 

occurred in the conversation. The fact that there were more than 

twice of hint responses than prompt responses indicates that many 

conversations ended after the first or second hint question. 

Table 2. Number of hint and prompt responses 

Problem Hints Hint 

responses 

Prompts Prompt 

responses 

Pumpkin 16 865 12 299 

Sun and earth 6 186 1 23 

Free key fall 12 969 10 403 

Neck injury 11 308 12 272 

Clown juggling 15 540 30 481 

Car collision 11 431 6 86 

Packet drop 13 801 9 285 

Container mass 10 454 15 403 

Clay balls 11 213 25 264 

Car towing 9 174 13 127 

Total 114 4941 133 2643 

According to the design of AutoTutor, a hint question targets an 

answer about a sentence long and the answer to a prompt question 

is usually a word or a phrase. Table 3 shows that the hint responses 

in our data set were about 8 words on average; and the prompt 

responses were about 3 to 4 words on average. Penumatsa et al. 

(2006) [18] showed that the cosine values are length dependent. 

That is, longer texts tend to yield larger cosine values.  Cai et al. 

(2016) [4] reported that LSA performed differently on hint 

responses and prompt responses. Their explanation was that the hint 

questions and prompt questions had different “uncertainties”. The 

responses to a question with higher uncertainty would be more 

divergent and thus more difficult to assess. Following this, we 

investigated LSA performance on hint and prompt responses 

separately. 
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Table 3. Hint and prompt answer/response lengths 

Answer N Mean Std 

Hint Ideal 112 10.64 3.59 

Hint Responses 4861 8.01 8.82 

Prompt Ideal 125 3.53 1.06 

Prompt Responses 2603 1.64 3.06 

 

2.2 Human Rating 
The student responses were rated by two experts; one was a full 

professor and the other was a graduate student. Both raters had 

background in computer engineering and had good understanding of 

Newtonian physics. A rating tool was built to facilitate the rating 

process (see Figure 1). At the middle left panel of the tool, there is 

a list box for raters to choose hints and prompts. At the top panel, 

there is a text box that displays a hint/prompt question, together with 

its associated main question and their answers. The data table at the 

bottom right panel shows all student responses and 7 rating options. 

A response is scored by a click on an option. A “0” means the 

response is not an answer to the question at all, such as “what”, “I 

don’t know”, “what do you mean”, and so on. A “1” indicates a 

response that has no semantic similarity to the prepared ideal answer 

and “6” indicates a perfect answer. Red and gray colors are used to 

mark unrated and rated items, respectively. At the bottom left corner, 

there is a text box that shows the number of items already rated and 

the number of items that are to be rated. This tool helped the raters 

more easily and accurately rate the responses.  

 

Figure 1. Rating tool. 

From the 7584 responses, 120 were randomly sampled as training 

corpus. After rating the training corpus, two raters discussed the 

rating criteria and independently rated the rest of the items. Table 4. 

shows the correlations between the two raters. The correlations were 

about 0.82, which indicate that there were some disagreements 

between the two raters. In other words, even for human experts, such 

evaluation tasks are sometimes difficult. We had thought that 

answers to prompts should be easier to evaluate than answers to hint. 

However, the correlation of two raters’ ratings on prompts is only 

slightly higher. The Fisher transform [12] showed that the Z value 

of the two correlations (hints vs prompts) was 0.90 (p=0.369), which 

indicates that the difference is not significant. It should be noted that 

this Z value is for two independent correlations from different 

samples. There is another Z-test for dependent correlations, which 

will be used in the later part of this paper. The Z transform showed 

that the human rates agreed on hint and prompt responses similarly. 

That indicates that human raters did not experience more difficulty 

in evaluating hint responses than prompt responses. 

Table 4. Correlations between ratings of two raters. 

Question Type N Correlation 

Hint 4861 0.820 

Prompt 2603 0.827 

All 7464 0.828 

 

2.3 Sampling Corpora from Wikipedia 

2.3.1 Seeding method for sampling domain specific 

corpus 
Our goal was to investigate whether or not a “domain specific” 

corpus generates an LSA space with higher performance for our 

tasks. However, it is hard to quantify what a “domain specific” 

corpus really is. Many researchers used corpora that showed obvious 

domain labels. For example, MED corpus is for “Medical”, CISI 

corpus for “Information Science” [3], COCA for “Contemporary 

American English” [7], and so on. However, we don’t really know 

how specific these corpora are with respect to the labeled domain.   

Our way of handling this problem starts from specifying a domain 

by a seed corpus – a small number of documents representing the 

targeted domain. The seed corpus could be the sections of a book, a 

small collection of articles focusing on a specific topic, or just some 

documents that are under analysis. 

Once a seed corpus is identified, we extract keywords out of the seed 

corpus and assign a “keyness” value to each keyword. Thus, a 

“domain” is represented by the keyness assignment to the domain 

vocabulary. This is similar to the idea in topic modeling, where a 

topic is represented by probability distribution on a word list (see, 

for example, [1]).  

The word keyness computation is then applied to compute document 

keyness by averaging the keyness of the words in a document. To 

search documents from a large document source (such as 

Wikipedia), we compute the keyness of each document. The 

documents in the source are then ranked by the document keyness. 

We select the high ranking documents from the source as a domain 

corpus. We call this process the “seeding method.” 

 

Figure 2. Illustration of seeding method. 

Figure 2 visually illustrates the process of selecting documents from 

Wikipedia articles. It is difficult to directly evaluate the validity of 

this process. A possible way is to present a sample of documents to 

experts and see what proportion of documents are highly relevant to 

the desired domain. We do not do so in this paper. Instead, we 

evaluate this process by comparing the LSA performance of selected 

corpora with randomly sampled corpora. Our logic is simple: if 
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domain specificity matters and the selected corpora work better than 

random corpora, then the seeding method is valid. 

2.3.2 Computing word keyness 
To compute the keyness of words, we considered two factors. First, 

a high keyness word should not be very common in general use. To 

quantify this, we used the log-entropy weight from a general 

reference corpus, TASA,  as a measure of how common a word is in 

general use: 

𝐸(𝑤) = 1 +
∑ 𝑝𝑖(𝑤)𝑙𝑜𝑔𝑝𝑖(𝑤)𝑁

𝑖=1

𝑙𝑜𝑔𝑁
 

where 

𝑝𝑖(𝑤) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑤 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑤 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠
 

In the above equations, N is the number of documents in TASA, 

which is 37,651. The log-entropy weight, 𝐸(𝑤) , ranges from 0 to 

1. A value close to 0 indicates that the word 𝑤 is evenly distributed 

in TASA corpus, such as function words. A value close to 1 

indicates that the word distributed unevenly in the corpus. More 

detailed information about entropy use can be found in LSA 

publications (for example, Martin et al. (1994) [16]).  

Another factor we considered was that a high keyness word should 

be highly frequent in the seed corpus. We used the normalized 

logarithm of frequency to quantify this. The final word keyness with 

respect to the seed corpus was computed as the product of two 

values. One was the logarithm of the number of seed documents the 

word is in, divided by the logarithm of the total number of 

documents; and the other was the log-entropy weight of the word in 

TASA: 

𝑘𝑒𝑦𝑛𝑒𝑠𝑠 =
log 𝑓(𝑤)

log 𝐷
𝐸(𝑤) 

where 

𝑓(𝑤): the number of seed documents the word 𝑤 is in; 

𝐷: the total number of seed documents; and  

𝐸(𝑤): the log-entropy weight of the word 𝑤 from TASA corpus. 

2.3.3 Sampling a Newtonian physics corpus from 

Wikipedia 
For this study, we used the 114 hint questions and the 133 prompt 

questions as seed corpus to compute the word keyness. This is such 

a small corpus that it only covered a small part of Newtonian 

physics. However, it provided a good starting point for us to find 

related categories from Wikipeida. Using the keyness equation, each 

word in the seed corpus was assigned a keyness. We ignored the 

words with keyness less than 0.01 and obtained 262 keywords. The 

top 10 keywords, together with their keyness values are listed 

below: 

1) free-fall: 0.588 

2) packet: 0.537 

3) pumpkin: 0.526 

4) acceleration: 0.496 

5) velocity: 0.478 

6) clown: 0.467 

7) velocities: 0.449 

8) horizontal: 0.427 

9) keys: 0.424 

10) headrest: 0.407 

From the list above, we see that some words, such as “acceleration”, 

“velocity” are concepts of Newtonian physics. However, other 

words are specific to the 10 problems. To construct a corpus that has 

a wide coverage of Newtonian physics, we queried Wikipedia 

categories with these 262 keywords and obtained 154 associated 

categories. From these 154 categories we manually selected 16 

categories that are highly related to Newtonian physics, as shown in 

the list below: 

1) Acceleration 

2) Change 

3) Classical mechanics 

4) Concepts in physics 

5) Dynamics(mechanics) 

6) Force 

7) Gravitation 

8) Kinematics 

9) Mass 

10) Mechanics 

11) Motion 

12) Physics 

13) Systems 

14) Temporal rates 

15) Time 

16) Velocity 

In Wikipedia, each category is associated with a set of articles and a 

set of subcategories. For example, at the time this paper was written, 

the category “force” contained 67 articles (such as “force”, 

“friction”, “weight”, etc.) and 8 subcategories (such as “motion”, 

“fictitious forces”, “friction”, etc.) The above 16 selected categories 

served as “seed categories” of our query. We downloaded all articles 

from these 16 categories. Then we downloaded the articles from 

subcategories. Since each subcategory also contained subcategories, 

we could actually find a very large number of articles by following 

the subcategories of subcategories. In this study, we downloaded 

30,000 articles.  

 

We did not treat each article as a document of our corpus for LSA 

space generation. Instead, we used selected sections in the articles. 

Each Wikipeida article contained a definition section and many 

other sections. For example, the article “force” in physics contained 

17 sections, such as “Development of the concept”, “Pre-Newtonian 

concepts”, “Newtonian mechanics”, etc. We computed the keyness 

of each section of each article by averaging the word keyness 

computed from the seed corpus. Words that did not appear in the 

seed corpus or with keyness less than 0.01 were ignored. Notice that, 

although the problem specific keywords, such as “packet”, 

“pumpkin”, “clown”, etc., had high keyness, since they are unlikely 

to appear in the articles from the selected categories, their effect in 

the section selection process was limited. The list below shows the 

number of sections of the top 10 keywords appeared in a corpus with 

32,000 selected sections:  

1) free-fall:73 

2) packet:106 

3) pumpkin:7 

4) acceleration:1906 

5) velocity:4424 

6) clown:4 

7) velocities:866 

8) horizontal:1204 

9) keys:124 

10) headrest:1 

Obviously, the Newtonian physics concepts, such as “velocity”, 

“acceleration”, etc., dominated the selection process. The problem 

specific terms, such as “headrest”, “clown” and “pumpkin” rarely 

appeared in the selected sections. 
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To avoid section length effect, we ignored any section with length < 

50 words. For sections with words between 50 and 300, the section 

keyness was the average word keyness. For long sections with more 

than 300 words, the keyness was computed as the average over the 

first 300 words.  

 

To compare the impact of the corpus size, we selected 5 corpora 

with size (number of sections) 2,000, 4,000, 8,000, 16,000 and 

30,000. We name them NP2000, NP4000, …, NP30000, where 

“NP” stands for “Newtonian Physics”. Each Newtonian physics 

corpus contained the highest keyness sections in the selected 

articles. Therefore, they were nested, namely, the sections of a 

smaller Newtonian physics corpus were all included in a larger 

Newtonian physics corpus. For example, NP8000 contained all 

sections of NP2000 and NP4000 (see Figure 3, left).  

 

 

Figure 3. Illustration of nested domain corpora (left) and overlapped random corpora (right). 

2.3.4 Sampling a random corpus  
In order to compare the effect of the keyness-based sampling, we 

randomly sampled 5 corpora with same sizes as Newtonian physics 

corpora. The sampling process was similar to the Newtonian physics 

corpora sampling. The difference was that the seed keywords were 

1000 words randomly sampled from TASA vocabulary. We 

downloaded 30,000 articles from the categories and their 

subcategories associated with the 1000 seed keywords. Then we 

randomly sampled sections from the 30,000 articles. Like NP 

sampling, sections with less than 50 words were ignored. The five 

random corpora were named, based on their sizes, as R2000, R4000, 

R8000, R16000 and R30000. The random corpora could be 

overlapped but not necessarily nested (see Figure 3, right). 

2.4 LSA Spaces 
A total of 11 LSA spaces were generated, 5 Newtonian physics 

spaces, 5 random spaces and a TASA space. The log-entropy 

weighting was applied to the word-document matrices. Function 

words and words appeared less than 3 documents in a corpus were 

ignored. The dimensions were all 1,000. In the rest of the paper, we 

will only refer to these 11 spaces. However, the similarities in each 

space were computed with varied dimensions. Mathematically 

speaking, different dimensions means different spaces. For example, 

NP8000 with 100 dimensions is a different space than NP8000 with 

300 dimensions. However, in this paper, we refer to them as the 

“same space” and treat the dimension as a parameter in computing 

LSA similarities.  

2.5 Evaluating AutoTutor Responses by LSA 
For each of the above 11 spaces, the LSA semantic similarities 

between ideal answers and learners’ responses were computed for 

the varying number of dimensions (k=2, 3, …, 1000). The 

performance of each space with each value of k was measured by 

the correlation between the LSA similarity and the average human 

rating on the responses. Cai et al [4] showed that LSA performances 

on hint questions and prompt questions are very different. Therefore, 

we considered the LSA performance on hint questions and prompt 

questions separately. Table 5 shows some example responses of a 

hint question, their LSA similarity to the ideal answer, and the 

human rating. 

Table 5. Example of learners’ responses to the hint question 

“How does the net force affect the car?”. The ideal answer is 

“The net force exerted on the car results in an acceleration of 

two meters per second squared.” LSA similarities were 

computed using TASA space, 300 dimensions. Human ratings 

are average scores of two raters.  

Response LSA Human 

Horizontally 0.16 1 

it stays the same  0.16 1 

it does not effect the car 0.19 1 

it causes it to accelerate  0.49 2 

the net force doesn't change and 

therefore when the mass is doubled the 

acceleration must be halved 

0.51 5.5 

The net force on the car is what causes 

it to accelerate 
0.69 5.5 

It causes an acceleration of two meters 

per second 
0.71 5.5 

The significance of performance differences were measured by 

Steiger Z-test [23], which is a statistic method for testing the 

significance of differences between two dependent correlations that 

share a variable in common. This is different from the independent 

correlation comparison that we used earlier. The Steiger Z-test 

compares correlation coefficients involving three variables. 

Assuming the three variables are A, B and C, with C as the shared 

common variable, the two correlations under comparison are: 
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• The correlation coefficient between A and C and 

• The correlation coefficient between B and C. 

To compare the two correlation coefficients, the correlation 

coefficient between A and B is also included in the computation, 

together with the number of data points, N.  When the absolute value 

of Z is greater than 1.96, the two correlation coefficients under 

comparison are considered significantly different.  In our study, C is 

the human rating whereas and A and B are two LSA similarities. 

3. RESULTS 

3.1 Impact of corpus size and number of 

dimensions for Newtonian physics spaces 
Consider first the hint responses. Although the corpus sizes were 

very different among the five Newtonian physics spaces, the 

performance curves as functions of dimensions were surprising 

similar. They all had lowest performance at k=2, with correlations 

about 0.28. When the number of dimensions increased, the 

performance curves of all spaces quickly increased. The peak of 

about 0.425 was reached around k=17.  The performance curves then 

dropped and reached a trough around k=128. After that, they grew 

up again and converged from about k=300 to a value about 0.40. 

Figure 4 shows the performance as functions of k for the NP spaces 

on hint responses from k=2 to k=1000. We used a logarithm scale 

on dimensions, following the method that Landauer et al. (1998) 

used when plotting the dimensionality effects on TOEFL tests. 

 

Figure 4. Performance of NP spaces on hint responses. 

Although not very large, significant differences were observed 

among different spaces. The best performance on hint responses was 

NP8000 at k=17, with the highest correlation being 0.428. Z-test 

showed that, with the same k value, NP8000 performed significantly 

better than other spaces (see Table 6). The differences of 

correlations were from 0.01 to 0.036. This value, 0.428, was also 

significantly better than the performance of the same space NP8000 

with k value less than 16 or greater than 64 (see Table 7).   

Table 6. Z-test comparing performance of target spaces with 

fixed k=17 and varied corpus size on hints to the optimal target 

space (corpus size=8000,  k=17) and performance (0.428). R-

opt is the correlation with the optimal space. N=4861. 

Space Performance R-opt Z p(2-tail) 

NP2000 0.415 0.916 2.449 0.014 

NP4000 0.418 0.964 2.837 0.004 

NP16000 0.409 0.970 5.654 0.000 

NP30000 0.392 0.934 7.607 0.000 

 

Table 7. Z-test comparing performances of target spaces with 

fixed corpus size=8000 and varied k on hints to the optimal 

target space (corpus size=8000,  k=17) and performance 

(0.428). R-8000 is the correlation to the optimal space. N=4861. 

Dim Performance R-opt Z p(2-tail) 

2 0.286 0.582 11.837 0 

4 0.322 0.731 11.031 0 

8 0.394 0.913 6.265 0 

16 0.425 0.997 2.986 0.003 

32 0.425 0.953 0.756 0.45 

64 0.412 0.88 2.525 0.012 

128 0.395 0.794 3.976 0 

256 0.391 0.732 3.916 0 

512 0.393 0.689 3.448 0 

1000 0.396 0.655 3.001 0.003 

The Newtonian physics spaces performed differently on prompt 

questions. The overall performance on prompts were higher than on 

hints. Also, the corpus size had a larger impact. NP8000 performed 

best overall. Two smaller spaces, NP2000 and NP4000, performed 

significantly worse. Larger spaces performed almost equally as well 

as NP8000. For k=2, the performance of smaller spaces was around 

0.2, while for larger spaces, the performance was over 0.3. The 

performance curves for all spaces increased when the value of k 

increased. However, there was no early peak. At about k=24, the 

performance curves started to converge. The best performance for 

k=24 was again the space NP8000, which was 0.542. When the 

value of k further increased, the performance curves continuously 

and slowly increased. The maximum performance was at about 

k=300, which is 0.566 for larger spaces. The performance curves 

slowly dropped after k=300. At k=1000, the performance of small 

spaces was about 0.51 and the larger spaces around 0.54. Figure 5 

shows the performance curves of the spaces as functions of k on 

prompt responses. 

 

Figure 5. Performance of NP spaces on prompt responses 

3.2 Comparing with Random Wikipedia 

Spaces and TASA Space 
For small values of k (<32), Newtonian physics spaces performed 

much better (about 0.1 higher) than random spaces and TASA space 

on both hint responses and prompt responses. TASA space was 

worse than Newtonian physics spaces but better than random spaces. 

However, the performance curves of all large spaces converged to 

almost the same after about 300 dimensions. Figure 6 shows the 
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performance of NP8000, R8000 and TASA on hint responses. 

Unlike Newtonian physics spaces, random spaces and TASA space 

did not have a peak performance. Instead, their performance curves 

continuously and slowly grew and converged.  

 

Figure 6. Comparing NP8000, R8000 and TASA on hint 

responses.  

Figure 7 shows the performance of NP8000, R8000 and TASA 

spaces on prompt questions. Newtonian physics space NP8000 

performed best, especially at around k=17. For lower 

dimensionality, TASA space was slightly better than random space. 

However, after k=32, the random space became slightly better than 

TASA. 

 

 

Figure 7. Comparing NP8000, R8000 and TASA space on 

prompt responses. 

4. DISCUSSION AND FUTURE WORK 
In AutoTutor applications, LSA similarities has been used as an 

important feature for building models to evaluate learners’ 

responses. Every time a new application was created, a new “domain 

specific” spaces was generated. The so called “domain specific” 

spaces were usually generated from a corpus provided by domain 

experts. It was often unclear whether or not the documents in the 

domain corpus were sufficiently representative. That motivated us 

to explore the impact of document selection and corpus size, taking 

into account the optimal space dimensionality. 

Instead of relying on experts’ selections, we used Wikipedia as a 

universal source to select corpus for any domain. In this study, we 

used a method called “seeding method” to select Wikipedia articles 

based on a small seed corpus. Although the seeding method started 

with an automatic keyness computation and ended with automatic 

document ranking and selection, the method was not fully 

automatic, because, in the middle of the process, a manual 

Wikipedia category selection was involved. Because of this manual 

selection, the document ranking was constrained by the category 

selection. That is, the document ranking was computed only over a 

subset of Wikipedia articles. Although this reduced the searching 

cost, it is not clear how much better a space could be if the 

documents were selected from all Wikipedia articles. A fully 

automatic and inexpensive Wikipedia article selection algorithm 

apparently is still needed. 

The seeding method was not directly evaluated. However, its effect 

has been shown by the fact that the selected spaces perform 

significantly better than random spaces. Yet, the seeding method 

might have room for improvement. Better keyness assignment and 

document ranking algorithms are possible. For example, the entropy 

based keyword extraction algorithm provided by Yang et al. [25] is 

a good candidate for more sophisticated keyness assignment 

algorithms. Even further, instead of keyness based document 

ranking, other methods without keyness assignment are possible. 

For example, a seed LSA space could be generated from the seed 

corpus. Then a small number of Wikipedia articles could be selected 

to form a slightly larger corpus. Then a larger LSA space is 

generated and more Wikipedia articles are added. Such an iterative 

process could be more expensive but may provide better LSA 

spaces.  

This study revealed several interesting results about the impact of 

dimensionality. When we examined the performance, we did not 

expect that k=2 could provide a significant correlation. It turned out 

that 2 dimensional spaces (e.g. NP8000, TASA) could actually 

perform quite well (around 0.3). This fact is important because two 

dimensional vectors are easy for visualization. Therefore, if a 2-

dimensional space could provide acceptable performance, it may be 

considered if visualization is a concern.  

Another interesting finding is that the optimal k could be very small 

(e.g., 17 for NP8000). A small k implies low cost in both storage and 

computation. However, it may not be possible to identify the optimal 

k without dependent data, such as human ratings. When such data is 

not available, we certainly want to know what k is safe for use. This 

study showed that k=300 is a safe dimensionality for both hint and 

prompt response evaluation.   

It seems obvious that there must be an optimal corpus size, which is 

not too small and not too large. If a corpus is too small, it may have 

two problems: 1) it cannot represent the desired domain and 2) it 

cannot provide enough semantic associations for generating 

meaningful vectors. If a corpus is too large, it will lose focus. This 

study shows that NP8000 is better than smaller and larger corpora. 

The problem, however, is that this optimal size is identified using 

human rated data. When human ratings are not available, a relatively 

large corpus would be safer. 

TASA space has been widely used in LSA research, as discussed 

earlier. However, it has been an open question whether a domain 

specific LSA space would have better performance than a broader 

TASA space. This study shows that the performance of TASA space 

on AutoTutor tasks is close to random Wikipedia spaces of large 

enough corpora and high dimensionality. Even compared with well 

selected corpora, a TASA space with high dimensionality (e.g., 

k>=300) performs reasonably well on AutoTutor tasks. Therefore, 

for an application in English language, it should be safe to use TASA 

space (with k=300) when LSA is used for semantic comparison. 

However, there are two problems in using TASA. The first problem 

is that there could be important domain specific terms that are not 

included in TASA corpus. Another problem is that TASA is an 
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English corpus. When a space for another language, such as 

Chinese, French, etc., is needed, there is no simple way to compose 

a TASA corpus in other languages. Sampling documents from 

Wikipedia using the seeding method is a good solution to these 

problems.  

There are hundreds of Wikipedias in different languages. Sampling 

a Wikipedia corpus in any language is easy and free. The seeding 

method guarantees that the selected articles would include the 

keywords in the targeted domain. The seeding method also provides 

significantly better performance with relatively smaller spaces, a 

smaller vocabulary and a smaller number of dimensions. This means 

the that the seeding method helps reducing the cost of storage and 

computing while maintaining performance levels.  

In our study, the performance of domain specific spaces could be 

approximated reached in random Wikipedia spaces or TASA space. 

The difference is that, domain specific spaces could perform well 

with very low dimensionality, while non-domain specific spaces 

need much higher dimensionality to get to the same level of 

performance. Therefore, the value of using domain specific spaces 

could be the possible use of low dimensionality. This may have 

important implications is other applications. For example, in deep 

learning on natural language processing, reliable low dimensional 

word embedding will save training cost and make trained models 

more generalizable. 

To conclude, using seeding method and Wikipedia in LSA space 

generation has the following advantages: 

• It guarantees domain keyword inclusion; 

• The same method can be applied to all languages; 

• It reduces cost of storage and computing; and 

• It improves semantic evaluation accuracy. 

Once again, LSA similarity is only one of the factors considered in 

evaluating AutoTutor responses. The correlation values, about 0.43 

on hint responses and 0.56 on prompt responses, are still far away 

from human’s agreement (r>=0.82). In order to further improve 

AutoTutor assessment accuracy, other evaluation methods are 

needed, such as regular expressions. Cai et al. (2016) [4] proposed 

an alternative way in computing the LSA similarity. Instead of 

comparing the responses with the author-prepared ideal answer, 

they compared it with group responses. As we mentioned earlier, 

combining regular expression with LSA would make a better 

assessment model. In other words, LSA similarity may be used as a 

very powerful predictor to build a model to simulate human rating. 

However, using LSA alone is usually not enough. LSA vectors 

could also be used as word embedding to train deep learning models 

[20]. We did not include such algorithms in this paper, because our 

focus is on the quality of spaces, not the quality of AutoTuotor 

assessment model.  
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ABSTRACT
In STEM domains, students are expected to acquire domain
knowledge from visual representations that they may not
yet be able to interpret. Such learning requires perceptual
fluency: the ability to intuitively and rapidly see which con-
cepts visuals show and to translate among multiple visuals.
Instructional problems that engage students in nonverbal,
implicit learning processes enhance perceptual fluency. Such
processes are highly influenced by sequence effects. Thus far,
we lack a principled approach for identifying a sequence of
perceptual-fluency problems that promote robust learning.
Here, we describe a novel educational data mining approach
that uses machine learning to generate an optimal sequence
of visuals for perceptual-fluency problems. In a human ex-
periment, we show that a machine-generated sequence out-
performs both a random sequence and a sequence gener-
ated by a human domain expert. Interestingly, the machine-
generated sequence resulted in significantly lower accuracy
during training, but higher posttest accuracy. This suggests
that the machine-generated sequence induced desirable diffi-
culties. To our knowledge, our study is the first to show that
an educational data mining approach can induce desirable
difficulties for perceptual learning.

Keywords
visuals, perceptual fluency, implicit learning, desirable diffi-
culties, machine learning, machine teaching, chemistry, op-
timal training, sequence effects

1. INTRODUCTION

Visual representations are ubiquitous instructional tools in
science, technology, engineering, and math (STEM) domains [2,
23]. For example, chemistry instruction on bonding typically
includes the visuals shown in Figure 1. While we typically
assume that such visuals help students learn because they
make abstract concepts more accessible, they can also im-

pede students’ learning if students do not know how the visu-
als show information [27]. To successfully use visuals to learn
new domain knowledge, students need representational com-
petencies: knowledge about how visual representations show
information [1]. For example, a chemistry student needs to
learn that the dots in the Lewis structure in Figure 1(a) show
electrons and that the spheres in the space-filling model in
Figure 1(b) show regions where electrons likely reside.

Figure 1: Two commonly used visual representations of wa-
ter (a: Lewis structure; b: space-filling model).

Most instructional interventions that help students acquire
representational competencies focus on conceptual represen-
tational competencies. These include the ability to map
visual features to concepts, support conceptual reasoning
with visuals, and choose appropriate visuals to illustrate a
given concept [5]. For example, chemists can explain how
the number of lines and dots shown in the Lewis structure
relate to the colored spheres in the space-filling model by
relating these visual features to chemical bonding concepts.
Such conceptual representational competencies are acquired
via explicit, verbally mediated learning processes that are
best supported by prompting students to explain how visu-
als show concepts [20,27].

Less research has focused on a second type of representa-
tional competency — perceptual fluency. It involves the
ability to rapidly and effortlessly see meaningful informa-
tion in visual representations [12,14]. For example, chemists
immediately see that both visuals in Figure 1 show water
without having to effortfully think about what the visual
shows. They are as fluent at seeing meaning in multiple vi-
suals as bilinguals are fluent in hearing meaning in multiple
languages. Perceptual fluency frees up cognitive resources
for higher-order complex reasoning, thereby allowing stu-
dents to use visuals to learn new domain knowledge [16,27].

Students acquire perceptual fluency via implicit inductive
processes [12, 14]. These processes are nonverbal because
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verbal reasoning is not necessary [19] and may even inter-
fere with the acquisition of perceptual fluency [20]. Con-
sequently, instructional problems that enhance perceptual
fluency engage students in simple problems to quickly judge
what a visual shows [19]. For example, one type of perceptual-
fluency problem may ask students to quickly and intuitively
judge whether two visuals like the ones in Figure 1 show
the same molecule. They ask students to rely on implicit
intuitions when responding to a series of perceptual-fluency
problems. Students typically receive numerous perceptual-
fluency problems in a row. The problem sequence is typi-
cally chosen so that (1) students are exposed to a variety of
visuals and (2) consecutive visuals vary incidental features
while drawing students’ attention to conceptually relevant
features [19,27].

However, these general principles are underspecified in the
sense that they leave room for many possible problem se-
quences. To date, we lack a principled approach capable
of identifying sequences of visual representations that yield
optimal learning outcomes for perceptual-fluency problems.
To address this issue, we developed a novel educational data
mining approach. Using data from human students who
learned with perceptual-fluency problems, we trained a ma-
chine learning algorithm to mimic human perceptual learn-
ing. Then, we used an algorithm to search over possible
sequences of visual representations to identify the sequence
that was most effective for a machine learning algorithm.
In a human experiment, we then tested whether (1) the
machine-selected sequence of visual representations yielded
higher learning outcomes compared to (2) a random se-
quence and (3) a sequence generated by a human expert
based on perceptual learning principles.

In the following, we first review relevant literature on learn-
ing with visual representations, perceptual fluency, and our
machine learning paradigm. Then, we describe the methods
we used to identify the machine-selected sequence and the
methods for the human experiment. We also discuss how
our results may guide educational interventions for repre-
sentational competencies and educational data mining more
broadly.

2. PRIOR RESEARCH
2.1 Learning with Visual Representations
Theories of learning with visual representations define visual
representations as a specific type of external representation.
External representations are objects that stand for some-
thing other than themselves — a referent [25]. When we see
an image of a pizza, for example, the referent could be a slice
of pizza (a concrete object). Alternatively, when used in the
context of math instruction, the referent could be a fraction
of a whole pizza (an abstract concept). Representations used
in instructional materials are defined as external representa-
tions because they are external to the viewer. By contrast,
internal representations are mental objects that students can
imagine and mentally manipulate. Internal representations
are the building blocks of mental models; these models con-
stitute students’ content knowledge of a particular topic or
domain. External representations can be symbolic or visual.
For instance, text or equations are symbolic external repre-
sentations that consist of symbols that have arbitrary (or
convention-based) mappings to the referent [32]. By con-

trast, visual representations have similarity-based mappings
to the referent [32].

Several theories describe how students learn from visual rep-
resentations. Mayer’s [22] Cognitive Theory of Multimedia
Learning (CTML) and Schnotz’s [32] Integrated Model of
Text and Picture Comprehension (ITPC) draw on informa-
tion processing theory [4] to describe learning from external
representations as the integration of new information into a
mental model of the domain knowledge. Here, we focus on
learning processes relevant to visual representations.

First, students select relevant sensory information from the
visual representations for further processing in working mem-
ory. To this end, students use perceptual processes that
capture visuo-spatial patterns of the representation in work-
ing memory [32]. To willfully direct their attention to rel-
evant visual features, students draw on conceptual compe-
tencies that enable top-down thematic selection of visual
features [15,17].

Second, students organize this information into an internal
representation that describes or depicts the information pre-
sented in the external representation. Because visual repre-
sentations have similarity-based analog mappings to refer-
ents, their structure can be directly mapped to the ana-
log internal representations [10,32]. In forming the internal
representation, students engage perceptual processes that
draw on pattern recognition of objects based on visual cues.
They engage conceptual processes to map the visual cues
to conceptual representational competencies that allow the
retrieval of concepts associated with these objects. The re-
sulting internal representation is a perceptual analog of the
visual representation. It is depictive in that its organization
directly corresponds to the visuo-spatial organization of the
external visual representation [32].

Third, students integrate the information contained in the
internal representations into a mental model of the domain
knowledge (e.g., schemas, category knowledge). To this end,
students integrate the analog internal representation into a
mental model by mapping the analog features to informa-
tion in long-term memory. This third step is what consti-
tutes learning: students learn by integrating internal rep-
resentations into a coherent mental model of the domain
knowledge [22,32,37].

In sum, students’ learning from visual representations hinges
on their ability to form accurate internal representations of
the representations’ referents and on their ability to inte-
grate internal representations into a coherent mental model
of the domain knowledge. This process involves both con-
ceptual and perceptual competencies [27]. Although it is
well established that conceptual and perceptual competen-
cies are interrelated [16, 17], it makes sense to distinguish
them because they are acquired via qualitatively different
learning processes [16,19,20]. As mentioned earlier, concep-
tual representational competencies are acquired via verbally
mediated, explicit processes [20,27]. By contrast, perceptual
fluency is acquired via implicit, mostly nonverbal processes.
Whereas most prior research on instructional interventions
for representational competencies has focused on conceptual
processes, we focus on perceptual processes.
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2.2 Perceptual Fluency
Research on perceptual fluency is based on findings that ex-
perts can automatically see meaningful connections among
representations, that it takes them little cognitive effort to
translate among representations, and that they can quickly
and effortlessly integrate information distributed across rep-
resentations [12]. For example, experts can see “at a glance”
that the Lewis structure in Figure 1(a) shows the same
molecule as the space-filling model in Figure 1(b). Such
perceptual fluency frees cognitive resources for explanation-
based reasoning [14,31] and is considered an important goal
in STEM education.

According to the CTML and the ITCP, perceptual fluency
involves efficient formation of accurate internal representa-
tions of visual representations [22, 32]. Perceptual fluency
also involves the ability to combine information from dif-
ferent visual representations without any perceived mental
effort and to quickly translate among them [7] [19]. Accord-
ing to the CTML and ITCP, this allows students to map
analog internal representations of multiple visual represen-
tations to one another [22,32].

Cognitive science literature [12, 15, 20] suggests that stu-
dents acquire perceptual fluency via perceptual-induction
processes. These processes are inductive because students
can infer how visual features map to concepts through ex-
perience with many examples [12,15,19]. Students gain effi-
ciency in seeing meaning in visuals via perceptual chunking.
Rather than mapping specific analog features to concepts,
students learn to treat each analog visual as one percep-
tual chunk that relates to multiple concepts. Perceptual-
induction processes are thought to be nonverbal because
they do not require explicit reasoning [20]. They are im-
plicit because they occur unintentionally and sometimes un-
consciously [33].

Interventions that target perceptual fluency are relatively
novel. Kellman and colleagues [19] developed interventions
that engage students in perceptual-induction processes by
exposing them to many short problems where they have to
rapidly translate between representations. For example, stu-
dents might receive numerous problems that ask them to
judge whether two visuals like the ones shown in Figure 1
show the same molecule. These interventions have enhanced
students’ learning in domains like chemistry [30,36].

Perceptual learning is strongly affected by problem sequences
[27]. To design appropriate problem sequences, consecutive
problems expose students to systematic variation (often in
the form of contrasting cases) so that irrelevant features vary
but relevant features appear across several problems [19].
However, a vital issue remains when designing problem se-
quences for perceptual-fluency problems: Visual represen-
tations differ on a large number of visual features. Con-
sequently, countless potential problem sequences exist that
systematically vary these visual features. How do we know
which sequence is most effective? To address this issue, we
propose a new educational data mining approach that draws
on Zhu’s machine-teaching paradigm [38,39]

2.3 Machine Teaching Paradigm

Simply put, machine teaching is the inverse problem of ma-
chine learning. Machine learning refers to computer algo-
rithms that select an optimal model for a given set of data.
In other words, it determines which model fits the data
best. Machine teaching, on the other hand, finds the op-
timal (smallest) set of data for training such that a given
algorithm selects a target model. Although the machine
teaching paradigm has been applied to cognitive psychology
and education [24], it has not yet been used in educational
data mining research.

Machine teaching requires a cognitive model i.e.,a learning
algorithm that mimics how human students learn a mapping
between visual representations like the ones shown in Fig-
ure 1). Given the cognitive model, machine teaching seeks
a sequence of learning problems (optimal training sequence
O) such that when given O, the learning algorithm learns
the mapping. Here, O need not be independent and identi-
cally distributed (i.i.d.). Machine teaching can be viewed as
a communication problem between a teacher and a student:
The goal is to communicate the mapping using the short-
est message. The channel only allows messages in the form
of a training sequence and the student decodes the message
with the learning algorithm. In perceptual learning, stu-
dents learn a mapping between visual features of two types
of visual representations, allowing them to fluently translate
among the visual representations.

To evaluate whether a training sequence is effective, we test
the cognitive model’s performance at mapping visual repre-
sentations using a different set of perceptual-fluency prob-
lems than used during training. Typically, a sequence of
training problems (aka training instances in machine learn-
ing) is drawn from a distribution of perceptual-fluency prob-
lems used for training (Pt). The set of test problems comes
from a separate distribution of perceptual-fluency problems
(Pe). The goal is to minimize the test error rate on Pe. The
goal of machine teaching then becomes:

O = argmin
S∈Ct

P(x,y)∼Pe (A(S)(x) 6= y) (1)

Here, Ct is the set of all possible training sequences and A(S)
is the learned hypothesis after training on the sequence S.
Note that, O is not necessarily an i.i.d. sequence drawn
from Pt. One practical approach to approximately solve the
optimization problem is shown in Algorithm 1. To properly
construct the optimal training sequence in this given setting,
we must understand:

1. the nature of the to-be-learned domain knowledge

2. the learning algorithm the cognitive model is using

In this paper, the to-be-learned domain knowledge is well-
known. It is the mappings between visual representations
that students have to learn. Further, we used data from hu-
man students learning from perceptual-fluency problems to
generate a cognitive model that mimics how humans learn
mappings between visual representations. Our goal is to
investigate whether, when the mappings and the cognitive

Proceedings of the 11th International Conference on Educational Data Mining 139



model are well understood, machine teaching can identify
a training set that is more effective than (a) a problem se-
quence based on perceptual learning principles and (b) a
random sequence.

Algorithm 1 Machine Teaching

1: Input: Learner A, Test Distribution Pe

2: O ← Starting sequence
3: εbest ←error(train(A,O), Pe)
4: while TRUE do
5: N ←neighbors(O), εold ← εbest
6: for S ∈ N do
7: ε←error(train(A, S), Pe)
8: if ε < εbest then
9: εbest ← ε,O ← S

10: end if
11: end for
12: if εbest = εold then
13: return O
14: end if
15: end while

3. COGNITIVE MODEL
We now describe how we constructed the cognitive model
that was used to construct the training sequence. To this
end, we first describe the perceptual-fluency problems, then
describe how we formally represented these problems, which
learning algorithm the cognitive model used, and finally how
we used the cognitive model to identify the optimal training
sequence.

3.1 Perceptual-Fluency Problems
Perceptual-fluency problems are single-step problems that
ask students to make simple perceptual judgments. In our
case, students were asked to judge whether two visual rep-
resentations showed the same molecule, as shown in Fig-
ure 2. Students were given two images. One image was of
a molecule represented by a Lewis structure and the other
image was a molecule represented by a space-filling model.
They were asked to judge whether those two images show
the same molecule or not.

Figure 2: In this sample perceptual-fluency problem, stu-
dents judged whether or not the Lewis structure and the
space-filling model showed the same molecule. The answer
is yes.

3.2 Visual Representation of Molecules
In our experiment, we used visual representations of chem-
ical molecules common in undergraduate instruction. To
identify these molecules, we reviewed textbooks and web-
based instructional materials. We counted the frequency of
different molecules using their chemical names (e.g., H2O)
and common names (e.g., water), and chose the 142 most
common molecules. In order to formally describe the visual
representations, we quantified visual features for each of the
molecules. To this end, we first hand-coded the visual fea-
tures that were present in the visual representations. For
Lewis structures, these hand-coded features included counts
of individual letters as well as information about different
bonds present in each molecule, among others. For space-
filling models, hand-coded features included counts of col-
ored spheres, bonds, and other features. Further, we in-
cluded several surface features that we expect human stu-
dents attend to based on findings that humans tend to focus
on broader surface features that are easily perceivable. Then
we used the method found in [29] to determine which subset
of features (each for Lewis structure and space-filling model)
humans attend to most. Building on these results, we cre-
ated feature vectors for each of the molecules (Figure 3).
These feature vectors of Lewis structures and space-filling
models contained 27 and 24 features, respectively. These
feature vectors were then used to train and test the learning
algorithm.

Figure 3: Example features for H2O and CO2 molecule rep-
resentations with feature vectors in red (a: Lewis structure;
b: space-filling model).

3.3 Learning Algorithm
We used a feed-forward artificial neural network (ANN) [8]
as our learning algorithm. ANN is inspired by the biologi-
cal neural network. A biological neuron produces an output
when collective effect of its inputs reaches a certain thresh-
old. It is still not clear exactly how the human brain learns
but one assumption is that it is associated with the inter-
connection between the neurons. ANNs try to model this
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low level functionality of the brain. We chose ANN to be
our learning algorithm due to this similarity. Our ANN took
two feature vectors (x1 and x2) as input. Each feature vec-
tor corresponded to one of the two molecules shown. Given
this input, the ANN produced a probability that the two
molecules were the same. Then, given the correct answer
y ∈ {0, 1} (here 1 means the two molecules are the same),
the ANN updated its weights using the backpropagation al-
gorithm. The backpropagation algorithm uses gradients to
converge to an optima. Algorithm 2 shows the training pro-
cedure of the neural network. It shows that the update pro-
cedure also used a history window and multiple backprop-
agation passes, an atypical approach for an ANN. We took
two measures to address the issue that regular ANN algo-
rithms do not learn from memory like humans do. First, we
assumed that humans remember a fixed number of past con-
secutive problems. Second, we assumed that after receiving
feedback on the latest problem, humans update their inter-
nal model by reviewing memorized problems (along with the
latest problem) several times. To emulate this behavior, we
introduced the history window and multiple backpropaga-
tion passes. This procedure was followed for all problems in
a given training sequence.

Algorithm 2 train: training method for the NN learner

1: Input: Training sequence S , Learning rate η, History
window size w, Number of backpropagations b

2: H ← [] //initialize an empty history window
3: for i = 1→ |S| do
4: append(H,S[i]) //update history window
5: // train on the history window
6: w′ ← |H|
7: for k = 1→ b do
8: for j = 1→ w′ do
9: (x, y)← H[j]

10: backprop(x, y, η)
11: end for
12: end for
13: //check history window size
14: if w′ > w then
15: H.remove(0) //remove the oldest instance in his-

tory
16: end if
17: end for

A further, structural difference between our learning algo-
rithm from a general artificial neural network is that our
learning algorithm had two separate weight columns (one
for each representation of the input molecules). The model
architecture of the ANN is shown in Figure 4. Here, the
weights and outputs from one of the columns did not inter-
act with those of the other column until the output layer.
The network mapped the two inputs (feature vectors x1 and
x2) to a space wherein the same molecule shown by differ-
ent representations are close to each other while different
molecules are distant. These mapping functions are called
embedding functions (one for each representation) and the
space is called a common embedding space. Once the map-
ping was complete, a judgment was possible regarding the
similarity of the input molecules. This judgment was based
on the distance in the common embedding space and made
in the output layer of the ANN. Embeddings were generated
in the layer before the output layer—the embedding layer.

Figure 4: Structure of the Artificial Neural Network learning
algorithm

Neurons in an ANN use a non-linear function called activa-
tion function to introduce non-linearity. For all hidden layers
before the embedding layer, we used the leaky rectifier [21]
activation function (the neuron employing leaky rectifier is
called a leaky rectified linear unit or leaky ReLU). A stan-
dard rectified linear unit (ReLU) allows only positive inputs
to move onwards (outputs 0 otherwise). A leaky ReLU, on
the other hand, outputs a small scaled input when the input
is negative. Both ReLU and leaky ReLU have strong biolog-
ical motivations. According to cognitive neuroscience stud-
ies of human brains, neurons encode information in a sparse
and distributed fashion [3]. Using ReLU, ANNs can also
encode information sparsely. Besides this biological plau-
sibility, sparsity also confers mathematical benefits like in-
formation disentangling and linear separability. Rectified
linear units also enable better training of ANNs [13]. The
embedding layers, by contrast, do not use activation func-
tions. Hence, the output of embedding layers are a linear
transformation of its inputs. Given the inputs (x1, x2), let
the ANN-generated embeddings be l1 and l2, respectively.
Then, we computed the probability of the two representa-
tions showing the same molecule in the output layer using
the following equation:

exp

(
−‖l1 − l2‖

α

)
(2)

Here, α is a trainable parameter that the ANN learns along
with the weights. We thresholded this value at 0.5 to gen-
erate the ANN prediction ŷ ∈ {0, 1}.

3.4 Pilot Study - Train the Learning Algorithm
Our first step was to train the learning algorithm to mimic
human perceptual learning. To this end, we conducted a
pilot experiment to find a good set of hyperparameters for
the ANN learning algorithm. Hyperparameters of an ANN
are variables that are set before optimizing the weights (e.g.,
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number of hidden layers, number of neurons in each layer,
learning rate etc.). Our goal was to identify hyperparame-
ters that make predictions matching human behavior on the
posttest. Hence, we matched the algorithm’s predictions to
summary statistics of human performance on the posttest.

Our pilot experiment included 47 undergraduate chemistry
students. They were randomly assigned to one of two con-
ditions that used a random training sequence: supervised
training (n = 35) or unsupervised training (n = 12). Partic-
ipants in the supervised training condition received feedback
after each training problem, whereas participants in the un-
supervised condition did not receive feedback. We included
the unsupervised training condition to generate an evalua-
tion set (used to determine the success of pretraining). This
evaluation set was used to pretrain the ANN learning algo-
rithm.

Let there be n supervised human participants. Each par-
ticipant received a random pretest set, a random training
sequence, and a random posttest set. We trained the ANN
learning algorithm n times independently (once for each par-
ticipant). While training for the i-th time we used the train-
ing sequence viewed by the i-th supervised human partici-
pant. The same posttest set viewed by this participant was
also used to evaluate the performance of the ANN learning
algorithm after training. Let the error on this posttest set
for the i-th human participant and trained ANN learning
algorithm be ppi and pni respectively. Then, Equation 3 is
a measure used to determine whether or not an ANN learn-
ing algorithm’s performance is comparable to the average
human. Note that lower error rates are desirable.

error rates =

∣∣∣∣∣ 1n
(

n∑
i=1

ppi −
n∑

i=1

pni

)∣∣∣∣∣ (3)

Table 1 reports the accuracies of participants in the pilot
experiment.

Table 1: Accuracy in Pilot Experiment by Training Condi-
tion. Average pretest, training and posttest accuracy with
SEM in parentheses.

Condition Pretest Training Posttest
Supervised 79.9 (1.8) 75.7 (1.2) 89.4 (1.4)

Unsupervised 77.9 (3.4) 78.5 (2.8) 77.1 (3.3)

We note that humans usually have some degree of prior
knowledge about chemistry. By contrast, the weights of an
ANN are generally initialized at random. We address this
issue by modeling the effect of prior knowledge, specifically
we introduced a pretraining phase for the ANN learning al-
gorithm. To this end, we drew a large sample of instances
(10000) from the combined test and training distribution
( 1
2
Pe + 1

2
Pt) to form a pretraining set. Further, we com-

bined the pretest problem across both the supervised and
unsupervised conditions, along with the training problems
in the unsupervised condition to form the pretraining eval-
uation set. Because we did not provide feedback for these
problems, we assumed that the participants did not learn
anything new while going through them. Formally, let par-

ticipants’ error on the pretraining evaluation set be called
human pretraining error. We then trained the ANN learn-
ing algorithm on the pretraining set. Note that an ANN
can train over the over the same set over multiple iterations
(formally known as epochs). We trained the ANN learning
algorithm until its error on the pretraining evaluation set
was smaller than human pretraining error. This concluded
the pretraining phase.

We used standard coordinate descent with random restart
to find a good hyperparameter set. Coordinate descent suc-
cessively minimizes the error rates along the coordinate di-
rections (e.g., embedding size, learning rate). At each iter-
ation, the algorithm chooses one particular coordinate di-
rection while fixing the other values. Then, it minimizes in
the chosen coordinate direction. Table 2 shows the values
of the hyperparameters over which we decided to explore
along with the best value found. These hyperparameters
were used to identify the optimal training sequence.

3.5 Finding an Optimal Training Sequence
We used the ANN learning algorithm to generate an optimal
training sequence for the perceptual-fluency problems. In
Equation 1, we defined the optimization problem to solve.
We solved this problem by searching over the space of all
possible training sequences. Without limiting the size of
the training sequence, the search space becomes infinite and
infeasible. To mitigate this issue, we set the size of the
candidate training sequences to 60. This aligns with prior
research on perceptual learning [28]:

O = argmin
S∈Ct,|S|=60

P(x,y)∼Pe (A(S)(x) 6= y) (4)

We used a modified hill climbing algorithm to find such
an optimal training sequence. Hill climb search takes a
greedy approach. Procedurally, we started with one par-
ticular training sequence. Then, we evaluated neighbors
of that particular training sequence to determine whether
a better one existed. If so, we moved to that one. This
process stopped when no such neighbors were found. This
search algorithm is defined with its states and neighborhood
definition:

• States: Any training sequence S ∈ Ct of size 60

• Initial State: A training sequence selected by a
domain expert.

• Neighborhood of S: Any training sequence that
differs with S by one problem is a neighbor. For com-
putational efficiency, we restricted ourselves to only in-
specting 500 neighbors for a given training sequence.
We do so by first selecting a problem S uniformly at
random. Then we replace the selected problem with
500 randomly selected problems with the same answer
(i.e., same y value). This made our search algorithm
stochastic.

4. HUMAN EXPERIMENT
Our main goal was to evaluate whether the optimal train-
ing sequence yields higher learning outcomes. To this end,
we conducted a randomized, controlled experiment with hu-
mans. Here, we discuss our experimental setup and associ-
ated results.
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Table 2: Hyper-parameters for the ANN learning algorithm

Parameter name Values explored Best value
Embedding size 1, 2, 4, 8, 16 2
Learning rate 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 0.0001
History window size 0, 1, 2, 4, 8, 16, 32, 60 2
Backprop count 1, 2, 4, 8, 16 2
Number of hidden layers before embedding layer 0, 1, 2, 3, 4 0
Number of hidden units in each column 10, 20, 40, 80, 160 N/A

4.1 Participants
We recruited 368 participants using Amazon’s Mechanical
Turk (MTurk) [6]. Among them, 216 were male and 131
were female. The rest did not disclose their gender. Most
of the participants were below the age of 45 (86%) and the
greatest number (192) fell in the age group 24− 35. Among
the 95.4% who disclosed their knowledge about chemistry,
45.7% had taken an undergraduate-level chemistry class.

4.2 Test Set
Because our goal was to assess transfer of learning from the
training sequence to a novel test set, we chose training and
test problems from separate distributions. Hence, we ran-
domly divided the 142 molecules that we selected for this
experiment into two sets of 71 (training molecules, Xt and
test molecules Xe). One of the sets was used to create the
test distribution, whereas the other one was used to create
the training distribution. We now describe in more detail
how we created the test distribution Pe because our goal
was to reduce humans’ error rates on the test set. We used
the following procedure.

• x1 ∼ p1, where p1 is a marginal distribution on Xe. p1
is “importance of molecule x1 to chemistry education”
and was constructed by manually searching a corpus
of chemistry education articles for molecule text fre-
quency.

• With probability 1/2, set x2 = x1 so that the true
answer y = 1.

• Otherwise, draw x2 ∼ p2(· | x1). The conditional dis-
tribution p2 is based on domain experts’ opinion that
favors confusable x1, x2 pairs in an education setting.
Also note that, p2(x1|x1) = 0, ∀x1. Taken together,

Pe(x1, x2) =
1

2
p1(x1)I{x1=x2} +

1

2
p1(x1)p2(x2 | x1).

Both the pretest and posttest judgment problems were sam-
pled from this distribution across all conditions.

4.3 Experimental Design
We compared three training conditions:

1. In the machine training sequence condition, we used
the optimal training sequence O found by the modi-
fied hill climb search algorithm. For all (x1, x2) ∈ O
(here x1 ∈ Xt, x2 ∈ Xt), the corresponding true answer
y was the indicator variable on whether x1 and x2 were
the same molecule: y = I{x1=x2}. We presented x1 and

x2 in Lewis and space-filling representations to the hu-
man participants, respectively. Participants gave their
binary judgment ŷ ∈ {0, 1}. We then provided the
true answer y as feedback to the participant.

2. In the human training sequence condition, the training
sequence was constructed by a domain expert using
perceptual learning principles (using molecules only
from Xt). Specifically, an expert on perceptual learn-
ing constructed the sequence based on the contrasting
cases principle [19, 30], so that consecutive examples
emphasized conceptually meaningful visual features,
such as the color of spheres that show atom identity
or the number of dots that show electrons. The rest
of this condition was the same as the machine training
sequence condition. This training sequence is identical
to the initial state of the modified hill climb search al-
gorithm that we used to generate the machine training
sequence.

3. In the random training sequence condition, each train-
ing problem (x1, x2) was selected from the training
distribution Pt with y = I{x1=x2}. The training distri-
bution Pt for this condition was induced in the same
manner as the test distribution Pe but on the set of
training molecules Xt. The rest of the condition was
the same as the previous ones.

4.4 Procedure
We hosted the experiment on the Qualtrics survey plat-
form [26] using NEXT [18]. Participants first received a
brief description of the study and then completed a sequence
of 126 judgment problems (yes or no). The problems were
divided into three phases as follows. First, participants re-
ceived a pretest that included 20 test problems without feed-
back. Second, participant received the training, which in-
cluded 60 training problems sequenced in correspondence to
their experimental condition. During this phase, correctness
feedback was provided for submitted answers. We assumed
that participants learned during this phase because they re-
ceived feedback. Third, participants received a posttest that
included 40 test problems without feedback. In addition, one
guard problem was inserted after every 19 problems through-
out all three phases. A guard question either showed two
identical molecules depicted by the same representation or
two highly dissimilar molecules depicted by Lewis structures.
We used these guard questions to filter out participates who
clicked through the problems haphazardly. In our main anal-
yses, we disregarded the guard problems. So that no visual
representation was privileged, we randomized their positions
(left vs. right).

4.5 Results
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Of the 368 participants, we excluded 43 participants who
failed any of the guard questions. The final sample size was
N = 325. The final number of participants in the condi-
tions random, human, and machine training sequence were
108, 117 and 100 respectively. Table 3 reports accuracy on
the pretest, training set, and posttest. See Figure 5 for a
graphical depiction of the same data.
Table 3: Accuracy by Training Condition. Average pretest,
training and posttest accuracy with SEM in parentheses.

Condition Pretest Training Posttest
Machine 69.5 (1.1) 63.9 (1.1) 74.7 (1.1)
Human 71.3 (1.3) 72.4 (1.0) 71.7 (1.0)
Random 69.4 (1.1) 70.3 (1.1) 71.1 (1.1)

4.5.1 Effects of condition on training accuracy
First, we tested whether training condition affected partic-
ipants’ accuracy during training. To this end, we used an
ANCOVA (Analysis of COVAriance) with condition as the
independent factor and training accuracy as the dependent
variable. Because pretest accuracy was a significant pre-
dictor of training accuracy, we included pretest accuracy
as the covariate. Results showed a significant main effect
of condition on training accuracy, F (2, 321) = 18.8, p <
.001, η2 = .082. Tukey post-hoc comparisons revealed that
(a) the machine training sequence condition had significantly
lower training accuracy than the human training sequence
condition (p < .001, d = −0.32), (b) the machine train-
ing sequence condition had significantly lower training ac-
curacy than the random training sequence condition (p <
.001, d = −0.26), and (c) no significant differences existed
between the human and random training sequence condi-
tions (p = .592, d = 0.05). In other words, during the train-
ing phase, the human and random training sequences were
equally effective in terms of accuracy, but the machine train-
ing sequence was less effective.

Figure 5: Learning progress between conditions revealed
an initial disadvantage, but ultimate advantage for the
machine-generated sequence.

4.5.2 Effects of condition on posttest accuracy
Next, we tested whether training condition affected partici-
pants’ posttest accuracy. To this end, we conducted an AN-
COVA with condition as the independent factor and posttest
accuracy as the dependent variable. Because pretest ac-
curacy was a significant predictor of posttest accuracy, we
included pretest accuracy as a covariate. Results showed

a significant main effect of condition on posttest accuracy,
F (2, 321) = 5.02, p < .01, η2 = .023. Tukey post-hoc com-
parisons revealed that (a) the machine training sequence
condition had significantly higher posttest accuracy than the
human training sequence condition (p < .05, d = 0.16), (b)
the machine training sequence condition had significantly
higher posttest accuracy than the random sequence condi-
tion (p < .05, d = 0.14), and (c) no significant differences
existed between the human and random training sequence
conditions (p = .960, d = −0.02). In other words, the hu-
man and random training sequences were equally effective
and the machine training sequence was most effective.

5. DISCUSSION
Our goal was to investigate whether a novel educational data
mining approach can help identify a training sequence of vi-
sual representations that enhances students’ learning from
perceptual-fluency problems. To this end, we applied the
machine teaching paradigm. It involved gathering data from
human students learning from perceptual-fluency problems.
Next, we generated a cognitive model that mimics human
perceptual learning. We then used the cognitive model to
reverse-engineer an optimal training sequence for a machine-
learning algorithm. Finally, we conducted an experiment
that compared the machine training sequence to a random
sequence and to a principled sequence generated by a human
expert on perceptual learning. Results showed that the ma-
chine training sequence resulted in lower performance during
training, but greater performance on a posttest.

These findings make several important contributions to the
perceptual learning literature. First, our results can in-
form the instructional design of perceptual-learning prob-
lems. Even though prior research yields principles for effec-
tive sequences of visual representations, numerous potential
sequences can satisfy these principles. Our results show that
this new educational data mining approach can help address
this problem. Given a learning algorithm that constitutes
a cognitive model of students learning a task, instructors
can identify a sequence of problems that likely yields higher
learning outcomes.

Second, our results expand theory on perceptual learning.
The fact that the machine learning sequence yielded lower
performance during training but greater posttest scores sug-
gests that this sequence induced desirable difficulties dur-
ing learning [19, 34, 40]. The concept of desirable difficul-
ties describes the common finding that instructional tech-
niques yield lower performance during training, but higher
long-term learning outcomes. To explain this phenomenon,
Soderstrom and Bjork [34] proposed that more difficult learn-
ing interventions induce more active processing during train-
ing. This lowers immediate performance due to the in-
creased difficulty, but results in more durable memories and
greater long-term learning. Our findings suggest that the
machine teaching approach was successful because it iden-
tified a training sequence that induced desirable difficulties.
To the best of our knowledge, our study is the first to show
that an educational data mining approach can be used to
induce desirable difficulties for perceptual learning.

Our findings also contribute to the educational data min-
ing literature. We provide the first empirical evidence that
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an ANN learning algorithm constitutes an adequate cogni-
tive model of learning with visual representations. As far
as we know, the machine teaching paradigm has thus far
only been applied to learning with artificial visual stim-
uli that vary on only one or two dimensions (e.g. Gabor
patches [11]). Thus, our study provides the first demonstra-
tion that machine learning along with machine teaching is
a viable approach to modeling and improving learning with
realistic, high-dimensional visual representations like Lewis
structures and space-filling models of chemical molecules.
Many other domains like biology, engineering, math also use
high-dimensional visual representations. Therefore, we be-
lieve this approach is valuable for educational data mining
research.

6. LIMITATIONS AND FUTURE
DIRECTIONS

Our findings should be interpreted against the background
of the following limitations. First, the population of MTurk
workers may limit generalization to the target population
of undergraduate chemistry students. MTurk workers have
highly variable prior knowledge about chemistry. As men-
tioned previously, around 45.7% of the participants had taken
an undergraduate level chemistry class. This suggests that
their prior knowledge may have been lower and more di-
verse than that of a typical undergraduate chemistry stu-
dent. Hence, we plan to test whether the machine training
sequence leads to better learning for undergraduate chem-
istry students.

Second, the search algorithm we used to find the machine
training sequence did not test all possible training sequences
of size 60. As mentioned previously, we only inspected 500
neighbors (out of a potential 5040 = 71 × 71 − 1) for any
given training sequence. Moreover, we stopped the search
algorithm after a predetermined amount of time. We chose
this inexhaustive approach because exhaustively finding a
solution is not computationally feasible. Thus, we settled
for a suboptimal training sequence that still yielded a small
risk on the test distribution. Consequently, it is possible to
find a better training sequence than the one we used in our
experiments.

Third, while determining the hyperparameters of the ANN
learning algorithm such that it mimics human perceptual
learning, we only searched over a subset of all possible hy-
perparameters. As a result, it is possible that a better set of
hyperparameters exists. Our study was also limited in that
we did not account for individual prior knowledge. Hence,
future research needs to investigate how to expand the ap-
proach presented in this paper to modeling individual prior
knowledge (e.g., for adaptive teaching or personal training).

A fourth limitation of the present experiments is that our
study was constrained in the use of chemistry representa-
tions as stimuli. While we used realistic representations that
are more high-dimensional than prior perceptual learning
studies [9, 11, 35] and that are more representative of com-
monly used visual representations in a variety of STEM do-
mains, the complexity of the representations we considered
does not reflect all realistic stimuli. Still we see no reason
why this approach could not be applied to other representa-
tions in other domains. Sparser and richer visuals exist and

it is possible that machine teaching may yield greater ben-
efits for sparser visuals. We will investigate this hypothesis
in future studies.

7. CONCLUSION
This paper advanced a novel educational data mining ap-
proach to identify optimal sequences of visual representa-
tions for perceptual-fluency problems. Students’ difficulties
in learning with visual representations is partly due to a
lack of perceptual fluency. This increases the cognitive de-
mands of learning with visuals. Perceptual-fluency prob-
lems are a relatively novel type of instructional intervention
that can aid learning from visuals by freeing up cognitive
resources for higher-order complex reasoning. Thus far, we
have lacked a principled approach capable of identifying ef-
fective sequences of visual representations. Our educational
data mining approach relied solely on students’ responses to
perceptual-fluency problems to select a sequence of visuals
that is effective for a machine learning algorithm mimicking
human perceptual learning. Our results showed that this
approach is more effective than conventional perceptual flu-
ency instruction. Further, the effectiveness of our approach
lies in its ability to induce desirable difficulties. Given the
pervasiveness of visual representations in STEM domains,
we anticipate that our findings will be broadly useful for
students’ learning with visual representations. We also plan
to investigate how the machine generated sequence induced
desirable difficulties in the humans.
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ABSTRACT
Analyzing user behavior in electronic textbooks offers
appealing insights into how pupils interact with the book
and internalize the content. Using these insights may help
to personalize the book, e.g., to support users with special
educational needs. Conventional approaches often focus on
atomic, user-triggered events like clicks or scrolls. In this
paper, we propose to view all ongoing sessions in a classroom
simultaneously and cast the problem as a multi-user problem
over space and time. We devise two distance measures
to compare the navigation behavior of pupils in different
dimensions. Empirically, we observe that our metrics lead
to interpretable clusters and serve as performance indicators.

Keywords
Sequential clustering, behavioral analyses, spatio-temporal
trajectories

1. INTRODUCTION
The advent of information and communication technologies
(ICT) in education has given teachers and educators a magic
box full of possibilities [21]. Learning can now be made
interactive and engaging for students. The digitization
movement has further expanded with MOOCs [18, 10] that
provide easy access to extensive and high quality courses
online. Situated in-between traditional classrooms and
online MOOCs, are electronic textbooks.

E-books incorporate the benefits of both traditionally
printed copies and online media. Their structure closely
resembles real books, thus rendering a look and feel
familiar to students and teachers alike. Additionally, they
often include interactive objects (hyperlinks, text boxes
for comments) and interlinked media types to enhance the
learning experience and delineate content better. Teachers
can easily integrate the new technology in their classroom

∗Work done while at National Institute of Technology
Karnataka, India.

as they offer the full bandwidth, from traditional reading to
creative exploring tasks. In addition, electronic books are
usually designed to be self-contained and prevent the risk of
students being lost in large amounts of content.

This work is part of a project that aims to evaluate the
effectiveness of electronic textbooks as learning tools. Our
study is based on a collaboration with psychologists and
educators. The premise is an electronic text book called
the ’mBook’ [27, 28] that has been written and developed
by a team of history teachers and didacticians. It is being
deployed in the German-speaking community of Belgium
since 2013.

The mBook records all user-triggered events like clicks
and scroll operations such that every session can be
replayed entirely. Quantities like the visible content at each
timestamp can be derived straight forwardly from this data.
We aim to use this information to identify usage patterns in
the behavior of the pupils and analyze how they reflect on
their performances.

Extracting patterns from log files has been a widely
researched topic. Usual techniques range from Behavioral
Sequential Analysis [2, 31, 9] to mixtures of Markov
chains [6, 7, 15, 8]. However, all these methods are based
on event transitions and do not consider historical events
or past data. Higher-order Markov chains could possibly
handle longer sequences that condition these transitions.
Nevertheless, the computation becomes rapidly intractable.

The approach we choose here is to literally extend the
navigation metaphor and build a structure to handle sessions
as is they were spatio-temporal trajectories. For this
purpose, we first extend the shortest path distance in a graph
to handle extra events like the loss of focus. Secondly, we
build a distance metric to compare trajectories independent
of their length and duration. This measure is especially
built for our use-case since it not only measures extent of
difference between topics studied by two users, but also
quantifies the differences in their navigation behavior. Such
diverse aspects cannot be fully captured by traditional
approaches that rely on simple statistics like the number
of pages viewed. Additionally, by comparing navigation
patterns between classmates, we characterize teaching style
and detect outliers or specific learning patterns.

The rest of the paper is structured as follows. In Section
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2, we briefly introduce the mBook project. Notations and
concepts necessary for the construction of the distance are
presented in Section 3. We also review existing distance
metrics based on three properties that a trajectory distance
should satisfy, to successfully capture pupils’ navigation
patterns. Our page and trajectory distances are built in
Section 4. In Section 5.1, the clustering qualities of our
contribution are highlighted. Finally, in Section 5.2, we
study how behavior patterns influence pupils performances
and depend on the teaching style.

2. MBOOK
The mBook [27] is an electronic textbook for history,
developed for students from grades 6 to 9. It is a part of a
project regrouping didacticians, psychologist and computer
scientists to study the influence of ICT on pupils and
teaching staff. The ebook itself is a website based on a
Typo3 environment so that it can be used independently
of the device. However, tablets are the predominant device
in most classrooms. The primary organization of the book
is in the form of web-pages, grouped to represent different
chapters/content. The book has 5 chapters that cover
Antiquity, Middle Age, Renaissance, 19th Century, and the
20th and 21st Centuries. It also has an additional chapter
on methods.

Figure 1: Screenshot of the mBook.

Content types cover five main components: text, galleries,
audios or videos, information areas and a navigation bar.
The primary content is in the form of text. A student can
add notes to the text or highlight parts of it. Galleries
comprise of pictures related to the text. Some audio or
video files are directly integrated to the web-page and can
be visualized from there. Information areas below the text
provide additional information, beyond what is assigned for
the chapter. These are usually organized in boxes that can
be opened and accessed with a click/keypress event. Finally,
the navigation bar at the bottom of the page allows the
student to traverse sections and create highlights or notes.
The section traversals include moving to either the previous,
current or next section pages. In total, there are 738 pages,
including 478 galleries and 537 exercises. Every page is
assigned a unique identifier.

Since its deployment, the mBook was used by about
3,000 students in seven schools of the German-speaking
community of Belgium. Since 2013, approximately 40,000
sessions were initiated and more than 7 million events
(clicks, scrolls, key press, etc.) were tracked.

The project overseeing the deployment of the ebook also
organized standardized tests at the end of each academic
year. Based on these tests, the competency and knowledge
of the pupils in history was regularly assessed using a Rasch
model [23]. Additional variables like motivation, IT access
and IT skill were obtained by questionnaires and MCQ tests.

3. PRELIMINARIES
In this section, we introduce notation and concepts that will
become handy in sections to follow.

3.1 Notations
We begin with formally introducing trajectories.

Definition 1 (Trajectory). Let Ω be a set. A
trajectory X = (xi, ti)0≤i≤N on Ω is a sequence of points
xi of Ω and of time-stamps ti counted relative to t0 such
that ti ≤ ti+1. The length of the trajectory X is N + 1 and
its duration is tN .

When the time component is not relevant, the ti will be
omitted. To ease legibility, a sequence (xi)0≤i≤N will be
abbreviated (xi)N whenever the context allows.
Trajectories are essentially time-series of spatial points. In
order to later have a notion of similarity between two
trajectories, one needs to have a notion of distance between
two points. A sequence of elements of Ω is an element of
the power set of Ω. Thus, we give an abstract definition of
a distance that could then be used for points or sequences
of points.

Definition 2 (Distance). Let Ω be a set. The
function d : Ω × Ω → R is called a distance if it satisfies
these properties for any elements x, y, z ∈ Ω:

• ∆(x, x) = 0,

• Non-negativity: ∆(x, y) ≥ 0,

• Symmetry: ∆(x, y) = ∆(y, x).
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It is a metric if it also satisfies:

• Identity of indiscernibles: ∆(x, y) = 0⇔ x = y,

• Triangle inequality: ∆(x, z) ≤ ∆(x, y) + ∆(y, z).

In the following, we will prefer the notion of distance
which is less restrictive than a metric. However, the
distinction can be crucial to some clustering algorithms
such as DBSCAN [12, 19] or k-medoids [17, 3] that assume
the triangle inequality holds and thus require a metric
between points. Other approaches like k-means and many
hierarchical clustering methods [24] work well with non-
metric distances. One exception is Ward’s method [30] that
is even more restrictive and relies on Euclidean distance.
Since every metric is also a distance, in the remainder,
we denote generic distances between points and trajectories
using d and ∆ respectively.

3.2 Requirements
The aim of the work is to regroup pupils trajectories of
various durations, within the mBook. This grouping should
depend on the visited pages and be independent of session
start. Additionally, we would like similar behaviors to be
regrouped together. This can be controlled by enforcing the
distance to satisfy certain properties.

P1: If Y last longer than X, for any truncation Y ′ of Y
lasting longer than X, ∆(X,Y ′) = ∆(X,Y ).

P2: If X ′ and Y ′ go through the same sequence of points as
X and Y but slower (or faster), ∆(X,Y ) = ∆(X ′, Y ′).

P3: If X and Y are loops, i.e. they start and end at
the same point, their n-iterations are denoted as Xn

and Y n. If X and Y have the same duration, then
∆(Xn, Y n) = ∆(X,Y ).

To motivate these three properties, we will make use of
an analogy using a track and field race. Let X and Y
be competing athletes and ∆ an observer measuring the
distance between the runners. Once one of the athletes
finishes the race or gives up, the competition ends and
∆ cannot make any further measurements. This is what
property P1 encloses.
Now suppose that two other competitors X ′ and Y ′ perform
exactly like the previous ones, but they run at half the speed
of X and Y . ∆ would make the same observations as above,
relative to the total duration of the race. Hence, as stated
in P2, we require that ∆(X,Y ) = ∆(X ′, Y ′).
To illustrate P3, X and Y finish the first lap in the same
time. They continue similarly for the remaining laps.Thus,
the information ∆ extracts is the same for every lap. In
other words, as stated in P3, ∆(Xn, Y n) = ∆(X,Y ).

The first property P1 implies that a trajectory and its
sub-trajectories are considered as equal. Sequences of
different lengths or durations can then have a distance of
0. Consequently, the identity of indiscernibles is prohibited.
Note that property P2 requires that ∆(X,Y ) = ∆(X ′, Y ′),
however in the general case, ∆(X,Y ) 6= ∆(X,Y ′).

3.3 Distances
Distances on trajectories can be split into two groups [5]:
shape-based and warping-based approaches. Warping-based
approaches [4, 29] aim at handling sequences of various
length by finding an alignment that minimizes a cost
function. Dynamic Time Warping (DTW) [4] is often used in
speech recognition tasks, but can be leveraged for any type
of time series. The main limitation of this measure is that
the evaluation algorithm is computationally demanding and
has a time complexity of O(N2) in the length of the longest
trajectory. Approximations have been developed to bring
the complexity to an almost linear asymptote [26] but at
the cost of a lower precision.

Definition 3 (DTW). Given two trajectories X =
(xi)N and Y = (yj)M , dynamic time warping (DTW)
computes an alignment W = (wk)K with the following
properties:

• wk = (xi, yj), 1 ≤ i ≤ N, 1 ≤ j ≤M,

• w1 = (x1, y1),

• wK = (xN , yM ),

• d(wk) = d(xi, yj),

• wk = (xi, yj)⇒ wk+1 ∈

 (xi, yj+1)
(xi+1, yj)

(xi+1, yj+1)

.

Finally the distance between X and Y is then given by:

DTW(X,Y ) = min
W

|W |∑
k=1

d(wk).

The final result is the sum of the distances of the aligned
points. Hence, the value grows with the length of the
trajectories. This prevents DTW from satisfying P1 and
P3. Note that the time-stamps are not considered here.
As a consequence, P2 is naturally satisfied given that the
duration between two points is irrelevant.

Shape-based distances aim at capturing geometric properties
of the trajectories. A representatives of this family are for
example Hausdorff [16], as well as more recent ones like the
One-Way-Distance [20] and the Symmetrized Segment-Path
Distance [5].

Definition 4 (Hausdorff). Given two trajectories
X = (xi)N and Y = (yj)M . The Hausdorff distance is
defined as

HAUS(X,Y ) = max

(
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

)
.

The Hausdorff distance is independent of the timestamps of
the points, hence property P2 is satisfied; the computation
relies only on their distribution. The number of times each
point is visited does however influence the distance. In

Proceedings of the 11th International Conference on Educational Data Mining 149



particular the situation described by P3 is holds.
A limitation of this measure is that it can be easily deceived
by odd point distributions. Consider the three trajectories
X, Y and Z represented in Figure 2. Although the shapes
are very different, Haus(X,Z) = Haus(Y,Z) = 3.
If the last point of X were removed, Haus(X,Z) would
decrease. This is in contradiction with P1.

Figure 2: Three trajectories on the plane such that
Haus(X,Z) = Haus(Y,Z) = 3. The arrows indicate
the points orders.

The definitions of the One-Way-Distance (OWD) and
Symmetrized Segment-Path Distance (SSPD) require to
define the distance from a point to a trajectory:

Definition 5 (Distance Point-Trajectory). Let x
be a point of Ω and Y = (yj)M be a trajectory. A segment
of Y is a pair of successive points of Y , [yj , yj+1]. The
distance between x and a segment of Y is the shortest
distance between x and any point of the segment:

d(x, [yj , yj + 1] = min
τ∈[0,1]

(d(x, yjτ + (1− τ)yj+1))

The distance between x and Y is the shortest distance
between x and the segments of Y :

d(x, Y ) = min
j
d(x, [yj , yj + 1]).

Definition 6 (OWD). The one-way-distance (or
OWD) between two trajectories X = (xi, ti)N and
Y = (yj , t

′
j)M is defined as the integral of the distance from

points of X to trajectory Y divided by the duration of X :

OWD(X;Y ) =
1

tN

∫
x∈X

d(x, Y )dx.

The symmetric OWD is the average of the OWD between X
and Y :

sOWD(X,Y ) =
OWD(X;Y ) +OWD(Y ;X)

2
.

The sOWD is close to the distance we want to build.
Thanks to the normalization with duration, the measure
satisfies P2 and P3. However it is not invariant per
truncation as required by P1. If Y is truncated into Y ′,
the duration of the later is shorter than the former, hence
OWD(Y ′;X) 6= OWD(Y ;X) in general.
Given that Y ′ is said in P1 to last longer
than X, OWD(X;Y ′) = OWD(X;Y ). Yet,
1
2
(OWD(X;Y ′) + OWD(Y ′;X)) is different from

1
2
(OWD(X;Y ) +OWD(Y ;X)) in general.

Definition 7 (SSPD). The Segment-Path Distance,
SPD, between two trajectories X = (xi)N and Y = (yj)M is
:

SPD(X;Y ) =
1

N + 1

N∑
i=0

d(xi, Y ).

The Symmetric Segment-Path Distance is the average of the
SPD between X and Y :

SSPD(X,Y ) =
SPD(X;Y ) + SPD(Y ;X)

2
.

The distance SSPD is independent of the time indexing,
hence P2 is automatically satisfied. Besides the
normalization by the number of points assure that the
distance between loop trajectories is invariant with the
number of iterations. Thus SSPD complies with P3.
However similarly than for OWD, the Symmetric Segment-
Path Distance does not satisfy P1. Indeed if Y last longer
than X and Y ′ is a truncation Y lasting as well longer
than X, SPD(Y ′;X) 6= SPD(Y ;X) while SPD(X;Y ′) =
SPD(X;Y ). The averages are hence also different.

4. WEB TRAJECTORIES
Consider a website W whose structure is given by the page
graph G = (P, E). We refer to the corresponding web-page
of a node p ∈ P by W(p). That is, a node p ∈ P has a
child p′ ∈ P if users can transfer from page W(p) to W(p′)
by clicking a link or using the navigation bar. In that case
(p, p′) ∈ E holds. A loss of focus happens when the user
turns off the screen of the tablet, or visit another tab. In
order to handle this event, we add a dummy page F to P.
As it can happen anytime, F is connected to all the other
pages.

A session on W can be represented as a sequence of
pairs P = (pi, ti)0≤i<l, where a user views page W(pi)
at timestamp ti. For simplicity, we represent timestamps
relatively to t0, to retain the elapsed time on page and site.
To call P a trajectory, we need to define a metric between
its points.

4.1 Distances between pages
A natural distance measure for pages is the shortest path
between the corresponding nodes in the underlying graph
G. However, the auxiliary state F needs to be appropriately
incorporated to allow for a meaningful application of a
shortest path algorithm. Despite being connected to all the
pages, we thus set the distance between F and any other
page p to dF ∈ R+ such that

max
p,q∈P

ShortestPath(p, q) < dF.

We motivate this choice by the fact that we want the
clustering algorithm to consider a loss of focus as a special
state. By making it very costly with respect to the other
costs, we favor clusters of sessions that frequently visit F .

Definition 8 (Page Distance).
The distance d between two pages p, q ∈ P is defined
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as follows.

d (p, q) =

 ShortestPath(p, q) , if p 6= F and q 6= F
dF , if p 6= F and q = F
0 , if p = F and q = F

This page distance now allows the comparison of points
inside a page graph and can be used by existing measures
comparing trajectories. In order to assure that its usage does
not remove the distance properties out of these measures, d
needs to be a distance as well.

Lemma 1. The functions d : P ×P → R is a metric.

Proof. Non-negativity, symmetry and the identity of
indiscernibles directly apply from the ShortestPath which
is a metric on P \F .
Let us prove the triangle inequality, i.e for p, q, s in P:
d(p, r) ≤ d(p, q) + d(q, r)

• If r = F and q = F , d(F, F ) = 0.

• If r = F and q 6= F , per non-negativity of d:
d(p, F ) ≤ dF ≤ d(p, q) + dF = d(p, q) + d(q, r)

• If none of the pages is F , then d is simply the
ShortestPath, which satisfies the triangle inequality.

4.2 Distances between trajectories
Following Definition 1, sessions can now be viewed as
trajectories, more precisely web trajectories. In opposition
to spatial trajectories, the position of a web trajectory
between two timestamps does not evolve. Hence the position
at any timestamp is precisely the one of the most recent
point. We define the cross-product C of two trajectories X
and Y to keep track the positions changes of X and Y .

Definition 9 (Cross-product). Let X = (xi, ti)N
and Y = (yj , t

′
j)M ) be two trajectories such that tN ≤

tM . The cross-product of X and Y is the sequence C =
C(X,Y ) = (ck)K = (t̄k, x̄k, ȳk)0≤k≤K defined as follows:

• t̄k ∈ {ti, 0 ≤ i < N} ∪ {t′j , 0 ≤ j < M and t′j ≤ tN}

• c0 = (0, x0, y0),

• For 0 ≤ k < K + 1, ck = (t̄k, x̄k, ȳk),
with x̄k = xi such that ti ≤ t̄k < ti+1,
and ȳk = yj such that t′j ≤ t̄k < t′j+1,

• cK = (tN , xN , yj) such that t′j ≤ t̄N < t′j+1.

Now we devise a distance ∆ for web-trajectories. ∆ is
defined as the normalized area spanned between them until
the shortest one ends.

Definition 10 (Trajectory Distance). Let X =
(xi, ti)N , Y = (yj , t

′
j)M ) be two trajectories and C =

(t̄k, x̄k, ȳk)K their cross product:

∆(X,Y ) =
1

tN

K∑
k=1

d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

In Section 3, we formulated three requirements for trajectory
distances to assure certain properties in the clustering. The
fact that none of the reviewed distances fulfills all of them,
motivated the construction of ∆. We will now prove that
our distance complies with the three conditions.

Lemma 2. The function ∆ defined on pairs of web-
trajectories satisfies the three properties P1, P2 and P3.

Proof. Let X = (xi, ti)N and Y = (yj , t
′
j)M be two

trajectories and C = (t̄k, x̄k, ȳk)0≤k≤K their cross product.
We suppose that Y last longer: tN ≤ t′M . Let us prove that
each property is satisfied.

P1: The distance ∆ depends only on the cross product of
the two trajectories. Per construction, the cross-product
contains only the points happening before that the shortest
one ends, here X.
Hence for any truncation Y ′ = (yj , t

′
j)0≤j<M′+1 of Y such

that M ′ < M and tN ≤ t′M′ , C(X ′, Y ) = C(X,Y ). This
implies ∆(X,Y ′) = ∆(X,Y ).

P2: For λ > 1, X ′ and Y ′ travel the same path than
X and Y but λ times slower means that X ′ = (xi, λti)N
and Y ′ = (yj , λt

′
j)M ). Their cross product is C′ =

(λt̄k, x̄k, ȳk)0≤k<K+1.

∆(X ′, Y ′) =
1

λtN

∑K
k=1 d(x̄k−1, ȳk−1)(λt̄k+1 − λt̄k)

=
λ

λtN

∑K
k=1 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

∆(X ′, Y ′) = ∆(X,Y )

P3: We will prove this property for n = 2, but it can be
extended for any value. In this case X is a loop, i.e. x0 =
xN , and tN = t′M . A trajectory X2 traveling two times
through X is of duration 2tN and does not visit twice the
initial position, i.e.

X2 = (xi, ti)0≤i≤N ∪ (xi, ti + tN )1≤i≤N .

In turn, C(X2, Y 2) = (t̄k, x̄k, ȳk)K ∪ (t̄k + t̄K , x̄k, ȳk)1≤k≤K .
Hence:

∆(X2, Y 2) =
1

2tN

(∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

+d(x̄K , ȳK)(t̄K + (t̄1 + tN ))

+
∑K
k=1 d(x̄k−1, ȳk−1)((t̄k+1 + tN )− (t̄k + tN ))

)
Given that tN = t′M and that X and Y are loops, x̄K =
xN = x0, ȳK = yN = y0 and t̄K = tN . Besides following
Definition 9 t̄0 = 0. Consequently ,

d(x̄K , ȳK)(t̄K + (t̄1 + tN )) = d(x̄0, ȳ0)(t̄0 + t̄1)

Proceedings of the 11th International Conference on Educational Data Mining 151



. This term can hence be integrated inside the second sum,
such that we have:

∆(X2, Y 2) =
1

2tN

(∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

+
∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

)
=

1

2tN

(
2
∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

)
∆(X2, Y 2) = ∆(X,Y )

Algorithm 1: ∆(X,Y )

∆← 0;
T ← min(tN , t

′
M );

Initialize a list C with (0, x0, y0)
foreach (ti, xi) in X with i > 0 and ti ≤ T do

Append (ti, xi, NAN) to C;
end
foreach (t′j , yj) in Y with j > 0 and t′j ≤ T do

Append (t′j , NAN, yj) to C;
end
Sort C accordingly to the first column;
K ← length of C;
for 1 ≤ k ≤ K do

Ck−1 = (tk−1, xk1 , yk−1);
Ck = (tk, xk, yk);
∆← ∆ + d(xk−1, yk−1)(tk − tk−1)
if xk is NAN then

xk ← xk−1;
end
if yk is NAN then

yk ← yk−1;
end

end
Return ∆/T ;

Algorithm 1 describes an efficient way to compute ∆.
Firstly, the distance ∆ initialized to 0 and the shortest
duration T is retrieved. The cross product C is a list of
triplets : (tk, xk, yk). The first coordinate indicates the
timestamps, the two others the positions of X and Y at
this time. The first tuple gives the initial positions of the
two trajectories. Then all the positions of X and Y with a
timestamp smaller or equal than T are included in C where
the position of Y or X is set respectively as unknown. After
that C is sorted accordingly to the timestamps.
Finally C is browsed starting from the second element ; ∆ is
updated accordingly to Definition 10 ; the missing positions
are assigned using the last known positions.
Note that if X and Y have points with the same timestamp,
C will contains tuples with the same timestamp. It is not
problematic as they will cancel out each other during the
update of ∆.
The time complexity of Algorithm 1 is O (N +M). It
derives its efficiency from the fact that the assignments of
the missing positions in C and the updates of ∆ are done in
the same loop.

4.3 Example
This section gives an example for the computation of the
distance measure ∆. Consider the graph that is displayed
in Figure 3. On the left, two trajectories are represented on

Figure 3: Trajectories on the page graph (left) and
as timeseries (right). Edges between F and the other
pages are not shown for legibility.

the page graph. Arrows represent a click that causes a page
change. After vising page C, P loses the focus during one
time unit. On the right, the progression of the trajectories
over time is represented. The x-axis represents time and
the y-axis the pages. The distance between P and Q is
computed as follows.

∆(P,Q) = 1
6

[d(H,H) + d(A,H) + d(C,B) ∗ 2
+d(F,E) + d(C,E)]

∆(P,Q) = 1
6

[0 + 1 + 3 ∗ 2 + dF + 4]

∆(P,Q) =
11 + dF

6

5. EMPIRICAL RESULTS
5.1 Clustering
In this section, we report on clustering results that are
obtained by using Hausdorff, DTW and the proposed ∆
distances. We use K-means [24] as the underlying clustering
algorithm. The distance of a trajectory to a cluster is the
average distance between the trajectory and all the sessions
in the cluster. We repeat every experiment 50 times and
report on the best result for every measure.

The requirements stated in Section 3 aim to promote
groupings of sessions that share long subsequences of viewed
pages. To highlight the consequences of these choice, we
restrict the data to only a single day. The subset contains
41 sessions from 37 users with an average duration of
32 minutes. The small scale allows for an interpretable
analysis of the resulting clusterings. However, note that the
computational complexity of DTW and Hausdorff quickly
become infeasible with more data: The computation of
the upper triangle of the DTW distance matrices using [4]
requires more than 6 hours.

Although the sessions do not contain information about
teachers, we will still evaluate the clusterings based on their
similarity with the teachers’ groupings. They should not
be very different. Indeed, during one class, pupils tend to
worked on the same subject. Thus, we expect them to be
clustered together.
The teacher ID of the pupils behind session are represented
by the y-axis of Figure 4.a. The connection times (x-axis)
show six different classes. An analysis of the session logs
shows that the closest classes in terms of topic and thus also
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Figure 4: Teacher and cluster assignments of each sessions.

in terms of distance in the web-site graph are the ones of
teacher 1 and 3, who dedicated all their lessons of this day to
Alexander the Great and to the Roman Empire respectively.
During a single class, teacher 2 focused on the situation of
Belgium during WWII. The group of teacher 4 learned about
the Reformation.

Two settings are evaluated. In the first one the number
of clusters K is fixed to the number of teachers, that is
K = 4. In the second experiment, K is chosen an order
of magnitude higher to give the algorithm enough degrees
of freedom to return the optimal amount of clusters for
every measure. The returned clusters in this last setting
are plotted in Figures 4.b to d. The final number of clusters
found by each method and the homogeneity scores [25] of the
clustering relatively to the teachers’ distribution are given in
Table 1. A homogeneity score of 1 indicates that no cluster
contains sessions from multiple teachers.

Table 1: Number of clusters and homogeneities in
the case of constrained or unconstrained clusterings.

K=4 K=20
Distance # Cl. Homog. # Cl. Homog.
Hausdorff 4 0.14 8 0.39

DTW 4 0.67 9 0.97
∆ 4 0.87 10 0.97

In both settings, the Hausdorff distance performs poorly. As
shown in Figure 4.b, it fails at detecting class behaviors.
The first cluster is spread all over the day, despite that
each class studied different sections. By contrast, ∆’s
high homogeneities indicates that our proposed distance
successfully detects the topics. Even when K is fixed to
4, ∆ outperforms DTW and made few clustering errors. For
K = 20, DTW and ∆ create enough clusters such that all
of them are pure with respect to the teacher, except for one
session that is wrongly assigned in a cluster with sessions
from another teacher. Interestingly for both distances, this
mistake happens in a group of two sessions. DTW groups
two sessions from teacher 1 and teacher 4 together, while ∆
mistakenly associates a session from teacher 2 with a session

from teacher 3, respectively.

For K = 20, the main difference between DTW and ∆ is how
they handle teacher 4. While DTW aims to group sessions
associated with teacher 4 together, our distance measure
splits them into two clusters. The trajectories of each cluster
for each measure are shown in Figure 5. The pages are
organized per chapter.

DTW detects the topic well as all the sessions dealing with
Renaissance are grouped together. Cluster 3 in Figure 5.a
is actually the DTW’s cluster that is made only of two
sessions from two different teachers. It is not clear why this
artifact occurs. By contrast, our distance measure creates
two groups out of all trajectories visiting the Renaissance’s
chapter. Cluster 8 shown in Figure 5.c contains those
sessions that navigate more or less directly to the page about
the Reformation and then stay on that page until the session
is terminated. Sessions with more irregular trajectories are
put into cluster 9. Thus, in addition to the topic, the shape
of the trajectories is also a determining factor for ∆-based
clusterings.

This section showed that pupils may exhibit very different
types of behavior during the same class and that our distance
measure performs well in detecting these behaviors. The
next section investigates how the behaviors relate to the
pupils performance in the class.

5.2 Assessments
In this section, we study the relation between the expressed
behavior and the pupil’s scores described in Section 2.

The activity of a user during one session can be measured
through statistics like the ’number of pages seen per minute’
(PPM) or the ’number of events per minute’ (EPM). The
average distance between a pupil’s session and the other
class sessions indicates how much the pupil’s usage diverges
from the group’s.
However, these values can not be used to compare the
activity between classes. Indeed, in a class with an average
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Figure 5: Trajectories of clusters obtained using DTW and ∆ associated to the class of teacher 4.

of one page view per minute, a user viewing one page per
minute will be considered as regular. However if the average
of the class was 3, the same user would appear too inactive.
Hence, these quantities need to be expressed relative to the
average value of each class.
The average distance between trajectories of a class, also
called the intra-class distance, is denoted as Ψ. The average
distance of session P to the other class trajectories, also
called divergence of the session, is denoted as ψ(P ).

We extract 400 class-sessions between February and July
2017, under the supervision of two teachers in two different
schools. A class-session happens between 08:00 and 16:00
and contains at least five sessions from pupils with the same
teacher that all start within 10 minutes. Table 3 contains the
number of classes, sessions associated to the teacher, as well
as the number of pupils. The average intra-class distance
of the teachers’ classes are given in the last column with
standard deviations. Correlations between the measures
and the pupils’ scores are reported in Table 2. Pearson’s
correlations with a p-value smaller than 5% are marked in
bold face. The displayed numbers indicate that the two
groups show different behavior and that the teachers apply
different teaching styles.

Table 2 suggests that while the three indicators correlate
with the pupils competencies, they do so in different
directions. For instance, pupils that possess a higher ψ,
visit more pages per minute or interact more than the other
pupils, during the same class. These pupils of teacher A
perform better at the competency test. The opposite holds
for the pupils of teacher B.
These differences can be interpreted only if put in the
context of the average intra-class distances, given in Table 3.
A Mann-Whitney U test [22, 13] between the Ψ of the two
teachers’ classes returns a U-value of 85 ( < 87 critical) and
a one-sided p-value of 0.02. Thus, we can state that the
pupils in teacher B’s classes have more definite trajectories.

And pupils who diverge from the predominant path tend to
perform worst. To the contrary, the worst performing pupils
of teacher A, whose classes present in average a bigger Ψ,
are those that under-use the textbook.

The fact that all the indicators correlate with competency
could mistakenly be interpreted as redundancy. However,
we observe cases where only ψ is significant. For example,
a small ψ correlates with high motivation in group A. This
is remarkable, since it presents a correlation in the opposite
direction of competency.
In the case of teacher B, pupils with low ψ perform better
at the competency tests but also possess higher skills in
information and communication technologies compared to
their classmates. Indeed, among teacher B’s pupils, the
Pearson coefficient between these two scores indicate a
correlation (0.399, p-value 0.0002); PPM and EPM fail to
capture this effect.

In addition to the classical PPM and EMP, ψ appears to
be a good indicator of the pupils’ performances. Besides,
it captures relations that are hidden to PPM and EMP and
that are independent of connections between different scores.

6. DISCUSSION
In this paper, we focus on methods to extract diverse
usage patterns of an e-book, through analysis of spatio-
temporal, web-log trajectories. While conventional methods
focus on individual events like page-clicks or scrolls, we
extract and analyze trajectories within a web-page as a
whole. To achieve this, we propose to embed the structure
of electronic textbooks into graphs. Once pages of the
ebook are associated with nodes in the graph, shortest
path algorithms can be applied to compute distances
between pages. Additionally, we also lift these distances
to entire sessions, by making use of cross-products. The
establishment of the distance metrics facilitates the use of
spatial clustering methods to sessions of possibly unequal
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Table 2: Pearson’s correlations and associated p-values for each combination of pupil’s activity indicators and
score.

Teacher A

Competency Knowledge Motivation IT Access IT Skill
r p-value r p-value r p-value r p-value r p-value

ψ 0.179 0.012 0.096 0.182 -0.17 0.017 0.023 0.745 0.092 0.202
PPM 0.145 0.044 0.133 0.064 0.039 0.587 -0.002 0.979 0.019 0.789
EPM 0.185 0.009 0.156 0.03 -0.065 0.37 -0.022 0.761 0.063 0.381

Teacher B

Competency Knowledge Motivation IT Access IT Skill
r p-value r p-value r p-value r p-value r p-value

ψ -0.224 0.047 -0.165 0.146 0.096 0.402 -0.069 0.547 -0.357 0.001
PPM -0.232 0.039 0.049 0.671 0.111 0.331 0.188 0.097 -0.156 0.171
EPM -0.232 0.04 -0.141 0.216 -0.142 0.212 0.081 0.481 0.059 0.604

Table 3: Summary of the analyzed classes.
#Class #Sessions #Pupils Ψ

Teacher A 27 200 48 5.76 ( 1.41 )
Teacher B 11 80 22 4.48 ( 1.61 )

length.

Empirically, we show that pupils exhibit very different types
of behavior during the same class; the proposed distance
measure outperforms baseline measures in grouping and
detecting these behaviors. Moreover, in another experiment,
we show that our distance measure differentiates between
teaching styles and facilitates comparison between user
behavior and user competence. The average dissimilarity
between sessions during a class can thus be turned
into an effective indicator of pupil performance and
teaching technique. This study thus facilitates a thorough
understanding of the effectiveness of e-books, in a classroom
setup.

The empirical success of the proposed distance metric
establishes it as a useful tool to analyze learning and
teaching behaviour in a classroom. We thus hope to further
extend these experiments to detect more complex learning
patterns, now that a suitable comparison metric has been
developed. For instance, our technique could be extended
to detect ’outliers’ or pupils who completely contravene
typical classroom behaviour. It will further be interesting
to establish correlations between outliers and performance.
This will throw more light on the effectiveness of the
teaching style and the ebook medium.
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ABSTRACT
Student affect has been found to correlate with short- and
long-term learning outcomes, including college attendance
as well as interest and involvement in Science, Technology,
Engineering, and Mathematics (STEM) careers. However,
there still remain significant questions about the processes
by which affect shifts and develops during the learning pro-
cess. Much of this research can be split into affect dynam-
ics, the study of the temporal transitions between affective
states, and affective chronometry, the study of how an af-
fect state emerges and dissipates over time. Thus far, these
affective processes have been primarily studied using field
observations, sensors, or student self-report measures; how-
ever, these approaches can be coarse, and obtaining finer-
grained data produces challenges to data fidelity. Recent de-
velopments in sensor-free detectors of student affect, utiliz-
ing only the data from student interactions with a computer-
based learning platform, open an opportunity to study affect
dynamics and chronometry at moment-to-moment levels of
granularity. This work presents a novel approach, applying
sensor-free detectors to study these two prominent problems
in affective research.

Keywords
Student Affect, Affect Dynamics, Affect Chronometry, Deep
Learning, Sensor-Free Detectors

1. INTRODUCTION
The various affective states experienced by students dur-
ing learning have received significant attention from the re-
search community for their prominence in the learning pro-
cess. Student affect has been shown to correlate with sev-

eral measures of student achievement [6][22][28], has been
found to be predictive of whether students attend college
several years later [24], and also whether students choose
to take steps towards careers in Science, Technology, Engi-
neering, and Mathematics (STEM) fields [30]. While signif-
icant steps have been taken toward understanding the inter-
relationships between of affect and learning, there are many
questions that remain unanswered with regard to how af-
fect is exhibited by students over time as well has how such
temporal trends may be informative of student learning out-
comes.

The temporality of student affect has been characterized
into two areas of study, affect dynamics [31] and affective
chronometry. Affect dynamics studies temporal shifts in af-
fect to understand which transitions between affective states
are most common. A theoretically-grounded model of affec-
tive dynamics has been proposed by D’Mello and Graesser
[10], which suggests a typical resolution cycle, where stu-
dents transition from engaged concentration to surprise to
confusion and back to engaged concentration, but which also
hypothesizes alternative transitions, including a path from
confusion to frustration and boredom.

Affective chronometry also uses temporal measures, but fo-
cuses more closely upon how individual affective states (e.g.,
boredom) behave over time. This was first studied as a
special case of affective dynamics, where researchers inves-
tigated how frequent it was for an affective state to transi-
tion to itself (aka “self-transitions”). More recently, D’Mello
and Graesser [9] proposed instead investigating an affective
state’s “half life,” or the decay in the probability of an affec-
tive state persisting for a specific duration of time. [9] found
evidence that six affective states exhibit exponential decay
in their probability over time. That is, the probability that a
student remains in a particular state decreases exponentially
as the amount of time that the student persists in that state
increases. However, engaged concentration (referred to as
flow) showed a much slower decay rate than other affective
states (e.g., frustration).
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There is now a growing body of research in affective dynam-
ics and affective chronometry, commonly using field obser-
vations [26][13], or self-reports accompanied by video data
[3][9]. These important studies have helped to advance the
field, but each method imposes different kinds of limitations
on the grain-size of the data. Continuous observation is im-
practical both for self-report and field observation studies,
and it is highly time-consuming for video recording (which
can also break down when the student moves away from his
or her desk, either for off-task reasons or for on-task pur-
poses like peer-tutoring or requesting assistance). Despite
the limitations of these methods, they have often been pre-
ferred to sensor-free detectors of affect due to higher reliabil-
ity/quality of the data obtained. However, recent advances
in sensor-free detection of affect, based on deep learning
methods, have substantially increased the quality of models
[5], making interaction-based detectors a viable alternative.
While these models are also not without limitations, their
improved performance provides an alternative that facili-
tates near-continuous labeling at scale. As such, the recent
advent of higher-quality detectors introduce the opportunity
to study affect dynamics and affective chronometry with fine
levels of granularity at scale.

In this paper, we present research studying affect dynam-
ics and affective chronometry with the use of deep learning
sensor-free affect detectors. We report the affect dynamics
and chronometry for four commonly-studied affective states:
engaged concentration [7] (also referred to as engagement,
flow, and equilibrium), boredom [7][19], confusion [6][16],
and frustration [16][23]. We investigate these relationships
in the real-world learning of just under a thousand stu-
dents, and compare our findings to prominent foundational
research [9][10].

2. PREVIOUS WORK
The theoretical model of affective dynamics proposed by
D’Mello and Graesser [10] has become widely recognized
in the study of affective state transitions. The model pro-
poses a set of theoretically hypothesized transitions that
have emerged through the study of student affect, as il-
lustrated by the simplified representation of the model in
Figure 1. While the full model observes numerous affective
states including surprise and delight, we restrict the analysis
in this paper to the key affective states of engaged concen-
tration, boredom, confusion, and frustration.

The model hypothesizes that specific transitions between af-
fective states are particularly common. In this model, a stu-
dent commonly begins in a state of equilibrium (i.e. flow or
engaged concentration). The student remains in this state
until novelty or difficulty emerges, at which point the stu-
dent may transition to confusion. The student may transi-
tion back to engaged concentration by resolving this confu-
sion, possibly experiencing delight upon the way. Alterna-
tively, the student my transition from confusion to frustra-
tion, at which point the model suggests that the student is
unlikely to transition back to the more productive cycle of
engaged concentration and confusion; instead, the student
is more likely to transition from frustration to boredom. As
such, while students may be expected to oscillate between

certain adjacent states in the model, the model suggests that
it is unlikely for students to transition to unconnected states
as depicted in Figure 1.

The model has been explored in several studies [27][8] ob-
serving differences in student affect, and has become influen-
tial to other research studying affect dynamics in the context
of other constructs such as gaming the system [26]. Other
studies prior to the publication of this model also stud-
ied affective dynamics [1][29]. While the specific affective
states studied across these projects vary, the four affective
states studied in this work are among the most commonly
observed in this area of research. However, work in other
paradigms also exists; for example, Redondo [25] attempted
to identify when a student’s affect shifts from increasingly
positive to becoming more negative, or vice-versa, in self-
report Likert scale data, finding that unexpectedly positive
or negative affect typically indicated a shift in overall affec-
tive trajectory. However, she did not compare the preva-
lence of turning points found to overall base rates of affect,
or analyze the chronometry of the sequences she studied.
In general, across these papers, estimates of student affect
have been collected through a range of methodologies includ-
ing, most commonly, quantitative field observations (QFOs)
[13][12][26][20], but also through self-reports in conjunction
with post-hoc judgements of recorded video [3][4].

While there have been a large number of projects investi-
gating affective dynamics, there has been substantially less
research pertaining to affective chronometry. The study of
affective chronometry is at times seen in affective dynamics
papers. Among the papers investigating affective dynamics,
several studies, including that of Baker, Rodrigo, and Xolo-
cotzin [1] have found that state self-transitions, where the
student is in the same affective state in one observation as
in the previous observation, were often statistically signifi-
cantly more likely than chance. This suggests that students
in each state do tend to persist for at least the duration of the
time interval between observations (1 minute in that article);
however, this paper did not observe the chronometry beyond
this interval. In foundational work in this area, D’Mello and
Graesser [9] investigated the duration of different affective
states, proposing a methodology with which to evaluate the
“half-life,” or decay of individual affective states experienced
by students. Using a computer-based system known as Au-
toTutor, the authors used a combination of self-reports of
the students and expert and peer judgments of student affect
made using recorded video in order to measure and evaluate
the length of time students commonly remained in each ex-
perienced affective state. However, that work was conducted
on a relatively small number of subjects working on Auto-
Tutor in a lab setting, on a task not related to their studies.
It is therefore unclear whether the findings obtained in that
context will generalize to data from a classroom environment
where students are working on authentic educational tasks.
The same methodology for measurement and evaluation of
affective chronometry as presented in that work will be ap-
plied here to understand and compare affective chronometry
– however, instead of using self-report, this project will uti-
lize sensor-free detectors of affect applied to data collected
from real students working in classroom environments.
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Figure 1: The proposed theoretical model of affect dynamics as presented by D’Mello and Graesser [10]

2.1 Detectors of Student Affect
We apply the sensor-free detectors of student affect previ-
ously described in Botelho et al. [5] to our data in order to
study affective dynamics and chronometry. We use the same
data set in this work from which the training set originally
used in Botelho et al. [5] was sampled, to ensure maxi-
mum validity of the detectors. In applying the detectors to
this data set, we determined that several minor adjustments
needed to be made to the detectors, so that the training
data set was aligned to the ground truth observations in
a way that could be more easily applied to the unlabeled
data. We also reduced the number of features used as input
to the model building algorithm. The detectors were refit
using this adjusted dataset and produced performance met-
rics comparable to the previous work (average AUC = .74,
average Cohen’s Kappa = 0.20).

As in Botelho et al. [5], these sensor-free detectors were de-
veloped using a long short term memory (LSTM) [15] net-
work, a type of deep learning model designed for time series
data. LSTM networks use a large number of learned param-
eters with internal memory that can model temporal trends
within the data to make estimates that are better informed
by previous time steps within the series. Although the initial
training sample was imbalanced, the use of resampling did
not improve model performance, and a min-max estimate
scaling was used instead. The LSTM model is trained as a
sequence-to-sequence model, meaning that it accepts an en-
tire sequence of time steps as input and produces a sequence
of outputs. These outputs are in the form of a sequence of es-
timates of the probability that each of four affective states of
engaged concentration, boredom, confusion, and frustration
are occurring at each 20-second time step, or “clip,” within

the data. We use this sequence of probabilities to study af-
fective dynamics and chronometry – the details of these anal-
yses are provided in later sections. The LSTM model was
found to produce cross-validated AUC values that substan-
tially outperformed prior sensor-free detectors, which had
previously exhibited an average AUC = 0.66, developed us-
ing older algorithms with the same dataset [21][32]. In ad-
dition, LSTM models are designed to exploit the temporal
character of the data, suggesting that they will be able to
model temporal changes and transitions between affective
state better than a model that treats each 20-second clip of
student behavior as an independent sample.

3. METHODOLOGY
3.1 Dataset
The data1 used in this work is comprised of action-level stu-
dent data collected within the ASSISTments learning plat-
form [14]. ASSISTments is a computer-based learning sys-
tem used daily by thousands of students in real classrooms
(over 50,000 a year) and hosts primarily middle school math
content. The system has been used in several previous pa-
pers to study student affect, in many cases using sensor-free
detectors of student affect.

Within this paper, we utilize a dataset originally used to
develop sensor-free automated detectors of student affect.
Detectors were originally developed using data collected by
conducting field observations of student affect as 838 stu-
dents used ASSISTments. 3,127 20-second field observations
were collected in total, with gaps between one and several

1The data used in this work is made available at
http://tiny.cc/EDM2018 affectdata
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minutes between observations of the same student. For this
paper, we analyze the entire data set of interaction for those
838 students on the days when observation occurred, 48,276
20-second segments of student behavior in total. We for-
mat the data in terms of 20-second segments of behavior in
order to use the sensor-free detectors of affect, which were
developed at this grain size (in line with the original field
observations, which were conducted at the same grain size).
The original training data set was highly imbalanced, with
approximately 82% of observations coded as engaged con-
centration, 10% coded as boredom, 4% coded as confused,
and 4% coded as frustration. This imbalance is consistent
with previous research on the prevalence of these affective
categories in systems such as ASSISTments.

The sensor-free LSTM detectors were applied to this dataset,
providing an estimate of the probability of each of the four
observed affective states for each of the 20-second segments
of behavior within the system. The ground-truth labels used
in model training are removed from this dataset and instead
are replaced with the estimates produced by the sensor-free
detectors. We replaced the ground-truth labels with the de-
tector outputs so that the data would be comparable across
all of the 48,276 observations.

3.2 Affect Dynamics
The estimates produced by the sensor-free detectors, when
applied to the analysis dataset, are used to observe which
transitions between affective states are frequent and statis-
tically significantly more likely than chance. As is described
in the previous section, the model produces four continuous-
valued estimates corresponding with the 4 affective states of
engaged concentration, boredom, confusion, and frustration.
However, these estimates must be discretized and reduced
to a single label describing the most likely affective state ex-
hibited by the student at each time step. It is not sufficient
to simply conclude that the most probable affective state
(e.g. the affective state with the highest confidence) is the
current affective state. For example, the model may predict
very small values for all four affective states.

Instead, we first select a threshold that indicates that a spe-
cific affective state is likely occurring during a specific clip.
We use a threshold of 0.5, defining a value above this thresh-
old to be indicative of the presence of that corresponding
affective state for the time step. 0.5 is a reasonable thresh-
old as the detectors were previously run through a min-max
scaling of the model outputs to remove majority class bias
(cf. [5]). However, there exists the possibility, as expressed
in the example above, that no estimate across the four affec-
tive states surpasses this defined threshold. In such cases, a
fifth “Neutral/Other” affective state is introduced to repre-
sent that none of the affective states we are studying is occur-
ring; this state has been included in similar previous analyses
of affect dynamics as well ([13][12][29][27][4][9]). Conversely,
it is possible for more than one estimate across the four out-
puts to surpass the defined threshold. In this unusual case
(less than 1% of our data), no single affective state label can
be applied and this clip (and transitions from and to this
clip) is omitted from the subsequent analyses.

Once all estimates have been classified as either a single af-
fective state or the neutral state, transitions between these

states within each student are computed. As in [10], we omit
self-transitions where the student remains in their current af-
fective state; these are instead represented through affective
chronometry (see next section). We report D’Mello’s L [11]
as a measure of the commonality of each possible transition
from a source affective state to a destination affective state
along with a corresponding p-value denoting the probabil-
ity of this frequency of transition being obtained by chance.
The D’Mello’s L metric can be interpreted in a similar man-
ner to Cohen’s kappa, describing the degree to which each
transition is more (or less) likely than would be expected
according to the overall proportion of occurrence of the des-
tination affective state across all cases. Values of D’Mello’s
L below zero are less likely than chance; values above zero
represent the percent more likely than chance the finding is.
In other words, a D’Mello’s L of 0.4 represents a transition
that occurs 40% more often than would be expected from
the destination state’s base rate. We compute statistical
significance of these transitions using the method originally
proposed in [11] – D’Mello’s L is computed for each student
and transition, and then the set of transitions is compared
to 0 using a one-sample two-tailed t-test. Benjamini and
Hochberg’s [2] correction is used to control for the substan-
tial number of statistical comparisons conducted.

3.3 Affective Chronometry
Our methodology for affective chronometry closely follows
that of D’Mello and Graesser [9], with whom we compare
our findings. In their analysis, the rate of decay was calcu-
lated as a probability of each state persisting over a 60-80
second window, using affect labels aggregated across multi-
ple observation methods including the use of self-reports and
both peer- and expert-observers. The probability that each
affective state persisted (i.e. Pr(Et = Et+20)) was computed
for 20 second intervals within that window.

The analysis in this paper uses the same discretized affect
labels described in the previous section, transforming a se-
quence of sets of four probabilities to a single most-likely
affective state per clip. The sequence of labels is broken into
a set of episodes of each affective state, where an episode de-
scribes a series of non-transitioning affect that starts when
the student transitions into the state and ends when the stu-
dent transitions out of the state. A cumulative sum of time,
in seconds, is calculated for each episode to measure how
long each student remained in each affective state. With
this value, a probability that a state will persist beyond a
defined number of seconds can be calculated.

Due to the nature of our affect detection approach, persis-
tence is estimated in 20 second intervals. At each interval,
the probability that a student remains in eachtheir current
affective state is calculated for durations up to 300 seconds,
or 5 minutes. The resulting 16 probabilities (for durations of
0, 20, 40, ... , 300 seconds) can then be used to compare the
rates of decay across each of the observed affective states.

4. RESULTS
4.1 Observing Affect Dynamics
The affective state transitions, measured by D’Mello’s L, are
reported in Table 1 with accompanying significance. Aside
from those transitions that occur to/from the neutral/other
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Table 1: The transitions between affective states. D’Mello’s L values are shown. Transitions that are
statistically significantly more likely than chance, after Benjamini and Hochberg’s post-hoc correction, are
denoted *.

From State To State D’Mello’s L p-value

Engaged
Concentration Engaged Concentration — —

Boredom 0.260* <0.001
Confusion 0.004 0.136
Frustration -0.12* 0.012
Neutral/Other 0.481* <0.001

Boredom Engaged Concentration 0.194* <0.001
Boredom — —
Confusion -0.004 0.208
Frustration 0.036* <0.001
Neutral/Other 0.235* <0.001

Confusion Engaged Concentration 0.341* 0.006
Boredom -0.127* <0.001
Confusion — —
Frustration -0.026* 0.001
Neutral/Other -0.156 0.157

Frustration Engaged Concentration 0.279* <0.001
Boredom -0.107* <0.001
Confusion 0.008 0.391
Frustration — —
Neutral/Other 0.279* <0.001

Neutral/Other Engaged Concentration 0.753* <0.001
Boredom -0.057* <0.001
Confusion 0.003 0.302
Frustration 0.015* 0.007
Neutral/Other — —

state, the most common significant transition appears to oc-
cur between confusion and engaged concentration, followed
by that of frustration to engaged concentration. Contrary
to the theoretical model proposed by D’Mello and Graesser
[10], significant transitions are found between engaged con-
centration and boredom as well as from boredom to engaged
concentration. The findings suggest that students do not
transition between these states through others as in the pro-
posed theoretical model, but can occur directly.

It is further illustrated in the table that no state is found to
transition to confusion more likely than chance, for which
there are several possible explanations. Confusion was the
least-frequently detected state as estimated by the sensor-
free model (under 1.0% of the dataset). As such, it is likely
that there simply were not enough instances of detected con-
fusion in the data to produce significant results, possibly
because the model had difficulty detecting confusion, con-
tributing to an under-sampling of this state as estimated by
the model.

These positive and significant transitions as identified by
Table 1 are illustrated in Figure 2 for better comparison to
the theoretical model depicted in Figure 1. Not only do

the already-identified transitions become clearer, the num-
ber of transitions occurring to and from the neutral/other
state, listed simply as“no label” in that figure, are also made
prominent. As described in the generation of this fifth state,
this represents those estimates where no model estimates
across the four affective states exceeded the defined thresh-
old. It is important to note that this state may not be a
single state at all, but rather comprehensively represents
all other affective states exhibited by students that are not
observed in the analysis. As such, it is difficult to make
meaningful claims or draw significant conclusions regarding
transitions occurring to or from this state.

The divergence of the emerging transitions and the theo-
retical model indicate that there are fewer oscillations that
are detected by the machine-learned method. While not in-
cluded in the theoretical model, D’Mello and Graesser pro-
pose in the same work [10] that oscillations can occur be-
tween all adjacent affective states within the graph under
certain conditions, but that is certainly not the case as seen
in Figure 2 gained from the empirical results of this work.
This suggests that the learned model finds that students do
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Figure 2: The resulting positive and significant affect transitions as compared to the D’Mello and Graesser [10]
theoretical model.

not commonly transition back and forth between states such
as confusion and frustration as often as hypothesized by the
theoretical model, but no other such cases emerge.

4.2 Observing Affective Chronometry
The results of our affective chronometry analysis illustrate
the length of time students commonly spend in each affec-
tive state before transitioning to either another observed
state or the neutral/other state. The results of this anal-
ysis, depicted in Figure 3, show notable differences in affec-
tive half-life between affective states. Engaged concentration
and boredom exhibit much more gradual declines as opposed
to both confusion and frustration which both exhibit steep
and rapid decay. Just as was done in the previous work
of D’Mello and Graesser [9], the decay can be quantified
by fitting an exponential function to each of the observed
states. Again, as the neutral/other state may comprehen-
sively represent multiple states that are not measured in this
work, this state is not included in the analyses of affective
chronometry; if included, the results may simply illustrate
an average decay over non-included affective states.

The value of decay for each state, as calculated by fitting
an exponential curve to each states probability of persisting
(Pr(No Change)) over time. Engaged concentration (de-
cay = -0.003) and boredom (decay = -0.004) are found to
have similarly gradual decay as compared to that of the re-
maining two states. Frustration (decay = -0.01) and confu-
sion (decay = -0.024) are found to decay significantly faster.
Of the studied states, only confusion is found to fail to per-
sist past 5 minutes.

While the affective decay of engaged concentration, bore-
dom, and frustration follow the general trend found by the
work of D’Mello and Graesser in previous work [9], confusion

deviates from this alignment. This difference is illustrated
by Figures 4 and 5. Figure 4 illustrates the plotted exponen-
tial fit lines that were learned from the estimates produced
by the sensor-free detectors. For comparison, Figure 5 illus-
trates the plotted exponential decay, as reported in Table 1
of D’Mello and Graesser [9]. From this, it becomes appar-
ent that confusion is found to exhibit similar decay patterns
to that of engaged concentration and boredom, being more
gradual over time, than that of frustration.

The other distinctive difference that emerges from the com-
parison of Figures 4 and 5 is that of the average time for
decay across all affective states. This suggests that the av-
erage time that students remain in any affective state, as
determined by the sensor-free model, is consistently longer
than those found in D’Mello and Graesser [9]. The previ-
ous work reports that students rarely remained in a single
state for longer than 60 seconds, and, following the learned
exponential curve in Figure 5, no state seems to persist be-
yond 3 minutes, with most states reaching a probability of
persisting close to 0 long before that time point. In com-
parison, each of the affective states, with the exception of
confusion, are found to persist past the 5 minute time point,
with engaged concentration and boredom seemingly persist-
ing significantly beyond this point. Even in considering the
60 second timeframe, the fastest decaying state of confusion
exhibits students persisting beyond this interval.

The divergence of the decay rates as exhibited by the es-
timates of the sensor-free model and those of the empiri-
cal findings reported in [9] may be due to a combination
of differences between the two works. One possible expla-
nation is the difference in learning contexts and the differ-
ent learning interactions being studied in each of the two
works. In this work, for example, the students comprising
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Figure 3: The probability of a student persisting in each affective state over time.

the dataset were in a classroom environment interacting with
the computer-based system of ASSISTments. The previous
study reported by [9], had students interacting with different
software, namely that of AutoTutor, and also took place in
a controlled lab setting. The domain of study also exhibits
differences in that the students in AutoTutor were answering
questions pertaining to computer literacy that are described
as requiring students to answer in several sentences. The
students using ASSISTments, however, were middle school
students working on math content. The differences between
both the content and the environment could have a distinct
effect on the states of affect exhibited by students as well as
the length of time students persist in each affective state.

5. DISCUSSION AND FUTURE WORK
The current work presents, to the knowledge of the authors,
the first application of sensor-free affect detectors to study
affect dynamics and affective chronometry. In studying af-
fective dynamics, we can compare our results to a past the-
oretical model of affect dynamics proposed by D’Mello and
Graesser [10], as well as other past empirical work. In affec-
tive chronometry, we can compare our results to past work
[9], also by D’Mello and Graesser. The resulting model of
affect dynamics produced by the application of sensor-free
detectors shares little with the theorized model in regard to
the significant transitions that emerged. Most notably, our
model suggests oscillations between engaged concentration
and boredom which are hypothesized not to occur signifi-
cantly in the theorized model; it has been found in other
empirical work, however, that transitions between engaged
concentration and boredom do appear [3][4]. The model of
affective chronometry finds a similar pattern to D’Mello and
Graesser in terms of which affective states are shorter and
longer, but we find that all affective states last longer in our
data set than in their previous work.

The application of sensor-free detectors to the study of stu-
dent affect provides the opportunity to study how such af-
fect is exhibited in students at greater scale and at second-
by-second levels of granularity. In addition, automated de-
tectors are a less intrusive method of data collection than
more traditional methods. As the detectors utilize only data
recorded from computer-based systems, they can estimate a
student’s affective state without interrupting their work, as
can be the case with self-reporting methods, and does not
hold a risk of observer effects where students change their
behavior due to the presence of a human coder. The method
also does not require the use of additional technology such
as physical and physiological sensors that may be difficult
to deploy in classrooms at scale. Given the greater scale
facilitated by automated affect detectors, future research
may be able to study not just overall affective dynamics and
chronometry but how dynamics and chronometry vary be-
tween different activities, different student populations, and
even at different times of day. The better understanding
of affective dynamics and chronometry that this may afford
may have several benefits. Understanding a system’s affec-
tive dynamics may be useful for encouraging positive tran-
sitions and suppressing negative transitions. Understanding
affective chronometry may help us understand when neg-
ative emotion is problematic. Although some confusion is
associated with positive learning outcomes [17], extended
confusion is associated with worse student performance [18].
Understanding whether a student’s confusion or frustration
lasts longer than the expected duration may indicate that a
student is struggling and is in need of intervention.

As the scale of the application of automated detectors in-
creases for the study of affective dynamics, the means of
evaluating common transitions will likely need to evolve as
well. After a certain data set size, all transitions will become
significant. Even in this paper, with a relatively limited data
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Figure 4: The plotted exponential decay of each af-
fective state as estimated by the sensor-free affect
detectors.

set, fairly low values of D’Mello’s L reached statistical sig-
nificance. Future work may need to explore new methods of
identifying and evaluating affect dynamics, perhaps by sim-
ply exploring reasonable means of leveraging D’Mello’s L as
a measure of magnitude to identify meaningfully frequent
links, not just those that are simply statistically significantly
more likely than chance.

There are potential limitations to the current work that may
be addressed by future research in this area. First, while the
sensor-free detectors used in this work, as presented in [5],
exhibit significantly superior performance to previous devel-
oped detectors with regard to AUC, improving the perfor-
mance of these models further may help to improve tran-
sition and chronometry estimates, particularly of the less
common labels of confusion and frustration. Utilizing meth-
ods to supplement less-frequently occurring labels of stu-
dent affect (though the common method of resampling did
not, in fact, enhance these detectors) or utilizing unlabeled
data to better inform model estimates through co-training
may improve model performance and produce more accurate
measurements of affect dynamics and affective chronometry.
It also may make sense to use different confidence thresh-
olds for different affective states to adjust for the differences
in the conservatism of different detectors that emerge from
having different base rates.

Although consisting of a small portion of the data used in
this work, the analyses did not include cases of co-occurring
labels as estimated by the model. The estimates produced
by the sensor-free detectors, even when the ground truth la-
bels used to train such detectors did not observe co-occuring
affective states themselves, is able to produce such cases,

Figure 5: The plotted exponential decay of each af-
fective state as reported in Table 1 of D’Mello and
Graesser [9]

providing the opportunity to observe such cases in future
work. Identifying which states are likely to co-occur, as well
as include such cases in analyses of state transitions and af-
fect state decay, will help to gain a better understanding of
the relationships between affective states as well as to stu-
dent performance.

A final opportunity for future work is in regard to observing
affect dynamics and chronometry in experimental settings,
as in the case of randomized controlled trials (RCTs). Sev-
eral works have used analyses of state transitions to observe
differences in affect exhibited between experimental condi-
tions [27][8]. As the training set used to develop affect de-
tectors does not contain experiment data, it is at this time
uncertain if they generalize to behaviors exhibited outside of
normal usage of the learning platform. Future work can ob-
serve how well such detectors generalize to such populations
of users and samples.
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ABSTRACT 

Identifying struggling students in real-time provides a virtual 

learning environment with an opportunity to intervene 

meaningfully with supports aimed at improving student learning 

and engagement. In this paper, we present a detailed analysis of quit 

prediction modeling in students playing a learning game called 

Physics Playground. From the interaction log data of the game, we 

engineered a comprehensive set of aggregated features of varying 

levels of granularity and trained individualized level-specific 

models and a single level-agnostic model. Contrary to our initial 

expectation, our results suggest that a level-agnostic model 

achieves superior predictive performance. We enhanced this model 

further with level-related and student-related features, leading to a 

moderate increase in AUC. Visualizing this model, we observe that 

it is based on high-level intuitive features that are generalizable 

across levels. This model can now be used in future work to 

automatically trigger cognitive and affective supports to motivate 

students to pursue a game level until completion. 

Keywords 

disengagement, learning games, quit prediction, adaptive 

intervention, personalized learning, physics education 

1. INTRODUCTION 
In the past couple of decades, education researchers and developers 

have looked into using digital games as vehicles for learning in a 

range of domains [19]. Learning games are designed with the goal 

of keeping students engaged in a fun experience while also focusing 

on their learning. Well-designed games help build intrinsic 

motivation in players, which they sustain throughout the process by 

keeping the player in a state of deep engagement or flow [7].  

For a successful learning experience, Gee [14] emphasizes that the 

game must focus on the outer limits of the student’s abilities, 

making it hard yet doable – Csikszentmihalyi similarly suggests 

that optimal flow is achieved when student ability is matched with 

game difficulty [7]. Although some researchers have argued that 

the difficulty associated with the highest engagement is different 

than the difficulty associated with the highest learning [20], the goal 

of good game design must be to promote both engagement and 

learning.  

The challenge, then, must be to maintain the high difficulty 

associated with learning without compromising engagement to a 

degree that the student becomes highly frustrated or worse, gives 

up [e.g. 20]. After all, if a student gives up, they typically do not 

continue learning from the game (at least, not in the absence of 

reflective or teacher-driven discussion of the game – e.g. [28, 22]).  

Some students may quit a game level (or the entire game) only after 

protracted struggle. Others may quit the level immediately and 

search for an easier level, a behavior tagged as the “soft underbelly 

strategy” [1]. Both responses to difficulty should be addressed in 

an optimal learning game. 

To prevent students from giving up, most serious games in 

education include immediate feedback and interventions aimed to 

improve the learner experience [26]. When the student is 

struggling, a relevant and timely intervention could keep the 

student motivated and prevent frustration from leading the student 

to give up. A struggling student may also benefit from an 

intervention that prevents them from wheel-spinning [4], playing 

for substantial amounts of time without making progress. 

However, even though scaffolding may be beneficial to a struggling 

student, it may be undesirable – even demotivating and harmful to 

learning – if the student is provided with scaffolding when he or 

she does not need it [9]. As such, it may be valuable to detect 

struggling during games that can benefit from an intervention. In 

that fashion, scaffolding can be provided to students who need it 

but withheld where it is unnecessary and may be counterproductive.  

The goal of this paper, then, is to detect whether a student is likely 

to give up and quit a level in progress. We do so in the context of 

Physics Playground [27], a game where students learn physics 

concepts through interactive gameplay. 

1.1 Related Work 
There has been considerable interest in developing automated 

detectors of disengagement over the last decade. This work 

includes detectors for off-task conversation [2], mind wandering 

while reading [8], and gaming the system - where the student 

exploits the system to complete the task [3]. In the specific case of 

games, researchers have developed detectors for a variety of 

disengagement-related constructs, including whether the learner is 

engaging in behaviors unrelated to the game’s learning goals [23], 

whether the student is genuinely trying to succeed in the game [10], 

and whether the learner is gaming the system [29]. One inherent 

challenge to much of the work to detect disengagement is the 

dependence on subjective human judgement for ground truth labels 

such as field observations, self-reports, and retrospective 

judgement. This makes it challenging to validate the model beyond 

the context of data collection. By contrast, predicting whether a 

student will quit has the advantage of only needing an objective 

ground truth label. This aspect of quit prediction makes it relatively 

less labor-intensive to validate a model in newer settings and 

diverse student population.  

There has been past work to predict whether a student will quit 

within other types of online learning environments.  In a lab 
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experiment with a simple reading interface, an interaction-based 

detector was developed to predict if a student would quit an 

upcoming text based on the reading behavior of the student in the 

past text [21]. There has also been considerable attention to the 

issue of quit prediction (sometimes referred to as dropout or stop-

out) in the context of massive open online courses (MOOC), due to 

the high attrition rate in MOOCs. In one of the studies [31], 

researchers conducted social network analysis (based on discussion 

forum participation) and survival analysis to predict student 

dropout from an ongoing Coursera class. Another study [15] 

detected at-risk students based on their engagement with video 

lectures and assignments and their performance in the assignments. 

One important aspect to some of this MOOC work is that the 

detectors have been used to drive interventions. For instance, an 

automatic survey intervention was built based on a MOOC dropout 

classifier by researchers at HarvardX [30]. They observed that the 

surveys appeared to increase the proportion of students thought to 

have dropped out who chose to return to the course. 

1.2 Context/Setting 
Physics Playground1 (PP; formerly known as Newton's 

Playground) [27] is a two-dimensional game, developed to help 

secondary school students understand qualitative physics related to 

Newton’s laws of force and motion, mass, gravity, potential and 

kinetic energy, and conservation of momentum. The player draws 

objects on the screen, often simple machines or agents to guide a 

green ball to hit a red balloon (goal) by using a mouse and drawing 

directly on the screen.  

The agents in the game were as follows: A ramp is any line drawn 

that helps to guide the ball in motion (e.g., such as a line that 

prevents the ball from falling into a hole). A lever rotates around a 

fixed point (pins are used to fix an object on- screen), and is useful 

for moving the ball vertically. A swinging pendulum directs an 

impulse tangent to its direction of motion, and is usually used to 

exert horizontal force. A springboard stores elastic potential energy 

provided by a falling weight, and is useful for moving the ball 

vertically. Such weights are called freeform objects whose mass is 

determined by the density of the drawn object.  

Any solution that solves the problem receives a silver badge; a 

solution that solves the problem with a minimal number of objects 

receives a gold badge. Problems are designed so that receiving a 

gold badge typically requires a specific application of an agent or 

simple machine. Laws of physics apply to the objects drawn by the 

player. There are seventy-four levels in total across seven 

playgrounds. Each level contains fixed and movable objects. The 

player analyzes the givens (what he/she sees on the screen) and 

sketches a solution by drawing new objects on the screen (see 

Figure 1). All objects in the game obey the basic rules of physics 

relating to gravity and Newton’s laws, and each level is designed 

to be optimally solved by particular agents. PP is nonlinear; 

students have complete choice in selecting playgrounds and levels. 

The goal of quit prediction is to identify potential learning moments 

for a struggling student in the game where a cognitive support could 

support the student in developing their emerging understanding of 

key concepts and principles.  

                                                                 

1 Link to play PP - https://pluto.coe.fsu.edu/ppteam/pp-links/ 

 

Figure 1. An example level in physics playground being solved 

with a pendulum agent (drawn in green by the student). The 

dashed blue (marked for illustration; not shown in the game) 

line traces the trajectory of the pendulum when released and 

that of the ball to the balloon after the pendulum strikes. 

2. METHODS 

2.1 Data Collection 
Participants consisted of 137 students (57 male, 80 female) in 

the 8th and 9th grades enrolled in a public school with a diverse 

population in a medium-sized city in the southeastern U.S. The 

game content was aligned with state standards relating to 

Newtonian Physics. The study was conducted in a computer-

enabled classroom with 30 desktop computers over four 

consecutive days. On the first day, an online physics pretest was 

conducted, followed by two consecutive days of gameplay and a 

posttest on the fourth day.  The pre-test and the post-test measured 

students’ proficiency in Newtonian physics. The software logged 

all the student interactions in a log file. In this paper, we focus on 

the data collected during the second and third days (where students 

were playing Physics Playground for 55 minutes each day).  

Physics Playground log data capture comprehensive information on 

student actions and game screen changes as a time series with 

millisecond precision. One of the important fields in the log data is 

the event. It is used to construct most of the features used in our 

model. The value of this field categorizes the game moments into – 

a) game-related events like game start, and end; b) level-related 

events like start, pause, restart, and end; c) agent creation events 

like drawing of ramp, pendulum, level, springboard; d) play-related 

events like object drop, object erase, collision and nudge; e) 

between-level navigation events like menu-focus. We focus on 

level-related events, agent creation events, and play-related events 

for predicting whether a student will quit a specific level. 

Some levels in PP can be solved by multiple agents (ramp, lever, 

pendulum, and springboard). For each of the relevant agents, 

students can get a silver or a gold badge based on how efficient their 

solution is. Hence, a student could be playing a level for the first 

time, replaying using a different agent, or replaying to get a better 

badge. We consider each of these visits to a level as separate 

instances of gameplay on that level and predict whether a student 

will quit the level during the student’s current visit. Each time a 

student exits a level, the log data marks the end of the visit with a 

level end event.  This event can occur either when the student solves 

the level successfully (earns a badge; quit=0) or when the student 

exits a level without solving it (doesn’t earn a badge; quit=1). 
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Within each visit, a student can restart a level multiple times 

without quitting the level. Restarting a level erases all the student-

created objects and resets the ball and the other level-given objects 

back to their default positions. The ball also resets back to its 

original position each time it drops out of the screen. We identify 

this as a ball reset event.  

2.2 Data Preparation 

2.2.1 Data Pre-processing 
Among the total of seventy-four levels in this version of the game, 

only thirty-four levels had data for at least fifty students. These 

levels were used for modelling (Table 1); the other levels did not 

have enough data to build level specific models (explained in 

section 2.3.1). Also, these higher levels are only reached by the 

most successful students, making this data of less interest for our 

research goal. After data pre-processing, we have 390,148 relevant 

events across all the students playing the chosen levels. 

2.2.2 Feature Engineering 
Feature engineering is an important step in the modeling pipeline 

that converts raw log data to a set of meaningful features. Many 

argue that the success of data mining approaches relies on 

thoughtful feature engineering [24]. For each data sample, we have 

engineered a total of 101 features of the four types listed below. In 

designing features, we endeavor to avoid using data about the 

student’s future to interpret their behavior, since our goal is to 

predict their future outcome. Hence, all the features at any time step 

solely include the information from the past and the present.   

a) Student+Level+Visit related features define a student’s progress 

in their current visit to a level. They are recalculated at each event 

within the logs, and each row represents a single event or student 

action. There are multiple kinds of student+level+visit features: 1) 

A set of binary features denote the occurrence of an event (e.g., 

level restart, ball reset, and, the creation of an object). For these 

features, each row in the data represents a single event, so only one 

binary feature will have a value of 1 in any row; 2) A set of 

numerical features represent the current counts of all the actions 

taken by the student since the beginning of the visit. These include 

counts of objects and agents drawn and other relevant events (e.g., 

the number of springboards, freeform objects, pins, and ball 

nudges); 3) A set of features track higher-level game activities since 

the start of the visit (e.g., the number of level restarts and ball 

resets); 4) A set of temporal features (e.g., the time elapsed in the 

visit so far and the time elapsed since the last restart); and 5) A set 

of features that maintain the counts of currently active objects on 

screen since the drawn objects could drop off the screen or be 

erased by the student. There are a total of 27 student+level+visit 

related features. All of these features are updated after each relevant 

event (see section 2.1). In most cases, only a small subset of feature 

values change between consecutive data samples.  

b) Student+Level related features define the student’s experience 

with the level so far, across all the previous visits (recall that a 

student can replay a previously solved or unsolved level; see 

section 2.1). This includes high-level features like the number of 

visits to the level, the number of badges received in the past visits, 

the number of visits quit without solving, the overall number of 

pauses, and the total pause duration in the level overall. This also 

includes cumulative features that indicate past solution approaches 

                                                                 

2 The aggregated data (section 2.2.3) is made available at 

https://upenn.box.com/s/4ocucflaehd7c51lbxx96heikcjtcwz1  

(e.g., the total number of pendulums drawn in the past visits). There 

is a total of 17 such features. These are set to 0 for the first visit and 

is updated at the end of each consecutive visit to the level by the 

student.  

c) Student related features define the student’s progress through the 

game across all the levels played so far. These include counts like 

the total number of levels played, the number of levels quit, the 

number of levels involving a particular physics concept played so 

far (e.g., Newton’s first law of motion, energy can transfer, 

properties of torque), and the number of levels solved using a 

particular agent. These also include an overall summary of 

gameplay attributes across the levels played so far (e.g., means and 

standard deviations of the number of visits, pause duration, time 

spent, and number of objects used across all the levels played so 

far). There are a total of 40 such features. The feature values start 

at zero for a new student and continue to get updated as the student 

proceeds playing more levels in the game.  

d) Level related features define the inherent qualities of a particular 

level. There are two kinds of level-related features – 1) A set of ten 

features computed by taking averages and standard deviations of 

student-level features from all students who played that level (e.g., 

means and standard deviations of number of objects used, time 

taken, number of level restarts, and badges received in this level); 

and 2) A set of seven level-related features that do not require past 

student data. These include binary features for primary physics 

concept and agent(s) used for solving. There are a total of 17 level-

related features. These features are pre-set at the game start and 

their values remain the same for all the students and all the visits to 

a particular level. 

Upon exploring the relationship between the level-pause and level-

end events, we noticed that in order to access the quit button, 

students need to pause the gameplay. Since level-pause is directly 

indicative of the outcome variable (though not all pauses lead to 

quitting), we have discarded any feature that is related to the 

occurrence of a pause event from the student+level+visit set of 

features and retained the pause-related features in the student+level 

set of features.  

2.2.3 Aggregations 
As we are predicting an outcome (quitting a level) that comes as 

the culmination of many actions, and that is likely to be predicted 

by patterns of inter-related actions rather than single actions (such 

as drawing a single object), we aggregate the data into 60-second 

clips [24], [5]. Since only student+level+visit (see Section 2.2.2 a) 

and student+level (see Section 2.2.2 b) features change with each 

event, these are the only features to be aggregated at the 60 second 

interval. The binary student+level+visit features are converted to 

integer features that count the occurrence of these events over the 

60 second interval. For cumulative features like the total number of 

level restarts in the visit so far, the last value at the end of the 60 

second window is retained. Similarly, for features indicating the 

current object counts and on-screen elements like current number 

of lever objects, the values of the last data sample in the 60 second 

interval are retained. The same approach is followed for the features 

corresponding to elapsed time, like time elapsed since level restart 

in the visit. After feature aggregation, we have a final sample size 

of 14,116 data points and a feature space of 101 dimensions.2 
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2.3 Model Training 
The next step of the modeling process is to define the quit value for 

each data sample. We predict a binary label that represents whether 

the student quit a visit (without solving) or not. This variable can 

be operationalized in several fashions. One possible way to define 

the label value would be to only mark the last data sample of a visit 

before the student quits as representing quitting, as in the research 

on MOOC stop-out [30]. However, our goal is to be able to detect 

that a student is likely to quit early enough to prevent this behavior. 

Therefore, we label every 60-second data clip during a visit that is 

eventually quit as “quit”. The overall class distribution in the data 

is 28.77% quit and 71.23% not-quit. 

2.3.1 Level-specific Models Versus Level-agnostic 

Model 
Within this paper, we consider two possible types of models for 

detecting quit: a) level-specific models which are trained on the data 

from a single level; and b) a level-agnostic model which is a single 

model trained on the data from all levels. One can see pros and cons 

to both approaches. We could expect level-specific models to be 

more accurate as the data is tailored to a narrower prediction 

context. However, using level-specific models necessitates having 

enough training data for all the levels. It also implies that detection 

will be unavailable at first when new levels are designed for the 

game.  

2.3.2 Gradient Boosting Classifiers 
Due to the popularity of ensemble methods in classification, 

gradient boosting classifiers [13] are chosen for quit prediction. 

Only one other model (random forest) was tried and the results are 

similar to the gradient boosting classifier. Gradient boosting 

classifiers combine the predictive power of multiple weak models 

into a single strong learner, reducing model bias and variance. The 

ensemble is built in a forward stage-wise fashion where the current 

model corrects its predecessor model by fitting to its pseudo-

residuals. Decision trees are used as the base learners. To avoid 

overestimation of model generalizability, hyperparameter values 

are kept at the default specified by scikit-learn, the python machine 

learning library. These consist of setting the number of estimators 

to 100, the maximum depth of estimators to 3, the learning rate to 

0.1, using a deviance loss function, using the Friedman mean 

squared error criterion, and setting the subsample value at 1 for a 

deterministic algorithm.  

2.3.3 Model Training Architecture3 
Five-fold student-level cross-validation is used for evaluation of 

model performance. In this approach, students are split into folds 

and a single student’s data is only contained in one-fold. To avoid 

biasing the model, feature selection is repeatedly conducted only 

on the training fold data. Model-based feature selection approach is 

used. Based on the model’s fit on the training data, features are only 

selected to be included if their feature importance [6] (see section 

3.3.2) is more than the mean of the importance of all features. The 

reduced-feature training data is used for model training. The 

performance of the trained model is evaluated on the held-out test 

set. The same pipeline is followed for all the five non-overlapping 

folds of train-test splits. Due to the skewness in the data, area under 

the curve (AUC) is used as the evaluation metric [16]. AUC 

indicates the probability that the classifier ranks a randomly chosen 

                                                                 

3 The scripts for feature engineering and modelling is open at 

https://github.com/Shamya/Quit-Prediction-Physics-

Playground.git 

quit sample higher (more likely to indicate quitting) than a 

randomly chosen not-quit sample. The corresponding F1 value, 

giving the harmonic mean between precision and recall at the 

default threshold between quit/not quit (0.5), is also noted. Finally, 

precision-recall curves are used to better understand the 

performance of the model and to choose an appropriate probability 

threshold for intervention. Feature importance and partial 

dependence plots (section 3.3.3) are used to interpret the final 

model. 

3. RESULTS 

3.1 Level-specific Models Versus Level-

agnostic Model 

3.1.1 Cross-validation Results 
The first analysis is aimed at choosing between level-specific and 

level-agnostic modelling approaches for quit prediction (section 

2.3.1). For our first comparison of the model performances, only 

the aggregations of 49 features corresponding to 

student+level+visit and student+level attributes were used for 

training, since the level specific models cannot benefit from level-

related features. We add those additional features to the level-

agnostic model in a following section. Following the modeling 

architecture described in section 2.3.3, the five-fold student-level 

cross-validation results of level-specific models for the 34 unique 

levels in this dataset are given in Table 1. The average AUC of the 

level-specific models is 0.68 (𝑆𝐷 = 0.11), and the average F1 

value is 0.39 (𝑆𝐷 =  0.16). The level-agnostic model has a cross-

validated AUC of 0.75 and F1 of 0.41. The AUC of the level-

agnostic model is higher than the median and mean and close to the 

third quartile value of the level-specific AUCs (Figure 2). The F1 

value of the level-agnostic model is higher than the median and 

mean of level-specific F1 values. The level-specific F1 values also 

have high variance.  

 

Table 1. Cross-validation results of level-specific models for 

the 34 levels sorted by their order in the game.  

Level #Users %quit AUC F1 

downhill 124 8.13 0.93 0.82 

lead the ball 123 4.32 0.94 0.33 

on the upswing 124 11.82 0.83 0.30 

scale 124 8.70 0.92 0.32 

spider web 126 15.38 0.62 0.20 

sunny day 126 23.25 0.55 0.22 

through the cracks 125 13.10 0.77 0.46 

wavy 127 20.78 0.54 0.18 

around the tree 115 29.45 0.63 0.29 

chocolate factory 121 26.11 0.65 0.29 

cloudy day 121 33.78 0.65 0.39 

Proceedings of the 11th International Conference on Educational Data Mining 170

https://github.com/Shamya/Quit-Prediction-Physics-Playground.git
https://github.com/Shamya/Quit-Prediction-Physics-Playground.git


 

                          

 

diving board 120 32.50 0.61 0.36 

jelly beans 122 21.04 0.59 0.29 

little mermaid 115 39.46 0.56 0.33 

move the rocks 114 16.70 0.60 0.21 

need fulcrum 126 42.41 0.55 0.40 

shark 111 44.14 0.61 0.46 

tricky 107 17.75 0.78 0.32 

trunk slide 116 32.56 0.67 0.35 

wedge 107 7.86 0.83 0.32 

yippie! 123 12.66 0.69 0.28 

annoying lever 107 22.41 0.68 0.37 

big watermill 101 43.70 0.62 0.46 

caterpillar 95 40.24 0.67 0.53 

crazy seesaw 92 35.74 0.68 0.38 

dolphin show 81 46.78 0.59 0.52 

flower power 74 35.45 0.65 0.42 

heavy blocks 72 18.75 0.61 0.23 

Jar of Coins 73 36.14 0.74 0.60 

roller coaster 67 45.60 0.64 0.52 

stiff curtains 58 26.47 0.45 0.08 

tetris 67 39.89 0.74 0.56 

work it up 57 73.76 0.68 0.77 

avalanche 54 28.85 0.75 0.60 

 

 

 

Figure 2. Box plot representing the range of AUC and F1 

values of the 34 level-specific models. The box extends from 

the 25th to 75th percentiles, with a notch at the median. The 

dashed horizontal lines correspond to the values of the level-

agnostic model. 

 

3.1.2 Understanding the Model Differences 
The qualitative differences between the two approaches can be 

explored by contrasting the features selected by each (Table 2). 

Feature selection for this analysis is done on the full data. The level-

agnostic model seems to mainly select general features like past 

quits, pauses, badges, visits, level restarts, and ball resets which are 

common across levels. While level-specific models include these 

features, they also incorporate additional features related to finer-

grained aspects of gameplay like the placement of pins and the 

drawing of specific machines (in the current 60-second time bin, in 

the current visit, and across visits). For instance, one of the levels 

named diving board is solved using a springboard. Among the ten 

features selected by this level’s specific model, six of them 

correspond to the specific gameplay actions that one can observe a 

student take (e.g., total springboards drawn, total pins drawn (pins 

are used to hold the springboard on the screen), current number of 

pendulum objects on screen, and total nudges). A similar trend is 

seen in most level-specific models. Note that the number of level-

specific models selecting any specific agent-related feature (as 

shown in Table 2) is distributed across agents, as most levels can 

be solved by only a subset of these agents. 

 

Table 2. Comparing top features selected in level-agnostic and 

level-specific models. 

Selected Feature 

In level-

agnostic 

model? 

In how many  

level-specific 

models (out 

of 34) 

Number of visits made by the 

student to this level so far 

Yes 
25 

Total pause duration in the 

level so far 

Yes 
26 

Number of past quits by the 

student in the level 

Yes 
25 

Number of badges received in 

the level by the student so far 

Yes 
22 

Number of restarts by the 

student in the level so far 

Yes 
20 

Number of ball resets in the 

visit so far 

Yes 
23 

Total ball resets in the level so 

far 

Yes 
20 

Total pins drawn in the visit so 

far  

Yes 
20 

Total pendulums drawn in the 

visit so far  

Yes 
17 

Total nudges in the visit so far  No 32 

Total nudges in the level so far No 30 

Total pins placed in the level so 

far 

No 
28 

Total free form objects drawn 

in the visit so far 

No 
         24 

Current number of free form 

objects on the screen 

No 
25 

Total ramps drawn in the level 

so far 

No 
21 

Total ramps drawn in the visit 

so far 

No 
18 

Total free form objects drawn 

in the level so far 

No 
17 
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Total pendulums drawn in the 

visit so far 

No 
15 

Current number of pendulum 

objects on the screen 

No 
10 

 

3.2 Enhancing the Level-agnostic Model 

3.2.1 Feature Additions 
Counter to the expectation that the individualized models may 

perform better, the AUC value of the level-agnostic model was 7 

percentage points higher than the average AUC of the level-specific 

models. This could be attributed to the ability of the level-agnostic 

model to leverage the larger amount of data to identify 

generalizable features for quit prediction.  

However, it may be possible to achieve even better predictive 

performance in a level-agnostic model by exploiting the level-

related features (section 2.2.2 d). To examine this, we re-fit the 

level-agnostic model, now also incorporating the level-related 

features. Recall that there are two kinds of level related features – 

pre-defined features that can be defined for any new levels 

(indicating what agents and concepts are involved in solving the 

level) and features that use past student data to determine average 

behaviors for other students on the level, such as the number of 

objects used.  We tested each type of additional features separately 

(Table 3, model #2 and #3). Adding just the predefined features had 

very little effect on the output (model #2). By contrast, 

incorporating the ten level-related features that use past students’ 

data appears to improve the AUC value, though only by a modest 

0.04 (model #3).  

 

Table 3. The performance of the original level-agnostic model 

and various extensions to the model with level-related and 

student-related features. 

# Feature Set(s) #Features AUC F1 

1 Level-agnostic Model 44 0.75 0.41 

2 Model 1 + Predefined 

Level-related Features 

51 0.75 
0.42 

3 Model 2 + Level-related 

Features from Past Data  

61 0.79 
0.45 

4 Model 1 + Student-related 

Features (level-agnostic 

features only) 

84 0.79 

0.49 

5 Model 3 + Student-related 

Features (all features) 

101 0.81 
0.51 

 

Finally, we investigated whether we can enhance the model by 

adding features pertaining to the student’s whole history of past 

play (student-related features; section 2.2.2 c). We see that there is 

a modest improvement to the AUC values (Table 3, model #4 and 

#5). Note that model #4 (like model#1) doesn’t contain level-

related features and hence is level-agnostic. With an AUC of 0.79, 

model #4 could be used for new levels of the game where we do 

not have past student data to compute level-related features. For the 

current levels of the game, the best performing model (model #5) 

has an AUC of 0.81. Across the five folds, the AUC values of the 

held-out test sets have a low standard deviation of 0.01.  

3.2.2 Understanding Model Performance 
The AUC values above show that the best model (#5) is good at 

distinguishing students who will eventually quit from other 

students, but the F1 values are surprisingly low, considering the 

AUC. We can further understand the full model’s (model #5) 

performance for different thresholds by examining a precision-

recall (PR) curve (Figure 3) generated for all test set predictions.  

We see that precision is close to perfect for any threshold where 

recall is at or below 0.2. Additionally, recall is perfect when 

precision drops to 0.3. In between these extremes, the relationship 

between precision and recall is nearly linear, offering a clear trade-

off between which of these two metrics is optimized for. Based on 

the characteristics of an intervention, a custom threshold on the 

probability can prioritize recall over precision or vice versa.     

 

Figure 3. Precision-Recall curve of the final model (model #5).  

 

3.3 Final Model Interpretation 

3.3.1 Selected Features  
Out of 101 features, a total of 34 features were selected by the final 

model (model #5). The 21 features are student-related features (out 

of a possible 40 student-related features), 2 are level-related 

features (out of a possible 17), 6 are student+level related features 

(out of a possible 17), and 5 are student+level+visit related features 

(out of a possible 27). Table 4 lists the top 15 features. Similar to 

the original level-agnostic model (model #1), the selected features 

focus on high-level game activities like visits, badges, past quits, 

time spent, level restarts, and experience with agents across visits 

and other levels. There is no student+level+visit related feature in 

the top 15 selected features. The final model (model #5) has 10 

student-related features out of the top 15 features; note that these 

student-related features were not available to the original level-

agnostic model. These features continually track the student’s 

progress across all the levels.  

 

Figure 4. The feature importance of the top 15 features 

selected by the final model (model #5). The mapping between 

feature IDs and feature names is given in Table 4. 
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Table 4. Top 15 features selected by the final model4 (model 

#5). Feature type – SLV=Student+Level+Visit, 

SL=Student+Level, L=Level, S=Student 

Feature 

ID 
Selected Feature 

Feature 

Type 

1 
Number of visits made by the student to 

this level so far 

SL 

2 
Standard deviation of the total time 

spent by the student across levels so far 

S 

3 
Mean number of badges received by all 

students in this level 

L 

4 
Number of past quits by the student in 

the level 

SL 

5 
Number of badges received in the level 

by the student so far  

SL 

6 

Standard deviation of the total 

pendulums drawn by the student across 

levels so far 

S 

7 

Standard deviation of total freeform 

objects drawn by the student across all 

levels so far 

S 

8 
Mean badges received by the student 

across levels so far 

S 

9 
Total pause duration in the level so far 

across all visits 

SL 

10 
Mean time spent by the student in a 

level 

S 

11 
Standard deviation of the number of ball 

resets by the student across levels so far 

S 

12 

Standard deviation of the number of 

visits made by the student across levels 

so far 

S 

13 
Mean pause duration of the student 

across levels so far 

S 

14 
Standard deviation of badges received 

by the student across levels so far 

S 

15 
Mean number of pendulums drawn by 

the student across levels so far 

S 

  

3.3.2 Partial Dependence Plots 
Partial dependence plots (PDP) [13], originally proposed to 

interpret gradient boosting algorithms, have since been used with 

many predictive models to understand the dependence of model 

predictions on the covariates. Intuitively, partial dependence refers 

to the expected quit probability (logit(p)) as a function of one or 

more features. For example, the top right plot (5B) in Figure 5 gives 

the partial dependence between the mean number of badges 

received by students in a level (level-related feature) and the logit 

of quit probability after controlling for all the other features. 

Negative partial dependence values (y-axis) imply that for the 

corresponding value of the feature, it is less likely to predict quit=1. 

Similarly, a positive partial dependence for a feature value implies 

that it is more likely to predict quit=1 for that feature value. In our 

example, levels with mean numbers of badges earned below 0.6 are 

more likely to be quit by students. In general, as one might expect, 

there is a negative relationship between quitting and the mean 

number of badges received by students in a level. The higher the 

value of partial dependence, the stronger the relationship between 

the feature value and the outcome of quitting. More generally, the 

                                                                 

4 All selected features listed at - https://github.com/Shamya/Quit-

Prediction-Physics-Playground.git 

larger the range of the dependence value, the larger the overall 

influence of that feature on the model prediction. 

 

5A 

 

5B 

 

5C 

 

5D 

 

5E 
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5F 

 

5G 

 

5H 

 

5I 

 

5J 

 

Figure 5. Partial dependence of quit probability on some of 

the selected features. Note that the range of y axis is different 

for each plot; larger ranges indicate that the feature is more 

predictive overall.  

 

Below is the summary of our interpretation of some of the features 

(Figure 5) selected by the final model. Most of these align with a 

general intuition of the game attributes and student behavior. Note 

that this analysis is intended only for a high-level model 

interpretation. The model decision-making is more complex and 

involves interactions between different sets of features. 

1. A student who revisits a level is less likely to quit the 

level. This could indicate student interest in solving the 

level. (Figure 5A; student+level-related feature) 

2. A level in which students have received fewer badges 

(mean < 0.6; note that a student may earn multiple badges 

in a level) is more likely to see quitting behavior in future 

students. This could indicate the inherent level difficulty. 

(Figure 5B; level-related feature) 

3. A student who has previously solved the level is less 

likely to quit in their revisits to the level. This could 

indicate that the student generally understands the level 

and is trying to solve it with different agents. (Figure 5C; 

student+level-related feature) 

4. A student who has quit a level in the past is more likely 

to quit the level again. This could indicate that the student 

is struggling with a concept or how to apply it in a way 

that is preventing him/her from succeeding in the level. 

(Figure 5D; student+level-related feature) 

5. A student who has restarted a level fewer times is less 

likely to quit the level. Higher numbers of level restarts 

could indicate struggle. (Figure 5E; student+level-related 

feature) 

6. A student who has received a higher number of badges 

(mean badges > 0.9) in the past levels is less likely to quit 

a future level. This could indicate a student who generally 

understands the physics concepts better. (Figure 5F; 

student-related feature) 

7. A student who either spends under 2 minutes or over 5 

minutes on average across levels is more likely to quit 

future levels. This feature is discussed in section 4.2. 

(Figure 5G; student-related feature) 

8. A student who has quit more levels in the past is more 

likely to quit a future level. This could indicate low 

competence and/or disengagement. (Figure 5H; student-

related feature) 

9. A student who has solved more number of levels that 

involve the concept “energy can transfer” (EcT) is less 

likely to quit a level in the future. EcT is a relatively 

complex physics concept. In our past research [18] we 

have seen evidence that levels that include EcT are 

associated with higher student frustration. (Figure 5I; 

student-related feature) 

10. A level in which students spend less time in average is 

more likely to be solved correctly by a future student. 

This could indicate lower level difficulty. (Figure 5J; 

level-related feature) 

 

4. DISCUSSION 
In this paper, we describe an automated detector we developed to 

predict if a student will quit a specific level they have started, within 

the game Physics Playground. Multiple sets of features were 
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engineered to capture student-related, level-related and gameplay-

related information over time. We compared the performance of 

models trained on data from single levels to the performance of a 

single level-agnostic model trained on the data from 34 levels. 

Contrary to our initial expectations, the level-agnostic model (#1 

above) performed better than almost three-fourths of the level-

specific models. After adding level-related features (which cannot 

be used in level-specific models), the resultant model (#3 above) 

performed better than 29 (out of 34) level-specific models. Among 

the five level-specific models that outperform model #3, four of 

them are the first four levels encountered by the students in the 

game and are designed to be easy. All five of the outperforming 

levels have around 10% of student visits ending in quitting whereas 

the overall incidence of quitting behavior is 28.77%. Comparing 

the features selected by the two kinds of models reveal the emphasis 

of the level-agnostic model on generalizable student behavior, 

while the level-specific models focus on low-level gameplay 

related features. The performance of the level-agnostic model is 

further enhanced by adding student-related features (model #4, #5 

above). The final combined model (#5) selects 34 out of 101 

features, which are interpreted using the feature importance scores 

and partial dependence plots. Due to the superior performance of 

the level-agnostic model and its ability to transfer to new levels and 

the levels with limited data, we recommend its usage over the level-

specific models. Visualizing the final model with feature 

importance and partial dependence graphs, we find insights on 

which student behavior is more indicative of quitting. More 

analysis is needed to validate these claims.  

Given the model’s level of AUC, it appears to be of sufficient 

quality to use in intervention, identifying a student who is 

struggling and could benefit from learning supports before they quit 

the level. Our final model has a clear trade-off between precision 

and recall, shown in the precision-recall curve in Figure 3. 

Depending on the properties of a specific intervention, an 

appropriate threshold could be set on the classifier probability to 

decide whether a student is sufficiently likely to quit to justify an 

intervention.  

4.1 Limitations 
There are some potential limitations to the approach presented here. 

First of all, there are limitations arising from our choice to label all 

data in a student’s visit to a level as to whether the student 

eventually quit. By labeling all data in the visit as quit, we may 

predict quitting before the behaviors have emerged that lead to 

quitting, and may intervene too early. This also leads to the risk of 

interfering with student persistence [25][11]. This risk could be 

mitigated by using interventions that allow the student to continue 

their efforts if they feel that they are not yet ready for an 

intervention.  

Another limitation is in the generalizability of the model we have 

developed. Physics Playground is played by students of various age 

range and representing a diverse range of backgrounds, but the 

students in this dataset are of similar ages and live in the same 

region.  Hence, it is important to test the generalizability of the 

model on data from a broader and more diverse range of students. 

As a next step, we are collecting data from a middle school in New 

York City where over 80% of students are economically 

disadvantaged, 97% belong to historically disadvantaged groups 

and all students enter the school with test scores far below 

proficiency. We also intend to collect data from a broader range of 

levels and test model applicability within this broader range of 

contexts.   

4.2 Future Work 
The goal of quit prediction is to identify student struggle in real-

time to intervene meaningfully. Towards this end goal, the Physics 

Playground team is building an array of cognitive and affective 

supports that can be delivered when a student is predicted to be at 

risk of quitting to improve students’ experience and learning. 

Ideally, these interventions should be based on an understanding of 

why a student is likely to quit, which our current model does not 

yet reveal.  For example, a student may quit a level after putting in 

considerable effort, or rather quickly after minimal effort. A student 

may quit a level to replay other levels to achieve a gold badge, or 

may seek to follow a soft underbelly strategy [1], searching for a 

level easy enough to complete. As reported in section 3.3.3 (Figure 

5F), there are two distinct quitting behaviors associated with time 

spent in a level. A student spending very little time in a level is 

more likely to quit the level. This may occur when the student is 

engaging in soft underbelly strategies, or when the student is 

putting in limited effort. Other students quit a level after 

considerable time and effort, indicating that they are struggling, 

possibly in some cases even wheel-spinning [e.g. 4]. Future work 

to differentiate why a student is likely to quit may help an 

intervention model to differentiate why a specific student needs 

support and personalize the support delivered to that student.  

A learner playing a game experiences a range of emotions while 

engaging with the game. These can influence learning outcomes by 

influencing cognitive processes [12]. Knowing students’ affective 

experience could provide deeper insights into the causes of quitting 

behavior. In past research [17], video-based and interaction-based 

affect detectors were built for Physics Playground to identify the 

incidence of affective states like flow, confusion, frustration, 

boredom, and delight. Combining quit prediction with affect 

detection could help us make a fuller assessment of the student 

experience in the learning game to provide more optimal support.  

In conclusion, the key finding of this paper is that for a well-

engineered set of features, a level-agnostic model of quit prediction 

in this learning game performs better than most level-specific 

models. 
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ABSTRACT
The diversity in reasons that students have for enrolling in
massive open online courses (MOOCs) is an often-overlooked
aspect while modeling learners’ behaviors in MOOCs. Using
survey data from 11,202 students in five MOOCs spanning
different academic disciplines, this study evaluates the rea-
sons that students enrolled in MOOCs, using an unsuper-
vised learning method, Latent Dirichlet Allocation (LDA).
After fitting an LDA model, we used correspondence anal-
ysis to understand whether these reasons were general, and
could be invoked across the five MOOCs, or whether the
reasons were course-specific. Furthermore, log-linear mod-
els were employed to understand the relations between the
reasons students enrolled, the course they took, and their
background characteristics. We found that students enrolled
for many different reasons, and that their age was statisti-
cally related to the reasons they gave for taking a MOOC,
but their gender was not. The paper concludes with a dis-
cussion of how instructors and course designers can use this
information when creating new—or redesigning existing—
MOOCs.

Keywords
MOOCs, informal education, text mining

1. INTRODUCTION
Massive open online courses (MOOCs) have been celebrated
because they offer education to wide groups of students who
may not otherwise have access to their rich content; they
provide access to well-respected experts; they have a rela-
tively low cost; and they are convenient. On the other hand,
MOOCs have been criticized because they have high attri-
tion and low completion rates. We acknowledge that there
are high attrition and low completion rates, but if students

sign up with the intent of only learning some aspects of what
is offered in the MOOC, and not necessarily with the intent
to learn everything that the MOOC has to offer, this ought
not to be considered a failure. Acknowledging that MOOC
learners have different reasons for enrolling in MOOCs—for
example, to improve their skills, gain access to new knowl-
edge, or dabble in an area they find intriguing—we examine
whether the reasons students offer are MOOC-specific or
content-generic for five MOOCs. We do this with the in-
tent to distinguish whether the reasons that learners have
for enrolling in MOOCs is linked to their background (age
or gender) or to the specific course they have enrolled in. By
finding ways to classify these reasons reliably, we will be in
position to understand the relation between why students
enroll in these courses and how successfully they navigate
the course.

Although it may be advantageous for students to partici-
pate in all aspects of a MOOC and to complete the course,
MOOCs are beginning to accommodate different paths and
different outcomes. For example, Coursera1 (one of the
most popular MOOC providers) offers verified course com-
pletion certificates for students who wish to obtain proof of
their accomplishments, but also allows students to enroll for
no credit and sample whatever course materials they wish.
However, most MOOCs do little to support the multiplicity
of learning objectives that students may have for taking a
particular MOOC. Understanding students’ reasons for en-
rolling in a MOOC could put instructors in the position
to make accommodations, potentially improving students’
learning experiences.

A growing body of literature has investigated why students
enroll in MOOCs (e.g., [7, 3, 5, 16, 23, 27]). These stud-
ies have used survey methods with closed-form responses or
have used interviews. With surveys using closed-form re-
sponses, students are forced to select from a list of reasons;
and with interviews, typically, only a limited number of stu-
dents may be reached. In the current study, we investigated
more than 11,000 students enrolled in five MOOCs, across
several disciplines, using Latent Dirichlet Allocation (LDA)
[2] to analyze their responses to an open-ended survey. We
then used the probabilities from the LDA model to assign

1https://www.coursera.org
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each student to one of the topics (i.e., reasons for enrolling)
generated by the LDA model. After we found the most prob-
able reason a student enrolled, we cross-classified students
by their most probable topic (i.e., reason) and the course for
which they enrolled. We then visualized these relationships
using correspondence analysis.

In this paper, we contribute to understanding student be-
havior in MOOCs by examining the reasons that students
offered for enrolling in MOOCs, and the extent to which
these reasons are unique to the specific MOOCs or whether
they apply more generally, across MOOCs. Additionally,
we advance understanding by using LDA and the results
of log-linear models to hone in on specific relationships be-
tween student background characteristics and their reasons
for enrolling. Using these results, we conjecture about how
instructors and course designers could use this information
to improve their courses and their students’ learning experi-
ences, thus contributing to the discussion about improving
instruction for diverse learners.

2. RELATED WORK
Several studies have sought to make sense of what kinds
of students enroll in MOOCs, and why. Specifically, these
studies have examined students’ background characteristics
and why they take MOOCs. We discuss some of these works
in the following subsections.

2.1 Goals for Enrollment in MOOCs
Current findings on why students enroll in MOOCs have re-
vealed that students enroll in these courses for many differ-
ent reasons. Hew and Cheung [11] identified common trends
for why students enrolled in MOOCs, including: (1) a gen-
eral interest in learning; (2) a desire to receive formal recog-
nition of their knowledge; (3) an intent to explore course
content without a strong desire to receive such recognition;
and, (4) an interest or general curiosity in taking a MOOC.
Next, we explore some of these themes in more depth.

Zheng et al. [27] interviewed students who took MOOCs and
asked about their reasons for enrolling in MOOCs. Some
students in their study were fulfilling their current needs,
such as supplementing a for-credit course, or to help with
their current position, either as students or in a workplace
setting. Other students offered that they took the course to
develop a social connection with others who shared similar
interests. Additionally, they found some who enrolled did
so to prepare for future job opportunities or to gain expe-
rience in a field they might study in a more formal manner
after taking the MOOC. Finally, some of the students in this
investigation enrolled in the MOOCs because they were in-
terested in satisfying (broadly) their curiosity. Along these
lines, it has been posited that MOOCs function as previews
of what might be offered to students in a for-credit university
course [15].

Kizilcec and Schneider [16] developed the Online Learning
Enrollment Intentions (OLEI) questionnaire, which asked
students to select whether or not each of 13 different reasons
for enrolling in a MOOC applied to them. These reasons in-
cluded career-related interests, formal education, social op-
portunities, potential career benefits, personal enrichment,
and prestige. Liu, Kang, and McKelroy [18] found most of

the students in a set of MOOCs took those MOOCs for per-
sonal interest, or to improve their current knowledge of the
job and prepare for future job prospects. To this end, the
subject matter of the course was also indicative of the reason
a student might take a MOOC. For example, Kizilcec and
Schneider [16] found that students in a humanities course
might have taken the course out of curiosity, versus students
in a social science or health-care-related course, who might
have taken the course for career benefits [5].

Others have investigated whether students’ reasons for en-
rolling in a MOOC impacted their behavior during the course
and whether or not students completed the course. For
example, de Barba et al. [7] found that students’ motiva-
tion and their interests were related to how they engaged
with the course’s quizzes and videos. They also investigated
how motivation—either intrinsic motivation or situational
interest—was related to a student’s final grade in an intro-
ductory economics MOOC. Others, however, observed no
relation between student motivation and the grades earned
in MOOCs [3]. On the other hand, Pursel and co-authors
[23] found that students who had the intention to be an ac-
tive participant in a MOOC had higher odds of completing
the MOOC. In other words, those who stated they were mo-
tivated to finish the MOOC were actually more likely to do
so.

We also note that a few studies have investigated students’
reasons for enrolling in MOOCs by analyzing open-ended
survey questions. For example, Robinson and colleagues
[25] analyzed n-grams from the responses to a survey ques-
tion that asked students how the course material was useful
and how they planned to use the knowledge gained from
the course. Using regularized regression, they found stu-
dents whose answers included words that indicated a plan
to readily apply the knowledge gained from the course, and
expected to use the skills learned from the course in a voca-
tional setting, were more likely to earn a certificate than stu-
dents whose responses indicated an interest in obtaining for-
mal recognition. In another investigation of open-ended sur-
vey responses, Crues et al. [6] found that students’ reasons
for enrolling in a MOOC clustered into four interpretable
reasons, and some of the reasons were related to actively
engaging in portions of the course; however, these reasons
were not statistically related to remaining engaged in the
course overall. In general, much more can be learned from
students’ motivations and goals for enrolling in MOOCs, and
this new knowledge can be utilized to further an understand-
ing of students who take these courses.

2.2 Role of Gender and Age in MOOCs
MOOCs can provide informal experiences for students, with
few barriers and no requirements for enrollment, but this
also leaves MOOCs without traditional educational data
about student background characteristics. However, there
have been several studies that have explored the relations
among student characteristics, enrollment patterns, and be-
havior in MOOCs. In this paper, we focus on the rela-
tion between two background characteristics—gender and
age—in understanding reasons for enrolling and behavior in
MOOCs. We have chosen to examine gender because of
MOOCs’ great promise to offer educational experiences to
all, which has particular importance for women, who often-
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times have fewer educational opportunities than men. In
addition, men and women might have different patterns of
enrollment in different courses, and having this information
could be vital for modifying and improving a course. We
have also chosen to investigate age because older learners
and younger learners might engage with MOOCs for very
different reasons, and we want to document evidence on this
issue.

With respect to gender, differences have been observed in
whether males or females take a certain MOOC. Specifi-
cally, courses focused on science technology, engineering, and
mathematics (STEM) tend to be dominated by male stu-
dents [24, 10, 3]. For example, Breslow and co-authors [3]
investigated “Circuits and Electronics” and found that 88%
of the students who submitted an end-of-the-course survey
were male. Women, more than men, are more numerous in
other fields [20, 24]. And although men are more numerous
in some STEM fields, medicine seems to be an exception:
a course in medicine analyzed by Kizilced and Schneider
[16] was overwhelmingly female—91% of students were fe-
male. We suspect that knowing the gender composition of
the course is useful information to the instructor, especially
if an instructor’s goal is to attract more women or more men
to the course.

The age of students in MOOCs has often revealed that stu-
dents are young [5], with little variation between courses in
different academic disciplines [16, 20]. Others, however, have
found there to be a wide range of ages in classes (e.g., [3]),
and that age varies based on geography [10]. The disparate
findings on the age of MOOC students suggests that the re-
lation between student age and participation in a MOOC is
still murky and further research could be done to clarify this
relationship.

Students’ ages and genders have often been found to share
(at best) a weak relationship with their reasons for enrolling
in a MOOC. With respect to gender, Crues and colleagues
[6] observed that students’ reasons for enrolling in a com-
puter science MOOC and gender did not share a significant
statistical relationship.

Some have reported that females selected more reasons for
enrolling in a MOOC on the Online Learning Enrollment
Intentions (OLEI) scale than males [16]. In that study, rea-
sons for enrolling in a MOOC were found not to be related to
the age of a student. However, students who were using the
MOOC to supplement their formal schooling were generally
younger than students who did not indicate this reason for
enrolling in the MOOC [16].

Although student gender and age have been found not to
share a relationship with student reasons for enrolling in
MOOCs, these background characteristics have been iden-
tified as sharing a relationship with student behaviors in
MOOCs. For example, female students tend to spend more
time viewing videos and completing assignments than males
[24]. Although Swinnerton, Hotchkiss, and Morris [26] found
that gender was not statistically related to the number of
comments a student posted in a MOOC forum, others [24]
found that females in non-science courses posted more in-
quiries in forums than males, but the opposite has been

found to be true for science courses. Furthermore, it has
been found that the reasons students gave for enrolling in
a MOOC were related to their forum participation—men
who enrolled to complement their career goals and women
who did so to explore the content (e.g., they were curious
about the course’s subject matter) were more active in the
forums than students who gave other reasons for taking the
MOOC [6]. Findings have been inconclusive on whether gen-
der shares a relationship with completing a MOOC: some
investigations have found that gender shares a relationship
with remaining persistent in a MOOC (e.g., [6]) or earning a
certificate, depending on the course (e.g., [24]), while others
have not observed this effect (e.g., [3, 20]).

Students’ age has also been used to shed light on students’
behavior in MOOCs. It was found that older students were
more engaged with a MOOC than younger students; older
students were found to have accessed digital course mate-
rials more frequently than younger students [10]; and older
students were more active in the course forums than younger
students [26, 10]. More generally, older students have been
found to access more of the course materials than younger
students [20, 10]. Similar to gender, there has been inconclu-
sive evidence about whether age shares a relationship with
success and completing a MOOC. For example, some have
found that age was statistically related to grades (e.g., [10])
but others have not observed this effect (e.g., [3]. Still oth-
ers have found that gender and completing a MOOC are not
related [20].

In general, the literature has pointed to age and gender
to be of interest in predicting enrollment and success in
MOOCs, but the findings are not clear. Furthermore, we
need to know more about why certain students enroll in
some courses, and which of these reasons apply to MOOCs,
in general, and which of these reasons only apply to partic-
ular MOOCS. Gaining insight on these issues is crucial for
instructors and course designers to consider for attempting
to improve courses. Thus, we conducted our investigation
to provide more clarity on these issues.

3. METHOD
We used survey data to understand why students enrolled in
one of five MOOCs offered on Coursera: Creative, Serious,
and Playful Science of Android Apps (Android), Introduc-
tory Organic Chemistry (Ochem), Subsistence Marketplaces
(Subsistence), Introduction to Sustainability (Sustainabil-
ity), and E-Learning Ecologies (Elearning). Students who
enrolled in these courses were asked to submit a survey
that asked about their background and expectations for the
course, along with their age range and gender. The survey
posed the questions, “Why are you taking this course? What
do you hope to get out of it?” Students were able to enter an
answer to both questions in one open-ended response. We
call this the reason the student enrolled in the MOOC. We
analyzed the responses to this survey to understand (1) why
students enrolled in these MOOCs, (2) whether these rea-
sons were related to specific courses or to the five MOOCs,
in general, and (3) how reasons and courses were related to
the students’ background characteristics (gender and age).

Of the N = 341523 students enrolled in these MOOCs,
n = 37178 responded to portions of the aforementioned sur-
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vey; however, only n = 12407 students provided a reason
that they enrolled in the course. As a result, these are
the only students we will consider for analysis. In addi-
tion, because we used LDA to analyze the reasons that stu-
dents enrolled, we removed non-English responses (using the
textcat package in R [8]). This resulted in the total num-
ber of responses to be analyzed as n = 11202. The students
who provided responses in English were spread throughout
the five courses as shown in Table 1. The gender and age
distribution for these courses is also displayed in Table 1.2

After we removed non-English responses, we prepared the
text for analysis using the tm package in R [19]. Before we
did any text pre-processing, there were 11058 unique words
in the set of English responses. We removed stop words,
punctuation, and numbers, while also transforming all char-
acters to lower case and stemmed the terms using the Porter
stemming algorithm [22]. Additionally, the term frequency-
inverse document frequency (tf-idf) scores were computed
for the collection of reasons. We removed terms that had
tf-idf scores at or below the tenth percentile, because these
terms might include more noise in the text data. After com-
pleting these pre-processing steps, we had 9952 unique terms
in the set used to model these responses.

To model these responses, we used Latent Dirichlet Alloca-
tion (LDA) [2], which is a type of unsupervised topic model.
Topic models are probabilistic models, which assume that a
collection of documents follow an underlying latent distribu-
tion [2, 12]. LDA is a well-suited method for this problem
because the reasons students gave do not have a label at-
tached to them, and our goal was to explore the relations
between reasons and MOOCs. Specifically, the LDA model
is defined as

p(θ, t,w|α, β) = p(θ|α)

I∏
i=1

p(ti|θ) · p(wi|ti, β), (1)

where θ is the topic mixture, t is the number of topics I an
LDA model assumes, w is the collection of words used to
fit the model, α is a vector of length t, and β is a matrix
of word probabilities [2]. To estimate these models, various
estimation strategies have been proposed. One approach is
variational expectation maximization (VEM) [2]; however,
the starting values of the algorithm are non-trivial which
could result in finding local, versus global, maximums [9,
2, 13]. To combat this problem, Gibbs sampling has been
proposed to estimate the unknown parameters for LDA, and
identifies these parameters faster than other algorithms [9].
Before estimating an LDA model, however, one must specify
the number of topics, t.

To determine the number of topics in the collection of rea-
sons, we used the strategy proposed by Griffiths and Steyvers
[9], which was implemented using the ldatuning package in
R [21]. After estimating LDA models where the number of
topics was I = {10, 11, 12, ..., 35}, we found 26 topics was
close to the maximum of the metric proposed in [9]; thus
we fit an LDA model with 26 topics. We show the metric’s

2Students were able to identify as male, female, or neither
of these. After filtering out students who did not provide a
reason for enrolling or an answer in English, all remaining
students identified as either male or female.
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Figure 1: Plot of model fit metric in [9] versus the number
of topics. When the number of topics is 26, the metric is
near the maximum.

behavior versus a subset of the number of fitted topics in
Figure 1.

Once we determined t = 26, the LDA model was fit using
the topicmodels package in R [14], where we used Gibbs
sampling with 500 random starts and 5000 iterations, and
the first 1000 iterations were discarded for burn-in. The final
model selected was the one that had the highest posterior
likelihood, and then we assigned each student to one of the
26 topics. This was done by computing the posterior prob-
ability from the LDA model, and each student’s reason was
assigned to whichever topic had the highest probability.

After we assigned each student to one of the topics, we cross-
classified students by the topic to which they were assigned
from the LDA model and the course in which they were en-
rolled. To test whether there was a statistical relationship
between the topics and the particular course they were en-
rolled in, we used the χ2 test of independence. We do not
offer direct interpretations of the topics because it is diffi-
cult for humans to identify topics from a given set of terms
from a topic model [4]. However, the potential relationship
between courses and reasons lends itself to correspondence
analysis, so we further analyzed this two-way table by cor-
respondence analysis using FactoMinR [17].

Correspondence analysis was used to represent the associ-
ation between reasons and courses using the data in Ta-
ble 2. Plots of the estimated scores for the topics (rows)
and courses (columns) represent the dependency in the ta-
ble. The method can determine which reasons differentiate
or are unique to particular courses and which reasons do not
distinguish between the courses (i.e., the reason is common
to all courses).

To investigate whether the relationships between topic and
course was mediated by background characteristics, specifi-
cally gender and age, we fit log-linear models (using maxi-
mum likelihood estimation) to three-way contingency tables
of topic by course by background characteristic. Our mod-
eling strategy started with a complex model, and then we
sought to find the most parsimonious model that yielded a
good representation of the data. Specifically, we started by
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Table 1: Distribution of students enrolled in the five MOOCs by gender and age.

Course Students Gender Age Group

Total Complete Survey Males Females ≤ 17 18-24 25-29 30-39 40-49 50-59 ≥ 60

Android 189334 4656 3589 1067 112 1055 980 1234 684 393 198

Ochem 38526 784 440 344 12 193 185 193 84 72 45

Subsistence 23854 729 312 417 3 103 161 196 97 91 78

Sustainability 76886 4199 1889 2310 17 520 917 1116 641 527 461

Elearning 12923 834 357 477 1 24 74 224 239 185 87

modeling the relationship using

logµijk = λ+ λb
i + λc

j + λt
k + λbc

ij + λbt
ik + λct

jk + λbct
ijk, (2)

where i corresponds to the levels of the background char-
acteristics b (i.e., male and female for gender, or the 7 age
groups), j corresponds to the courses, c, and k corresponds
to the most probable topic, t, from the LDA model. Note
then that µijk is the number of students in cell ijk in the
three-way contingency table. The analyses for gender and
age were carried out separately. Once a model was chosen,
we further studied the nature of the associations found in
the data.

When using log-linear models, a Poisson distribution is typi-
cally assumed for the distribution of counts; however, we sus-
pect that there was more heterogeneity within combinations
of topic, course, and background than is predicted by a Pois-
son distribution (i.e., the data exhibit “over-dispersion”). To
deal with this we used a negative binomial distribution in
our log-linear models. Our conjecture that data were over-
dispersed was confirmed. The dispersion parameter was
large relative to its standard error and the negative binomial
models yielded much better goodness-of-fit statistics. In all
models and further analyses, we report the log-linear model
and test statistics using a negative binomial distribution.

4. RESULTS
We first note that there were differences in student back-
ground characteristics across these five courses. From Ta-
ble 1, we can see that there were more males in Android
and Ochem, but more females in Subsistence, Sustainabil-
ity, and Elearning. In general, there were few students aged
17 or younger in these courses. Most students were in the
middle age groups. We used a likelihood ratio statistic of
independence assuming a negative binomial distribution to
test whether age and gender shared a statistical relation-
ship, without respect to courses. The marginal relation-
ship between gender and course was statistically significant
(X2 = 10.03, df = 4, p = .03), and the relationship be-
tween age and course was also statistically significant (i.e.,
X2 = 38.49, df = 24, p = .03). Thus, we have evidence to
believe that age and gender are statistically dependent with
respect to who enrolls in these courses.

Table 2 defines the general topic model, where the five most
probable words in each topic are listed with each topic and
the number of student responses for each topic are displayed
for each course. Note that the topics are ordered in an ar-
bitrary manner.

To test whether there was a significant association between

being enrolled in a specific course and assignment to a spe-
cific topic, we used a X2 test of independence. Unsurpris-
ingly, this test revealed a dependent relationship between
topic and course (i.e., X2 = 12570, df = 100, p−value
< .001).

Furthermore, to gain insight into the nature of the rela-
tionship between topic and course, we performed a corre-
spondence analysis. The first two dimensions account for
68.91% of the total inertia, which is a measure of the amount
of association in the data (i.e., how much the data deviate
from expectations under independence). The category scale
values from the first two dimensions of the correspondence
analysis are plotted in Figure 2. Greater distances between
points for the courses indicates that there are greater differ-
ences in their profiles, with respect to the topics (a profile
corresponds to the conditional distribution of topics, given
course). Likewise, greater distances between points for the
topics indicate greater differences in the profiles with respect
to the courses.

The course points for Subsistence, Sustainability, and Elearn-
ing are close together, which indicates that these three courses
have similar profiles with respect to the topics. These three
courses are the least distinguishable in terms of the topics.
The Android and Ochem points are far from each other and
far from the other three courses, which indicates that these
courses have considerably different profiles with respect to
the topics and are quite distinct.

Although the absolute distances between the course and top-
ics points are not meaningful, the relative distances between
course and topic points are meaningful. For example, the
points for topics (the reasons) 9, 19, and 20 are relatively
close to Android, which means that these topics were given
as a reason for taking Android more often than would be
expected if topics and courses were independent. As can be
seen in Figure 2, as we just noted, topics 9, 19, and 20 are
relatively close to Android (most probable words: android,
program, learn, develop, app), topic 2 is relatively close to
Ochem (most probable words: chemistri, organ), topics 1,
10, 11, 15, and 17 are relatively close to Elearning (most
probable words: understand, better, teach, onlin, world,
way, work, current, interest, subject), topics 10, 17, and 25
are relatively close to Sustainability (most probable words:
teach, onlin, interest, subject, studi, field), topics 7, 12, and
23, are relatively close to subsistence (most probable words:
sustain, environment, market, social, can, chang), topics 7,
22, 23, 26 are all relatively close to Subsistence and Sustain-
ability (most probable words: sustain, environment, sustain,
system, can, chang, sustain, sustainability), and topics 10,
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Table 2: Number of students matching each topic in the topic model, with distinctive words characterizing each topic.

Topic Most Frequent 5 Words Android Ochem Subsistence Sustainability Elearning
1 understand,better,hope,abl,gain 190 28 69 340 69
2 chemistri,organ,school,take,chemistry 76 466 6 117 20
3 take,course,the,also,reason 169 16 26 171 36
4 one,know,think,need,realli 164 24 18 234 28
5 use,make,can,like,idea 321 6 19 96 37
6 will,help,hope,give,think 182 25 24 178 30
7 sustain,environment,issu,sustainability,topic 40 2 23 406 14
8 knowledg,improv,skill,field,knowledge 255 25 43 277 49
9 android,program,app,apps,comput 1029 1 4 9 5
10 teach,onlin,educ,elearn,technolog 67 11 12 102 280
11 world,way,can,find,peopl 79 8 37 157 14
12 market,social,develop,work,countri 43 1 244 100 12
13 want,learn,know,just,curious 185 14 20 138 15
14 time,coursera,class,enjoy,great 84 52 11 170 18
15 work,current,project,area,compani 74 5 27 154 33
16 learn,new,someth,want,thing 210 8 17 111 32
17 interest,subject,area,view,point 78 6 35 219 25
18 like,interest,look,topic,see 123 5 19 112 17
19 learn,develop,want,development,basic 221 7 7 43 20
20 android,app,develop,creat,mobil 828 1 2 4 0
21 get,hope,job,good,field 85 8 7 90 14
22 sustain,system,food,product,energi 12 6 16 225 4
23 can,chang,sustain,futur,human 7 2 12 292 15
24 year,time,ive,now,tri 93 32 13 83 9
25 studi,field,degre,research,master 24 23 15 175 32
26 sustain,sustainability,concept,practic,need 17 2 3 196 6

11, 15, 17, and 25 are relatively close to sustainability and
Elearning (most probable words: teach, onlin, world, way,
work, current, interest, subject, studi, field). The topics in
the center of the figure (i.e., 3, 4, 6, 8, 13, 14, 16, 21, and
24) are those that do not differentiate the courses and are
given as reasons for all courses (probable terms include take,
course, one, know, will, help, knowledg, improv, want, learn,
time, coursera, learn, new, get, hope, year, time). Next, we
consider how the student background characteristics are re-
lated to the reasons and the courses.

4.1 Gender, Reasons, and Courses
We fit log-linear models to understand the relationship be-
tween student gender, the topic a student was assigned to
from the LDA model, and the course they took. The ho-
mogeneous association model (all 2-way interactions, but
not the 3-way interaction from Equation 2) yielded an ex-
cellent representation of the data (i.e., the likelihood ra-
tio goodness-of-fit statistic was X2 = 49.186, df = 100,
p = .99). Among the three possible conditional indepen-
dence models (i.e., only two two-way interaction in equation
2) fit to the data, only the model where topic and gender
are independent given course gave a good representation of
the data (i.e., X2 = 16.318, df = 25, p = .91).

Given that the topic and gender were conditionally indepen-
dent given course, we could collapse over gender to study the
topic by course relationship and collapse over topic to study
the relationship between gender and courses [1]. We have
already described the relationship between course and topic
based on the correspondence analysis. Figure 2 described
both males and females; in other words, there are no differ-

ence between males and females in terms of the dependency
between courses and topics.

To study gender by course dependency, we refer to the mid-
dle of Table 1. We found, using a negative binomial dis-
tribution, that gender and course were dependent. Table 3
contains Haberman residuals from the independence model.
We chose to use Haberman residuals, which are related to
standardized Pearson residuals, because Haberman residuals
are distributed N(0, 1), whereas the distribution of Pearson
residuals is N(0, < 1) [1]. The Android course was the only
course were there was a noticeable difference between males
and females. The males enrolled in the Android course more
than expected and females enrolled far less than expected.

4.2 Age, Reasons, and Courses
Similar to the analysis for gender, we fit log-linear mod-
els (again, using the negative binomial distribution) to the
topic-by-course-by-age, 3-way table. As before, the homo-
geneous association model yielded an excellent representa-
tion of the data (goodness-of-fit likelihood ratio test statistic
X2 = 470.355, df = 600, p = .99). None of the conditional
independence models yielded an acceptable goodness of fit to
the data. We were not able to collapse over any of the vari-
ables to describe the association between pairs of variables
[1], so we further examined the partial tables (i.e., the rela-
tionship between age and topic, age and course, and course
and topic) to describe the association between pairs of vari-
ables with an emphasis on the topic-by-course interaction.

To further explore the relationship between age group, the
topic from the LDA model, and the course a student took, we
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Figure 2: Topics and courses from Table 2 projected in the first two dimensions of correspondence analysis (association
between topics and reasons for enrolling).

Table 3: Haberman residuals from independence using the Negative Binomial distribution.

Course
Gender Android Elearning Ochem Subsistence Sustainability
Male -2.8035 1.13055 -0.3422 1.12843 0.90563
Female 2.80349 -1.1305 0.3422 -1.1284 -0.9056

used correspondence analysis where we completed a separate
analysis for each age group. We include six correspondence
analysis plots for the first two dimensions in Figure 3 for all
age groups except the youngest students, because there were
very few students in this category (n = 145). Table 4 gives
the proportion of total inertia accounted for by the first two
dimensions of the plots in Figure 3.

Generally, Ochem is far from the other courses and, relative
to the other courses, is far from all but one topic (topic 2,
where the most probable words are chemistri and organ).
Likewise, Android is relatively far from other courses as
shown in Figure 3. In all of the plots, we observe that topics
9 and 20 are quite close to Android, which is intuitive given
that the most probable words for these topics are android,
program, app, and develop. Furthermore, across the differ-
ent age groups, topic 19 is relatively close to Android, where
the most probable words are learn and develop. Across all of
the age groups in Figure 3, topic 11 is generally close to Sub-
sistence, where the most probable words are market, social,
and develop. We see that for most students, topic 10 is quite
close to Elearning. The most probable words for this topic
are teach, onlin, educ. In most of the plots in Figure 3, topic
17 is generally close to Sustainability, and the most probable

words for this topic are interest, subject, and area. For the
other topics, it is more difficult to establish a clear pattern
across the different age groups. In other words, many of the
topics do not consistently differentiate the courses from one
another, and thus, are reasons given for all of the courses.

To further understand the relationship between students’
age and the topic they were assigned to, given the course
they took, we considered the Haberman residuals of the
partial tables. That is, we considered the residuals for five
2-way tables, where each table corresponded to one of the
MOOCs, and the rows and columns corresponded to the
topics and age groups. Because Haberman residuals follow
the standard normal distribution, any residual with an ab-
solute value of two or greater is of note. Out of the 910
residuals, there were eight residuals with an absolute value
greater than 2 for Android, 13 for Elearning, 8 for Ochem, 12
for Subsistence, and 4 for Sustainability. The large residuals
in this case were generally for the two youngest age groups
(i.e., students 24 years old and younger) or the two oldest
age groups (i.e., students 50 and older). This suggests that,
given the course a student took, we saw students in these
four age groups were assigned to topics much more or much
less than expected. This means some younger and older stu-
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(b) Ages 25-29
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(c) Ages 30-39
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Figure 3: Correspondence analysis plots for all age groups except the youngest.

Table 4: Inertia accounted for by the first two dimensions,
as shown in Figure 3.

Age Group Inertia from first two dimensions
18-24 74.50%
25-29 75.89%
30-39 69.43%
40-49 63.55%
50-59 63.54%
≥ 60 65.60%

dents take courses for reasons that were not expected, when
we account for the course they took.

Additionally, we considered the partial tables to understand
the relationship between age group and the course a stu-
dent took, given the topic they were assigned to from the
LDA model. We examined the Haberman residuals for 26
tables—one for each topic; in this case, the rows and columns
correspond to the age group and course a student took, and
the cells contain the Haberman residuals. We found 45 out
of 910 residuals with an absolute value of two or greater.
Many of these larger residuals were for students in the two
youngest and two oldest age groups. This suggests that stu-
dents in these age groups took some of the courses much
more or much less than expected, given the topic they were
assigned to from the LDA model.

5. DISCUSSION
This investigation explored the reasons students gave for
enrolling in one of five different MOOCs, and how these

reasons related to the course students took, their gender,
and their age. The five courses considered in this paper
are from diverse academic disciplines and attract different
groups of students.

Unlike some previous studies that have explored student
goals for enrolling in MOOCs by asking them to select a
reason from predetermined answer choices, students in this
study specified their reasons for enrolling via an open-ended
response. This afforded students the opportunity to provide
more genuine responses, versus being forced to conform to
a set of choices on a survey. As a result, we found 26 rea-
sons students gave for enrolling in these MOOCs when us-
ing LDA. The number of topics for the LDA model, which
must be specified, was derived empirically from the approach
given in [9]. From this topic model, we observed that some
students decided to enroll in a course for very specific reasons
and we suspect that these specific reasons were related to the
course content. This follows from the fact that some top-
ics were very close to courses in the correspondence analysis;
further support for this comes from the most probable words
from each of these topics. On the other hand, some topics
from the LDA model applied to all courses. These topics
were those that were towards the center of the correspon-
dence analysis plots. When examining the most probable
terms for these topics, we found very general terms that did
not have an apparent relationship to one of the five courses
we considered.

We also examined whether students’ gender or age were re-
lated to the courses they took and the reason they enrolled in
the course. We first considered whether a students’ gender,
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the course they took, and the topic they were assigned to
from the LDA model were statistically related. Our analy-
ses revealed there was not a 3-way interaction between these
factors; however, our findings led us to analyze the relation-
ship closely between topics and courses, and courses and
gender. It was observed that gender did not mediate the
relationship between topics and courses, thus, our findings
about how the topics and courses are related is not differ-
ent for males versus females. This finding is consistent with
previous studies, which have found that, generally, the rea-
son a student enrolls in a MOOC and their gender are not
related (cf. [6], [16]). On the other hand, we found that
there was a relationship between the courses students took
and their gender. Some of the courses, such as those in the
sciences, had more males, and those not in the sciences had
more females. This finding parallels the enrollment patterns
observed by Morris and colleagues [20].

We conducted a similar set of analyses to uncover the rela-
tionship between students’ age, their topic assignment from
the LDA model, and the courses they took. As when analyz-
ing gender, we did not find a 3-way interaction between these
three factors. Instead, we found statistically significant rela-
tionships between all of the 2-way interactions between these
factors. To study the relationship between course and topic,
given age group, we used correspondence analysis. Here,
we found that one course, Ochem, and a reason related to
enrolling for Ochem, were far from the other courses, and
the other four courses considered in this paper shared sim-
ilar relationships with one another across age groups. To
further understand the relationship between these three fac-
tors, we analyzed how age group and course, given their
reason for taking the course, were related. When consid-
ering this relationship, we generally observed that students
in the younger and older age groups enrolled in some of the
courses more than expected. When more closely considering
the topic from the LDA model and student age group, given
the course a student took, we often found students in the
younger and older age groups gave topics more or less than
we would expect. This suggests that the students in this
study who are in the two youngest and two oldest groups
take courses and give reasons we might not expect.

Implications for course design: The finding that there is
an age and gender dependence with respect to who enrolls in
the courses may be interpreted as follows: Course designers
could increase course effectiveness by including potentially
age-relevant learning modules, such as a project or applica-
tion focus for those in the degree-earning and job-seeking
ages and information or lecture focus for those outside these
ages. Furthermore, while the dependent relationship be-
tween reason and course suggests the obvious—learners are
in different courses for different reasons—it could also be
construed to mean that specific changes, such as the optional
learning modules mentioned above, could improve course ef-
fectiveness.

In general, the approach in this paper can be used to char-
acterize students’ reasons for enrolling in MOOCs and sub-
sequently to improve MOOCs. For example, students who
feel isolated from their peers are often dissatisfied with their
online courses. One of the potential ways of improving this
situation could be to provide ways for learners who enroll to

find community to connect with others who share this goal,
thereby potentially ameliorating their isolation. In addition,
instructional designers could help learners customize their
learning experience if they knew how learners with different
reasons for enrolling engaged differently with a course. For
example, content choices can be categorized as being intro-
ductory and advanced, and multiple learning paths could be
suggested at the outset, allowing more advanced students to
jump to the appropriate content rather than have to wait
or muddle through and be bored with the content that they
have already mastered. As another example, those moti-
vated to advance their job potential may be provided with
assignments and projects that involve authentic work appli-
cations of the material, in contexts relevant to their partic-
ular situations. In general, understanding students’ reasons
for enrolling in a MOOC provides key information for im-
proving the course and improving students’ experiences with
that course.

Future directions: Understanding reasons for MOOC en-
rollment is only one part of improving course effectiveness.
Future studies in this direction should analyze how learn-
ers with different goals engage with a course in combina-
tion with their patterns of engagement while in the course,
and how long they stay in the course, all towards improving
learning experience for those participating in MOOCs.

6. CONCLUSION
We found that students take MOOCs for many different rea-
sons. Although multiple-choice survey responses are useful
to understand the reasons that a student might enroll in a
MOOC, we found it is also feasible to use students’ open-
ended responses to questions that asked about why they
were taking the course and what they hoped to learn. We
found that some of the reasons students enrolled in these
MOOCs were course specific, while others showed a general
interest in learning or taking a MOOC. By examining why
students take MOOCs, we can develop a greater understand-
ing of what students might want when they take a MOOC.
If the reasons a student takes a MOOC are more thoroughly
understood, it could help explain why MOOCs have such
high attrition rates and provide insight to ameliorate this
issue, ultimately improving retention and learning.
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ABSTRACT
Time management is crucial to success in online courses in
which students can schedule their learning on a flexible basis.
Procrastination is largely viewed as a failure of time manage-
ment and has been linked to poorer outcomes for students.
Past research has quantified the extent of students’ procras-
tination by defining single measures directly from raw logs
of student activity. In this work, we use a probabilistic mix-
ture model to allow different types of behavioral patterns
to naturally emerge from clickstream data and analyze the
resulting patterns in the context of procrastination. More-
over, we extend our analysis to include measures of student
regularity–how consistent the procrastinating behaviors are–
and construct a composite Time Management Score (TM).
Our results show that mixture modeling is able to unveil
latent types of behavior, each of which is associated with
a level of procrastination and its regularity. Overall, stu-
dents identified as non-procrastinators tend to perform sig-
nificantly better. Within non-procrastinators, higher levels
of regularity signify better performance, while this may be
the opposite for procrastinators.

Keywords
Procrastination, Regularity, Time Management, Student Mod-
eling, Clickstream Data, Online Courses, Probabilistic Mix-
ture Model, Poisson distribution

1. INTRODUCTION
As colleges and universities continue to increase the num-
ber of online course offerings, these classes are becoming a
normal part of students’ learning experiences. While on-
line courses have made learning more accessible to students,
prior work suggests that students enrolled in online courses
have worse learning outcomes when compared to students
enrolled in face-to-face courses [2]. One important reason
for this is that the online learning environment requires a
higher degree of self-regulation than the face-to-face envi-
ronment [5]. Students must effectively plan and regulate
their learning time, and monitor their own progress in or-
der to meet important deadlines [31], but students may lack
some of these important skills. Moreover, online courses
have a high degree of anonymity. Students are not phys-
ically present in a classroom, and their activity on Learn-
ing Management Systems (LMS) is not made public to the

rest of the class. This absence of face-to-face accountabil-
ity may cause students to disengage with the course much
more than they would in traditional classrooms. The lack of
structure and anonymity may lead students to procrastinate,
putting off work until close to important deadlines. There-
fore, understanding students’ learning behaviors relating to
time management, especially procrastination, could be one
important mechanism for improving online learning.

Clickstream data sets have provided rich resources for an-
alyzing students’ time management behaviors. Procrasti-
nation has been measured using the specific time points at
which students take certain actions within an online course,
such as accessing content pages, watching lectures, and sub-
mitting quizzes. A common way to measure procrastination
is to calculate the amount of time a student is engaged with
the LMS prior to an important course deadline. Studies that
use these types of measures as indicators of procrastination
find that the indicators are negatively correlated with course
outcomes [14, 16, 30]. In the context of studying planning
behaviors, researchers have also developed measures of stu-
dent regularity are in the timing and spacing of their course
activities, and found that higher measures of regularity cor-
relate with better performance [28, 3].

Motivated by these previous studies, we utilize clickstream
data to further understand procrastination using two on-
line classes offered at a large public university. These two
classes were designed so that the students are expected to
space out their studies on a daily basis, and to set weekly
deadlines. In this paper, we investigate the use of proba-
bilistic mixture modeling to analyze time-stamped logs of
student activity in the context of these two online classes.
The mixture model identifies different behavioral patterns
in the data, where the patterns can be clearly identified as
reflecting procrastinating and non-procrastinating behavior
among the students. Moreover, we notice that while procras-
tinating students may procrastinate frequently, some may
also exhibit a mix of planning and procrastinating behaviors
throughout the course. To capture these nuances, we con-
struct a composite score, which incorporates both the overall
degree of procrastination and the regularity of procrastinat-
ing behaviors. This score captures behavioral differences of
procrastinators, a notion which has been absent in prior re-
search. The methodology we develop enables finer-grained
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analysis of procrastination and its relationship with learn-
ing outcomes, which can inform more effective instructional
reforms in online learning.

The primary contributions of this work are four-fold.

• First, we develop a general data-driven method for
identifying procrastination. This method analyzes counts
of student activity and can work with any online course
with periodic deadlines and that has corresponding
time-stamped clickstream data.

• Second, we validate this method using two online uni-
versity classes, and identify two distinct behavioral
patterns which can be used to measure an individual
student’s degree of procrastination.

• Third, building off of prior measures of procrastina-
tion, we investigate the regularity of procrastinating
behaviors and incorporate this information into a com-
posite score, providing a more detailed perspective on
procrastination.

• Fourth, for the two classes we analyze, we find that
all of our measures of procrastination are highly cor-
related with course outcomes, lending support to prior
theories of self-regulated learning and procrastination
while also providing new insights.

2. RELATED WORK
2.1 Self-Regulation, Procrastination, and

Academic Success
Self-regulated learning refers to the process of directing one’s
own learning experience [31] and these processes encom-
pass several attitudes and behaviors. For instance, mod-
els of self-regulated learning generally distinguish between
motivational beliefs about learning, goal setting and plan-
ning behaviors, specific learning strategies, and metacogni-
tive monitoring processes [22]. While each of these facets
play an important role in the learning process, research on
online learning finds that students’ planning and time man-
agement behaviors are important indicators of course success
[10, 30]. Procrastination behaviors, which refer to delaying
coursework until major deadlines, reflect poor planning and
time management.

Several studies have focused on procrastinating as a ma-
jor barrier that hinders students from succeeding in online
courses [10, 29]. Using online course analytic data, one re-
cent study found that students who did not begin working
on assignments until hours before a deadline received lower
course grades when compared to students who began their
work earlier [9]. Other studies have found similar results,
where students who delay working on assignments are more
likely to perform poorly [29, 30]. These results confirm the
undesirable nature of procrastination as well as the impor-
tance of regular learning behaviors.

Another extensive body of work has shown that students
from underrepresented backgrounds, such as those who come
from low-income households, or who are first to attend col-
lege, are a greater risk for leaving STEM majors [7]. This

problem may be additionally exacerbated in online course-
work. There are many important factors that explain issues
surrounding underrepresented student success, such as lack
of mentoring, financial concerns, and feelings of exclusion
[25]. With regard to self-regulatory behaviors such as pro-
crastination, prior work has also shown an increased ten-
dency for underrepresented groups to engage in more pro-
crastination than the counterparts [24]. However, this study
was not conducted in an educational context and the pro-
crastination was measured subjectively using surveys. With
this in mind, a side aim of our work is to explore the re-
lationship between individual differences in procrastination
(time management behavior, in general) and students’ exter-
nal background characteristics, specifically for the students
taking online courses.

2.2 Measuring Procrastination and Regular-
ity

Measures of procrastination are relatively straightforward
and similar across various learning environments. In the
most common measures, researchers capture the time that
students finish a certain task and calculate the difference be-
tween this time and either the release time [3] or the dead-
line [16, 14] of the task. This type of measure has the merit
of being very interpretable, but a limitation is that it only
captures the average degree of procrastination without de-
picting nuanced patterns in these behaviors.

Regularity, on the other hand, is a higher-order concept that
allows for different definitions. Accordingly, there has been
a slightly larger pool of measures in the literature. Some
studies define regular behaviors as repeating certain tempo-
ral patterns in a cyclic manner, and apply methods from
signal processing to model hidden frequencies within stu-
dents’ behavioral streams [27, 3]. Another popular way of
operationalizing regularity is to relate regularity to changes
of learner behaviors, and quantify the changes via measures
of variation [1, 28, 23] or explicit statistical modeling [21].
These different definitions are not exclusive and share many
similar properties.

Most of the existing studies regarding time management in
online learning examine either procrastination or regularity,
and those that investigate both treat them as independent
features of student behaviors. Our work extend these stud-
ies by understanding how regularity and procrastination are
interrelated.

2.3 Cluster Analysis and Mixture Modeling
Clustering in general is a widely used technique in data anal-
ysis for automated data-driven discovery of groups or clus-
ters in data. In the context of analyzing education data,
clustering algorithms have found broad application as a tech-
nique for clustering of students into groups based on their
behavioral patterns. For example, Toth et al. [26] cluster
students based on their problem-solving interaction patterns
using the X-means algorithm (a variation of the well-known
K-means clustering algorithm) for a better understanding
of complex problem solving behaviors and identifying levels
of problem solving proficiency. Ng, Liu, and Wang [20] use
survey scores of motivated strategies for learning question-
naires to cluster students into multiple groups. The result-
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ing groups obtained by hierarchical clustering with Ward’s
method exhibit distinct learning profiles of motivational be-
liefs and self-regulatory strategies.

The clustering approach we follow in this paper is proba-
bilistic model-based clustering [12, 19]. In this framework,
each cluster corresponds to a probability distribution (also
known as a “component”) in a mixture model and the en-
tities being clustered are assumed to have been generated
by one of the component distributions. This probabilistic
framework for clustering has a number of advantages over
non-probabilistic techniques such as K-means clustering or
hierarchical clustering. For example, as we describe later in
the paper, the framework allows us to model count data in a
natural manner using Poisson distributions as components in
the mixture model, where each component (or cluster) rep-
resents a different Poisson distribution over count outcomes.
The Poisson mixture model has been applied to a number
of different fields including marketing [4], finance [15], biol-
ogy and bioinformatics [6, 11], document analysis [17], and
so on. However, to our knowledge, there has not been any
prior work on the development of Poisson mixtures in an
education context, particularly for the problem of clustering
students based on their observed activity in online classes.

3. METHODS
3.1 Student Activity Counts
For courses where time-stamped student-generated events
are tracked via logs of clickstream data, we can count these
events on a daily basis. Thus, we can get a set of daily activ-
ity counts for each student throughout a course, where the
activity can correspond to specific types of tasks of interest
(such as video-watching, quiz submission, and so on) Figure
1 shows daily activity count data for 2 students from one of
our course data sets. The data for each student is displayed
as a matrix, where the grayscale indicates the number of
tasks performed by each student on each day over the 5
week duration of the course. This type of display is useful
in terms of capturing the temporal aspect of when a student
is engaged in a particular activity such as watching a lecture
video or submitting a quiz. It also indicates that one of the
students (on the right) may be procrastinating each week—
we discuss these types of patterns in more detail later in the
paper.

We can also compute the sum over weeks to get the aggre-
gated daily counts assuming that there is a structure in the
course that repeats every week (which is the case for the two
courses we study in this paper). Examples of the aggregated
daily counts are shown in Figure 2 as bar plots, computed by
aggregating across the weekly rows of data for each student
in Figure 1.

3.2 Mixture Model with Gamma Priors
In this section we discuss our use of a Poisson mixture model
to cluster students based on their activity counts, focusing
on the aggregated daily counts as in Figure 1. In terms of
notation we let yi be the vector of aggregated daily counts
for student i, where i = 1, . . . , N . The dimensionality D
of each vector is the number of days (D = 6 in this case
since Saturday and Sunday are collapsed into one). Thus,
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Figure 1: Examples of student daily activity counts
(specifically, the number of video watching tasks per
day) displayed as a matrix of week × day counts. SS
indicates Saturday and Sunday.
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Figure 2: Aggregated daily task counts across weeks (yi)
for the two students shown in Figure 1.

our data consists of N students each with a D-dimensional
vector of aggregated daily counts.

To model this data we use a probabilistic mixture model
with Poisson components. Let K be the number of compo-
nents (or clusters) with an index k = 1, 2, . . . ,K. The unob-
served latent variable zi takes values from the set {1, . . . ,K}
and corresponds to the latent component or cluster that
student i is presumed to belong to. Each of the k com-
ponents consists of a vector of Poisson rate parameters,
λk = [λk1, . . . , λkd, . . . , λk6], where d from {1, . . . , 6} rep-
resents a specific day of the week. For example, one compo-
nent could have very low values for all the λkd’s, for students
with low daily activity, and another component could have
high values for all the λkd’s, for students with high daily
activity.

When fitting our mixture model to data, we take a Bayesian
approach [13] and use Gamma prior distributions for the
rate parameters λkd. The primary reason for doing this is
to encourage the model to avoid degenerate solutions with a
small component that has one or more rate parameters λkd

at or near a value of 0. This can produce a high-likelihood
solution but one that is not useful. In our experimental re-
sults later in the paper we used hyperparameters of α = 1.1
and β = 0.1 for the Gamma distribution. These hyperpa-
rameter choices have the effect of making the Gamma prior
behave like a step function, putting zero probability mass at
λkd = 0, k = 1, . . . ,K, d = 1, . . . , 6, and a relatively flat un-
informative prior distribution over positive rate parameter
values. Figure 3 depicts a graphical model representation of
the Poisson mixture model with a Gamma prior on the λ
parameters for each component.

The likelihood for the data yi for each student i under this
mixture model can be written as

p(yi|λ) =

K∑
k=1

p(yi|zi = k,λk)p(zi = k) (1)
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k=1:Ki = 1:N

Figure 3: Graphical representation of the Poisson
mixture model with Gamma prior. yi and λk are 6
dimensional vectors. N is the number of students,
and K is the number of mixture components.

where p(zi = k) is the marginal mixing weight for each com-
ponent, and each component distribution can be written as

p(yi|zi = k,λk) =

D∏
d=1

p(ykd|λkd, zi = k) (2)

assuming conditional independence of the daily counts ykd
given component k. λkd is the rate for day d for compo-
nent k and each distribution p(ykd|λkd, zi = k) is a Poisson
distribution. The prior distribution is defined as a product
over independent Gamma priors, one for each λkd, each with
parameters α = 1.1 and β = 0.1.

3.3 Learning Parameters with the EM Algo-
rithm

To estimate the parameters λk of our model we use the
Expectation-Maximization (EM) algorithm, an iterative al-
gorithm that is widely used in fitting mixture models to data
[8, 18]. More specifically, we use the EM algorithm to maxi-
mize the product of the data likelihood times the prior (both
defined above). This results in both (a) maximum a posteri-
ori (MAP) parameter estimates for the Poisson components
in the model, and (b) membership weights wik that reflect
the probability (under the fitted model) that each student i
belongs to component (or cluster) k.

Each iteration of the EM algorithm consists of two steps,
the E (expectation) step and the M (maximization) step.
In the E-step, conditioned on some fixed (current) values of
the parameters, the probability of membership wik is com-
puted for each component k = 1, . . . ,K, for each student
i = 1, . . . , N .

wik = p(zi = k|yi, λ, α, β)

∝ p(yi, zi = k,λk|α, β)

∝ p(yi|zi = k,λk)p(λk|α, β)p(zi = k) (3)

These membership weights are important in our later anal-
yses, since they provide information of how likely it is that
each data point i (in our case, student i) was generated by
component k. In the M-step, conditioned on the set of mem-
bership probabilities wik, a point estimate of each parameter
is estimated via MAP estimation.

λ̂k =

∑
i wik(yi + α− 1)∑

i wik(1 + β)
(4)

p̂(zi = k) =

∑N
i wik

N
(5)

These MAP parameter estimates provide the input for the
next E-step, and thus, the cycle of E and M-steps continue
iteratively.

The EM algorithm as a whole consists of randomly initializ-
ing the parameters of the model, followed by repeated com-
putation of pairs of E and M steps, until the log-likelihood
is judged to have converged (i.e., when the improvement in
log-likelihood from one iteration to the next is less than some
small value ε, or when the average membership probability
value is not changing significantly from one iteration to the
next).

Python code for this EM algorithm is available online at
https://github.com/jihyunp/student_poisson_mixture.

4. DATA SETS
Two data sets from the same undergraduate online course
were used in this study: one from summer 2016, and the
other from summer 2017. Both summer courses were 5 weeks
long. While each class was taught by two different instruc-
tors, the class content, such as the lecture videos, resources,
and assignments, were the same. In both classes, students
were assigned 5 video lectures every week and each lecture
video had a corresponding quiz. The instructors encouraged
students to watch one lecture video and complete the corre-
sponding quiz each day, from Monday through Friday.

Although students were encouraged to follow this schedule,
the actual deadline for watching the 5 lecture videos and
completing the quizzes was on Fridays at midnight. While
this structure gave students freedom to watch the lecture
videos when they wanted, this flexibility also allowed them
to procrastinate.

Most of the students’ activities were recorded through the
Canvas Learning Management System (LMS). These activ-
ities included downloading course content, watching lecture
videos, taking online quizzes, submitting assignments, etc.
Every time a student clicked on a URL within the Can-
vas system, the click event was logged with the student ID,
URL, and time-stamp. The clickstream data was processed
so that it only focused on the activities of daily tasks, re-
sulting in daily activity counts, as mentioned in the previous
section (Figure 1 and Figure 2). Only one event per task
was counted and thus the sum of the matrix for each stu-
dent was 25 or less (for 5 video lectures × 5 weeks). We
chose to count only the first attempt (first click event) for
each task.

In addition to the clickstream data, student demographic
data was available through the university’s institutional re-
search office. It included both demographic information
(gender, ethnicity, first generation status, low income sta-
tus, and full-time status) and prior academic achievement
(total SAT1 score). Some students did not agree to provide
this demographic data, although most did. For this rea-
son, our later analyses based on demographic information
are based on the subset of students who agreed to share this
information.

1A standardized test widely used for college admissions in
the United States.
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Figure 4: Grade distributions of students in 2016
class (left) and in 2017 class (right). Two classes
show very different grade distributions. Almost half
of the students received an A for the class in 2016,
whereas more students got lower grades in 2017.

Although both classes used the same materials and imple-
mented the same deadlines, there were some notable dif-
ferences in how the the click events were recorded, as well
as how each instructor structured the course. We describe
these differences in the following sections.

4.1 Class in 2016
Online lectures and daily quizzes were offered outside the
Canvas LMS for this class. Each lecture video was embedded
on a separate web page on the server that we had access to,
and the links to the web pages were provided via the Canvas
weekly module.

Logs for the daily quiz attempts were not accessible, so in-
stead we used the first“video clicks,” which are from the logs
of HTTP GET requests of the video embedded web pages.
For each student, we matched the IP addresses of the video
logs (from the server) with the IPs recorded on the Canvas
LMS.

After removing 4 students with very low activity (0 or 1
video clicks in total) there were 172 students with activity
counts available for analysis. More than 90% of the stu-
dents received a passing grade, and half of the students re-
ceived an A (Figure 4). Completing the daily tasks (watch-
ing videos and solving quizzes) counted as 15% towards the
overall grade for each student.

4.2 Class in 2017
The video click logs for this class were not available since the
videos were uploaded on a third-party server. However, the
daily quizzes that students took after watching the lecture
videos were recorded through the Canvas system, and we
were able to obtain students’ quiz submission time-stamps
via the corresponding clickstream data. Therefore, for this
class we focused on the first clicks for daily “quizzes.” Note
that this is different from the 2016 class data, which used
the first clicks for each video-watching event.

There were 145 students in the class—we used data for 140
students after dropping 5 students with very low activity
(as with the 2016 class). As previously noted, a different
instructor taught the class in 2017 than in 2016. The in-
structor for the 2017 class changed the contribution to 8%
of the total grade for watching and completing the lecture
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(b) Class in 2017
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Figure 5: Poisson mixture component means (λk’s)
from modeling aggregated daily task counts (yi) for
the class in 2016 (upper) and 2017 (lower).

videos, significantly less than in the 2016 class (15%). The
grade distribution of the 2017 class in Figure 4 is also sig-
nificantly different to that in 2016—there are significantly
fewer students who received A’s or B’s in 2017 compared to
the 2016 class.

5. PROCRASTINATION AS A MIXTURE
COMPONENT

Below, we present and discuss the results of fitting a two-
component (K = 2) Poisson mixture model to the aggre-
gated daily task counts for the two classes described in sec-
tion 4. We also explored models with more components,
K = 3, 4, . . ., but found that the K = 2 model broadly cap-
tured the primary modes of student behavior and that higher
values of K tended to split the two main modes into further
subgroups without providing any significant additional in-
sight.

Figure 5 shows the expected number of counts per group,
i.e., the rate parameters, λk’s. The two group-dependent
rate patterns across the days of the week, for both 2016 and
2017, show two very distinct behavioral patterns. One of
the mixture components has a very high rate on Friday and
low rates on the other days of the week. The other compo-
nent has low and relatively flat rates from Monday to Fri-
day. Considering the fact that the deadline for daily tasks in
these courses is on Fridays, these two patterns clearly reflect
two different types of student behaviors: procrastination and
non-procrastination.

5.1 Characteristics of the Two Behavioral
Groups

We can threshold the membership weights at 0.5 to classify
each student i = 1, . . . , N into one of the two groups, i.e.,
if wi1 > 0.5 then student i is assigned to the procrastina-
tion group (where k = 1 corresponds to the procrastination
group). About 36-37% of the students were assigned to the
procrastination group in each of the two years.
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Figure 6: Aggregated daily task counts shown along with the membership weights. Each row represents a
student, and the students are sorted by the membership weight wi1. The left figure is for the class in 2016,
and the right figure is for the class in 2017.
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Figure 7: Probability of receiving each grade given
that the student is in the procrastination group or
in the non-procrastination group in 2016 (left) and in
2017 (right).

The two plots in Figure 6 illustrate the students’ week-
aggregated activities along with the students’ membership
weights. Each row in each plot represents a student and
the wider matrix plot shows the aggregated daily counts,
sorted by their membership weight wi1. The values in the
matrix range from 0 to 25 and a darker color means that
there are more task activities on that day of the week. The
two plots from different years look almost identical and they
clearly show the two types of behavior. The students (rows)
at the bottom of each plot have more counts (darker colors)
on Fridays and belong to the procrastination group. There
is also a small group of students at the top of both plots
who tend to be more active over the weekend. The size of
this group of students is relatively small and their behavior
pattern is effectively that of non-procrastinators since they
are the “early birds” who check out the lecture videos or the
quizzes early in the week.

The membership weights are shown on the narrower bar plot
(left of each year’s plot), where a darker color represents a
higher membership weight of belonging to the procrastina-
tion group (with a weight close to 1). We can observe that
there is a relatively small amount of grey area in the bar
plot (for both years), which means that the majority of the
students have a very high probability of being assigned to
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Figure 8: Distribution of wi1 in different grade
groups of class in 2016 (left) and in 2017 (right).
H-statistic comes from a Kruskal-Wallis test. (wi1:
membership weight on the procrastinating group)

one group or the other.

5.2 Association between Behaviors and Grades
We can further analyze the relationship between the two
different behavioral groups and the grades. We show the
grade distribution in each group in Figure 7. Results from
the two classes are shown side by side. It is obvious from
the figure that the non-procrastinators tend to get signifi-
cantly more A grades than the procrastinators, whereas the
procrastinators get more C, D, and F’s. Even though the
overall grade distributions were quite different in the two
classes (see Figure 4), we find a strong correlation between
the behavioral groups and course outcomes. In both classes,
the non-procrastinating students are about three times more
likely to get an A grade than the procrastinating students.
These probabilities were significant at the 0.01 level using a
chi-squared test.

We can further analyze the relationship between procrasti-
nation behavior and grade outcomes by grouping students
by their grade (rather than by the behavioral group) and
looking at the patterns of behavior for each grade group.

As we saw in Figure 4, a majority of the students got a pass-
ing grade in 2016. The number of students who received A,
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(b) Class in 2017
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Figure 9: The number of task counts per day, for
each of the 5 weeks, averaged over the students in
each grade group. Left: students who received A’s,
middle: students who received B’s, right: students
who received a C, D, or F.

B, and the others (C, D, or F) were 84, 66, and 22, respec-
tively. The left boxplot in Figure 8 informs that“A students”
have very low membership weight (wi1) values, but the “C,
D, F students” have very high membership weight values.
This can be interpreted as saying that the students who re-
ceived lower grades (C, D, or F) have higher probabilities of
being procrastinators.

We can see the similar result for the class in 2017 from the
right side of the plot in Figure 8. There were 27, 37, 49
students in each of the grade groups (there were 27 students
whose grade information was unavailable). The broader dis-
tribution of weights in the C, D, F group may be due to the
fact that there were many more students with lower grades
than higher grades in this year of the course.

The association between behavior and grade outcome is also
clearly visible in the raw data, i.e., the task activity counts,
for both years. Figure 9 clearly illustrates the behavior pat-
terns for students with different grades. We can see a very
dark color on Fridays on the matrices on the right side (stu-
dents who received C, D, or F grades), and more evenly
distributed colors on the left matrix plots, which shows the
activities of students who received A grades.

6. REGULARITY OF PROCRASTINATION
In the previous section we showed that Poisson mixture
modeling can help to unveil two latent types of students:
procrastinators and non-procrastinators. Because these re-
sults are based on modeling aggregated daily activity counts
across multiple weeks, they do not shed light on how stu-
dents might change their procrastinating behavior over time
during different stages of a course. For example, a student
who is generally a procrastinator might only procrastinate
every other week, while a non-procrastinator might postpone
studying during some week. To gain insights into these nu-
ances, we investigate the regularity of procrastination in this
section.

(a) Class in 2016
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(b) Class in 2017

SS M T W T F0

1

2

3

4

NU
M

 O
F 

QU
IZ

 A
TT

EM
PT

S
ON

 E
AC

H 
DA

Y 
OF

 W
EE

K

SS M T W T F0

1

2

3

4

NU
M

 O
F 

QU
IZ

 A
TT

EM
PT

S
ON

 E
AC

H 
DA

Y 
OF

 W
EE

K

Figure 10: Poisson mixture component means (λk’s)
from modeling individual week of daily task counts
(yij) for the class in 2016 (upper) and 2017 (lower).
The number of first clicks on any lecture video in
2016, and the number of first attempts on any quiz
in 2017, are modeled.

6.1 Regularity across Weeks
We focus here on inter-week regularity, which is defined as
the extent that students repeat their behavior across dif-
ferent weeks. We use the same Poisson mixture modeling
methodology described earlier in the paper except that we
model each individual week of daily activity counts for each
student rather than aggregating across weeks. The result-
ing mixture components are similar to the aggregated case
in that there are two distinct weekly behaviors, procrastina-
tion and non-procrastination (see Figure 10). Each week of
a student’s behavior is modeled as being generated by one
of the two components in the model, and we can estimate
the membership weight of belonging to the procrastination
group (or component) for each week for each student, i.e.,
wij1 for student i = 1, . . . , N and week j = 1, . . . ,M where
M = 5 is the number of weeks.2

To quantify student i’s regularity, we use the standard de-
viation of the procrastination weights across weeks:

SDi =

(
1

M − 1

M∑
j=1

(wij1 − wi·1)2
)1/2

(6)

where wij1 and wi·1 represent the student-week membership
weights for the procrastination component in week j, and the
average of those weights across the M weeks, respectively.

2We could also use the non-aggregated weekly daily activity
counts for the earlier group analyses in Section 5. Instead of
the membership weights wi1 for student i, the mean value of
the M membership weights (wi·1) could be used for thresh-
olding. This would allow us to use the same analyses in
Section 5 and 6 by fitting a single mixture model. We inves-
tigated this and found the results were almost identical to
those reported in the paper. Given this, for the investigation
of regularity we used weekly activity counts to see changes
in weekly behavior, and for overall clustering (Section 5) we
used total aggregate counts for ease of interpretation.
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Figure 11: Distribution of SDi in different grade
groups of class in 2016 (left) and in 2017 (right).
H-statistic comes from a Kruskal-Wallis test. (SDi:
inter-week standard deviation of wij1, membership
weight on the procrastination group in week j)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
STD DEV ACROSS WEEKS

1

2

GR
OU

P

2016

0.0 0.1 0.2 0.3 0.4 0.5 0.6
STD DEV ACROSS WEEKS

1

2

GR
OU

P

2017

Figure 12: Distribution of SDi in two behavioral
groups (see Figure 6) of class in 2016 (left) and
in 2017 (right). Within each subgraph, the pro-
crastination group is indexed as 1, while the non-
procrastination group is indexed as 2. (SDi: inter-
week standard deviation of wij1, membership weight
on procrastination group in week j)

By definition, a higher value for SDi signifies more volatile
behavioral patterns.

In light of prior research, regularity is strongly correlated to
performance [3]. We plot the distribution of SDi’s within
three grade groups in Figure 11. Consistent with prior find-
ings, students with better grades in general have lower levels
of SDi, hence are more regular learners. More formally, we
perform a Kruskal-Wallis test within each class, with results
reported above the graph. In both years, the three groups
have significantly different SDi distributions.

6.2 Incorporating Regularity and Procrastina-
tion

In previous sections, wi1 and SDi capture different dimen-
sions of procrastinating behavior, and their interaction is
worth discussing further. For one thing, procrastinators and
non-procrastinators may have different levels of regularity.
We compare the distribution of SDi within each behavioral
group (assigned identically as in Figure 6) and plot the re-
sults in Figure 12. Common to both classes, procrastina-
tors are centered around 0.4, while non-procrastinators on
average have very small values below 0.1. We also calcu-
late Pearson’s correlation coefficient between wi1 (continu-
ous membership weights before hard group assignments, as
defined in Section 5) and SDi, resulting in values of 0.675
for 2016 and 0.590 for 2017, both statistically significant
at the 0.001 level. From these results, we can conclude
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Figure 13: Number of daily activity counts for four
prototypical students in the 2016 class. (wi1: aggre-
gated membership weight on procrastination group;
SDi: inter-week standard deviation of wij1, member-
ship weight on procrastination group in week j; TMi:
Time Management Score)
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Figure 14: Distribution of Time Management Score
(TMi) in different grade groups of class in 2016
(left) and in 2017 (right). H-statistic comes from
a Kruskal-Wallis test.

that non-procrastinating students are also more likely to
stay consistent throughout the course, while procrastinators
jump between spacing out their studies and postponing ev-
erything until the last day. On the other hand, the rela-
tionship between regularity and academic performance may
substantially vary depending on how much a student is a
procrastinator. Procrastinators who put off studying as a
habit (with high regularity) may be more at-risk than those
who occasionally jump to a spaced-out pattern, while this
is the opposite for non-procrastinating students. To incor-
porate this asymmetry, we attempt to define a single index
built upon wi1 and SDi. As these two measures are both
conceptually related to time management abilities, we name
the index to be the Time Management Score (TMi). To
reflect their interaction, we multiply variations of wi1 and
SDi for each student i. Since wi1 and SDi are both nega-
tively correlated with outcome, we use the negative of their
values in the index to allow for more natural interpretation.
Moreover, because the score should be weighted in oppo-
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site directions depending on the student’s behavioral group,
we made variations to wi1 so that the most procrastinat-
ing student with the same degree of regularity would have
the smallest score. Taking all of the above into account, we
define TMi as follows:

TM i = (1− wi1) (1− SDi) + [−wi1 (1− SDi)]

= (1− 2wi1) (1− SDi)
(7)

To evaluate the validity of this index, we examine whether
its properties are aligned with theoretical assumptions. As
discussed above, from the perspective of academic success,
higher regularity is a negative behavioral feature for procras-
tinators but is a positive feature for non-procrastinators. In
this context, it is natural to investigate how regularity and
procrastination affects the value of TMi, and how this value
relates to desirable and undesirable outcomes.

From Equation (7), we know that the value of TMi is pos-
itive or negative depending on whether wi1 is greater than
0.5 or not. Thus, wi1 = 0.5 is the watershed of whether SDi

positively or negatively contributes to TMi. Given that our
threshold for hard group assignment in Section 5 is also 0.5,
the interpretation is straightforward: higher regularity leads
to higher TMi within the procrastination group, and it is
more so for “purer” procrastinators; the opposite story can
be told within the non-procrastination group.

For an intuitive examination, we choose four prototypical
students with different levels of procrastination and regu-
larity from the classs in 2016, and plot the daily counts of
their first video clicks in Figure 13, along with their wi1,
SDi and TMi. As we would expect, non-procrastination
with high regularity (upper-left), the most desirable pattern,
has TMi = 1, the maximum value possible in our context.
By contrast, the regular procrastinator (lower-left) gets the
minimum value of TMi = −1. The remaining two students
with similarly low regularity have TMi values between the
two extremes, but are respectively closer to the one that be-
longs to the same behavioral group. In a word, these visual
patterns further validate the construction of TMi, which
more precisely measures the degree of procrastination by
incorporating regularity information.

To determine if TMi captures the desirability of certain
procrastinating patterns, we probe into the relationship be-
tween this index and course outcomes. Similar to what we
did earlier with wi1 and SDi individually, we plot the dis-
tribution of TMi within three grade groups. As shown in
Figure 14, there exists a positive relationship between TMi

and performance, which is statistically significant under a
Kruskal-Wallis test. The TMi score incorporates two mea-
sures (wi1 and SDi) and amplifies the information that is
potentially predictive of performance, providing a more nu-
anced view of procrastination.

7. RELATIONSHIP WITH STUDENT
BACKGROUND

Having explored the fine-grained differences in students’ pro-
crastinating behaviors and their relationship with outcomes,
we want to further examine if these variations can be dis-
criminated by students’ background characteristics. The
goal of this analysis is to understand whether there exists

Table 1: Relationship between demographic vari-
ables and procrastination/regularity measures for
the 2016 class

(a) Behavioral group assignment (binary)
Demographics N Test p-value
FirstGen 144

χ2-test
0.566

LowInc 151 0.672
SAT 147 K-W test 0.238

(b) SD and TM (continuous)
Demographics N Test SD p-val TM p-val
FirstGen 144

K-W test
0.884 0.954

LowInc 151 0.175 0.294
SAT 147 Pearson’s r 0.118 0.363

Table 2: Relationship between demographic vari-
ables and procrastination/regularity measures for
the 2017 class

(a) Behavioral group assignment (binary)
Demographics N Test p-value
FirstGen 120

χ2-test
0.218

LowInc 128 0.955
SAT 125 K-W test 0.802

(b) SD and TM (continuous)
Demographics N Test SD p-val TM p-val
FirstGen 120

K-W test
0.136 0.897

LowInc 128 0.754 0.973
SAT 125 Pearson’s r 0.505 0.820

a potential risk factor among underrepresented students, or
if instead, the behavioral differences we observe are more
individual-level in nature. We also sought to explore whether
prior academic achievement could explain differences in pro-
crastinating behaviors.

From a comprehensive list of demographic variables, we choose
three that are of general interest in education research: Low
Income Status, First Generation and Total SAT Score. The
first two binary variables represent a student’s social-economic
status, and the last continuous variable is a proxy for prior
academic achievement.

We separately test the relationships between these three
variables and three measures of procrastination and regu-
larity in previous sections: behavioral group assignment (as
in Section 5.1), SD and TM (as in Section 6). The specific
statistical tests we use and their results are reported in Ta-
ble 1 for the class in 2016, and Table 2 for the class in 2017.
Because the demographic information contains missing val-
ues, we only include students who have relevant information
in each of the tests (the number of students, N , is reported
in the tables).

The results show that for both classes none of these de-
mographic variables have any significant relationship with
procrastination and/or regularity. This suggests that fail-
ures in time management may arise more from students’ in-
herent factors than specific background characteristics, and
that effective instructional interventions are less likely to
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be hampered by students’ underrepresented backgrounds.
However, due to the limited class sizes, this inference still
needs to be further explored at scale.

8. CONCLUSIONS
In this paper, we introduce a data-driven methodology for
characterizing student procrastination in online courses. Based
on Poisson mixture modeling, the proposed approach can be
applied to courses where tasks with clear deadlines are regu-
larly assigned and students’ timestamped activites related to
those tasks are recorded. In our experiments with two under-
graduate online classes, this method identifies two distinct
patterns in students’ weekly planning behavior, which can
be further utilized to measure procrastination. This mea-
sure is found to be strongly correlated with course outcomes
for both classes. In addition, our proposed Time Manage-
ment Score (TM) is able to quantify students’ overall time
management skills by combining overall degree of procras-
tination with the regularity of the behavior. Interestingly,
while TM is a strong predictor of course outcomes, it is not
significantly related to students’ demographics or prior aca-
demic achievement. These results suggest that, as a whole,
procrastination behaviors seem to be more of an inherent
characteristic.

These types of clickstream data and analyses allow for rich
complements to other types of educational research. For
example, the proposed behavioral measures of time man-
agement can be combined with survey data to examine how
accurate students’ perceptions of their skills are, and to iden-
tify students who might be especially prone to benefit from
support. From the practical perspective, these data-driven
approaches can be incorporated into learning management
systems and work in real time. This would potentially facil-
itate automated assessment and intervention regarding time
management skills.

There are also a number of potentially useful extensions to
the methodological approach proposed here. For example,
the mixture components in the two classes that we analyzed
are straightforward to interpret with regard to procrasti-
nation, but this might not be the case for different course
designs and structures. In these broader scenarios, it may be
useful to incorporate informative Gamma prior distributions
into the mixture model, with, for instance, three prior com-
ponents for procrastination behavior, non-procrastination
behavior, and mixed behavior respectively.
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ABSTRACT 
Learners in various contemporary settings (e.g., K-12 classrooms, 
online courses, professional/vocational training) find themselves 
in situations in which they have access to multiple technology-
based learning platforms and often one or more non-technological 
resources (e.g., human instructors or on-demand human tutors). 
Instructors, similarly, find themselves in situations in which they 
can provide learners with a variety of options for instruction, 
practice, homework, and other activities. We seek data-driven 
guidance to help facilitate intelligent instructional “hand offs” 
between learning resources. To begin this work, we focus on an 
important element of self-regulated learning, namely help seeking. 
We build classifier models based on proxies for learner prior 
knowledge and data-driven inferences about learners’ disengaged 
behavior (e.g., gaming the system) and affective states (e.g., 
confusion) to determine the extent to which (and when) learners 
tended to seek out help via human tutoring while using an 
intelligent tutoring system for mathematics. Insights into 
cognitive, behavioral, and affective factors associated with help 
seeking outside of a system will drive future work into providing 
automated, intelligent guidance to both learners and instructors. 
We close with discussion of the limitations of the present analysis 
and avenues for future work on intelligently guiding instructional 
hand offs. 

Keywords 

intelligent tutoring systems, Cognitive Tutor, mathematics 
education, developmental mathematics, higher education, online 
courses, human tutoring, detector models 

1. INTRODUCTION 
The proliferation of technology-based learning platforms and 
applications (apps), including intelligent tutoring systems (ITSs), 
game-based learning environments, massively open online 
courses (MOOCs), training simulators, language learning apps, 
and practice apps, among others, creates a complex array of  

 

 

 

 

 

 

 

choices for learners and those who would seek to facilitate 
learning. Far from replacing human instruction, these technologies 
are often used in learning environments in which learners have 
access to both technological and human sources of instruction.1  

Instead of comparing the relative effectiveness of technological 
and human instruction (c.f. [12, 34]), we are concerned with the 
extent to which learners’ interactions with both technology-based 
and human resources can be treated as a system that is a target for 
optimization. One key target for optimizing such a system is the 
ability to intelligently guide “hand offs” or transitions between 
different learning apps and to guide learner help seeking as they 
use technology but also have access to (limited) human resources 
like an instructor or tutor. Work that considers such hand offs, and 
intelligent guidance for them (e.g., when a system or app could 
best provide feedback that directs the learner to an external 
resource because they need help or could benefit from practice on 
a pre-requisite skill that is not covered by the system or app), is 
limited, though one noteworthy exception attempts to provide 
adaptive assistance as students learn to program by suggesting 
open, online reading content related to errors made while the 
student programs [33]. 

One key element of self-regulated learning [37] is the ability for 
learners to appropriately and effectively seek out and use help 
when they need it [3, 27]. ITSs and other technology platforms for 
learning frequently provide learners with hints and other forms of 
scaffolding, guidance, and help. Unfortunately, learners often do 
not make efficient or extensive use of such help within ITSs [1, 
25, 36], and when they do, learners sometimes “abuse” such help 
[2], whether by rapidly seeking progressively more informative 
hints or attempting to “game the system” [6]. More recent work 
begins to explore when students ought to seek help within an ITS. 
For example, one study found that help avoidance earlier in the 
problem solving sequence, as students solve genetics problems in 
an ITS for genetics, is more strongly and negatively associated 
with robust learning outcomes, suggesting that early help seeking 
ought to be encouraged [4]. Work like that of [4] is a part of a 
broader literature focusing on providing meta-cognitive support 
and developing “meta-cognitive” tutors (e.g., [2]). 

Classroom practices in blended, K-12 classrooms also encourage 
self-regulated learning. Here, students typically have direct access 
to a teacher while they work within an environment like an ITS. 
Teachers often adopt strategies like “ask three then me” [17] to 

                                                                    
1 The second author’s primary contribution to this work was made 

while he was employed by Carnegie Learning, Inc., and later 
Carnegie Mellon University. 
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encourage productive behavior with respect to help seeking, rather 
than over-reliance on the teacher. Following this strategy, for 
example, the student might use the hint feature of an ITS, and 
should that not provide sufficient clarity or guidance, ask the 
student on each side of her in the classroom before asking the 
teacher for help. Given tendencies to over-use and under-use help, 
better student self-regulation is one important element in 
optimizing the teacher’s scarce time. Ideally, over-users of help 
will start to rely on help provided by the ITS or their peers, 
encouraging productive collaboration among learners and 
enabling teachers to spend more time with students experiencing 
genuine struggle with content or who rarely seek out help despite 
needing it. 

In the present study, rather than a traditional or blended K-12 
classroom, we consider use of the Cognitive Tutor [26] ITS, in 
one or more of a sequence of two, five-week, fully online 
developmental mathematics course at a large, mostly-online 
university. In addition to an instructor, available to students via e-
mail and an online message board, students in these courses had 
optional and unlimited access to human mathematics tutors via a 
service called Tutor.com (TDC). We were able to obtain access to 
all chat logs with TDC, as well as detailed data on CT use, 
providing an ideal dataset to investigate how students navigated 
between human and automated support in this environment. 

In the present study, we focus on cognitive, behavioral, and 
affective factors that predict whether (and the extent to which) 
students using CT seek out help from human tutors via an online 
chat service called Tutor.com. To do so, we adopt a discovery 
with models approach [10] and build classifier models based on 
proxies for learner prior knowledge and data-driven inferences 
about learners’ disengaged behavior (e.g., gaming the system, 
guessing, off-task behavior) and affective states (e.g., confusion, 
boredom), relying on “detector” models of such factors [5-9]. 
Insights into cognitive, behavioral, and affective factors 
associated with help seeking outside of an ITS will drive future 
work into providing automated, intelligent guidance to both 
learners and instructors.  

2. COGNITIVE TUTOR (CT) & 
TUTOR.COM (TDC) 
Cognitive Tutor (now called MATHia in K-12 contexts and Mika 
in higher education contexts) is a mathematics ITS developed and 
distributed by Carnegie Learning, Inc. [26], used by hundreds of 
thousands of learners each year in K-12 and higher education 
learning contexts (see Figure 1). 

As illustrated in Figure 1, learners in CT work through complex, 
multi-step math problems. Within each problem, steps are mapped 
to fine-grained skills or knowledge components (KCs) [24]. KC 
mastery is tracked using Bayesian Knowledge Tracing [15].  

CT’s instructional approach is based on mastery learning [11], and 
it relies on BKT and these parameters to update estimates of a 
learner's mastery of the KCs it tracks, as they practice and learn 
the KCs, within each of its topical sections of content. Within 
each section, CT presents problems to learners that emphasize the 
KCs they have yet to master. After mastering all KCs in a section, 
learners “graduate” to the next section. Having failed to master all 
of a section's KCs by a certain pre-set limit (e.g., a maximum 
number of problems), the learner is “promoted” to the following 
section. MATHia/Mika analytics provide the teacher with 
information about graduation and promotion status; in promotion 
cases, teachers will know that the student has failed to master KCs 

for a particular topic, allowing them to provide some form of 
remediation, including possibly allowing for a second attempt to 
work through problems in the ITS later.  

As students learn and practice, CT provides context-sensitive, 
adaptive hints and other feedback. In a typical, blended, K-12 
classroom environment in which CT is frequently used, students 
using CT are in physical proximity to their fellow students and 
teachers, so they can rely on these resources for help if, for some 
reason, the CT is not providing sufficient feedback and help. In 
the present context, CT is used in a fully online context, so for 
real-time help, the student has to rely on human math tutors, made 
available to them via an online chat mechanism provided by 
Tutor.com (TDC). Student could also communicate 
asynchronously with their course instructors via e-mail and with 
their fellow students and instructor via an online message board, 
but data surrounding these means of communication were 
unavailable to the authors.  
TDC is a large provider of online, one-to-one, and on demand 
tutoring for students in a variety of domains and settings 
(including learners in K-12 public schools, colleges, universities, 
libraries, corporations, and the U.S. military). In the context of the 
present study, TDC tutors were accessible to students, via an 
online chat mechanism, as a part of their enrollment in the two 
developmental math courses of which CT was a mandatory 
instructional component and the primary means by which students 
were provided with problem-solving practice and exercises. 
Students were typically assigned several units of content (i.e., sets 
of sections of content) for each week of the course and allowed, 
generally, to progress at their own pace through those sections 
with the expectation that they would complete assigned content 
within the week in which it was assigned or shortly thereafter. 

 
Figure 1. Cognitive Tutor/MATHia/Mika screenshot 

3. DATA 
For the present study, the population of concern is comprised of 
16,905 adult students in at least one course (and in many cases 
both courses) in a sequence of two, five-week development 
mathematics courses for the time period of June 2014 to 
December 2014, inclusive. Of these 16,905 students over this time 
period, 80.4% (13,585) made no use of TDC. 3,320 students used 
TDC at least once during at least one of these courses, with a total 
number of 19,248 TDC sessions taking place over this six-month 
period. Tutoring chat sessions lasted from several minutes to over 
an hour, many occurring while learners simultaneously used CT 
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Though outside the scope of this study, data available also 
included transcripts of the TDC tutoring chat sessions (and 
annotations of dialogue acts [32], instructional modes, and 
switches between these modes within these chat sessions) that 
allows for sophisticated analyses of interactions between human 
and automated tutoring systems like ITSs. These topics, using 
data from this context, have been explored elsewhere [28-29]. 
However, data like demographics, student background, and 
performance in other courses were not available to the authors. 

In the analysis that follows, we consider a subset of this 
population, including 3,119 students who used TDC at least once 
(i.e., all of the students for whom data could be processed for 
analysis) as well as a random sample of 1,874 students who did 
not use TDC over this time period.2 For these students, we have 
extensive usage data from CT and rely on the timestamps at which 
TDC sessions started to identify, for example, the CT login 
session that occurred before each TDC session. We also know, for 
each TDC User, the number of times they accessed TDC tutoring 
sessions as well as the duration of these sessions. 

CT data for these 4,993 students were processed into a format 
amenable to the LearnLab DataShop [20, 23]. These data are 
comprised of 88,497,091 learner actions (i.e., attempts at steps 
within problems, or tutor transactions in the DataShop parlance) 
(an average of 17,724 tutor transactions per student). 

The second course in the two-course sequence was more 
advanced and contains both more challenging content (as 
measured by CT hints requested and errors made) and fewer 
sections than the first course in the sequence. Nevertheless, there 
appear to be few major differences in TDC usage (considering 
session counts, etc.) between the two courses, so our analyses 
combine data from the two courses. However, not every student in 
the sample considered was enrolled in both courses over the time 
window we consider, so some students only have usage data from 
the first course and some only from the second course. 

4. INITIAL OBSERVATIONS & 
RESEARCH QUESTIONS 
Two related, initial observations inform the analyses of the rest of 
this work. The first relates to the extent to which a small minority 
of users accounts for a majority of TDC use. The second 
observation concerns the imbalance in the data, which informs the 
overall analytic approach we adopt. 

4.1 TDC Super-Users, TDC Users, and TDC 
Non-Users 
Figure 2 provides a histogram counting the number of students 
with a particular number of TDC sessions. As noted previously, 
over 13,000 students make no use of TDC and have zero TDC 
sessions. However, the long right tail of this histogram points to a 
small minority of students who have tens or even hundreds of 

                                                                    
2 Seemingly arbitrary counts of 3,119 students who used TDC at 

least once and the random sample of 1,874 students who never 
used TDC are largely the result of data collection and data 
processing limitations in the legacy deployment of Cognitive 
Tutor used by these students. Some students’ data were not 
reliably collected and/or processed (leading to the difference 
between 3,320 TDC Users and 3,119 students considered), and 
time constraints made it impossible to consider a larger sample 
of TDC Non-Users. Fortunately, present-day implementations 
of MATHia and Mika no longer suffer from such limitations. 

TDC sessions. We call students in the top 10% of TDC usage (by 
session, considering only students with at least one session) “TDC 
Super-Users.” The set of TDC Super-Users is comprised of 350 
students (or 2.1% of students in these courses over this period) 
and account for 55.4% of total TDC session time (4,100 hours of 
TDC session time). On average, TDC Super-Users spent 7.6 hours 
in TDC sessions over the period of one of these courses. TDC 
Users (2,769 students with at least one TDC session but who are 
not TDC Super-Users) spent a total of 3,367 hours in TDC 
sessions over this time period, with an average of .8 hours of TDC 
session time per course.   

 
Figure 2. Histogram of TDC sessions and student counts over 
both courses in the two-course developmental math sequence. 
Reproduced from [Fancsali, et al unpublished report]. 
Perhaps unsurprisingly, TDC Super-Users also spent more overall 
time in CT with an average of 61.7 hours of CT time per course. 
TDC Users spent an average of 48 hours in CT per course while 
TDC Non-Users spent only an average of 29.3 hours per course in 
CT. A more extensive analysis of specific differences and 
comparisons on various performance metrics for these groups 
within CT is found in [21]. 
Such numbers seem likely, though not necessarily3, to reflect 
over-use and near-certain under-use (for TDC Non-Users) of the 
human tutoring provided by TDC. Such over-use and under-use 
could reflect an underlying problem in terms of self-regulated 
help seeking. As such, two research questions are directed at the 
possibility of predicting whether a student is likely to be a TDC 
Super-User or a TDC User (versus TDC Non-Users). What are 
possible drivers of such extensive use of TDC? What behaviors 
and affective states might indicate a need for external help?  At a 
more granular level, the third question seeks to determine whether 
it is possible to predict from data from a particular CT login 
session that a student is likely to seek out TDC. 

As noted earlier, we center our attention on cognitive features 
(related to prior preparation for the course), behavioral features 
like gaming the system, and affective features like boredom, 

                                                                    
3 TDC Super-Users, the set of which, for example, could include 

learners with some form of learning disability like dyscalculia, 
may derive great learning benefit from interacting with these 
tutors at the level at which they do (and may need relatively 
intense remediation to succeed), but this benefit comes at the 
relatively greater expense of the real-time, chat-based tutor, 
compared to, for example, regularly setting up time to interact 
with the instructor or finding other resources for the student to 
consider when they need such intense help. 
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among others, that may help to inform future work and provide 
practical guidance to teachers and facilitators of instruction. 

4.2 Research Questions 
For each of the following questions, there is a corresponding 
prediction task for which we consider cognitive, behavioral, and 
affective factors. Insight provided by predictive models for these 
tasks (i.e., a better understanding of how prior preparation, 
disengaged behavior, and affect are associated with seeking 
human help) is our primary concern in this work.  Cognitive 
factors we consider are related to performance within the first 
week of a course as a proxy for prior knowledge of the topic and 
initial effort in the course. Behavioral factors are related to learner 
disengagement. We detail the features for each prediction task in 
§5.4. 

• What factors predict that a student will be a TDC Super-
User? [Prediction Task #1] 

• What factors predict that a student will be a TDC Super-
User or a TDC User? [Prediction Task #2] 

• What factors predict that a particular student login 
session within CT will be followed by a TDC session? 
[Prediction Task #3] 

For each prediction task, we also consider overall performance 
metrics for models we describe in §5.3, including accuracy, 
precision, recall, and AUC to demonstrate the possibility of 
delivering successful predictive models for these tasks.  

We present the tasks in roughly the order of difficulty from easiest 
to hardest. In the first task, we attempt to distinguish TDC Super-
Users from TDC Non-Users, which we a priori expect to be an 
easier task than distinguishing all users of TDC (i.e., the union of 
the set of TDC Super-Users and TDC Users) from TDC Non-
Users. Finally, looking at individual CT login sessions, we seek 
characteristics of a student’s behavior and affect within the CT 
session itself as well as general characteristics of the student that 
may predict she is likely to seek out human help. 

The predictive models learned for each of these tasks are 
retrospective (or perhaps descriptive) in the sense that they rely on 
data aggregated over students’ entire usage of Cognitive Tutor in 
one or both classes for Prediction Tasks #1 and #2 and data from 
an entire login session for Prediction Task #3. They serve to help 
direct future studies toward particular factors that might be 
included in online algorithms or recommendation systems that 
implement intelligent instructional hand offs (i.e., in real-time, 
provide a recommendation that it would be conducive to learning 
for a student to seek out the help of human tutor from TDC, for 
example, rather than continue to struggle in Cognitive Tutor). 

5. METHODS & APPROACH 
In this section, we describe our discovery with models approach, 
using the output of data-driven behavior and affect detectors as 
input to classifier models to produce predictions for each of our 
three prediction tasks. We also describe our iterative under-
sampling approach to deal with the extent of imbalance present in 
this dataset. 

5.1 Data-Driven Behavior & Affect Detectors 
Extensive literature in educational data mining, learning analytics, 
human computer interaction, and other disciplines focuses on 
using sensor-free, data-driven approaches for platforms like ITSs 
to make inferences about student behavior and affect. This 
literature has produced a wide variety of “detector” models for 
various behaviors, especially related to disengagement, and 

affective states for a bevy of learning platforms (e.g., [5-9, 22, 31, 
35]). 

In this work, we rely on detectors of disengaged behavior and 
affect while students use CT. Detectors were implemented for 
gaming the system [7], off-task behavior [9], and affective states 
including: boredom, confusion, frustration and engaged 
concentration [8]. In addition, we implemented contextual models 
of guessing and slipping to estimate the extent to which each may 
have been responsible for correct and incorrect answers (i.e., 
estimating when it may be likely that students are guessing 
correctly without KC mastery and slipping to produce an incorrect 
answer despite mastery of a KC) [5]. Contextual slip models have 
been used as detectors of carelessness in previous work [19, 31].  
Gaming the system [6] refers to behavior directed at making 
progress through content without genuine learning. Learners may 
try to make progress by adopting strategies like relying on 
"bottom out" hints that provide the answer or by providing 
numbers that appear within problem statements as answers to 
questions, among other shallow (at best) learning strategies. 

Detectors we deploy in this study have been successfully used 
with a similar population of learners in previous work [18-19]. 
Detectors of gaming the system, off-task behavior, and models of 
contextual guessing and slipping produce predictions at the level 
of individual learner actions (i.e., attempts at problem-solving-
steps) while detectors of affective states produce predictions about 
“clips” or time intervals of approximately 20 seconds. For a more 
extensive summary of the features that are “distilled” from CT log 
data to serve as input to the underlying machine learning models 
that constitute these detectors, please see papers cited for each 
detector [7-9] as well as the papers describing their use with a 
similar population of higher education CT learners [18-19]. 

5.2 Imbalanced Data & General Approach 
For each prediction task, we adopt an iterative scheme to deal 
with the fact that each task involves imbalanced data in terms of 
the target of predictive interest. While a variety of approaches are 
amenable to the task of dealing with imbalanced data, in the 
present study, we are primarily interested in establishing the 
characteristics of disengaged behaviors, affective states, and prior 
knowledge that predict that students seek out human help, so we 
adopt a strategy of iteratively considering balanced samples of 
data, building classifier models on these balanced samples, and 
considering the factors that contribute to the success of these 
classifiers. For Prediction Task #1, there are 350 TDC Super-
Users and 1,874 TDC Non-Users. For Prediction Task #2, there 
are 3,119 TDC Super-Users and TDC Users and 1,874 TDC Non-
Users. For Prediction Task #3, 3,058 of the 3,119 TDC Super-
Users and TDC Users have at least one CT login session that is 
followed by a session with a TDC tutor while there are 580,528 
CT login sessions overall.4  
For each prediction task, we create a balanced sample by under-
sampling the appropriate majority class in each of 500 iterations, 
building classifier models in each. For Prediction Task #1, this 
means creating (500x) a sample (with student-level features we 
describe in §5.4) of the same 350 TDC Super-Users and a random 
sample of 350 TDC Non-Users. For Prediction Task #2, we create 
a sample (again, 500x, with student-level features) containing the 

                                                                    
4 61 students use TDC one or more times before using CT in the 

courses, so there are no CT sessions from which data can used 
to better understand what predicts that student’s decision to use 
a TDC tutor. 
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same 1,874 TDC Non-Users and a random sample of 1,874 
students drawn from TDC Users and TDC Super-Users. For 
Prediction Task #3, we randomly sample one CT session per 
student that is followed by a TDC session and randomly sample 
one CT session per student (also chosen at random) that is not 
followed by a TDC session, resulting in a sample of 6,116 CT 
sessions for which we have CT session-level features we describe 
in §5.4. This approach for Prediction Task #3 avoids violations of 
independence that would be introduced by students with multiple 
TDC sessions were we to consider more than one session per 
student.  

In each iteration, we have a balanced dataset of student-level or 
CT-student-session-level features that can be used as predictors in 
classifier models. We take a 60%-40% split of this dataset into 
training and test sets, and build classifier models using 5-fold 
cross validation on the training set, which, given the way we have 
constructed the training and test set, is student-stratified cross 
validation. We apply the best performing model in terms of 
accuracy over this 5-fold cross validation to the held-out test set. 
Having done this process 500x for each prediction task, we 
consider the mean (and standard deviation of) performance over 
these iterations using metrics of accuracy, precision, recall, and 
area under the ROC curve (AUC). We also consider the specifics 
of a representative model for each prediction task to provide 
insights into which features are predictive of seeking out human 
help. 
To test the robustness of this approach, for the case of Prediction 
Task #2, which is not drastically imbalanced (i.e., 37.5% of 
students in the sample are non-TDC Users), we consider models 
learned without using this iterative under-sampling scheme. We 
show that results are comparable in terms of AUC and compare 
other performance metrics between the approach, helping to 
establish possible bounds on expected predictive accuracy and 
other metrics. Classification accuracy, for example, in this under-
sampling scheme is perhaps an especially optimistic estimate of 
what can be achieved.  

5.3 Classifier Models 
We consider four types of models to drive classification and 
prediction: logistic regression (LR), random forest (RF) [13], and 
support vector machines [16] with both linear (SVML) and radial 
kernels (SVMR). For each model, we consider the case in which 
the models output binary classifications as well as probabilities 
for each of the binary classes of the target variable. In this way, 
we are able to consider classification accuracy, precision, and 
recall, as well as AUC as a further comparison of performance 
compared to chance. Estimated LR models provide a convenient 
way to consider the significance of features included in these 
models, so we illustrate the importance of variables in these 
models in this way.  

5.4 Feature Construction 
For Prediction Tasks #1 and #2, student-level features are 
constructed over usage for the entire period of time over the 
courses in which each student had usage (either the first course, 
second course, or both). Such features provide for a general 
profile of how students worked through content in these two 
courses. Features represent predictions made by detector models 
as previously described as well as variables related to student 
performance and usage in their first week of CT usage in the first 
course they encountered (if they used CT in both courses). 
Features constructed from “Week 1” data are proxies, however 
noisy, for student prior preparation and initial knowledge, as other 

measures, as previously noted, were unavailable. Each variable is 
constructed as a normalized z-score over all students in the dataset 
(i.e., the unit for each variable is the number of standard 
deviations above or below the mean value for each feature): 

• Assistance Per Step: Mean number of hints requested + 
errors per problem-solving step 

• Gaming the System: Proportion of student actions 
inferred to be instances of gaming the system behavior. 

• Off-Task: Proportion of student actions inferred to be 
instances of off-task behavior. 

• Guessing: Proportion of correct student actions inferred 
to be possible instances of having correctly guessed. 

• Slipping: Proportion of incorrect student actions inferred 
to be possible instances of having slipped despite KC 
mastery. 

• Boredom: Proportion of problem solving clips in which 
students were judged by detector models to have been 
bored. 

• Frustration: Proportion of problem solving clips in 
which students were judged by detector models to have 
been frustrated. 

• Confusion: Proportion of problem solving clips in which 
students were judged by detector models to have been 
confused. 

• Engaged Concentration: Proportion of problem solving 
clips in which students were judged by detector models 
to be in a state of engaged concentration. 

• Week 1 Sections: Number of sections of content 
encountered in the first week of either course (or across 
both). 

• Week 1 Assistance: Hints requested and errors made in 
the first week of either course (or across both). 

• Week 1 Time: Amount of time spent using Cognitive 
Tutor in the first week of either course (or across both). 

• Week 1 Sections/Hour:  Number of sections of content 
encountered per hour in the first week of either course 
(or across both). 

• Week 1 Assistance/Hour: Number of hints requested and 
errors made per hour in the first week of either course 
(or across both). 

• Week 1 Completer: binary indicator that a student 
encountered 90% of the sections in the first week’s 
assignment in either course (or across both). 

For Prediction Task #3, CT login-session level features are 
considered. These features are not normalized, but rather the same 
proportions as for Prediction Tasks #1 and #2 but with respect to a 
particular CT login session. For example, Assistance Per Step is 
calculated over only problem-solving steps within a CT session. 
Gaming the System is calculated as the proportion of student 
actions within a CT login session that are predicted to be instances 
of gaming the system, and Boredom is calculated as the 
proportion of problem-solving clips within a CT login session for 
which detector models infer that a student is bored.  Week 1, 
student-level variables are also included in these models. 
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6. RESULTS 
For each prediction task, we first describe the predictive 
performance for each of the models we deploy, and then we 
consider a “representative” logistic regression model that provides 
insight into the factors that help us to achieve success on these 
tasks. We describe the sense in which we consider these logistic 
regression models to be “representative” in the following sub-
section. 

6.1 Prediction Task 1: TDC Super-Users 
We expect the task of distinguishing TDC Super-Users from TDC 
Non-Users to be the “easiest” a priori, in the sense that we expect 
that we will be able to achieve better performance on the task, an 
expectation which is borne out by our results. Table 1 shows that 
logistic regression (LR) performs comparably to a support vector 
machine with a linear kernel (SVML) with mean accuracy over 
500 iterations of .712 and nearly identical values for precision, 
recall, and AUC. Recall that .5 accuracy represents chance 
accuracy (and .5 AUC represents chance performance, as ever) 
because we under-sample to produce a balanced dataset in each 
iteration. 

Table 1. Mean and standard deviation (in parentheses) for 
accuracy, precision, recall, and area under the ROC curve 

(AUC) over 500 iterations for the task of predicting whether a 
student is a TDC Super-User (versus a non-TDC User) [LR = 
Logistic Regression; RF = Random Forest; SVML = Support 

Vector Machine with Linear Kernel; SVMR = Support Vector 
Machine with Radial Kernel] 

Model Accuracy Precision Recall AUC 

LR .712 
(.025) 

.701 
(.029) 

.744 
(.042) 

.786 
(.024) 

RF .705 
(.025) 

.698 
(.028) 

.727 
(.042) 

.771 
(.024) 

SVML .712 
(.024) .702 (.03) .743 

(.048) 
.788 

(.023) 

SVMR .665 
(.025) .65 (.03) .7245 

(.056) 
.723 

(.027) 
 

Table 2 provides a representative, estimated logistic regression 
model that provides insight into student-level factors that are 
associated with a student being a TDC Super-User. The model is 
representative in the sense that, upon inspection of multiple 
models built on training sets sampled in the way we described 
above, the significant variables in the model of Table 2 were 
generally those that were significant. We then specified logistic 
regression models including only the variables that are reported 
significant in Table 6 and found that these models, over hundreds 
of iterations, achieved results nearly identical to those reported for 
logistic regression in Table 1. Spot inspections of model 
parameters in numerous models produced by the iterative process 
also aligned with those reported in Table 2 in terms of both sign 
and magnitude. This same notion of representative logistic 
regression models is used for each of the three predictive tasks we 
consider to provide insight into the variables that contribute to 
such models. 

The model of Table 2 suggests that the four significant factors for 
predicting that a student will be a TDC Super-User are Off-Task 
disengagement, Boredom, Guessing, and Week 1 Sections/Hour. 
Pairwise Pearson correlations among these significant predictors 
are small, with no statistically significant correlation between 
Guessing and Off-Task disengagement, and the largest significant 
correlation is that between Week 1 Sections/Hour and Boredom (r 

= .36; p < .001). These observations, combined with the 
consistency of models learned over only these significant 
predictors, instill confidence in our interpretation of the logistic 
regression coefficients. However, multi-collinearity among some 
of the other predictors (especially, for example, Gaming the 
System and Confusion: r = .76; p < .001) requires us to exercise 
caution in interpreting other coefficients in this representative 
logistic regression model. Roughly these same observations about 
the significant predictors as well as caveats concerning the 
interpretation of the non-significant estimated regression 
coefficients are operative for Predictive Tasks #2 and #3.  

While disengagement is positively associated with TDC Super-
User status, the Boredom, Guessing, and Week 1 Sections/Hour 
are negatively associated with TDC Super-User status, indicating 
that students who are inferred to be less bored, less likely to be 
haphazardly guessing, and better prepared for the coursework (as 
indicated by efficient progress through content in the first week of 
the course) are less likely to seek out human help extensively.  

Table 2. Representative estimated logistic regression model 
for the task of predicting whether a student is a TDC Super-
User (versus a non-TDC User). Rows for significant variables 

at α = 0.05 are bold and italicized. 

Variable Coefficient Std. 
Error p-value 

(Intercept) -.756 .604 .21 

Assistance Per Step .664 .526 .207 

Gaming the System .103 .271 .704 

Off-Task .35 .161 .03 

Guessing -.611 .306 .046 

Slipping .135 .17 .429 

Boredom -.774 .292 .009 

Frustration .249 .182 .172 

Confusion -.084 .233 .72 
Engaged 

Concentration .376 .306 .218 

Week 1 Sections .361 .193 .061 

Week 1 Assistance -.333 .322 .302 

Week 1 Time .058 .277 .833 
Week 1 

Sections/Hour -1.365 .425 .001 

Week 1 
Assistance/Hour .052 .285 .856 

Week 1 Completer .478 .636 .452 

6.2 Prediction Task 2: TDC Users + TDC 
Super Users 
As expected, we find that distinguishing those students who used 
TDC at least once (the set of TDC Users + TDC Super-Users) 
from TDC Non-Users is more “difficult” in the sense that models 
achieve a lower degree of classification accuracy, precision, and 
recall, as well as a lower AUC (Table 3). 

Inspection of the representative, estimated LR model in Table 4 
indicates that in addition to the three same features that are 
significant in predicting TDC Super-User status (i.e., Off-Task 
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disengagement, Boredom, and Guessing), Week 1 Time is a 
significant predictors that students will have used TDC at least 
once, suggesting that this measure of time provides different 
information to help distinguish between these categories of 
students.  

Table 3. Mean and standard deviation (in parentheses) for 
accuracy, precision, recall, and area under the ROC curve 

(AUC) over 500 iterations for the task of predicting whether a 
student used TDC at least once (i.e., TDC Super-User or TDC 
User versus a non-TDC User) [see model acronyms in caption 

for Table 1] 

Model Accuracy Precision Recall AUC 

LR .614 
(.0111) .62 (.012) .592 

(.023) 
.666 

(.012) 

RF .615 
(.0109) 

.614 
(.0115) 

.618 
(.0209) 

.66 
(.0113) 

SVML .612 
(.0105) 

.624 
(.0133) 

.5651 
(.0377) 

.6656 
(.0113) 

SVMR .598 
(.0115) .6 (.013) .591 

(.0332) 
.629 

(.0121) 
 

Table 4. Representative estimated logistic regression model 
for the task of predicting whether a student is a TDC User 

(versus a non-TDC User). Rows for significant variables at α = 
0.05 are bold and italicized.  

Variable Coefficient Std. 
Error p-value 

(Intercept) -.1 .2 .617 

Assistance Per Step -.068 .118 .564 

Gaming the System -.05 .092 .586 

Off-Task .133 .063 .035 

Guessing -.233 .071 < .001 

Slipping -.021 .056 .706 

Boredom -.527 .088 < .001 

Frustration .067 .045 .142 

Confusion .132 .092 .149 
Engaged 

Concentration .042 .096 .661 

Week 1 Sections -.117 .064 .067 

Week 1 Assistance -.226 .115 .05 

Week 1 Time .378 .128 .003 
Week 1 

Sections/Hour -.135 .077 .08 

Week 1 
Assistance/Hour -.085 .081 .29 

Week 1 Completer .205 .213 .335 
 

Since this prediction task is the least imbalanced of the three we 
consider, we also consider learning models without our adopted 
under-sampling scheme. Though we omit extensive analysis of 
these models for brevity, Table 5 provides performance metrics 
for LR and RF models learned by taking a 60-40% training-test 
split of all students, learning models using 10-fold cross validation 

on the training set and applying the model with greatest accuracy 
to the test set. We find that this model modestly out-performs the 
trivial, majority class classifier in terms of classification accuracy 
with comparable precision, but recall of this model is substantially 
greater than that achieved by typical models in our under-
sampling scheme.  
Building on our observations from the previous model, since 
Week 1 Time has a positive parameter estimate, students who take 
more time to work through content in the first week, and perhaps 
work more diligently by guessing less as they make problem-
solving attempts, may be more likely to seek out help via TDC. It 
is possible that otherwise relatively diligent students (by some 
measures) who seek out TDC begin to adopt a sub-optimal 
learning strategy of some sort that is indicated by the Off-Task 
detector more frequently than those students who do not seek out 
TDC. 

Consequently, the F measure (one commonly used evaluation 
metric that balances precision and recall) would be greater for 
these models than for those of the typical models of our under-
sampling scheme. Nevertheless, AUC of these models are nearly 
identical to mean values of models learned according to our 
under-sampling scheme. Perhaps more importantly, the estimated 
logistic regression model points to exactly the same set of 
significant behavioral and affective features, Off-Task 
disengagement, Boredom, and Guessing, as the model reported in 
Table 4. Week 1 Time is also significant in models using both 
approaches, though Week 1 Sections, Week 1 Assistance/Hour, 
and Week 1 Completer are significant in the model that does not 
rely on under-sampling.  

Table 5.  Accuracy, precision, recall, and area under the ROC 
curve (AUC) for the task of predicting whether a student used 

TDC at least once (versus a TDC Non-User) for models 
estimated without relying on under-sampling scheme (trivial 

majority classifier accuracy = .625) 

Model Accuracy Precision Recall AUC 

LR .666 .684 .865 .669 

RF .651 .68 .832 .659 
 

6.3 Prediction Task 3: TDC Sessions Follows 
a CT Login Session 
As expected, the most difficult task was to predict whether a 
particular CT session was going to be followed by a TDC session, 
as illustrated by the performance metrics for the various models 
we consider in Table 6. 

Table 6. Mean and standard deviation (in parentheses) for 
accuracy, precision, recall, and area under the ROC curve 

(AUC) over 500 iterations for the task of predicting whether a 
particular student CT session is followed by a session with a 

TDC tutor [see model acronyms in caption for Table 1] 

Model Accuracy Precision Recall AUC 

LR .599 
(.009) 

.604 
(.015) 

.579 
(.021) .633 (.01) 

RF .587 (.01) .587 
(.014) 

.592 
(.023) 

.621 
(.011) 

SVML 0.6 (.009) .61 (.015) .559 
(.023) .633 (.01) 

SVMR .598 (.01) .606 
(.017) 

.567 
(.031) .632 (.01) 
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Table 7 provides a representative, estimated LR model that 
provides insight into the factors that are predictive of a student’s 
tendency to seek out human tutoring via TDC from within a 
particular CT session. Here, Boredom appears again, along with 
Engaged Concentration (which was significant in neither 
Prediction Task #1 nor Prediction Task #2), as a significant, 
negatively associated predictor. We also find that Gaming the 
System, another form of disengagement, is positively associated 
with a tendency to seek out immediate help via TDC, along with 
Week 1 Sections. 

At the level of student-login sessions in Prediction Task #3, 
Gaming the System and the other detected factors are no longer 
highly correlated (as they were when we considered student-level 
aggregated features in Prediction Tasks #1 and #2). Rather # Hints 
and # Errors and Week 1 Time and Week 1 Assistance are 
relatively highly correlated, leading us to exercise caution in the 
interpretation of estimated coefficients associated with these 
(insignificant) predictors. 

Table 7. Representative estimated logistic regression model 
for the task of predicting whether a particular student CT 

login session is followed by a session with a TDC tutor. 
Coefficients are un-standardized. Rows for significant 

variables at α = 0.05 are bold and italicized. 

Variable Coefficient Std. 
Error p-value 

(Intercept) 1.321 .364 < .001 

# Errors -.002 .001 .177 

# Hints .002 .001 .262 

Gaming the System 1.367 .23 < .001 

Off-Task .612 .652 .348 

Guessing -.718 1.207 .552 

Slipping -.197 .491 .689 

Boredom -.783 .149 < .001 

Frustration .12 .316 .705 

Confusion .213 1.32 .872 
Engaged 

Concentration -1.575 .229 < .001 

Week 1 Sections .021 .006 < .001 

Week 1 Assistance -.0001 .0001 .179 

Week 1 Time .003 .01 .733 
Week 1 

Sections/Hour -.021 .019 .263 

Week 1 
Assistance/Hour -.0004 .001 .68 

 

7. DISCUSSION 
7.1 Highlights & Summary 
At least two qualitative findings are robust in the modeling 
presented. First, as inferred by detector models in CT, Boredom is 
negatively associated with a tendency to seek out human help 
outside of the CT ITS via the TDC service in both the aggregate 
(Prediction Tasks #1 and #2) as well as the more immediate term 

(Prediction Task #3). Especially when combined with the negative 
association of Guessing with seeking out TDC’s services in 
Prediction Tasks #1 and #2, this suggests at least a modicum of 
baseline diligence in working within CT for those who sought out 
TDC. However, the second robust finding may point to the 
adoption of counter-productive strategies that may also lead 
students to require assistance outside of the ITS. This second 
robust finding is that two facets of learner disengagement inferred 
by such detector models, Off-Task behavior and Gaming the 
System, are positively associated, in the aggregate and more 
immediately, respectively, with seeking human assistance outside 
of the CT ITS. These insights contribute to a bevy of literature 
concerning various aspects of the technology-enhanced learning 
experience, generally centered on learning outcomes and learners 
using ITSs, which are associated with these phenomena (e.g., [14, 
18, 30]). 

7.2 Limitations 
While we consider a rich, substantial data set with thousands of 
learners, the present analysis is not without its limitations. First, 
we merely consider learning models to predict that a student is 
likely to be particular “type” of TDC user or that a particular CT 
login session is likely to be followed by a session with a TDC 
tutor. We do not consider the effectiveness of TDC sessions, 
though some work has begun to consider that question [28-29], or 
attempt to deeply link the specific KCs within CT on which 
students may have been working when they sought out TDC. This 
dataset also offers the opportunity to consider CT usage and 
performance (possibly at the level of fine-grained KCs) before 
and after a TDC session as a type of pre- and post-test for these 
sessions. 

Further, this is a purely retrospective, observational study, and the 
empirical frequencies with which students sought out (and did not 
seek out) help via the TDC service reflects likely over-use and 
near certain under-use. While the models we have learned have 
provided insights into the context in which these data were 
collected, data from scenarios and contexts in which we suspect 
that such use of human tutors is more attuned to need would 
provide interesting contrast cases to the present study. In addition, 
while associations uncovered by predictive models like those 
presented could arise due to causal relationships between factors 
captured by these predictors, the present analysis does not provide 
us evidence for any such claims. While adopting counter-
productive strategies like gaming the system in CT may precede 
seeking out human help, is such a counter-productive strategy 
really the cause of seeking such help? If we were to conceive of a 
clever intervention to reduce gaming the system behavior, would 
that reduce the incidence of learners seeking out human help? 
Future work might more carefully observe students in 
environments in which they can seek out human help while using 
an ITS (or other systems) to elicit their explanations for help 
seeking, or experimental studies might consider interventions that 
tend to increase or decrease the extent to which students rely on 
external help. 

8. FUTURE WORK 
In addition to several opportunities noted in the previous section, 
we consider two “big” ideas with respect to future work. 

8.1 Information vs. Affirmation 
One concern with this analysis is that we are building models that 
combine different motives for students to seek out human 
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assistance. Consider the following dialog (a slightly edited TDC 
interaction): 

Tutor: hi! what can I help you with today?      
Student: Do you know how to do a factor table?      
Tutor: Hmm I am familiar with it. Is there a problem that 
you wanted to go over?      
Student This looks like an easy one, but I am not sure so I 
just want to make sure I understand this correctly   
Student: To check this table is all you do multiply the top 
row by the 7x and see if it matches the bottom row? Is this 
right? 
Tutor: Yeah everything looks good to me. Great job!     
Student: I was hoping that I did this right. 

We call this kind of interaction a request for “affirmation,” rather 
than information. The tutor is not teaching the student anything, 
just verifying that the student’s approach is correct. The 
conditions leading to this type of interaction are likely to be very 
different from information requests. They may occur when 
students have high knowledge but low confidence, for example. 
Future work will explore models that separate information from 
affirmation sessions. 

8.2 Instructional Hand Offs 
In contemporary K-12 classrooms, online courses, and other 
settings for learning, students may seek instruction, assistance, 
remediation, opportunities for enrichment, and even affirmation 
from multiple resources, including technology resources like ITSs 
and non-technological resources like human beings. Especially 
when at least one of these resources is technological, providing 
adaptive, intelligent guidance to learners as to when they should 
use particular resources and applications (or persist and try to 
“stick with it” and learn within a particular application) will be 
crucial. In the present study, we have sought to better understand 
cognitive, behavioral, and affective factors that predict that a 
student may seek help from a non-ITS resource like a human tutor 
while using the CT ITS for math, but other types of instructional 
hand offs should also be considered. 

Hand offs between instructional applications might happen, for 
example, between an ITS and a simulation-based training 
environment. When a student has completed all of the skills for 
which the ITS provides instruction, the simulation-based training 
environment that includes some overlapping content with the ITS 
could tailor its simulated scenarios around emphasizing elements 
of those skills in the ITS on which the student struggled and de-
emphasize skills that the student easily mastered within the ITS. 
This is likely to require a lingua franca shared by the ITS and the 
simulator about the competencies or skills that are tracked by 
each, or perhaps both may rely on a set of external standards or 
some other way of indicating how this type of hand off based on 
such cognitive factors may work. Efforts including the 
development of the Experience API5 (xAPI), the Total Learning 
Architecture6 (TLA), and the Generalized Intelligent Framework 
for Tutoring7 (GIFT) exemplify moves in directions that would 
enable progress toward these and similar goals. 

                                                                    
5 https://github.com/adlnet/xAPI-Spec 
6 https://www.adlnet.gov/tla/ 
7 https://www.gifttutoring.org/ 

Of course, even in the case of guiding an instructional hand off 
between an ITS and a human tutor (or K-12 classroom teacher) 
for a student who needs help with content covered by the ITS, the 
ITS ideally should be able to communicate to the human tutor or 
classroom teacher that the learner in question requires assistance 
on a particular skill, just needs a confidence boost, or has been 
adopting counter-productive and/or disengaged learning strategies 
like gaming the system that should probably be discouraged. 
Insights into predictors of help seeking may help to drive 
development of recommendations delivered by the learning 
application to the learner or could also drive recommendations to 
a teacher via an application that surfaces insights from the ITS. 

We hope this work provides a step toward more work on these, 
and related, problems. 
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ABSTRACT 

A key affordance of game-based learning environments is their 

potential to unobtrusively assess student learning without 

interfering with gameplay. In this paper, we introduce a temporal 

analytics framework for stealth assessment that analyzes students’ 

problem-solving strategies. The strategy-based temporal analytic 

framework uses long short-term memory network-based evidence 

models and clusters sequences of students’ problem-solving 

behaviors across consecutive tasks. We investigate this strategy-

based temporal analytics framework on a dataset of problem-

solving behaviors collected from student interactions with a game-

based learning environment for middle school computational 

thinking. The results of an evaluation indicate that the strategy-

based temporal analytics framework significantly outperforms 

competitive baseline models with respect to stealth assessment 

predictive accuracy.  

Keywords 

Game-based Learning, Stealth Assessment, Temporal Analytics, 

LSTM, Strategy Use 

1. INTRODUCTION 
Recent years have seen significant growth in investigations of 

game-based learning. Game-based learning environments utilize 

the motivational elements of games to foster students’ learning and 

engagement [7, 34, 36]. Studies have shown that learners who 

engage in game-based learning experience higher motivation 

compared to those who learn with conventional methods [8, 39]. 

Intelligent game-based learning environments integrate the 

adaptive learning support of intelligent tutoring systems and the 

motivational elements of games [15]. Like intelligent tutoring 

systems, they utilize students’ interactions with the learning 

environment to infer student models of cognitive, affective, and 

metacognitive states [20, 26, 40]. The resulting student models can 

then guide tailored problem-solving scenarios, cognitive feedback, 

affective support [1,25]. 

In contrast to traditional assessment, stealth assessment of student 

learning can rely solely on student interaction trace data from the 

game-based learning environment without disrupting the natural 

flow of learning [38]. Stealth assessment infers students’ 

competency with respect to knowledge, skills, and performance 

using evidence derived from students’ game-based learning 

activities often based on evidence-centered design (ECD) [27]. 

ECD utilizes task, evidence, and competency models to assess 

students’ relevant competency and proficiency [35]. In game-based 

learning environments, stealth assessment can monitor granular 

game-based behaviors across multiple tasks in the game to generate 

evidence, which can then be used to dynamically infer a 

competency model of the student. Operating in this fashion, stealth 

assessment has been examined to unobtrusively perform 

assessments of a wide range of constructs [40], and provide 

formative feedback to students and teachers to inform instruction 

and enhance learning [39, 5, 18]. 

Although an abundance of data can be readily captured from 

student interactions within game-based learning environments, a 

key challenge posed by stealth assessment is translating the raw 

data into meaningful representations to model students’ 

competencies and performance [39]. This problem is exacerbated 

by the fact that student behavior unfolds over time in a manner 

dependent on prior actions. In this work, we present an approach to 

stealth assessment that leverages temporal analytics based on 

students’ problem-solving strategies. Building on findings that 

problem-solving strategies significantly influence learning 

outcomes [11, 33], we introduce a strategy-based temporal 

analytics method using n-gram features and investigate whether 

problem-solving strategies identified from clustering students’ 

interaction patterns can improve the predictive accuracy of 

evidence models for stealth assessment.  

After clustering students based on their problem-solving behaviors, 

we predict their post-test performance using their cluster 

assignments as predictive features for a suite of classifiers. This 

approach is based on the intuition that as students’ progress through 

a series of learning tasks, their choice of strategy affects their 

learning outcomes. For example, if a student first pursues a trial-

and-error strategy for initial tasks and later in the learning session 

begins to adopt a more effective strategy, her strategy shift may 

lead to higher post-test scores. We hypothesize that drawing 
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inferences about strategy shifts may serve as the basis for accurate 

predictions of learning performance.  

Because strategies and strategy shifts are inherently time-based 

phenomena, we propose a strategy-based temporal analytics 

approach to stealth assessment based on long short-term memory 

networks (LSTMs). In this approach, we develop predictive models 

that capture the temporal dependencies between students’ 

dynamically changing problem-solving behaviors. We find that the 

strategy-based temporal analytics framework outperforms baseline 

models that do not capture strategic temporal dependencies on 

predictive accuracy. Further, we find that the strategy-based 

temporal analytics framework utilizing both student problem-

solving behavior traces and pre-test performance outperforms a 

model that uses only pre-test data. The results suggest that strategy-

based temporal analytics can serve as the foundation for effective 

stealth assessment in game-based learning. 

2. RELATED WORK 
Game-based learning leverages game design elements to foster 

engagement in learning [7]. Because of its potential to create 

motivating learning experiences, game-based learning has been 

explored for a broad range of subjects including science [29], 

mathematics [17], computer science [3, 24], and public policy [36]. 

A notable family of game-based learning environments, intelligent 

game-based learning environments, integrate intelligent tutoring 

system functionalities and game-based learning [15, 20]. Intelligent 

game-based learning environments can embed stealth assessments, 

which have emerged as a promising approach to assessing game-

based learning [37, 31, 39]. In stealth assessment, student 

competencies are assessed unobtrusively by drawing inferences 

from observations of students’ learning interactions. 

In one approach to stealth assessment, a directed graphical model 

was built based on relevant competencies, and related variables 

were extracted from the observed data to be used as evidence for 

the targeted competencies [19]. In another approach, Falakmasir 

and colleagues investigated two hidden Markov models (HMMs) 

that were trained for high-performing and low-performing students 

[12]. Subsequently, for observed sequences of events, log-

likelihoods were calculated for each HMM. Finally, the difference 

between the two log-likelihoods was used in a linear regression 

model to predict post-test scores. This approach reduces the need 

for labor-intensive domain knowledge engineering. 

Work on deep learning-based stealth assessment, DeepStealth, 

offers an alternate approach that uses artificial neural networks to 

perform stealth assessment [24]. DeepStealth used a deep 

feedforward neural network (FFNN) to learn multi-level, 

hierarchical representations of the input data for evidence 

modeling. In subsequent work, structural limitations in the FFNNs 

were addressed with a long short-term memory network-based 

stealth assessment framework that directly uses students’ raw 

interaction data as input [25]. The strategy-based temporal 

analytics framework we propose in this paper builds on this prior 

work, but while the previous work focused primarily on 

computational methods to model evidence within ECD, the 

approach introduced in this paper derives temporal evidence from 

students’ dynamic in-game strategy use throughout their problem 

solving. We cluster students to categorize them based on in-game 

strategy utilization per task, and then use sequences of in-game 

strategy features over multiple tasks to predict post-test 

performance. 

Previous work has also explored approaches to detect students’ 

problem-solving strategies using trace data. For example, one effort 

focused on building a probabilistic model that jointly represent 

students’ knowledge and strategies [16], which was effective at 

predicting learning outcomes. Another approach focused on 

selecting features for classifying students’ efficiency in solving 

challenges [22]. The temporal analytics framework we introduce in 

the paper uses problem-solving strategies that are automatically 

discovered through clustering based on n-grams of players’ 

sequences of interactions with a game-based learning environment, 

thus obviating the need for labeling or expert knowledge. 

3. EXPERIMENTAL SETUP 
We investigate the strategy-based temporal analytics approach for 

stealth assessment with data collected from middle school students’ 

interactions with a game-based learning environment for 

computational thinking. We describe the learning environment, its 

in-game problem-solving challenges, and the dataset generated 

from students’ interactions with the game-based learning 

environment. 

3.1 ENGAGE Game-based Learning 

Environment 
ENGAGE is a game-based learning environment designed to 

introduce computational thinking to middle school students (ages 

11-13) (Figure 1). The game was developed with the Unity multi-

platform game engine and features a rich, immersive 3D storyworld 

for learning computing concepts [3, 24]. The game-based learning 

environment aims to promote computational thinking skills 

including abstraction and algorithmic thinking through problem 

solving and programming. The computational challenges within the 

game were designed to prepare middle school students for 

computer science work in high school, and to promote positive 

attitudes toward computer science. 

A diverse set of over 300 middle school students participated in 

focus group activities, pilot tests, and classroom studies with the 

game. Of the students who provided demographic information, 

47% were female; 24% were African American or Black,16% were 

Hispanic or Latino/a, 17% were Asian, 38% were White, and 5% 

of the students were Multiracial. The research team worked closely 

with a similarly diverse group of teachers throughout the project. A 

subset of teachers helped to co-design the game-based learning 

activities, providing iterative feedback throughout development. 

Each of the teachers implementing the game in their classrooms 

attended either one or two summer professional development 

workshops that introduced computational thinking concepts and the 

ENGAGE game-based learning environment. 

In the game, students play the role of the protagonist who is sent to 

investigate an underwater research facility that has lost 

communications with the outside world. As students progress 

through the game, they discover that a nefarious villain has taken 

control of the computing devices within the facility. Students 

navigate through a series of interconnected rooms and solve a set 

of computational challenges. Each of the challenges can be solved 

either by programming devices or interacting with devices in 

reference to their pre-written programs. Students use a visual block-

based programming language to program the devices [25]. They are 

supported throughout the game by a cast of non-player characters 

who help them progress through the narrative, offer clues, and 

provide feedback while they navigate the game and solve 

computational challenges [24]. 

The game consists of three major levels: the Introductory Level, in 

which students learn the basics of the game and simple 

programming; the Digital World Level, in which students learn 
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how digital data is represented with binary sequences; and the Big 

Data Level, in which students have the opportunity to work with 

various datasets and retrieve hidden information by cycling through 

data and filtering it based on different conditions. 

The work presented in this paper focuses on students’ problem-

solving activities within the Digital World level. The first set of 

tasks in this level consists of binary locks that are programmed to 

open if the binary representation of a specific base-ten number is 

generated by the students. Similarly, the second set of tasks 

(Figure 2) in the Digital World level features lift devices that are 

activated when students generate the target base-ten value by 

flipping binary tiles and execute the program associated with the 

lift. For example, students can find the target number by reviewing 

an existing program (Figure 2, right) associated with the binary lift 

device. Each lift provides students with five consecutive flip tiles 

representing bits of a five-digit binary number. Players can toggle 

each bit between 0 and 1 by flipping the corresponding tile on the 

tile panel. The decimal representation of their generated binary 

number will be presented on a small screen above the panel. To 

teach variations of binary representations, the game enables 

students to flip tiles between ‘0’ and ‘1’, ‘black’ and ‘white’, and 

‘F’ (False) and ‘T’ (True), as in (Figure 2, left).  

To advance to the next task, students must flip binary tiles on the 

binary lift device to generate the target decimal number (Figure 2, 

left) execute its program, and lift up the binary device. Through 

these tasks, students learn about the concept of bits in binary 

numbers and the weight assigned to each bit. In the analyses 

reported here, we used behavior trace data from students’ 

interactions with 11 binary tasks from the Digital World level, 

where students learn the weight associated with each of the five bits 

through the first five tasks and then learn how to combine multiple 

bits to make more complex numbers with binary representations. 

3.2 Dataset 
We analyzed 244 students’ behavior trace data obtained from a 

teacher-led study in four public middle school classrooms in the 

urban area in the United States. The four schools reported an 

average percentage of free or reduced lunch as 34.75%, 41.07%, 

31.65%, and 63.17% during the years of data collection, 

respectively. Furthermore, three of the schools were magnets for 

gifted and talented students and the fourth was a magnet for 

leadership and innovation. To support collaborative learning, 

which is prominent in computer science education [3], we collected 

student behavior trace interaction data from pairs of students in 

which they took turns serving as navigator (traversing the game) 

and driver (action planning). Pre- and post-test assessments 

measuring content knowledge (e.g., binary representation) were 

completed individually by students before starting the Digital 

World level (pre-test) and immediately after finishing it (post-test). 

Both pre-test and post-test are on a scale of 0 to 1. Out of 244 

students, 168 students completed the pre-test and post-test for 

content knowledge as well as all 11 binary representation tasks for 

this level. The results of conducting a paired t-test on students’ 

content knowledge pre-test (M=0.44, SD=0.20) and post-test 

(M=0.59, SD=0.24) revealed a significant improvement from pre-

test to post-test scores (t(167) =11.24, p<0.001).  

4. MODELING STUDENTS’ PROBLEM-

SOLVING STRATEGIES 
Students exhibited a broad spectrum of problem-solving strategies 

while solving the binary challenges in the Digital World level. For 

example, some students pursued random trial-and-error strategies 

to find solutions, while at the other end of the spectrum, some 

students pursued thoughtful systematic approaches to solve the 

challenge. As would be expected, some students fell in the middle 

of this spectrum by utilizing more thoughtful trial-and-error. 

Figure 1. ENGAGE game-based learning environment: students write a program that loops over a binary grid. 
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For each of the 11 consecutive binary challenges, we used students’ 

tile-flip sequences to cluster them into distinct groups. 

Subsequently, we interpreted these clusters in terms of the problem-

solving strategy exhibited by members of each cluster. Below we 

first describe the process of clustering students’ task-level 

strategies based on their binary tile flip sequences and then describe 

the representative problem-solving strategy in each cluster. 

4.1 Methodology 
In order to group students based on their problem-solving 

strategies, we first derived features from students’ binary tile flip 

sequences. We encoded the flip sequences as n-grams, commonly 

used as a representation for sequential data such as text and speech 

[41], as well as for sequential trace data [12]. The n-gram 

representation extracts sequences of n adjacent elements from the 

original string. We consider each unique n-gram as a feature in our 

n-gram based feature vector, while we use the frequency of each n-

gram occurrence in a flip string as a value in this work. 

For each of the 11 binary challenges, students’ behaviors (i.e., the 

flip sequence generated for that specific task) were clustered based 

on the extracted n-gram features, resulting in 11 sequential cluster-

memberships per student. Since each task differed slightly from the 

other tasks, we analyzed students problem-solving behavior 

separately for each task. In the following sections, we describe how 

we identified different problem-solving strategies using the 

proposed clustering method.  

4.1.1 Feature Engineering 
We extracted students’ interactions with binary flips in the format 

of a string containing students’ consecutive flips of the binary tiles 

for each task. Each task is associated with a decimal number to 

operate the device (e.g., 26 in Figure 2), where the binary number 

displayed on the five tiles is set to 00000 by default. For example, 

considering tiles’ indices starting at one from the right most tile, if 

a student has flipped tile number four (i.e., 01000 with the decimal 

representation of 8), followed by flipping tile number five (i.e., 

11000 with the decimal representation of 24), their tile flip string 

would become {4, 5}. 

In order to capture the most fine-grained information present in the 

series of flips, we used n-grams with varying lengths of n. 

Preliminary explorations showed including sequences of lengths 

larger than four exponentially increases the sparsity of the dataset. 

To eliminate the sparsity issue, we capped the n-gram size at 4. Our 

final feature set ranges from sequences of length one (i.e., unigram 

features) to sequences of length four (i.e., 4-grams) that are 

repeated at least three times throughout our dataset. We used the 

natural language processing toolkit (NLTK) library for Python to 

extract n-grams and their associated frequency from each flip 

string. For example, for one of the tasks, a total of 2,495 unique n-

grams with at least three occurrences were generated from the 

student flip strings for that task. These n-gram feature vectors were 

then used to cluster students’ in-game strategy use per task, where 

an n-gram feature vector per student was generated separately for 

each of the 11 tasks.  

Flip strings provide a fine-grained representation of students’ 

problem-solving behaviors in solving binary representation 

challenges, and these features offer a method to identify students’ 

adopted strategies. As an example, consecutive flips of the same 

tile by a student can be an indicator of the student’s intention to 

learn the weight assigned to that binary digit. Further, the overall 

number of flips conducted to generate the target base-ten value can 

be used to gauge the students’ overall efficiency in solving the 

problem. 

4.1.2 Clustering  
Next, we applied the expectation-maximization (EM) clustering 

technique to students’ flip behaviors represented using an n-gram 

feature vectors to identify students’ problem-solving strategies. 

Because each of the 11 tasks in the Digital World level targets a 

different base-ten number, the binary code needed to solve the task 

is different. Consequently, flip sequences obtained from students’ 

interactions with a binary device reveal information specific to the 

target value designed for the task. Thus, clustering was performed 

separately for each of the 11 tasks. We used the MClust package in 

R to cluster the feature vectors. EM clustering can explore a range 

of cluster numbers and return the (local) optimal number of clusters 

based on the maximum likelihood estimation. A different optimal 

number of clusters was identified for each task. Three, four, and 

nine clusters emerged most frequently when we explored the 

number of clusters between two to ten. A preliminary investigation 

on these different number of clusters found that three clusters 

Figure 2. (Left) A binary lock device that students must unlock. The T (true) tiles indicate the bits are 1, whereas F (false) tiles 

denote 0. The current binary number is 11010 and the corresponding base-ten number, 26, is displayed on the device as 

immediate feedback. (Right) The visual programming interface displaying the binary lock's program. 
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showed coherent patterns for problem-solving strategies across all 

tasks, and we thus chose three as the number of clusters for all tasks 

in this work. 

4.2 Interpreting Clusters  
To interpret student problem-solving strategies using the clusters as 

identified above, we present two novel methods that measure the 

error between the target value and the student-generated value. To 

analyze students’ problem-solving patterns for each cluster of each 

task, we calculated the average error at each flip relative to the 

solution target of students who belong to the same cluster. All 

students start from the difference between the default value zero 

and the target decimal value. Since we analyzed students who 

completed a task, the average error for each cluster decays toward 

zero, and we expected to observe distinct error-decay patterns 

across the three clusters. We introduce two error calculation metrics 

that measure students’ error based on the distance from the current 

value to the targeted value: the decimal error and binary error. 

These two approaches are described below. 

4.2.1 Decimal Error 
The decimal error is the absolute difference between the target 

base-ten value and the base-ten representation of the student-

generated binary string. Each student starts with an error equal to 

the target value and ends with an error equal to zero. We calculate 

the decimal error after every new flip. As a result, a sequence of 

decimal errors is generated for each student per flip action when 

completing each of the 11 tasks. We then plot the average decimal 

error where the y-axis shows students in the same cluster 

(separately for each task), and the x-axis shows the maximum 

number of flips observed in the cluster as in Figure 3 (left). Because 

the total number of flips is different for each student in a cluster, 

we use the decimal error value of zero for students who already 

completed the task and calculate the average decimal error over all 

students in the cluster.  

For example, suppose there are two students in a cluster, where 

student A’s decimal error sequence is {2, 1, 2, 0} and student B’s 

error sequence is {2, 0} in the task of making the value two in base-

ten. We use the maximum length of sequence, four, obtained from 

student A, and reformulate student B’s sequence to {2, 0, 0, 0}. In 

this case, the average decimal error sequence becomes {2, 0.5, 1, 

0}. The average error at each flip for the eighth binary challenge 

where the student is asked to find the binary number for the target 

26 is shown in Figure 3 (left). For this task 118 students were 

grouped in the first cluster, 108 students were grouped in the second 

cluster, and 19 students were grouped in the third cluster. In 

Figure 3, because the target value for this task is 26, the average 

error for students is 26 in the beginning, which becomes zero at the 

end, while decay patterns differ across clusters. Students in each 

cluster solved the problem within a varying number of flips. The 

error for students who finished earlier is represented with zero. We 

show the percentage of students still working on the challenge at 

each flip using a color coding scheme. In Figure 3, green points 

mark flips where between 70% to 100% of the population is 

present, blue points indicate the presence of 50% to 70% of the 

population, yellow points mark 30% to 50% of the population, and 

red points indicate flips were less than 30% of the population of 

that cluster are still working on the problem. These percentages are 

derived from the cumulative density functions (CDFs) of clusters’ 

Figure 3. Students' average decimal error and the CDF of the present population at each flip. 
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present population at each flip that are plotted in Figure 3 (right). 

The clusters for the other ten binary representation tasks in the 

Digital World level follow similar error-decay patterns.  

4.2.2 Binary Error 
Binary error is the Hamming distance, the number of different 

elements in two strings with the same size, between the current state 

of the student-generated binary string and the binary representation 

of the target base-ten value. The approach for plotting the binary 

error is similar to the approach for plotting the decimal error. Figure 

4 shows binary (right) and decimal (left) error plots for each cluster 

of the challenge, finding the binary representation of the number, 

26. As the binary error plots are generated from the same cluster-

based population used for generating decimal error plots, the same 

CDFs as in (Figure 3, right) hold for binary error plots. 

4.2.3 Resulting Strategies 
The same general patterns apply to other challenges analyzed in this 

study. As seen in Figure 4, there is a coherence in the error decay 

pattern between the decimal and the binary error. The decimal error 

captures students’ strategies to make the base-ten errors between 

the target number and current binary representations as small as 

possible, while the binary error places more emphasis on the 

representational difference between binary sequences focusing on 

students’ understanding on each bit and its associated weight. The 

analyses reveal a clear distinction in students’ problem-solving 

strategies in solving the in-game challenges. After clustering, the 

following distinct groups emerge for all analyzed tasks: 

 Students who completed the task more quickly than the 

other groups and with fewer trial-and-error attempts (Cluster 

1). 

 Students who had a moderate number of flips and 

demonstrated error decaying continuously toward zero with 

some trial-and-error attempts (Cluster 2). 

 Students who completed the activity with many more flips 

compared to students in the other clusters, which may be an 

indicator of less thoughtful trial-and-error attempts    

(Cluster 3). 

The binary and the decimal error decay patterns paralleled each 

other for every cluster of every task. The analyses reveal that the 

two error metrics similarly capture n-gram-encoded student 

behaviors, while students’ per-task behaviors naturally fall into one 

of the three groups. We used these identified clusters as game 

strategy features for our evidence model for stealth assessment. 

5. STEALTH ASSESSMENT 
Modeling students’ strategies can contribute to improving their 

learning outcomes [11, 33]. In this work, we aim to evaluate the 

predictive power of models of students’ in-game problem-solving 

strategies over time to predict their post-test performance. We seek 

to determine if the in-game strategies observed in students’ 

interactions with the game environment can be used as evidence for 

stealth assessment.  

The feature set implicitly represents rich temporal dependencies 

among student behaviors over the course of interactions with the 

Figure 4. Students' average binary and decimal error at each flip. 
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ENGAGE game-based learning environment. To effectively model 

temporal dependencies in the feature set we investigate an evidence 

model based on long short-term memory network (LSTM) [14]  to 

infer students’ post-test performance based on their in-game 

strategy use over time. We also examine two baseline classification 

techniques, random forest (RF) [1] and support vector machines 

(SVM) [9], to predict students’ post-test performance. It is 

important to note that, in contrast to the LSTM approach, neither 

the random forest nor the support vector machine approaches 

explicitly capture the temporal relationships in students’ strategies. 

Thus, they treat in-game strategy features as independent features 

in their predictions. 

We devise two LSTM-based evidence models, one model utilizing 

a feature set that contains pre-test performance only and another 

model utilizing both pre-test performance and in-game strategy 

features, to isolate the effects of incorporating the temporal 

dependencies captured by the LSTM-based model. 

5.1 Data Preparation 
For the classification task, we use data from 168 students who 

finished both pre- and post-tests and also completed all 11 binary 

challenge tasks within the game. We excluded data for students 

who did not complete all 11 tasks as we intended to perform a 

temporal analysis across these tasks. Initially, the dataset included 

pre- and post-test scores along with students’ flip sequences, which 

were then transformed into n-gram features for each of the 11 tasks. 

We divide the data into training and held-out test sets. We first 

perform clustering using students’ n-gram feature vectors in the 

training set. After identifying distinct clusters for each challenge in 

the training set, we use the Gaussian finite mixture models 

estimated by the MClust package to cluster students’ data in the test 

set. This maintains the independence of the training and test sets. 

Students’ data in both the training and test sets are represented with 

sequences of in-game strategies across the 11 binary-representation 

tasks along with their pre-test performance (i.e., high, medium, 

low), a categorical representation of the pre-test score based on a 

tertile split obtained from the distributions of the pre-test scores. 

We use these input features to predict post-test performance also 

using the three labels, which are obtained based on a tertile split of 

students’ post-test scores. We chose tertiles to create a balanced 

distribution among all classes. The initial pre- and post-test scores 

are continuous variables, ranging between 0 to 1. For the pre-test, 

scores between (0 ≤ score ≤ 0.36) are categorized as low, scores 

between (0.36 < score ≤ 0.54) as medium, and scores between (0.54 

< score ≤ 1.00) as high. Similarly, for the post-test, scores between 

(0 ≤ score ≤ 0.45) are categorized as low, scores between (0.45 < 

score ≤ 0.72) as medium, and scores between (0.72 < score ≤ 1.00) 

are categorized as high. Table 1 presents the distribution of students 

(n=168) with respect to students’ pre- and post-test performance. 

To transform the data into a trainable representation, we use one-

hot encoding on the categorical variables (i.e., pre-test performance 

and the 11 in-game strategy changes) in preparation for the 

classification task. One-hot encoding is a feature representation 

method for a categorical variable, where a feature vector whose 

length is the size of the possible values is created, and only the 

associated feature bit is on (i.e., 1) while all other feature bits are 

off (i.e., 0). We also prepare two distinct feature sets to evaluate the 

predictive power of the in-game strategy features: 

 Full feature set: For RF and SVM, 36 features including 33 

one-hot encoded features representing the cluster 

membership among the three clusters for each of the 11 

binary tasks and three one-hot encoding-based features (i.e., 

low, medium, and high) representing students’ pre-test 

performance and 3 features to represent students’ pre-test 

performance. For LSTMs, since they take as input the pre-

test performance (3 features) and a task-specific in-game 

strategy (3 features) per time step, it utilizes six features. 

 Pre-test performance feature set: Three one-hot encoding-

based features (i.e., low, medium, and high) representing 

students’ pre-test performance. 

5.2 Classification Methods 
We use ‘randomForest’ [21] and ‘e1071’ [23] packages in R to train 

random forest and SVM classifiers, respectively. For LSTM-based 

evidence models, we use the Keras [6] and scikit-learn [30] libraries 

in Python. 

We use 5-fold cross-validation within the training data to tune the 

hyperparameters of the classification techniques based on the full 

feature set. After optimizing the hyperparameters, we train each of 

the classifiers using the full training set and evaluate them on the 

held-out test set. After comparing classifiers, we take the best 

performing classification technique and train an additional model 

based on the other feature set, pre-test performance feature-set, 

using the same test/train data split used for the full feature set-

level analysis. The classification process for each classifier and 

their results are described below. 

5.2.1 Baseline Method 
The majority class-based method assigns the most frequent label in 

the dataset as the predicted label for all data instances. Since the 

most common label is the grade ‘low’, all labels will simply be 

predicted as the first class (i.e., low post-performance). The result 

of applying the baseline method on the full feature set achieves an 

accuracy of 35.71%. The macro average for recall is 33.33%. The 

precision and F1-score are undefined here since the baseline 

method predicts the most frequent label for all instances, while 

producing no other labels. 

5.2.2 Random Forest Method 
The random forest technique generates multiple decision trees 

using different subsets of the training data using bagging. A random 

forest tree is generated by trying a random subset of available 

features at each split. It then classifies each point in the test set 

using all the trees and uses the majority vote for classifying the test 

point. We use the set (10, 25, 50, 100, 200) to tune the number of 

trees for the model. Using a 5-fold cross-validation approach on our 

training set we found 25 to be the best number of trees for the full 

feature set.  

Random forest classifiers are subject to randomness when being 

trained on a dataset. They perform feature bagging (i.e., a random 

selection of the features at each candidate split), and thus the 

predictive performance of random forests trained utilizing the same 

set of hyperparameters can vary depending on the random 

procedure. As a result, each round of training and evaluation on the 

same training/test sets will result in slightly different accuracies. 

Hence, we report the average result of 100 rounds of training and 

Table 1. Distribution of students (n=168) in 

relation to their pre- and post-test performance 

Test Low Medium High 

Pre-test 74 53 41 

Post-test 60 59 49 
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evaluating the classifier. The mean and standard deviation of the 

results are shown in Table 2. The results of applying the random 

forest classifier on the full feature set achieve an average accuracy 

of 50.43%, an average precision of 52.20%, an average recall of 

50.98%, and an average F1-score of 51.03%. The precision, recall 

and F1 measures are calculated using a macro-average of all three 

classes (i.e., simple average of the relative measurement of all three 

classes).  

5.2.3 SVM Method 
Support vector machines (SVMs) can be used for both regression 

and classification tasks. In classification tasks for which data are 

not linearly separable, data will be transformed to a higher-

dimensional space for linear separability, and SVMs are applied to 

classify the transformed data. For this classification task, we use a 

third-degree polynomial kernel. We tune C as the hyperparameter 

of our SVM model. C is the regularization parameter that controls 

models’ tolerance for incorrect classifications during training. We 

explore a set of values (0.01, 0.1, 1, 10, 15) to tune C on the full 

feature set. Using a 5-fold cross-validation approach on the training 

set, we found C = 1 to be the best parameter to be used in the model. 

The results of applying the SVM model on the test set show an 

accuracy of 41.17%, a precision of 44.14%, a recall of 39.25%, and 

an F1-score of 35.44%. Similar to the RF classifier we report the 

average result of 100 rounds of training and evaluating the trained 

classifier. Since there is no random parameter for this method, the 

standard deviation for the estimated accuracies is 0. 

Both the random forest and SVM approaches achieve higher 

accuracies compared to the simple majority class baseline, 

suggesting that these methods are effective for stealth assessment. 

We hypothesize that the accuracy could be increased by explicitly 

modeling the temporal relationships across students’ sequential 

problem-solving tasks. We next describe the LSTM-based 

approach and the results it produces. 

5.2.4 LSTM Method 
LSTMs are a type of recurrent neural networks (RNNs), a class of 

deep learning methods that are capable of learning temporal 

patterns in data. This characteristic makes LSTMs a promising 

candidate for classifying sequential data, such as time-series data 

of students’ strategy uses across the 11 binary challenges they solve 

during gameplay. A sequence of cluster types (i.e., in-game 

problem-solving strategies for the 11 in-game binary representation 

tasks) can reveal students’ problem-solving progressions as they 

unfold over learning sessions to predict students’ learning 

outcomes. We investigate LSTMs to model dynamic changes in 

students’ problem-solving strategies, motivated by LSTMs’ ability 

to preserve long-term dependencies through their three gating units 

(i.e., input, forget, and output gates).  

We tune the number of LSTM layers and the number of hidden 

units within each layer by conducting a 5-fold cross validation on 

the training set. We explore 15 different hyperparameter 

combinations with different numbers of hidden layers (1, 2, 3) and 

different numbers of hidden units in each layer (10, 15, 25, 50, 100). 

We found that networks with 2 layers with 15 units per produced 

the best results for predictive accuracy. 

Like random forest models, the LSTM-based approach also results 

in different models each time it is trained on the same training set. 

Hence, evaluating these models on the same test-set generates 

slightly different outputs. This is due to the fact that deep learning 

approaches are sensitive to the random weights used to initialize 

the network. In addition, these types of techniques are trained on 

batches and the input order of the batches influence the models that 

are generated. We report an average of 100 runs of training and 

evaluating the LSTM classifier on the same training and test set. 

The results of applying this LSTM on the held-out test set achieve 

an average accuracy of 64.82%, an average precision of 63.88%, an 

average recall of 65.14%, and an F1-score of 63.68%. 

Table 2 provides a summary of the results of the classification 

methods. The highest score per metric is indicated in bold. The 

baseline and SVM approaches are deterministic so their metrics’ 

standard deviations are zero. All classification methods outperform 

the majority class baseline. Because reasoning about students’ 

problem-solving strategy adoption over time can inform predictions 

about the strength of their learning as measured by post-test 

performance, the LSTM-based evidence model yields considerable 

improvement over the other approaches. The results indicate that 

the LSTM model appears to successfully capture the latent 

temporal dependencies among features in students’ problem 

solving. 

Table 2. Performance ( standard deviation) of classifiers 

Method Accuracy Precision Recall F1 

Baseline 

RF 

35.7(0.0) 

50.4(2.5) 

N/A 

52.2(2.7) 

33.3(0.0) 

51.0(2.4) 

N/A 

51.0(2.6) 

SVM 

LSTM 

41.2(0.0) 

64.8(2.7) 

44.1(0.0) 

63.9(2.8) 

39.3(0.0) 

65.1(2.8) 

35.4(0.0) 

63.7(2.5) 

 

5.3  In-game Strategy for Stealth Assessment 
To further investigate the effectiveness of the in-game strategy 

features in predicting students’ post-test performance, we compare 

two versions of the LSTM-based model, our best performing 

classification technique. We create a version of the LSTM-based 

model trained on the full feature set (pre-test features together with 

in-game strategy features) and compare it to a partial feature set 

version (pre-test features only). The results of this evaluation are 

shown in Table 3, where the highest score per metric is indicated in 

bold. 

 

The results demonstrate that incorporating the in-game strategy 

features into the model significantly contributes to predictive 

accuracy. Compared to the 44.66% accuracy achieved by the partial 

feature set version (pre-test features only), the model that uses in-

game strategy features in addition to pre-test features achieves an 

accuracy of 64.82%. The significantly higher accuracy achieved by 

the full-set model suggests that the strategy-based approach that 

uses sequences of strategies as represented by strategy clusters 

appears to capture an important quality of students’ problem-

solving strategies that are predictive of learning performance. 

6. DISCUSSION 
Stealth assessment relies on accurate evidence models inferred 

from student behavior traces, and we found that student behavior 

Table 3. Results of applying LSTM on pre-test only, in-

game strategy, and full features feature sets 

Feature 

set 
Accuracy Precision Recall F1 

Full FS 64.8 (2.7) 63.9(2.8) 65.1(2.8) 63.7(2.5) 

Pre-test 

FS 
44.7(7.9) N/A 42.8(8.3) N/A 
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traces can serve as the foundation for evidence models that are 

driven by students’ in-game problem-solving strategies.  

Building on previous work on stealth assessment we have presented 

a novel problem-solving-strategy-based temporal analytics 

framework leveraging a clustering approach, which notably does 

not require a labor-intensive process of labeling data. While the 

previous work focused on computational methods to model 

evidence within ECD using deep learning networks, we have 

investigated temporal evidence derived from students’ dynamic in-

game strategy uses throughout their game play, and have 

demonstrated the effectiveness of LSTM-based evidence models 

that predict students’ post-test performance.  

For each of the 11 problem-solving tasks in the ENGAGE game-

based learning environment, we first transformed sequences of 

student behavior interactions into sequences of n-gram features to 

capture the temporal information that spans interaction sequences 

and clustered them with EM Clustering. The results revealed clear 

distinctions in students’ approaches toward solving these 

computational thinking challenges. The clustering grouped 

students into those who solved the problem in a few flips and a few 

attempts, those who solved the problem with a moderate number of 

flips and with thoughtful trial-and-error, and those who solved the 

problem with a long sequence of flips and with seemingly random 

trial-and-error. While in our game settings students could try the 

problems as many times as they wanted, other game environments 

might take number of trials into account using a point system that 

could affect players’ problem-solving strategies.  

We then used students’ cluster memberships across different tasks 

as an indicator of their in-game problem-solving strategy and used 

these problem-solving strategies to inform the evidence model for 

predicting students’ post-test performance. The results 

demonstrated that the in-game strategy features provide strong 

predictive capacity for LSTM-based evidence models and more 

generally for the use of stealth assessment. It has been shown that 

LSTM-based ECD evidence models with in-game strategy features 

effectively capture the temporal relationships between strategies, as 

supported by the models’ highest predictive accuracy rate, 

precision rate, recall rate, and F1 scores outperforming competitive 

non-sequential baseline approaches in predicting students' post-test 

performance. We used a relatively small dataset, 168 students for 

this analysis. after collecting more data, we can further verify our 

results. 

It is important to note that the in-game strategy features are derived 

directly from log data and are generated based on an unsupervised 

method, EM Clustering. This automated process of extracting 

students’ in-game problem-solving strategy makes it a promising 

approach for evidence modeling. The approach can be readily used 

for evidence modeling design for learning environments that center 

on students solving problems by performing sequences of actions 

from a limited pool of available actions. However, the proposed 

approach is not appropriate for analyzing ill-defined problems 

where players are not bound to certain actions.  

Evidence models such as those induced in this paper can be used 

by intelligent game-based learning environments to infer students’ 

problem-solving strategies from trace data analysis. When the 

learning environments are signaled by the evidence models that a 

student is following a strategy associated with a poor learning 

outcome, it can intervene to guide students towards more 

productive strategies. In addition to strategy scaffolding, the 

evidence models can also work in tandem with knowledge 

modeling to support knowledge scaffolding. For example, in the 

ENGAGE game-based learning environment, students’ generating a 

desired binary sequence through long series of flips and random 

trial-and-error might be an indicator of lack of knowledge about 

digit weights in a binary string, which could be addressed with a 

timely explanation of binary digit weights. The results of the work 

reported here, as well as those found in related work on inferring 

student problem-solving strategies from behavior trace data [18], 

suggest that modeling students’ problem-solving strategies may 

contribute to improved assessment and also lead to learning 

environments that can adapt more effectively to students’ needs.   

7. CONCLUSION 
Stealth assessment holds considerable potential for game-based 

learning. Although high volumes of dynamic student interaction 

data can be readily captured from game-based learning 

environments, effective stealth assessment poses significant 

challenges. We have introduced a strategy-based temporal analytics 

framework for stealth assessment that uses an LSTM-based 

evidence model trained on sequences of student problem-solving 

strategies learned from clustering n-gram representations of student 

in-game behaviors. In an evaluation of predictive accuracy for 

student learning, the strategy-based temporal analytics framework 

outperformed baseline models that did not capture the temporal 

dependencies of strategy use. In future work, it will be important to 

investigate multiple granularities of strategy representations that 

may lend themselves to hierarchical deep learning methods. It will 

also be instructive to incorporate the LSTM-based models into 

game-based learning environments to explore how they can provide 

classic stealth assessment functionalities while simultaneously 

supporting adaptive scaffolding. 
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ABSTRACT
Knowledge tracing is a popular and successful approach to
modeling student learning. In this paper we investigate
whether the addition of neuroimaging observations to a knowl-
edge tracing model enables accurate prediction of memory
performance in held-out data. We propose a Hidden Markov
Model of memory acquisition related to Bayesian Knowledge
Tracing and show how continuous functional magnetic reso-
nance imaging (fMRI) signals can be incorporated as obser-
vations related to latent knowledge states. We then show,
using data collected from a simple second-language learn-
ing experiment, that fMRI data acquired during a learning
session can be used to improve predictions about student
memory at test. The fitted models can also potentially give
new insight into the neural mechanisms that contribute to
learning and memory.

1. INTRODUCTION
A shared goal for both cognitive science and educational
data mining is the development of accurate models of hu-
man learning. On the basic science side, learning and mem-
ory are important functions of the human brain that support
our ability to flexibly interact with our environment. On the
education side, predictive theories of learning may be lever-
aged by intelligent tutoring systems (ITS) to individually
optimize instruction [3, 20].

Perhaps the most influential approach to modeling student
learning in the educational data mining literature is “knowl-
edge tracing” [5, 10] whereby the learned mastery of a par-
ticular skill or fact is treated as a latent state and the proba-
bility that a person’s knowledge is in that state is updated in
light of observed student behavior. For example, in Bayesian
Knowledge Tracing (BKT), each learning unit is assumed to
be in one of two discrete states: {unknown, known}. Each

∗D. Halpern and S. Tubridy contributed equally to the
project and author order was determined arbitrarily.

time the student engages in a learning activity, the latent
knowledge can transition from the unknown to the known
state with probability l. Performance on a test, quiz, or
exercise is conditional on the latent knowledge state, such
that being in the known state is typically associated with a
higher probability of issuing a correct answer than being in
the unknown state. Using the model, it is possible to infer
posterior probabilities of the knowledge state of each learner
and skill using Bayes’ rule, given the pattern of responses
made on various assessments or quizzes. These probabili-
ties are then used to make predictions about learning per-
formance for new students, as well as to design optimized
instruction policies.

Research in this area focuses on building more precise mod-
els of student learning by, for instance, incorporating fac-
tors that reflect individual abilities [41, 21], contextual fac-
tors that contribute to errors [6], or models of the exact
moment at which a skill is acquired [7]. However, one rel-
atively underexplored question is what types of observable
data may be most useful for informing inferences about la-
tent knowledge states during learning. Of particular interest
is the idea that many other features besides overt responses
might be partially informative. For example, the student’s
response time to a test question may add additional informa-
tion about learning alongside correctness [24, 38, 40]. Like-
wise, patterns of mouse or eye movements during a learning
session might help index drifting attention [8, 27].

In this paper we demonstrate that it is possible to integrate
indirect neural measurements of brain activity into a cogni-
tive model of learning in a way that 1) can improve predic-
tion of a learner’s test performance at a 72 hour delay and 2)
allows knowledge tracing without interrupting the learning
environment with explicit tests or assessments (which can
be distracting or may bias learning).

Although acquiring neural recordings is impractical in most
educational settings, the approach of fusing multiple sources
of sensor data about individual learners may be a generally
useful method for the educational data mining literature.
In addition, as we show in our results, such modeling efforts
may also feedback to contribute to a better understanding of
the neural and cognitive mechanisms that support learning
and memory [2, 1, 34, 35]. Finally, as the cost and diffi-
culty of making indirect neural recordings falls (e.g., due to
the advent of portable, dry contact electroencephalogram
or EEG) the practicality of utilizing such sensors will likely
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increase (c.f., [14]).

We begin by reviewing past work in cognitive neuroscience
which has attempted to identify predictive signals of learn-
ing and memory processes. Next we describe our approach
fusing concepts from knowledge tracing with what is known
about the cognitive neuroscience of memory. We then de-
scribe a dataset collected from human participants perform-
ing a simple second-language learning task while undergoing
functional magnetic resonance imaging (fMRI). We compare
the predictive power of a variety of models against held-out
memory recall data at study-test delays ranging from one
day to one week. From the fitted model we then extract the
neural signals corresponding to learning in the study period.

1.1 Prior work using cognitive neuroscience
methods to predict individual learning

The prediction and optimization of human learning has been
a long standing goal of cognitive neuroscience research. On
the prediction side, a number of studies have explored the
“subsequent memory” paradigm [28, 23, 13, 26]. In these
experiments, participants study controlled stimuli such as
lists of word pairs while brain signals (such as the blood
oxygen-level dependent “BOLD” signal measured via fMRI
or event-related potentials, ERPs, assessed with EEG) are
recorded. Some time later, participants’ memory is tested
for the material they saw during study. Accuracy on each
memory test item is used to back-sort the neural data record-
ings into brain patterns associated with successful versus un-
successful later memory. Regions with a reliable difference
in brain activation between these two classes are taken to
reflect neural correlates supporting lasting memory forma-
tion. Across these studies a coherent set of brain regions
have been identified as being involved in human memory
formation including the hippocampus and medial temporal
lobe, which have long been associated with memory forma-
tion on the basis of animal and lesion studies [29, 9].

Building on this work, Fukuda et al. (2015) identified two
EEG-based subsequent memory signals and used these to
classify study trials in a memory experiment as likely to
be remembered (initially well studied) or forgotten (intially
poorly studied). In a subsequent session, participants were
allowed to restudy half of the items identified as initially
well studied and half of the items identified as initially poorly
studied. A final test then assessed knowledge for all of the
items. Of particular interest was the finding that the restudy
opportunity most benefitted the initially poorly studied items
compared to the other items. Importantly, the entire pre-
diction about what was or wasn’t well studied was based
exclusively on indirect neural recordings for each subject
rather than any explicit assessment or test.

The subsequent memory paradigm has been a powerful tool
for studying the neural basis of memory. However, the cog-
nitive neuroscience literature does not currently take advan-
tage of the wealth of knowledge about predicting individ-
ual learning from the educational data mining and cognitive
modeling literatures. For example, classifying brain pat-
terns as forgotten based on a single test fails to account
for the possibility of “slippage” (errors in performance of
a mastered skill due to chance) which is central to BKT
models [10]. Likewise, when an item is not remembered

at test it could be for a number of reasons: the item may
have been poorly encoded during the study session, or per-
haps was well encoded and would have been remembered
at an earlier study session but was simply forgotten due to
decay or interference. Structured models such as Hidden
Markov Models (HMMs) can account for such latent mem-
ory dynamics and use them to help improve predictions.
The subsequent memory approach is also difficult to apply
when learners get repeated study opportunities because of
ambiguity about which brain scans should be classified as
causally related to the test performance. Finally, the stan-
dards for model development within the machine learning
and data mining communities is predictive performance on
held-out data which is often more difficult than describing
statistically reliably patterns within a single data set due to
the ability to overfit.

To address these issues, we describe an approach to the si-
multaneous modeling of behavior and neural recordings in a
single knowledge tracing model1. Our aim is to demonstrate
the value of combining insights from these still somewhat
disparate literatures. The approach we take is in some ways
similar to work by Anderson and colleagues that has tried
to infer from fMRI the mental state of individuals as they
engage in complex math problems [2, 1, 4, 42, 33] (see also
[34, 35]). While these reports hint at the utility of com-
bining fMRI with probabilistic cognitive models, this prior
work does not specifically address the learning and memory
issues considered here.

2. THE OMNI DATA SET
The dataset we consider, part of the NSF-funded “Optimiz-
ing Memory using Neural Information” (OMNI) project2,
consists of human performance on a cued-recall memory
test for a set of Lithuanian-English word translations. The
learner’s task is to study the word pairs across multiple pre-
sentations and then, after a delay, recall the English asso-
ciate for a presented Lithuanian word.

Starting with a normed set of Lithuanian-English words, we
selected 45 translation pairs [19]. During study, participants
saw the translation pairs presented one at a time for 4 sec-
onds each with a variable duration inter-trial interval (4s-16s
for consistency with event-related MRI timing). Words were
presented on a computer screen with the Lithuanian word
at the top of the screen and the English translation under-
neath.

Each word pair was presented five times and no pair was
presented for the nth repetition until all words had n − 1
presentations. Importantly, and in contrast to many psy-
chology studies on the subsequent memory effect, all partic-
ipants see the same sequence of study items3. Immediately

1Here we focus on fMRI due to improved spatial resolution,
even though other methods (e.g., EEG and skin conduc-
tance response), also provide useful signals that correlate
with memory performance and could be incorporated into
our approach.
2http://gureckislab.org/omni
3Although the models we apply do not explicitly model
inter-item interactions, maintaining a fixed sequence across
participants ensures that some of these inter-item effects will
be captured in the model parameters we estimate because,

Proceedings of the 11th International Conference on Educational Data Mining 220



following the study session participants gave judgments of
learning (JOLs, [22]): for each pair participants were pre-
sented with the Lithuanian and English word and used the
computer mouse to indicate on a scale of 0-100 how likely
they were to remember the association in one week.

Participants were given either an immediate recall test (0
hours) or returned to the lab approximately 24, 72, or 168
hours after the initial study session (randomly assigned)4.
During the recall test, participants saw a Lithuanian word
presented on the screen and had to type the associated En-
glish word. A trial was coded as correct if participants typed
the correct English word (allowing for typographic errors)
and all other responses were incorrect.

For more efficient estimation of the different model parame-
ters, we conducted a large behavioral experiment outside of
the MRI scanner and combined those data with additional
observations from participants who performed the same task
during MRI scanning (under this view all participants are
equally useful but purely behavioral subjects are treated as
though their MRI data are “missing” and so estimates of
their learning are based on the observed JOLs and recall
performance). Each participant (N=189) was tested at one
of the four study-test delays. Among the behavioral partici-
pants (i.e., no MRI data) the group Ns were 20, 49, 60, and
49 in the 0, 24, 72, and 168 hour study-test delay groups,
respectively. All MRI participants (N=21) were tested at
the 72 hour delay.

MRI participants underwent an identical study-test proce-
dure as the behavioral participants except they were scanned
during the study session. MRI data were collected on a
Siemens Prisma 3T at the New York University Center for
Brain Imaging. Functional Blood Oxygen-Level Dependent
(BOLD) data covering the cortex were acquired at a spatial
resolution of 2.5 mm3 with a 1 second repetition time (TR;
the temporal resolution of the fMRI data) and anatomical
scans were collected at a spatial resolution of .75 mm3.

To summarize, the final data set consists of a record for each
learner that contains: the pattern of recall attempts for each
list item, JOLs collected after the study session for each list
item, and, for each MRI participant, the 65x77x73 set of
voxel measurements across 2936 time-points describing the
BOLD signal recorded with MRI.

Figure 1 shows key features of the behavioral data. Across
the four different test delays, memory performance generally
drops, likely due to forgetting. Participant performance var-
ied widely from 0 to 100 percent correct. In addition, across
participants, average JOLs following study were weakly cor-
related with performance (r = [0.43, 0.24, 0.31, 0.55] and
p = [0.06, 0.10, 0.004, 3.4e−5] in the 0h, 24h, 72h, and 168h
groups, respectively). Pooling across all participants, the
mean JOL correlation with final performance is low but sig-
nificant, r = .365, p < 1e−7.

for instance, the measured difficulty of a word is always as-
sessed with respect to the other list items.
4Due to schedule difficulties a one subject returned at 48
hours but we still included their data in the modeling. In
addition, 9 of the 72 hour subjects were scanned in a different
fMRI scanner but we only include their behavioral data here.

Figure 1: Top: Mean recall performance (% correct)

for individuals (dots) at each study-test delay. Bottom:

Mean individual participant Judgment of Learning is cor-

related with individual overall percent recalled within

each delay condition.

3. INFERRING KNOWLEDGE STATES FROM
BEHAVIORAL AND NEURAL DATA

The following section describes the basic mathematical struc-
ture of our models. Similar to BKT, the core of our ap-
proach assumes a probabilistic representation of the latent
mnemonic status (e.g., remembered versus forgotten) of each
item on the to-be-remembered list and we begin with es-
tablished two- and three-state models that have shown ef-
fectiveness in tracking learning and memory [5, 10]. Where
our models differs from past knowledge tracing approaches is
that we propose a mapping between these latent mnemonic
states and patterns of brain activity that can allow the brain
data to inform this inference.

3.1 A Hidden Markov Model of Memory
Like BKT, our approach draws heavily from the structure
of HMMs. Each memory trace, i, (i.e., memory for the
association between two words) is represented as a non-
homogenous, censored Hidden Markov Model with the fol-
lowing properties (notation follows [25]):

3.1.1 States
Each trace can be in one of a number of discrete mnemonic
states, S. For simplicity we will begin with a two state
S = {sU , sK} model with states corresponding to unknown
and known similar to BKT. However, we also consider a
more complex, three-state model first proposed by Atkin-
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son [5]. The three-state model has states S = {sU , sK , sP }
corresponding to unknown, known (with possibility of for-
getting), and permanently known (see Figure 2). Across
both types of models the sK and sP states represent mem-
ories that have generally higher recall probabilities (e.g.,
Pr[recall = correct|sP ] > 0), but the sK state is suscep-
tible to decay between study events while the sP state is
absorbing5. The current state of item i at time t will be
denoted qit.

3.1.2 Priors
A prior, πt=0, that captures our initial belief of the memory
state of all items. The prior for a particular item memory, i,
can be written as πi,s

t=0 = Pr[qit=0 = s] for s ∈ {sU , sK} (two
state) or s ∈ {sU , sK , sP } (three state). With unfamiliar
learning materials we assume that the initial memory status
is heavily biased towards the unknown state (i.e., πi,sU

t=0 is
much higher than for any other state).

3.1.3 Transitions
A set of transition probabilities, A, which determine the
likelihood that a memory will move between the different
states at each time point. In prototypical HMMs the transi-
tion probabilities are stationary and the same transitions are
applied at each time step. In our model there are different
sets of transition probabilities which are applied at a given
time step depend on the type of external “event”, eit, that
occurs (e.g., a study trial versus a time step between trials;
Figure 2). For memory trace i the transition probability of
moving from state s to s′ after an event of type g will be

denoted ai,g,s→s′

t = Pr[qit = s′|eit = g, qit−1 = s] where g
indicates the specific event type on trial t.

Event types depend on the particular experiment design but
here include “study trial” (study), “study with JOL trial”
(study+JOL), “timestep in which memory decays” (decay),
and“test trial”(test). Generally, during study or study+JOL
events we assume that items tend to transition from a more
poorly learned state to a more fully learned state. The prob-
ability of transitioning to a new state on a study trial is rep-
resented in our three state model by parameters x, y and z
and in the two-state model by parameter l (see Figure 2).
During decay, items in a non-permanent state (sK) have a
probability of transitioning to the unknown state with prob-
ability f while items in sP (in the three-state model) remain
in the permanently learned state. Decay events are nec-
essary to account for the patterns of forgetting across the
study-test delay intervals shown in Figure 1. We assume
test trials have no effect on transitions as they appear at the
end of the task.

We define an experiment protocol, E, as a N x T matrix
where N is the number of items being studied and T is the
total number of micro-time steps modeled in the experiment.
Each entry of the matrix, eit, codes which of a discrete set of
event types occurred on a time step as described above. The
protocol captures the dependencies between event sequences

5One way for the model to capture the difference in perfor-
mance at 24 versus 168 hours is to assume different mixtures
of the sK and sP states following learning. For example,
at 168 hours, traces in sP state may dominate correct re-
sponses.
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Figure 2: The matrix of transition probabilities for ei-

ther study or decay events in the two and three state

model. The letters within each matrix reflect the transi-

tion parameters which are estimated to data. The state

labels U are “unknown”, K are “known” (with possible

forgetting), and P are “permanently known.”

that influence different memory traces. For example, if word
w is studied on a given trial, then all the other items on
the list might undergo a memory decay event during the
same time step. This way the protocol enforces the implicit
tradeoffs of studying one item over others at a particular
point in time.

3.1.4 Observable signals
The mapping between brain and behavior is made through
a set of observation distributions, B, which define the
probabilities that, on event type g at time t, an observable
random variable of data type d, og,d

t takes on a value vg,dk

from a (potentially infinite) alphabet vg,d. For each memory
trace i, we can write the probability of its associated observ-
ables as bi,g,s,dt (vg,dk ) = Pr[og,d = vg,dk |e

i
t = g, qit = s]. Obser-

vation distributions in effect define the full generative model
that links both behavior and neural information to underly-
ing knowledge states. Here we consider three types of obser-
vations: behavioral assessments (recall), JOLs (JOL), and
hemodynamic fMRI measurements (MRI ). However, this
approach can easily incorporate many other measures in-
cluding response time, pupil dilation, EEG measurements,
or alternative fMRI signals.

Behavioral Assessments. At certain points during the
experiment the protocol might define a memory test event.
On these types of trials the subject might be asked to re-
call a studied item from memory or to recognize it from
a list of alternatives. The response given on these trials
is treated as an observation associated with this particu-
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lar type of event. Specifically, the alphabet is vtest,recall ∈
{correct , incorrrect} and vg,recall ∈ ∅ for g 6= test , reflecting
the absence of any recall response on non-test events. The
distribution of test question answers about memory trace i
from state s at time t, is then bi,test,s,recallt (correct) = precalls
and bi,test,s,recallt (incorrect) = 1−precalls where precalls is de-
fined (or fitted) for each memory state. For other trial types,

i.e. g 6= test , bi,g,s,recallt (∅) = 1. So the update to state pos-
terior probabilities on those events is driven by the state
transitions. The parameters governing the probability of is-
suing a correct response conditioned on the latent memory
state are equivalent to the “guess” and “slip” parameters in
BKT.

Judgments of Learning. JOL responses were only given
on the last study trial (a study+JOL event). JOL data were
included in the model as the raw response/100 to each JOL
trial for each person, i.e. vstudy+JOL,JOL ∈ [0, 1] and null
for other trial types. We model the distribution of JOLs as
a truncated Gaussian distribution in the range 0 to 1, i.e.
bi,study+JOL,s,JOL
t = TN(µJOLs , σJOLs , 0, 1) with µJOLs and
σJOLs defined independently for each state s.

Hemodynamic fMRI measurement. Functional MRI
scans provide time-series data for each of a large set of 3-
dimensional voxels tiling the imaged volume (e.g., the brain).
In studies measuring fMRI activation levels at specific time-
points it is common to estimate the activation level within
voxels and then average voxels within spatial clusters, whether
spatially contiguous (regions of interest, or ROIs) or sets
of spatially disjoint but functionally related voxels show-
ing similar response profiles (e.g., independent components).
Due to the central limit theorem we can expect that the
mean activation within a set of such voxels will be approx-
imately normal. We also expect, based on prior work, that
there will be a mean shift in the fMRI activation levels of var-
ious brain regions during study trials that are later remem-
bered compared to those that are later forgotten [13, 26]. We
collect fMRI data for each study trial. The fMRI observation
consists of NfMRI features. Therefore, vstudy,MRI ∈ RNfMRI

and null otherwise. We model the fMRI state observation
distributions as independent Gaussians for each feature ni,

i.e. b
i,study,s,MRIni
t = N(µMRIni

s, σMRInis
).

3.1.5 Inference
The full model is specified by a protocol, E, a set of priors
over the states, πt=0, a set of transition probabilities, A, and
a set of observation distributions associated with each state-
event pair, B. Using Bayes’ rule, the posterior probability
that a memory trace on trial t is in state s′ ∈ S is:

πi,s′

t =
bi,g,s

′,d
t ai,g,s→s′

t πi,s
t−1∑

j b
i,g,sj ,d
t a

i,g,s→sj
t πi,s

t−1

(1)

3.1.6 Illustrative calculation
To illustrate the impact of hypothetical fMRI observations,
consider Figure 3 which shows the protocol, E, for the tim-
ing of study events for two memory traces (Panel A): item
1 (black) and item 2 (white). On time points where item
1 is studied the protocol has a black cell (and similarly for
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Figure 3: Example illustration of the effect of fMRI ob-

servations on inferences about latent knowledge in a two

state-model. A) Protocol showing the timing of study

events for item 1 (black boxes) and item 2 (white boxes).

B) State posterior estimates for item 1 obtained from a

hypothetical setting of the two-state model parameters

(dashed blue = SU , solid orange = SK). C) Hypothetical

“observed” fMRI signal on each study trial for item 1

(inset shows the probability density function over MRI

observation values conditioned on the state). D) State

posteriors for item 1 after incorporating the observation

likelihoods from study trials for this item. The inferred

state probabilities are dramatically altered by the incor-

poration of the MRI observation (see text).

item 2 using white). Panel B shows hypothetical evolutions
over time for the two-state posterior probabilities {sU , sK}
for item 1 obtained by applying the study and forgetting
transitions as shown in Figure 2 but without other observ-
able information (i.e., a Markov model). In this example we
set the l transition parameter applied on study events to 0.4
and the f parameter governing decay to 0.1.

At time point 1 the priors reflect the fact that before any
study attempts a person is unlikely to know the item (e.g.,

πi=1,sU
t=0 = .9). At time point 6, item 1 is presented for study

for the first time and the posterior probabilities of each state
are updated by applying the study transition probabilities
to the state posteriors on time t− 1. Immediately after this
study event, Panel B shows that there is now an increased
probability of item 1 being in state sK (solid orange line).
However, between time point 6 and 40, item 1 is not pre-
sented again and so for each time step between we apply the
decay transitions leading to gradual forgetting.

The addition of observable signals that are probabilistically
related to latent memory states alters these predictions. The
inset figure in Panel C shows how the mean response from a
set of voxels in the human brain might result in Gaussian-
distributed summed BOLD signals that overlap but differ
depending on the state of the memory (e.g., signal being
stronger for sK , orange, than for the sU , blue, state). Panel
C illustrates a hypothetical sequence of fMRI measurements
that could be made about item 1 during the study trials
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(i.e., samples from the Gaussian distributions from the inset
plot).

Panel D shows the posterior estimates of item 1’s state at
each time point obtained through combination of the transi-
tion dynamics and MRI observations (i.e., using the Hidden
Markov Model). As can be seen comparing panel B and D,
the addition of observations that are probabilistically associ-
ated with latent states can lead to different inferences about
the posterior probabilities over those states. Until item 1
is presented at time point 6 the posterior estimates are the
same in the Markov and Hidden Markov Models. However,
at time point 6 we observe a fMRI signal of a particular
magnitude which in turn has a likelihood of originating from
each of the two underlying states. If we take into account
the observed signal, our estimates of the posterior over states
change, since a fairly small signal was observed and the like-
lihood of such a signal is substantially larger for state sU
than sK . Consequently, our belief that the item is in state
sK is lower when we include the observation in our estimates
than when we simply use the transition probabilities.

Similarly, at time point 40 item 1 is presented for a second
study opportunity. Without observations our best estimate
of the state probabilities suggests we should be indifferent
between sU or sK , but the larger MRI observation observed
is unlikely to have emerged from the unknown state and so
the observation-constrained posterior estimates are weighted
much more heavily towards the sK state. By including the
Markov dynamics characterizing the likely temporal evolu-
tion of memories, we can adjudicate between otherwise am-
biguous neural signals by appropriately dealing with uncer-
tainty in measurement.

3.1.7 Model Evaluation and Fitting Procedure
The following section details the model evaluation, compar-
ison, and feature selection strategies we used.

Model parameterization. Partially due to identifiability
concerns [37, 16], some parameters were fixed to semanti-
cally coherent values [15], while others were estimated from
the data.

For all words we fixed the initial state priors, πt=0, as [.99, .01]
or [0.99, 0.005, 0.005] for sU , sK in the two-state model or
sU , sK , and sP in the three-state model, respectively. This
was motivated by the fact that none of the learners in our
dataset had prior experience with Lithuanian. We also fixed
the probabilities of giving the correct test response, precall

as [.01, .9] and [.01, .9, .9] for latent memory states sU and
sK (two-state model) or sU , sK , and sP (three state model,
see below), respectively. This reflects the assumption that
it is very unlikely that one would guess the correct answer
in a cued recall test without any memory (s = sU ) and that,
as in [5], the primary difference between sK and sP in the
three-state model is the susceptibility to decay over time
rather than the availability of a memory to recall (via the
influence of the f parameter; see Figure 2).

Fitted parameters include those determining the transition
probabilities and observation distributions within each model.
Both the two- and three-state models have transition proba-
bilities to fit for each word pair w (summarized in Figure 2).

In the two-state model these are the lw and fw parameters
controlling memory strengthening and decay, respectively.
For the three-state models, the xw, yw, and zw values con-
trol transitions between states during study opportunities
and the fw parameter determines forgetting rates.

Although the learning trajectories for each word pair were
instantiated in separate HMMs, to get better estimates of
the parameters we used a hierarchical Bayesian model that
used group-level priors over the parameters to regularize the
estimates. Each xw was drawn from a Logit-Normal(x, σx)
where x itself was drawn from a Normal(0, 6) and σx was
drawn from a Truncated-Normal(0, 1). The model for the
fw parameters was exactly the same. The simplices zyw
were generated using the following procedure: z and y were
drawn from a Normal(0, 6). zw and yw were drawn from
Normal(z, σz) and Normal(y, sigmay) respectively with σz

and σy both drawn from a Truncated-Normal(0, 1). Finally,
zyw was set to softmax([0, zw, yw[). This can be thought of
as a multivariate generalization of the Logit-Normal with a
diagonal covariance matrix.

When fitting models that incorporated JOLs or MRI data
we also estimated the means and variance parameters for the
Gaussian (truncated for JOLs) observation likelihood from
each latent state. For the JOL distributions, each µJOLs was
drawn from a Normal(.5, .5) and each σJOLs was drawn from
Inverse-Gamma(1, 2). Similarly, for each fMRI feature ni

(see below) in state s, µMRIni
s was drawn from a Normal(0,

1) and σMRIni
s was drawn from an Inverse-Gamma(1, 2).

fMRI feature selection. After standard MRI preprocess-
ing [11], we selected data for inclusion in the model. We
reduced the dimensionality of the fMRI data using group
spatial independent components analysis (ICA) using the
ICASSO algorithm as implemented in the GIFT ICA tool-
box (http://mialab.mrn.org/software/gift/) [?, ?]. This pro-
cedure, which is blind to trial information and memory out-
come, resulted in a set of 60 independent components that
are characterized by a particular temporal (the timecourse
of activation) and spatial (the loading of each component on
fMRI voxels) profile for each participant. Components that
were unstable across estimations (ICASSO) and components
associated with signal from ventricles or motion were dis-
carded leaving 43 independent components for inclusion as
model features. Individual trial activations for each identi-
fied component were summarized as the mean of timepoints
encompassing 4-6 seconds post-stimulus onset (to account
for the temporal lag in the BOLD response), resulting in
one activation value for each trial in each component for
each MRI participant.

Model estimation. We used MCMC sampling via the
NUTS algorithm as implemented in Stan [31] to estimate
the posterior over the parameters (4 chains of 200 itera-
tions; 100 per chain discarded as burnin; 400 total samples
per parameter). To ensure convergence, we checked that

estimates of the probability of recall had low R̂ values (a
measure of whether the sampling chains are converging to
similar estimates) [32, ?].

Model evaluation. In order to compare models, we want
to evaluate how well our models will predict new, unseen
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data. It is generally agreed that the generalization method
with the fewest assumptions is leave-one-out cross valida-
tion, which is preferred when sufficient data and computa-
tional resources are available [39]. To conserve on computa-
tional resources, here we use K-fold cross validation, setting
K to 10. Because our goal is to assess the utility of incor-
porating MRI signals into a memory model, the held-out
data only included data from the 20 fMRI subjects. We di-
vided up the data from these subjects into ten equally sized
folds. We then trained ten versions of each model where the
training set consisted of all of the data from behavior-only
subjects and nine of the ten folds of the fMRI subjects. On
the held-out test set, we used the identity of the words and
the trial timings (and JOL or fMRI observations, where ap-
propriate) to generate the posterior probability of recall for
each held out word at the time of test.

As we are primarily interested in our ability to classify a
new piece of data as successfully recalled or not rather than
the log likelihood of the trial under the model, we adopted
a cross-validated area under the ROC curve metric (ROC-
AUC). The ROC-AUC can be interpreted somewhat like
an accuracy measure where 0.5 represents chance prediction
and higher values indicate better predictive performance of
the model. Using ROC-AUC allows us to compare the held-
out predictive performance of models with varying numbers
of parameters while providing a metric of model performance
that is relatively insensitive to class imbalance and does not
prioritize one kind of error over another (e.g., trading off Hits
versus Misses). The model ROCs were defined by calculat-
ing, in each cross validation fold, the proportion of predicted
as remembered trials that were recalled correctly (Hits) and
the proportion of predicted as remembered trials that were
not (False Alarms) at each level of posterior recall probabil-
ity given by the model.

Model Comparison. We fit three variants of each of the
two- and three-state models: a Recall model fit to trial tim-
ing and recall performance (the binary recall success scores
for each word); a model fit to trial timing, recall perfor-
mance, and JOL observations (Recall+JOL); and a model
fit to trial timing, recall performance, and fMRI observa-
tions (Recall+MRI ). In each case the training data included
data from all of the behavioral participants and a subset of
the MRI participant data, and models were evaluated on
held-out data. The logic of these comparisons is to see if the
models incorporating additional observations (Recall+JOL
and Recall+MRI ) provide a better basis for prediction than
do the purely behavioral models. In addition, we are inter-
ested in whether the model incorporating MRI observations
is able to outperform the model incorporating JOLs. This
would suggest that the brain data contains more information
relevant about memory performance than do people’s own
self-reports about their memory fidelity. While we are ul-
timately interested in held-out predictive performance, the
models do differ in model complexity. In raw numbers, for
the two-state models, the Recall model had 2 x 45 word pa-
rameters and 4 hyperparameters, the Recall + JOL model
added 4 parameters, and the Recall + MRI model added
4NfMRI parameters. For the three state models, the Recall
model had 4 x 45 word parameters and 7 hyperparame-
ters, the Recall + JOL model added 6 parameters, and the
Recall + MRI model added 6NfMRI parameters. However,

Table 1: Cross validated Area Under the Curve of
the Receiver-Operating Characteristic (ROC-AUC)
with ± standard error (in parentheses) across folds.

two-state model three-state model

Recall 0.64 (.02) .64 (.02)
Recall+JOL 0.73 (.01) .73 (.01)
Recall+MRI 0.72 (.02) .75 (.01)

due to the hierarchical nature of these models, the effective
number of parameters may have differed depending on the
amount of regularization done by the hierarchical prior.

4. RESULTS
4.1 Two-state model
For each variant of the two-state model (Recall, Recall+JOL,
Recall+MRI ) we computed the ROC-AUC for predictions of
recall accuracy in held-out trials for the MRI participants.
The Recall model, trained on the timing of study and test
trials and recall performance, achieved a mean (across held-
out folds) ROC-AUC of 0.64 (±.02), providing an above
chance baseline model against which to evaluate the utility
of JOL and fMRI observations (Figure 4A).

The Recall+JOL, which adds judgments of learning to both
the training and evaluation of the Recall model, achieved
a mean held-out ROC-AUC of .73 (±.01), improving our
predictions relative to the Recall model. This shows that
metacognitive judgments collected from individuals at the
end of a learning session can be used to refine predictions
about held-out recall performance.

We next assessed whether fMRI signals recorded during study
events could be leveraged to make predictions about held-
out performance. The Recall+MRI model yielded a held-out
ROC-AUC of 0.72 (±.02). Although the held-out perfor-
mance did not surpass the Recall+JOL model, this result
indicated that there may be information in the MRI mea-
surements that could be used to make predictions about
held-out memory recall performance.

4.2 Three-state model
We next considered whether a more elaborated model of
memory could leverage more subtle dynamics of the fMRI
data.6 The held out ROC-AUCs for the Recall and Re-
call+JOL three-state models did not differ from those ob-
served in the two-state model (Figure 4B). However, the
three-state MRI model boosted the held-out AUC to .75
(±.01) which was an improvement compared to the original
two-state Recall+MRI model. This was also, in terms of
held-out predictions, the most successful model we consid-
ered in these comparisons (but see Conclusions), building
confidence in the utility of incorporating neural signals into
knowledge tracing models.

6Although our primary interest in this work is evaluating
the held-out predictions of our models, we note that com-
plexity of the three-state model means that three-state Re-
call or Recall+JOL variants may not be identifiable due to
the sparseness of observations (a single recall outcome or
the recall outcome and a single JOL) [37, 16] However, for
the MRI participants we have data for every trial, enabling
estimation of a three-state Recall+MRI model.
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Figure 4: ROC curves for held-out predictions in each of

the two-state (panel A) and three-state (panel B) model

variants (Recall, Recall+JOL, Recall+MRI ). The curves

show the mean ± sem across each of the cross validation

folds.

In addition, whereas the Recall and Recall+JOL models did
not discriminate between the two- and three-state models,
the fMRI data enabled better predictions using the three-
state model, highlighting the utility of neuroimaging data
in selecting between cognitive models.

4.3 Relating model dynamics to the brain
In addition to the improvements in memory prediction af-
forded by joint modeling of behavioral and neural data, our
approach also allows for examination of fMRI data in light
of the estimated models. Figure 5 presents two example
analyses in this vein.

Figure 5A shows the contrast map resulting from regressing
the change in posterior probability of sK associated with
each study trial (as estimated in the two-state Recall model)
against the fMRI time-series in each voxel. Using the esti-
mated two-state Recall model parameters, we extracted the
state posteriors on each study event for the MRI partici-
pants based on the sequence and timing of study trials. We
then calculated the change in predicted state posterior from
just before to just after a study trial and used this change as
the predictor for brain activations. This analysis is related
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terior for each study trial. B) Topography (left; axial
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to the General Linear Model approach often used in the
subsequent memory literature, except that rather than us-
ing binary regressors that coded for remembered or forgotten
outcomes as determined by a recall test, we used the esti-
mated continuous state posteriors from the two-state model.

Using a knowledge tracing model in this way to provide es-
timates of when a particular item is learned during a study
sequence with multiple repetitions allows for more sensitive
analyses of the brain’s relationship to cognitive processes
unfolding over extended time. Interestingly, we found that
the voxels significantly correlated with the change-in-state-
posterior regressor were a cluster in left anterior hippocam-
pus, consistent with the hypothesized role for this region in
encoding new information into memory [12].

An alternative way to use the fitted models is to examine the
estimated fMRI features’ observation likelihoods for each la-
tent knowledge state. The Recall+MRI model included acti-
vation from a number of independent components as candi-
date neural features. After estimating the model, the fMRI
observation parameters can be used to assess which compo-
nents provided information about the latent model states.
Used in this way, the joint model can be used as a tool for
understanding how complex cognitive dynamics, especially
those that might not be apparent in a more conventional
analysis (e.g., a traditional subsequent memory analysis that
only considers activation at the time of study and perfor-
mance at the time of test), are instantiated in the brain.
The most informative component in our model was associ-
ated with voxels in lateral occipital and fusiform gyrus re-
gions involved in processing complex visual inputs, as shown
in an axial slice through the brain (anterior/posterior of the
brain is up/down in the image) in figure 5B. The poste-
rior predictive distributions for component activation condi-
tioned on model state are also shown in figure 5B, and these
estimated distributions showed stronger activation for items
in the K or P states relative to U.

5. CONCLUSIONS
We evaluate a framework for integrating neuroimaging record-
ings into a knowledge tracing model. Our approach builds
upon recent reports showing robust memory-related signals
in the brain. We collected a medium-sized data set of hu-
man participants performing a second-language acquisition
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task both inside and outside a scanner. We then compared
a variety of models on their ability to predict held out data
for the MRI participants. Our most predictive model was a
three-state hidden Markov model that incorporated neural
measurements. This is interesting because this model was
more predictive than alternative approaches that leveraged
participants’ self-assessment of their learning (JOLs). One
conclusion from this analysis is that there seem to be mea-
surable signals in the brain that index the quality of memory
with higher fidelity than people’s own introspective access.

We also observed that the use of fMRI measurements en-
abled discriminating between models that were equivalent
when using behavioral data (recall or JOL) alone. Whereas
the held-out performance of the two- and three-state mod-
els was the same for the Recall and Recall+JOL model vari-
ants, using fMRI data to inform the model estimation re-
vealed an improvement for the three- compared to the two-
state model. This result points to the ways in which joint
modeling of behavioral and neural data can afford insights
into cognitive dynamics that might not be available to re-
searchers focusing on more restricted kinds of data.

Although the results are promising, our assumptions about
the fMRI data at this stage are simplistic. For example, our
model assumed that the distribution of fMRI signals was
stable across time. However, it is well known that fMRI
signals often show a pattern of repetition suppression [18]
where the measured BOLD signal is systematically lower on
subsequent presentations of an item. A more sophisticated
analysis of the brain may lead to improvements in our mod-
els. Another particularly interesting direction is to attempt
to model individual learner abilities (c.f., [41, 21]) on the
basis of patterns of brain activity given the large variance in
overall performance across participants (see Figure 1).

Modifications to the model structure might also improve pre-
dictions. As an example, in ongoing work we estimated the
three-state Recall+MRI model but modeled the fMRI ob-
servations as arising from transitions between states rather
than from the states themselves (i.e., each fMRI component
has a distribution of activations associated with staying in a
state and another distribution associated with switching be-
tween states). The three-state version of this Recall+MRI-
Transition model yielded a held out AUC of 0.77 (±.02),
which is our best performing model to date. This shows
that there is certainly more signal we can exploit from the
data by improving our generative model of the fMRI sig-
nal. Attempts to improve the fMRI modeling and explore
different model structures are continuing.

We have also illustrated several ways in which this kind of
simultaneous modeling approach might feedback to our un-
derstanding of the role of the brain in supporting learning
and memory. Using a model-based regressor coding for the
change in posterior probability of latent knowledge states,
we identified a significant effect in a left anterior hippocam-
pus region that is known to be involved in memory formation
on the basis of past studies [12]. The similarities between
this novel analysis approach and past cognitive neuroscience
studies give converging evidence about the hypothesized role
of these regions. We also used our estimates of the fMRI ob-
servation distributions to examine the relationship between

fMRI activation arising from different neural components
and the latent knowledge states instantiated in the model(s),
which is a novel approach to understanding the way psycho-
logical mechanisms or processes may be implemented in the
brain.

While we acknowledge the practical limitations of acquir-
ing neuroimaging data in an educational setting – although
advances in EEG technology and the established ability to
measure subsequent memory signals with EEG may enable
such use in restricted settings [17, 14] – overall we believe
this work represents an encouraging first step for knowledge
tracing approaches that utilize indirect neural information
as opposed to explicit tests.
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ABSTRACT 

Student interactions with game-based learning environments 

produce a wide range of in-game problem-solving sequences. 

These sequences can be viewed as trajectories through a game’s 

problem-solving space. In this paper, we present a general 

framework for analyzing students’ problem-solving behavior in 

game-based learning environments by filtering their gameplay 

action sequences into time series representing trajectories through 

the game’s problem-solving space. This framework was 

investigated with data from a laboratory study conducted with 68 

college students tasked with solving the problem scenario in a 

game-based learning environment for microbiology education, 

CRYSTAL ISLAND. Using this representation of student problem 

solving, we derive the slope of the problem-solving trajectories and 

lock-step Euclidean distance to an expert problem-solving 

trajectory. Analyses indicate that the trajectory slope and temporal 

distance to an expert path are both correlated with students’ 

normalized learning gains, as well as a complementary measure of 

in-game problem-solving performance. The results suggest that the 

filtered time series framework for analyzing student problem-

solving behavior shows significant promise for assessing the 

temporal nature of student problem solving during game-based 

learning. 

Keywords 

Game-based learning, Problem solving, Time series, Dynamic 

analysis 

1. INTRODUCTION 
Game-based learning has shown considerable promise for 

motivating and engaging students in learning [8]. Game-based 

learning environments engage students by populating game worlds 

with believable characters and narrative-driven learning 

experiences. These environments often feature problem-solving 

scenarios that give students a high degree of agency and freedom. 

While engaging for students, this freedom also allows different 

problem-solving strategies to be pursued to varying degrees of 

effectiveness. Providing adaptive scaffolding to guide students in 

following effective problem-solving processes is key to creating 

effective game-based learning experiences. However, determining 

how to best scaffold student problem solving in game-based 

learning environments remains an open research question. 

Scaffolding effectively requires insight into students’ problem-

solving processes as well as their individual student characteristics. 

In order to devise effective models for adaptive scaffolding in 

game-based learning environments, it is important to consider how 

the scaffolds will influence students. The models not only need to 

account for what support to provide, but also when to provide that 

support. In other words, the dynamic nature of student problem 

solving within game-based learning environments should be 

considered when analyzing the problem-solving behaviors of 

students. Thus, considering the overall sequence of a student’s 

actions in a game-based learning environment is fundamental to 

making effective scaffolding decisions, including what a student 

has done thus far, what their general approach has been, and what 

cognitive and metacognitive strategies they have been using. 

The space of possible problem-solving behaviors within a game-

based learning environment can be vast, as students explore, 

inquire, gather information, and attempt to leverage their 

knowledge and skills to solve the problem scenario over an 

extended interaction. In these open environments, providing an 

exemplar solution path that is known to be effective can serve as a 

useful reference for students. Domain experts solve complex 

problems more efficiently than novices [12], and their solutions can 

serve as valuable points of comparison by students who lack 

relevant problem-solving expertise. The similarity between an 

expert solution path and a student solution path can be used to draw 

inferences regarding the student’s trajectory through the open 

problem-solving space of the game-based learning environment.  

In this paper, we present a general framework for analyzing the 

temporal sequence of student problem-solving behaviors in 

comparison to expert solution paths in game-based learning 

environments. The framework consists of filtering student 

problem-solving actions in a game-based learning environment into 

a time series representing a student’s trajectory through the 

problem-solving space. We investigate the framework with data 

collected from student interactions with CRYSTAL ISLAND, a game-

based learning environment for microbiology education. To 

 

 

Proceedings of the 11th International Conference on Educational Data Mining 229



evaluate the framework, we compare several key characteristics of 

the time series, including a comparison between student trajectories 

and an expert trajectory, with measures of learning and engagement 

in game-based learning. 

2. RELATED WORK 
A growing research base focuses on analyzing problem-solving 

behaviors of students using summary statistics of student 

interactions with learning environments. Toth and colleagues 

clustered summary statistics of students’ interactions with a 

computer-based educational assessment to discriminate between 

students with different proficiency levels in problem solving [32]. 

Sawyer et al. used rates of emotions and action units during student 

interactions with a game-based learning environment to model 

learning and engagement outcomes [28], while Lalle et al. used 

eye-gaze measures during student trials with ValueChart, an 

interactive visualization for preferential choice, to predict student 

confusion [18]. While successful in using student data to model 

outcomes important for adaptive learning technologies, these 

methods did not leverage the sequential structure inherent in 

student problem solving in advanced learning technologies. 

Modelling sequences of student actions has important implications 

for adaptive learning environments, and it has been approached 

using both supervised and unsupervised learning methods. Kock et 

al. modeled sequences of user activities in an e-learning tutor as 

discrete Markov models, detecting problem-solving styles and 

learning dimensions about learners by clustering on the trained 

parameters of the models [17]. They subsequently investigated how 

these data-driven insights about students can be incorporated into 

an adaptive learning environment by supporting both individual 

users and groups of collaborative users. Hidden Markov models 

(HMMs) have been used widely for sequential student behavior 

modelling [6, 14]. Beal et al. used HMMs to model the actions of 

high school students [4]. After fitting HMM parameters for each 

student, they performed clustering based on the transition matrices 

of individual students to gain insight into differences in behavior 

and achievement of the clusters. Hansen and colleagues modeled 

student session log data by modeling student behaviors as 

distributions of Markov chains [13]. Bayesian knowledge tracing 

models use sequences of observations of student performance to 

create hidden Markov models with binary latent states representing 

student knowledge [9, 15]. All of this work shares the common 

approach of modeling student action sequences in terms of 

probabilistic state transitions. In contrast, our work uses 

characteristics of student problem-solving sequences encoded as 

trajectories within the game-based learning environment to predict 

student learning outcomes measured through pre and post-testing. 

Sequence mining techniques have been used to investigate student 

activity sequences in adaptive learning environments to identify 

frequent behavior patterns and their evolution over time [16]. 

Martinez et al. used sequence mining on logs of a collaborative 

tabletop problem-solving application to examine frequently 

occurring problem-solving strategies in high and low achieving 

groups [21]. Perera et al. used trace logs of a collaborative software 

engineering environment to extract frequent patterns and cluster 

students using k-means clustering [22]. Another widely used 

approach is applying pattern mining techniques to logs of user 

behaviors in web-based learning environments [11, 23]. Our work 

differs from these approaches by analyzing the paths of student 

behaviors over full gameplay episodes rather than specific 

subsequences of behaviors. This approach is taken because a full 

trajectory and segments of the trajectory provide a comprehensive 

view of a student’s problem-solving process, which is composed of 

a very long sequence of problem-solving behaviors taken to solve 

the open-ended game-based learning environment. 

Bauer et al. devised solution tree visualizations of user interactions 

with an open-ended puzzle solving game about protein folding, 

Foldit [3]. They used the visualizations to identify key patterns in 

problem-solving behavior among high and low performers. Others 

have used visual data mining on player behavior states, projecting 

visual representations into a more interpretable visual space [2, 19]. 

Notably, Liu et al. used state features to collapse complex 

visualizations and interpret key moments of player behaviors [19]. 

Our work similarly uses dimensionality reduction to create more 

interpretable visualizations of player behaviors over time. The 

primary focus of our work is quantifying the problem-solving 

trajectories of students in game-based learning environments, and 

the filtering approach we apply to student action sequences 

supports creating useful visualizations of the students’ solution 

paths through the problem-solving space. While the calculated 

slopes and distances are quantities, their geometric interpretation 

with regard to the problem-solving space are also informative. 

Snow et al. used a random walk analysis based on student 

interactions within a game-based system, iSTART-ME, to plot 

student trajectories and slopes [30]. They later extended this work 

through comparisons of student behavior patterns against random 

walks, revealing that students who behaved in a more deterministic 

manner exhibited higher quality self-explanations [31]. Our work 

similarly aims to dynamically analyze student trajectories based on 

interactions within a game-based learning environment, but it 

differs in several key aspects. First, our work creates student 

trajectories of problem-solving behaviors within an open-world 

game-based learning environment, a more complex space, which 

requires filtering through dimensionality reduction. Second, our 

work compares student trajectories to an expert solution path as 

opposed to a random walk. This comparison is particularly useful 

for informing the design of adaptive scaffolding functionalities in 

game-based learning environments. Experts and novices solve 

problems differently [12, 20], and our work provides an automated 

framework for characterizing how expert and novice problem-

solving paths differ from one another.  

3. GAME-BASED LEARNING TESTBED 
In this work, CRYSTAL ISLAND, a game-based learning environment 

for microbiology education, was used as a testbed to explore the 

problem-solving behavior paths of students and an expert. Students 

who participated in the study played CRYSTAL ISLAND and 

completed a pre-test and post-test assessing microbiology content 

knowledge. 

3.1 Crystal Island 
CRYSTAL ISLAND integrates science problem solving in a game-

based learning environment designed for microbiology education. 

Students adopt the role of a medical field agent tasked with 

discovering the source and identity of a mysterious epidemic on a 

remote island. In order to diagnose the illness, students gather 

information through conversing with a cast of non-player 

characters.  Reading scientific books, articles, and posters scattered 

throughout the island provides crucial sources of information about 

microbiology that students need to diagnose the illness. Students 

test their hypotheses for the epidemic’s source by scanning objects 

for contamination in the virtual laboratory. Students record findings 

regarding symptoms and contaminated objects on a diagnosis 

worksheet. The mystery is solved by submitting a completed 

diagnosis worksheet with the correct illness, source, and treatment 
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plan to the camp nurse. Throughout solving the mystery, students 

explore an expansive 3D virtual game environment that includes a 

beach, infirmary, laboratory, dining hall, and residences. 

There are many possible solution paths to solving the mystery 

successfully. An expert created an expert playthrough for a solution 

representing a thorough but efficient solution path for the problem-

solving scenario. In a related study, a recording of this expert 

playthrough was used as a No Agency condition [7, 29], where 

students watched the narrated video of the expert solving the 

CRYSTAL ISLAND problem scenario. The expert visited each 

building, interacting with each of the virtual characters and reading 

each of the scientific texts to learn the information needed to solve 

the mystery (Figure 1). Although it is possible for a student to solve 

the mystery more quickly by skipping content in the game, the 

expert playthrough is intended to represent a comprehensive, 

efficient problem-solving path that any student could implement 

regardless of prior knowledge. In this work, we analyze students 

from the Full Agency condition of the study, which allowed 

students to freely explore the game environment after a brief 

tutorial introducing basic game mechanics. The expert playthrough 

is used for a comparison of problem-solving behaviors over the 

course of the gameplay interaction. 

The CRYSTAL ISLAND problem scenario consisted of three phases 

of gameplay: (1) Tutorial, (2) Information Gathering, and 

(3) Diagnosis. In the Tutorial phase, students learned the basic 

game controls and mechanics upon arriving on the island’s beach. 

After completing the tutorial, students moved to the main area of 

the game, beginning the Information Gathering phase. Students 

gather information through books, posters, and conversing with 

non-player characters such as the camp nurse, who initiates the 

game’s problem-solving scenario narrative. Students also converse 

with a range of domain experts and sick patients in the game. 

Students transition into the Diagnosis phase when they perform 

their first test with the virtual laboratory scanning equipment. The 

Diagnosis phase and overall game are solved when students 

successfully submit their diagnosis worksheet to the camp nurse 

with the correct illness, contamination source, and treatment plan. 

Outside of the Tutorial, the phases do not restrict any aspect of a 

student’s experience within the game-based learning environment. 

The phases are used to segment a student’s gameplay for an 

analysis of problem-solving behavior in different intervals of the 

scenario. 

3.2 Study Participants 
The study involved 68 participants from a large mid-Atlantic 

university who played CRYSTAL ISLAND in a lab setting. After 

removing students with corrupted data there was a total of 63 

students (M = 20.1 years old, SD = 1.55) of which 42 (66.7%) were 

female. Prior to interaction with Crystal Island, students completed 

a 21-question multiple choice pre-test assessing microbiology 

knowledge (M = 11.5 (54.8%), SD = 2.7 (13.0%)). Students played 

for a range of 26.4 to 159.8 minutes (M = 68.0 min, SD = 22.4 min) 

while the expert playthrough lasted 91 minutes. After completion 

of the game, students completed the same microbiology assessment 

as a post-test (M = 13.3 (63.5%), SD = 2.7 (13.0%)).  

3.3 Measures of Learning Performance 
A primary goal of CRYSTAL ISLAND is learning relevant 

microbiology content. We measure student learning in CRYSTAL 

ISLAND in terms of normalized learning gain, which is the 

difference between pre and post-test score standardized by the total 

amount of improvement or decline possible from the pre-test. This 

calculation uses percentage of questions correct on the pre-test and 

post-test to calculate learning gain. Students demonstrated positive 

normalized learning gains with an average normalized learning 

gain of 0.19 (SD = 0.26).  

A previously used indicator for in-game student engagement 

assessing progress and efficiency in the problem-solving scenario 

is given by final game score [25]. This measure was designed to 

allot points to students for efficient problem-solving behaviors such 

as talking to key virtual characters and solving the mystery in a 

short duration while subtracting points for inefficient behaviors 

such as scanning incorrect items in the virtual laboratory or 

submitting an incorrect solution. Final game score has been shown 

to be significantly associated with post-test score, independent of 

Figure 1. Overview of CRYSTAL ISLAND with expert solution path in gold. 
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pre-test score [25]. Scores varied widely among students with a 

range of -1543 to 1502 and an average of 673.7 (SD = 616). Both 

learning, as measured by normalized learning gain, and in-game 

student engagement, as measured by final game score, are target 

learning objectives of game-based learning environments. We 

therefore investigate how learning and in-game student 

engagement are related to student problem-solving trajectories in 

order to evaluate the utility of the filtered time series analysis 

framework.  

4. TIME SERIES ANALYSIS 
The similarity of two students over their entire gameplay can be 

defined as the distance between their trajectories through the game. 

First, we define student trajectories as filtered cumulative actions 

over time. Then, we define the temporal distance as the average 

Euclidean distance between trajectories over each time step, which 

is known as the lock-step Euclidean distance [10]. Distances 

between students and the expert playthrough are calculated. The 

slope of the trajectory is calculated as the ordinary least squares 

regression line through data points of each student’s time series, 

roughly measuring the problem-solving behavior of a student 

through an adjusted gameplay pace. This distance representing 

student gameplay similarity to the expert path and regression slope 

are compared to established measures of learning performance in 

CRYSTAL ISLAND: normalized learning gain (NLG) and final game 

score [25].  

4.1 Filtering Process 
Students perform several different problem-solving behaviors 

while interacting with CRYSTAL ISLAND. The cumulative counts of 

student in-game actions are recorded during gameplay, including 

conversing with virtual characters, reading books and articles, 

editing the diagnosis worksheet, completing a plot point, 

submitting a worksheet, and scanning an item in the virtual 

laboratory. A dimensionality reduction technique to convert the six 

cumulative counts of actions into a single value describing student 

progress until a particular moment in time reduces noise in distance 

measurements by lowering the dimensions used in calculating 

Euclidean distance. Filtering a multivariate time series to a 

univariate time series is used in sequential distance methods to 

reduce the effect of noise on the distance [5]. 

Due to the correlations between cumulative action counts at 

specific time intervals, principal component analysis is used for 

dimensionality reduction [1]. Specifically, the first principal 

component is used to filter a vector of cumulative action counts at 

a point in time to a single value (Figure 2). The principal 

components are calculated on the final action counts of each student 

(not including the expert counts), and the first principal component 

(variance explained = 37%) projects the cumulative action vectors 

onto a single dimension. The first principal component used to filter 

the cumulative action counts to one dimension is reported in Table 

1, along with the means and standard deviations of the final action 

counts. Table 1 also indicates that the expert solution (“Gold Path”) 

is efficient in terms of the number of in-game actions performed. 

Table 1. Summary statistics of the principal component used 

for filtering student problem-solving behaviors. 

Gameplay 

Action 

First 

Principal 

Component 

Mean (SD) Gold Path 

Conversation 0.334 18.7 (5.9) 13 

Reading 0.554 22.9 (8.0) 21 

Worksheet 0.261 24.3 (12.5) 7 

Plot Point 0.285 18.7 (1.6) 20 

Worksheet 

Submission 
0.444 2.29 (2.6) 1 

Scan 0.484 26.0 (16.6) 3 

 

By using this first principal component for filtering, the projection 

of the cumulative action count vector onto one dimension is 

guaranteed to be positive and nondecreasing because each element 

of the principal component is positive, and cumulative action 

counts are nondecreasing as students play through the game, i.e., as 

time in game progresses. For example, the transformed gold path 

final value would be 25.4, and any earlier time has at most the 

action counts in the final column of Table 1, and would thus have 

a smaller or equal transformed value. More generally, the filtration 

can be viewed as a function, f, converting the multi-dimensional 

action vector to a single value, c, using the first principal 

component, p. This function is shown in Equation 1 for cumulative 

action vector x of student i at time t. 

Figure 3. Trajectories of students’ interactions in CRYSTAL 

ISLAND. 

Figure 2. Filtering process from action sequence to time series. 
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𝑓(𝐱𝑖
𝑡) = (𝐱𝑖

𝑡)T𝐩 = 𝑐𝑖
𝑡  (1) 

A student trajectory is the time series of c values, where the time 

intervals represented by the upper index t are flexible. In this work 

they are calculated for every 10 seconds of gameplay. Figure 3 

displays each student trajectory colored by normalized learning 

gain. 

4.2 Trajectory Distance 
Once each sequence of cumulative action vectors has been 

converted to the filtered time series, the lock-step Euclidean 

distance over the full gameplay session can be calculated. Since 

students played the game for varying amounts of time, the lengths 

of each time series may differ. In such cases, when calculating the 

distance between two series of unequal length, the shorter series is 

padded to the length of the longer series by repeating the final 

filtered value. The padding of the shorter sequence prevents 

violations of the triangle inequality from divergences of two longer 

sequences with a shorter sequence after the shorter sequence has 

ended. 

The distance between two students is the average Euclidean 

distance between their filtered time series over all time steps. The 

average is taken to allow the distances to be compared from 

different numbers of time intervals. More specifically, the distance, 

d, between students i and j, can be calculated according to 

Equation 2, where n is the number of time intervals in the longer 

series. Note that while Minkowski distance of any order would 

yield equivalent results in this particular case of one dimension, the 

Euclidean norm is specifically mentioned to generalize to filters 

with multivariate outputs.  

𝑑𝑖𝑗 =
1

𝑛
∑‖𝑐𝑖

𝑡 − 𝑐𝑗
𝑡‖

2

𝑛

𝑡=1

 (2) 

The distance between a student’s trajectory and the golden path can 

be calculated by using the golden path as one of the students in 

Equation 2. The temporal distance calculated by Equation 2 to the 

golden path for student i is denoted gi. To assess the advantage of 

taking the trajectory distance, or the average distance over time, a 

useful comparison is to the final point distance of filtered values, 

i.e. using only the final time step’s filtered value to calculate the 

distance between students and the golden path. This will allow 

comparison between similarity measures that take into account the 

full gameplay over time (Equation 2) and a baseline measure 

(Equation 3) that does not use the full gameplay session, but instead 

uses a summary of gameplay. Figure 4 depicts examples of the 

baseline (a) and temporal distance (b) from one student trajectory 

to the expert solution path. 

𝑏𝑖𝑗 = ‖𝑐𝑖
𝑛 − 𝑐𝑗

𝑛‖
2

 (3) 

4.2.1 Trajectory Distance per Interval 

Since the distance is calculated used a fixed mapping between 

points in time, the measurement is sensitive to misalignments in 

time. In other words, local time shifting, or similar segments that 

are out of place, will not be handled by the distance measure [10]. 

In order to account for similar segments of student trajectories out 

of place within CRYSTAL ISLAND, the distance over each gameplay 

phase is calculated. This procedure matches two students’ time 

series from a specific phase to the same start time interval when 

calculating the distance over that phase, and it uses the same 

padding procedure described for students with differing phase 

lengths. Essentially each phase is treated as a “similar segment” and 

distances are calculated over each phase, matching the start of one 

student’s phase to the start of the other student’s similar phase. 

Figure 4(d) depicts where phases end for two example trajectories, 

which demonstrate the start points that are matched to calculate 

phase-based measures. 

4.3 Slope of Trajectory 
The slope of a trajectory gives important insights regarding the 

style of problem-solving behavior of students over the course of 

their interaction with the game-based learning environment. Since 

the x-axis in this case is time, and the y-axis a filtered measure of 

cumulative actions, the slope represents the change of the filtered 

measure of cumulative actions over time. The student’s slope can 

be viewed as a “pace of problem-solving actions,” where each 

problem-solving action’s contribution to the pace is weighted by 

the principal component used to project the cumulative action 

vector to a single dimension. For example, a student who scans 

many objects over a specific time span will have a steeper slope in 

their trajectory than a student who opens their worksheet the same 

amount of times over that same time interval because scans 

contribute more to the filtered value than worksheet opens. 

A student trajectory’s slope is estimated by fitting a simple linear 

regression with time (in minutes) as the single predictor of filtered 

cumulative action value. This is done by using the pairs of points 

(t, ct) that create each trajectory of Figure 3 to estimate a line of best 

fit per student. When fitting the line of best fit over the entire 

gameplay or Tutorial phase, the intercept is set to 0, since students 

enter the game with no actions taken. In these cases, the line of best 

fit is given by c = β t where c is the filtered cumulative action value, 

t is time in minutes, and β is the slope of the student’s trajectory. In 

the Information Gathering and Diagnosis phase, in which a student 

enters with actions previously taken, the regression line includes an 

intercept term, c = β t + b, but the slope is the quantity of interest, 

which has a semantic interpretation as the pace of problem-solving 

behavior over that time interval. 

5. RESULTS 
This section analyzes key relationships between students’ time 

series and measures from CRYSTAL ISLAND. First, the relationship 

between the slope of a trajectory and learning is demonstrated at 

both a full gameplay level and gameplay phase level. Second, the 

distance between the gold path and students is analyzed and 

compared to learning performance in CRYSTAL ISLAND. Third, an 

analysis of the measures against duration of gameplay is performed 

to evaluate the independence of the time series analysis against the 

length of the series. All reported correlations are Pearson product-

moment correlations. 

5.1 Trajectory Slope Relationship with 

Learning 
A line of best fit through the pairs of time and filtered values were 

fit to each trajectory as described in Section 4.3. In addition to the 

line of best fit over the full trajectory (All), lines of best fit were 

calculated for each gameplay phase (Tutorial, Information 

Gathering, and Diagnosis). Since the filtered action value is 

calculated as a weighted sum of cumulative actions, the slope of the 

line of best fit can be viewed as an estimate of the pace of play of a 

student within the game-based learning environment with certain 

actions counting towards the pace more than others. It is also 

important to note that these slopes are independent of the golden 

path, but could be compared with cosine similarity as a measure 

independent of the duration of play. The slopes are found to be 

marginally significantly correlated with normalized learning gain 
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and have a positive cross validation R2 indicating the 

generalizability of the results. The results by gameplay phase are 

reported in Table 2.  

When analyzing the simple linear regression leave one out cross-

validation R2 measures, it is important to consider the difficulty of 

predicting normalized learning gain from in-game actions. More 

concretely, a baseline using a multiple linear regression using each 

cumulative action count with game duration (the features used in 

extracting the trajectory and slope) gives a leave-one-out cross 

validation R2 of -0.089. Note that a negative cross-validation R2 

indicates the model predictions on the held-out points have a higher 

mean squared error than using the variance of the data and are an 

indicator of poor fit. 

Table 2 indicates a relationship between the slope of a trajectory 

and normalized learning gain. The Tutorial phase is a notable 

exception here, which indicates that the pace of actions during the 

Tutorial is not predictive of normalized learning gain. A marginally 

significant negative correlation between Information Gathering, 

Diagnosis and slope over the full gameplay session (All) with 

normalized learning gain demonstrates that as a trajectory slope 

becomes steeper, the normalized learning gain decreases. This 

relationship is further exemplified by the positive cross-validation 

R2 results, especially relative to the baseline using the cumulative 

game actions and duration. Thus, a slower pace (lower slope) of 

students’ problem-solving behaviors measured by the filtered 

cumulative actions in phases beyond the Tutorial are indicative of 

positive learning outcomes in CRYSTAL ISLAND. 

 
 

a. The dark green dashed line represents the padded portion of 

the student’s series to match the length of the golden path. The 

vertical blue line represents the baseline distance. 

 
 

b. Each vertical gray line is averaged to calculate the 

final distance. There is a vertical gray line every 10 

seconds, making this appear as an area between 

trajectories. 

 
 
c. The slopes over the full gameplay episode for a student 

(green) and expert solution (gold).  

 
 

d. Gameplay phase endpoints plotted in grayscale 

along a student’s trajectory (green) and expert 

trajectory (gold), illustrating the potential for local 

time shift issues in calculating distance. 
 

Figure 4. Visual summaries of each time series characteristic calculated for comparison with measures of learning and 

engagement. 
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The slope of the expert solution path is the lowest observed slope 

of any trajectory in the dataset (0.27, next lowest = 0.31). The low 

slope indicates a relatively slow pace of play in terms of the number 

of actions taken within the game, which reflects the expert’s 

deliberate and efficient on-task problem-solving path. The 

deliberate play demonstrates positive problem-solving strategies, 

such as reading texts thoroughly and planning the next action. 

Table 2. Summary of the relationship between trajectory 

slopes and normalized learning gain. 

Gameplay 

Phase 

Average 

Slope 

(SD) 

Correlation 

with NLG (p-

value) 

Simple Linear 

Regression 

CV R2 

All 
0.51 

(0.11) 
-0.22 (0.09) 0.0172 

Tutorial 
0.12 

(0.08) 
-0.063 (0.62) -0.0362 

Information 

Gathering 

0.49 

(0.11) 
-0.22 (0.08) 0.0165 

Diagnosis 
0.58 

(0.11) 
-0.24 (0.05) 0.0275 

 

5.2 Golden Path Distance Relationship with 

Learning 
The temporal distance between the expert solution path and student 

trajectories was calculated as in Equation 2. There appears to be a 

relationship between learning, as measured by normalized learning 

gain, and similarity of a student trajectory with the golden path. The 

correlations by gameplay phase between normalized learning gain 

and gold path distance are given in Table 3. The leave-one-out 

cross-validation R2 from a simple linear model using the distance 

as the lone predictor of normalized learning gain is also given for a 

measure of generalization of the correlational relationship.  

Table 3. Summary of temporal distance between students and 

expert with normalized learning gain. 

Gameplay 

Phase 

Average 

Distance 

(SD) 

Correlation 

with NLG (p-

value) 

Simple 

Linear 

Regression 

CV R2 

All 9.98 (4.0) -0.23 (0.07) 0.0202 

Tutorial 0.76 (0.22) 0.0061 (0.96) -0.0781 

Information 

Gathering 
10.5 (4.8) -0.20 (0.11) 0.0021 

Diagnosis 17.3 (12.0) -0.13 (0.42) -0.0206 

 

As seen from Table 3, the negative correlation between distance 

and normalized learning gain indicates that as student trajectories 

become farther from the golden path (the distance over time 

increases), their normalized learning gains decreases. The 

difference between phases is interesting to note, as the Tutorial 

phase and Diagnosis phase are not significantly correlated with 

normalized learning gain, while the Information Gathering phase 

demonstrates a correlation approaching significance and positive 

cross-validation R2 superior to the baseline. The superiority of 

using the full gameplay for the distance calculation in Table 3 

indicates that the time warping problem common among time series 

analysis may not be an issue in game-based learning. This is likely 

due to the freedom that game-based learning environments provide 

students, making recalibration of time intervals difficult to compare 

amongst students’ actions. 

5.2.1 Comparison with Baseline Distance 

While the relationship between the distance measure incorporating 

the full gameplay from the gold path and normalized learning gain 

is encouraging, the necessity of using temporal distance can be 

assessed by comparing the gold path baseline distance from 

Equation 3 with normalized learning gain. No significant 

correlation is observed between the baseline distance from the gold 

path with normalized learning gain (r(61) = -0.153, p = 0.23). A 

baseline comparison using each student’s final filtered cumulative 

action value as a single predictor in an ordinary least squares 

regression evaluated using leave-one-out cross-validation gives an 

R2 of -0.0075. The lack of relationships demonstrated with the 

baseline distance compared to the correlation of the temporal 

distance indicates that using the distance from the expert solution 

over the full gameplay session provides valuable information for 

predicting normalized learning gain. 

5.3 Comparison with Final Game Score 
The final game score is an in-game measure designed by domain 

experts specifically for the CRYSTAL ISLAND game-based learning 

environment to assess student engagement [25]. Thus, comparisons 

with the final game score provide a complementary comparison to 

normalized learning gain from the actions in CRYSTAL ISLAND to 

gauge a student’s experience. First, it should be noted that a 

marginally significant positive correlation was observed between 

normalized learning gain and final game score (r(61) = 0.25, p = 

0.05), indicating that students with a high final game score have 

higher normalized learning gains. The magnitudes of the 

correlations observed with the slope and expert solution distance 

are similar to the correlation observed between final game score 

and normalized learning gain, despite final game score being a 

hand-crafted measure of performance in CRYSTAL ISLAND while the 

trajectories are automatically created from student data. This is also 

seen when comparing the leave-one-out cross-validation R2 of 

using final game score as the sole predictor in a simple linear 

regression model, which yields a 0.0265 value when predicting 

normalized learning gain. 

Table 4. Summary of time series characteristics with final 

game score. 

Condition 
Slope-based Linear 

Regression CV R2 

Distance-based 

Linear Regression 

CV R2 

All 0.0091 0.28 

Tutorial 0.030 0.028 

Information 

Gathering 
0.021 0.28 

Diagnosis 0.064 0.51 

 

The golden path reflects a trajectory with desirable problem-

solving behaviors according to the final game score as the expert 

takes an efficient solution path. For example, the expert uses far 

less scans of irrelevant virtual objects and incorrect worksheet 

submissions than the average student, both of which are penalized 
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by the final game score for being indicative of guess-and-check 

behavior. This can be observed by the strong predictive power of 

the temporal distance to the expert solution path over the final game 

score given in Table 4. These results are notably strong when 

compared with the slope of the trajectories, which has weaker 

predictive power over student in-game engagement as measured by 

final game score. The relationship between distance to the expert 

solution and final game score increases as students progress 

through the phases of CRYSTAL ISLAND. This is likely because 

students perform actions that more directly impact the final game 

score (scans and worksheet submissions) during the final Diagnosis 

phase, which is captured by taking the distance over this interval.  

6. DISCUSSION 
In this work, students’ problem-solving behaviors in Crystal Island 

were transformed into time series representing their trajectories 

through the problem-solving space. This section provides 

explanations, considerations, and implications of the results from 

comparing characteristics of these trajectories with learning 

outcomes. 

6.1 Trajectory Slope 
The results suggest that the slope of a student’s problem-solving 

trajectory contains valuable information about their approach to 

problem solving in the game-based learning environment. The 

slope of a student’s problem-solving trajectory was found to be 

marginally predictive of normalized learning gain using the full 

gameplay, Information Gathering phase, and Diagnosis phase. 

Negative slopes were found to be predictive of higher learning 

gains, indicating that students who performed more problem-

solving actions (weighted through the principal component) per 

minute had worse learning outcomes.  

While the slopes were calculated independently of the expert 

solution, it is interesting to note that the expert solution had the 

most gradual slope of any problem-solving trajectory. Therefore, 

the cosine similarity of best fit lines through trajectories would 

yield similar results to the current analysis of the slopes, which is 

independent of the expert solution because steeper slopes would be 

more dissimilar. Thus, the cosine similarity in this particular 

context would be analogous to subtracting a constant from each 

slope, which would not affect the measures used for the analysis in 

this work. Since these slopes are based on univariate time series, 

there is no additional information that an analysis of the cosine 

similarity would provide over an analysis of the slopes themselves. 

However, the current expert path is only one possible problem-

solving solution through this space, and in future work it would be 

informative to conduct an analysis using solution paths that vary by 

problem-solving strategy, including negative solution paths, such 

as a guess-and-check methodology. 

The slope during the Information Gathering phase was negatively 

correlated with learning outcomes. This is an interesting 

observation given the nature of the Information Gathering phase, 

where students do not perform any scans in the virtual laboratory. 

(If they had performed scans, they would be considered to be in the 

Diagnosis phase). While the steeper slopes indicate a problem-

solving strategy more in line with a guess-and-check method, this 

phase by definition does not include guesses through the scanner. 

This indicates that the slope of the trajectory includes additional 

information over identifying potential guess-and-check strategies. 

A more gradual slope in the Information Gathering phase could be 

caused by students who are more deliberate in fully reading and 

comprehending their conversations and reading materials, which 

would contribute to the negative relationship between trajectory 

slope and learning outcomes in this phase. This observation is in 

line with previous research on CRYSTAL ISLAND, which found that 

information gathering prior to hypothesis generation was correlated 

with improved problem-solving efficiency [26]. 

The weak relation between slope trajectory and final game score is 

surprising given the way final game score and the filtered 

cumulative action counts are calculated. Final game score 

penalizes incorrect scans in the virtual laboratory and incorrect 

worksheet submissions, which are both actions weighted heavily in 

the filtered cumulative action count. Thus, one would expect a 

steeper slope to indicate a lower final game score since the steep 

slope indicates problem-solving behaviors likely to have a negative 

impact on final game score being performed at a quicker rate than 

other students. However, this may be offset by the final game score 

rewarding problem-solving efficiency, which would be indicated 

by a steeper slope. 

6.2 Distance from Expert Solution 
The results have important implications regarding the temporal 

distance of a student’s problem-solving trajectory and the expert 

solution problem-solving trajectory. Since this distance represents 

the dissimilarity of the student’s problem-solving path over time 

relative to an expert’s, the negative correlations between 

dissimilarity and learning outcomes are as one would expect: as a 

student’s problem-solving path becomes more similar to the expert 

solution, the student’s learning outcomes are expected to be higher. 

Thus, the results suggest that analyzing a student’s problem-solving 

path in game-based learning with respect to an expert’s problem-

solving path can yield insight into student learning outcomes, 

which are measured outside of the game-based learning 

environment. Interaction with CRYSTAL ISLAND centers on solving 

a complex problem with multiple solution paths, and the expert 

solution represents one of many possible paths. Further work 

should be done in evaluating student solution paths in the context 

of multiple expert solution paths. 

The differences between the temporal distance measure and 

baseline measure indicate that the temporal distance incorporates 

additional information regarding the problem-solving behavior 

path. The baseline distance does not capture information regarding 

intermediate steps of the problem-solving path, which are critical 

to learning. This is analogous to only checking if a student obtained 

the correct answer to a problem without considering the steps the 

student took to solving the problem. In the context of an ill-

structured problem, the temporal distance supports a comparison 

between the steps students took over the course of gameplay with 

an expert solution rather than merely considering the final summary 

statistics of a student. 

6.3 Heteroskedasticity of Trajectories 
The current filtered cumulative action count provides several 

benefits such as its interpretability as a nondecreasing measure of 

weighted problem-solving behaviors performed. However, the 

trajectories become more dispersed as students follow different 

problem-solving paths through the game. The wide dispersion is a 

consequence of the open-ended nature of CRYSTAL ISLAND, which 

has many valid solution paths defined by trajectories. While this 

dispersion of trajectories is important for revealing the divergence 

of problem-solving paths among different students, the dispersion 

as time increases indicates heteroskedasticity in the filtered values, 

or an increase in variance among the filtered cumulative action 

values per time step.  

This can be observed in Table 3, where the standard deviation of 

the distance from the expert solution increases per gameplay phase. 
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For example, in the Information Gathering phase, the standard 

deviation of the 63 student trajectory distances from the expert 

solution is 4.8, and this more than doubles to 12.0 in the Diagnosis 

phase. Future work should address whether this heteroskedasticity 

is desired in calculating similarities from distances or whether a 

variance-adjusted distance would be more appropriate to account 

for how the population of trajectories become more dispersed as 

time progresses. For example, the increased variance of distance in 

later phases may be the cause of the expert distance during 

Information Gathering being significantly predictive of normalized 

learning gain while the Diagnosis phase has no predictive ability 

over normalized learning gain. On the other hand, the distance 

between students and the expert path in the Diagnosis phase 

explains more the variance of the final game score than the 

Information Gathering phase, indicating that the wide dispersion of 

filtered values does not have a negative impact on the relationship 

between expert distance and final game score. 

6.4 Implications of Time Series Analysis 
The primary result of this work is that the trajectory of a student 

through the problem-solving space of a game-based learning 

environment has a relationship with the measured learning 

outcomes of normalized learning gain and significant relationship 

with final game score. The framework for creating these 

trajectories is generalizable to game-based learning environments 

tracking cumulative game actions of students as well as a broad 

range of advanced learning technologies that support multiple 

problem-solving paths. Importantly, this includes transforming an 

expert problem-solving solution path into the same problem-

solving space as student paths, and quantifying the similarity of a 

student solution path relative to the expert solution. While this one 

expert path represents only one possible solution path through the 

problem-solving space, this similarity predicts normalized learning 

gain, indicating the potential for evaluating a student’s entire 

problem-solving path in an open-ended game-based learning 

environment. The measures used here were shown to be predictive 

of learning outcomes, but further analysis should be done to 

determine qualitative characteristics related to learning and self-

regulatory processes.  

These observations have important design implications for adaptive 

learning environments. For example, the results suggest that one 

approach to improving student learning would involve an adaptive 

learning environment scaffolding a student’s problem solving to   

increase the probability that the student follows a trajectory more 

closely related to an expert problem-solving path. In the context of 

a reinforcement learning-based tutorial planner [24, 27], 

characteristics of the trajectory defined by the filtered cumulative 

action value could be used as continuous state variables. This work 

has shown the problem-solving trajectory slope and distance to an 

expert solution are related to learning and in-game student 

engagement, suggesting that problem-solving trajectory slope and 

distance to an expert solution are useful variables to include in a 

state representation for a tutorial planner. The impact of decisions 

made by the tutorial planner on the student’s trajectory in terms of 

its slope and distance from an expert solution could thereby be used 

as estimates for the transitions of a decision in a model-based 

reinforcement learning framework.  

These results also have another key implication for the design of 

adaptive learning environments. In a recent study with the CRYSTAL 

ISLAND game-based learning environment, students who followed 

a predetermined path achieved significantly higher normalized 

learning gains than students who had freedom of control [29]. 

These results suggest a possible explanation for the higher observed 

learning gains: students on the predetermined path followed a 

problem-solving trajectory more similar to the expert solution path 

than students who were given freedom to explore. Therefore, the 

effectiveness of an expert solution path could be measured using 

this framework for time series analysis of problem-solving 

behaviors, and the solution path could be considered for a limited 

agency design of a game-based learning environment.  

7. CONCLUSION 
Open-ended game-based learning environments allow a wide range 

of problem-solving behaviors. Analyzing student actions within a 

game-based learning environment can thus provide insight into 

students’ learning processes. Incorporating the sequential nature of 

student actions within the game-based learning environment is 

important because of the complexities of the problem-solving 

process. This work addresses these issues by examining the 

dynamics of problem-solving behavior of students within a game-

based learning environment through a filtered time series analysis. 

A general framework for filtering problem-solving behaviors into 

a gameplay trajectory was presented using a dimensionality 

reduction filter. The slope of this trajectory, representing the pace 

of problem-solving behaviors, was shown to be negatively 

correlated with learning, indicating that students who were more 

deliberate in the rate of problem-solving behaviors achieved higher 

learning gains. The similarity of student problem-solving 

trajectories with an expert solution was shown to be correlated with 

learning, indicating students who took a similar solution path to the 

expert demonstrated higher learning gains. A comparison of 

temporal distance, using the sequential nature of the problem-

solving process, and a baseline distance, using a final summary of 

student problem-solving process, demonstrated the utility of 

incorporating the temporal nature of interactions within a game-

based learning environment. The results demonstrate the value of 

analyzing the characteristics of a student’s path through the 

problem-solving space in the context of an expert path. In future 

work, it will be important to investigate how the results of time 

series analyses can most effectively inform runtime learning 

environment adaptations. 
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ABSTRACT 

In this paper, we describe a theoretically-grounded data mining 

approach to identify types of collaborative problem solvers based 

on students’ interactions with an online simulation-based task about 

electronics concepts. In our approach, we developed an ontology to 

identify the theoretically-grounded features of collaborative 

problem solving (CPS). After interaction with the task, students’ 

log files were tagged for the presence of 11 CPS skills from the 

ontology. The frequencies of the skills were clustered to identify 

four unique profiles of collaborative problem solvers – Chatty 

Doers, Social Loafers, Group Organizers, and Active 

Collaborators. Relationships among cluster membership, task 

performance, and external ratings of collaboration provide initial 

validity evidence that these are meaningful profiles of collaborative 

problem solvers. 

Keywords 

Collaborative Problem Solving, Ontology, Assessment, 

Simulation-based Assessment, Discourse 

1. INTRODUCTION 
In our modern society, the nature of workplace performance has 

changed fundamentally through technology. An increasing number 

of complex tasks are being carried out in groups, often supported 

through digital tools with features that support collaboration. 

Accordingly, there has been increased attention in the assessment 

community on relevant competencies such as collaborative 

problem solving (CPS), a skill with multiple components that have 

been identified as important for success in the 21st century 

workforce [3].  

Competency in CPS has been defined as “the capacity of an 

individual to effectively engage in a process whereby two or more 

agents attempt to solve a problem by sharing the understanding and 

effort required to come to a solution and pooling their knowledge, 

skills, and efforts to reach that solution” [17]. The complexity of 

this construct in having a cognitive dimension associated with 

problem solving processes and an interpersonal dimension 

associated with collaboration processes has made assessing CPS 

difficult, if not impossible, to carry out with traditional types of 

assessment such as multiple-choice questions with almost any 

sense of fidelity and generalizability [5]. As a result, there has been 

a turn to online learning environments such as games and 

simulations, which allow individuals to interact around complex 

problems and capture all actions and discourse in the environment 

as evidence of competency for assessment purposes.  

While online environments offer promise for CPS assessment, 

there are challenges that exist. First, as with more traditional forms 

of assessment, assessment developers must conceptualize what 

skills define the construct and what actions and discourse would be 

indicative of those skills in the environment. Second, one must 

develop methods to make sense of the large streams of fine-grained 

data generated during real-time interaction in the environment [10].  

In the current paper, we use a theoretically-grounded data mining 

approach [6] to discover profiles of various types of collaborative 

problem solvers that are strongly rooted in theory associated with 

collaboration, cognitive and social psychological research. 

Specifically, we describe the principled approach we used to 

conceptualize what skills make up the CPS construct, how we 

extracted evidence of those skills from the large streams of log data, 

and how we aggregated that information to create profiles that 

describe different types of collaborative problem solvers. 

2. METHODS 

2.1 Participants 
Students in electronics and engineering programs were recruited 

from universities and community colleges across the United States. 

There were 129 individuals who completed the study in groups of 

three (i.e., 43 groups) that were randomly assembled. Of those 

students who reported their gender, 81% were males and 17% were 

females with 2% unreported. Of those who reported their race, 51% 

were White, 7% were Black or African American, 6% were Asian, 

2% were American Indian or Alaska Native, 10% reported being 

more than one race, 2% reported Other, with 2% unreported. For 

ethnicity, 22% reported being Hispanic. The average age among 

students was 24 in a range of 16 to 60. 
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2.2 Task and Measures 
Students completed a pre-survey that asked for their background 

information (e.g., age, gender, level of education) as well as their 

preferences for working in groups relative to independently and 

beliefs about the importance of collaboration. Instructors were then 

asked to randomly assemble their students into groups to complete 

an online simulation-based task on electronics concepts. The 

students worked in a computer lab and collaborated completely 

online in a computer-mediated environment described next. 

In the task, called the Three-Resistor Activity, students worked in 

groups of three, each on a separate computer, and each running a 

fully functional simulation of a portion of an electronic circuit. The 

individual simulations were linked together to form a complete 

series circuit. The environment included a digital multimeter 

(DMM), two probes (red and black) from the DMM, a resistor, a 

calculator, a zoom button, a chat window, and a submit button (see 

Figure 1 for a screenshot of the task interface). These components 

allowed students to take measurements, view their circuit’s 

resistance, perform calculations, zoom out to view (but not interact 

with) other teammates’ circuits, communicate with teammates, and 

submit their work.  

The individuals in each team were given the same task goal, which 

consisted of setting their resistors so that the voltage across these 

matched specified goal values. Since the circuits were connected in 

series, a change made to any one of these affected the current 

through the circuits and therefore the voltage drop across each of 

the circuits. Thus, rather than attempting to achieve the goal 

independently, team members needed to share information and 

coordinate their efforts to reach the goal voltage values across all 

the circuits. There were four levels of the task that increased in 

difficulty. At higher difficulty levels of the task, in addition to 

achieving their goal voltage values, the students were also asked to 

collaborate to determine the unknown resistance and supply voltage 

of an external, fourth circuit in the series. Students were allowed to 

communicate only using a chat window and could “zoom out” to 

see one another’s circuits, but could only alter or make 

measurements on their own circuits. As students worked to achieve 

the goal voltages across four task levels, all of their relevant actions 

(e.g., DMM measurements, resistor changes, calculator entries, 

chat submissions) were time-stamped and logged to a database. 

Table 1 provides an overview of the characteristics of each task 

level. Across the four task levels, the difficulty of the task increased 

either by presenting a more complicated problem (e.g., providing 

different goal voltages for each teammate in Level 2) or reducing 

the amount of information given (e.g., the external voltage in 

Levels 3 and 4). These changes increased the need for 

collaboration, as students were required to share more information 

and communicate more to identify unknown variables. 

Specifically, in Level 1, students were given the unknown 

resistance and supply voltage of an external, fourth circuit in the 

series and the goal voltages that needed to be reached were the same 

for each teammate. Having the same goal voltages for each circuit 

limited the amount of information that needed to be shared for each 

teammate to reach their goal. In Level 2, students were again given 

the unknown resistance and supply voltage of an external, fourth 

circuit in the series, but each teammate was now given a different 

goal voltage that they were required to reach. In Level 3, students 

were given the value of the resistance of the external circuit and 

again had different goal voltages to reach; however, the supply 

voltage of the external circuit was not provided. Thus, the team 

needed to reach the goal voltage for each circuit, but also discover 

and submit the supply voltage value and unit for the external circuit. 

In Level 4, students needed to discover and report the values and 

units for both the unknown resistance and the supply voltage of the 

external, fourth circuit as well as reach the specified and different 

goal voltages on each teammate’s circuit.  

 

Figure 1. Screenshot of the Three-Resistor Activity. 

 

Table 1. Overview of Task Levels 

Task 

Level 

External 

Voltage (E) 

External 

Resistance (R0) 

Goal 

Voltages 

1 
Known by all 

teammates 

Known by all 

teammates 

Same for all 

teammates 

2 
Known by all 

teammates 

Known by all 

teammates 

Different for 

each 

teammate 

3 
Unknown by 

teammates 

Known by all 

teammates 

Different for 

each 

teammate 

4 
Unknown by 

teammates 

Unknown by 

teammates 

Different for 

each 

teammate 

 

2.3 Competency Model 
A CPS ontology (similar to a concept map) was developed to 

conceptualize the CPS construct. It provides a theory-driven 

representation of the targeted skills and their relationships, linking 

the skills to observable behaviors in the electronics task that would 

provide evidence of each skill. The top level of the ontology 

provides generalizable construct definitions for CPS (e.g., sharing 

information as one skill associated with the construct) that can be 

implemented in other work seeking to assess CPS or other related 

constructs. This top layer was developed based on an extensive 

literature review of CPS frameworks and other related research 

areas such as computer-supported collaborative learning, 

organizational psychology, individual problem solving, and 

linguistics [9, 12, 14, 15, 16, 17, 18, 22]. Each lower layer of the 

ontology becomes more specific describing CPS as interpreted 

within a domain (e.g., sharing status updates) and then within the 

task environment in the domain (e.g., sharing the status of the 

resistance in a circuit). Links between the layers describe how 

behaviors at lower levels can be combined to make inferences about 

cognitive behaviors at higher levels. In our research, the ontology 

designated the lower level features corresponding to over-arching 

social and cognitive dimensions. These lower level features were 

then extracted from log files prior to analysis.  Figure 2 shows the 

structure for a portion of the CPS ontology with nodes 
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corresponding to high-level CPS skills, sub-skills, features, and 

observable variables that can be inferred from the features, along 

with links indicating the relationships between the nodes. 

 

Figure 2. CPS ontology fragment structure. 

The full ontology has nine high-level skills associated with CPS 

that we sought to identify in the data. Four skills correspond to the 

social dimension of CPS (i.e., maintaining communication, sharing 

information, establishing shared understanding, negotiating) and 

five skills correspond to the cognitive dimension of CPS (i.e., 

exploring and understanding, representing and formulating, 

planning, executing, monitoring). Maintaining communication 

corresponds to content irrelevant social communications [12]. This 

includes general off-topic communication (e.g., discussing what 

was eaten for breakfast), rapport building communication (e.g., 

greeting or praising teammates), and inappropriate communication 

(e.g., cursing). Sharing information corresponds to content relevant 

information communicated during collaboration. This includes the 

sharing of one’s own information (e.g., sharing information related 

to the status of one’s own work during the task), sharing task or 

resource information (e.g., communicating what tools are available 

in the task environment), and sharing understanding (e.g., sharing 

metacognitive information about the state of one’s understanding). 

Establishing shared understanding corresponds to communicators 

attempting to learn the perspectives of others as well as trying to 

establish that what has been said is understood [4, 17]. This skill 

would include requesting information from teammates to verify 

that everyone has a common understanding, providing responses to 

teammates that verify comprehension of another’s contribution, 

and making repairs when problems in shared understanding arise. 

Negotiating refers to communication that identifies whether or not 

conflicts exist in the ideas among teammates and seeks to resolve 

those conflicts when they arise [9]. This skill includes expressing 

both agreement and disagreement, and attempting to reach a 

compromise. 

For the cognitive dimension, exploring and understanding refers to 

actions taken to build a mental representation of pieces of 

information associated with the problem. This includes interacting 

with the task environment to explore the problem space and 

demonstrating understanding of given information and information 

acquired while interacting with the environment. Representing and 

formulating refers to actions and communication in the service of 

building a coherent mental representation of the whole problem 

space. This includes developing a verbal or graphical 

representation of the problem and formulating hypotheses [17]. 

Planning corresponds to communication around developing a plan 

or strategy to solve the problem. This includes determining the 

overall goal, setting sub-goals or steps to carry out, and developing 

and revising strategies [9, 17]. Executing corresponds to actions 

and communication used in the service of carrying out a plan. This 

includes taking actions to enact a strategy, making suggestions for 

actions a teammate should carry out, and communicating to 

teammates the actions one is taking to carry out the plan. 

Monitoring refers to actions and communication associated with 

monitoring progress toward the goal and monitoring the 

organization of the team [16, 17]. This includes communicating 

one’s own progress toward the goal, checking on the progress of 

teammates, and determining whether teammates are present and 

following the rules of engagement or their roles in completing 

tasks.  

2.4 Qualitative Coding 
The CPS ontology was used to create a rubric for raters to carry out 

qualitative coding of the log data to identify evidence of high-level 

CPS skills from low-level student discourse and actions. The nodes 

and links corresponding to each CPS skill in the ontology were 

transformed into extensive written protocols that included the high-

level CPS skills, any sub-skills associated with the high-level skills, 

definitions for skills and sub-skills, example behaviors from the log 

data that would be indicative of each skill, and the action types 

associated with each skill (e.g., chat, calculation, measurement, 

submit). Two raters coded the content of students’ discourse and 

their actions for the display of nine CPS skills. Evidence for two of 

the nine high-level CPS skills from the ontology could be found in 

both chats and actions (i.e., monitoring and executing) and were 

thus split into separate action and chat skills. As a result, the 11 

coded skills were maintaining communication, sharing 

information, establishing shared understanding, negotiating, 

exploring and understanding, representing and formulating, 

planning, executing actions, executing chats, monitoring actions, 

and monitoring chats. Coding was done at the level of each log file 

event (i.e., each action submission or submission of a chat 

[utterance level] even if sequences of utterances mapped onto a 

singular CPS skill). Each of the 20,947 log file events only received 

one code. The inter-rater reliability between the two raters was high 

(Kappa = .84) based on a randomly selected sample of 20 percent 

of the data (approximately 4,200 events) that were double-coded. 

On the social dimension, for maintaining communication, raters 

examined the log data for evidence of off-topic communication 

(e.g., “I should have drank coffee this morning”), rapport building 

communication (e.g., using chat emoticons, greeting teammates, 

apologizing, praising teammates), and inappropriate 

communication such as curse words or messages that degrade 

teammates (e.g., “you’re an idiot”). For sharing information, raters 

looked for evidence of individuals sharing their own information 

for the problem (e.g., sharing what circuit board they were on, their 

goal voltage values, or resistance values on their board), sharing 

task or resource information (e.g., sharing where the zoom button 

was located, sharing that there was a calculator to use in the 

environment), and sharing their understanding (e.g., metacognitive 

statements such as “I don’t get it”). For establishing shared 

understanding, raters looked for evidence of individuals requesting 

information from their partners (e.g., “what is your resistance?” 
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“what values do we need?”), and providing responses that indicate 

comprehension or lack of comprehension of a teammate’s 

statement (e.g., “ok,” “I hear you,” or requests for clarification). 

For negotiating, raters looked for evidence of individuals 

expressing agreement (e.g., “You are right”), expressing 

disagreement (e.g., “that’s not right”), and revising their own ideas 

or proposing alternate ideas. 

On the cognitive side, raters looked for evidence of exploring and 

understanding by identifying actions in which individuals 

unsystematically made changes to task components in an effort to 

explore the interface. Unsystematic actions were defined as 

seemingly exploratory actions that were taken prior to developing 

a plan (e.g., spinning the dial on the digital multimeter, changing 

the resistance values several times in a few seconds). For 

representing and formulating, raters looked for evidence of 

individuals verbally communicating what the problem was (e.g., 

“this is a series circuit”) and communicating hypotheses for how 

their actions would affect the environment. For planning, raters 

looked for evidence of individuals communicating goals (e.g., “We 

need 6.69 volts across our resistors”) and communicating strategies 

to their teammates (e.g., “ok we set our values to R and find 

current”). For executing actions, raters looked for actions that 

individuals took to carry out the plan or strategy (e.g., changing 

their voltage values to the voltage suggested by a teammate or 

performing a calculation associated with Ohm’s Law). For 

executing chats, raters looked for evidence of individuals making 

suggestions or directing their teammates to perform actions 

associated with their plan (e.g., “Adjust yours to 300 ohms”) and 

reporting their own actions that they were taking to carry out the 

plan (e.g., “Let me go a little lower and then readjust”). For 

monitoring actions, raters looked for evidence of individuals 

carrying out actions associated with monitoring the team’s progress 

toward the goal (e.g., clicking the submit button to receive feedback 

about success in solving the problem) or monitoring teammates 

(e.g., using the zoom feature to view the state of a teammate’s 

circuit board). For monitoring chats, raters looked for evidence of 

individuals stating the result of their monitoring of progress toward 

the goal (e.g., “I’ve got my goal voltage”), monitoring the status of 

teammates (e.g., “Where is Rain?”), and prompting teammates to 

perform tasks (e.g., “Let’s get a move on Sleet”).  

3. ANALYSES AND RESULTS 
The analyses were conducted in two stages. First, the frequencies 

of the 11 CPS skills displayed by each individual were clustered 

with a hierarchical approach to discover meaningful profiles. 

Second, the profiles were validated by their relationship to 

performance and self-report measures with non-parametric 

inferential statistical tests and Monte Carlo simulations due to the 

abnormal distributions of the variables. 

3.1 Cluster Analysis and Profiles 
We chose an exploratory clustering method [21] for uncovering 

potential profiles of collaborative problem solvers in part because 

we had no formal a priori theory regarding the number and 

composition of these profiles. Additionally, as the sample size 

(N=129) did not warrant methods like K-means which are typically 

applied to larger samples [13],  Ward’s Method was employed to 

cluster the frequencies of each CPS skill displayed to allow us to 

examine the breakdown of possible clusters so that a meaningful 

number of clusters could be chosen. The final number of clusters 

was determined based on an initial interpretation of the theory 

stated in existing literature in collaboration and psychological 

research. Thus, these are preliminary findings and to date no gold 

standard exists for the collaborative problem solving domain. 

A four-cluster solution was most defensible from a theoretical 

perspective and the expected relationships to other variables that 

resulted which will be explained in later sections; Table 2 shows 

the frequencies for this solution. Specifically, the learners in the 

four clusters differed systematically in the frequencies of CPS skills 

that were displayed. The four clusters were named Chatty Doers, 

Social Loafers, Group Organizers, and Active Collaborators. In the 

next section, we describe the key behavioral patterns in each cluster 

based on CPS skill frequencies standardized to the total sample and 

discuss the relevant theory explaining the type of collaborative 

problem solver that may display the patterns of behavior. 

Table 2. Collaborative Problem Solver Profiles 

Profile  Frequency Percent of Sample 

Chatty Doers 35 27.1 

Social Loafers 68 52.7 

Group Organizers 16 12.4 

Active Collaborators 10 7.8 

 

3.1.1 Chatty Doers 
Students in Cluster 1, labeled “Chatty Doers” (n=35) were high (z 

> 0.20) on executing actions and maintaining communication, 

somewhat high (0.10 < z < 0.20) on planning and sharing 

information, and were low (z < -0.20) on monitoring actions. These 

students were labeled “Chatty Doers” due to their high levels of 

maintaining communication chats and executing actions. Chats 

associated with maintaining communication were communications 

that were social in nature, but not relevant to solving the problem 

[12]. These included discussing what one did last week, discussing 

homework from the night before, and praising teammates. Thus, 

these individuals were designated as chatty more generally given 

their off-topic, social communication that was absent of high levels 

of communication related to skills such as negotiating or 

establishing shared understanding. These individuals also engaged 

in a high level of executing actions relative to other individuals 

which included making resistor changes and performing 

calculations. Thus, these individuals were the doers carrying out 

many of the actions associated with executing the team’s plan.  

3.1.2 Social Loafers 
The standardized means for Cluster 2, labeled “Social Loafers” 

(n=68) displayed below average demonstration (z < 0.00) of almost 

all skills. These students were named “Social Loafers” given their 

low levels of the CPS skills which may be explained by a social 

psychological phenomenon in which individuals decrease their 

individual effort when working in groups [11] as they each assume 

another member will take the lead in solving the problem. Students 

in this cluster appeared to do just this as they engaged in fewer 

collaborative problem solving behaviors relative to other 

individuals. 

3.1.3 Group Organizers 
The standardized means for Cluster 3, labeled “Group Organizers” 

(n=16) showed high demonstration (z > 0.20) of monitoring 

actions, representing and formulating, and negotiating, somewhat 

high demonstration (0.10 < z < 0.20) of executing chats and sharing 

information, and low demonstration (z < -0.20) of planning. These 

students were named “Group Organizers” due to their high levels 
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of communications and actions associated with establishing and 

maintaining organization for the problem and the group [17]. This 

included things such as monitoring behaviors like using the zoom 

feature to monitor the state of teammates’ behaviors and circuit 

boards, verbally representing the problem for teammates, and 

communicating important information to group members such as 

what actions are being taken to solve the problem, all of which can 

be in the service of keeping the group organized.  

3.1.4 Active Collaborators 
The students in Cluster 4, referred to as the “Active Collaborators” 

(n=10) showed above average demonstration (z > 0.00) of almost 

all skills, though they demonstrated low levels (z < -0.20) of 

maintaining communication. Cluster 4 students were named 

“Active Collaborators” given their high levels of almost all of the 

social and cognitive processes associated with CPS [8]. 

3.2 CPS Skill Profile Validation 
The CPS skill profiles were validated by relating the cluster 

membership assignment to performance metrics from the task and 

scores from student self-reports of preference in working with 

others. Prior empirical studies suggest a positive relationship 

between demonstration of collaborative behaviors and performance 

outcomes [1, 8], thus we hypothesized that students demonstrating 

more of the skills associated with CPS would have greater success 

on the task as measured by the number of levels completed in the 

task. Number of task levels completed was treated as an individual 

performance measure, though contributions of other teammates 

could impact the score. In regard to self-report measures, we were 

unsure as to whether students would accurately report whether or 

not they thought they were good collaborators but suspected they 

would answer more honestly as to whether or not they preferred to 

work alone, thus the latter question was asked to students along 

with their perceptions of how important collaboration is in the real 

world. The cluster membership assignment, the performance 

metrics, and the self-ratings were submitted to Kruskal-Wallis tests 

with a Monte Carlo simulation to determine the significance of the 

relationships among the variables. 

3.2.1 Cluster Membership and Performance 
There was a significant relationship between cluster membership 

and success on the task levels (i.e., number of task levels 

completed) (X2(3,126) = 6.93, p <.05 with a one-tailed test, partial 

η2 =.053). The Monte Carlo simulation with 10,000 test samples 

revealed a p value of .032 (lower bound = .023; upper bound = 

.036). The mean ranks of the different groups based on completed 

task levels showed patterns in line with our prediction. Specifically, 

the Active Collaborators had the highest mean rank of 93.95 

whereas the Social Loafers had the lowest mean rank of 61.65. 

Chatty Doers and Group Organizers fell in between these two 

groups with mean ranks of 63.89 and 63.59, respectively. Post hoc 

comparisons with a Bonferroni correction revealed that there was a 

significant difference between the Social Loafers and Active 

Collaborators (p = .027) and a marginally significant difference 

between the Chatty Doers and Active Collaborators (p = .063) in 

terms of mean rank of performance. All other comparisons were 

not significant. These results make sense as we would expect the 

Active Collaborators to be the high performers given that they 

demonstrated high frequencies of all of the necessary attributes that 

we had identified for effective collaborative problem solvers. It also 

makes sense that Social Loafers performed the poorest as these 

individuals demonstrated lower incidences of CPS skills.   

After confirming that there was indeed a significant difference in 

the relationship between performance and type of collaborative 

problem solver, we moved on to compare cluster membership to 

self-reported collaboration preferences. 

3.2.2 Cluster Membership and Collaboration 

Preferences 
Recall that students completed a pre-survey that included questions 

about their preferences in working with others and how much they 

valued collaboration in the real world. We explored how responses 

to these questions were related to cluster membership. There was a 

marginally significant relationship between cluster membership 

and response to the question about whether or not students 

preferred to work alone (X2 (3,126) = 7.23, p = .065 with a two-

tailed test, partial η2 =.055). The Monte Carlo simulation revealed 

a p value of .064 (lower bound = .057; upper bound = .070). The 

mean ranks for responses - where higher numbers indicate stronger 

preference to work alone - were as follows: Social Loafers (71.05), 

Chatty Doers (54.90), Group Organizers (54.38), and Active 

Collaborators (47.10). The direction of these results are consistent 

with what would be expected. Social Loafers who demonstrate few 

CPS skills and seem to expend little effort during collaborative 

activity would be expected to prefer to work alone. Conversely, 

Active Collaborators who demonstrate high incidences of CPS 

skills and are thus active during collaborative activity would be 

expected to have a preference to work with others. Chatty Doers 

and Group Organizers who display CPS skills, but not to the extent 

of Active Collaborators would be expected to fall in between the 

Active Collaborators and Social Loafers. 

The students were also asked about their ratings as to how 

important collaboration is to the real world. Cluster membership 

had a non-significant relationship to responses on this question (p 

= .465). The mean ranks where higher numbers indicate higher 

importance for collaboration in the real world were as follows: 

Group Organizers (71.94), Chatty Doers (68.82), Active 

Collaborators (62.90), and Social Loafers (59.82). One possible 

explanation for this finding is that instructors likely informed 

students about the importance of collaboration in setting up the 

study activity so student responses may have been influenced by 

this information. The mean ranks were relatively high for all groups 

so this explanation may be appropriate, but further testing is 

necessary to draw any strong conclusions. 

4. CONCLUSIONS 
Many methods exist for discovering profiles of how students 

collaborate during problem solving (for a review see [7]). In the 

current study, we used a frequency-based cluster approach to 

discover cluster profiles, following a previously established 

approach [8]. This approach was chosen because we are 

discovering profiles of types of collaborative problem solvers in a 

discovery learning environment. That said, we acknowledge that 

other approaches could be considered, though they may not be the 

best fit in the given context. For example, for an analysis of CPS in 

an international assessment context [17], students interacted with a 

constrained environment (e.g., a dropdown menu for chat choices) 

making it possible for traditional psychometric approaches to 

sufficiently analyze the student responses and communication. 

Conversely, in previous research on serious games with 

collaboration, an Epistemic Network Analysis (ENA) approach has 

been used to analyze how students connect knowledge and skills 

during collaboration over time [19]. However, the focus of our 

investigation is on collaboration without including domain 

knowledge, though we plan on augmenting the ENA approach for 

our purposes in future analysis. Additional approaches focusing on 

group dynamics [e.g., 20] were not chosen as the goal of this 
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investigation was to analyze student collaboration on an individual 

level. Therefore, we are not stating that our educational data mining 

approach is the only means to analyze CPS skills, but rather that it 

may be most appropriate for profiling individual students for CPS 

skills without including domain knowledge or group dynamics. 

In our implementation of the frequency-based cluster approach, we 

demonstrated that meaningful results can emerge from 

incorporating theory into the approach to identify types of 

collaborative problem solvers. Specifically, the current approach 

yielded four types, namely, Chatty Doers, Social Loafers, Active 

Collaborators, and Group Organizers in our assessment context. 

The Chatty Doers displayed high levels of maintaining 

communication chats, or content irrelevant, social communication, 

and high levels of executing actions in the service of solving the 

problem. The Social Loafers were characterized by low levels of 

CPS skills in general whereas Active Collaborators were 

characterized by high levels of all CPS skills except maintaining 

communication. Group Organizers were categorized by CPS skills 

associated with establishing and maintaining organization for the 

problem and the group. Over half of the students demonstrated 

behaviors characteristic of Social Loafers while few students were 

characterized as Active Collaborators. 

The profiles showed expected relationships with performance. 

Specifically, the Active Collaborators showed the highest levels of 

performance whereas the Social Loafers showed the lowest levels 

of performance. The performance of Chatty Doers and Group 

Organizers fell in between these groups. These results are 

consistent with prior work showing positive social and cognitive 

behaviors benefiting performance outcomes [8] and non-

collaborative behaviors hurting performance outcomes [2]. The 

four cluster profiles also showed a marginally significant 

relationship with a self-report measure of whether or not students 

preferred to work with others. Social Loafers had the highest ratings 

of preferring to work alone perhaps because these students are less 

willing to expend the effort needed to sustain collaborative 

relationships to work with others as compared to their peers. 

Conversely, the Active Collaborators preferred to work with others 

more than did other students. This makes sense as these students 

are active during collaboration and thus likely willing to expend the 

effort needed to work with others to solve problems. 

Perhaps the most important feature of this study is not necessarily 

the profiles themselves but rather the blending of theory with 

educational data mining techniques. All features of CPS were 

defined a priori based on a theoretically-grounded ontology with 

multiple levels and two dimensions of social and cognitive skills. 

In total, this ontology defines nearly 51 features. This method may 

be helpful in discovering meaningful relationships between 

variables in large log files from games and simulations. 

Furthermore, the number of clusters was defined based on 

theoretical grounding. We deemed the method successful based on 

the meaningful profiles discovered and preliminary relationships to 

external measures, all of which can be explained by psychological 

research. In the current paper, we coded high-level CPS skills based 

on low-level student behaviors. In future work, we intend to code 

at a lower, sub-skill level and incorporate methods to aggregate to 

higher levels in the ontology. Due to the time-intensive nature of 

human coding with these kind of data, we further plan to explore 

the possibility of automating the coding of chat data using machine 

learning algorithms. 

There are some limitations to this study. One involves the small 

number of participants compared to the number of CPS skills we 

were attempting to measure. Additionally, we had few items to use 

as external correlates to our cluster profiles. In follow-up research, 

we are currently conducting a study with a larger sample to confirm 

the existence of the profiles discovered in this study and 

administering multiple well-constructed external measures that can 

potentially help build a validation argument for any discovered 

profiles. Another limitation of this study is that the measure used 

for performance outcomes incorporated the contributions of group 

members. As we are investigating CPS on an individual level, it 

would be ideal to compare student skills on an individual level to a 

performance measure for each individual. Thus, in an upcoming 

study, we have also incorporated a measure of performance that 

may more closely resemble individual performance but complete 

exclusions of group dynamics is difficult in the given environment. 

Thus, follow-up analyses on the group dynamics and composition 

are currently underway.  

The current study provides preliminary results that will greatly 

inform the work on the upcoming data collection. Furthermore, the 

current study views collaboration through the lens of the Three-

Resistor Activity; however, our intention is to draw upon a wide 

variety of tasks and content areas in upcoming studies. This future 

work will allow us to explore the generalizability of the CPS 

ontology, as its structure allows for decoupling it from content and 

modifying lower-level nodes to support features in other tasks. 

Overall, the study demonstrates a methodology that incorporates 

well-detailed theory and measures emerging from the learning 

sciences and blends it with educational data mining. This approach 

resulted in meaningful profiles constructed from features defined a 

priori, and can serve as an example for how to combine theory and 

data-driven approaches to make meaningful inferences about 

students’ knowledge, skills, and abilities from interactions in an 

online environment.  
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ABSTRACT
Course selection can be a daunting task, especially for first-
year students. Sub-optimal selection can lead to bad per-
formance of students and increase the dropout rate. Given
the availability of historic data about student performances,
it is possible to aid students in the selection of appropriate
courses. Here, we propose a method to compose a personal-
ized curriculum for a given student. We develop a modular
approach that combines a context-aware grade prediction
with statistical information on the useful temporal ordering
of courses. This allows for meaningful course recommenda-
tions, both for fresh and senior students. We demonstrate
the approach using the data of the computer science Bach-
elor students at Saarland University.

1. INTRODUCTION
Students at higher education institutions usually have to
choose from a large set of possible courses in order to achieve
an academic degree. Even for senior students, it is not ob-
vious which courses to follow and in what sequence as the
number of possible choices is large. Students often have
problems to ensure progress in a program of study, espe-
cially in the first years of study, and to graduate in a timely
manner.

Student success is also an important objective for decision
makers at universities, which continuously monitor drop-
out rates and average times to degree. Completion rates
at European universities range between 39% to 85% and are
highly program dependent, while the average time-to-degree
is around 3.5 years for a Bachelor degree [17].

When pursuing a degree students typically have to complete
a set of mandatory courses, as well as courses that can be
chosen more freely. In the first years, an adequate order of
mandatory courses is of interest while in later years the focus
is on the question which courses to take in general and which
not. Instead of relying on individual recommendations from
other students, our goal is to take advantage of the combined

experience of former students and address both, an adequate
temporal ordering and an intelligent selection of courses.

We propose an approach that combines statistical methods
based on course orderings and grade prediction based on a
collaborative filtering approach. This results in a model con-
sisting of two main components, a course dependency graph
and grade prediction. Therefore our model combines two
major criteria: The expected performance, i.e. the expected
grade, and preparedness, i.e. how prior course choices may
benefit the student, for a given course. We believe that
weaving the two criteria strongly increases the usability of
our recommendations compared to previous work focusing
only on one of the two.

To train our model we use long-term educational data of
computer science Bachelor students from Saarland Univer-
sity’s computer science department. The data consists of
course performance information from several thousand stu-
dents of various countries during the last ten years. Experi-
ments with a first subset of students already showed promis-
ing results giving recommendations for first-year as well as
for senior students.

2. RELATED WORK
Many course recommendation approaches are based on per-
formance prediction. A wide range of standard machine
learning methods have been applied to this problem [14, 15],
as well as recommender system techniques [10]. Ray and
Sharma [8] apply collaborative filtering based on item-item
similarity. Ren et al. [9] supplement a matrix factorization
approach with weights for recently taken courses. Besides a
gain in predictive quality, the resulting model carries valu-
able information on beneficial orderings of courses. Poly-
zou and Kyrapis [7] propose a matrix factorization based
on course-specific features. Slim et al. [12] use Markov net-
works of courses to predict individual grades and estimate
the future performances inside a study program.

In contrast to the aforementioned approaches, our technique
separates the concerns of performance and preparedness.
This has the benefit of allowing for a custom weighting of
the two components, as well as the increased explanatory
value of the model itself.

Much effort on curriculum planning has been focused on
Massive Open Online Courses (MOOC). For instance, Hansen
et al. [5] analyse characteristic question sequences in online
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courses by applying Markov chains to student clusters. Chen
et al. [3] propose a squencing for items in the context of web-
based courses.

In the context of university eduction, much effort has been
directed towards providing analytical tools to educators and
institutions. For example Zimmermann et al. [18] predict
graduate performance, based on the students’ undergradu-
ate performances. Saarela and Kärkkäinen [11] analyse un-
dergraduate student data to indentify relevant factors for a
successful computer science education.

3. PROBLEM SETTING
We consider the problem of designing a student’s curriculum
that optimizes performance (measured in terms of course
grades) and the time to degree. Hence, for each semester a
subset of the courses offered is chosen such that the student’s
complete trace from the first semester until the final degree
is (approximately) optimal, i.e., the performance and time to
degree does not improve if the order in which the courses are
taken is changed or if different courses are taken. We assume
that a large number of traces of former students are given,
including the particular grades achieved in each course. Note
that this also includes data of students retaking courses are
failing.However, the data may not provide information about
students that enroll in a course but withdraw before the
final exam. In addition, we assume that recommendations
for students that already participated in certain courses, the
corresponding partial trace is available as well as meta data
about the student. Moreover, we want to take into account
all selection rules of the corresponding study program.

The data-set consists of performance and meta-information
of the students at the computer science department of Saar-
land University since 2006. It includes grades, basic infor-
mation regarding students (age, nationality, sex, course of
studies) as well as basic information regarding the lecture
(course type, lecturer). Here, we consider a subset of 72 re-
curring courses which have a total of 16,090 entries of 1,700
students. A challenge regarding this particular data set is
the fact that students may register fairly late in the semester
for a particular course. Therefore the data does not capture
a early student drop out.

4. COMPONENTS OF OUR APPROACH
In the context of standard recommender systems, the pre-
dicted rating is the basis for a recommendation. However, in
the context of course recommendation, further aspects, such
as the knowledge gain and constraints of the study program
have to be taken into account. Here, we present an approach
that is flexible enough to also incorporate such criteria in a
modular way. Moreover, in our approach selection criteria
can further be prioritized by the student. A student may,
for example, prioritize taking a course that increases the pre-
paredness for certain other courses. In this case, the course
may be recommended although the students performance
alone did not lead to suggestion of that course.

We construct a personalized recommendation graph of courses
for each student based on the two main components: the
course dependency graph and the performance prediction.
The course dependency graph aims to capture the positive
effect that course A has on the performance in course B. The

performance prediction is done using a collaborative filtering
approach, that incorporates contextual features of both the
student and the course.

4.1 Course Dependency Graph
The Course Dependency Graph is a graph whose node set
equals the set of all (regularly or irregularly offered) courses.
A directed edge between course A and course B means that
when passing A before B then the chance of getting a better
grade in B is higher compared to the grade in B obtained
for the order B before A.

We use the Mann-Whitney U-test [2] to construct such a
graph of courses. The hypothesis of the test is that one ran-
dom variable is smaller than another. If we let the random
variable X<c denote the grade in course B for a student
that had a grade < c in course A an edge represents the
hypothesis

Pr(X<c < k) > Pr(X≥c < k),

where X≥c includes the case of not taking course A. The
hypothesis describes that the probability of drawing a grade
of subset X<c which is better than k is higher than doing
the same for subset X≥c.We fix a small significance level
α = 0.0001, to find the most important course relations.
Since the test is quite sensitive, it tends to identify too many
course pairs for higher significance levels. Moreover, a min-
imum number of 20 samples is required for each case to
perform the test. The graph only contains an edge between
two courses if the test confirms the above hypothesis.

In Germany grades are numbers in the set

P = {1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, 3.7, 4, 5} ,

where lower numbers are better and 5 is the failing grade.
In general, we assume these performances to be normalized
to mean zero and unit variance w.r.t. courses.

To construct the course dependency graph, we first construct
one graph for each grade threshold c ∈ P . Next we average
over the edges of all graphs, resulting in edge weights be-
tween 0 and 1. In this way the final graph, in which course
dependency is not binary but a weighting, is more informa-
tive. A large value implies that this course ordering is bene-
ficial to students of all performance levels while a low value
indicates that this ordering is only helpful for a smaller set
of students. Note that the absence of edges indicates that
there is not enough information about the relation between
the two courses.

An excerpt of a course dependency graph is shown in Fig-
ure 1. We find that ‘Programming I’, ‘Maths I’ and ‘Maths
II’ are good starting points in this graph for a first-year stu-
dent as they do not have incoming edges. Note that the miss-
ing edge between ‘Maths I’ and ‘Maths II’ is meaningful as
‘Maths I’ focuses on Linear Algebra while ‘Maths II’ is con-
cerned with Analysis. As opposed to this, for ‘Programming
I’ and ‘II’ the graph suggests to first take ‘Programming I’
as a preparation, which is a meaningful recommendation as
the contents of ‘Programming II’ are based on those of ‘Pro-
gramming I’. Moreover, the graph shows a number of less
obvious relations between courses (e.g. ‘Programming II’
and ‘Theoretical Computer Science’).
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Figure 1: Excerpt of a course dependency graph, based on
Mann-Whitney U-test with significance level of 0.0001, rep-
resenting the dependencies between most of the basic courses
in CS curriculum at Saarland University.

4.2 Grade prediction
We use a collaborative filtering [10] approach to predict stu-
dent performance. One advantages of this approach is that
no imputation of missing entries is necessary but the opti-
mization only runs over existing entries.

We associate with each student i and course j an n-dimensio-
nal feature vector, si and cj , respectively. The predicted
performance is the cross-product of both vectors, i.e.

f(i, j) = 〈si, cj〉 =

n∑
k=1

si,kcj,k ,

which we call the predictor function. Let gi,j be the perfor-
mance of a student i in course j and let Gt denote the set of
all known performances of students up to semester t. Then
the standard loss is the regularized MSE, i.e.

L(S,C, t) =
∑

gi,j∈Gt−1

(f(i, j)− gi,j)2 + λh(S,C)

with regularization term

h(S,C) =
∑
i∈S

‖si‖+
∑
j∈C

‖cj‖ ,

where S is the set of all students and C the set of all courses.

4.2.1 Contextual Information
The above loss metric only depends on information about
the students’ performances, i.e. their grades. However, the
context of a performance can contain vital information. Usu-
ally, in the context of student records a wealth of data is
readily available. This includes meta-data of a student such
as age, gender, and nationality and data regarding the pro-
gression of the student throughout study programs. More-
over, information regarding the course, such as the lecturer,
is typically known.

A standard and straight-forward, approach to include such
information is to pre-filter data [10]. This entails partition-

ing data along contextual criteria and then training a model
for each subset. Here, the only performed pre-filtering is to
take only computer science Bachelor students into account.
Other partitionings, e.g. partitioning along the semester,
have not improved predictive quality.

Further contextual information is included explicitly in the
model as follows. The predictor f is augmented by linear
terms for contextual features. Categorical features, such
as teachers, are one-hot encoded. Continuous features are
centered to zero mean and unit variance. In principle we
can introduce these additional linear parameters for both,
courses and students, but it turns out that the best results
are achieved if we associate features with courses. Given
the large number of contextual features it proved advanta-
geous to set up a feature selection pipeline in which certain
features are identified for each course. Specifically, features
were identified by using a 5-fold cross-validated recursive
feature elimination. Therein features are iteratively removed
according to their coefficient in a linear model. The cross-
validation is used to determine the number of features kept.
Thus, the predictor becomes

f̃(i, j, t) = 〈si, cj〉+ 〈ctx (i, j, t), cctxj 〉 ,

where ctx is the performance context according to the above
feature selection pipeline. Consequently, the parameter vec-
tor for course j becomes

c̃j = (cj,1, cj,2, . . . , cj,n, c
ctx
j,1 , . . . , c

ctx
j,mj

)

and mj is the number of features selected for the context of
a performance in course j.

Another key property to be considered when working with
past performances is the temporal distance to the current
time. A performance achieved one semester ago should be
considered more important than one five semesters ago [9].
Therefore it is natural to add a temporal decay to the loss
function. Considering the semester t′ of a specific perfor-
mance gi,j,t′ , we can multiply an exponential decay function.
Thus, the now time-dependent loss is

L(S,C, t) =
∑

gi,j,t′∈Gt−1

e−α·(t−t
′)
(
f̃(i, j, t)− gi,j,t′

)2
+ λh(S,C) , (1)

where α > 0 is the temporal decay parameter.

4.2.2 Minimization
The non-linear minimization problem in Eq. (1) is of high
dimensionality because of the parameter vectors si and cj
for i ∈ S, j ∈ C. It can most effectively be achieved using
stochastic gradient descent techniques with adaptive learn-
ing rates, because for this approach course vectors stabi-
lize more quickly. Specifically, we used the Adagrad algo-
rithm [4], which avoids strong alteration of frequently con-
sidered parameters, which is the case for many course pa-
rameters, while seldomly encountered parameters may be
altered more, which is fitting for student parameters. We
fixed a batch size of 1000 and performed 500,000 iterations
of the algorithm. Each minimization is performed for 5 dif-
ferent initial random values. The value according to the
smallest training loss is selected. This was performed for all
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semesters in a grid search over different dimensionality pa-
rameters and regularization parameters, i.e. for parameter
tuples (λ, n). Before minimization the data was normalized
along the lectures to zero mean and unit variance.

4.2.3 Evaluation
The most natural approach to evaluate the model is to split
the data by semesters. Given a fixed semester t the data up
to (including) semester t− 1, i.e. Gt−1, is used as a training
set. The data of semester t, i.e. Gt \ Gt−1 is used as a test
set.
The measures of quality we use are the mean absolute er-
ror (MAE) and the root mean square error (RMSE). As a
baseline we provide the RMSE and MAE for the mean pre-
dictor with respect to both, the students and the courses in
Table 1.
In the evaluation of the context-free model, we see, that
low-dimensional models (i.e. models with only few features)
perform best. The absolute values of these errors are fur-
ther improved by pre-filtering the data considered. If, for
example, only Bachelor computer science students are con-
sidered the test error decreases. The decay factor leads to
an improvement. For example, for n = 1 and λ = 0.1 the
MAE decreases from 0.856 to 0.852. In Figure 2 the pre-
diction results for the importance decay α = 0.1 are shown.
Given this loss function, the one-dimensional, less regular-
ized model outperforms the others in terms of both, the
MAE and the RMSE. The inclusion of contextural informa-
tion leads to a further reduction, such that for n = 1 and
λ = 0.1 the MAE is 0.8459, while the RMSE is 1.0904.

Table 1: The RMSE and MAE for the mean predictors along
the student and the course axis, respectively.

MAE RMSE

course 1.1130 1.3311
student 0.9268 1.1883

5. RECOMMENDATION SYNTHESIS
The recommendation combines the course dependency graph,
the grade prediction, and constraints based on the study
regulation in order to compute a recommendation score. A
larger score corresponds to a stronger recommendation.

5.1 Combining the Components
The recommendation score for a course j w.r.t. a student
i combines several criteria, namely the preparedness for j,
the general merit of j, and the predicted performance of i
in course j.

Let Ri denote the set of courses that student i has finished
within the last t semesters. Now, for each course j ∈ C \Ri,
we sum over the weights of the edges of the course depen-
dency graph that start in some course j′ ∈ Ri and end
in j. This value is an approximation for the preparedness
pi,j ∈ R≥0 of the student w.r.t. course j.

For the general merit of a course, we use the out-degree of
the course deg+(j) in the graph as an approximation of its
benefit towards other courses. Note that this criteria is espe-
cially relevant for first-year students as for them nodes with
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Figure 2: The MAE (a) and RMSE (b) for different dimen-
sionalities n and regularization parameters λ. The models
were trained and tested on Bachelor CS students only. The
loss is weighted by time with α = 0.1.

higher out-degree provide a good starting point. Further
note that for such students, Ri = ∅ and the grade predic-
tion can only give average values as no information about
their previous performance is available.

To incorporate information about the predicted performance,
we transform the predicted grades ĝi,j , such that good grades
map to large values and poor grades to small values, i.e., we
consider the value (5− ĝi,j)/4 ∈ [0, 1].

We parameterize these factors into a linear model, that gives
us a raw, unfiltered recommendation value

r′i,j = cppi,j + cg(5− ĝi,j)/4 + cm deg+(j), (2)

where cp, cg, cm ∈ [0, 1] provide a weighting for the three
factors, i.e., cp + cg + cm = 1.

We finally filter the recommendations as follows. The choice
of courses is constrained by study regulations. Thus, for a
given student i, some courses may not contribute towards
completion of the program or she may not be able to enroll
in them (‘not allowed’). Thus, the final recommendation
value is a product of the raw value r′i,j and a function value
reg(i, j), where

reg(i, j) =


1 j is part of program

0 j not allowed

ce(i) otherwise

This introduces a further parameter ce(i) ∈ [0, 1] associated
with courses that are not necessary to achieve the degree but
may lead to an improvement of the final grade or may be
interesting to the student. E.g. a student of bioinformatics
may choose ce(i) = 0.5 to get also recommendations for com-
puter science courses that are not part of the bioinformatics
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Figure 3: Example of a recommendation graph, based on the
dependency graph given in 1. ‘Programming I’ and ‘Maths
I’ have been passed already and the edge weights have been
updated accordingly. The recommendation values were com-
puted with cp = 0.76, cg = 0.21 and cm = 0.03.

program. However, the default value is ce(i) = 0.

Hence, the overall recommendation value of course j is

ri,j =
(
cppi,j + cg(5− ĝi,j)/4 + cm deg+(j)

)
reg(i, j) (3)

with weight parameters by cp, cg, cm.

To illustrate the influence of the different factors, we con-
sider the following example. Suppose a first-year student
in the winter semester uses the system to compose his first
curriculum. We do not have any performance knowledge
about the student, so this is a cold start scenario. Recon-
sider the dependency graph in Figure 1. Because of the high
out-degrees, we recommend ‘Programming I’, ‘Maths I’ and
‘Theoretical CS’. The student successfully attends the first
two of these courses in the following winter semester. Now
we are able to incorporate the achieved grades in our pre-
diction model. The now computed recommendation values
per course are visualized as star graph shown in Figure 3.
Finally a valid suggestion for the next semester based on
the recommendation values is a combination of ‘Program-
ming II’, ‘Information systems’ and ‘Maths II’. In general,
at the beginning of every semester, we can provide the stu-
dent with a personalized curriculum by compiling a list of
lectures based on their recommendation score.

5.2 Evaluation
We now assess how similar our recommendation are to the
actually selected courses of the students. Again, we separate
the student data by semesters, such that recommendations
are only based on data of previous semesters. To define the
metric, let T be the set of semesters, St the set of students
who took some course in semester t ∈ T . Further, given
some semester t, let Ci,tsel be the set of courses in which stu-
dent i was enrolled and let Ci,trec be the set of recommended
courses for student i. We adopt a top-k recommendation
policy in which we recommend only the k courses with the
highest recommendation value. Moreover, we only take into
account lectures which were available in the given semester
and study program.

To approximate the conformity of our recommendations we
consider the conformity score

1− 1

|T |+ |St|
∑
t∈T

∑
i∈St

min(k, |Ci,tsel |)− |(C
i,t
rec ∩ Ci,tsel)|

min(k, |Ci,tsel |)
,

where the second term calculates the average ratio of the
number of courses that have been selected by the student
but were not recommended or that were recommended but
not selected. So we end up with a score, indicating the con-
gruency of our recommendations with the student’s actual
course selections.

We evaluated the conformity score w.r.t. several combina-
tions of the recommendation parameter values of Eq. (3).
The considered recommendation sizes are 4 and 6 courses,
since for most students this is a realistic balance between
study progression and manageable a workload.Since we are
interested in the relationship between the conformity score
and the distribution of the parameters, in the first place we
either fix cp or cg to 1 while the rest stays at zero which
captures the performance of a single component of our ap-
proach. Moreover, we look for the best combination of both,
course dependency graph (cp) and grade prediction (cg).
The third parameter cm = 1−cp−cg results from the choice
of the first two, which makes the search two-dimensional.

Our results in Table 2 show that with increasing k the con-
formity grows as more courses are recommended. The first
two columns of the table point out that the course depen-
dency graph has a higher explanatory value for the recom-
mendation than the grade prediction. A recommendation
only based on the performance hardly achieves a value ex-
ceeding 50 percent while course dependency alone reaches 70
percent. Therefore it is clear that cp has to be determined
significantly larger than cg. This observation is approved
within the third column as in all top-k recommendations we
reached the best conformity with cp ≈ 0.76, cg ≈ 0.21 and
cm ≈ 0.03.

According to these scores our recommendations and the choi-
ces of the students have an average overlap of about 70
percent. Hence, there are recommended courses that the
student did not choose. An example for this case is given
by the core lecture ‘Embedded Systems’. We recommended
this course to 89 students, while only 4 of them actually
took the course in the corresponding semester. As opposed
to mathematically demanding lectures such as ‘Complexity
Theory’, which is only recommended for a small set of very
strong students, this course seems to be a good choice for
many students but is taken only by few. Moreover, in one
semester the number of recommendations for basic courses
was about 200 while only 90 students actually attended the
courses. This could be related to the fact that many stu-
dents withdraw from courses after a few weeks when they
feel that the course is too demanding for them. In this case,
the data does not show their trial for this course.

6. CONCLUSION
We proposed an approach that gives personalized course rec-
ommendations for students in order to improve the obtained
grades and to decrease the time-to-degree. We combined a
course dependency graph and performance predictions to
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Table 2: The conformity score for different valuations of the
recommendation value parameters (cp, cg, cm) and different
top-k recommendation policies.

top-k (cp, cg) = (1, 0) (cp, cg) = (0, 1) (cp, cg)
∗

4 0.5913 0.3857 0.6349
5 0.6580 0.4564 0.6962
6 0.7138 0.5326 0.7432

determine a recommendation value for each course. We as-
sumed that only the top-k courses are given as a personal-
ized curriculum for a student and tested their conformity to
the actually selected courses of the student. This, however,
does not indicate that our approach significantly improves
the students’ grades or time-to-degree as we expect that stu-
dents do not make optimal choices.

An interesting insight from our results is that the course de-
pendency graph seems better suited for course recommen-
dation than grade prediction even though it is only based
on aggregated information and does not consider any meta
data. From this result it seems that students tend to focus
more on a course ordering that older students established
rather then selecting according to their own confidence or
skill.Another interesting result is the large overlap (around
70 percent) of recommended and chosen courses. Moreover,
some courses are not taken by students even though our
model indicates that they would lead to an improvement in
performance.

The model itself is flexible in the sense that one can easily
adjust or extend it by changing the recommendation formula
and/or incorporate more information to make the grade pre-
diction more precise. A possible extension is the integration
of more personalized information given by the student before
calculating their recommendations. For example a student
is more interested in practical lectures, so she uses an in-
terface to let the system know. Thus, we would be able to
give courses of this category a positive effect on their rec-
ommendation value. The challenge here is to separate the
courses into appropriate categories, since the way a course is
designed strongly depends on the lecturer and other factors.

To evaluate the system, it would be interesting to monitor
a sufficiently large number of students during their stud-
ies that choose only recommended courses or at least is ex-
posed to the course recommendations. An easier evaluation
would be possible with a simulation of hypothetical student
traces according to our grade prediction approach, where in
each semester we assume that a student chooses only rec-
ommended courses.

7. REFERENCES
[1] R Asif, A Merceron, S Abbas Ali, and N Ghani

Haider. Analyzing undergraduate students’
performance using educational data mining.
Computers & Education, 113:177 – 194, 2017.

[2] M Baron. Probability and Statistics for Computer
Scientists. Chapman & Hall, 2014.

[3] CM Chen, CY Liu, and MH Chang. Personalized
curriculum sequencing utilizing modified item

response theory for web-based instruction. Expert
Systems with applications, 30(2):378–396, 2006.

[4] J Duchi, E Hazan, and Y Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[5] C Hansen, C Hansen, N Hjuler, St Alstrup, and
C Lioma. Sequence modelling for analysing student
interaction with educational systems. In Conference
on Educational Data Mining, pages 232–237, 2017.

[6] A Karatzoglou, X Amatriain, L Baltrunas, and
N Oliver. Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative
filtering. In Conference on Recommender systems,
pages 79–86. ACM, 2010.

[7] A Polyzou and G Karypis. Grade prediction with
models specific to students and courses. International
Journal of Data Science and Analytics,
2(3-4):159–171, 2016.

[8] S Ray and A Sharma. A collaborative filtering based
approach for recommending elective courses. In
International Conference on Information Intelligence,
Systems, Technology & Management, pages 330–339.
Springer, 2011.

[9] Z Ren, X Ning, and H Rangwala. Grade prediction
with temporal course-wise influence. Conference on
Educational Data Mining, 2017.

[10] F Ricci, L Rokach, B Shapira, and PB Kantor.
Recommender systems handbook. Springer, 2015.

[11] M Saarela and T Kärkkäinen. Analysing student
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ABSTRACT
We develop an end-to-end neural network-based computer
vision system to automatically identify where each person
within a 2-D image of a school classroom is looking (“gaze
following”), as well as who she/he is looking at. Auto-
matic gaze following could help facilitate data-mining of
large datasets of classroom observation videos that are col-
lected routinely in schools around the world in order to un-
derstand social interactions between teachers and students.
Our network is based on the architecture by [27] but is ex-
tended to predict whether each person is looking at a target
inside or outside the image; and to predict not only where,
but who the person is looking at. Moreover, since our focus
is on classroom observation videos, we collected a dataset
from scratch of publicly available classroom sessions from 70
YouTube videos and collected labels from 408 labelers who
annotated a total of 17, 758 gazes in 2, 263 unique image
frames. Results of our experiments indicate that the pro-
posed neural network can estimate the gaze target – either
the spatial location or the face of a person – with substan-
tially higher accuracy compared to several baselines.

Keywords
Automatic Eye Gaze Following; Classroom Observation Videos;
Deep Neural Networks

1. INTRODUCTION
The nature and quality of teacher-student interactions in

school classrooms are predictive of learners’ development.
Numerous observational studies and several causal studies
have demonstrated the link between emotional and instruc-
tional support in the classroom and children’s cognitive, so-
cial, and emotional skills [18, 23]. In order to discover how
classroom interactions are related to learning outcomes, ed-
ucational researchers often conduct classroom observation
sessions, whereby human coders score either live or video-
recorded classroom observations (typically 1 hour long each)
along different dimensions, such as positive climate, teacher
sensitivity, language modeling, quality of feedback, etc [25].
The Gates Foundation Measures of Effective Teaching (MET)
project [16], in particular, recorded tens of thousands of
hours of classroom observations across the United States
with the aim of discovering best practices for how to teach
students most effectively.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. #1551594 and
Spencer Small Research Grand No. #201800131.

One of the major impediments to learning more from class-
room observation video datasets is the difficulty and labor
involved in coding them. Deep understanding of teacher-
student interactions requires the coder to consider how the
affective, linguistic, and pedagogical channels interact, and
to interpret interactions within the context of classroom in-
struction. However, classroom observations contain multiple
students and teachers interacting simultaneously in different
parts of the classroom. It is easy for human coders to miss
a subtle but important interaction. As a result, scores often
can vary across coders, and multiple codes per video must
be collected to obtain a reliable estimate. It would thus be
invaluable to devise methods that could at least partially au-
tomate the process of classroom observation coding. Such a
system could be useful not only for educational data-mining
of large-scale classroom observation datasets, but also fa-
cilitate teachers’ professional development by showing them
video examples from their own classrooms in which they
scored particularly high or low along different dimensions.

One important element of effective teacher-student interac-
tions involves the students’ and teachers’ eye gaze: Does
the teacher convey respect to his/her students by looking
them in the eye when he/she is talking to them (positive
climate)? Does the teacher notice when specific persons in
the room are bored, confused, or even bullied (teacher sensi-
tivity)? Tracking the eye gazes of students can also provide
information on their thoughts and intentions [5] and may
indirectly reveal how engaged they are in their learning.

In this paper, we take a tiny step towards creating an au-
tomated classroom observation scoring system. In particu-
lar, we build a prototype computer vision-based system for
automated eye gaze following that estimates, for each per-
son in the classroom, where she/he is looking. Such a sys-
tem can be used to data-mine classroom observation video
datasets. It could also facilitate “smart classrooms”, which
track gazes of both students and teachers, identify disen-
gaged or distressed students, and help teachers to better
recognize whether they are paying attention to the right
thing or the right student in the classroom.

Deep learning for gaze following in classrooms: In
this work, we explore a machine learning-based approach
to automatic recognition of where a person in the image is
looking. In particular, we build an end-to-end deep neural
network that takes 2-D static images of multiple people as
inputs and infers (x, y) coordinates of where each person

Proceedings of the 11th International Conference on Educational Data Mining 252



OUT

1
2

3
4

Figure 1: Eye gaze targets labeled by a human labeler for
each person in the image. Labelers also indicate targets that
are located outside the field-of-view (indicated by “OUT”).
Can we build a computer vision system that can estimate
where each person is looking? In this image, the man is
looking at child #3. Can we identify automatically who each
person is looking at? Image from https://goo.gl/xUdYbC

is looking at in the image as outputs. This computational
problem is known as gaze following [10]. Gaze following
from 2-D images is particularly challenging since 1) no addi-
tional information of the scene, such as depth information,
is available and a person can be looking at any of the differ-
ent planes of depth in the image, 2) people in the image can
be looking at objects either inside the image or outside the
image, 3) the eyes of some people may be blurred or par-
tially invisible. Nonetheless, requiring only 2-D images is
attractive because of the ubiquity and greater convenience
of using commodity 2-D cameras. Our automated system
is based on the architecture by [27], who tackled a similar
problem for general images from the web. However, our ap-
proach differs from theirs in several ways, including the pre-
diction outputs, deep neural network architectures, training
techniques, dataset collection, and application focus.

Contributions: (1) We explore a deep learning-based ar-
chitecture, based on related work by [27], for automatic eye-
gaze following from 2-D images of classroom observation
videos. (2) We extend the model of [27] to support gaze
targets that can be outside the camera’s field-of-view. Es-
pecially due to the lack of depth information, this is a highly
challenging problem, both for human labelers and the ma-
chine. (3) Our application focus is on school classrooms,
which contain many subjects (not just a few, as in [27]),
who gaze not only inside but sometimes also outside the
field-of-view. We thus collected and annotated (see Figure
1) a new dataset of images from classroom videos. (4) Since
classroom observation analysis is largely about interaction
between subjects, we explore the accuracy of our automatic
gaze following system in identifying which face (not just ob-
ject) each person is looking at. Detailed methodology and
results for contribution (1), (2) and (3) are described in Sec-
tion 3 and those of contribution (4) are described in Section
5.

2. RELATED WORK
Eye gaze following: Due to the importance of following
gaze of others, which humans do naturally when communi-
cating, collaborating and socializing, researchers in the field

of robotics, computer vision and machine learning have re-
cently started to formulate and tackle the problem of au-
tomatic gaze following within different contexts: In some
settings [15, 3, 11], there is only a single person whose gaze
is being followed, e.g., a student who is interacting with a
mobile phone or a tablet [19] to play an educational game
[31]. In other settings (such as ours), the camera examines
an entire scene containing many people, and the gaze of each
person in the scene is followed [24] [21] [28] [27]. While most
of the prior work uses RGB data, some approaches also use
depth information [24]. More recently, researchers have con-
sidered gaze following not only from static images but also
how to harness temporal information from an entire video to
better estimate the person’s gaze target [28]. In this work,
we only consider gaze following from static 2-D images ex-
tracted from classroom observation videos but future work
can explore following gaze by using temporal information
from a sequence of images.

Saliency modeling: Gaze following is related to saliency
modeling, whereby image features of different levels of ab-
straction (low-, mid-, and high-level) are examined to con-
sider the most likely locations in the image to which an
observer would visually attend [15]. [3] made a connection
between these two by stating that an observer looking at
an image containing people may follow the gaze of people
rather than actually fixating on salient objects in that im-
age. Therefore, gaze following can play a complementary
role in solving the problem of saliency model of attention.
[7] explored the problem of predicting a driver’s gaze be-
haviours and identifying the attention of a driver by detect-
ing saliency in a complex driving environments.

Modeling non-verbal cues of students and teachers:
There has been substantial prior work on analyzing learn-
ers’ affective states from video using computer vision [17,
12, 4, 30]. Much of this work has focused on intelligent tu-
toring systems. More recently, researchers in multi-modal
machine learning and educational data mining have investi-
gated how to characterize the dynamics of an entire class-
room. For example, [9, 8] explored approaches for segment-
ing and recognizing students’ and teachers’ speech in un-
constrained classrooms based on different configurations of
Microsoft Kinect cameras. For automated classroom obser-
vation scoring (e.g., of CLASS [25]), we are only aware of one
prior work: [26] developed a computer vision system, opti-
mized within a multiple-instance learning framework [22], to
estimate which 3-minute snippets of classroom videos were
most relevant for CLASS coders to watch.

3. EXPERIMENT I: METHODOLOGY
3.1 Data collection
Since the application focus of our study is gaze following in
school classrooms, we collected our own dataset of classroom
observation sessions. In particular, we harvested 70 videos
publicly available on YouTube of school classrooms. The
study was approved under WPI IRB 18-0101. In contrast
to publicly available annotated data on gaze following (the
only such dataset of which we are aware is GazeFollow [27]),
classroom observation videos often contain many people per
image frame, and the kinds of background clutter differ sig-
nificantly from that of GazeFollow, which largely consists
of images used for more general object detection research.
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From each video in our collection, we extracted 1 frame ap-
proximately every 10 seconds. After extracting frames from
videos, we used Faster R-CNN for face detection [14] to ob-
tain face bounding boxes (top left (x, y) coordinate, width
and height) in extracted frames.

Annotation: Ground-truth gaze annotations from the im-
age frames were collected using at least 3 labelers per image
on Amazon Mechanical Turk (AMT). Labelers used an on-
line annotation tool that we custom-built for this work, using
JavaScript and HTML5, to annotate two main components
of each subject in each scene. The first component is to iden-
tify the gaze target for each person (identified automatically
by the face detector as described above) which is indicated
by a line, starting between the eyes of a person and end-
ing on an object or a person which the person is attending
to. The second component is the indication of whether the
person is looking at something inside or outside the image.
We collected three gaze annotations each for 17, 758 faces in
2, 263 images, resulting a total of 48, 907 gaze annotations
from 408 unique annotators.

3.2 Approach
Using the datasets annotated on AMT, our goal is to build
a convolutional neural network (CNN) which takes in the
whole image of the scene and predicts the gaze target of each
person in the image along with the indication of whether
that target is inside or outside the image. We have observed
from our annotated datasets that predicting gaze can be
ambiguous. If there are multiple people or several salient
objects in the image, or the eyes of individuals in the image
are not clearly visible, human labelers may disagree when
predicting gaze locations. Due to this inherent uncertainty
in the problem, we explore various options to design our
model to support multimodal predictions.

We can formulate gaze following as either a regression or a
classification task. Regression: the network regresses to
(x, y) coordinates of the gaze target of each person in the
image using the Euclidean distance between the predicted
and ground-truth as the cost function. The disadvantage
of using regression is that our predictions are constrained
to be unimodal. Since each face in each image was labeled
by multiple annotators, we can define the ground-truth by
either (a) computing the mean (x, y) location over all labels
per face, or (b) treating each location as a separate label.
Classification: the gaze location is quantized into one cell
on an N×N grid, and the network’s job is to choose the cor-
rect cell for each person in the image. As the cost function,
we can use cross-entropy loss. Classification naturally sup-
ports multimodal outputs since multiple gaze annotations
at different cells can be treated as soft labels [1]. The disad-
vantage of this approach is that the choice of grid size can
affect the precision of predictions (i.e. smaller numbers of
grid cells N will result in poor precision). Another issue is
that cross-entropy loss does not gradually penalize mistakes
based on distance – misclassification which is off by one grid
cell is penalized just as much as misclassification which is
off by several cells on a grid.

3.3 Architecture
The deep learning architecture is based on the model by [27]
and is depicted in Figure 2. The gaze target for each person
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Figure 2: Deep neural network architecture, based on [27],
for automatic eye-gaze following in school classrooms, con-
sisting of two independent prediction pathways.

in the image is predicted independently based on two in-
formation sources: close-up information of the person’s face
(automatically detected by a separate face detection net-
work [14]), and the whole image. Each information source is
processed by a separate pathway consisting of a CNN, and
the pathways’ predictions about the person’s gaze target are
merged at the end. We call the combined architecture the
Merged Model. In contrast to [27], we use the VGG16 [29] as
the backbone of each CNN since we found empirically that
it performed better than AlexNet [20]. Two other differ-
ences from [27] are the network optimization techniques and
the use of multi-task learning (as described in Section 3.4).
Inputs: The inputs of the Merged Model are a cropped,
close-up face image (64 × 64 pixels); the (r, c) ∈ N ×N lo-
cation of the center of the person’s head in the image; and
the resized 256 × 256 pixels image of the whole frame. We
chose N = 8 in our experiments. Outputs: For regression,
the gaze target is represented as an (x, y) coordinate pair.
For classification, the gaze target consists of a 1-hot vector
indicating which of the N × N grid cells contains the gaze
target. In addition (for both regression and classification),
the network also contains an “in”/“out” binary prediction of
whether the gaze target is inside or outside the image.

The intuition behind the Merged Model is that two CNNs
are trained to solve two subproblems in a fully end-to-end
fashion with only the gaze location and the “in”/“out” label
as supervision to the model: (1) The close-up face CNN (left
pathway in Figure 2) implicitly estimates the head pose and
the direction of the gaze of the subject in order to produce
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a heat map (shown as Reshape 16×16 in Figure 2) of where
the person is looking. In the figure, the heat map roughly
shows a “cone” of possible gaze targets to the upper-left of
the child’s head. (2) The frame-image CNN (right pathway
in Figure 2) identifies the salient objects in the image. This
network has access to the entire original image but does not
know the location of the subject. In the figure, the salient
object heat map highlights the teacher in the upper-left of
the image. In [32], the authors showed that objects tend
to emerge in the filter kernels of the deep layers of CNNs;
therefore, we take a filter kernel at the end of the right path-
way (shown as 3 × 3 conv, 1 in Figure 2). This produces
the heat map of salient objects in the original image. Each
heat map from each branch is combined by element-wise
multiplication.

3.4 Training procedure
Data partitions: The 70 YouTube videos containing school
classrooms were partitioned into training (12,430 gazes), val-
idation (2,664 gazes), and testing (2,664 gazes) sets, such
that none of the frames from any video was assigned to
more than one set. The validation set was used for early
stopping. The accuracy on the test set can be considered a
performance estimate on faces that the network has never
seen before.

Optimization: We used the following procedure for both
the regression and classification formulations: We first per-
formed transfer learning by initializing both CNNs with weights
pre-trained on ImageNet [29]. We augmented the class-
room images from our dataset by flipping the original images
(frame image pathway) as well as the individually cropped
face images, head locations and gaze locations (face path-
way) left to right. We trained the final Merged Model first
by freezing all the convolutional layers and training only the
fully connected layers with RMSProp [13] (learning rate =
0.01, ρ = 0.9). Then all the previously frozen convolutional
layers were unfrozen and the model was fine-tuned with SGD
with momentum (learning rate=0.0001, momentum=0.9).
The model was trained until there was no improvement in
validation loss.

Multi-task learning: Since the Merged Model predicts the
location of the gaze in the image as well as “in”/“out”, it is
performing multiple tasks, and we can use multi-task learn-
ing (MTL) [6] for training. Sharing the same hidden layers
to solve several tasks forces the model to find representa-
tions which capture all of the tasks and thus reduce the risk
of overfitting [2]. We found empirically that MTL helped to
reduce overfitting and improve prediction accuracy. Table
1 compares the performance of the Merged Model with and
without MTL. With MTL, the cross-entropy loss for both
the grid output and the In/Out output is higher (worse)
on the training set, but lower (better) on the testing set,
compared to training two networks to handle each task sep-
arately. We thus adopted the MTL approach for training.

3.5 Accuracy measurement
Accuracy is measured for predicting the gaze target of each
person (identified automatically by a face detector [14]) in
each extracted frame from each of the YouTube videos (see
Section 3.1). For classification of the gaze target among
the N ×N grid cells, we evaluated accuracy in terms of the

Table 1: Effects of multi-task learning. CE Loss refers to
Cross Entropy Loss and reported values are Cross Entropy
Loss of Merged Model predicting gaze on 8× 8 grid.

Only grid
output

Only In/Out
output

Both grid output and In/Out output

CE Loss CE Loss AUC
CE Loss

(Grid Output)
CE Loss
(In/Out)

AUC
(In/Out)

Training 3.27 0.32 0.63 3.39 0.33 0.60
Testing 3.59 0.46 0.59 3.58 0.43 0.62

cross-entropy (CE) loss w.r.t. the label distribution induced
by the 3 annotators per example. For regression to an
(x, y) location, we use mean absolute error (MAE), mean
Euclidean distance and mean angular error (between the
center of the person looking to their gaze target) in degrees,
where the ground-truth is defined as the average annotation
over all the annotators. In addition (for both regression and
classification), we also used the Area Under the Receiver
Operating Characteristics Curve (AUC) to evaluate the bi-
nary classification of whether the target is inside or outside
the field-of-view.

3.6 Baseline comparison
When assessing the accuracy of any neural network, it is
important to establish the relevant baselines for comparison.
For classification, we use a uniform distribution over all N×
N grid cells – in other words, a random guess in the whole
image as to where the person is gazing. Alternatively, we
can assume a center prior (motivated by [15]), consisting of
the center 2×2 grid cells over the N×N grid. A variation on
the center prior is to place a 2-D Gaussian – whose standard
deviation σ is optimized directly on the test set for best
possible accuracy – centered on the middle of the image, and
assign probabilities to the N×N cells based on the Gaussian
probability density function. For regression, we use a center
prior corresponding to the midpoint in the image; we also
compare to randomly selected points in the image.

As stronger baselines, we also consider linear regression to
analyze the vectorized face pixels concatenated with head
locations to predict (x, y) coordinates, as well as logistic re-
gression to predict cells on a N ×N grid. Finally, as a way
of understanding which part of the Merged Model contains
more information, we also compare to a Face-to-Gaze model
consisting of a CNN that takes a cropped, close-up face im-
age and location of head in the image as inputs, and predicts
the location of the gaze in the image as well as “in”/“out”
– this is the left pathway of Figure 2. Comparing with this
baseline helps us understand how much the saliency pathway
improves performance.

4. RESULTS I
Accuracy results on test images of the Merged Model com-
pared to the baselines are shown in Table 2 (for regression)
and Table 3 (for classification). Our Merged Model achieves
mean Euclidean distance of 69.82 pixels on 256 × 256 pixel
image (for regression) and cross entropy loss of 3.5855 on
8× 8 grid (for classification) for gaze locations. These num-
bers are better than for the random gaze, center prior, cen-
ter Gaussian, linear and logistic regression baselines. For
comparison, human labelers exhibited a mean Euclidean dis-
tance of only 41.04 pixels on 256 × 256 pixel image, which
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Table 2: Regression accuracy of the Merged Model for pre-
dicting the (x, y) location (within a 256×256 image) of where
each person in each classroom image is looking. Accuracy is
compared to human annotators and three baseline models.

MAE
Mean Euclidean

Distance
Mean Absolute
Angular Error

AUC for
In/Out

Random Gaze 79.74 124.15 67.24◦ -
Center Region 52.76 82.11 48.36◦ -

Linear Regression 49.63 77.34 55.21◦ -
Face-to-Gaze 45.74 71.53 39.91◦ 0.54

Merged Model 44.49 69.82 38.30◦ 0.62

Human 25.91 41.04 18.38◦ 0.70

Table 3: Classification results on 8 × 8 grid of the Merged
Model compared to several baselines.

Cross Entropy Loss
(Grid Output)

AUC for In/Out

Center Gaze (Center 4 cells) 15.8047 -
Uniform Gaze 4.1589 -

Center Gaussian 4.0561 -
Logistic Regression 3.9997 -

Face-to-Gaze 3.7511 0.5459
Merged Model 3.5855 0.6223

is a bit more than half the error of the Merged Model, indi-
cating that the machine’s accuracy still has much room for
improvement.

For classifying whether the gazes end inside or outside the
image, the Merged Model achieved an AUC of 0.62, whereas
humans scored 0.70 on the same task. The relatively low
human accuracy suggests that detecting whether a person
is looking inside or outside the image is quite challenging in
the classroom images.

Figure 3 shows qualitative results of some of the gaze predic-
tions (represented by thick yellow arrows) by Merged Model.
It can be seen that the model makes decent predictions on
the general direction of gazes but sometimes misses the end-
points on salient objects in the scene. In Figure 3, three
girls in the middle are looking at the man’s hands but the
gaze predictions end before the hand.

One notable fact is that the Face-to-Gaze model’s perfor-
mance is very similar to the Merged Model’s performance.
This suggests that our Merged Model is predicting gaze lo-
cations mainly by using the head pose and gaze pathway
of the subject and less on the salient objects in the image.
One possible explanation is that our dataset does not con-
tain enough variety of classroom environments for the model
to learn how to identify salient objects in classroom images.

5. EXPERIMENT II: WHO ARE THEY
LOOKING AT?

We use the same neural network depicted in Figure 2 to pre-
dict who each person is looking at. This is especially useful
in school classrooms, in which both students and teachers
are often looking at other people, not just objects. Specifi-
cally, we use the classification approach to predict which of
the N ×N grid cells each person is gazing at. The face con-
tained within that cell is then predicted to be target face of
that person’s gaze. We note that, depending on the grid size

Figure 3: Qualitative results of gaze predictions by our
Merged Model on the test set. Thin green arrows are ground
truth annotations. Since there are multiple gaze annota-
tions for each individual, there are multiple green arrows
for each individual. Thick yellow arrows are predictions
by Merged Model. Images (top to bottom) taken from:
https://goo.gl/xUdYbC, https://goo.gl/pcwQ5P

and the specific image, multiple faces might appear within
the same cell. A principled approach to handle to this issue
would be to distribute the probability mass output by the
neural network among all the faces within that cell in pro-
portion to the size of each face. However, in this exploratory
study, we simply assume that no grid cell contains more than
1 face.

5.1 Methodology
First, we computed the subset of all people in all image
frames of our original YouTube dataset in which all annota-
tors agreed that the person is looking at another face (not
just another object somewhere in the image). Note that the
labelers can still differ as to which particular face the person
is looking at. By doing so, we obtained, 410 faces where all
labelers agree that the person is looking at another face out
of 17, 759 faces in our dataset. On the same data subset,
we use the Merged Model to compute the softmax probabil-
ities across all N × N grid cells of where each person was
looking. From these probability outputs (for each person in
each image), we remove every cell that does not contain any
face (as determined by the face detector) and renormalize.
We then choose the grid cell with the highest probability as
the face that the person is most likely to be gazing at.

In order to evaluate how well our network is performing on
determining which face a person is looking at, we took the
top 1 face, top 2 faces, and top 3 faces. For the top-1 face, we
choose the grid cell with the highest probability as the face
that the person is most likely to be gazing at as predicted
by the deep neural network. For top-2 and top-3 faces, if
any of the top-2 and top-3 faces predicted by the network
is the actual face which is agreed by the majority of human
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labelers, the prediction is regarded as a correct prediction.

As baselines, we can consider that the average number of
faces (detected by the face detector [14]) per image was 6.87
on test set; hence, the baseline guess rate is 1/6.87 ≈ 0.15 for
the test set. Moreover, we can estimate human accuracy in a
leave-one-labeler-out fashion: for each unique labeler, in the
subset of the dataset where all labelers agree that a person
being annotated is looking at another face, we compare the
face that the current labeler chooses with the face which
the majority of other labelers agree on. In this fashion, we
compute the accuracy (% correct) of the lth labeler w.r.t. the
other l − 1 labelers. We then average across all labelers
in our dataset. By doing so, we achieve the human level
performance on determining whom the person is looking at
in the classroom given that the person is looking at a face.

In order to make equal comparison with Merged Model’s
predictions, which is done on 8× 8 grid, human annotations
are quantized to cells on 8 × 8 grid and probability of one
labeler agreeing with the rest of the labelers that a person
being annotated is looking at a specific face (last row of
Table 4).

6. RESULTS II
The results on test images, shown in Table 4, indicate that
the Merged Model can predict the face target of people’s
eye gazes with substantially higher accuracy than just ran-
domly guessing among all grid cells (8×8 grid) in the image
containing faces. To put these results in context: if each
classroom image contains 6.87 faces on average (as reported
above), then the probability of 0.79 for k = 3 suggests that
an automated gaze following system can usually determine
at least which group of students a teacher is looking at. In-
terestingly, the accuracy of the Merged Model is close to
that of human labelers when top 3 predicted faces are con-
sidered but still have room for improvement when only top
1 face is chosen.

7. CONCLUSION AND FUTURE WORK
The results in this paper indicate that an automatic neural
network, based on the approach by [27] that analyzes 2-D
images of school classrooms can estimate the gaze target
location of each person in the image with accuracy substan-
tially higher than chance and better than several other base-
lines as well. Moreover, the same architecture can be used
to identify who each person is looking at more accurately
than random guessing.

Future work: The most critical next steps are to (1) im-
prove accuracy by collecting more training data and improv-
ing the accuracy of the annotations. (2) Given an improved
eye gaze following system, we can begin to explore how auto-
matic gaze estimates can be used to predict specific aspects
of classroom observation protocols; for instance, the positive
climate dimension of the CLASS is based explicitly (in part)
on whether the teacher looks at his/her students [25]. Fi-
nally, (3) since multiple people often look at the same person
(e.g., the teacher) in school classrooms, we will also inves-
tigate whether accuracy can be improved by estimating the
gaze targets of all classroom participants jointly rather than
separately.

Table 4: Probability of the Merged Model correctly identi-
fying which face a person is looking at on 8× 8 grid.

Top k faces k = 1 k = 2 k = 3
Random Face 0.15 0.30 0.45

Merged Model 0.47 0.65 0.79

Human 0.82
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ABSTRACT 

One commonly used measure of lexical sophistication is the 

Advanced Guiraud (AG; [9]), whose formula requires frequency 

band counts (e.g., COCA; [13]). However, the accuracy of this 

measure is affected by the particular 2000-word frequency list 

selected as the basis for its calculations [27]. For example, possible 

issues arise when frequency lists that are based solely on native 

speaker corpora are used as a target for second language (L2) 

learners (e.g., [8]) because the exposure frequencies for L2 learners 

may vary from that of native speakers. Such L2 variation from 

comparable native speakers may be due to first language (L1) 

culture, home country teaching materials, or the text types which 

L2 learners commonly encounter. This paper addresses the 

aforementioned problem through an English as a Second Language 

(ESL) frequency list validation. Our validation is established on 

two sources: (1) the New General Service List (NGSL; [4]) which 

is based on the Cambridge English Corpus (CEC) and (2) written 

data from the 4.2 million-word Pitt English Language Institute 

Corpus (PELIC). Using open-source data science tools and natural 

language processing technologies, the paper demonstrates that 

more distinct measurable lexical sophistication differences across 

levels are discernible when learner-oriented frequency lists (as 

compared to general corpora frequency lists) are used as part of a 

lexical measure such as AG. The results from this research will be 

useful in teaching contexts where lexical proficiency is measured 

or assessed, and for materials and test developers who rely on such 

lists as being representative of known vocabulary at different levels 

of proficiency. This research applies data-driven exploration of 

learner corpora to vocabulary acquisition and pedagogy, thus 

closing a loop between educational data mining and classroom 

applications. 

 

Keywords 
 

Advanced Guiraud, corpus linguistics, English as a Second 

Language, ESL, learner corpora, lexical sophistication, vocabulary 

lists  

1. INTRODUCTION 

An enduring concern of researchers in second language (L2) 

vocabulary development is the basic set of words learners should 

know; moreover, having acquired this vocabulary, what kinds of 

intervention are best for promoting acquisition of the additional 

words that learners need in order to function professionally and 

academically [8, 23]? Thus, establishing the correct set of basic 

words that learners already know is important to be able to measure 

subsequent development in productive vocabulary knowledge. In 

order to accurately track the acquisition of new vocabulary over 

time, researchers have focused on quantitative measures that can be 

used to examine different aspects of the ‘lexical richness’ of learner 

output, including lexical diversity, which uses text internal 

measures such as VocD (D) and MTLD (e.g., [17, 21]); lexical 

sophistication, which makes reference to frequencies in corpora 

with measures like the Advanced Guiraud (AG) (e.g., [10, 28]); and 

lexical depth, which measures knowledge of usage (e.g., [6, 11]). 

In this paper, we focus on lexical sophistication because (1) the 

calculation of AG depends on the establishment of the correct set 

of high-frequency words that the learners may (already) know; (2) 

the frequency bands of 3000-9000 words are lexical items that 

researchers advocate should be the focus of instruction [25]; and 

(3) teacher perceptions of lexical proficiency have been shown to 

correlate strongly with lexical sophistication [10]. 

2. LITERATURE REVIEW 

Vocabulary knowledge in a second language is a vital component 

in the development of L2 proficiency [23]. As a result, accurate 
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measurement of vocabulary is important for all language learning 

stakeholders including learners, teachers, material developers, 

developers of standardized tests, and educational institutions. One 

common context of English as a Second Language (ESL) learning, 

and that of this study, is in tertiary education intensive English 

programs (IEPs). Most students entering IEPs already know some 

English, typically placing at the low-intermediate level and above. 

As a corollary, learners are expected to already know high-

frequency English vocabulary such as the first 2000 words of the 

New General Service List (NGSL; [4]). 

The stakes are high in that most students have a short time to 

prepare for academic work, and as such, the targeting of instruction 

to students’ needs is important. Yet, this task is difficult for teachers 

because the first languages (L1s) of the students vary, and students 

may in fact not know all of the basic words assumed by frequency 

lists of basic vocabulary. Such lack of certainty makes measuring 

vocabulary development beyond the basic list challenging because 

at the higher levels learners may not be given credit for acquiring 

high-frequency words they are assumed to know, but in fact do not 

control in their productive lexicon. In contrast, low-frequency 

words that they already know, based on their own cultural or 

educational background, may wrongly be treated as newly 

acquired. This issue reflects a general concern that materials written 

for learners may not consider broader linguistic needs of the 

students [18] and that frequencies from large corpus analyses may 

not always reflect linguistic challenges (e.g., [16]). 

The literature on vocabulary development has shown that 

Advanced Guiraud (AG) can be an effective method of measuring 

of lexical sophistication [12, 19], but may not always reflect 

development [11]. In essence, AG is a form of Type/Token ratio 

(TTR) [28] with two key differences. First, it takes as the 

denominator the square root of the total tokens, a measure designed 

to neutralize TTR's sensitivity to text length. Second, types that are 

very frequent, for example the 2000 most frequent words on the 

NGSL, are removed from the total types [28, 12]. As a result, AG 

incorporates frequency information, while other measures do not. 

In [12], Daller and Xue compared two groups of Chinese-speaking 

learners, one in China and the other in the UK. They found that 

Guiraud (all types/√tokens) and AG were both effective at 

distinguishing the China group from the UK group, whose mean 

(stdev) AG scores were 0.72 (.2) and 0.94 (.29) respectively. 

However, when Daller et al. [11] investigated the longitudinal 

development of 42 Arabic-speaking ESL learners, the values of AG 

were low and increased minimally, ranging from an average of 

about 0.20 to 0.25 [11]. In neither study was the composition of the 

AG list of 2000 basic types specified, referred to only as ‘the 2000 

frequency band.’ Considering, as [16] says, that the needs of the 

users should be accounted for when replicating a word list, knowing 

such information would be of great use to researchers seeking to 

evaluate and replicate previous results. 

Supporting Daller and Xue’s findings, Juffs [19] analyzed a subset 

of the Pitt English Language Institute Corpus (PELIC) data. He 

found that AG (using the 2000 frequency bands of the BNC-COCA 

at http://lextutor.ca as a lexical sophistication metric) was a better 

measure than D (a lexical diversity metric) in distinguishing 

progress in lexical development of Arabic, Chinese, and Korean 

learners who studied throughout the upper-intermediate (level 4) 

and advanced (level 5) levels in the Pitt IEP. Juffs found that the 

level 4 learners’ AG scores ranged from 1.32 to 1.53 on average, 

whereas the level 5 learners’ scores ranged from 1.90 to 2.12. 

However, Juffs’ study, while suggestive, only included 254,055 

tokens and did not fully utilize PELIC’s written sub-corpus which 

actually consists of more than 4.2 million tokens when all L1s are 

included. 

The studies reviewed here demonstrate large variability in terms of 

how frequency data are measured and collected. Not only are the 

2000-word lists for AG inconsistent or unknown across studies, but 

so too is the definition of the ‘types’ which form the basis of many 

lexical measures. Although a full discussion of this area is beyond 

the scope of this paper (see, e.g., [22]), it directly impacts all 

measures using frequency lists. On one end of the spectrum, 

measurements such as TTR count types mechanically without 

grouping different forms in anyway, so that ‘dog’ and ‘dogs’ would 

be counted as two distinct types. In this approach, the value lies in 

the ease with which data can be analyzed automatically with no 

need for human judgements. However, should a learner who 

produces ‘mango’ and ‘mangos’ be said to have the same lexical 

range as someone who produces ‘mango’ and ‘pomegranate’, or 

can we assume that the latter student will also know the plural 

forms?  

At the other extreme, many researchers (e.g., [1]) advocate for word 

families to be the base counting unit, i.e., a word plus its 

derivational and inflectional forms. For example, ‘happy’, 

‘happiness’, ‘unhappy’, and comparative ‘happier’, would be one 

unit. While this solves the previous issue, it means that a learner 

would not be given credit for knowing words related by derivation 

to a common word, with, for example, ‘actresses’, ‘actionable’, and 

‘inaction’ all belonging to the word family ‘act’ (http://lextutor.ca).  

A third ‘middle ground’ approach advocated by Schmitt [24] uses 

lemmas as a measurement unit. A lemma typically refers to a word 

plus its inflected forms only; lemma information has accompanied 

various resources, including the Brown Corpus and the New-GSL 

(not to be confused with the NGSL) [3]. Thus, ‘act’, ‘acted’, and 

‘acting’ would be one unit, but ‘act’ and ‘actionable’ separate units. 

In sum, when creating a word list there are numerous decisions to 

make regarding not only the relative value of word frequency, 

range, and dispersion, but even the unit of counting must be 

considered and justified [16]. 

Given the challenges in data collection and analysis, the lack of 

consensus as to best practice is unsurprising. Comparisons across 

studies are further complicated by small sample sizes, limited L1 

backgrounds, and different learning contexts, all of which threaten 

the external validity and thus the generalizability of the results. The 

reported scores in this literature do, however, give this study a range 

of reasonable AG scores that one might expect.  

In contrast, PELIC is a multi-million-word learner corpus 

representing learners from different L1 backgrounds who have 

studied together in the same location, using similar materials, and 

in the same educational context. Exploiting this unique dataset, we 

seek to address the following research questions:  

(1) How can data mining tools be applied to a learner corpus to 

produce effective vocabulary lists?  

(2) Do the different types that are removed for the purposes of the 

AG have an effect on the measurement of lexical sophistication 

across levels (and by proxy lexical development)? 

(3) Which 2000-lemma vocabulary list reveals level differences in 

lexical sophistication most clearly? 
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3. METHOD 

3.1 Selection of frequency lists for AG 

The first list that was selected for AG was the NGSL. This list, 

released in 2013, is an updated version of the General Service List 

from 1953 [31]. Unlike many publicly-available word lists, the 

NGSL is specifically designed with second language learners in 

mind, and therefore, relevant to Pitt IEP students. To achieve 

validity, the NGSL is based on a subset of the large Cambridge 

English Corpus (CEC) which contains two billion words; the subset 

selected consists of 272 million words, representative of a number 

of sub-corpora, most notably 38 million words from the Cambridge 

learner corpus. As a result of this careful corpus composition, the 

overall coverage of the NGSL exceeds 90% of the CEC texts. The 

NGSL was also selected due to its public availability in useful 

Excel file format and clear division of the lemmas into their 

headwords and inflected forms. In total, for the AG calculations, 

we used the 2000 highest-frequency lemmas (in keeping with the 

standard AG formula), as well as an additional 52 basic lemmas 

from the NGSL supplementary list such as the months of the year 

and numbers up to one hundred. In the upcoming version 2.0 of the 

NGSL, these supplementary items will be included in the overall 

frequency list [5]. 

The second list was derived from data from PELIC. This corpus 

contains both written and spoken data that were collected via a web 

interface and initially stored in a MySQL database. Students may 

have contributed data from one to three terms, with an average of 

two terms. For our dataset, we used only the written data from 

writing classes at the most common levels, levels 3 (intermediate), 

4 (upper-intermediate), and 5 (advanced). The written data are 4.2 

million tokens from several L1 backgrounds, but primarily Arabic, 

Chinese, Korean, Spanish, and Japanese learners. The written data 

were extracted from the MySQL database and analyzed in Python. 

To create a high-frequency list from PELIC, which we call the Pitt 

Service List Level 3 (PSL-3), we used the same 52 supplementary 

items from the NGSL (for consistency) and added the next most 

frequent 2000 words in the learners’ output at the intermediate level 

(level 3). When comparing the two lists, the analysis revealed that 

in terms of identical lemmas, only 1317 of the PSL-3 are found in 

the NGSL top 2000, with an additional 178 of the PSL-3 in the 

NGSL top 3000. Words in the PSL-3 that were not in the NGSL 

top 2000 fell into three broad categories: (i) cultural: e.g., ‘camel’, 

‘pyramid’, ‘spicy’, ‘tofu’, and ‘kimchi’; (ii) names: e.g., ‘Japan’, 

‘Colombia’, ‘Pittsburgh’; and (iii) student life: e.g., ‘campus’, 

‘admission’, ‘visa’, and ‘homework’. 

3.2 ETS Comparison-Validation 

For comparative purposes, we ran the same AG calculations on a 

different, but comparable learner corpus: the ETS Corpus of Non-

Native Written English (ETS; [2]). This corpus consists of 12,100 

English essays written by TOEFL test-takers in 2006-2007. These 

test-takers have 11 different L1s (many the same as in PELIC), and 

the texts are divided equally amongst them (1100 per L1). ETS split 

test takers into proficiency rankings of 'low', 'medium', or 'high'. As 

such, overall differences in AG lexical sophistication could be 

measured across proficiency bands. 

ETS and PELIC share some similarities since both are learner 

corpora, contain a variety of L1s, and divide into three proficiency 

levels. However, they differ in that ETS data were collected under 

test conditions, whereas PELIC data were collected from day-to-

day assignments. Nevertheless, we would expect any patterns 

found in lexical sophistication in one to be mirrored in the other if 

the underlying learner-corpus-based frequency lists are 

generalizable beyond our local context. That is to say, the PELIC-

based and NGSL-based AG should equally indicate differences in 

lexical sophistication on both, despite PELIC and ETS not sharing 

any of the same learners, tasks, or specific writing prompts. 

3.3 PELIC data processing 

To preprocess the PELIC data samples for AG analysis, various 

Python libraries such as pandas, spaCy, and NLTK were used. We 

filtered out all texts with less than 70 words, following [12], who 

had a minimum of 66-word texts in their corpus. This process 

reduced the number of texts from 48,384 to 16,227, but only 

reduced the token count by 13% from 4,232,746 to 3,736,556. 

Further filtering of the data was then required as learners in the Pitt 

IEP revised and re-submitted assignments, often resulting in 

multiple versions of the same text; the dataset was therefore 

screened to include only the first version each essay. In addition, 

within each level and L1 group, there is variance in terms of 

proficiency and the number of texts and tokens produced. To 

account for this variation, we calculated average AG scores for 

individuals to prevent any skewing of data by prolific writers. 

Manipulation of the texts was kept to a minimum, and we made a 

conscious decision to not correct some spelling errors. For 

example, if a student meant to write ‘pot’ or ‘raw’ but due to 

potential phonological influence on spelling wrote ‘port’ or ‘row’, 

these contextual spelling errors were neither screened nor 

corrected. However, misspelled tokens were excluded from 

analysis if they resulted in a non-word (as determined by NLTK's 

WordNet Synsets as a spellchecker). Such a step was necessary in 

order to avoid having misspelled basic words like ‘thier’ register as 

an advanced type, thereby inflating the AG score. To illustrate the 

significant effect that misspellings which create non-words can 

have on lexical sophistication measures, in the ETS data, Arabic 

low-proficiency texts had an average AG of 1.3 when misspellings 

were included, whereas this figure dropped to 0.37 when non-word 

misspellings were excluded from calculation.  

Another consideration was advanced-level lexical items found in 

the writing prompts, which are frequently repeated in student 

responses. After considering removal of such lexical items from 

calculations, we ultimately decided to leave them in because the 

fact that the student ‘took up’ and used the words in their writing 

suggests that some learning may have occurred.  

Each text was then tokenized using regular expressions. Finally, 

these tokens were lemmatized, taking the third approach described 

in section 2. Having completed the above data cleaning process, 

the resulting data for analysis was comprised of the numbers of 

texts in Table 1 and individual students in Table 2. 

Table 1. Number of texts > 70 words by L1 and level 

Level Arab Chin Japan Korea Span 

3  
(Intermediate) 844 307 89 408 116 

4  
(Upper-Int.) 1659 1001 400 1191 234 

5  
(Advanced) 1229 851 271 797 184 
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Table 2. Numbers of students by L1 and level 

Level Arab Chin Japan Korea Span 

3  
(Intermediate) 131 48 14 63 13 

4  
(Upper-Int.) 210 101 39 120 29 

5  
(Advanced) 141 71 27 86 20 

 

4. RESULTS 

4.1 AG measurements of PELIC data 

To reiterate, AG is defined as: 

𝐴𝐺 =  
𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑 𝑇𝑦𝑝𝑒𝑠

√𝑇𝑜𝑘𝑒𝑛𝑠
 

Section 4 describes the results of computing AG using two different 

high-frequency lists: NGSL and PSL-3. Tables 3 and 4 report the 

results in that order and the corresponding figures display the mean 

AG data with standard error bars indicating variability. 

 

Table 3. AG with NGSL on PELIC mean (stdev) 

Level Arab Chin Japan Korea Span 

3 
0.63 

(0.23) 

0.64 

(0.23) 

0.66 

(0.17) 

0.77 

(0.22) 

0.67 

(0.15) 

4 
0.75 

(0.25) 

0.80 

(0.28) 

0.83 

(0.26) 

0.78 

(0.21) 

0.88 

(0.31) 

5 
0.85 

(0.33) 

1.06 

(0.32) 

1.05 

(0.29) 

0.94 

(0.31) 

1.03 

(0.23) 

 

 

Figure 1. Average AG (using NGSL) on PELIC 

 

Table 4. AG with PSL-3 on PELIC mean (stdev) 

Level Arab Chin Japan Korea Span 

3 
0.33 

(0.19) 

0.31 

(0.16) 

0.32 

(0.19) 

0.47 

(0.22) 

0.33 

(0.10) 

4 
0.57 

(0.28) 

0.64 

(0.31) 

0.63 

(0.30) 

0.59 

(0.23) 

0.72 

(0.39) 

5 
0.74 

(0.37) 

0.99 

(0.40) 

0.94 

(0.40) 

0.88 

(0.37) 

0.97 

(0.34) 

 

Figure 2. Average AG (using PSL-3) on PELIC 

 

The results in Tables 3 and 4 show that for all L1s, some reliable 

and consistent group increases are evident in AG as proficiency 

level increases, regardless of whether NGSL or PSL-3 are used in 

the AG calculations. Thus, the NGSL means and PSL-3 means 

distinguish AG among levels. Although standard deviations are 

high, hand-calculated Confidence Intervals (CI) at the 95% critical 

value (1.96) show mostly non-overlapping means. This is true for 

all L1 groups with the exception that the Spanish speakers show an 

overlap of upper and lower CI for levels 4 and 5 with NGSL. Also 

noticeable is the difference between levels 3 and 4 for Koreans 

when using NGSL, as the increase in AG is not significant unlike 

for the other L1s. However, when PSL-3 is used, this lack of 

increase is corrected, showing greater increase as would be 

expected.  

However, NGSL and PSL-3 differ in the AG scores that they 

produce. PSL-3 returns lower AG scores overall, but shows greater 

range, e.g., approximately 0.31 (Chinese level 3) to 0.99 (Chinese 

level 5) (a range of 0.67), compared to 0.64 (Chinese level 3) to 

1.06 Chinese level 5 (a range of 0.42) for NGSL. The AG scores 

being lower overall for PSL-3 confirms that PSL-3 includes more 

words that the learners already know. However, by level 5, AG 

scores are comparable regardless of the high-frequency list used, 

indicating that they receive credit for high-frequency words which 

they later learn. Additionally, with PSL-3, level scores across all 

L1s appear more distinctly and uniformly segregated: all Level 5 

scores regardless of L1 are higher than Level 4 scores. This was not 

the case with NGSL: the Arabic Level 5 score, for instance, is seen 

on par with Level 4 scores of other L1s, suggesting (incorrectly) 

that Arabic Level 5 students are at a similar level of lexical 

sophistication to, say, Spanish Level 4 students. 

In terms of specific L1 differences, there are clear effects for Arabic 

and Spanish speakers. Overall, Arabic speakers have a lower range 

and Spanish speakers have a higher range. This lower range in the 

Arabic speakers’ data is manifested across both AG measures, but 

the upper bound CI for level 5 with PSL-3 was lower than the lower 

bound CI at level 5 when using NGSL. This result again suggests 

that PSL-3 is appropriately discounting low-frequency, culture-

specific words which learners already know that would otherwise 

inflate their AG score. 

4.2 AG measurements of ETS data 

For comparative purposes, we then measured AG in the same way 

using NGSL and PSL-3, but this time on the ETS corpus. Tables 5 

and 6 report the results in that order and the corresponding figures 

present the mean AG data with standard error bars. 
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Table 5. AG with NGSL on ETS mean (stdev) 

Level Arab Chin Japan Korea Span 

low 
0.34 

(0.22) 

0.37 

(0.26) 

0.34 

(0.20) 

0.38 

(0.21) 

0.43 

(0.23) 

medium 
0.48 

(0.26) 

0.58 

(0.31) 

0.51 

(0.20) 

0.60 

(0.21) 

0.55 

(0.23) 

high 
0.82 

(0.44) 

0.91 

(0.42) 

0.68 

(0.30) 

0.83 

(0.41) 

0.79 

(0.38) 

 

 

Figure 3. Average AG (using NGSL) on the ETS Corpus 

 

Table 6. AG with PSL-3 on ETS mean (stdev) 

Level Arab Chin Japan Korea Span 

low 
0.31 

(0.24) 

0.35 

(0.27) 

0.30 

(0.22) 

0.33 

(0.21) 

0.44 

(0.25) 

medium 
0.49 

(0.32) 

0.60 

(0.37) 

0.548 

(0.28) 

0.57 

(0.31) 

0.57 

(0.33) 

high 
0.95 

(0.51) 

1.02 

(0.53) 

0.74 

(0.38) 

0.87 

(0.46) 

0.93 

(0.48) 

 

 

Figure 4. Average AG (using PSL-3) on ETS 

 

These results from the comparison ETS corpus reveal a great deal 

of consistency in terms of the trends described in 4.1. We 

acknowledge that the essays in ETS are labelled ‘low’, ‘medium’, 

and ‘high’, and as such are not strictly comparable to the level 

system in PELIC. Nevertheless, the AG which was based on PSL-

3 appears more effective at showing differences in lexical 

sophistication than NGSL, as would be expected for learners of 

different proficiency levels completing an international proficiency 

exam like TOEFL. This pattern suggests that the findings in 4.1 are 

not purely specific to the Pitt IEP context, but importantly can be 

generalized to other learner datasets (though not as effectively as 

compared to the local context).  

5. DISCUSSION 

5.1 Differences in frequency lists 

To return to our research questions, for question 1, we have 

demonstrated how data science methods, and specifically natural 

language processing (NLP) suites such as spaCy and NLTK in 

Python, can be successfully used to automatically produce 

vocabulary lists through lemmatization, removal of non-word 

spelling errors, and token frequency counts. 

Regarding research question 2, we showed in answer to question 1 

that different frequency lists could be created and deployed and that 

the choice of corpus affects which high-frequency words are 

included. In our analysis of our two high-frequency word lists for 

calculating AG, we found that both NGSL and PSL-3 can show 

reliable increases as proficiency level increased. These increases in 

lexical sophistication were detected in both the local learner corpus, 

PELIC, and the international learner corpus, ETS, validating PSL-

3. In addition, the analysis shows that for each L1, AG increases 

significantly from level to level. (The exception was Spanish-

speaking learners from level 4 to 5; this result may be due to low-

frequency words being based on Greek and Latin roots which the 

Spanish speakers control more easily.) 

In answer to question 3, we found that the results from the two 

frequency lists differ in terms of the degree to which AG levels 

increased with proficiency levels. Overall, the learner-corpus based 

frequency list yielded more distinct AG differences from level to 

level, indicative of how we would expect AG to increase with a 

learner’s overall lexical development over time in an instructed 

context. Here we acknowledge that the level-by-level data 

described is cross-sectional, but it can serve as a proxy for 

longitudinal growth; in future work, hierarchical linear modeling 

(HLM) will be used to statistically confirm this claim. (HLM is 

appropriate as not all learners provide a data point at each level, but 

this statistical approach allows one to compensate for this issue, 

e.g., [29]) Instead, at present we are restricting the analysis to the 

calculation of mean scores with confidence intervals, thereby 

allowing us to provide descriptive evidence of differences in AG 

when different lists are used. 

Our explanation for this finding is that learners may already know 

and control some less frequent NGSL words at a low-intermediate 

stage due to cultural background but may not know some words 

that occur in the 2000 most frequent words in a native speaker 

corpus. This knowledge inflates AG at lower proficiency levels. In 

other words, when measuring lexical development against a native-

speaker corpus, learners incorrectly get credit for less frequent 

words that they already know (items not in the frequency list from 

their culture or educational context), but do not get credit for words 

that they learn when these more frequent items become known to 

them. Thus, native speaker-based frequency measures may present 

a less nuanced picture of the L2 productive lexicon. The learner-

corpus frequency list provides more differentiated AG scores, 

resulting in a more clearly stratified picture of learner knowledge 

across levels, and by extension, predicted longitudinal growth. 

5.2 Importance of data science tools 

These observations were made possible by data analysis of very 

large numbers of texts and tokens. To our knowledge, data mining 

analysis of a corpus of learner data of this nature, with a variety of 

L1s and a similarity of educational experience in an IEP, has not 

been reported before in the literature. Although a subset of the 
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PELIC spoken data was hand-coded and made public (see, e.g., 

http://alpha.talkbank.org/data-cmdi/talkbank-data/SLABank/Engli

sh/Vercellotti/) and several articles published since [20, 29, 30], the 

potential for far greater insights into development in an IEP are 

possible from analysis of the whole dataset. Therefore, the ability 

to analyze a learner corpus of this size is an important step forward 

in more precise characterization of ‘academic readiness’, which is 

an issue in IEP programs that prepare international students for 

academic programs [15].  

5.3 Limitations and L1 effects 

We acknowledge that there are limitations at this early stage of 

exploration. For example, we have yet to determine the exact effect 

of task prompts or the most reliable manner of lemmatizing our own 

high-frequency lists with open-source tools. Another area for 

investigation is the degree to which specific L1 characteristics 

affect their AG measurements. For example, it has been 

documented in PELIC that Arabic learners tend to misspell more 

than other L1s [14]. By excluding all non-word misspellings, 

Arabic learners may not receive credit for words they may know in 

all senses except for the spelling. This finding is important as 

Arabic speakers’ knowledge of the L2 may be underestimated and 

thus put them at a disadvantage in standardized proficiency tests, 

which are the gateway to quality higher education programs. 

6. CONCLUSION 

This paper used data mining techniques to provide evidence that 

AG measures of lexical sophistication will provide more accurate 

descriptive data if they are based on learner corpora (e.g., PSL-3) 

rather than frequency lists based on native speaker corpora (e.g., 

NGSL). The work presented here shows that mining a large dataset 

that has been collected from an L2 population can provide more 

fine-grained insight into level differences, and by implication 

development, than data that are less closely associated with the 

learners. This research is also a good example of how applied 

linguists and data scientists can collaborate to provide results from 

very large datasets, combining linguistic theory with data analysis. 

As a next step, we plan to conduct further analysis and comparisons 

using other corpora and word lists as the basis for calculations. The 

Cambridge English: Preliminary and Preliminary for Schools 

Vocabulary List (PET; [7]) which is based on the Cambridge 

Learner Corpus, a subset of the CEC, is an obvious choice. As this 

list is intended to indicate words that a learner at CEFR level B1 

should possess, it would seem a well-suited comparison to PSL-3. 

It may be that an ideal frequency list would consist of a 

combination of a local (like PSL-3) and a global (like PET) list in 

order estimate learner knowledge and their lexical needs. 

We will also explore additional quantitative validation metrics, 

such as comparing AG scores with various frequency lists to 

general proficiency measures. We would also like to know whether 

culture-specific words such as ‘camel’, ‘pyramid’, ‘tofu’ and 

‘spicy’ should be counted for all L1s. It is natural that Arab-

speaking learners already know ‘camel’, but perhaps not Japanese 

learners, who are more likely to be familiar with ‘tofu’. Would L1 

specific versions of PSL-3 change the outcomes for each L1 and 

would materials writers for each L1 context find such L1-specific 

lists useful?  

Overall, this research has the potential to inform numerous areas of 

language teaching. For materials writers, curriculum planners, and 

teachers, there is great value in having easy access to a valid list of 

level- and context-appropriate vocabulary on which to base 

classroom lessons. For testing services such as ETS or other 

institutions interested in automated assessment of proficiency 

levels, such lists can improve the reliability and validity of 

measurements related to lexical sophistication, and by extension, 

overall lexical development. Finally, in terms of research in this 

field, transparent and theoretically-motivated list selections allow 

for improved comparisons and reproducibility across studies. We 

therefore see this paper as a step in closing the gap between 

educational data mining research, classroom instruction, and 

assessment in the ESL industry. 
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ABSTRACT
Academic achievement of a student in college always has a
far-reaching impact on his further development. With the
rise of the ubiquitous sensing technology, students’ digital
footprints in campus can be collected to gain insights into
their daily behaviours and predict their academic achieve-
ments. In this paper, we propose a framework named AAP-
EDM (Academic Achievement Prediction via Educational
Data Mining) to predict students’ academic achievements
based on the influencing factors we have discovered. Multi-
source heterogeneous data including Wi-Fi detection records,
usage of smartcards, usage of campus network, is aggregated
firstly. Then, instead of the self-reported features or tradi-
tional academic assessments like test scores, we extract fea-
tures reflecting students’ behavioural patterns. Specially, we
define DOH (Degree of Hardworking) to improve the per-
formance of the classifier. Finally, we analyze the features
extracted and apply supervised learning methods to predict
their academic achievements. Experiments are conducted
on real-world data from 528 college students in one faculty,
and the classification accuracy can be up to 88%.

Keywords
Digital footprints, academic achievement prediction, multi-
source data merging, supervised learning, behavioural pat-
tern

1. INTRODUCTION
Predicting students’ academic achievements is one of the
most popular applications in Educational Data Mining. One
research predicted students’ academic achievements by an-
alyzing students’ static information such as gender, charac-
ter, eating habits and place of residence.[2]. Authors used
predictive modeling methods to identify at-risk students in
a course using standards-based grading.[5]. Authors found
that students’ achievements were best inferred from their
social ties through modified smartphones.[4]. Researchers
demonstrated the impact of students’ psychology in predict-
ing their academic achievements using examination scores,
information processing abilities as features [3]. Under the
circumstance of online learning, researchers predicted 145
students’ academic achievements utilizing their online learn-
ing activities and online discussion forums [7, 8]. There are
also authors who used passive sensing data and self-reports
from students’ smartphones and proposed a model based on
linear regression with lasso regularization to predict GPA
[9].

Our study is conducted to make up for the two shortcom-
ings in the previous studies. On the one hand, compared
with standard academic assessments or personal static infor-
mation, students’ daily behaviours which can be monitored
anytime can reflect their states of living and learning more
sensitively and timely. Past research has shown that stu-
dents’ academic achievements have relationships with their
daily behaviours [9]. We inspect students’ behaviours by
analyzing their trajectories, class schedule, campus network
usage and smartcard usage. On the other hand, our study
is conducted based on a complete passive detection system
with no active participation of students which facilitates
continual studies of a larger scale [6, 10]. It is important
to mention that we care about the privacy protection very
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much and all of students’ information involved in the study
is anonymous.

In this paper, we propose a framework named AAP-EDM
(Academic achievement prediction via educational data min-
ing) to analyze data generated from digital campus in order
to predict students’ academic achievements. The framework
contains mainly three main modules. Multi-source hetero-
geneous data merging is the first. After that, we extract
features such as wake-up time, duration of stay in the dormi-
tory, and class attendance. We discovered the potential in-
fluencing factors of academic achievements through ANOVA
F-test and correlation coefficients analysis. Furthermore,
we defined the feature DOH (Degree of Hardworking) to
consider the features we have extracted comprehensively.
Then, we formalized the prediction as a binary classification
problem to identify students at risk and choose the best so-
lution from multiple classification algorithms consisting of
SVM, Logistic Regression,Naive Bayes and Decision Tree.
Finally, we evaluated the proposed framework over a real-
world dataset involving 528 undergraduates, and found that
the classification accuracy can be up to 88%.

Our main contributions in this paper are listed below:

(1) We predicted students’ academic achievements utilizing
students’ daily life behaviour data rather than using aca-
demic assessments such as test scores. The high accuracy
rate indicates that students’ academic achievements have
strong relationships with their daily behaviours.

(2) We extracted abundant features which can describe stu-
dents daily life in detail and also define the DOH which
improves the performance of classifiers.

(3) In order to explore students’ behaviour patterns exten-
sively, we came up with methods to fuse the multi-source
heterogeneous data of college students. Our research can be
easily expanded to much larger scale.

2. PROBLEM FORMULATION
Our raw data consists of four components. First, students’
usage of campus network is monitored in real time. Then
when students use their smartcards on campus such as when
having breakfast and going shopping, their behaviours will
also be captured. Moreover, through the Wi-Fi monitors
we deployed in the entrance of particular places in the cam-
pus, Wi-Fi packets from students’ smartphones with Wi-Fi
enabled can be captured when they pass by the monitors
without connecting to the network. Besides the three parts
above, we have static data including students’ class sched-
ules and academic achievements. We will introduce the data
set in detail in the next section. Based on the data, our
target is to extract features of students and train models
utilizing supervised learning algorithms to predict academic
achievements.

Formally, given the input matrix X ∈ RM×N where M rep-
resents the total number of students and N is the number
of features which will be introduced later and the academic
achievements labels matrix Y ∈ RM×1, our target is to learn
the function which satisfies Y = f (X). Note that the la-
bels in our study are either 0 or 1 where 0 represents good
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Figure 1: Overview of the framework

Table 1: Data format of Wi-Fi detection records.

MAC Address Time RSSI Location

38BC******91
20160301
12:20:23

-70 Canteen #1

performers and 1 represents students at risk.

3. METHODS
In this section, we will introduce our framework AAP-EDM
in detail. The framework mainly contains multi-source het-
erogeneous data merging, feature extraction and academic
achievement prediction which is illustrated in figure 1.

3.1 Multi-source Heterogeneous Data Merg-
ing

3.1.1 Raw Data Set
The raw data set contains Wi-Fi detection records, usage of
campus network, usage of smartcards, class schedules and
also students’ academic achievements.

Through deploying Wi-Fi monitors at entrances of locations
such as dormitories, canteens and teaching buildings, it is
possible to detect smartphones’ MAC addresses, providing
a coarse-grained location trace for students who enter the
coverage area of Wi-Fi monitors which is shown in Table 1.

Students’ information of using campus network is shown in
Table 2. Specifically, the locations where students access
the network (building-level) can be inferred from the ”IP
Address”, and the ”Network Traffic” describes the traffic be-
tween login time and logout time in MBs, which includes
uplink traffic and downlink traffic.

The information of students’ devices while connected to the
campus network is shown in Table 3. In the table, the ”De-
vice Type” can help us distinguish mobile devices from PC
and the ”Time”is recorded in days but not seconds compared
with Table 1.

Table 4 demonstrates the usage of smartcards. The ”Con-
sumption Type” includes ”Repast”, ”Shopping”, ”Bathing”,
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Table 2: Data format of usage of campus network

Anonymous ID
IP Address
(Location)

Login/
logout
Time

Network
Traffic

E416**B2ED 10.210.**.***

20160301
08:00:00/
20160301
09:00:00

200

Table 3: Data format of device information

MAC Address
IP Address
(Location)

Device
Type

Time

38BC******91 10.210.**.** Mobile 20160301

”Network cost” and so on. Note that the consumption type
will reveal the location where students consume with their
smartcards.

Other than the data mentioned above, in this paper we also
utilize students’ class schedules to analyze students’ class
attendance and utilize students’ academic achievements to
train the classification model.

3.1.2 Trajectory Generation
We arranged the usage of campus network, the usage of
smartcards and Wi-Fi detection records in chronological or-
der to form students’ semantic trajectories. In particular,
we consider students to stay in the specific location during
the periods between the login time and logout time accord-
ing to campus network records, until records are captured
in other locations. The semantic trajectories are shown in
Table 5.

3.2 Feature Extraction
3.2.1 Trajectory Features
Daily wake-up time: Wake-up time can reflect the degree
of diligence to a certain extent which is calculated as the
first time in a day when a student logs in to the network in
his dormitory.

Daily time of return to dormitory: Returning to dor-
mitories at a later time in the evening usually means longer
periods students spend in the classrooms or the library. We
regard the last time in a day when a student logs in to the
network in his dormitory as the time of return to dormitory.

Daily duration spent in the dormitory: Dormitories
are usually not appropriate places for studying. We can
estimate the duration of time spent in dormitory according
to the time that students enter and leave the dormitory.
Specially, only the time between 06:30 and 23:30 is under
consideration.

Table 4: Data format of usage of smartcard

Anonymous ID Time Cost
Consumption Type

(Location)

E416**B2ED
20160301
08:00:00

5.0 Repast

Table 5: Example of a semantic trajec-
tory in one day

Id Time Location

1 07:30:00 Dormitory #13
2 07:33:14 Canteen #1
3 08:21:52 Teaching Building #3
4 11:49:39 Canteen #2
5 12:50:58 Dormitory #13
6 18:03:58 Canteen #2
7 18:35:34 Dormitory #13
8 20:39:16 Teaching Building #2
9 22:08:56 Super Market
10 22:15:15 Dormitory #13

Class Attendance: Given the daily trajectory {p0 → p1 →
... → pn} where pn = (loc, time), the start time ts and the
end time te of the course according to class schedules, we
will judge whether a student attends the class. Considering
that students must appear in the classrooms and shouldn’t
have any records in other irrelevant places during the class,
we propose the method according to two conditions. Eq.1
ensures that students have no records except in classrooms
during the class periods. Eq.2 ensures that students are
indeed in the classrooms.

{p|ts + ∆t < time < te −∆t, loc 6= classroom} = ∅ (1)

{p|ts −∆t < time < te + ∆t, loc = classroom} 6= ∅ (2)

Days outside of campus: Students who have no digital
footprints in one day will be considered as not on campus.
Students’ academic achievements are supposed to be affected
if they are often not on campus.

3.2.2 Network Features
Daily Network Traffic in Dormitory: We sum up the
network traffic that students upload and download in their
dormitories. Compared with dormitories, the network traffic
in teaching buildings is less, so we don’t take this part into
consideration.

Network Cost: Students don’t need to pay for the cam-
pus network until their used traffic exceeds the upper limit
of every month. The upper limit of network traffic is al-
most enough for normal usage, so students who exceed the
limit may spend too much time on the internet accessing on-
line videos or online games. We calculate the total network
charges of each student.

Network top up Frequency: When the balance of stu-
dents’ network accounts is zero, students should recharge for
continual usage.

Daily Network Traffic Peak: Daily network traffic peak
is demonstrated as L = {l0, l1, ..., l23} where ln represents
an hour in a day and takes value of 0 or 1 shown in Eq.3
where trafficn is the traffic during the nth hour and the
average is the average traffic per hour in one day.

ln =

{
1, trafficn >= average

0, trafficn < average
(3)
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Figure 2: Probability density function of DOH

3.2.3 Smartcard Features
Students’ consumption patterns are captured according to
the usage of smartcards. In the campus, students will use
their smartcards when having meals in the canteens, shop-
ping in the supermarket and taking a shower in the bath-
house. Cumulatively, we calculate students’ daily costs and
frequency of consumption of breakfast, shopping and bathing.

3.2.4 Self-defined Features
In order to obtain a comprehensive evaluation of all features
extracted above, we calculated the score of each feature for
each student Eq.4. Corr(Xk) is the Pearson correlation co-
efficient between the kth feature Xk and student’s academic
achievements which is shown in Table 6. Note that the
academic achievements are in the form of rankings when
calculating the Pearson correlation coefficient. Rank(xn)
means the ranking of the student un’ features among N stu-
dents. For example, there are three students (u1, u2, u3),
and their ith feature (class attendances) are (0.8, 0.5, 0.6),
we have Score1i = 1, Score2i = 0.66, Score3i = 0.33 because
Corr(Xi) < 0 according to Table 6.

Then we defined the degree of hardworking(DOH) utilizing
the feature scores Eq.5 where K is the count of all features
we have extracted. We plot the probability density func-
tion of DOH (Min-Max normalized) of three groups of stu-
dents separated by their rankings of academic achievements
as shown in Figure 2. From the figure we can find that the
distributions of DOH are similar to the normal distribution
and the averages are approximately 0.2, 0.5 and 0.8. The
apparent distinction among three groups proves that our de-
fined feature is a strong factor for prediction. Essentially the
DOH is the weighed mean of feature scores and the weighs
are the correlation coefficients. Besides DOH , self-defined
features also include other statistics characteristics of fea-
ture scores such as average and median.

Scorenk =

{
(N −Rank(xn))/N, Corr(Xk) > 0

Rank(xn)/N, Corr(Xk) < 0
(4)

DOHn =

K∑
k=1

(|Corr(Xk)| ∗ Scorenk ) (5)
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Figure 3: ANOVA F-test for binary classification

3.3 Academic Achievement Prediction
We separate the whole semester into four periods, the first
three periods last for four weeks respectively and the last one
lasts for six weeks. We calculate the mean of daily features
respectively in four periods due to the fact that students’
behaviours may change along with the whole semester and
generate different impacts on their academic achievements.
Moreover, it is necessary to distinguish weekdays and week-
ends in each period for different behavioural patterns.

The academic achievement prediction is essentially a binary
classification problem which can be used in academic precau-
tion. For that the values of features vary greatly, in order to
increase the speed of gradient descent and the accuracy of
classifiers, we limited all the feature values to the range of
0 to 1 using Min-Max normalization. We have 100 students
who performed the worst according to their school reports
to be positive labels and other 428 students to be negative
labels. The dataset is split into training set and test set
according to the ratio of 7:3.

There might be relevancies among features which will de-
crease the performance of classifiers. For example, students
who spend long time surfing the campus network can possi-
bly bear high network charges. In this work, we implement
the state-of-the-art methods, Principal Component Analy-
sis, to solve this problem.

We trained various classification models such as Logistic Re-
gression, Support Vector Machine, Naive Bayes and Decision
Tree using cross-validation and evaluated on the test set.
Moreover, we implemented the voting classifier to combine
conceptually different machine learning classifiers and use a
majority vote to predict the class labels.

4. EXPERIMENTAL RESULTS
4.1 Experimental Data
We collect 1673706 records totally of 528 undergraduates in
their third year from 19 classes in one faculty. The period we
selected lasted for a complete semester of 140 days from Feb.
29th, 2016 to Jul. 17th, 2016. The academic achievements

Proceedings of the 11th International Conference on Educational Data Mining 269



Table 6: Correlation Coefficient and P-value

Feature Correlation coefficient P-value

Class attendance -0.430 3.39e-25
Time spent in dormitory(Weekday) 0.565 7.71e-46
Time spent in dormitory(Weekend) 0.411 5.84e-23

Time of return to dormitory(Weekday) -0.394 4.22e-21
Time of return to dormitory(Weekend) -0.348 1.60e-16

Wake-up time(Weekday) 0.222 2.69e-7
Wake-up time(Weekend) 0.204 2e-6

Shopping cost 0.215 6.09e-7
Breakfast Frequency -0.337 1.9e-15

Breakfast cost -0.266 5.55e-10
Days out of campus 0.068 0.117

Network traffic 0.406 2.11e-22
Network cost 0.362 8.3e-18

Network top up frequency 0.361 1.02e-17
Feature score average -0.551 3.3e-43
Feature score median -0.547 1.64e-42

DOH -0.561 3.84e-45
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Figure 4: Features statistics among different grades

are the weighted average scores of all courses in a semester
which includes quizzes, midterns and finals.

What we should emphasize is that our experiment was com-
pletely conducted under an anonymous situation. In our
experiment, students’ IDs which reveal the true identities
were mapped to anonymous IDs.

4.2 Feature Analytics
It is meaningful for educators to find out how students’
behaviours influence the academic achievements. We per-
formed correlation coefficient analysis and ANOVA F-test to

compare different features’ contributions to students’ study.
The correlation coefficients are shown in Table 6. Note that
time spent in dormitory on weekdays reaches the highest
value of 0.565 with smallest P-value which is a novel find-
ing. Our self-defined features also reach high correlation
coefficients. Many previous studies have shown that class at-
tendance is a significant and positive predictor of academic
achievements which is also true in our study. Specifically,
the self-defined features indicate high correlation coeffiients
which is also proved in the ANOVA F-values for binary clas-
sification shown in Figure 3. Thus it can been seen that
our proposed method for new features is effective which will
improve the performance of the prediction. Other than the
self-defined features, the overall F-values of network features
are relatively high while the smartcard features are slightly
irrelevant. Note that the wake-up time and the days leaving
campus which don’t achieve sufficient significance (p≥0.001)
are omitted in the Figure 3.

To observe the differences of behaviours among students in
detail, we display the distributions of four features which
are highly relative with academic achievements in Figure 4.
We divide all the students into four groups in the order of
their academy achievements. Group A represents the best
performers and group D represents the worst performers.

As we can see in subgraph Figure 4a, more than 70% stu-
dents of group A spend less than 7 hours in dormitories. On
the contrary, most students in group C and D stay in dor-
mitories for longer than 7 hours, some even staying for more
than 10 hours. In subgraph Figure 4b, we find that class at-
tendance is mainly distributed from 0.5 to 0.75 except group
D in which more than 60% students’ attendance is less than
0.5. Nearly 90% students of group A have a high attendance
rate. Whether class attendance has influence on academic
achievements is controversial.[9, 1] We discover that it is a
relatively strong factor in our research. Daily network traffic
is shown in subgraph Figure 4c, it is obvious that more than
90% students spend less than 1 GB traffic daily in group A.
Bad performers may spend more time for online gaming and
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Table 7: Classification Results

Model
Class0

Precision
Class0
Recall

Class0
F1-score

Class1
Precision

Class1
Recall

Class1
F1-score

Accuracy

SVM 0.92 0.86 0.89 0.55 0.69 0.61 0.82
SVM(PCA) 0.87 0.97 0.92 0.78 0.44 0.56 0.86

LR 0.92 0.77 0.84 0.45 0.75 0.56 0.77
LR(PCA) 0.88 0.97 0.92 0.79 0.47 0.59 0.87

NB 0.92 0.71 0.80 0.39 0.75 0.52 0.72
NB(PCA) 0.87 0.96 0.91 0.72 0.41 0.52 0.85
DT(PCA) 0.91 0.93 0.92 0.73 0.69 0.71 0.87

SVM+LR(PCA) 0.94 0.91 0.92 0.69 0.75 0.72 0.88

movies which results in more network traffic. Subgraph Fig-
ure 4d shows students’ time of return to dormitory. The left
two groups of data tend to show an ascending trend while
the right ones show a descending trend which depict that
most students of group A and B come back to dormitories
after 21:00 and are therefore more diligent.

Figure 5 shows the distribution of students’ daily network
rush hours in one month. The horizontal axis represents the
24 hours in one day. The vertical axis represents students
in the specific group according to academic achievements.
Each student is represented by a row vector (v ∈ R24) ac-
cumulated in one month according to Eq.3. The color bar
shows the numbers in vectors which are between 0 and 30
(30 days in one month). Therefore, the brighter areas mean
students always spend more time online during the specific
periods. From the figure we can see, students of group A
and B have a shorter span of rush hours and they always
login the network near to 22:00 after they come back from
classrooms, while rush hours of students of group C and D
last for a longer time from about 15:00 to 23:00.

4.3 Results of Prediction
In our research the prediction task is an unbalanced classi-
fication problem. According to students’ academic achieve-
ments, the dataset is composed of 428 good performers (neg-
ative samples) and 100 bad performers (positive samples).
We conducted four different supervised learning algorithms
consisting of Support Vector Machine, Logistic Regression,
Decision Tree and Naive Bayes. The highest classification
accuracy can be up to 88%. However it is not convincing
enough for unbalanced classification problems to just inspect
the classification accuracy. In this paper, we used precision,
recall and F1-score to evaluate the performance of our mod-
els. The average classification results of 10-Fold cross vali-
dation are shown in Table 7. Specially we ensemble the Sup-
port Vector Machine and Logistic Regression through voting
classifier and realize the highest accuracy 88%. The princi-
ple of the voting classifier is that the students are classified
as negative samples when the two classifiers conflict with
each other.

5. CONCLUSIONS
In this paper, we predicted that students’ academic achieve-
ments to identify students who perform worse in their study
based on our proposed framework AAP-EDM. Firstly, multi-
source heterogeneous data is merged to generate semantic
trajectories. Then we extracted features consisting of trajec-
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Figure 5: Daily network rush hours

tory features, network features and smartcard features. Fur-
thermore, self-defined features are proposed to explore fea-
tures comprehensively. At last, we have evaluated the frame-
work through multiple classification models using students’
real world data. The results show that our proposed frame-
work is feasible and meaningful for educational supervision
and warning. Our research provides promising approaches
to transform the collage education from traditional descrip-
tive analytics to predictive analytics. We will improve our
framework through further research and concentrate on re-
alizing the prescriptive analytics in college education.
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ABSTRACT
This paper describes a multiple criteria approach based on a
hybrid method of Collaborative Filtering (CF) and Content-
Based Filtering (CBF) for discovering the most relevant cri-
teria which could affect the elective course recommendation
for university students. In order to determine which factors
are the most important, it is proposed a genetic algorithm
which automatically discovers the importance of the differ-
ent criteria assigning weights to each one of them. We have
carried out an in-depth study using a real data set with
more than 1700 ratings of Computer Science graduates at
University of Cordoba. We have used different proposals
and different weights for each criterion in order to discover
what is the combination of multiple criteria which provides
better results.

Keywords
Educational recommender system, Course recommendation;
Hybrid Multi-Criteria Approach; Genetic Algorithm

1. INTRODUCTION
Course recommendation is nowadays an interesting and in-
creasing research line. Specifically, course recommendation
for university studies can be viewed as an important edu-
cational data mining task [13]. This is a important prob-
lem because university studies normally provide a number
of elective courses which students have to choose to complete
their studies. This decision may not be trivial for students,
which usually don’t have enough information and get over-
whelmed by the amount of available options. Recommender
Systems (RS) appear as essential tools capable of helping
students choosing relevant elective courses in their curricu-
lum according to different criteria such as their individual
ratings, preferences, interests, needs, performance, etc [6].
Although there are some studies which work with hybrid RS
approaches [2, 9] and multiple criteria approaches [10, 16],
these works are fairly and are not focused on studying the
influence of the different factors in the recommendation pro-
cess. This work presents a preliminary study to determine
which are the most relevant criteria to provide better course
recommendations for university students. These criteria in-
clude both information that describes the students (such as
their ratings, their grades and their branch) and information
that describes the courses (such as their competences, their
theoretical and practical contents, the professors that teach
it and their subject area). In order to determine which fac-
tors are the most important to achieve better course recom-
mendations, a force brute search and a Genetic Algorithm

(GA) are proposed. GA automatically discovers the impor-
tance of the different criteria assigning weights to each one
of them. Then, these weights are incorporated to the rec-
ommendation process in order to make a final suggestion to
students. In order to study the advantages and limitations
of using different criteria, a real dataset which includes in-
formation from the Computer Science degree at University
of Cordoba is used.

The rest of this paper is organized as follows. An overview of
related work is specified in Section 2. The proposed method-
ology is presented in Section 3. The description of the exper-
imental study is described in Section 4. Finally, conclusions
and future work are presented in Section 5.

2. RELATED WORK
In the past few years, RSs have been thoroughly applied to
course recommendation using multiple criteria. One of the
first applications of multi-criteria matrix factorization for
course rating predictions is explored in [15]. Later, Vialardi
et al. [16] proposed multi-criteria techniques for predicting
students’ grades as a classification problem and Parameswaran
et al. [12] explored the application of restrictions to rec-
ommendations using multiple criteria. Also, other tech-
niques can be found in course recommendation, for instance,
ontology-based approaches [5, 18], neural networks [7] or
bio-inspired algorithms with proposals such as ant-colony
optimization [14] and artificial immune systems [2]. Most of
them based only in students’ grades. From other perspec-
tive, the study of the importance of the specific moment in
which the courses are taken has been studied based on stu-
dents’ grades using Markov chains [8] as well as applying
multiple criteria [17]. More recently, both the competences
provided to students and their relevance in their recommen-
dation [4, 1] and the application of semantic analysis [11]
has been adressed.

In conclusion, even though several techniques have been
developed for course recommendation, most of them are
mainly focused on the students’ performance and do not use
further criteria. Even when some other criteria are used, a
study to determine each criterion influence on the quality
of recommendations is not carried out. In this paper, we
propose a multi-criteria approach for discovering the most
relevant criteria which could affect the course recommenda-
tion. Our approach combines student information (known
as Collaborative Filtering, CF) with domain-specific infor-
mation (known as Content-Based Filtering, CBF).
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3. PROPOSED METHODOLOGY
This section describes the proposed methodology (Figure
1). First, a description and analysis of data set is presented.
Then, the recommendation approaches and the criteria used
in each one of them are detailed. Finally, the evaluation
methodology is addressed.

Figure 1: Methodology overview.

3.1 Data description and preparation
This work has been developed using real information gath-
ered from the degree of Computer Science at University of
Cordoba, Spain. This includes information about students
and courses.

3.1.1 Student information
Student information was obtained by means of surveys which
students filled in their last academic year. The factors ob-
tained for each student are represented in the following way
(see Figure 2):

• A rating of the overall students’ satisfaction for each
course. It is a integer value from 0 to 5 if the course is
taken or it is empty otherwise.

• The grade obtained by students on each course. It is a
decimal value in the range [0, 10] if the course is taken
or an empty value otherwise.

• The branch selected by students for specializing in a
particular computer science area. Concretely, Com-
puter Science degree offers three branches: Computa-
tion, Computer Engineering or Software Engineering.
The chosen of the student will be represented as a nu-
meric identifier (from 1 to 3).

In total, more than 1700 ratings along with their correspond-
ing grades were obtained for the 63 courses included in Com-
puter Science degree in University of Cordoba, Spain. The
data was gathered over a period of two years (2016-2017).

To avoid global effects in the grades and ratings subtractive
normalization [15] is applied. This normalization subtracts
a combination of the student and course mean to the original
value.

Figure 2: Student information.

3.1.2 Course information
Course information was obtained from the University official
degree web page1. The factors selected for each course are
represented in the following way (see Figure 3):

• The professors involved in the course, represented as a
vector with an index for each professor in the degree.
Its value is 1 if the professor is involved in this course
or 0 otherwise.

• The competences or skills that the course provides,
represented as a vector with an index for each compe-
tence in the degree. Its value is 1 if it is provided by
the course or 0 otherwise.

• The subject area to which the course belongs, repre-
sented as a numeric identifier. Eight subject areas are
considered in the degree (integer value from 1 to 8).

• The contents of the course, represented as a frequency
vector of keywords obtained by text mining/prepro-
cessing the theoretical and practical contenst of the
course.

Ci
ContentsSubject

area
CompetencesProfessors

Figure 3: Course information.

3.2 Recommendation Approaches
Three different recommendation approaches are approposed
to evaluate the influence of students and courses criteria.

3.2.1 Collaborative Filtering using student informa-
tion - CFStudent

This proposal follows a CF approach where each student
is represented using different factors, such as, the ratings
vector, the grades vector and the branch. For the courses not
taken by a student, the estimated preferences are obtained
based on the neighborhood built using a similarity function.

For each pair of students, i and j, the similarity measure
designed considers on one hand the ratings (Ri,j) and the
grades (Gi,j). These similarities are calculated using met-
rics like Pearson or Spearman correlation coefficients and
euclidean or taxicab distances. On the other hand, it is
considered the branch similarity (Bi,j). This similarity is
computed considering whether it is equal or not. All these
measures are mapped into the [0, 1] interval and the final
similarity measure is computed as a parametric linear com-
bination of the three factors:

DUi,j =α ·Ri,j + β ·Gi,j + γ ·Bi,j (1)

where α+ β + γ = 1

The significance of each criterion can be studied according to
the weight (α, β or γ) assigned to each criterion. Finally, the
final preference for student i and course j, Ui,j , is calculated
using the parametrized similarity measure (equation 1).

1http://www.uco.es/eps/node/619
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3.2.2 Content-Based Filtering using course informa-
tion - CBFCourse

This proposal follows a CBF approach where each course
is represented as a series of features, such as, the subject
area, the contents, the professors and the competences. In
this approach, the course recommendations for a student are
based on the estimated ratings of the most similar courses
to those that they have already taken.

For each pair of courses, i and j, the similarity measure is
designed attending to the following criteria: their professors
(Pi,j), their competences (Cmi,j) and their respective sub-
ject area (Si,j). These similarities are computed considering
whether they are shared or not. Also, it is considered a
semantic analysis based on their contents (Cni,j). All mea-
sures are mapped into the [0, 1] interval. The final similarity
measure is computed as a parametric linear combination of
these four factors:

DCi,j =α · Pi,j + β · Cmi,j + γ · Si,j + δ · Cni,j (2)

where α+ β + γ + δ = 1

The significance of each criterion can be studied according
to the weight (α, β, γ or δ) assigned to each factor (equation
2). To compute similarities based on professors and compe-
tences, a boolean data based approach is followed. Thus,
similarity metrics like Jaccard index or the log-likelihood
function can be used.

Similarity based on course contents is stored as keywords
obtained by preprocessing the theoretical and practical con-
tents described in the course official guide. Therefore, se-
mantic similarity is applied to each pair of courses in the
following manner:

1. First, the documents are indexed: a custom text parser
has been implemented based on the language (in our
case, Spanish) and it is used a set of stop words adapted
to the domain. As a result, for each document, a list of
tokens is obtained along with their frequency as well
as the number of times that each one appear in the
document.

2. For each pair of courses, i, j, a set B is created as the
union of the tokens of both courses. For each course,
a vector ~i or ~j is built with as many elements as there
are in B, represented as n. This vector contains the
frequency of each token. Finally, each vector is normal-
ized using the l1 norm, thus it is obtained the relative
frequencies to each pair of courses.

3. Cosine similarity is applied to both frequency vectors
in order to integrate the course content criterion into
the similarity measure between courses.

cos(θ) =
~i ·~j

‖~i‖ · ‖~j‖
=

∑n
k=1 ikjk√∑n

k=1 i
2
k

√∑n
k=1 j

2
k

(3)

Finally, the final preference for student i and course j, Ci,j ,
is calculated using the parametrized similarity measure (equa-
tion 3).

3.2.3 Hybrid Filtering using student and course in-
formation - HFStudentCourse

To avoid some of the problems of CF and CBF systems, a hy-
brid approach is proposed. The course preference estimation
for each student and course is obtained using a linear aggre-
gation of the estimated preference based on student informa-
tion described in section 3.2.1 and the estimated preference
based on course information described in section 3.2.2. Both
estimations are decimal numbers in range from 1 to 5, so
they are combined with certain weights α and β to provide
a final preference estimation also in this range. Hence, for
the student i and the course j, the preference estimations
according to CFStudent (Ui,j) and to CBFCourse (Ci,j) are
combined into a final estimation (pi,j):

pi,j = α · Ui,j + β · Ci,j (4)

where α+ β = 1

This hybrid approach implies two different configuration lev-
els. A first level where student and course information are
used separately to obtain two preference estimations. Then,
a second one where it is configured the relevance of each
criterion in the final recommendation.

3.3 Weights selection
Two different ways to select the weights have been used in
order to configure each recommendation approach.

3.3.1 Exhaustive search
A brute-force search or exhaustive search has been used to
find the best weights. This method consists on systemat-
ically enumerating all possible weight configurations and
checking which configuration obtains the best results. In
our case the different weights studied have been considered
as decimal numbers between 0 and 1 with increases of 0.1.
This type of search has been used for the CFStudent and
CBFCourse approaches due to the fact that they do not
have a very high number of weight combinations.

3.3.2 Genetic Algorithm
A GA has been also used to automatically discover the best
weights. This has only been used for the HFStudentCourse
approach due to the larger number of parameters and, there-
fore, more potential configurations. Its purpose is to find the
optimal weights of the different criteria concerning student
and course information, as well as the weights of the final
linear aggregation to obtain the final preference estimation.
The more relevant factors achieve higher weights and the
less relevant ones, the lowest values. The main components
of the used GA algorithm are:

• The chromosome is defined with integer values to rep-
resent the weight of each factor. The integer value of
each gene is ranged from 0 to 10 and it would repre-
sent to the percentage in the range of [0, 1]. A total of
9 weights have to be assigned in this approach, three
weights assigned to student information, four weights
assigned to course information, and finally, two weights
to determine the relevance in the final estimation con-
sidering CFStudent and CBFCourse approaches.

The previous study of exhaustive search allows assign-
ing restrictions to assign specific weights to particular
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criterion to reduce the search space. Thus, three dif-
ferent parameters are optimized deducing the rest of
the problem restrictions.

• The individual fitness function is the Root-Mean-Squared
Error (RMSE) of the recommendation when using the
weight configuration given by the chromosome.

• The genetic operators are single point crossover and a
random mutation which changes the value of one gene
in a possible value in the fixed range.

• Parent selection is done by binary tournament.

3.4 Evaluation Metrics
There are several standpoints from which a RS performance
can be evaluated [3]. In this proposal four metrics have
been selected attending to accuracy, relevance or capability
of making recommendations.

3.4.1 Root-Mean-Squared Error
The Root-Mean-Squared Error (RMSE) is used to measure
the accuracy of the recommendations. This measure is suit-
able for the prediction of ratings and it tends to penalize
larger errors more severely than other metrics. If pi,j is
the predicted rating for student i over course j, and vi,j is
the true rating and K = {(i, j)} is the set of hidden student-
course ratings, then the RMSE whose purpose is to minimize
is defined as:

RMSE =

√∑
(i,j)∈K(pi,j − vi,j)2

#K
(5)

3.4.2 Normalized Discount Cumulative Gain
Attending to Information Retrieval (IR), normalized Dis-
count Cumulative Gain (nDCG) is used as measure of rank-
ing quality.

nDCG =
DCG

IDCG
(6)

DCG at a particular rank position p, if reli is the graded
relevance of the result at position i, is defined as:

DCG =

p∑
i=1

reli
log2(i+ 1)

(7)

Normalization is given by the division by the Ideal DCG at
position p (IDCG).

3.4.3 Reach
CF is based on similarities between students. Depending on
the criteria used, some outlier users exist for which no sat-
isfactory similarities are found, and so no recommendation
can be made for these users. This behavior will be mea-
sured by the reach of the RS whose purpose is to maximize.
If K = {(i, j)} is the set of hidden student-course ratings
and pi,j is the predicted rating, reach is defined as:

Reach =
#K −

∑
(i,j)∈K pi,j

#K
∀ pi,j = ∅ (8)

3.4.4 Time
The execution time of each approach is also important. The
mean execution time is analyzed once each model has been
learned. It is calculated the time that each approach takes
on building the recommendation ranking for a user. It is
important to mention that our testing platform is a personal
computer with Ubuntu 16.04 64-bit as operative system, a
Intel Core i5-3317U processor and 12 GiB RAM memory,
and our recommender runs under the Java Virtual Machine.

4. EXPERIMENTAL WORK
We have carried out two experimental studies. Firstly, we
show the criteria weight optimization and then the compar-
ative study between the different approaches developed. As
mentioned in section 3.1, the dataset used comes from real
ratings and grades gathered from students of University of
Cordoba.

The different RS approaches have been implemented using
Apache Mahout2 and the GA has been developed using the
JCLEC library 3.

It is important to notice that in order to guarantee a greater
robustness in the results and so they can be generalized to
an independent data set, a 10-fold cross validation has been
used. We have stratified students’ data according to the
volume of received ratings on each course [3]. In essence,
a portion of ratings from each student will be taken away
to train the RSs with the remaining ratings. Then, data
are divided into ten partitions, and each partition in turn is
used as a test set. In this way, the obtained results in the
different evaluation measures represent the average values of
the test data set for each fold considered. The advantages
of the cross-validation approach are to allow the use of more
data in ranking algorithms, and to take into account the
effect of training set variation.

4.1 Criteria Weight optimization
The main objective of this first experimental study is to find
the optimal weights for each criterion used in the proposed
RSs. Thus, it is evaluated the influence of the weights in the
course recommendation.

Firstly, an initial experimental study is carried out to config-
ure some common parameters, such as, the similarity met-
rics, where the Jaccard index and the log-likelihood function
have been evaluated for categorical values, and the Pearson
correlation and the euclidean and taxicab distances have
been evaluated for numerical values. Also, neighborhood
size has been evaluated with the values of 5, 10 and 15 in
the case of CFStudent and HFStudentCourse. The final
selected configuration according to this study is shown in
Table 1. This configuration of common parameters will be
used by our three RS approaches.

Next, the weight optimization of each criterion used in CFS-
tudent and CBFCourse approaches is carried out by means
of exhaustive search. Figure 4 shows the evolution of the
average RMSE and its standard deviation for the CFStu-
dent approach, varying the weight assigned to the ratings

2https://mahout.apache.org/
3http://jclec.sourceforge.net/
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Table 1: Similarity measure and neighborhood size.
Similarity by ratings
CFStudent Euclidean distance
HFStudentCourse Euclidean distance
Similarity by grades
CFStudent Taxicab distance
HFStudentCourse Euclidean distance
Similarity by professors
CBFCourse Log-likelihood function
HFStudentCourse Log-likelihood function
Similarity by competences
CBFCourse Jaccard index
HFStudentCourse Jaccard index
Neighborhood size
CFStudent 10
HFStudentCourse 15

and grades criteria, maintaining fixed and with 0.1 value the
weight for branch factor. According to these values, it can
be affirmed that ratings criterion is considered more relevant
than grades criterion. Thus, higher weights for the ratings
factor provide better recommendations (lower RMSE val-
ues). However, if only the ratings criterion is used (assign-
ing a weight of 1.0 and 0.0 for the other criteria), it can be
appreciated that the RMSE value is worse than when using
the rest of criteria with lower values. Concretely, the best
weight configuration is shown in Table 2. In this manner,
although with lower relevance, it is also important to con-
sider these criteria (grade and branch) in order to improve
the results.

In the case of the CBFCourse approach, Figure 5 shows the
RMSE evolution, attending to its average and its standard
deviation, varying the weights of content and professor cri-
teria (considered the two factors more representative in this
approach) and maintaining fixed and with minimum values
(that is, 0.1 value) the weight for competences and subject
area factors.

The results demonstrate that the lowest RMSE values are
obtained when both factors use averaged weights. Specif-
ically, the best configuration gives a lower weight to the
competences and subject area factors. Then, the content
factor is also representative but its weight is slightly lower
than the weight assigned to the professor criterion. The best
configuration is shown in Table 2.

Finally, in the case of HFStudentCourse, because of the in-
crease in complexity, nine different factors have to be opti-
mized, the weights have been estimated using the GA pro-
posed whose main parameters are population size: 100, num-
ber of generations: 500, mutation probability: 0.2 and crossover
probability: 0.9. For this approach, the Figure 6 shows the
evolution of the best weight configuration obtained by the
GA in different generations showing the RMSE mean val-
ues and the obtained weights of the most relevant factors in
the two hybridized proposals. Note that there are some sec-
ondary criteria whose weights aren’t reflected in the graph
since they were pre-fixed. Concretely, the branch criterion in
CFStudent approach with a specific weight of 0.1, and sub-
ject area and competences with a weight of 0.1 for each one

of them in CBFCourse approach. For the best configuration
obtained in the last generation, the weights are not exactly
the same values than the other approaches separately, but
the tendency is similar: the ratings criterion obtains higher
weight values than other criteria of student information and
the professor obtains slightly higher weight values with re-
spect to content criterion. Moreover, the weights to deter-
mine the importance that should be given to the results of
CFStudent approach and CBFCourse approach for combin-
ing them and obtaining a final recommendation show that
the best combination is obtained by maintaining a balance
between both criteria. In our case, the best configuration
has a weight of 0.6 for CFStudent approach, 0.4 for CBF-
Course approach and the rest of weights shown in Table 2.

.

Table 2: The best weight configurations.
Criterion CFStudent CBFCourse HF1

Ratings 0.8 – 0.6
Grades 0.1 – 0.3
Branch 0.1 – 0.1

Professors – 0.4 0.5
Subject area – 0.1 0.1
Competences – 0.1 0.1
Content – 0.4 0.3

CFStudent – – 0.6
CBFCourse – – 0.4
1HFStudentCourse
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Figure 4: Weighted criteria of CFStudent approach.

Starting obtaining the best configuration for each approach,
the following conclusions can be obtained:

• The weight assigned to each criterion indicates that
the most important criterion for student information
is the ratings. In the case of course information, course
contents and professors’ criteria take the lead.

• The similarity measures for ratings and grades based
on distance predominate over the ones based on lin-
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Figure 5: Weighted criteria of CBFCourse approach.

ear relationships. Moreover, the optimal neighborhood
size grows with the number of criteria used.

• The best weight configurations for CFStudent and CBF-
Course are not exactly the same considering the pro-
posals separately or combined in hybrid approach, but
the tendency is maintained. Moreover, the hybrid ap-
proach assigns a balanced weight to both proposals
to obtain the final recommendation. Thus, both ap-
proaches are considered necessary to obtain the best
recommendations.

4.2 Comparison of the different approaches
This second experimental study compares the results ob-
tained by the best configurations of the previous approaches.
We have used an estimation of the ratings (RMSE) as well
as the others of the evaluation measures (nDCG, reach and
execution time) described in section 3.4.

Table 3: Comparative evaluation between RS.
RMSE nDCG Reach Time

CFStudent 0.96628 0.7980 96.48% 1.53s
CBFCourse 1.11187 0.2768 99.36% 1.81s

HFStudentCourse 1.04150 0.8955 100% 2.05s

As we can see in the results shown in Table 3 for the RMSE,
a better score is obtained when more information about
the student and less about the course is used. Nonethe-
less, course information provides certain advantages, such
as increasing the number of ratings capable of estimating
(reach) or a more diverse set of solutions (nDCG), which
can translate into a better proficiency in making relevant
recommendations. As expected, as the amount of informa-
tion considered is increased, the time taken in finding the
recommendations for a student is also increased. It is then
concluded that, regarding RMSE optimization, the best ap-
proach consists in using just the student information, im-
proving as multiple criteria based on it are introduced, al-
though explicit ratings still have the most weight. However,
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Figure 6: Weighted criteria of HFStudentCourse ap-
proach.

this approach has important flaws, as it is the capability of
obtaining ratings for all users, because of outlier students for
whom it is difficult to find an appropriate enough neighbor-
hood. This shortfall is overcome when information about
courses is introduced. It is practically guaranteed that sim-
ilarities between courses will be found, so the reach score
increases significantly.

5. CONCLUSIONS
In this paper several proposals based on CF, CBF and hy-
brid RS approaches combining multiple criteria have been
proposed for the task of elective courses recommendation
in university studies. The results confirm that the overall
rating that a student gives to a course is the most reliable
information source, but when it is complemented with other
criteria about the own student or the course then the estima-
tion accuracy can improve it. This work opens a promising
line of research geared towards both data enhancement, by
applying the RS to a larger volume of students and majors
and study transferability, and broadening the used models
beyond CF. The application of a GA to search for optimal
configurations also has potential, especially on the model-
ing of chromosomes capable of containing information apart
from the weights of the criteria. As future work, we want
to evaluate weights to all criteria (including the criteria that
we have pre-fixed). Moreover, other parameters such as, size
of neighbour and similarity metrics also could be optimized.
Finally, it is also important to indicate that our proposed
approach could be also applied to other related educational
domains such as recommendation of massive open online
courses (MOOCs) with only adapting the used factors.
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ABSTRACT
Analysis of log data generated by online educational sys-
tems is an essential task to better the educational systems
and increase our understanding of how students learn. In
this study we investigate previously unseen data from Clio
Online, the largest provider of digital learning content for
primary schools in Denmark. We consider data for 14,810
students with 3 million sessions in the period 2015-2017.
We analyze student activity in periods of one week. By
using non-negative matrix factorization techniques, we ob-
tain soft clusterings, revealing dependencies among time of
day, subject, activity type, activity complexity (measured
by Bloom’s taxonomy), and performance. Furthermore, our
method allows for tracking behavioral changes of individual
students over time, as well as general behavioral changes
in the educational system. Based on the results, we give
suggestions for behavioral changes, in order to optimize the
learning experience and improve performance.

Keywords
Student clustering, Non-negative matrix factorization, Edu-
cational Systems

1. INTRODUCTION + RELATED WORK
How students behave in educational systems is an impor-
tant topic in educational data mining. Knowledge of this
behavior in an educational system can help us understand
how students learn, and help guide the development for op-
timal learning based on actual use. This behaviour can be
understood both through an explicit study [5], or as in this
paper through the automatically generated log data of the
system.

The analysis of log data is usually done as an unsupervised
clustering of students [2, 3, 4, 7]. A popular approach is
to extract action sequences and transform them into an ag-
gregated representation using Markov models [4, 7]. The
Markov chains can then be clustered by different methods.

Klingler et al. did student modeling with the use of ex-
plicit Markov chains and the clustering with different dis-
tance measures defined on the Markov chains [7]. Hansen
et al. assumed the actions sequences to be generated by a
mixture of Markov chains and used an heuristic algorithm
to find the generating Markov chains [4]. Gelman et al.
used non-negative matrix factorization to find clusters for
different measures of activity aggregated in weekly periods
during a MOOC course. These clusters are then matched
from week to week by cosine similarity.

Our work is similar to Gelman et al. [3] in that we also
use Non-negative Matrix Factorization (NMF) to make a
soft clustering at the student level in a given time period,
however our clustering is only made once, and we are looking
at primary school data over a vastly longer period of time,
(2 years compared to 14 weeks).

Our soft clustering by non-negative matrix factorization is
based on log data from Clio Online.1 Clio Online is the
largest provider of digital learning for all subjects in the
Danish primary school (except mathematics), having 90%
of all primary schools in Denmark as customers.

Using NMF, we assume that the set of features chosen can
be represented by a set of fewer underlying behaviors. These
underlying behaviours would each be represented by a clus-
ter in the non-negative matrix factorization. Each student
will then get a number for each cluster in each time period
representing how much of that underlying behavior he has
shown in the given time period. Non-negativity gives the
behaviors an additive structure, which is more natural than
showing a negative amount of a given behavior. We reason
that the soft clustering will show both the behaviors of in-
dividual students, as well as how the behaviors change over
time, both individually and on a system-wide level.

In this paper, we will consider two main questions: a) how
does student activity in the system affect performance, and
b) how does student activity distribute between different lev-
els of Bloom’s taxonomy in different subjects. Both ques-
tions are important in regards to optimizing learning; the
first in relation to performance, the latter in relation to uti-
lization of all taxonomy levels.

1This data is proprietary and not publicly available.
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Figure 1: Number of students active in each period.
Note that period 0 starts on 2015-01-08, while pe-
riod 111 ends on 2017-03-01. The drops in activity
occur due to vacation in Danish primary school, with
the two large drops around periods 25 and 79 being
due to the summer vacation.

2. EXPERIMENTAL SETUP
This section describes our experimental setup and methods.
We start by describing our data and how it is preprocessed,
and then move on to describing our clustering method.

2.1 Data Preprocessing
As mentioned, we consider log data generated in the Dan-
ish online educational system Clio Online. The system is
used in Danish primary schools and contains learning ob-
jects across all Danish subjects (except mathematics), for
instance texts, videos, sound clips and exercises. Further-
more, the system includes a large number of quizzes, used
for evaluating students. Students may use the system for
self study, but they may also be assigned homework by their
teacher. Our data covers 14,810 students.

The raw data consists of logs detailing page accesses for in-
dividual students in the system. For quizzes, the final score
(between 0 and 1) and total time spent for the quiz is also
available. In our preprocessing, we combine these log entries
to sessions. Two consecutive entries are considered in the
same session, if they have the same subject, and their times-
tamps differ by less than some threshold. For our study, we
choose this threshold to be 600 seconds, based on recom-
mendations from Clio Online, who have a deeper knowledge
of the content and flow of the system (e.g. expected time
per page). Furthermore, quizzes are considered separate ses-
sions. A total of 3 million sessions is obtained in this way.

With the sessions defined, we consider student activity in
activity periods, with a length of one week. The data spans
a total of 112 activity periods, starting January 2015 and
ending in March 2017. For each activity period, we add an
entry for a student, if the student is active (accesses the
system) within that period. The entry for the given student
contains all sessions for that student, which starts within
the activity period. We end up with approximately 677,000
student entries across the 112 periods. Figure 1 shows the

active number of students in each period. Note the drop
in active students around periods 25 and 79; these drops in
activity occur due to summer vacation.

The final step of data preprocessing is the feature extrac-
tion. For each activity period, a set of activity/performance
related features are extracted. The features are chosen so
as to answer the questions posed in the previous section. A
complete overview of all features considered in our exper-
iments is given in Table 1, including the maximum, mean
and variance across all active students in all periods. Not
all features are used for each experiment, see section 3.

All features are aggregates over the activity period. Below
follows a detailed description:

• f1 describes the activity during the period of day, where
Danish students are normally in school, while f2 de-
scribes the activity during non-school hours.
• f3, f4 and f5 describe time spent doing exercises, read-

ing texts and taking quizzes respectively.
• f6, f7 and f8 describe time spent working with differ-

ent topics: languages (Danish, English, German), soci-
etal (social studies, history, etc.) and science (physics,
biology, etc.), respectively.
• f9 is the average session length during the activity pe-

riod.
• f10 is the average quiz score; this feature may be miss-

ing, if a student takes no quizzes during an activity
period, but our analysis methods can handle this, see
section 2.2.
• f11, f12, f13 and f14 describe the time spent doing exer-

cises of different complexity, measured by their level in
Bloom’s taxonomy. We regroup the levels of Bloom’s
taxonomy into 4 levels:

f11 Remember/Understand: Exercises involving
reading and describing, e.g. ”Read a map”.

f12 Apply: Exercises involving application of previ-
ously learned concepts, e.g. ”Practice adjectives”.

f13 Analyze/Evaluate: Exercises involving discus-
sion, analysis and experimenting, e.g. ”Work with
the poem”, ”Analyze the game”.

f14 Create: Exercises involving creation of a prod-
uct, e.g. ”Create a cartoon”, ”Write a story”.

Having extracted m features for each student in each period,
we construct the matrix X ∈ Rn×m, where each of the n
rows consists of the feature vector for an active student in
a given activity period. Thus each student occurs several
times in X; once for each period, where they are active.

2.2 Soft Clustering using Non-negative Matrix
Factorization

We will utilize non-negative matrix factorization for our soft
clustering. The use of NMF as a soft clustering technique
has become popular in recent times [10], with applications
within several fields, such as clustering of images and docu-
ments [8, 13]. NMF has also seen success in the educational
data mining community, for clustering tasks, as well as other
tasks such as performance prediction [3, 12].
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i fi Max Mean Variance

1 Hours between 8AM and 4PM 31.85 0.940 0.862
2 Hours before 8AM and after 4PM 71.84 0.174 0.283
3 Hours doing exercises 3.61 0.048 0.019
4 Hours reading texts 7.73 0.344 0.148
5 Hours taking quizzes 23.76 0.231 0.297
6 Hours working with language subjects 58.28 0.531 0.693
7 Hours working with societal subjects 45.96 0.294 0.285
8 Hours working with science subjects 103.69 0.277 0.326
9 Average session length in hours 7.91 0.268 0.027
10 Average quiz score (in [0, 1]) 1.00 0.733 0.034
11 Hours working with Bloom level 1 2.83 0.016 0.006
12 Hours working with Bloom level 2 1.64 0.008 0.002
13 Hours working with Bloom level 3 1.51 0.014 0.003
14 Hours working with Bloom level 4 2.04 0.009 0.003

Table 1: Overview of features.
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Figure 2: The soft clustering given by NMF.

NMF is a dimensionality reduction method, in which we are
given a non-negative matrix X ∈ Rn×m

+ and k ∈ N, and wish

to determine U ∈ Rn×k
+ ,V ∈ Rk×m

+ , such that X ' UV.
More specifically, we search for U and V, such that the error
||X − UV||F is minimized, where || · ||F is the Frobenious
norm. For our analysis, we need to be able to handle missing
values in X. In this case the NMF problem is reformulated
as the weighted non-negative matrix factorization, in which
we are also given a binary weight matrix W ∈ {0, 1}n×m,
where a 0 indicates missing data. Now, we wish to find U,V
such that ||W � (X−UV) ||F is minimized2.

U and V admits a soft k-clustering as shown in Figure 2; V
describes the importance of each feature for each cluster (for
instance, f1 has high importance in C1), while U describes
the membership of each data point to the different clusters
(for instance, x3 is mostly in C1, while x4 is in both clusters).

Note, that for NMF, we have X ' UV = UIV = UA−1AV,
where I is the k× k identity matrix and A is a k× k invert-
ible matrix. This means that we may rescale U and V by
this matrix, A, and its inverse. In our analysis, we use this
to rescale V, such that all rows of V (the clusters) sum to
one, thus making the clusters comparable, and membership
of the different clusters easier interpretable.

There exist several algorithms for obtaining the non-negative
matrix factorization of X, for instance basic gradient de-

2� denotes the Hadamard product (element-wise multipli-
cation).

scent, multiplicative update rules and alternating least squares;
[1] gives a good overview in the non-weighted setting. Sev-
eral of these algorithms have been adapted for the WNMF
case, while approaches based on expectation maximization
have also been proposed, see [6]. For our analysis, we will use
the weighted version of the multiplicative update method,
proposed by Lee and Seung [9].

The NMF algorithm given in [9], adopted to WNMF [6], is
as follows:

1. Initialize U and V.
2. Repeatedly update U and V by the following rules:

U← U� (W �X) VT

(W � (UV)) VT

V← V � UT (W �X)

UT (W � (UV))

where division is done element-wise.

The literature explores several ways of initializing U and V;
in our case, we will simply use random initialization. The
alternating optimization steps are applied until the decrease
in error reaches below a set threshold. Finally, Lin has noted
that the procedure described above may not converge to
a stationary point, hence we modify the update rules as
proposed by them [11]. Furthermore, since we in our case
know all missing values of X to be bounded by a constant c,
we modify the above procedure such that 0-weight values of
UV that deviate above c are penalized, i.e. whenever a value
(UV)ij with Wij = 0 gets larger than c, we set Xij = c and
Wij = 1, before the next update step. If (UV)ij decreases
below c again, the weight is reset to 0.

It remains to be seen, how we select the number of clusters,
k. For each experiment, we construct clusterings with k =
1, 2, ..., and stop when the decrease in error going from k
clusters to k + 1 clusters is below some threshold, which
depends on the initial error. As a consequence clusters will
be uncorrelated on a student level, since otherwise we would
pick a lower k.
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Figure 3: The cluster matrix for the first experi-
ment.

3. EXPERIMENTS AND RESULTS
In this section, we present two different experiments using
the setup described above. In the first experiment, we inves-
tigate the relation between activity, activity type, subject,
time of day, average session length and performance. In
the second experiment, we investigate the relation between
complexities of exercises and subjects.

3.1 Performance and Optimal Behavior
In the first experiment, we investigate the relation between
activity, activity type, subject, time of day, average session
length and performance, i.e. we consider features f1, ..., f10.
The features are extracted and k = 5 is selected, as described
in section 2. We run the WNMF algorithm, and obtain the
cluster matrix V as shown in Figure 3. From the figure, we
can make several observations about the clusters:

C1 In this cluster, we find students mostly working with
the science subjects (f8). These students seem to work
mostly during school hours (f1). The students also
seem to spent a lot of time reading (f4).

C2 Students in this cluster spend a lot of time taking
quizzes (f5). They will spend some time during school
hours (f1) and some time working with language sub-
jects (f6). Furthermore, students in this cluster seem
to both have fairly long average session length and high
performance (f9 and f10).

C3 In cluster C3, we see students working with societal
subjects (f7). They work during school hours (f1) and
spend time reading texts in the system (f4).

C4 This cluster shows a relationship between being ac-
tive in school (f1) and spending time in the language
subjects (f6). Students in this cluster also spend time
reading texts (f4) and doing some exercises (f3).

C5 The most important feature for C5 is f2, i.e. the stu-
dents in this cluster spend most time using the system
during non-school hours. These students spent time in
all subjects, but mostly languages (f6), and they spent
time taking quizzes (f5).

From the clusters, we can see that the impact on perfor-
mance from different behaviors depends on the subject. From
cluster C2, we see that students working mostly with lan-
guage subjects gain most performance from spending time
taking quizzes and working during school hours, whereas
students working mostly with societal (cluster C3) and sci-
ence (cluster C1) subjects gain most from reading texts,
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Figure 4: The distribution of cluster membership
for the first experiment.
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Figure 5: The average cluster membership in each
activity period for the first experiment.

while working mostly during school hours. Note that cluster
C4 indicates that students working with languages may also
improve performance by reading texts, but to a lesser degree
than students working in other subjects. Finally, C5 indi-
cates that working mostly from home and primarily taking
quizzes, does not improve performance. While C5 indicates
this for all subjects, the high importance of f4 indicates
that this most often occur for students working with lan-
guages, confirming the observations from C2. Finally, it is
also worth noticing, that there is a strong relation between
performance and average session length (clusters C1, C2 and
C3), indicating that students, who perform well, also have
longer sessions on average.

From the above discussion, it appears that the behavior in
clusters C4 and C5 are sub-optimal, when considering per-
formance, while students gain more from being in C1, C2 or
C3, i.e. by working during school hours, having longer ses-
sions and taking quizzes (in the case of languages) or reading
texts (in the case of societal or science subjects).

Figure 4 describes the distribution of cluster membership
across all students and all activity periods , i.e. the columns
of the first interval [0, 0.1) gives for each cluster the fraction
of students with 0%-10% membership. We see, that we do
indeed get a soft clustering, with students often belonging
to more than one cluster. Only C3 seems to be the sin-
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Figure 6: The cluster matrix for the second experi-
ment. Note, that a logarithmic scale is used for this
plot.

gle dominant cluster of some students. From the figure, we
also see that students are typically never exclusively in C5,
which is positive, as the behavior observed in that cluster
was not very productive in terms of performance. Other
than that, we generally observe that students seem to dis-
tribute fairly well between the top four clusters, indicating
most time spent during school hours and a varied use of both
quizzes and texts across all subjects.

Next, we analyze how the membership of different clusters
change over time. Figure 5 plots the average membership
for each period, i.e. the average of rows from U belonging to
the given period. The first observation we make from Fig-
ure 5, is that clusters C1, C2, C3 and C4 appear correlated
at the system-wide level. This is due to these clusters being
dependent on the general activity in the online system; most
of the sudden drops occur at the same time as Danish school
vacations, most notably the two larger drops around activity
periods 25 and 79 (see Figure 1). C5 seems to be relatively
unaffected by the general activity, but this makes sense, as
C5 contains mostly students, who work outside school hours,
and thus a lower membership is expected in that cluster in
general, which is also the pattern we see in periods with no
vacation.

Looking at the general distribution between the different
clusters, C3 and C4 seem to be the most dominant, indi-
cating that most students are working with language and
societal subjects and reading texts. Cluster C1 (science sub-
jects) is fairly constant in the non-vacation periods, and C2

seems to increase starting period 80, indicating that more
students spend time taking quizzes. Finally, as mentioned,
C5 is the least active cluster across most periods. One gen-
eral trend for the top four clusters seem to be an increase
in activity during the 112 periods, indicating that students
are spending more time in the system on average.

3.2 Subject and Exercise Complexity
In the second experiment we look at the relation between
subjects and exercises grouped by Bloom’s taxonomy level,
i.e. we consider features f6, f7, f8, f11, f12, f13, f14

We expect three clusters, one for each of the subject classes,
which will tell us how much each Bloom level is used within
each subject class. Figure 6 shows the cluster matrix found.
From Figure 6, we make the following observations:
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Figure 7: The distribution of cluster membership
for the second experiment.
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Figure 8: The average cluster membership in each
activity period for the second experiment.

C1 In the science subjects, only very little of the 3 higher
levels are used, and almost none of reading and under-
standing.

C2 For societal subjects, students have only little activity
in the first 2 levels, a lot in analyzing and evaluating,
and very little activity in creation.

C3 In languages, students have a tendency to read and
understand a lot, and then distribute almost evenly
on the 3 higher levels.

This implies that if we want to attract students to use an
online educational system for languages, focus should be on
exercises with Bloom’s taxonomy level read and understand.
For societal subjects the focus should be on exercises with
analyzing and evaluating. For science we see no preference.

From Figure 7, we see that the clustering has many high
values which is most likely explained by having a teacher
who uses the system exclusively in only one of the subjects,
which we can see happens most often for languages.

As we can see in Figure 8 all three clusters share similar cur-
vature, which is partly explained by holidays. Especially the
science and societal clusters behave seem highly correlated
on a general level. We also see that in all three subjects, the
average time spent during a week has gone from 15 minutes,
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to 45 minutes for languages and 25 minutes for both societal
subjects and sciences. A clear indication that teachers and
students in Denmark are using online educational systems
more, especially for languages.

4. CONCLUSIONS AND FUTURE WORK
Several points can be taken from our analysis. We have
identified three optimal and two sub-optimal behaviors in
relation to subject and performance. One notably conclu-
sion is that students using the Clio Online system during
non-school hours (at home) do not seem to gain any signifi-
cant boost to performance. We also saw how taking quizzes
seems to increase the performance of students in languages,
more so than in other subjects, where reading texts are of
more importance. This fits the intuition that skills such as
grammar need to be trained, in order to be learned. We in-
form how exercises are used depending both on their subject
and their level in Bloom’s taxonomy. And lastly we see that
the average amount of time spent in the system is increasing
both generally and for the individual students in all subjects,
but especially for students working with languages. Further-
more, both experiments show how behaviors can have high
correlation on a system-wide level, despite being uncorre-
lated on the individual student level. While the change of
behavior for individual students was not directly analyzed in
this paper (due to privacy concerns), our method allows for
tracking such individual changes, hopefully helping teachers
encourage optimal student behavior, e.g. by recommend-
ing training quizzes for students working with languages, or
making sure that students are allowed more time to use the
system in school.

In our setting, the number of clusters is fixed. It may be
interesting to use an adaptive clustering strategy instead,
as done in [7], as one might expect clusters to change over
time. In the future, it might also be interesting to include
other features, that were not available to us at this time, for
instance whether a text (or quiz) have been assigned by a
teacher, or whether the student reads it by themselves. For
this study, we also only had access to a limited amount of
data; better and more reliable results might be obtained by
including more data.
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ABSTRACT
This study investigated the factors underlying the estima-
tion of learner self-confidence during explanations with a
conversational agent in an online explanation task. Based
on reviews of previous studies, we focused on how factors
such as the learner’s task activities and personal character-
istics can be predictors. To examine these points, we used
an online explanation task, which was run by a conversa-
tional agent for students in a classroom on information pro-
cessing psychology (n=99). We asked the participants to
make text-based explanations to the agent in a question-
and-answer (Q&A) style, and clarified a particular concept
that was taught in a previous lecture in the class. The re-
sults show that an increase in the amount of actual task work
for explanations and personal characteristics (such as social
skills) helped to predict higher self-confidence. The findings
have implications not only for knowledge of how such factors
might influence learner self-confidence in an online explana-
tion task, but also for the design of online tutoring systems
that can automatically detect learner confidence using these
variables, and facilitate learning adequately based on such
data.

1. INTRODUCTION
Networked learning such as the use of massive open online
courses (MOOCS) and tutoring systems, which include so-
cial networking services (SNS) has seen many advances in
recent years and has become a popular way of supporting
learning through social interaction. Such environments al-
low learners to interact with each other through conversa-
tion, and have drawn the attention of many socio-constructionists
in the field of learning science. Numerous investigations in
this field focus on discussion boards [5, 25], and an emerg-
ing number of studies have examined the technological side
of research. Moreover, these studies have explored how to
detect the learner’s conversational behavior. Researchers in
artificial intelligence education (AIED) have been investi-

gating the use of conversational agents (CAs) in online envi-
ronments [20] and have explored the use of agents that play
the role of peer learner, whereby they interact socially as dis-
cussants in a serious game-based environment [20]. Some re-
search on online tutoring systems examines the use of agents
that play the role of the student, whereby learners absorb in-
formation through teaching the agents [16, 17]. One of the
most important points of learning by teaching is that the
learner can reflect on his ideas by observing his externalized
thoughts. In the context of social learning, metacognitive
abilities might help him identify the perspectives of other
learners/agents to establish shared knowledge and success-
fully coordinate with one another.

Despite concerns surrounding the effects of social learning
on social coordination skills and metacognitive abilities, not
many experimental investigations have explored the learner’s
task efficiency and metacognitive process, such as confidence
during interactions with a CA. Our study centers on the
learner’s metacognitive capacity; for example, in relation to
confidence evaluations in an explanation activity with a CA.
We investigated how the learner’s task activity and personal
characteristics impact his confidence level during tasks, and
propose a model to understand learner confidence during on-
line tutoring with an agent. We also discuss how our model
could predict learner confidence, and subsequently develop
an automated tutoring system that can collaboratively re-
spond based on learner confidence.

1.1 Conversational Agents and their use in on-
line Learning

The number of studies on computer-based learning that em-
ploys intelligent tutoring systems has grown rapidly over the
past three decades[14, 27]. Advances in language technology
have enabled the development and use of CAs, which can
act as peers learners or mentors, and have made progress in
terms of facilitating learning activities[10, 8]. Initial studies
focused on the use of embodied CAs that act as educational
companions or tutors and facilitate the learning process as
it relates to motivation[4]. Moreover, recent research has ex-
amined the implications of such technology on learning gains
through learning by doing [1]. Many studies investigate the
use of agents capable of handling natural conversation; these
agents are developed based on conversational dialog models,
and have demonstrated the successful use of tutoring in so-
cial interactions. One example is AutoTutor, a system that
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allows students to engage in conversations for their projects.
Recently, more advanced online tutoring systems, such as
Operation ARIES!, have employed CAs [20] where learners
absorb information through web-based tasks in which they
talk with CAs. Other tutoring systems have begun to in-
corporate elements such as SNS [13]. In such cases, learners
can interact with other learners and CAs; they must use
metacognition to monitor their own perspectives as well as
those of their peers in order to better coordinate with one
another. Many important psychological issues have not yet
been explored in depth; for example, how learners develop
their confidence by reflecting on activities in such an envi-
ronment. In the next section, we will look at some of these
points based on reviews of related studies.

1.2 Self-confidence and learning
The 2015 report of the Programme for International Stu-
dent Assessment (PISA) an initiative of the Organisation
for Economic Co-operation and Development (OECD) iden-
tifies several types of skills such as prior knowledge, personal
characteristics, collaborative capacity, and problem-solving
skills. These abilities were assessed using pedagogical CAs,
which acted as peer learners and tutors. The report men-
tions self-monitoring as an important skill because learners
must be able to keep track of how their abilities, knowledge
and perspectives affect their interactions with other agents
in relation to the task at hand [23]. Monitoring skills can
be detected through evaluations of self-confidence; this issue
has been broadly examined in cognitive psychology.

Cognitive psychology research has a long history of study-
ing metacognition, such as self-monitoring of task efficiency,
which is deeply linked to performance [19]. According to the
literature, problem-solving involves conscious, step-by-step
observation of one’s problem-solving behavior. Throughout
this process, one can estimate the likelihood of the ongoing
task having success or failure. In terms of learning activities,
high confidence is known to reflect higher quality mental rep-
resentations of a task, and is associated with long-term recall
[7]. In this sense, a hypothesis can be deduced, such as that
the actual task activity might facilitate the learner’s mon-
itoring; for example, regarding the self-evaluation of one’s
confidence about a task. Interestingly, some educational
psychology studies have revealed that self-assessments of
learning achievement are negatively correlated with learning
performance [9]. One explanation for this outcome might be
that learners have inherent cognitive limits that hinder si-
multaneous monitoring and execution of a task. They might
also have individual differences in terms of their capacity to
self-monitor. Additional types of individual skills that can
be captured by self-assessments might play a role in self-
monitoring. In this context, we investigated participants’
ability to self-monitor their confidence about a task activity.
Next, we analyzed the relationship between self-monitoring
and the personal characteristics, which might also affect con-
fidence level.

1.3 Personal characteristics and Learning
Along with concerns raised in the previous section about per-
sonal characteristics, recent reports have shown that quali-
ties such as attitude, interpersonal skills, personal traits, and
motivation can influence individual learning activities[23].
Studies examining such personal features have shown that

these factors indeed influence learning; for example, when it
comes to thinking style [26]. In the context of this study,
where learners interact socially with an agent, it is impor-
tant to focus on the learner’s personal qualities as they re-
late to social interaction and communication skills. Some
research has explored the use of Big-Five questionnaires
[15], which center on personal characteristics, such as so-
cial skills. Previous studies have indicated that learners
with poor social skills might have lower collaborative per-
formance [21]. Other studies by [12] have investigated how
learners’ skills influence their performance during an online,
concept-learning tutoring task with a pedagogical Conver-
sational Agent (PCA). During in this task by [12], learners
were guided by a PCA that helped them formulate their
explanations of a key concept taught in a large-scale class.
The results show that learners with higher social skills per-
formed better on explanation activities with the PCA. Tak-
ing this into consideration, personal characteristics such as
social skills will also influence metacognitive states, which
are related to task performance. Thus far, no investigations
have delved into the relationship between social skills and
self-confidence; however, this study does. Based on this, we
focus on a particular situation whereby most studies using
agents have not yet fully examined the influence of personal
characteristics on learning activities.

1.4 Goal and Hypothesis
This study investigates how the learner’s task work influ-
ences metacognition of his/her work, and consequently, self-
confidence. Furthermore, we examined how personal charac-
teristics, which are considered important for inter-personal
interactions, impact both the task activity and the learner’s
metacognition of the task. To explore these points, we used
an online explanation task where we asked learners to give
explanations to a social CA in a Q&A style, and to chat
about a particular concept that was taught in a previous lec-
ture. Based on reviews of previous research on learning ac-
tivities and metacognition, we hypothesized that an increase
in the amount of actual task work, such as giving many ex-
planations to an agent, would enhance self-confidence about
one’s work (H1). For our second goal, we focused on the
relationships between personal characteristics and work on
explanation activities, as well as the learner’s metacognition
of that work. We posited that higher interpersonal skills
would increase the number of actual explanation activities
in relation to the social agent (H2-a), and would also enable
metacognition of the student’s explanations (H2-b). In the
next section, we will demonstrate how we analyzed these
points.

2. METHOD
2.1 Participants and conditions
Ninety-nine (Mage: 20.52, SD: 1.60) Japanese university
students majoring in psychology participated in this study.
The students, whom we call learners, were taking a lec-
ture class on information processing psychology in 2014 and
used the system as part of their coursework. The learners
were taught about 30 basic concepts of human information
processing such as top-down processing, neural networks,
Bayesian models, and expert systems.

2.2 Procedure
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After the participants attended lectures about the basic con-
cepts taught in class, they took part in an online tutoring
task that was valid for two weeks. They logged into the
web system using their ID and password, and worked on
the task based on their personalized page. They could only
access the system on campus using the computer terminals
located there. Only members of the class were registered
in the system and were assigned to groups consisting of 4-
5 students. In each group, the participants worked on the
same materials, and the system provided them with updated
information about their fellow members.

The aim of the task was to facilitate learner’s self-explanations[6]
of the basic ideas they learned in class by conversing with
social agents though online texts. As they began the task,
the agent appeared on their screens and asked them ques-
tions about a specific concept. The questions consisted of 17
types such as:“Can you explain the key term regarding how
it functions?”“How do you use it in your daily life?”and
“Can you think of a concept similar to this one?”Learners
were able to restart and continue the task, even if they ter-
minated it during the Q&A session. After they answered one
question, the page switched to an assessment page, and the
system asked them to assess their confidence level. As will be
explained in the following section, this was done to measure
the degree of self-confidence. Afterward, learners received
feedback from the social agent, along with examples from
other members when inputs were entered into the database.
If there was no updated information from classmates, the
system used a database from the previous year instead. As
learners finished answering all 17 questions, they completed
the task. This activity lasted an average of 30 minutes.

2.3 System
The system was operated on an Apache web server via a
CentOS server. The scripts of the web pages were written
in PHP, JavaScript, HTML and CSS. MySQL was used for
the database. This system is a modified version of [11] and
is called“Web-based Explanation Support with Conversa-
tional Agent” (WESCA). The system has a database that
manages thirty different key terms that were selected from
the class material; one was assigned to each of the learners
according to their ID numbers. The agent in the system
responds to the learner’s text sentences and the number of
questions based on the bag-of-word method. The system
can also retrieve other members’ answers (using them as ex-
amples) from the logs based on year, and data from previous
years if there is no updated information. The system also
features social awareness functions such as evaluating the
other learners pushing the“ like”button. The current ver-
sion does not have any functions to show learners how many
likes they have received during the task.

2.4 Measures
This study focuses on three factors: (1) degree of self-confidence
while interacting with the agent, (2) the amount of interac-
tion with the agent, and (3) the effects of personal charac-
teristics on social skills. In the following section, we describe
the types of measures that we used to capture these factors.

2.4.1 Meta cognition: Self-confidence
To capture learner self-confidence during the participants’
explanations, we collected assessments based on confidence

level about the explanations for each Q&A session with the
agent. Learners were required to input their self-confidence
level based on a seven-point scale (-3: not very confident
to 3: very confident). As with the number of interactions,
we analyzed the average level of confidence for each individ-
ual, and used these levels as representative values for each
participant.

2.4.2 Number of interactions: The amount of words
used to explain

We calculated the number of interactions based on the num-
ber of words that the learners input while responding to
the agent. For each individual learner, we used the aver-
age number of words that were input into the system as a
representative value for the number of interactions with the
agent.

2.4.3 Personal characteristics: The autism spectrum
quotient (AQ) score

We assessed the degree of social communication skills based
on the questionnaire, which was originally developed in [3]
and translated into Japanese. This questionnaire appraises
social skills based on the autism spectrum quotient (AQ)
and was originally was used to investigate whether healthy
adults had symptoms of autism. The questionnaire consists
of 50 questions covering five different domains associated
with the autism spectrum: (1) social skills, (2) attention
switching/tolerance for change, (3) attention to detail, (4)
communication skills, and (5) imagination. For each ques-
tion, learners assessed how strongly they felt about them-
selves on a five-point scale (1: Doesn’t match, 5: Does
match). For example, a question about social skills would
be,“ I like to do activities that require interacting with oth-
ers.’”The higher the score, the lower the learner’s degree of
autism, which indicates strong social communication skills.
For each learner, we calculated the five factor scores of do-
mains (1) to (5) using factor analysis, and used this as the
representative value for analysis.

3. RESULTS
To examine our two hypotheses, we first explored how learn-
ers’ explanations that they gave to the agent influenced their
self-efficiency. For this point, we investigated the relation-
ships between (1) the number of explanations given to the
agent and the degree of learner self-confidence regarding the
achievement of the activity. Then, we looked at how individ-
ual characteristics (such as social communication skills) in-
fluenced both the number of explanation activities and self-
confidence. For this aspect, we analyzed (2) the relationship
between the AQ scores and the number of explanations and
confidence levels.

3.1 Explanation activities and self-confidence
First, we conducted a correlation analysis using the Pearson
correlation coefficient to identify any relationships between
the two variables, as well as the average number of words
used during the explanation activity, and the average confi-
dence level about the explanation given to the agent. The
findings show that there were significant relationships be-
tween the two variables (r = 0.211. p < .05). Figure 1
describes the correlations between the two variables. Next,
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Figure 1: Relationship between learner’s confidence
and typed words.

Table 1: Results of correlations between personal
characteristics and number of words

# of words

1. social skills 0.051
2. attention switching -0.023
3. attention to detail 0.149
4. communication skills 0.076
5. creativity 0.034

we explored how explanation activities influenced confidence
level by conducting a single regression analysis. We em-
ployed the evaluations of confidence as the dependent vari-
able, and number of words used during explanations as the
independent variable. We used the forced entry method to
perform the analysis and acquired the regression equation
with the coefficient of determination (R2=0.035 by p < .05).
These results suggest that the actual performance of inter-
actions (such as explanation activities) facilitates metacog-
nition, thus supporting hypothesis H1.

3.2 Personal Characteristics
3.2.1 Personal Characteristics and explanation ac-

tivities
Next, we analyzed the correlations between the scores of the
five domains and the types of words to see how the personal
characteristics considered by the AQ questionnaires related
to task activity. More specifically, we examined the correla-
tion between the number of words used for the explanations
and each of the five AQ domain factors: (1) social skills, (2)
attention switching/tolerance for change, (3) attention to
detail, (4) communication skills, and (5) imagination. Table
1 depicts the correlations between the variables.

The outcomes of the analysis of the Pearson correlation co-
efficient revealed no significant links between any of the AQ
categories. This indicates that personal qualities captured
from the AQ scores do not have any influence on explana-
tion activities with the agent. This shows that hypothesis
H2-a was not supported.

Table 2: Results of correlations between individual
characteristics and learner’s confidence

leanrer’s confidence

1. social skills 0.312
2. attention switching 0.211
3. attention to detail -0.164
4. communication skills 0.170
5. creativity -0.025

Figure 2: Relationship between each AQ score (Y-
axis) and learner’s confidence(X-axis).

3.2.2 Personal Characteristics and self-confidence
Next, to see how personal characteristics considered by the
AQ scores were related to confidence, we looked at the corre-
lations between the AQ scores and confidence level. For each
of the five AQ factor scores, we explored the correlation with
confidence level. Table 2 shows the correlations between the
variables. The findings of the analysis of the Pearson correla-
tion coefficient revealed significant links between confidence
and three variables from AQ: (1) social skills (r = 0.312.
p < .01), (2) attention switching/tolerance for change (r =
0.211. p < .05), and (4) communication skills (r = 0.170. p
< .05). To see if personal characteristics considered by the
AQ scores influenced the number of explanation activities,
we conducted a multiple regression analysis. Figure 2 shows
the outcomes of the correlations between the two variables.
We employed the number of words as the dependent variable
and the five AQ factors as the independent variables. We
used the forced entry method to perform the analysis, and
acquired a regression equation with the coefficient of deter-
mination R2=0.137 by p < .05. Table 3 shows the summary
of the multiple regression analysis. These findings demon-

Table 3: Summary of the mutiple regression analysis
regression coefficient B

1. social skills .368
2. attention switching .044
3. attention to detail -.041
4. communication skills .004
5. creativity -.203
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Figure 3: Overall results of AQ score amount of ex-
planations and self-confidence. Indices’s indicate the
regression coefficient B.

strate that only the variable of social skills influenced learner
evaluations of confidence. This indicates that personal char-
acteristics influence learners’ metacognition of their learning
activities, thus supporting hypothesis H2-b. Figure 3 por-
trays the summary of the results, including path variables.
This figure shows the model of how personal characteristics
and actual task work facilitate self-confidence. Our data
analysis suggests that this model could potentially predict
learner self-confidence, which we will discuss further in the
next section.

4. DISCUSSION
4.1 Developing an automatic tutor to detect

learner self-confidence
Our results show that self-confidence was related to the task
activity, as well as personal traits (such as social skills).
Considering these findings, the actual amount of words in-
put and previously self-evaluated personal scores can help
predict confidence level. Therefore, we can use this model
to develop systems that can become aware of the learner’s
subjective states. We can also employ it to design peda-
gogical agents that could prompt learners to request help
or encourage those with low confidence. As discussed ear-
lier, learner self-confidence is highly related to task perfor-
mance[7]; identifying learners’ cognitive states might facil-
itate self-efficiency [2] during the task, which could result
in higher learning performance. Discussions about learn-
ing performance could go beyond the topic of this paper. I
would like to show how the proposed model could be used
to automatically predict learner self-confidence during the
task. For this investigation, we used machine learning to
see how the categorical factors that were extracted from the
previous analysis might be optimal for detection. We used
linear discriminant analysis (LDA), using confidence as the
dependent variable and the number of words and social skills
score as independent variables. Confidence was labeled as
a binary of high/low based on the median of the acquired
data set. The results of the LDA show an accuracy rate of

66.7%, which indicates a relatively high validation of cate-
gorization. There have been recent attempts to detect and
model self-efficiency in tutoring systems[18]. However, not
many studies focus on personal characteristics as predictors.
In this sense, our model could provide a new way to capture
learners’ subjective states. However, as noted above, more
integrated investigations should be carried out, along with
an analysis of learners’ performance during the explanation
activities. To do so, we should evaluate learners’ output
messages and see how they relate to the variables acquired
in this study.

4.2 Motivating learners via socialized feedback
from the conversational agent

The system used in this study features functions such as
providing feedback about other group members’ explana-
tions. Moreover, learners were able to assess each other’s
explanations by clicking on the“ like”buttons, as in SNS.
These social functions are adequate for motivating learners
and reducing the dropout rate. One of the methods used to
facilitate learner self-efficiency in such educational environ-
ments could be designed by providing feedback, such as how
many“ likes” they receive during their activities. Telling
learners that they have been nominated as good explainers
in the group is another way to motivate them. The CA
can provide such feedback, as it is well-known that people
can praise each other in human-computer interactions [22].
Related studies from our research group have been develop-
ing systems through which students can request help online,
as well as systems that support teachers in programming
classes[24]. Learners in the classroom use the system and
report the ongoing progress of their programming tasks. As
they complete each task, an agent installed in the system
contacts the learner and sends a request for him to help
other classmates who are still stuck working on a problem.
The system aims to increase learners’ self-esteem by approv-
ing/selecting him to help his classmates. The study focuses
on motivation when a learner becomes a teacher, as well as
on learning in the domain of programming skills. In future,
the system to be introduced in this current study might uti-
lize such features, the goal being to encourage learners to use
these types of help-requesting functions provided by CAs.

5. CONCLUSIONS
This study focused on self-confidence during explanations
with a CA in an online explanation task. The study aimed
to understand how the actual activity conducted during the
task influenced the learner’s metacognitive state. Moreover,
based on the literature on personality and individual differ-
ences, we investigated how interpersonal traits related to so-
cial communication could become predictors for the learner’s
task activity and his metacognition of it. Using an online tu-
toring system developed by [11], we collected learners’ activ-
ity logs of explanations, evaluations of their confidence, and
AQ scores. The results of the regression analysis revealed
that increasing the amount of actual task work, such as giv-
ing many explanations to a social CA, enhances learners’
self-confidence about their work, thus supporting hypothe-
sis H1. The analysis of personal characteristics showed that
social skills influence self-confidence (thus supporting H2-b);
however, they do not influence the actual task work (H2-a is
thus not supported). These outcomes indicate that personal
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traits affect self-confidence in interactions with a social CA.
These findings have new implications for designing tutoring
systems that can assess and detect learner confidence during
online learning activities. An additional analysis using ma-
chine learning has also been conducted to investigate if the
model suggested in this study could be used to automatically
detect learner confidence and thus showed the effectiveness.
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ABSTRACT
Simulations that combine real world components with inter-
active digital media provide a rich setting for students with
the potential to assist knowledge building and understand-
ing of complex physical processes. This paper addresses the
problem of modeling the effects of multiple students’ simul-
taneous interactions on the complex and exploratory envi-
ronments such simulations provide. We work towards assist-
ing educators with the difficult task of interpreting student
exploration. We represent the system dynamics that result
from student actions with a complex time series and use
switch based models to decompose the time series into indi-
vidual periods that target interpretability for teachers. The
model learns the transition points between successive peri-
ods in the time series as well as the internal dynamics that
govern each period. This model differs from other switch
based models in that it decomposes the time series in a way
that is human interpretable. This approach was applied to
data that was obtained from an existing multi-person simu-
lation with pedagogical goals of teaching sustainability and
systems thinking. A visualization of the model was designed
to validate the interpretability of the generated text-based
descriptions when compared to a movie representation of the
system dynamics. A pilot study using this visualization indi-
cates that the switch based model finds relevant boundaries
between salient periods of student work.

Keywords
Bayesian Inference, Exploratory Learning Environment, Markov
Chain Monte Carlo, Interpretability, Switching State Space
Models

1. INTRODUCTION
Complex systems simulations are becoming increasingly com-
mon in formal and informal STEM learning environments [21].
These simulations present scientific phenomena in a manner

that bridges principles of science and the firsthand experi-
ence of emergent, real-world outcomes. However, the open-
ended and exploratory nature of these simulations presents
challenges to teachers’ understanding of students’ learning.
Students’ actions have immediate and long-term effects on
the simulation leading to a rich array of emergent outcomes.
Teachers may wish to discuss students’ interactions to high-
light salient learning opportunities, but if there are too many
“moving parts” to the simulation, this becomes a challenging
ideal.

This paper describes an automatic method for extracting
salient periods from the log files that are generated by com-
plex exploratory learning environments (ELE). Our goal is
to generate relevant summaries of the system dynamics such
that teachers can effectively engage students in discussions
that stem from their own experiences with the simulations.
We study an application of Switching State Space Mod-
els (SSSM) to the task of extracting salient periods from
a mixed reality ELE, Connected Worlds, installed at the
New York Hall of Science (NYSci). SSSMs [7] are a class of
model for time-series data where the parameters controlling
a linear dynamic system switch according to a discrete la-
tent process. These models have seen use in a wide variety
of domains including control [11], statistics [2], economet-
rics [8] and signal processing [14]. SSSMs combine hidden
Markov and state space models to capture regime switch-
ing in non-linear, continuous valued time series [22]. The
intuition is that a system evolves over time but may un-
dergo a regime change that results in an intrinsic shift in
the system’s characteristics. Allowing for discrete points in
time where the dynamics change, enhances the power of the
simple linear models to capture more complicated dynam-
ics. We propose that regime switching models also help to
increase the interpretability of large and complex systems
by automatically segmenting a time series into regions of
approximately uniform dynamics. The result is that a com-
plex session is broken into smaller periods that are more
readily understood upon reflection on the session.

In this paper we introduce the Connected Worlds ELE and
explain why teachers might need assistance when leading a
discussion with the students where they reflect upon their
actions. We expound on the SSSM and propose a method
for decomposing a complex time series into smaller periods
aiming to assist teachers when reflecting on a session with
a class. We lastly present results showing the efficacy of
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Figure 1: Bird’s eye snapshot view taken from
the movie representation of the CW environment.
Biomes are labeled on the perimeter and logs appear
as thick red lines. Water enters via the waterfall and
in this image it mainly flows toward the desert and
the plains.

our approach on both synthetic data and on data collected
from CW. The CW validation is a preliminary study with
significant results which suggest that the model output is
human interpretable.

2. CONNECTED WORLDS
Connected Worlds1 (CW) is a multi-person ecology simula-
tion with the goal of teaching students about complex sys-
tems and systems thinking. It consists of an immersive en-
vironment comprising four interconnected biomes connected
by a central flow of water that is fed by a waterfall. The sim-
ulation exhibits large scale feedback loops and presents the
opportunity for participants to experience how their actions
can have (often unintended) effects that are significantly re-
moved in time and-or space. Students plant trees which
flourish or die, animals arrive or depart, and rain clouds
form, move through the sky and deposit rain into the wa-
terfall.

Students interact with CW by positioning logs to control the
direction of the water that flows in the simulation. Water
can be directed to each of the four biomes (desert, plains,
jungle, wetlands) and the distribution of flowing water de-
pends on the placement of the logs. Water enters the simu-
lation in two ways. The students can actively release water
into the system from the stored water in the reservoir. Rain-
fall events are out of the students’ control and these release
water into the waterfall (to replenish the primary source of
water) and into the individual biomes.

Figure 1 shows a bird’s eye snapshot view of the state of
the simulation in CW. The nature of the simulation is com-
plex on a variety of dimensions. The simulation involves a
large number of students simultaneously executing actions
that change the state of the simulated environment. No one
person - including the teacher or interpreter - can possibly
follow what happens, even in a relatively short simulation.
Each participant will have a different view of what tran-

1https://nysci.org/home/exhibits/connected-worlds/

spired, depending on the actions s/he took and the state
changes that resulted. Thus it is important to develop tools
that can support teachers’ understanding of the effects of
students’ interactions in complex ELEs such as CW.

3. RELATED WORK
This work is related to two separate strands of research:
studying students’ interactions in mixed reality ELEs, and
modeling complex systems using switching models.

There is increasing evidence of the value of multi-person par-
ticipatory simulations for engaging learners with complex
science topics [9, 1, 23]. Research has explored classroom-
scale participatory simulations where students play active
roles in the simulation. Some examples include topics in dis-
ease transmission [3] and human body systems [12]. Other
work has placed students in the role of scientists experiment-
ing with simulated ecosystems [17, 4]. Within all of these
examples, learners both engaged directly with the simulation
during enactment, and reflected on their actions afterward
to better understand how their choices resulted in observed
system outcomes. Research has shown that using data ob-
tained from students’ own performances has the potential
to engage them more effectively than presenting them with
the results of an abstract simulation [16, 15]. Building on
this work, our eventual goal is to provide assistive tools for
teachers to further enhance the pedagogical impact that such
ELEs can achieve.

Much work has been completed in the field of mining mean-
ingful knowledge from time series data [5, 10, 19]. Ghahra-
mani and Hinton [7] introduce and give a detailed presenta-
tion of the SSSM. We adapt this model to the special struc-
ture that is inherent in CW. Cappé et al. [2] and Giordani
et al. [8] use switching models to capture non-linear behav-
ior in a time series. SSSMs have been effectively applied
in object tracking domains where it is necessary to predict
the trajectory of various objects. Whiteley et al. [22] intro-
duce a sequential Monte Carlo algorithm for inference over
switching state space models using discrete particle filters.
We present a new avenue of study in which SSSM models
are used to describe complex time series in a way that can
be easily interpreted by people.

4. SWITCHING STATE SPACE MODELS
SSSMs are commonly used to describe time series2 with non-
linear dynamics in econometrics and signal processing appli-
cations [8, 14]. A SSSM includes M latent continuous valued
state space models and a discrete valued switching variable.
Each of the models, which we refer to as regimes, have their
own dynamics. At each point in time, the switching variable
selects one of the individual state-space models to generate
an observation vector.

The SSSM is formalized as:

X
(m)
t = Φ(m)X

(m)
t−1 + w

(m)
t

Yt = StA
(m)X

(m)
t + vt

(1)

Here, X
(m)
t denotes the latent continuous valued state for

2Refer to Shumway and Stoffer [20] for a detailed discussion
of time series analysis models.
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Figure 2: Graphical model for the switching-state
space model. A latent discrete switching variable
(St) selects an active, continuous state space model

(X
(m)
t ). The observation vector (Yt) depends on the

active regime at time t.

regime m at time t. St is a switching variable that selects
the mth regime such that regime m at time t produces ob-

servation vector Yt, which depends on the latent state X
(m)
t .

The states X
(m)
t evolve over time in a way that depends on

the transition matrix Φ(m) and the previous state Xt−1. Fig-
ure 2 presents a graphical representation of an SSSM. Edges
between variables represent stochastic casual relationships.
Not shown in the figure are the regime dependent transition

noise w
(m)
t and the observation noise vt. A

(m) is the output
matrix in the state space formulation, set to identity matrix
I in our case.

We illustrate how an SSSM can describe the effects of stu-
dents’ interactions in CW. Yt represents the observed water

level in the different areas of the simulation at time t. X
(m)
t

describes the expected levels of water under regime m at
time t. Φ(m) controls the water flow in the simulation ac-
cording to the transitions in regime m. St selects which of
the regimes to use to describe the water level Yt.

Importantly, a single regime is insufficient for modeling the
effects of students’ interactions with CW. This is because
students’ actions have a complex impact on the system dy-
namics. We therefore need to define multiple regimes, where
each regime describes a series of events that can be (stochas-
tically) explained by the regime dynamics. A regime is ac-
tive for a duration of time in CW; we call this duration a
period. For example, in one period water is mainly flowing
to the plains and to the desert (as is shown in figure 1). In
the next period, students move the logs to re-route water
flow to the wetlands potentially because plant life is dying.
Each of these periods might be active for different durations
and their dynamics are described by different regimes.

4.1 Exploiting Model Structure
We aim to perform inference over the latent states, X

(m)
t , the

regime parameters, Φ(m), and latent switching variable, St.
Computing posterior distributions for SSSM is computation-
ally intractable [18]. To illustrate, in figure 2 we see that the
graph consists of M state space models that are marginally

independent. These models become conditionally dependent
when Yt is observed, as is the case in this graph. The re-

sult is that X
(m)
t is conditionally dependent on the value

of all of the other latent states and switching variables for
times 1 through T and regimes 1 through M [18]. Previous
approaches use approximate methods such as variational in-
ference [7] and a ‘merging of Gaussians’ [14, 18] to address
the inference problem. The variational inference approxima-
tion transforms the intractable Bayesian expectation prob-
lem into an optimization problem by minimizing the Kull-
back Leibler (KL) divergence between a simpler family of
approximating distributions and the unknown, intractable
posterior. The merging of Gaussians approach uses a single
Gaussian to represent the mixture of M Gaussians at each
time step thereby simplifying the computation with the cost
of being susceptible to local optima (see section 5.1).

While these methods have seen success in previous examples,
they cannot be applied to our domain. This is because they
allow the system to switch back and forth between regimes,
resulting in frequent regime changes that can hinder the in-
terpretability of the model output. This work takes a differ-
ent approach by imposing structure on the model to address
both inference and interpretability challenges. Further, as
the optimization procedures of the previous work are suscep-
tible to local optima, we rather use a Markov chain Monte
Carlo (MCMC) approach to approximate the posterior dis-
tribution of the latent parameters.

We make two assumptions, which arise from the need to
create human interpretable descriptions of complex system
behavior. Assumption 1: the system advances through a
series of regimes, each regime is active for a period, and then
switches to an entirely new regime, one that has not been
used before. Assumption 2: the regime remains active
for the maximum possible time for which it can be used to
describe the period.

To illustrate, without making these assumptions there areM
possible assignments of regimes for each time step, making
a total of MT combinations of possible assignments, which
is exponential in the number of time steps. Moreover, in
the worst case, the number of possible periods is bounded
by T with a switch at every time step. In contrast, under
our assumptions, there are only two possible assignments of
regimes for each time step (i.e., do we stay in the current
regime or do we progress to the next regime), making for
a total of 2M combinations of possible assignments, where
M is constant. The number of possible periods under this
methodology is bounded by M . We hypothesize that the
forced reduction in complexity of the fitted model would
significantly simplify the interpretability of the model for a
human.

4.2 Algorithm for Posterior Inference
Computing the posteriors in an SSSM corresponds to ap-

proximating the joint distributions overX
(m)
t and Φ(m) given

the observation vector Y. A well known problem with MCMC
inference in complex graphical models with hidden vari-
ables is that of identifiability [13]. Models are nonidenti-
fiable when two sets of parameters can explain the observed
data equally well. For example, in a simple Gaussian mix-
ture model with means µ0, µ1 and covariances Σ0,Σ1, the
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marginal posterior distributions of the parameters are iden-
tical. A possible solution to the identifiability problem is to
add constraints (e.g. enforcing µ0 > µ1). However, defining
constraints in higher-dimensional domains is non-trivial.

Another solution for solving the identifiability problem is to
provide labels for part of the data. This is termed semi-
supervised learning and we incorporate this solution into
our model. In the context of the CW domain, we can label
observations as belonging to one regime or another. Let
St,t+1,...,t−1+K,t+K be a consecutive set of K state vari-
ables such that St and St+K have known value assignments
(regime m and regime m + 1 respectively). The values for
the state variables St+1,...,t−1+K are unknown. By Assump-
tion 1, the switch between regimes m and m + 1 occurs at
some Sl where t < l ≤ t + K. Therefore, the value of Sl

determines the values for all of the unknown states as St is
assigned to regime m for t < l and it is assigned to regime
m+ 1 for t ≥ l.

We provide a sketch of this process in Algorithm 1. Step 1
initializes the M supervised switch variables, one per regime.
The labeled switch variables are spaced uniformly in time
and are assigned to regimes in increasing order according to
Assumption 1. This uniform method for initialization can
be justified by Assumption 2, in that any set of regimes that
provides an interpretable model is sufficient. The number of
expected time steps in each period is K = T/M , and there
are K − 2 unlabeled switch variables between each pair of
switch variables assigned to regimes.

Step 2 performs MCMC sampling to approximate the poste-
rior of the model3. For the case when the value of the switch
variable is known, the posterior of X

(m)
t can be directly sam-

pled by following the structure of a state space model. In
the case where the switch variable is unknown, we have a
marginalization problem over the two possible values of St.
For the hidden Markov model (HMM) structure this can be
efficiently computed with the forward algorithm [20]. To
formulate the HMM forward algorithm, we use the obser-
vation probabilities from the individual state space models
in place of the emission probabilities of a standard HMM.
Here, πSi refers to the belief of the state of the switching
variable given the evidence up to that point in time.

Step 3 uses the regime specific parameters Φ(m) to make
a maximum likelihood assignment of an observation to a
regime using the Viterbi algorithm [20], thereby specifying
the value of St∀t ∈ [1 : T ].

Algorithm 1 is computed on an SSSM that implements As-
sumptions 1 and 2. Such a model is shown in figure 3. The
model depicts a subset of the time series with K time steps
from time t to time t+K. There are two supervised labels
at the boundaries of the subset with the variable St assigned
to regime m and variable St+K assigned to regime m + 1.
The unknown K−2 states in between are marginalized over
such that the regime specific posteriors can still be approxi-
mated. This model is repeated for the M−1 switches in the
data. The setup is flexible in that informative priors for the
model noise and transition matrices can be specified (and

3Implemented using Stan MC (http://mc-stan.org/)

Algorithm 1: Posterior inference algorithm

Input: M (number of regimes), Y (vector of observations
for T time steps).

1 Initialization: Label one datapoint per regime, leaving
T − (M + 1) unlabeled datapoints.

2 MCMC Inference: Draw samples for X
(m)
t ,Φ(m) from the

posterior distribution defined by the structured
probability model:

for Yt in Y do
if St = m is known then

sample from P (X
(m)
t ,Φ(m) | Xt−1, St = m,Yt)

else
marginalize over St. Sample from

m∑
i=m−1

πSiP (X
(i)
t ,Φ(i) | Xt−1, St = i, Yt)

3 Posterior Inference: Use the posterior for regime

parameters (Φ(m)) to run a Viterbi pass on the data Y to
make a maximum likelihood assignment of the value of St

to regime m (thereby learning the switching variables St).

Output: St (assignments to regimes), Φ(m) (regime
posterior distributions).

Figure 3: Updated graphical model showing the
semi-supervised switching labels, along with the
choice of only two chains between two semi-
supervised points. This representation is repeated
M − 1 times to describe the M − 1 switches between
the M regimes.
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Figure 4: Histogram of the percent of correctly in-
ferred labels for the observed output. The struc-
tured sampling Algorithm 1 (a) learns the regime
labels more accurately than the randomly initialized
Gaussian merging algorithm (b).

related) as required by domain knowledge.

5. EMPIRICAL VALIDATION
We evaluate two aspects of Algorithm 1. First, we show
that it finds the true regime labels in a synthetic dataset.
Thereafter, we use data that were collected from Connected
Worlds to run a preliminary experiment that tests whether
the inferred periods are interpretable to human validators.

5.1 Evaluation on Synthetic Data
We generate synthetic data to test whether Algorithm 1
finds a reasonable representation of known switches in an
SSSM. Equation 2 describes an SSSM with two regimes
and a continuous state space. The transition parameters
and regime noise are determined according to the active
regime. This model is adapted from Ghahramani and Hin-
ton [7] which describes a state space that is disjoint at regime
switches; we rather chose to make the state space continu-
ous at the switch points as this more accurately mimics the
scenario that is present in CW. The prior probability of each
of the regimes is 0.5 (p1 = p2 = 0.5); the regime transition
probabilities are S1,1 = S2,2 = 0.95 and S1,2 = S2,1 = 0.054.
We used this model to generate 1000 time series, each with
200 observations.

X
(1)
t = 0.99 Xt−1 + w

(1)
t w

(1)
t ∼ N (0, 1)

X
(2)
t = 0.9 Xt−1 + w

(2)
t w

(2)
t ∼ N (0, 10)

Yt = StXt + vt vt ∼ N (0, 0.1)

(2)

We compare the Gaussian merging baseline that is com-
monly used in the literature [14] to Algorithm 1 with the
number of regimes initialized to 9. The accuracy of each ap-
proach is measured as the percentage of the correctly labeled
data points as belonging to either regime 1 or regime 2. On
average Algorithm 1 labels 89% of the data correctly, mate-
rially higher than the 66% average accuracy of the Gaussian
merging approach. Figure 4 shows a histogram of the cor-
rectly inferred switch points in the data according to Algo-
rithm 1 (top) and the baseline (bottom). The bi-modal and
long tailed distribution for the baseline approach demon-
strates its susceptibility to local optima.

4Sj,k denotes the probability of a switch from regime j to
regime k.

Figure 5: An example of a generated time series
from the SSSM model of Equation 2. The x axis
represents time, and the y axis shows the observa-
tions (the magnitudes of the signal are irrelevant
for this investigation). Regime labels are shown as
black and gray dots representing the two label op-
tions. True labels (top) are compared to the inferred
labels from Algorithm 1 (middle) and the Gaussian
merging (bottom).

Figure 5 shows an example of the generated time series
(top) and the associated switch points (bottom). The switch
points are shown according to the true model, the points
inferred by Algorithm 1 and the points inferred by the base-
line. Each period is represented by a sequence of black and
gray colored circles. As shown by the figure, the periods
inferred by Algorithm 1 and the baseline both overlap to
some extent with the true periods. However, there is sub-
stantially more noise in the inferred periods of the base-
line. Algorithm 1 learns the regime autoregressive parame-
ters φ1 = 0.97± 0.027 and φ2 = 0.88± 0.035, again showing
an effective recovery of the individual regime parameters.

The superior performance of Algorithm 1 can be directly
attributed to the switching behavior that is enforced by As-
sumptions 1 and 2, which was not assumed by the baseline
model. Although the model structure encourages the dis-
covery of switches in Algorithm 1 the uniformly spaced la-
bels should not be seen as a model advantage as no prior
knowledge of the actual switches is used in performing this
initialization step. Given that the proposed algorithm finds
a reasonable representation for the switches in a generated
dataset, we turn to the evaluation of the interpretability of
its output within the CW context.

5.2 Preliminary Validation of Interpretability
on Connected Worlds Data

Because the ultimate users of the output of Algorithm 1
will be teachers leading their students in a discussion of the
simulation behavior, we wanted to confirm that the inferred
switch points were interpretable by a human seeking to un-
derstand the “story” of the simulation. In order to do this,
we used a movie of the water flow (see figure 1 for one such
frame) and asked evaluators to select one of three possi-
ble switch points between every pair of consecutive periods.
Evaluators saw a composite of 1) the movie of the two pe-
riods; 2) a description of the dynamics of each of the two
periods and 3) a set of three possible switch points between
the periods. The evaluator’s task was to choose the switch
point that best matched the change in dynamics between
the two periods. One of the three switch points was that
inferred by Algorithm 1; the other two were random times
sampled uniformly from the beginning of the first period to
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the end of the second period.5

The descriptions were generated from the inferred parame-
ters that are an output from Algorithm 1. In equation 1,
Φ(m) refers to the transition matrix for the mth regime. As
is discussed in section 4, the parameters from this matrix
describe the expected movement of water in the given pe-
riod. We threshold the values from this matrix to generate
a short text description for the water movement. One such
description could be: “Water is directed towards the desert
and plains. The wetlands and jungle are receiving little or
no water”.

Evaluators worked with five sessions, each of which included
5 to 10 periods of system dynamics. Selecting the correct
switch point is not a trivial task: it requires distinguish-
ing between changes in the system that indicate different
dynamic regimes and those that are noise within the same
dynamic regime. We see an evaluator’s ability to choose a
switch point based on the movie and a description of the
two contiguous periods as evidence that the inferred periods
are usable by a teacher who wants to guide students in con-
structing a causal description of their experience with the
simulation. Moreover, this can be seen as evidence that the
inferred regime parameters match inferred period bound-
aries, together presenting a coherent description for the wa-
ter movement for a short segment of the CW session.

Figure 6 shows the results of the validation using four eval-
uators with knowledge of the CW domain. The five sessions
are shown along the x-axis; the fraction of correctly selected
switch points is shown by the bin heights. The dashed line
represents a random baseline in which the selected switch
probability corresponds to 1

3
. Under the null hypothesis,

the performance of an evaluator would not be significantly
different than the random baseline. The results indicate
that the evaluators chose the switch point identified by Al-
gorithm 1 significantly more often than the random baseline
(p < 1 × 10−4), suggesting that the inferred switch points
were indeed interpretable to a large extent as meaningful
changes in the state of the system. The differences in inter-
pretability seen in figure 6 (e.g. session 4 was more difficult
to interpret than session 3) can provide further guidance
to us in how to support teachers and students in making
sense of their experiences in CW. For example, the sessions
with more complicated dynamics might need more periods
to fully capture the progression over time. Predefining the
number of periods for a given session is an aspect of this ap-
proach that needs addressing. A more detailed user study is
left for future work.

6. CONCLUSION AND FUTURE WORK
This paper has presented novel research into the simplifica-
tion of log files that are generated by complex participatory
immersive simulations. The log files were represented as a
time series that was decomposed with the long term goal of
producing periods that are useful for a teacher when leading
reflective discussions about students’ sessions. We have built
upon previous time series analysis tools to formulate a model
that automatically segments a time series into these salient

5Visualization available at https://s3.amazonaws.com/
essil-validation/index.html.

Figure 6: Expert validation of five different test
files from sessions with CW. The histogram shows
the fraction of correctly identified switches between
automatically identified periods with an expected
baseline accuracy of 1

3
.

periods. The efficacy of the algorithm was demonstrated on
a synthetic dataset where it outperformed previous work at
the task of assigning data to regimes. We used the algo-
rithm’s output to generate a short text description of the
dynamics in an inferred period. We find that evaluators are
independently able to validate the inferred changes between
the automatically generated periods. This preliminary study
demonstrates that it is possible to simplify a time series log
into periods of activity that are human interpretable.

Our focus now rests on designing assistive tools for teachers
that can facilitate their understanding of students’ inter-
actions in multi-participant immersive simulations. More-
over, our results suggest that the model should be capa-
ble of adapting the number of inferred regimes to the com-
plexity of a given session. Fox et al. [6] explore a Bayesian
non-parametric model which allows the data to dictate the
number of regimes that are inferred. The application of this
model to the CW data presents an attractive tool for remain-
ing agnostic about the number of regimes that are present
in a session. Another avenue for future research involves
exploring the trade-off that is made between the predictive
power of a model and the explanatory coherence that the
model achieves. Wu et al. [24] have suggested a method
for regularizing deep learning models to facilitate people’s
understanding of their predictions. This is an important
balance to consider and one that we intend to consider in
educational settings.
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ABSTRACT
As education gets increasingly digitized, and intelligent tu-
toring systems gain commercial prominence, scalable assess-
ment generation mechanisms become a critical requirement
for enabling increased learning outcomes. Assessments pro-
vide a way to measure learners’ level of understanding and
difficulty, and personalize their learning. There have been
separate efforts in different areas to solve this by looking
at different parts of the problem. This paper is a first ef-
fort to bring together techniques from diverse areas such as
knowledge representation and reasoning, machine learning,
inference on graphs, and pedagogy to generate automated
assessments at scale. In this paper, we specifically address
the problem of Multiple Choice Question (MCQ) genera-
tion for vocabulary learning assessments, specially catered
to young learners (YL). We evaluate the efficacy of our ap-
proach by asking human annotators to annotate the ques-
tions generated by the system based on relevance. We also
compare our approach with one baseline model and report
high usability of MCQs generated by our system compared
to the baseline.

Keywords
Knowledge base, Vocabulary learning, Vocabulary Assess-
ment, Assessment Generation, MCQ Generation, Personal-
ized Vocabulary learning

1. INTRODUCTION
Personalized automated tutoring provides a scalable solu-
tion for augmenting in-class learning, and hence helps teach-
ers effectively achieve increased learning outcomes in multi-
student classrooms.

∗Work done while at IBM Research.

In automated tutoring, assessments play an important role,
since they provide a way to continuously measure learners’
level of understanding for a given concept. For young chil-
dren, automatic vocabulary assessment is an interesting re-
search problem and several efforts have been devoted to it
[9, 17, 18, 23, 29]. It is a complex problem since word knowl-
edge acquisition for first language learners is an incremen-
tal, continuous process, in part determined by the richness
of a word's connection to other related words [5, 8]. This
is important because the more associations a word has, the
easier it is for learners to identify the meaning of the word
when it is encountered again in a new context [7]. Hence,
automatic assessment generation should strive to assess the
multiple facets of a word, in the context of its relationships
with other words.

Among the different assessment types, an MCQ test is a sim-
ple and highly scalable assessment mechanism, and is easily
gamifiable for increased engagement by young learners. In
this paper, we mainly focus on MCQ generation with a sin-
gle correct answer and multiple distractors, although the
solution is equally and trivially extensible to MCQs with
multiple correct answers. There are three important parts
of an MCQ, a) a Question Stem, b) a Correct Answer and c)
one or more Distractors. For a young language learner, the
scope of varying the question stem and the correct answer
is limited, but distractors play an important role in deter-
mining the level and relevance of an automatically generated
MCQ. Generating the right set of distractors for an MCQ
is a difficult and tedious task even for humans. Hence, our
main attention in this paper is on automatic generation of
good distractors for MCQs.

We use ConceptNet5.4 [19] as a common sense knowledge
base (KB) and generate a diverse set of MCQs for assessing
conceptual understanding of a word. Using ConceptNet,
however, leads to several challenges: 1) some of the links
may not be appropriate to vocabulary learning for young
learners, 2) there may be missing or sparse links for some
words, and 3) there is no explicit information about word
sense. To address these challenges, we first employ a su-
pervised learning approach to filter out inappropriate links
before generating MCQs. Second, we employ word embed-
dings [28] to overcome missing and sparse links. Third, even
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Figure 1: Snapshot of YL-KB

though information on multiple meanings of the same word
is not directly available in ConceptNet, we detect the pres-
ence of multiple meanings of words through varying indepen-
dent relationships in ConceptNet based graph (e.g. seal–the
animal and seal–the stamp have independent hierarchies of
word relationships in the graph), and hence are able to gen-
erate questions which aim to assess knowledge of multiple
meanings of a word. Hereafter, we refer to this curated
ConceptNet for young learners as YL-KB (Young Learners
Knowledge Base).

We evaluate the efficacy of our approach by asking human
annotators to annotate the questions generated by the sys-
tem based on the relevance and the automatic difficulty level
assigned. We also compare our approach with two baseline
models. We perform extensive evaluation on a set of 600
automatically generated questions. For relevance of the gen-
erated MCQs we report Fleiss Kappa [14] moderate (0.44)
inter-annotator agreement.

The paper is organized as follows. We review the related
work on question generation as it applies to MCQs in Sec-
tion 2. We describe our design considerations, and approach
along with the system architecture in Sections 3 and 4 re-
spectively. We report the results of our evaluation in Section
5 and conclude in Section 6.

2. RELATED WORK
Prior research has mainly addressed MCQ generation from
two dimensions, namely 1) utilizing text corpora and lexical
resources such as WordNet [13] to generate question stem,
correct answers and distractors, and 2) utilizing domain on-
tologies to generate domain specific MCQs. Some notable
work utilizing WordNet[13] lexical resource for generating
MCQs are [9, 17, 20, 18]. Brown et al. [9] generate differ-
ent types of questions for a word, aiming to assess different
aspects such as synonyms, antonyms, definition etc. The ap-
proach for choosing distractors is to pick words which have
the same part of speech as the word in the question stem.
Hoshino et al. [17] present different methods for generating
distractors, such as mutual information and edit distance,
using WordNet. Mitkov et al. [20] find keywords based on
frequency of occurrences and create a question for a word

based on the phrase it is occurring in. They use WordNet's
hypernym relationship to find distractors. Generation of
MCQ distractors using WordNet for English language ad-
jective understanding is discussed in [18]. Gates et al. [15]
use definitions for words to generate a cloze type question
for vocabulary building. They remove verb phrase to create
cloze type question. For distractor generation, they employ
a simple technique where phrases which have same structure
as the answer phase are the potential distractors. Mostow
et al. [21] propose automatic generation of multiple choice
cloze questions to test a child's comprehension while reading
a given text. Unlike previous methods, it generates different
types of distractors designed to diagnose different types of
comprehension failure, and tests comprehension not only of
an individual sentence but of the context that precedes it.
More recent work aims to generate MCQs for any Wikipedia
topic [16] and using DBpedia [27] fills the gap of generating
MCQs for quiz-style knowledge questions from a knowledge
graph such as DBpedia[6].

A number of papers utilize domain ontology for automatic
question generation. Some notable works in this domain are
[24, 3, 1, 4, 12, 2, 30], which address different aspects of au-
tomatic question generation from domain based ontology: 1)
how to generate distractors; 2) how to control the difficulty
of a question; 3) how to control the number of questions
to be generated, since in a practical setting only a specific
number of questions would make sense; 4) how to gener-
ate domain relevant questions and 5) limitations of using
domain ontology for automatic question generation. Our
paper advances the state-of-the-art in significant ways. It
cuts across all different dimensions of generating MCQs for
assessing vocabulary learning in young children, by using a
common sense knowledge base with wider coverage but high
noise. To the best of our knowledge, this is the first of its
kind work that addresses the sophisticated task of automat-
ically generating varying word knowledge assessments using
techniques from diverse areas of knowledge representation
and reasoning, machine learning, inference on graphs, and
pedagogy. Further, using ConceptNet instead of WordNet
provides significant advantages in terms of the number and
diversity of word relationships available.
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Figure 2: High Level Solution Overview

3. DESIGN CONSIDERATIONS
Our approach to MCQ generation builds on ConceptNet, a
semantic network containing common sense knowledge (of-
ten stored as networks of related ideas) created to help com-
puters understand the world. When a learner is assimilating
information about words in a language, in a way they are
trying to make a mental semantic network of words [22].
Since a common sense knowledge base mirrors this semantic
network, it can potentially serve as a resource for generating
robust, multi-dimensional assessments for vocabulary learn-
ing.

4. OUR APPROACH
In this section, we first present the definitions of terms we
use throughout the paper. Then, we present the high level
overview of our system for automatic MCQ generation from
a common sense KB. A detailed explanation of each compo-
nent of the system follows in further subsections.

4.1 Terminology
A common sense knowledge base (KB) is a directed semantic
network of common sense entities such as words and phrases
as shown in Figure 1. The entities in the network are con-
nected with a diverse set of semantic relations such as isA,
hasA, atLocation etc. We represent the semantic network
as graph G, consisting of V nodes and E edges, where edge
labels come from the conceptual relationship connecting the
two nodes in a directed manner. We call relations repre-
senting functional characteristics such as hasA, usedFor, and
capableOf functional relations, and isA as hierarchical rela-
tion. We represent the words and relations for which we
create MCQs as seed words and seed relations, respectively.
If there is a directed edge from node c to node p with rela-
tion r, we call p as a parent of node c with relation r and
c as a child of node p with relation r. The siblings of a
node, with respect to a specific relation, are defined as all
the children of its parent node, except for the node itself.

4.2 System Architecture
Our goal is to enable a holistic solution for automatic MCQ
generation from a KB. The high level overview of our solu-

tion is depicted in Figure 2. The KB is curated for themes
that are relevant for young learners and then filtered us-
ing the Children's Book Test [26] corpus, which is a dataset
curated from an extensive selection of children's books. Fur-
ther filtering is done to remove noisy and irrelevant edges.
The curated KB, referred to as YL-KB is now free from in-
appropriate and noisy data, which makes it suitable to use
for vocabulary assessments. The YL-KB is used to select
seed words and generate all six types of questions. We now
discuss each of these stages in detail.

4.3 KB Curation
The goal of this paper is to generate age-appropriate MCQs
for vocabulary assessments catering to young language learn-
ers. Therefore, it is essential to remove the semantic rela-
tionships which are 1) inappropriate, 2) rare to observe and
3) inherently noisy from a KB. We handle this problem in a
systematic way.
Theme Specific Retrieval and Filtering Based on
Children's Book Test: First, we retrieve the part of the
KB based on themes relevant to young learners such as
fruits, animals, vegetables, transport, etc. Next, from this
theme specific KB, we filter the edges where either the source
node word or the target node word is part of the Children's
Book Test.
Supervised Learning for Filtering Noisy and Irrel-
evant Links: We use a supervised learning approach to
filter out noisy or irrelevant edges. This process begins with
crowd-sourcing annotators to manually label the edges as
relevant or not. After the manual annotation, we train a bi-
nary classifier on the annotated links. The features we pick
are, 1) Edge relation, 2) Cosine similarity between source
word and target word from word embedding vectors and 3)
Weight or confidence score on the edges, if present. After
this step, the curated KB is relatively free from noisy and
inappropriate data and can be used for MCQ generation for
YL.

In this section, we first present the method used for auto-
matic seed word selection. Next, we present the strategy
used for hard and easy MCQ generation.

4.3.1 Seed Words Selection for Each MCQ Type:
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Question Correct Options
Before Adding
Missing Edges

Distractors Before Adding Missing
Edges

Nodes
Added
to Correct
Answers

Nodes removed from dis-
tractors

Fruit hasA peel? {lemon, orange, ba-
nana, apple}

{melon, lime, pineapple, pumpkin, pear,
pomegranate, avocado, plum, ......}

{avocado,
melon, lime}

{pumpkin, pomegranate,
pear, pineapple}

Tools usedFor cut? {knife, saw} {chisel, screw, axe, hoe, ...... } {chisel, axe} {}
Food hasA crust? {bread,pie} { fruit, mushroom, snack, candy, loaf,......} {} {loaf}
Insect capableOf fly? {butterfly, bee} { grasshopper, wasp, bumblebee, tick,

worm, .....}
{wasp} {grasshopper, bumblebee}

Table 1: Examples of Missing Edges Removed

This process involves two steps, 1) Selecting words which
are representative of semantic categories such as 'mammal',
'fruit', and 'bird', and 2) Selecting the child nodes of these
semantic categories based on a criterion. We employ graph
based heuristics to select words corresponding to semantic
categories. Words that have a relatively high degree for
incoming isA relations, and a relatively low degree for out-
going isA relations qualify as semantic categorical words.
Next, we pick the child nodes of these semantic category
words which have a relatively high number of edges for
usedFor, capableOf and hasA relationships. Thus, we gen-
erate a list of seed words which we use to create MCQs.

4.3.2 Method for Handling Missing Edges:
As described earlier, the curated KB is processed to remove
noisy and irrelevant data before MCQ generation. How-
ever, YL-KB still contains missing edges. Because of this,
some nodes which are correct answers show up as distrac-
tors instead. For example, as shown is Figure 1, for question
“Which of the following has claws?”correct options are {bear,
dog, ....} and distractors are {cow, seal, elephant, bat, ......}.
Due to the missing edge hasA(seal, claw), seal becomes a
distractor even though it is a correct answer. Our hypothe-
sis for adding missing edges is that if there is a missing edge
from words w1 to word w2 of relation r, then the cosine
similarity score between w1 and w2 must be approximately
similar to the cosine similarity score between others words
connected to word w2 with the same relation r. For adding
missing edges, we performed several simulations for the co-
sine similarity scores (ρ), their means (µ), and their standard
deviation (σ) and obtained the following: if (ρ ≥ µ) then we
assume a valid link; if (µ−σ ≤ ρ < µ) we are not sure about
the quality of the link; and if (ρ ≤ µ − σ), we characterize
it as an invalid link.

4.3.3 MCQ Generation Method
Our hypothesis for MCQ is that it should have distractors
that do not share any common properties with the correct
answer. To ensure some confidence in discontinuity between
an answer and distractors we leverage the idea of finding
non-overlapping graph communities within words in YL-KB.
We take the YL-KB graph as a directed graph, ignoring the
relationship labels on the edges and use CNM [10] to find
communities. For each community, we do a one-hop expan-
sion of each node in that community and remove repeated
nodes in this set of expanded and original nodes. Thus, we
get new nodes that belong to other communities. We call
them leading nodes, as they form a bridge between the com-
munities. To generate MCQs, we find the community for
each seed word, and its leading nodes. In this way, we can

move from a seed word to a related community, if a path
between a chosen leading node and a seed word exists. To
generate distractors for the seed word and for a seed rela-
tion, we pick words from the related communities which are
related to other words in their community using the same
seed relation.

5. EXPERIMENTS AND EVALUATION
In this section, we present the experiments we conducted for
evaluating our proposed approach.

5.1 Experimental Setup
As mentioned earlier, we curated the ConceptNet to create
YL-KB. It has age-appropriate themes relevant for young
language learners as specified by [11] such as bird, fruit, veg-
etable, color, insect and animals. We then picked edges la-
beled with isA, hasA, atLocation, synonym, antonym, used-
For, and capableOf relationships. The edges were filtered
where either the source node word or target node word was
not part of the children’s book test [26] for the purpose of
filtering inappropriate words.

After the theme specific KB was curated using the corpus
[26], we employed a supervised learning technique, specifi-
cally a binary multi-layer perceptron implementation from
Scikit-learn [25] for filtering of irrelevant and noisy edges.
The attributes we used for training the classifier were, 1)
source node word, 2) target node word, 3) relationship type,
4) number batch cosine distance [28] and 5) edge weight
coming from ConceptNet. Out of total 27070 edges across
different relationship types, we picked 28% as the training
set, 12% as validation set and rest 60% as test set. For the
training set, we asked human annotators to annotate the
edges as relevant or irrelevant. The trained classifier had
precision and recall for both classes (relevant and irrelevant)
around 84% and F-score of around 0.83 on the validation set.
After filtering the edges, we were left with about 50% edges
that were appropriate, which corresponds to YL-KB. We
also added missing edges based on the strategy discussed in
Section 4.3.2. For example, we were able to connect nodes
avocado,melon, lime to node peel with relation hasA using
our strategy. Few other examples are as shown in the Table
1.

From YL-KB, using the methods described in Section 4,
we generated correct answers and distractors. For each seed
word, we could generate questions in the range of thousands.

5.2 Experiment Design
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Figure 3: Validation Statistics of Baseline (vanilla
ConceptNet) with our approach

In order to establish the efficacy of our approach, we con-
ducted a question usability validation. We also conducted
validations which compared our approach with a baseline.
For all the validations, we had three volunteers manually
annotate the questions. All volunteers were in the age group
of 25 − 35 years and had a higher education degree where
English was the medium of instruction.

5.2.1 Baseline:
We used vanilla ConceptNet, without applying any filtering
to handle noisy or missing edges, to generate MCQs using
our logic to create correct answer and distractors. We gen-
erated 600 questions using our approach (filtered KB i.e,
YL-KB) and this baseline approach (without filtered KB) ,
keeping the same number of questions per word. We asked
each annotator to manually annotate all the 600 questions
based on usability of the questions on a rating scale of 0
to 3, where 0 corresponds to “no problem with correct an-
swer and distractors”, 1 corresponds to “no problem with
correct answer and there is a problem with only one distrac-
tor”, 2 corresponds to “no problem with correct answer and
there is a problem with two distractors”, and 3 corresponds
to “either there is a problem with correct answer or all the
distractors”.

5.2.2 Question Usability Validation:
The experimental setup and rating score criteria in this val-
idation was the same as described in Baseline. This val-
idation set had 300 questions each from baseline and our
approach, i.e. 600 questions in total.

5.3 Results & Discussion
In this section, we report the results of validations we con-
ducted. Figure 3 compares the average annotator percent-
age for each rating between Baseline (vanilla ConceptNet)
and our approach. The difference of 21% in rating 0 and
17% in rating 3 signifies that the MCQs generated using
vanilla ConceptNet require more revision than MCQs gen-
erated using our approach due to noisy and missing links.
We observe an inter-annotator Fleiss Kappa agreement of
0.56 i.e, a moderate inter-annotator agreement. Although
this validation was done to compare the usability of gener-
ated MCQs, however, all the annotators reported that the

relatedness of distractors with the correct answer was low in
Baseline compared to our approach.
Based on annotation data and interviews conducted with an-
notators, we infer that some of the ambiguity and less than
perfect annotation results arise because of each annotator's
individual perspective on word meanings. The observation
reiterate why vocabulary assessment, especially for young
learners, is a hard problem space, since words are not fixed
units of meaning, and can be interpreted differently based
on the context they occur in, or on individual perceptions.

6. CONCLUSION
In this paper we presented a system that uses a curated
common sense knowledge base for young learners in combi-
nation with graph based inferencing to automatically gener-
ate MCQs for vocabulary assessments. We tested our sys-
tem extensively by comparing human inter-annotator agree-
ments on a large set of system generated MCQs, and ob-
served moderate agreement on the MCQs. These initial re-
sults are very encouraging to conduct further investigations
into how we can build such systems which can generate more
complex questions, generate more personalized vocabulary
assessments etc. We would also like to look at how this kind
of a framework affects the generation of assessments in dif-
ferent modalities (image, audio, video etc.) which are so
prevalent in early childhood learning curricula.
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ABSTRACT
When implementing large-scale educational computing ini-
tiatives (e.g., One Laptop Per Child) it is vital to allocate
resources for training, support, and device deployment judi-
ciously. One question that arises is how learners’ engage-
ment with online educational resources is affected by re-
ceiving a new computer; do the benefits justify the costs?
In this paper, we perform a quasi-experimental analysis to
measure the effect of new device deployment on students’
online learning activity, operationalized as either the num-
ber of interaction events with their LMS, or the number
of attempted exercises in their math ITS. The focus is on
6th-grade learners in Uruguay, which to-date has delivered
over 750,000 computers to pupils nationwide. Our results
suggest that, relative to learners’ online learning activity
before device deployment, the absolute effects are small but
the relative effect are stat. sig. and surprisingly strong: the
estimated relative increase on 2016 students’ overall LMS
activity is 49%. The effects are positive for both 2015 and
2016 and persist several months after device delivery. More-
over, we find that students attempt to solve stat. sig. more
(88%) math problems during the month after they receive
a new device. We discuss possible reasons and implications
for large-scale educational computing programs.

Keywords
One Laptop Per Child; quasi-experimental design

1. INTRODUCTION
During the past 15 years, there have been numerous large-
scale educational interventions worldwide – most notably
the One Laptop Per Child (OLPC) [16] and One Tablet Per
Child (OTPC) [23] programs – that distribute computers to
disadvantaged learners to help them bridge the digital divide
and achieve better learning outcomes. Early on, such pro-
grams were often viewed as a panacea to equalize education
worldwide, and indeed some studies have shown that they
can boost learners’ writing [15] and math [5] skills, verbal flu-

ency [3], basic cognitive processes [3], and self-efficacy [20].
More subtly, they can also help learners to contribute educa-
tional content of their own [11] in an educational ecosphere
dominated by Western, English-speaking content-makers.

Above all, however, independent evaluations of OLPC and
related programs have shown that achieving meaningful learn-
ing gains requires more than just giving students laptops
and hoping for a positive change [4, 24, 13, 22]. In order
for these initiatives to work, it is vital to provide teachers
with training on how to make good use of them as part of
the curriculum [6]. Computers can break down, and it is
important to provide both hardware and software support
to ensure these devices remain usable [21]. Finally, even the
best maintained device will eventually become obsolete, and
thus money for new device deployment must be budgeted.

Effectively implementing large-scale educational computing
initiatives requires that resources be apportioned judiciously.
One question that arises is: How are learners’ interac-
tions with online educational resources affected by
receiving a new laptop or tablet computer? Distribut-
ing computers to every student is expensive, and it is im-
portant to establish that they are worth the cost. There are
several reasons why new devices might impact learners’ be-
havior: (1) Different affordances: the new device may offer
new features that enable new kinds of interaction. (2) Nov-
elty : the mere fact of receiving a shiny new device may incite
learners to use it (at least temporarily). (3) Replacement of
broken hardware: receiving the new device can enable learn-
ers simply to resume accessing online content.

One way to measure the effect of new device deployment
would be to conduct a randomized-controlled trial (RCT),
i.e., randomly select a set of students to whom to give a
new device at random times throughout the school year,
and compare the outcomes of students who received a new
device to those who didn’t. However, this would be prob-
lematic for logistic, political, and ethical reasons, since some
people might believe a priori that the benefits of receiving
a new device could be significant. In this paper, we instead
pursue a quasi-experimental approach: One of the poten-
tial opportunities offered by educational data-mining is to
estimate the causal impact of different interventions from
observational datasets, i.e., data that were collected con-
taining many covariates/features but without random as-
signment of treatments to participants. Over the past few
decades, a variety of techniques have been developed for this
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purpose, including propensity score matching [18], principal
stratification [9], regression discontinuity analysis [12], and
others [19]. Such methods are only applicable in specific con-
texts, such as in a natural experiment in which an exogenous
event causes the treatment assignment to be essentially ran-
dom w.r.t. any variable that could conceivably influence the
outcome of the treatment itself (i.e., potential confounds).
In such situations, random assignment can be imputed post
hoc, and treatment effects can be estimated by comparing
the treated subjects to the untreated ones.

Our paper represents a case study in quasi-experimental
educational data-mining: We examine how learners, who
received computers as part of OLPC, are affected by new
device deployment in terms of their interactions with online
educational content. Our geographical focus is on Uruguay,
which was one of the largest (in terms of number of pupils
receiving a laptop) participants in the OLPC program [13].
During 2007-2016, the government of Uruguay together with
the Plan Ceibal organization distributed laptops and tablets
to over 750,000 pupils nationwide. The nearly universal im-
plementation of this program within Uruguay offers an op-
portunity to estimate a “new device effect” since there is no
selection bias of who receives a new device. We assess the
impact of new device deployment on two dependent vari-
ables: (1) the total number of interaction events with their
learning management system (LMS); and (2) the number of
attempted math exercises within their mathematics intelli-
gent tutoring system (ITS); in prior research, the number of
attempted exercises in ITS has been shown to correlate with
students’ performance on standardized math tests [7, 19, 8].

1.1 Related work
Many studies have examined the educational impact of OLPC
programs in general; however, the issue of new device de-
ployment within educational computing initiatives and how
they are perceived by and affect users, has received much
less attention. Oliver & Goerke [17] conducted a survey of
engineering and business students in Australia, Ethiopia and
Malaysia to assess learners’ willingness to adopt a new device
(the HP iPAQ) for educational purposes. One notable result
was that female students in the participating countries in-
dicated lower willingness to trial the new devices than their
male counterparts. In addition, Lai, et al. [14] surveyed
students in Hong Kong on their willingness to adopt new
educational technology and found that device compatibil-
ity with the students’ perceived learning styles would affect
their likelihood of using it. Neither study examined quanti-
tatively how new devices impact learning behaviors. Hence,
these works can be seen as complementary to ours in that
they seek to describe the interactions between different types
of learners and different types of educational technology that
might jointly influence their impact on learning.

1.2 OLPC in Uruguay & Plan Ceibal
Since 2007, Plan Ceibal has provided a computer to almost
every student in primary and secondary schools in Uruguay,
and also ensured Internet access in schools and as well as
public access-points. The initial goals were to reduce the
digital divide, promote digital inclusion, and ensure the in-
tegration of ICT in education. Since 2011, Plan Ceibal has
focused on providing the educational community with a wide
range of digital tools, such as an LMS, an ITS for mathe-

Figure 1: The CREA2 LMS used by Plan Ceibal. Students
can submit homework, send messages to teachers and other
students, view content posted by their teachers, etc.
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Figure 2: # devices delivered for 6th grade students in 2016

matics, a digital library, a videoconference system to teach
English as a second language and facilitate collaboration,
etc. The LMS managed by Plan Ceibal is called “CREA2”
and is shown in Figure 1. The math ITS is called “PAM”.

1.3 Device Delivery Process
Students’ devices are upgraded several times during the 9
years of basic education (ages 6-14 years): First graders (6
years old) receive a tablet which they use for two years. In
3rd grade they receive a new tablet which they use for one
year only. In 4th grade the tablet is replaced by a laptop,
which students use for three years. The laptops are then re-
placed during either 6th or 7th grade (see Figure 2). Within
each school, most (90% of primary and 70% of secondary)
students in each classroom receive their new devices at the
same time. The schedule is set by Plan Ceibal; larger schools
have priority, along with schools located close to the delivery
path, etc. While the delivery process is not strictly random,
the delivery dates are independent of many factors includ-
ing students’ prior LMS and ITS activity, the curriculum
the children are learning, dates of examinations, holidays,
life-changing events for students, etc. This helps to remove
many potential confounds that would impede the inference
of treatment effects.

2. EXPERIMENTAL ANALYSIS
We investigate the effect of new device deployment in terms
of two dependent variables: (1) ∆ LMS Interaction Events:
The increase in students’ activity (total number of interac-
tion events) with the CREA2 LMS after receiving their new
device compared to their activity before receiving it. (2) ∆
ITS Attempted Exercises: The increase in the number
of math exercises that students attempt to solve with the
PAM ITS after versus before receiving their new device.

2.1 Dataset
∆ LMS Interaction Events: The dataset includes each
student’s activity in the CREA2 platform on each day of
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Year Learners Active L. Deliv. dates Sch. Classr.

2015 13329 7276 21 526 809
2016 25898 16962 18 810 1378

Table 1: Plan Ceibal dataset: total # of considered learn-
ers, active learners, delivery dates, schools, and classrooms
containing students who received devices that year.
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Figure 3: Activity levels in the CREA2 (# actions) and
PAM (# attempted exercises) platforms during 2016. Top:
Average per-student monthly activity. Bottom: Histogram
of the logarithm of the total annual activity per student.

2015 and 2016, as well as the delivery dates of new devices
during that period. A large fraction of the students almost
never used the platform. Our focus is on the impact of new
devices on active students; hence, we limit the universe of
study to students who accessed the platform on at least 10
different days in a given year (this is the active user defini-
tion used at Plan Ceibal). We note that, even with this con-
straint, the median CREA2 activity level per month is low:
only 7 total actions. In addition, we focus exclusively on
6th graders (11 years old), who are the most active CREA2
users. Finally, we only consider delivery dates on which at
least 5 new devices were delivered. Table 1 summarizes the
sample sizes considered for each dataset for 6th grade.

∆ ITS Attempted Exercises: Data were available for
2016 (but not 2015) on 6th-grade students’ total math exer-
cises attempted each day. The universe of study is limited
to those students who attempted at least 100 exercises in
the year (active user definition at Plan Ceibal). In addi-
tion, during 2017 (but not 2016), the numbers of correct
and incorrect attempted exercises are also available. Fig-
ure 3 shows the overall activity levels in CREA2 and PAM.
The platforms are offered as a recommended tool for teach-
ers, but their use is not mandatory. Plan Ceibal provides
tutorials promoting their use, which are independent of de-
vice delivery dates.

∆ CREA2 activity: 1 month after v. 1 month before:
As a preview of our more detailed analyses below, Figure 4
shows students’ delta behavior, i.e., their CREA2 activity
during the month after each delivery date t, minus their
activity during the month before t. The blue curve shows
the deltas for learners who received a device on t (along
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Figure 4: Increase between the average monthly activity in
CREA2 after and before each delivery date t, for students
who received (blue) and did not receive (red) a device on
t, during 2016. The outer bands correspond to 2 standard
errors for each mean estimate. The numbers listed by each
blue point report how many students received a device on t.
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Figure 5: Normalized histogram of the monthly activity af-
ter t (for delivery date 2016-05-11).

with the number of such students), and the red curve shows
students who received a device (at least one month) after
t. If giving students a new device has a positive impact on
CREA2 activity levels, then we expect the blue curve to be
higher than the red curve (which it is).

2.2 Methodology
This is a quasi-experimental study enabled by the delayed
treatment design [10] that was used in deploying new de-
vices to students: Almost every student in every school who
participates in Plan Ceibal eventually receives a new de-
vice; hence, there is no selection bias as to who enrolled in
the program. In particular, (almost all) students within the
same grade of the same school receive their devices on the
same date, but these dates are essentially random across
schools. In particular, the delivery dates are independent of
the classroom curriculum and students’ prior activity on the
CREA2 and PAM platforms. In our analysis, we thus study
the effect of device delivery at each delivery date separately
and then average these estimates to estimate the average
treatment effect across all dates. We do note, however, that
our analysis is not immune to all possible confounds, e.g., a
relationship between the date of device delivery and whether
the school is located in an urban or rural environment.

2.2.1 Data model
Each learner’s activity in the CREA2 and PAM platforms
consists of count data. Suitable models for counts include
the Poisson and the negative binomial distributions. The
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advantage of the negative binomial is that the variance of
the distribution can be set independently of its mean to ac-
count for overdispersion of the data. Figure 5 shows the
normalized histogram of the total CREA2 activity after a
given delivery date t, overlaid onto Poisson and negative bi-
nomial probability density functions fit to the histograms us-
ing maximum likelihood estimation (Poisson log-likelihood
= -70647.08, negative binomial log-likelihood = -22066.75).
This comparison shows the clear overdispersion of the con-
sidered data, which makes the negative binomial a more ac-
curate approximation than the Poisson model.

Multi-level modeling: Because for each delivery date we
are considering students in the same school, and possibly
in the same classroom, the activity data for them will be
correlated. Hence, a multi-level modeling approach is em-
ployed where the classroom effect on the student’s activity,
often determined by the teacher, will be modeled as a ran-
dom effect. We only consider deviations of the intercept of
a classroom from the overall intercept; random slopes are
not considered. Therefore, we propose to model student i’s
activity N months after the delivery date t (i.e., between
t + ((N − 1) months) and t + (N months)) as a negative-
binomial random variable with expected value Ait given by:

log(Ait) = et + γ0tbit + γ1tdit + Ct, (1)

(capital letters denote random variables and lower-case de-
note fixed values). The case N = 1 corresponds to the activ-
ity during the month right after the delivery date. We define
a “month” to be 4 weeks (28 days). et is the baseline activity
in the same time period considered for Ait. bit is student
i’s activity during the month before the delivery date t. di
is a boolean variable taking value 1 if student i got a new
device on t and 0 otherwise. The fixed effects γ0t and γ1t
represent the effect on the activity N months after t, of the
activity during the month before t, and the device delivery,
respectively. The random effect of classrooms is represented
by the random variable Ct, assumed to follow a zero-mean
Gaussian distribution and standard deviation σCt . A nested
classroom-school random effect was also explored, but it was
discarded because the results were very close.

Gender: Oliver & Goerke [17] found that female students
(in Australia, Ethiopia and Malaysia) reported different atti-
tudes towards educational technology than their male coun-
terparts. Might device deployment affect Uruguayan girls
and boys differently in terms of CREA2 activity? To inves-
tigate, we extended the Model 1 with a boolean variable git
representing the student’s gender as well as an interaction
between git and the device delivery variable dit.

Treatment effect: When computing the device delivery
effect of a given delivery date t, we compare students who
received a device on t (treatment group), to students who
received a device on t∗ > t+(N months) (control group). In
particular, we make sure to exclude from the control group
those students whose treatment occurred within N months
of students in the treatment group. This analysis is consis-
tent with a delayed treatment design.

2.2.2 Combining per-date estimates
For each of the M considered delivery dates, we compute the
maximum likelihood estimator (MLE) of the device effect

γ1t, as well as its associated standard error SEγ1t . Because
different number of students receive/do not receive their de-
vices on each date, the standard errors SEγ1t will vary across
dates. We model the M estimates {γ1t}t=1,...,M , as inde-
pendent samples of Gaussian random variables with equal
mean γ1 and different standard deviations SEγ1t . Then, the
MLE of the device delivery effect γ̂1 is given by averaging
the individual γ1t’s weighted by the inverse square of their
standard errors. From γ̂1 and its standard deviation we can
compute confidence intervals, and perform a t-test to assess
the statistical significance of the device delivery effect [2].

To ensure that the treatment effect estimates {γ1t}t=1,...,M

across delivery dates are statistically independent, each group
of students belonging to the same classroom is used to esti-
mate the treatment effect for one delivery date only. That
is, all the classrooms under consideration are partitioned
over delivery dates, and the treatment effect for each date
is computed only from the students assigned to that date.
Some of these students will be in the treatment group (those
who received the device that day) and others will be in the
control group (those who received the device later).

To partition students across delivery dates, we used a greedy
algorithm whereby one classroom is assigned to a delivery
date at a time: For each classroom, one of the M delivery
dates t is chosen with probability pt, which is inversely pro-
portional to the total number of students already assigned
plus the total potential number of students that could be
assigned to each date – thus favoring dates not yet assigned
and with few potential students. We ran this procedure 100
times and selected the assignment with smallest variance in
the number of students assigned per date, which helps to
avoid possible numerical issues in model estimation.

Implementation: Models were fit using the glmer.nb func-
tion of the R lme4 package. To detect possible convergence
problems, each experiment was run using several different
optimizers and consistent results were verified [1].

3. RESULTS I: LMS INTERACTIONS
Table 2 shows the estimated effects (averaged over all de-
livery dates) of delivering a new device on the number of
CREA2 interaction events, for 2015 and 2016. Since the
computed effects are in logarithmic scale (see Equation 1),
a log-effect of 0 corresponds to exp(0.0) = 1.0 in the origi-
nal scale, i.e., no impact on CREA2 activity, whereas 0.76
equals exp(0.76) = 2.1 in the original scale, i.e., a 110% ac-
tivity increase. Table 3 shows the average, over all delivery
dates, of the rest of Model 1 parameters in original scale.

Even after accounting for class-specific random effects as
well as students’ prior baseline activity levels, we observe
a clear CREA2 activity boost in the 1 month fol-
lowing the device delivery (first row in Table 2): a rela-
tive effect of exp(0.76) = 2.14 (114% increase) for 2015 and
exp(0.40) = 1.49 (49% increase) for 2016. In other words,
while the absolute increases are low (due to the low overall
CREA2 activity usage – Figure 3), the relative effect is high.
Results for 2016 tend to be less noisy because the activity
levels are larger compared to 2015. Though present in both
years, the effect clearly decreases from 2015 to 2016.
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2015 2016

all class. class.≥10 stud. all class. class.≥10 stud.

N-months γ̂1 SEγ̂1 γ̂1 SEγ̂1 γ̂1 SEγ̂1 γ̂1 SEγ̂1

1 0.76 0.12 ***0.69 0.14 *** 0.40 0.04 ***0.41 0.04 ***

2 0.84 0.13 ** 0.80 0.15 * 0.20 0.04 ** 0.19 0.04 *
3 0.83 0.27 0.50 0.29 0.31 0.14 0.28 0.13

Table 2: Effects of delivering a new device to each student
on their CREA2 activity for academic years 2015 and 2016,
over a period of N = 1, 2, 3 months, in logarithmic scale.
Weighted averages, together with their corresponding stan-
dard errors, are reported. Significance codes: 0 (***), 0.001
(**), 0.01 (*), 0.05 (.), 0.1, () 1.

Fixed Random Fixed Random
eff. eff. eff. eff.

year e γ0 σC year e γ0 σC

2015 1.17 1.06 3.18 2016 5.92 1.02 2.88

Table 3: Average of the model parameter estimates among
delivery dates in the original scale.

Temporal evolution: The second and third rows of Ta-
ble 2 show the estimates of the effect of device delivery in
students’ monthly CREA2 activity 2 and 3 months after the
delivery date, respectively. The effect is still present two
months after the delivery date, and it appears to be stable
in 2015 and to decrease in 2016. The effect is not statisti-
cally significant three months after delivery; this may due to
the small number of samples available at that time. (Note
that examining N > 3 was not possible since there were too
few students who had not yet received a device who could
serve as a control group.)

Classroom size: No significant differences are observed
when comparing the estimates considering all classrooms or
only those with at least 10 students (see Table 2).

Highly active students: We also conducted the analysis
on only those students who accessed CREA2 on at least
25 different days in 2016. (Note that 2015 data could not
be analyzed due to small sample size.) The results were
consistent with what we found above for all students, with
43% activity increase right after receiving the new device.

Activity change: To investigate what kinds of CREA2
activities were affected, Figure 6 shows the percentage of
the monthly activity increase, at different time points (the
month before t, the month after t, and two and three months
after t), of the students who received the device on t relative
to those who received it after t. For instance, the aver-
age increase in the number of comments posted during the
month following t, by the students who received their new
device on that date, was 70% larger than that of students
who received their device later in the year. For some ac-
tivity types, the boost is larger and remains longer in time
(e.g., comments posted, item submissions). Note that the
sum over all activities at the first time-point (t− 1) should
be close to zero, denoting similar total activity for all users
before device delivery.

Gender effect: Using the extended model to support pos-
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Figure 7: Histogram of ∆ CREA2 activities of treated stu-
dents (over all delivery dates) w.r.t. median activity of un-
treated students.

sible gender effects, we found a clear difference on the total
activity: girls performed about 32% more total CREA2 ac-
tivity compared to boys in 2015 (and 28% more in 2016).
We observed no significant difference, however, in the effect
of device delivery between boys and girls.

Who drives the effect?: Was the the boost in CREA2
activity driven by a large increase among a small number
students? To explore this question, we calculated the change
(∆i) in CREA2 activity level for each student i before/after
treatment, minus the median change in activity level for all
untreated students. We then computed a histogram over the
∆i values over all students and delivery dates in 2016. The
histogram is shown in Figure 7. Since there is a positive and
statistically significant treatment effect, the mean of the his-
togram is greater than 0. The histogram also shows smooth
gradation from small effects to large effects and provides ev-
idence that the average treatment effect is due to increased
activity levels among many students, not just a few.

4. RESULTS II: MATH PROBLEM ATTEMPTS
Similar to the analysis of device deployment on students’
CREA2 LMS activity, we used the same model (Eq. 1) to
assess the potential impact on the number of attempted ex-
ercises in the PAM math ITS provided by Plan Ceibal.

Results: A positive (γ̂1 = 0.63, SEγ̂1 = 0.14) and statisti-
cally significant (p < 0.01) effect is observed during the one
month following the device delivery, with a 87% increase in
the total attempted exercises (exp(0.63) = 1.87). The ef-
fects observed two and three months later are small and not
statistically significant, suggesting that the boost disappears
over time.

5. CORRECTNESS OF MATH EXERCISES
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In addition to the number of attempted math exercises, we
also explored whether receiving a new device helps students
to complete exercises correctly. Possible reasons include: (1)
the new device has a better user interface that helps stu-
dents avoid careless data-entry errors; and (2) the learners’
improved user experience encourages them to practice more
often and thereby improve their math skills.

To assess the impact of device deployment on correctness
(0 − 1 scale) of submitted exercises, it was not possible to
use the same methodology as for LMS activity. The reason
is that PAM data on correct/incorrect exercises are available
only for 2017, and during this year only a small number of
6th grade students received a device. Hence, we resorted to
a correlational analysis in which we estimated the change
in exercise correctness without a control group. In particu-
lar, we estimated the treatment effect based on the average
accuracy N months after device delivery minus the average
accuracy N months before delivery, and averaged across all
treatment dates. Because no control group is used (unlike
in the previous analyses), there may be confounding factors
affecting this analysis.

Results: None of the average delta accuracies for 4th, 5th
and 6th grade, computed either on individual students (∆accS)
or on classrooms (∆accC), was statistically significant.

6. DISCUSSION
The results suggest that receiving new devices resulted in a
strong relative increase in learners’ CREA2 LMS ac-
tivity: 114% in 2015 and 49% in 2016. Within sensitivity
analyses based on academic year (2015 and 2016), class-
room size, and students’ baseline activity levels, we found
that the trends were similar: new devices result in increased
LMS activity. Moreover, the boost in activity persists up to
3 months after device delivery. We note again that the ab-
solute average CREA2 activity levels were very low; hence,
the increase may only amount to a few extra logged events
(about 10 extra actions per student per month).

Receiving new devices not only increases the activity but
also alters the kind of activities performed in the plat-
form (Section 3). The fact that device delivery increases
(w.r.t. learners who did not receive a device) the number
of comments and resource visits even more than just visits
(which reflects merely accessing the CREA2 web page) sug-
gests that learners are engaging more substantively with the
LMS after receiving their new device.

Within the math ITS, we observed that, during the 1 month
after receiving a new device, learners attempted to solve
more (88%) math problems. However, the results were
not statistically significant two and three months after deliv-
ery, suggesting that the impact is short-lived. We found no
evidence (given the limited data available in 2017) that new
devices resulted in higher accuracy of attempted exercises.

6.1 Possible explanations
Novelty: Receiving a brand-new device could potentially
increase students’ motivation to use them, but the effect
might diminish over time. In our data, we do observe that
the LMS activity boost, as well as the boost in number of
attempted ITS math exercises, declines over time (though

more strongly for the ITS than for the LMS) after receiving
a device declines – which suggests possible novelty effects.

Availability: Oftentimes, devices are not available to stu-
dents because of recurrent failures. Hence, receiving a new
device not only means having a new, more performant one
but having a working device at all. It is possible that a
student who suddenly (due to device deployment) regains
access to a working computer might resume CREA2 activ-
ity at a much higher level after receiving it. The strong
activity gains we observe are compatible with this hypothe-
sis (though they cannot directly confirm it).

7. SUMMARY AND CONCLUSIONS
We conducted a quasi-experimental analysis (on 24,000 learn-
ers over 2 years) to estimate the treatment effect of giving
OLPC students new computers. We harnessed the facts that
(1) all students were eventually treated, so that there was no
selection bias, and (2) the device deployment schedule was
random w.r.t. a variety of potential confounds (e.g., stu-
dents’ prior LMS/ITS activity). The main results include:

(1) When students receive a new device, they interact more
with their schools’ LMS and engage more (attempt more
exercises) with their math ITS, compared to learners who
had not yet received a device upgrade. To the extent that
increased engagement with educational content and practice
in solving exercises contributes to students’ learning [7, 19,
8], OLPC programs should try to provide students with up-
to-date devices in a timely and cost-effective manner.

(2) While conducting these analyses we discovered that the
absolute baseline activity levels of many learners in the ex-
amined dataset were very small. This raises the question
of whether teachers are receiving proper training on how to
use online learning resources effectively and how to instruct
and encourage their learners to engage with them.

(3) Our study indirectly raised the question of how often a
new device delivery simply replaces a device that had broken.
For researchers who wish to assess the potential benefits of
OLPC programs, it is important to take into account how
many students truly have access to a working device (not
just a broken one). For administrators, it underlines how
technical support may play an important role in ensuring
the success of large-scale educational computing initiatives.

(4) The fact that new device deployment increases CREA2
and PAM activities – even if the effects are transient – is
evidence that learners’ activities can be incited to engage
more with educational platforms. One way is through re-
newed hardware, as explored in this paper. Another way is
to help teachers to use these platforms more effectively [22].

Future research: It would be interesting to explore whether
novelty, new features, or replacing broken hardware con-
tributes more to the overall treatment effect; to this end, it
would be useful to ask learners themselves about how they
perceive and interact differently with new devices.

8. REFERENCES
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ABSTRACT
Behavioral records collected through course assessments, peer
assignments, and programming assignments in Massive Open
Online Courses (MOOCs) provide multiple views about a
student’s study style. Study behavior is correlated with
whether or not the student can get a certificate or drop out
from a course. It is of predominant importance to identify
the particular behavioral patterns and establish an accurate
predictive model for the learning results, so that tutors can
give well-focused assistance and guidance on specific stu-
dents. However, the behavioral records of individuals are
usually very sparse; behavioral records between individuals
are inconsistent in time and skewed in contents. These re-
main big challenges for the state-of-the-art methods. In this
paper, we engage the concept of subgroup as a trade-off to
overcome the sparsity of individual behavioral records and
inconsistency between individuals. We employ the frame-
work of Exceptional Model Mining (EMM) to dis-
cover exceptional student behavior. Various model classes
of EMM are applied on dropout rate analysis, correlation
analysis between length of learning behavior sequence and
course grades, and passing state prediction analysis. Quali-
tative and quantitative experimental results on real MOOCs
datasets show that our method can discover significantly in-
teresting learning behavioral patterns of students.

Keywords
Exceptional Model Mining, MOOCs, Learning Analytics

1. INTRODUCTION
Massive Open Online Courses (MOOCs) make it possible for
educators to analyze learning behavior of students in mul-
tiple views. In contrast to traditional classes, which only
have limited learning behavioral records, MOOC platforms
such as Coursera, edX and Udacity provide huge amounts
of learning behavioral records. These platforms collect very

detailed course information and students’ learning behavior
such as course assessments, peer assignments, programming
assignments, forum discussions and feedback [19], which can
reflect the knowledge and skill achievements and the study
performance of students. Modeling students’ learning be-
havior and trying to discover interesting behavioral patterns
are non-trivial. Most recent research is focused on how to
predict the learning results based on the learning behavior
model. It can help the tutors to design the courses and give
specific guidance and assistance to specific students. How-
ever, due to the complexity of the behavioral records, there
are still several challenges to be overcome:

Individual sparsity. Even when many students are en-
rolled in a course, the duration of their involvement varies
substantially. Figure 1a displays a histogram of assessment
question frequencies, which shows an obvious Power-Law
distribution [2]. Only a few students participate in hun-
dreds of assessment questions. Most of the students have
activity length less than 20 records, which is very sparse.
This makes evolutionary activity sequence based user mod-
eling methods [16, 17] ineffective.

Activity inconsistency. Beyond the distribution in ac-
tivity length of assessment questions, students’ learning be-
havior in forum discussion, click stream and peer review are
also shown to follow a Power-Law distribution. In Table
4, we can see that among the 18 courses on Coursera, en-
rolled students, grades and students who passed the course
are highly diverse. This inconsistency makes the data very
imbalanced, which results in difficulties for Matrix factor-
ization based modeling methods [24]. These methods might
merge infrequent behavior with common behavior.

Content heterogeneity. Behavior diversity is not only
shown in activity length and course status, but also shown in
informative contents. There are 7 types of assessments and
12 types of questions in the courses, such as video, summa-
tive, checkbox and multiple checkbox. Proportions of these
assessments and questions are skewed in different courses.
On the other hand, students also have varying participa-
tion records on these contents. In Figure 2, it is shown that
distributions of students are obviously different in specific
demographic categories. It is a big challenge for modeling
methods to handle these heterogeneous contents for tasks
like dropout prediction or passing state prediction.
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Figure 1: Heterogeneity and inconsistency of student behavior.
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Figure 2: Student distributions across various demographic categories.

To overcome these challenges, we propose to employ Ex-
ceptional Model Mining (EMM) [4] for exceptional learning
behavior analysis. Instead of looking for anomalies or out-
liers of individuals, we look for exceptional behavior on the
subgroup level [7], which can provide interpretable descrip-
tions such as ‘Students: Country = US, Region = Manhat-
tan, Join dates > 365 (days)’ having exceptional learning
behaviors that are predominantly different from those in
the whole dataset. We employ EMM to discover interest-
ing learning behavioral patterns in subgroups. We establish
various model classes for specific learning behaviors, such as
discovering correlation between length of behavior sequence
and course grades, finding out subgroups with exceptional
dropout ratio, and looking for specific subsets where the clas-
sifier does not perform well. Experimental results on a real
dataset illustrate the type of meaningful learning behavioral
patterns EMM can discover in MOOCs. This can help us
build an improved behavior model in the future research. In
summary, our main contributions are:

1. We employ Exceptional Model Mining (EMM) to learn-
ing behavior analysis in MOOCs, which can help us to
overcome the sparsity, inconsistency and heterogeneity
in the behavioral records.

2. We employ several EMM model classes for different
tasks to discover exceptional learning behaviors on the
subgroup level. Our results show very interesting learn-
ing behavioral patterns, which can help the tutors con-
duct specific guidance and assistance to the students.

2. RELATED WORK

Local Pattern Mining (LPM) [6, 14] is a subfield of data
mining, concerned with discovering subsets of the dataset
at hand where something interesting is going on. Typically,
a restriction is imposed on what kind of subsets we are inter-
ested in: only those subsets that can be formulated within
a predefined description language are allowed. A canonical
choice for this language is conjunctions of conditions on at-
tributes of the dataset. Hence, if the records in our dataset
concern people, then LPM finds results of the form:

Age ≥ 45 ∧ Smoker = yes ; interesting

This ensures that the results we find with an LPM method
are relatively easy to interpret for a domain expert: the
subsets will be expressed in terms of quantities with which
the expert is familiar. We call a subset that can be expressed
in such a way a subgroup.

Different LPM methods give a different answer to the ques-
tion what exactly constitutes “where something interesting
is going on”. The most famous form of LPM is Frequent
Itemset Mining (FIM) [1], where interestingness is equiva-
lent to occurring unusually frequently: things that happen
often are interesting. Hence, FIM finds results of the form:

Age ≥ 45 ∧ Smoker = yes ; (high frequency)

The methods we are mainly concerned with in this paper,
however, seek a more complex concept on the right-hand
side of this arrow. The task of Subgroup Discovery (SD)
[9, 23, 7] typically singles out one binary attribute of the
dataset as the target : subgroups are deemed interesting if
this one target has an unusual distribution, as compared to
its distribution on the entire dataset. In our example, if the
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target column describes whether the person develops lung
cancer or not, SD finds results of the form:

Smoker = yes ; lung cancer = yes

Age ≤ 25 ; lung cancer = no

These subgroups make intuitive sense in terms of our knowl-
edge of the domain. Smokers have a higher-than-usual in-
cidence of lung cancer. People under the age of 25 often
have not yet had the chance to develop lung cancer, so the
incidence in this group will be lower. When the connec-
tion between subgroup and unusual target distribution is
not immediately intuitively clear, the result of SD is a new
hypothesis to be investigated by the domain experts.

2.1 Exceptional Model Mining
Exceptional Model Mining (EMM) [12, 4] can be seen as an
extension of SD: instead of a single target, EMM typically se-
lects multiple target columns. A specific kind of interaction
between these targets is captured by the definition of a model
class. EMM finds a subgroup to be interesting when this in-
teraction is exceptional, as captured by the definition of a
quality measure. For instance, when two numerical columns
are selected as the targets, we can consider Pearson’s corre-
lation ρ as the model class. Quality measures for this model
class could be ρ itself (to find subgroups on which the target
correlation is unusually high), −ρ (to find subgroups with
unusually strongly negative target correlation), |ρ| (to find
subgroup with unusually strong positive or negative target
correlation), or −|ρ| (to find subgroups with unusually weak
target correlation). Hence, the model class fixes the type of
target interaction in which we are interested, and the qual-
ity measure fixes what, within this type of interaction, we
find interesting. Several model classes have been defined
and explored; for instance, Bayesian networks [5], and re-
gression [3]. Popular quality measure for SD/EMM include
WRAcc [10], z-score [13], and KL divergence [11].

2.2 Learning Behavior Modeling
Learning behavior modeling for students in MOOCs is gen-
erally aimed at predictive analytics such as dropout predic-
tion, passing state prediction, and grades prediction. For
instance, latent factors and state machines are employed to
model the hidden study state of students for a predictive
task [18, 16, 21]. Khajah et al. [8] integrate Latent factor
and knowledge tracing with a hierarchical Bayesian model,
which can consider the study skill for prediction tasks. Re-
current neural network and LSTM have been used to model
study trajectories for the learning results prediction [15, 22].
Most of these existing methods focus on modeling individual
behavior but do not consider the sparsity, inconsistency and
heterogeneity of learning behavior data. Our methods focus
on discovering exceptional learning behaviors on the sub-
group level, which provide interpretable information about
where the predictive model does not perform well. This al-
lows us to establish an improved model for prediction tasks
for both normal and exceptional behavioral patterns.

3. PRELIMINARIES
We assume a dataset Ω: a bag of N records r ∈ Ω of the
form r = (a1, . . . ak, l1, . . . , lm), where k and m are posi-
tive integers. We call a1, . . . , ak the descriptive attributes
or descriptors of r, and l1, . . . , lm the target attributes or

targets of r. The descriptive attributes are taken from an
unrestricted domain A. Mathematically, we define descrip-
tions as functions D : A → {0, 1}. A description D covers a
record ri if and only if D(ai1, · · · , aik) = 1.

Definition 1. A subgroup corresponding to a description
D is the bag of records GD ⊆ Ω that D covers, i.e.:

GD =
{
ri ∈ Ω

∣∣∣D(ai1, . . . , a
i
k) = 1

}
This merely formalizes the standard LPM conditions: we
seek subgroups that are defined in terms of conditions on
the descriptors, hence our results are interpretable. Those
conditions select a subset of the records of the dataset: those
records that satisfy all conditions. These subgroups must be
evaluated, which is done by the quality measure:

Definition 2. A quality measure is a function ϕ : D →
R that assigns a numeric value to a description D. Occa-
sionally, we use ϕ(G) to refer to the quality of the induced
subgroup: ϕ(GD) = ϕ(D).

Typically, a quality measure assesses the subgroup at hand
based on some interaction on the target columns. Hence, a
description and a quality measure interact through different
partitions of the dataset columns; the former focuses on the
descriptors, the latter focuses on the targets, and they are
linked through the subgroup.

Since subgroups select subsets of the dataset at hand, and
many such subsets exist, we need to employ a search strategy
to ensure that we find good results in a reasonable amount
of time. To do so, we employ the beam search algorithm as
outlined in [4, Algorithm 1]. This algorithm holds the mid-
dle ground between a pure greedy search algorithm, which
is likely to quickly end up in a local optimum, and an ex-
haustive search, which is likely to require too much time for
providing the global optimum. Beam search builds up candi-
date subgroups in a level-wise manner, by imposing a single
condition on a single attribute at each step of the search.
In subsequent steps, promising candidates are refined, by
conjoining to these candidates all possible additional single
conditions on a single attribute, and evaluating the results.
A purely greedy approach would, at each step, refine the
single most promising candidate. By contrast, beam search
refines a fixed number w (the beam width) of most promising
candidates at each step. The larger the choice of w, the more
likely we are to escape local optima, and the longer the algo-
rithm will take. An additional parameter of beam search is
the number d (the search depth), which sets an upper limit
to the number of steps in the search process. Hence, by de-
sign, any subgroup resulting from a beam search procedure
must be defined as a conjunction of at most d conditions
on single attributes. The larger the choice of d, the more
expressive the results are; the smaller the choice of d, the
easier the results are to interpret.

4. EXCEPTIONAL LEARNING BEHAVIOR
ANALYSIS

Our dataset originates from the learners involved in the EIT
Digital MOOCs at Coursera. EIT Digital, as part of the
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Figure 3: Dropout ratio of students by country.

Table 1: Exceptional dropout rate in subgroups.
Results show subgroups with highly exceptional
dropout rate. The overall dropout rate is 0.4286.
D ϕWRAcc dropout |GD|
Country = OM, Was Group Sponsored
!= True, Was Finaid Grant != True

0.0338 0.0 42

Region = MOW, Gender != male, Join
Date <= 1011, Join Date > 389

0.0336 0.0 57

Country = KR, Gender != female, Profile
language != ko

0.0330 0.7812 32

Country = KR, Educational status !=
MASTERS DEGREE, Gender != female,
Was Group Sponsored != True

0.0313 0.7742 34

Country = KR, Was Group Sponsored !=
True

0.0304 0.7222 36

European Institute for Innovation and Technology, aims to
drive Europe’s digital transformation, also for education.
The EIT Digital academy is focused on mobility and en-
trepreneurship and is at the forefront of integrating edu-
cation, research, and business. The MOOCs in the online
programme, have been developed by the partner universi-
ties involved in the EIT Digital Master School in Embedded
Systems, in a best of breeds approach.

Together, the MOOCs form the EIT Digital online pro-
gramme “Internet of Things through Embedded Systems”.
The online programme aims to build the reputation of EIT
Digital, the partner universities, and the involved teachers.
It also helps to renew pedagogy through scalable education
technologies and data driven education. Learning analyt-
ics are at the core of this feedback mechanism. The online
programme is comparable to an edX’s micromaster and sim-
ilarly offers an online equivalent of a 25 ECTS first semester;
the online programme offers learners to study at their own
pace, any time, any place. Moreover, they first can have
a try before they commit themselves to the whole master
programme. Once selected and admitted on campus, the
learners can finish the double degree master programme of
EIT Digital Master School in Embedded Systems.

Figure 2 displays the distributions of students across vari-
ous demographic categories. In order to catch the inherent
imbalance, we use demographic columns as the left hand at-
tributes, to formulate subgroup descriptions. In the data
preprocessing process, we convert the join dates, which rep-
resents how long a student has registered in Coursera, from
the format of ‘Datetime’ to the integer days. The follow-
ing three sections illustrate what kind of discoveries can be
made by wielding various tools from the EMM toolbox.

Table 2: Exceptional correlation analysis between
length of behavior sequence and course grades. The
overall correlation coefficient ρ is 0.7406.
D ϕscd ρ |GD|
Country = LT, Join Date > 701,
Browser language != et-EE

0.9999 0.9782 11

Region = 6 0.9994 -0.1272 10
Region = QUE 0.9992 -0.0788 11
Country = NP 0.9985 0.9630 11
Browser language = es-MX 0.9973 0.1203 7

Table 3: Exceptional classifier behavior for course
passing state prediction. Results indicate that the
classifier cannot work well on these exceptional sub-
groups.
D ϕf1 |GD|
Country = OM, Profile language = en-US,
Browser language != en-US, Educational status
!= BACHELOR DEGREE

0.5051 32

Country = OM, Profile language != en-US 0.4058 22
Region = MA, Gender = female, Educational sta-
tus=COLLEGE NO DEGREE

0.3489 24

Country = OM, Met Payment Condition != True 0.3464 31
Join Date <= 390, Region != MA 0.3193 28

4.1 Exceptional Dropout Rate Analysis
In this section, our task is to find out the subgroups which
have significantly different dropout rate compared with the
whole dataset. For the purposes of this paper, we define
a dropout student to be a student who has participated in
at least one assessment question, but has not obtained an
overall course grade. In Figure 3, we present the highest-
frequency countries, and the dropout rate of students in
those countries. From the figure we can see that both fre-
quency and dropout rate vary a lot. The high dropout rate
is usually seen as a defect of MOOCs. If we were to discover
what kinds of students have exceptional dropout rates, then
that would allow us to direct specific guidance to those stu-
dents that most require it. Traditional partition and clus-
tering methods are not qualified for this task, because they
cannot provide interpretable results about the subsets of stu-
dents and quantitative information about how different the
subsets of students are from the whole dataset. To address
this problem, we propose to engage subgroups as a partition
for the whole dataset, and look for subgroups that have most
exceptional dropout rate comparing with the whole dataset,
employing Weighted Relative Accuracy (WRAcc) [20]:

ϕWRAcc =
|GD|
N

(
SD

|GD|
− SΩ

N

)
Here, |GD| represents the number of records covered by sub-
group description D, SD represents the number of dropout
students in subgroup GD, SΩ represents the total number of
dropout students in the whole dataset, and N represents the
number of students who join this course and participated in
at least one assessment question.

The beam search algorithm as described in [4, Algorithm 1]
is parameterized with beam width 20 and search depth 4.
The overall dropout rate is 0.4286. In Table 1, we presents
the top-5 subgroups with most exceptional dropout rate.
The subgroup with description “D: Region = MOW, Gender
!= male, Join Date between 389 and 1011”has a dropout rate
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(c) Region = 6. ρ = -0.1272
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Figure 4: Exceptional correlations in subgroups.

of zero: all students in that subgroup complete the course.
On the other hand, the subgroup with description“D: Coun-
try = KR, Gender != female and Profile language != ko”,
has an elevated dropout rate of 0.7812: most of these stu-
dents drop out. Based on these results, we can conclude that
Korean males who have set their profile language to some-
thing other than Korean, are in need of more attention. This
may be a group of students who are foreigners in Korea, or
Koreans who are studying in a language which is non-native
to them. By identifying such at-risk groups, educators can
more effectively channel their remedial activities.

4.2 Exceptional Correlation Analysis
Generally, more active students can be expected to obtain
higher grades. To investigate this phenomenon, we look into
the relation between the activity length (denoted by q) of
students and the overall grades (denoted by g) in a course.
We engage the correlation model class for EMM to realize
this task. In this model class, we can estimate the correlation
coefficient by calculating the sample correlation as follows:

r̂ =

∑
(qi − q̄)(gi − ḡ)√∑

(qi − q̄)2∑ (gi − ḡ)2

z′ =
1

2
ln

(
1 + r̂

1− r̂

)
z∗ =

z′ − zC√
1

|GD|−3
+ 1
|GC

D
|−3

(1)

Here, r̂ represents the sample correlation, qi, gi represent the
activity length and course grade of each student, and q̄, ḡ
represent their average values over the dataset. Equation
(1) is the Fisher z transformation, z′ in the lower equation
represents the z′ computation on the subgroup and zC on

its complement, and |GD| represents the number of records
covered by subgroup with description D. Under the null
hypothesis that the correlation between q and g is the same
inside and outside of the subgroup, z∗ follows a standard
normal distribution. Hence, the value for z∗ implies a p-
value under this null hypothesis. Leman et al. [12] propose
to use one minus this p-value as quality measure ϕscd: the
higher this value is, the more certain we are that the null
hypothesis is false and hence exceptional correlations are
observed.

Using this quality measure, we conduct the experiment with
beam width 20 and search depth 3. In Table 2 and Figure 4,
we list the top-5 subgroups with exceptional quality score,
coefficients, and coverage. We can see that some students
gain extremely high grades with longer behavior sequence
(cf. Figure 4b, 4e); some students have longer behavior se-
quence length but lower grades (cf. Figure 4c, 4d); and for
some subgroups, the length of behavior sequences has no ob-
vious correlation with the grades (cf. Figure 4f). We can de-
duce that the efforts that some students spend in the study
are not directly correlated with their learning results.

4.3 Exceptional classifier behavior analysis
Students’ behavioral records in MOOCs are sparse, incon-
sistent and heterogeneous. Learning behavior could be very
different between different students. This imbalance increases
the difficulty of training a classifier that can perform well on
each part of the dataset. This makes it difficult to train a
model that is qualified for tasks like dropout prediction and
course passing state prediction.

In this section, we investigate whether learning behavior can
predict whether or not a student can pass the course. At
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Table 4: Course statistics.
course name course level complete number avg grades course enroll num max grades min grades pass number

Marketing I 1141 0.105 4609 1 0.006 52
Design Thinking I 369 0.167 3483 0.972 0.01 22
IoT A 8 0.098 241 0.1 0.087 0
System Validation (2) I 63 0.412 1010 1 0.05 12
Smart IoT B 905 0.216 6035 1 0.004 100
Computer Architecture I 913 0.510 7652 1 0.025 299
System Validation (4) A 17 0.597 985 1 0.071 9
Quantitative Model (1) I 429 0.395 1807 1 0.007 49
System Validation (3) A 45 0.418 764 1 0.057 11
Quantitative Model (2) A 979 0.339 4975 1 0.016 52
System Validation I 601 0.376 2605 1 0.04 124
Technology I 258 0.232 3930 1 0.002 34
Embedded Systems I 549 0.291 3737 1 0.02 67
Software Architecture A 2710 0.299 10487 1 0.012 331
Real-Time Systems I 3615 0.203 15123 1 0.006 389
IoT Devices I 430 0.318 6609 1 0.008 85
Embedded Hardware I 3943 0.160 19592 1 0.02 128
Open Innovation I 480 0.137 3150 0.969 0.008 24

the same time, we investigate in which parts of the dataset
the classifier does not work well. In Section 4.1 and 4.2,
we have presented that EMM can effectively discover ex-
ceptional learning behavioral patterns in MOOCs. We will
continue using the EMM framework to find where our pre-
dictive model does not work well in the dataset. Considering
the activities of students in assessments, forum discussions
and peer assignments, we formulate the passing state pre-
diction problem as follows:

f : X i → Y i

Our aim is to train a classifier f that can automatically map
X i to Y i, where X i is a 8-tuple (si,mi, oi, ci, bi, ei, hi, pi)
feature vector representing the length of assessment and
question sequence (si), number of assessment types (mi),
number of question types (oi), number of correctly answered
questions (c), number of asked, answered and liked ques-
tions in the forum (bi, ei, hi), and peer review score (pi), and
where Y is the label of passing state: {0, 1}. We normalize
the features into 0 to 1 as the input values.

At first, the classifier is trained on the whole dataset. This
model will classify some students correctly and some stu-
dents wrongly; in any case we find a value of predicted la-
bels Ŷ . These two binary values Y and Ŷ will agree and
disagree on some students, and that interaction can be used
to capture the quality of the classifier predictions in a single
number. We use the f1 score to capture this:

ϕf1 = 2 · Precision · Recall

Precision + Recall
(2)

However, we can perform the exact same computation for
a subset of the vectors Y and Ŷ , for instance the subset
induced by a subgroup. Thus, we employ ϕf1 as a quality
measure for EMM.

We conduct the experiment by setting the search depth to 4
and beam width to 10. We engage an SVM classifier as the
predictive model1, which has 0.85 as f1 score on the whole

1one may plug in one’s preferred classifier; SVM selection is
merely meant as an illustration, not an endorsement.

dataset. In Table 3 we list the top-5 subgroups with excep-
tional behavior. We can see that even though the classifier
performs well on the whole dataset, in some subgroups it
does not. Particularly for the students described by descrip-
tions like “D: Region = MA, Gender = female, Educational
status=COLLEGE NO DEGREE”, the classifier performs
poorly on the prediction task at hand: the support vector
machine has trouble predicting the study success of Mas-
sachusets women without a college degree. Hence, this group
requires a more sophisticated classifier.

5. CONCLUSIONS
In this paper, we employ Exceptional Model Mining (EMM)
for exceptional learning behavior analysis in MOOCs. Rather
than predicting the success of individual students, which is
difficult due to the inherent sparsity, inconsistency, and het-
erogeneity of the data, EMM specializes in identifying co-
herent groups that behave differently from the norm. Since
the subgroups resulting from EMM come with an easily in-
terpretable definition, Exceptional Model Mining allows ed-
ucators to more effectively channel their remedial activities.

We employ three EMM model classes for different tasks of
learning behavior analysis. Experimental results on a real
Coursera dataset show that for some students, the dropout
rate is very different from the whole dataset, the learning
efforts are not always correlated with course grades, and a
classifier that performs very well on the whole dataset has
trouble on some subpopulations of the data. In future work,
we will make use of these discovered exceptional behavioral
patterns to establish an improved model, which can model
both normal and exceptional learning behaviors for the stu-
dents in MOOCs. We plan to develop a modeling method
that can perform well on each part of the dataset, including
the exceptional ones.
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ABSTRACT
This paper attempts to quantify the accuracy limit of “next-
item-correct” prediction by using numerical optimization to
estimate the student’s probability of getting each question
correct given a complete sequence of item responses. This
optimization is performed without an explicit parameterized
model of student behavior, but with the constraint that a
student’s likelihood of getting a problem correct only in-
creases or remains unchanged with additional practice (i.e.,
no forgetting). We present results for this method for the
Assistments 2009–2010 data where it suggests that there is
only modest opportunity for improvement beyond the state
of the art predictors. Furthermore, we describe a frame-
work for applying this method to datasets where problems
can be tagged with multiple skills and problem difficulties.
Lastly, we discuss the limitations of this method, specifically
its inability to give tight bounds on short sequences.

1. INTRODUCTION
Student modeling is a fundamental building block of educa-
tional systems that are intelligent or adaptive. With a model
of a student, such a system can consider all of the actions
it has available and make a prediction about which ones are
likely to be the most profitable for a particular student at
the current time.

One class of student models tries to predict next-item-correct,
i.e., what is the probability that a student’s attempt on the
next item presented will be correct given the student’s re-
sults on all previous items. For a number of years, this topic
saw vigorous research with non-trivial improvements using
improved model parameterizations [1, 6, 7, 11] and recurrent
neural networks [10]. Yet, performance of next-item-correct
predictors has seemed to reach an asymptote that is far be-
low perfect prediction.

This gap between the current state of the art and perfect
prediction raises the question of how much headroom re-

mains for further improvements to next-item-correct predic-
tion. Previous work by Beck and Xiong [2] has attempted
to characterize the accuracy limit by analyzing the perfor-
mance of a collection of “cheating” prediction algorithms
that employ a partial knowledge of future results. They
conclude that further large improvements in prediction ac-
curacy are unlikely.

Estimating a tight bound to prediction accuracy is challeng-
ing, because one needs to utilize some information about
future correctness without merely regurgitating the stream
of actual outcomes as one’s predictions, which would yield
the tautological bound of 100% accuracy. Beck and Xiong
navigate this conundrum by allowing their cheating model
to correctly predict the transitions from giving an incorrect
response to giving a correct response (e.g., learning), but
not those from giving an correct response to giving a in-
correct response (in their words, “forgetting”). We found
this approach to be unsatisfying in two respects. First, the
time period in which the data is collected is too short for
true forgetting to take place, it is rather more likely to be
slipping, so we feel that the model is a mismatch for the phe-
nomena at hand. Second, we feel that perfectly predicting
incorrect-to-correct transitions but not correct-to-incorrect
transitions seems arbitrary.

Instead, we posit that the limits of accuracy for next-item-
correct prediction derive from the fact that learning is not
a binary transition from a state of not knowing to a state
of knowing, but rather that there is a continuum of knowl-
edge levels that a student could be at. For example, there
is a point on this continuum where a student will get 50%
of the problems attempted correct and the other 50% in-
correct. The challenge for next-item-correct prediction for
such a student is precisely determining whether the next at-
tempt will be correct or incorrect, much like the hopeless
task of trying to consistently predict the outcome of flipping
a fair coin. More precisely, it is the student responses as
they transition from not knowing to knowing that are hard
to predict, as the behavior of perfectly knowledgeable and
perfectly unknowledgeable students is trivial to predict.

Thus, the limit for prediction should primarily derive from
the fraction of a data stream during which students are in
this transitional phase where they are intermingling correct
and incorrect responses. This can be viewed as the amount
of entropy in the data, and this entropy can and does vary
from dataset to dataset. As such, we believe that a method
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Figure 1: Illustrative example of the input to the
next-item-correct prediction problem. For this ex-
ample, n = 10 and x1, . . . , xn = 0, 0, 1, 0, 0, 1, 1, 0, 1, 1.

that can estimate the limits of predictability as a function
of this entropy can serve as a less arbitrary estimate of the
accuracy limit for next-item-correct prediction and serve as
a useful means for characterizing and comparing datasets.

This paper is organized as follows. We first formalize the
next-item-correct prediction problem in Section 2. We then
describe our model-free bounding method in Section 3. We
show experimental results of our method in Section 4. Fi-
nally, we discuss the limitations of our method in Section 5
and future directions in Section 6.

2. NEXT-ITEM-CORRECT PREDICTION
We formalize the next-item-correct prediction problem as
follows. We are given a length-n sequence x1, . . . , xn, where
xi = 1 if the student answered the ith attempted item cor-
rectly and xi = 0 otherwise, as shown in Figure 1. Given this
information, we want to produce n reals p1, . . . , pn where
pi is the probability of the student answering the ith at-
tempted item correctly. Typically models are required to
produce p1, . . . , pn in order and they are only allowed to
look at x1, . . . , xt−1 when producing pt, as future observa-
tions should not be available during prediction. Some of the
notable models for this task are Bayesian Knowledge Trac-
ing (BKT) [3], Performance Factor Analysis (PFA) [8], and
Deep Knowledge Tracing (DKT) [10].

In efforts to improve their performance, many models use
the knowledge components required by each item, denoted
as ~s1, . . . , ~sn. Each ~si is a d dimensional vector where d
is the number of knowledge components in the correspond-
ing dataset. Each entry of ~si is typically boolean, indicat-
ing whether the item requires the corresponding knowledge
component. The entries of ~si can be real valued as well, in-
dicating the degree of mastery required on each component
in order to answer the item correctly.

With the ground truth x1, . . . , xn and predictions of a model
p1, . . . , pn, a performance metric L is typically used to mea-
sure how good the predictions are. The most widely used
metrics for this task are root mean squared error (RMSE)
and area under the curve (AUC) [9]. Log likelihood (LL) has
also been proposed [9] though it has not been widely used on
this task. This paper will use average LL instead of LL since
the former does not depend on the size of the data. Mod-
els with better L(p1, . . . , pn;x1, . . . , xn) are to be preferred.
The meaning of “better” depends on the metric; larger val-
ues are better for average LL and AUC while smaller values
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Figure 2: Results of the model-free bounding
method when all items require the same knowledge
component.

are better for RMSE.

3. MODEL-FREE ACCURACY BOUNDS
The core idea of our method is that the probability of a stu-
dent correctly answering items that require the same knowl-
edge components should be non-decreasing over the short
term. More precisely, if the current item is no more difficult
than a previous item that requires the same knowledge and
there hasn’t been sufficient time or interference for forget-
ting to occur, the student’s probability of getting the current
item correct should be at least as high as the previous item.

This idea is illustrated in Figure 2, where the dashed line seg-
ments correspond to the probability of the student correctly
answering each item. One could interpret this sequence as
having three phases: (1) items 1 and 2 as a region of unknow-
ing where the student gets every item incorrect, (2) items 3
through 8 as a region of learning where correct and incorrect
responses are interleaved, and (3) items 9 and 10 as a region
of mastery where the student gets every item correct. Even
though the second region includes both correct and incor-
rect responses, we are interpreting those merely as events
from an underlying probability distribution and that proba-
bility of correct responses is non-decreasing throughout the
sequence.

Based on this idea, our proposed bounding method finds
correctness probabilities for each item p∗1, . . . , p

∗
n that opti-

mize L(p∗1, . . . , p
∗
n;x1, . . . , xn) subject to the constraint that

the p∗i sequence is non-decreasing on appropriate item se-
quences. These p∗i provide the best local estimate of the
likelihood that a student will get an item correct given an
assumption that only learning is occuring. To do better,
one would have to predict the precise sequence of correct
and incorrect responses and we believe that this problem is
akin to predicting the precise sequence of heads and tails
from repeated flips of a coin. As such, we expect this to be
a practical bound to next-item-correct prediction.

We refer to this method as being “model free”, because it
does not rely on any parameterized model of student behav-
iors and does not require training. Instead, the p∗i values are
derived directly from the sequence x1, . . . , xn and, therefore,
can be potentially applied on any dataset.

3.1 Single knowledge component case
Before diving into the case where multiple knowledge com-
ponents are involved, we first explain our method in the
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simplest case where the sequence of items require the same
knowledge component. In this case, since all of the items
are equivalent in terms of knowledge components, the afore-
mentioned constraint is equivalent to constraining p1, . . . , pn
to be non-decreasing. Thus our method reduces to solv-
ing the following numerical optimization problem to obtain
p∗1, . . . , p

∗
n:

optimize: L(p1, . . . , pn;x1, . . . , xn)

subject to: 0 ≤ pi ≤ 1 for all i

pi ≤ pj for all i < j.

(1)

This numerical optimization problem can be solved efficiently
by an interior point method if (1) L is convex and smaller
L is better, or (2) L is concave and larger L is better. Out
of the three metrics mentioned previously, average LL and
RMSE satisfy this criterion while AUC is not even continu-
ous (and hence not convex or concave). Thus this formula-
tion as a numerical optimization problem is only applicable
when L is average LL or RMSE. There are various tools
that can solve this sort of numerical optimization problem.
In our implementation we used used Matlab’s fmincon with
L-BFGS as the Hessian method.

To give a sense of what this method produces, Figure 2 shows
as the dashed line the values p∗1, . . . , p

∗
n that minimize RMSE

for the given observed item responses x1, . . . , xn (solid black
dots).

3.2 Partial order of items
In order to handle sequences of items with different combi-
nations of multiple knowledge components, we need to be
able to compare the items and decide which previously at-
tempted items provide information useful for predicting the
outcome of the current item. The intuition is that if item a
is the same difficulty or easier with respect to the required
knowledge components than item b, then a student should
do item a at least as well as item b. We compare items by
defining a partial order � over the knowledge component
vectors as follows:

~sa � ~sb ⇐⇒ ~sa,k ≤ ~sb,k for all k, (2)

where ~sa,k is the kth coordinate of ~sa. This partial order
essentially states that item a should be considered easier
than or equal to item b if the required mastery level of each
knowledge component of item a is less than or equal to that
of item b. Intuitively, given ~sa � ~sb, then a student should
be able to answer item a correctly if the student can answer
item b correctly.

Given this definition of partial order, we can induce a di-
rected acyclic graph (DAG) on the set of items, where there
is an edge from the jth item to the ith if and only if i < j
and ~sj � ~si. The intuition of the requirement i < j is that
being able to solve a “harder” item in the past implies being
able to solve an “easier” item in the future. However, being
able to solve a “harder” item in the future does not imply
being able to solve an “easier” item in the past since the stu-
dent might have learned a lot in between. To illustrate this,
we show the DAG induced by a sequence of 6 items with 3
knowledge components in Figure 3. In such a DAG, an edge
from the jth item to the ith means that the student should
be able to do the jth item at least as well as the ith item.

s1

[ ]101
s2

[ ]100
s3

[ ]100
s4

[ ]010
s5

[ ]010
s6

[ ]001
Figure 3: A directed acyclic graph induced by the
partial order. An arrow from the jth item to the
ith item means that the student should do the jth
item at least as well as the ith item. There are two
connected components in this induced graph, which
are {x1, x2, x3, x6} and {x4, x5}.

3.3 Multiple knowledge components case
Given the partial order on items as described above, we can
generalize the non-decreasing constraints for a single knowl-
edge component to handle any combination of knowledge
components. Specifically, given i < j and ~sj � ~si, the prob-
ability pj of the student answering the jth item correctly
should not be lower than the probability pi of the ith item
since the jth item is no harder than the ith item. That
is, pi ≤ pj when there is an edge from the jth item to the
ith item in the induced DAG on the sequence. Thus the
optimization problem can be reformulated as

optimize: L(p1, . . . , pn;x1, . . . , xn)

subject to: 0 ≤ pi ≤ 1 for all i

pi ≤ pj for all i < j that satisfy ~sj � ~si.
(3)

This complicated optimization problem can usually be bro-
ken down into smaller ones by dividing the sequence x1, . . . , xn
into shorter subsequences based on the connected compo-
nents they belong to in the induced DAG. In the example
depicted by Figure 3, there are two connected components
which correspond to {x1, x2, x3, x6} and {x4, x5}. We can
then optimize on each subsequence separately.

Another trick to accelerate the optimization is removing re-
dundant constraints since the partial order is transitive. For
example, the constraint corresponding to the edge from ~s3
to ~s1 in Figure 3 can be safely removed since it is implied
by constraints corresponding to ~s3 � ~s2 and ~s2 � ~s1.

3.4 Metrics that cannot be directly optimized
As mentioned before, our method is not applicable to AUC
since it is not continuous. To compute a bound for AUC, we
first solve the optimization problem by either maximizing
average LL or minimizing RMSE. Once we obtained p∗i for
the entire dataset, we can calculate AUC using these p∗i .

In general, we can always optimize on one metric L for p∗i
and evaluate the p∗i with any metric L′ even though the
optimization is done with respect to L. We refer to this as
the bound obtained by optimizing L.

4. EXPERIMENTAL RESULTS
We applied BKT, DKT, and our method to the Assistments
2009–2010 dataset. We chose this dataset because it has
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Figure 4: Results of applying BKT, DKT, and our method to Assistments 2009–2010 dataset.

relatively long sequences of attempts. We used the same
train/test split for this dataset as in Khajah et al. [5]. We
used the BKT implementation by Yudelson1 [11] with the
default parameters and Baum-Welch as the training method.
We used Khajah et al.’s [5] implementation of DKT2 with
default parameters. We only applied our method to the test
set for meaningful comparisons.

For the rest of this paper, we only report bounds obtained
by maximizing average LL. Throughout our experiments,
we found that the bounds for all of average LL, RMSE, and
AUC obtained by minimizing RMSE differed by less than
0.5% from those obtained by maximizing average LL. In fact,
it can be proved that minimizing RMSE and maximizing
average LL will yield the same p∗i in the single knowledge
component case (Equation 1). See the Appendix for the
proof.

We show our results on Assistments 2009–2010 for average
LL, RMSE, and AUC in Figure 4. The performance of DKT
is roughly half way between BKT and the bound produced
by our method for all of the metrics. This suggests that the
room for further improvements on Assistments 2009–2010 is
limited.

5. LIMITATIONS
The major limitation of our method is its optimistic nature,
meaning that it can produce a bound that is too loose. This
optimism manifests in two ways: first, our method can pre-
dict the precise location of learning transitions, which will
be difficult for any realistic model, and, second, more gen-
erally when the sequence of predictions to be made is short
the model isn’t significantly constrained.

5.1 Predicting Particular Events
The proposed technique appears to provide a reasonable
bound of prediction performance when student behavior fol-
lows a non-instantaneous learning of a topic involving an
interleaving of correct and incorrect responses as shown in
Figure 1. However, when students transition instantly from
consistently answering incorrectly to consistently answering
correctly, the model will likely produce a bound that is too
loose. Consider the item response sequences of two students
shown in Figure 5. Both of these students only transition

1https://github.com/IEDMS/standard-bkt
2https://github.com/mmkhajah/dkt
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Figure 5: Two sequences that our method predicts
perfectly. A real predictor, however, might have
trouble predicting the precise location of the upward
transition.
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Figure 6: Our method can predict initial behav-
ior perfectly in some circumstances. A real pre-
dictor, however, might have trouble predicting pre-
cisely which students would get a problem correct
on their first attempt.

from incorrect responses to correct responses, meaning that
the optimization is free to generate predictions that precisely
match the data, resulting in 100% accuracy. A real model,
however, must predict the point of the transition, know-
ing that after observing the first three incorrect responses it
should predict correct for the first student’s fourth attempt
and incorrect for the second student’s fourth attempt. While
it isn’t impossible to imagine that there are features to guide
such a prediction, it is difficult to believe that it could be
done consistently with 100% accuracy.

A special case of predicting such a transition is predicting
whether or not the very first attempt is going to be cor-
rect. As shown in Figure 6, our method can perfectly pre-
dict whether or not a student gets their first attempt correct,
provided the student gets all other attempts correct. A real
system might be challenged to predict precisely which stu-
dents would perform in this manner, although some knowl-
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Figure 7: Upper bounds produced by our method versus theoretical bounds for attempt results that are i.i.d.
with fixed q for various sequence lengths. The solid curves correspond to the results of our method and the
dashed lines correspond to the theoretical bounds.

edge about the students will certainly enable such predic-
tions to be performed at a rate better than just the average
frequency that students get a given question correct on their
first attempt. Nevertheless, these features of the data lead
our system to be optimistic, and these features occur more
frequently and have larger impact on short sequences.

5.2 Short Sequences
In general, our method struggles with short sequences, be-
cause the optimization is largely unconstrained. For exam-
ple, consider the case where every student has made exactly
one attempt. In such a case our method will always produce
p∗1 that is exactly the same as x1, which results in a trivial
bound of 100% accuracy. However, as the sequence length
increases, the constraints will generally prevent our method
from being perfectly accurate, and thus it will provide a
more useful bound.

To understand how the amount of optimism in our method
depends on the sequence length, we used independent and
identically distributed (i.i.d.) coin tosses to study this. Such
sequences allow us to compute a theoretical bound that we
can compare to the one produced by our method. When
attempt results x1, . . . , xn are i.i.d. with probability q of
being correct, the theoretical bound is q log q+(1−q) log(1−
q) for average LL,

√
q(1− q)2 + (1− q)q2 for RMSE, and 0.5

for AUC.

Specifically, we generated i.i.d. results with sequence lengths
ranging from 1 to 100 and with q ranging from 0.1 to 0.9
and same ~s for every attempt. For each length, we generated
10,000 sequences and computed the bound for average LL,
RMSE, and AUC using our method.

We plotted the bounds computed by our method and the
theoretical bound in Figure 7. We chose to not plot the
results for q from 0.1 to 0.4 in the figure since we found
that q and 1 − q yield the same results. The solid curves
in the figure correspond to the results of our method for
each q while the dashed lines correspond to the theoretical
bound for each q. As the figure shows, our method starts off
wildly optimistic when the sequence length is 1 and grad-
ually converges to the theoretical bounds as the sequence
length increases. At a sequence length of 100, the bounds
by our method are close to the theoretical bound for average

LL and RMSE but not AUC. These trends suggest that our
method works reasonably well for average LL and RMSE
when the sequence length is large enough, however it is too
optimistic on AUC even with long sequences.

6. DISCUSSION AND CONCLUSION
In this paper, we presented a model-free bounding method
to find the limit of the next-item-correct prediction task.
The method assumes that forgetting is absent and uses the
constraint that the probability of students correctly answer-
ing a set of similar items should not decrease as they practice
more. We applied our method to the Assistments 2009–2010
dataset and found that DKT’s performance on this dataset
is fairly close to the bound produced by our method. This
suggests that the room for improvement on this dataset is
small.

The main shortcoming of our method is its optimistic na-
ture. In other words, our method will produce a bound that
is too loose, especially for short sequences. While we can
conceive of many ways to potentially compensate for this op-
timism (motivated by the scenarios discussed in Section 5),
we fear that any attempts we make to estimate compensa-
tion factors has the potential to yield a result that no longer
serves as a bound (i.e., that a real implementation could
potentially achieve a performance exceeding our “bound”).
Furthermore, we view the parameter-free simplicity of our
method to be one of its virtues, and it is not clear how
to preserve that while introducing such compensation. The
other shortcoming is that our method does not incorporate
forgetting by default. However, this could potentially be
incorporated by relaxing constraints when forgetting is sus-
pected to have occurred.

The intuition behind our method is based on the reason why
next-item-correct prediction is feasible. Since independent
identically distributed (i.i.d.) coin tosses are inherently un-
predictable, next-item-correct prediction is feasible only if
there are regularities in the data. Learning is undoubtedly
the most important regularity that we would like to observe
in any educational system. Thus the difficulty of the next-
item-correct prediction task depends on how much students’
performance deviates from i.i.d. and shows non-decreasing
behavior. Our method tries to capture such regularities due
to learning.
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APPENDIX
To prove that minimizing RMSE is equivalent to maximizing
average LL in the case of Equation 1, we first recall the
concept of a scoring rule [4], which is a function that scores a
predictive probability distribution P against an observation
xi drawn from a target probability distribution Q that we
are trying to recover. In this context a larger score indicates
a better P . In the case of binary variables with range {0, 1},
both P and Q are Bernoulli distributions and a scoring rule
can be simply denoted as S(p, x), where p is the probability
of observing 1 in P and x is an observation drawn from Q.

A strictly proper scoring rule is a scoring rule such that the
expected score over a set of observations drawn from Q is
uniquely maximized when P = Q [4]. The quadratic score
and the logarithmic score are two commonly used strictly
proper scoring rules. In the case of Equation 1, maximizing
the quadratic score is equivalent to minimizing RMSE and
maximizing the logarithmic score is equivalent to maximiz-
ing average LL.

In the binary case, a strictly proper scoring rule S(p, x) has
the Savage representation S(p, x) = G(p) + G∗(p)(x − p)
where G is strictly convex and G∗ is a subdifferential of
G [4]. Define the cost function F (p;x1, . . . , xn) by F (p) =
1
n

∑n
i=1 S(p, xi) = G(p)+G∗(p)(x̄−p) where x̄ = 1

n

∑n
i=1 xi.

Lemma 1. F (p) has a unique maximum at p = x̄ and is
strictly quasiconcave, thus unimodal.

Proof. First observe that F (p) = G(p)+G∗(p)(x̄−p) ≤
G(x̄) = F (x̄) by the definition of the subdifferential, with
equality if and only if p = x̄. Thus p = x̄ is the unique
maximum.

To establish quasiconcavity, we will show that for any α ∈
(0, 1), F (αp + (1 − α)q) > min{F (p), F (q)}. Let r = αp +
(1 − α)q and, without loss of generality, assume p < q, so
either p < r ≤ x̄ or x̄ ≤ r < q. In the first case:

F (r)− F (p) = G(r)−G(p) +G∗(r)(x̄− r)−G∗(p)(x̄− p)
> G∗(p)(r − p) +G∗(r)(x̄− r)−G∗(p)(x̄− p)
= (G∗(r)−G∗(p))(x̄− r)
≥ 0.

The last step is due to monotonicity of G∗, which states that
(G∗(r)−G∗(p))(r−p) ≥ 0, and because (x̄−r) has the same
sign as (r−p) we have (G∗(r)−G∗(p))(x̄−r) ≥ 0. This estab-
lishes that F (r) > F (p) in the first case. Similarly, F (r) >
F (q) in the second case, thus F (r) > min{F (p), F (q)}.

For any solution to Equation 1, we can partition p1, . . . , pn
into blocks (subsets) where each member of a block has equal

value and no two blocks share a value. Because Equation 1
requires monotonicity, each block must have consecutive in-
dices.

Lemma 2. If L is a strictly proper scoring rule, then ev-
ery solution to Equation 1 consists of blocks of the form
pi = . . . = pj = {xi, . . . , xj} =

∑j
k=i xk/(j − i+ 1).

Proof. Consider any block p = pi = . . . = pj in a solu-
tion to the optimization problem described by Equation 1
when L is a strictly proper scoring rule. Because blocks have
distinct values, p is locally unconstrained and so Lemma 1
implies p = {xi, . . . , xj}.

Algorithm 1

1: i← 1
2: while i ≤ n do
3: find the largest j with i ≤ j ≤ n that minimizes

{xi, . . . , xj}
4: pi, . . . , pj ← {xi, . . . , xj}
5: i← j + 1
6: end while

Theorem 1. If L is a strictly proper scoring rule, then
Algorithm 1 gives the unique solution to Equation 1.

Proof. Let p∗1, . . . , p
∗
n be the output of Algorithm 1. As-

sume that p1, . . . , pn is a distinct solution to Equation 1. Let
k be the first index for which p∗k 6= pk and let p∗i , . . . , p

∗
j be

the block with i ≤ k ≤ j.

If pk < p∗k, then monotonicity implies k = i. Let {pk, . . . , p`}
be the following block, so p∗k > pk = {xk, . . . , x`}, which
contradicts Line 3 in Algorithm 1.

If pk > p∗k, then p∗k < pk ≤ {xk, . . . , xj} because the opti-
mization subproblems for blocks in {pk, . . . , pj} are locally
unconstrained below. But by Lemma 2 we have:

p∗k = {xi, . . . , xj}

=
k − i

j − i+ 1
{xi, . . . , xk−1}+

j − k + 1

j − i+ 1
{xk, . . . , xj}

>
k − i

j − i+ 1
p∗k +

j − k + 1

j − i+ 1
p∗k

= p∗k,

which is again a contradiction.

Note that Algorithm 1 does not depend on L, so all strictly
proper scoring rules give the same solution to Equation 1.
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[9] R. Pelánek. Metrics for evaluation of student models.
Journal of Educational Data Mining, 7(2):1–19, 2015.

[10] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In Advances in Neural Information Processing
Systems, pages 505–513, 2015.

[11] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
International Conference on Artificial Intelligence in
Education, pages 171–180. Springer, 2013.

Proceedings of the 11th International Conference on Educational Data Mining 325



Standard Error Considerations on AFM Parameters

Guillaume Durand
National Research Council

Canada
100 rue des Aboiteaux
Moncton, NB, Canada

Guillaume.Durand@nrc.ca

Cyril Goutte
National Research Council

Canada
1200 Montreal Rd

Ottawa, ON, Canada
Cyril.Goutte@nrc.ca

Serge Léger
National Research Council

Canada
100 rue des Aboiteaux
Moncton, NB, Canada

Serge.Leger@nrc.ca

ABSTRACT
Knowledge tracing is a fundamental area of educational data
modeling that aims at gaining a better understanding of the
learning occurring in tutoring systems. Knowledge tracing
models fit various parameters on observed student perfor-
mance and are evaluated through several goodness of fit met-
rics. Fitted parameter values are of crucial interest in order
to diagnose learning mastery as well as knowledge models
and qualitative aspects of the learning environment. Unfor-
tunately, parameter values are rarely associated with stan-
dard errors or confidence intervals, both of which are criti-
cal information to validate the inferences that can be made
from the model. Taking the example of the Additive Factor
Model, we describe how to obtain standard errors on the
model parameters. We propose two methods to compute
those and discuss results obtained on a public dataset.

Keywords
Parameters standard error, Additive Factor Model

1. INTRODUCTION
Educational Data Mining (EDM) has already produced nu-
merous predictive models to accurately detect, anticipate
and measure meaningful outcomes of learning activities. Pre-
dicting student performance has been available for years.
For instance, it was the goal of the Knowledge Discovery
and Data mining (KDD) Cup 2010 [1], where teams around
the world competed to get the most accurate predictions
on student test item successes. While predictive accuracy
and overall model goodness of fit remain central concerns,
others considerations have since emerged in the EDM scien-
tific community. Model usefulness is one of them. A model
can be accurate in its predictions but useless to provide ad-
ditional educational values in a learning environment [10].
Another concern, of even greater interest for the work pre-
sented in this paper, is the identifiability of the models pro-
duced and used by the EDM community. The cognitive
models we use for knowledge tracing are validated towards

their predictive quality but their prediction performance is
not necessarily where they are most useful. This is the case,
for instance, for the Additive Factor Model (AFM) [3] or
the Bayesian Knowledge Tracing model (BKT) [5]. Both are
widely used in intelligent tutoring systems to detect when a
student has mastered a skill [15] in order to provide her with
the next adequate learning material. In this situation, BKT
is not used only to evaluate the probability that the student
will give a correct answer at time t. It is also used to check
whether the “p known” value calculated on fitted model pa-
rameters has reached the 0.95 threshold [15]. In that case,
inferring learning mastery based on fitted parameter values
is risky when there is uncertainty on the fitted values. First,
there is a risk that different combinations of parameters may
yield functionally identical models that explain observations
in the same way. This is known as the identifiability issue, an
important problem that keeps being discussed and solved in
the BKT community [2, 7]. A second issue involves the relia-
bility and confidence in the fitted parameter values. In other
words, how sure we are of the fitted parameter value that
will be used to infer that the learning mastery threshold has
been reached. That issue has been of primary importance
in recent usage of AFM to perform advanced learning factor
analysis in the field [8] or when building tools to tentatively
offer guidance for building competency frameworks [9]. For
instance, Durand et al. [9] describe a situation where a skill
was first fitted as fairly difficult (low β) with fast learning
rate (high γ). After a small modification of the training
dataset, the same skill was estimated easy (large β) with no
learning (small γ). In addition, it is also known from the
literature that latent variable models, including skill-based
cognitive models such as AFM, are difficult to estimate pre-
cisely [18]. In light of these results, it becomes crucial to
take a closer look at the uncertainty on model parameters,
beyond predictive accuracy. Quantifying the uncertainty on
fitted parameter values by estimating their standard error
appears necessary in order to increase our ability to make
correct, and hopefully useful, inference from fitted models.

The rest of the article is organized as follows. The next
section presents related works. Section 3 presents the AFM
model, its use for diagnosing learning, and the computation
of the standard error on fitted parameter values, using two
different techniques. Experimental results on several cogni-
tive models from the PSLC-Datashop [11] are presented in
Section 4 and discussed in Section 5. We then summarize
the contributions presented in this paper and their impact
on future developments.
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2. RELATED WORK
A recent and fundamental paper by Philipp et al. [17] inves-
tigates the estimation of Standard Errors in cognitive diag-
nostics models. Clearly identifying the need of assessing the
uncertainty of the estimated model parameters using confi-
dence intervals, they presented the theoretical background
for estimating parameter standard errors for the G-DINA
cognitive diagnostic model [17]. In their explanations, they
essentially presented and discussed different ways of com-
puting standard errors by either considering the complete
or the incomplete information matrix. In their experiments,
they managed to highlight the necessity of considering the
complete information matrix rather than using the incom-
plete one to compute parameters standard error. This re-
sult, while interesting, was not the only focus of our interest.
The authors detailed two ways of computing both the com-
plete and incomplete information matrix in the context of
G-DINA that were of primary relevance for an application
to AFM. The first way uses an Outer Product of Gradient
(OPG) estimator. This estimator has the advantage to be
relatively easy to implement but slightly less precise than
the method using the Hessian of the log-likelihood, which
has the drawback of being more cumbersome to implement.
In our experiments we used the Hessian estimator of the
information matrix.

Computation of the standard error of parameter estimates
is a classic approach in statistics method and a dense lit-
erature details its applications. However, it seems to have
drawn a limited interest in the EDM community so far, as
we did not find implementation examples in the EDM lit-
erature. Nevertheless, a connecting point could be found
in the renewed interest on model identifiability issues [2, 7].
Identifiability issues can lead to an information matrix that
is ill conditioned and that cannot be inverted. As we will see
later, parameter standard error is obtained by inverting the
information matrix using OPG or Hessian approaches. If
the information matrix cannot be inverted, there is no stan-
dard error that can be obtained by these methods. Philip
et al. mentioned that such situation can occur in the DINA
model [6] whenever a“test does not involve a single-attribute
item for each of the K attributes” [17]. This is a result we
intuitively implemented in rules when guiding competency
framework refinement with AFM [9]. Howeverm this intu-
itive ruleturns out to be a requirement for standard error
estimation. While BKT identifiability conditions are start-
ing to be well documented, we have not been able to find
an equivalent for AFM and we hope that the scientific com-
munity will address this issue. The main objective of this
contribution is to present, illustrate, and discuss the imple-
mentation of AFM parameter standard error estimation. To
the best of our knowledge, this had not been addressed yet
in the literature.

3. THE ADDITIVE FACTOR MODEL
The AFM [3] models the probability that a student i suc-
ceeds on an item j by a mixed-effect logistic regression:

P (Yij = 1|αi, β, γ) = logit−1(αi+
K∑
k=1

βkqjk+
K∑
k=1

γkqjktik) (1)

where logit−1(x) = 1/(1 + e−x). Parameters αi, βk and γk
represent the proficiency of student i, easiness of skill k and

learning rate for skill k, respectively.1 The Q-matrix Q =
[qjk], also known as the Knowledge Component model in the
PSLC-Datashop [11], represents the item-to-skills mapping
by a binary matrix, as in the following example:

Q =


Skill.1 Skill.2 Skill.3

ItemA 1 0 0
ItemB 0 1 0
ItemC 1 1 0
ItemD 0 0 1

,

where items A, B and D evaluate one skill each, and item C
evaluates two.

Finally, variable tik is the number of times student i has
practiced skill k, also known as the opportunity number.
Parameters β and γ are key differentiators for AFM as a
cognitive diagnostics model [8]. They model the learning
process for each skill, making AFM a powerful and very
unique model to finely characterize the acquisition of skills
[8]. Learning parameters allow to plot useful learning curves
detailing learning acquisition.

3.1 Learning curves
Learning curves are an essential tool to improve learning
systems. They “give us a measure of the amount of learning
that is taking place relative to the system’s model” allowing
to compare and improve them [14]. Concretely, a learning
curve is a “graph that plots performance on a task versus
the number of opportunities to practice” [14]. The perfor-
mance measured can be the time spent assembling an engine
component in a production line or as it is often the case in
the educational field, the error rate at applying a set of, or
individual skills.

Displaying learning curves in multidimensional learning en-
vironments can be difficult. Those environments are not
necessary built for single skills learning measurement and
they usually combine different set of skills evaluated to-
gether (multidimensionality). In such situation, we need to
“retrofit” the analysis and AFM is the perfect model to do
that as it tries to detect each skill specific (additive) contri-
bution towards each item success.

Learning curves when modeling learning performance over
time follow a “power law of practice” [16] which states per-
formance over time should increase following a power law.
In the Intelligent Tutoring Systems (ITSs) context, we can
expect the error rate to drop as a power law over practice
opportunities. Comparing ITS or sections of them can be
done by considering the steepness of the curve. A steeper
curve indicates a faster acquisitions of the skills practiced
[14].

Another advantage of using AFM to draw learning curves is
that we can compensate for the attrition bias. Over time,
fewer learners tend to perform the items because many of
them have learned the skill and the curves tend to quickly
degenerate, impacting the value of slopes and the power law

1We refer to β and γ as the skill and learning parameters
in the rest of the article.
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Figure 1: Example of a error curve for a moderately hard
skill with a moderately fast learning rate.

fit. A convenient way to produce a learning curve for skill
k in AFM is to use Eq. 1 with βk, γk, and a ”typical”
value of the student proficiency. Using αi = 0 is convenient,
and usually roughly corresponds to the average value of the
estimated α’s. This individual theoretical learning curve for
skill k is given by:

LCk(t) = logit−1 (βk + γkt) =
1

1 + exp (−βk − γkt)
. (2)

Typically, we consider error curves while talking about learn-
ing curves. The error curve is obtained by plotting ECk(t) =
1− LCk(t) as illustrated in Figure 1.

3.2 Computing the Standard Error
We present two methods to estimate the standard errors
on parameters. The first one is a classical approach in the
statistics literature. It involves the computation of the nega-
tive Hessian of the log-likelihood. The second one is inspired
by the parametric bootstrap and estimates the standard er-
ror by computing empirical standard deviations on the pa-
rameters obtained from simulated observation samples.

3.2.1 Negative Hessian of the log-likelihood
Technically, the standard errors of estimated parameters can
be retrieved from the covariance matrix of the parameters
(eq. 3). More precisely, they are equal to the square root of
the diagonal elements in:

Cov(α, β, γ) =

 Vα Vα,β Vα,γ
Vβ,α Vβ Vβ,γ
Vγ,α Vγ,β Vγ

 . (3)

However, this covariance matrix is not known and we need
to estimate it in order to compute our standard errors. For-
tunately, the estimation of covariance matrices have been
of interests of statisticians for a long time and several ways
have been proposed to solve it. More precisely, it turns out
that the covariance matrix is equal to the inverse of the
information matrix [17], Cov(α, β, γ) = I(α, β, γ)−1. This
means we can compute estimators of standard deviation on
parameter estimates as long as we can compute and invert
the information matrix. At the maximum likelihood, I is

given by the negative Hessian matrix of the log-likelihood:

H(L) =


∂2L
∂2α

∂2L
∂α∂β

∂2L
∂α∂γ

∂2L
∂β∂α

∂2L
∂2β

∂2L
∂β∂γ

∂2L
∂γ∂α

∂2L
∂γ∂β

∂2L
∂2γ

 (4)

In our implementation of AFM, we use a penalized version
of the log-likelihood, as detailed in [8], and adapt Eq. 4
accordingly.

3.2.2 Simulation
Keeping in mind that “a standard error is the standard de-
viation of the distribution of parameter estimates over mul-
tiple samples” [20], we simulate multiple samples from the
initial data, estimate parameters on each samples, and cal-
culate the empirical standard deviation on these results:

Algorithm 1: Pseudo-code of the simulated standard error
estimation function. Values in square brackets are defaults.

Data: Q-matrix Q, first attempt observations O and α, β,
γ parameter values

Parameters: Penalization parameter λ [1], number of
simulations n [1000]

Result: std(α), std(β), std(γ)
Compute P (Yij = 1|αi, β, γ) according to Eq. 1 for each
first attempt observation Oij ;

repeat
Create R, a matrix of P size with random values
between 0 and 1;

Create O′ a matrix equal to O;
for first attempt observation Oij do

if Rij > P (Yij) then
O′ij ←− 0;

Estimate α, β, γ for each simulation iteration with
respect to Q and O′;

until n simulation iterations;
std(α) ←− Standard deviation of n simulation estimated α;
std(β) ←− Standard deviation of n simulation estimated β;
std(γ) ←− Standard deviation of n simulation estimated γ;

This simulation approach aimed at providing us with an al-
ternative method to validate the Hessian’s detailed in previ-
ous section but also to provide us with an alternative should
inverting the Hessian matrix would be impossible or too
cumbersome to implement outside of our experimental envi-
ronment. The simulation takes as input a Q-matrix and per-
formance observations. It fits the AFM parameters before
computing a prediction for each observation. If the predic-
tion is below a random value uniformly distributed between
0 and 1 then the observation is changed to a failure. Then we
iterate again by computing new values of AFM parameters
on the new observations dataset, computing the predictions
and creating another observations sample. The pseudo-code
of this simulation process is presented in Algorithm 1.

We also tried another estimation method using a Jackknife
approach (iterative leave-one-out on students) that provided
us with overly optimistic values. Standard errors were clearly
underestimated in the PSLC dataset we experimented.
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Table 1: Overall predictive quality of KC models as com-
puted by PSLC-Datashop

Model Name KCs #Obs. AIC BIC RMSE
Arith0 18 5,104 4,948 5,569 .397095
Context 12 5,104 5,030 5,573 .399431
Original 15 5,104 5,180 5,762 .407192

4. EXPERIMENTS
4.1 Dataset
In our experiments, we used the “Geometry Area (1996-97)”
dataset from DataShop [11]. It contains 6778 observations
of the performance of 59 students completing 139 unique
items from the “area unit” of the Geometry Cognitive Tutor
course (school year 1996-1997). This is a classic Datashop
collection, associated with many prior publications [3, 4, 12,
13]. We selected three Knowledge components (KCs) models
to run our experiments:

• hLFASearchAICWholeModel3arith0 (Arith0 henceforth);

• hLFASearchModel1-context (Context hereafter);

• Original.

They were selected for their reasonable numbers of skills and
observations but also because they have distinctive goodness
of fit metrics allowing to differentiate their predictive qual-
ities. Characteristics of these KC models, as reported in
Datashop are presented in Table 1. This suggests that the
best predictive model would be Arith0, followed by Context
and Original. The number of skills (KCs) do not seem to
correlate with the goodness of fit for these models.

4.2 Method
Our implementations are done using Matlab and Octave.2

The AFM estimation used in previous work[8, 9], was ex-
tended with the developments described above. The Hessian
of the log-likelihood was computed using an off the shelf nu-
merical method using a central difference approximation.3

This has the advantage of requiring no calculus for comput-
ing second derivatives, but has the disadvantage of being
notably slower than direct Hessian computation. The full
Hessian computation takes around three hours on a regular
laptop, for each of the KC models. The simulation-based es-
timates were obtained using a Go language implementation
of AFM parameter estimation. It takes less than 15 minutes
in Go to compute 1000 simulation iterations.

4.3 Results
Table 5 shows the estimated values and standard errors for
learning parameters β and γ for KC models Arith0, Context
and Original. At first glance, we can see that none of the
parameters take large values compared to the others. This
suggests that the KC models are of excellent quality. Over-
all inter-model differences in parameter values and standard
errors are also relatively small.

2Octave/Matlab implementations are available on request.
3Octave Optim package, numhessian function.

Table 2: Mean parameter values

KC Model
Mean parameter values

α β γ
Arith0 0(.639) .367(1.261) .199(.269)
Context 0(.647) .205(1.323) .185(.327)
Original 0(.624) .308(.877) .147(.127)

Table 3: Mean standard Errors computed with the Hessian

KC Model
Mean standard errors

α β γ
Arith0 .366(.149) .349(.137) .083(.075)
Context .364(.149) .320(.175) .073(.093)
Original .361(.149) .284(.073) .051(.038)

Mean parameter values (across models) in Table 2 show that
all models share the same (at .001 precision) mean and al-
most identical standard deviations of α. This suggest that
changing the KC model had a limited impact on students’
proficiencies. In other words, students proficiencies remain
consistently estimated from one model to another. It seems
unlikely that a student proficiency would drastically change
from one model to another. Interestingly the mean values of
γ are higher in the better models but the standard deviation
also increases suggesting higher values with more variance.
If we look at the mean standard errors in Table 3, we notice
that it is very similar between models for α, suggesting again
a limited impact of the KC models on students proficien-
cies. However the values obtained for learning parameters
are very interesting as the mean standard errors increase
with the predictive quality of the models. One would have
excepted the opposite to happen as Arith0 is expected to
have a better fit of the observations than Original. In ad-
dition, standard deviations on the errors are also higher for
Arith0 than Original. One assumption could be that Arith0
managed to get few better curves with more bad ones and
less average good ones. More investigation would be neces-
sary to clarify this point.

5. DISCUSSION
5.1 Model goodness of fit
The dataset used in this experiment is very adapted to con-
duct learning factor analysis and it is advertised as a good
one to showcase PSLC-Datashop features. Consequently the
discrepancy obtained between goodness of fit and mean stan-
dard error may not generalize to other situations. In addi-
tion, we have little knowledge of the intention that led to
the design of these KC models. Those cautionary consider-
ations made, we still have been able to characterize a situa-
tion were an overall better model does not necessarily lead
to a a more reliable KC model. This is an interesting re-
sult, for instance, if we want to automatically refine models
as in learning factor analysis as it would imply to not only
look at model goodness of fit but also KC model goodness of
fit. Standard errors can also inform us on the problematic
skills to modify as it allow us to get a better grasp on the
reliability of learning parameters for each skill.

5.2 Learning detection
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Figure 2: A skill with a flat curve suggesting limited learning
for most values in the 95% confidence interval
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Figure 3: A skill with a steep curve clearly showing learning
for all values in its 95% confidence interval

Standard errors allow us to compute confidence intervals
on parameters and learning curves. Figures 2 and 3 plot
learning curves for a skill with low difficulty and no learning
(Fig. 2) and a difficult skill with fast learning rate (Fig.
3). In both cases, the ”Fitted” learning curve uses fitted
learning parameters, the ”Upper” curve is obtained using
the parameters at the lower end of the confidence interval
(1.96 × StdErr below fitted values), and the ”Lower” curve
uses parameters are the top of the C.I. (1.96×StdErr above
fitted). The Upper and Lower curves provide us with the
extreme slopes that the learning curve can take in a 95%
confidence interval, and show the range of difficulty the skill
can take while still remaining in the confidence interval.

Some values taken by these curves are not possible in prac-
tice. For instance in Figure 2, the Upper curve is impossible
under AFM parameter fitting constraints, as γ is constrained
to be positive. On the other hand, the Lower curve can be
observed and shows limited learning. In this configuration of
learning parameters, stating no learning after looking only
at the Fitted learning curve could be an overstatement even

Table 4: RMSE and r2 computed between the Hessian and
the simulation standard errors

KC Model
RMSE r2

α β γ α β γ
Arith0 .052 .050 .022 .906 .963 .987
Context .053 .061 .020 .890 .900 .973
Original .047 .026 .004 .917 .947 .992

though it is very likely that no learning is occurring. How-
ever as Murray et al. [15] showed, flat aggregated curves
showing no learning could, in fact, hide the learning occur-
ring for sub-group of students. In their study of an algebra
curriculum containing performance data of 15,414 students
on 881 skills, they discovered that around 16% of skills were
misidentified as showing no learning. Standard error compu-
tation gives another reason why we should be cautious when
claiming no learning. But can standard errors help us claim
learning? The skill in Figure 3 answers this question. We
can see that all the difficulties and slopes that can be taken
in the 95% confidence interval leads to conclude that this
skill is learned. In conclusion to this subsection, consider-
ing fitted parameter standard errors is important to confirm
that learning is occurring but not necessarily the opposite.

5.3 Simulation and Hessian methods
Table 5 shows that standard errors computed from the log-
likelihood Hessian and by simulation are very close. This
means that our method can potentially provide an estimate
of the standard errors when the Hessian is hard to com-
pute or invert. This also confirms the validity of our sim-
ulation results. Table 4 shows the Root Mean Square Er-
ror (RMSE) and correlation (r2) between simulation esti-
mates and the standard errors over all parameters of each
KC Model. Although not insignificant, the difference be-
tween the two methods is sufficiently small, and the value of
r2 large enough, to consider that simulation results provide
good estimates of the standard errors on parameters.

6. CONCLUSION AND FUTURE WORK
Estimating the reliability of parameter estimates is a crucial
aspect of model inference. We showed how to compute stan-
dard errors on AFM model parameters, and applied the pro-
posed methods to public datasets from the PSLC Datashop.
This yields several observations.

First, the more accurate model is not always the one with
the better KC model: parameter validity and predictive abil-
ity are different. That confusion is not new however and al-
lowed progress in cognitive psychology in the first half of the
nineteenth century before the community realized it failed
to “provide a strong foundation for deducing likely relation-
ships among variables, and hence for the development of
generative theory”[19].

Second, standard errors, and the associated confidence inter-
vals, provide precious insight into learning. However, char-
acterizing the absence of learning is more complicated, es-
pecially when γ is less reliable.

Finally, standard errors on parameters can be easily esti-
mated by the simulation method we describe. This can be
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Table 5: Estimated parameters and standard errors for several PSLC models.

Model Skill β StErrβ Simul. γ StErr γ Simul.
Arith0 Geometry*parallelogram-area 1.939 0.233 0.224 0.028 0.016 0.016
Arith0 Geometry*parallelogram-area*Textbk New Decomp. . . 2.540 0.617 0.659 0.180 0.149 0.192
Arith0 Geometry*Textbk New Decompose-circle-area 1.136 0.374 0.399 0.183 0.093 0.111
Arith0 arithmetic 1.992 0.272 0.250 0.027 0.023 0.022
Arith0 Geometry 0.781 0.260 0.197 0.000 0.036 0.021
Arith0 Geometry*decomp-trap*trapezoid-area -0.624 0.200 0.202 0.092 0.017 0.017
Arith0 Geometry*ALT:TRIANGLE-AREA 1.501 0.341 0.260 0.000 0.056 0.035
Arith0 Geometry*ALT:TRIANGLE-AREA-PART 0.204 0.400 0.416 0.230 0.124 0.132
Arith0 Geometry*compose-by-multiplication -0.675 0.390 0.400 0.267 0.121 0.126
Arith0 Geometry*pentagon-area -0.550 0.199 0.200 0.110 0.015 0.016
Arith0 Geometry*ALT:CIRCLE-AREA-INDIRECT -0.268 0.305 0.306 0.312 0.066 0.071
Arith0 Geometry*Textbk New Decompose-circle-area*circle. . . 0.871 0.255 0.258 0.073 0.030 0.031
Arith0 Geometry*ALT:CIRCLE-AREA 0.973 0.280 0.281 0.124 0.039 0.042
Arith0 Geometry*circle-area -0.393 0.348 0.342 0.171 0.089 0.093
Arith0 Geometry*circle-diam-from-subgoal 0.126 0.275 0.268 0.071 0.045 0.043
Arith0 Geometry*equi-tri-height? -2.986 0.714 0.888 1.232 0.310 0.385
Arith0 Geometry*decomp-trap -0.555 0.304 0.304 0.146 0.057 0.060
Arith0 compose-subtract 0.588 0.524 0.540 0.329 0.200 0.222
Context parallelogram-area 2.105 0.234 0.227 0.019 0.012 0.012
Context context 0.105 0.168 0.117 0.000 0.005 0.002
Context Geometry 0.873 0.168 0.171 0.016 0.005 0.006
Context Subtract-rectangles 2.475 0.571 0.398 0.000 0.137 0.091
Context decomp-trap -0.529 0.181 0.184 0.060 0.012 0.012
Context compose-by-multiplication 0.284 0.248 0.245 0.114 0.023 0.023
Context pentagon-area -0.552 0.199 0.197 0.110 0.015 0.016
Context circle-area 0.393 0.212 0.217 0.106 0.019 0.020
Context radius-from-area -0.427 0.351 0.347 0.165 0.089 0.091
Context radius-from-circumference 0.134 0.275 0.269 0.067 0.045 0.044
Context equ-tri-height-from-base/side -2.972 0.713 0.819 1.230 0.310 0.354
Context Subtract 0.576 0.523 0.554 0.336 0.200 0.227
Original ALT:PARALLELOGRAM-AREA 2.326 0.250 0.197 0.011 0.016 0.013
Original ALT:PARALLELOGRAM-SIDE 1.054 0.494 0.473 0.345 0.152 0.157
Original ALT:COMPOSE-BY-ADDITION 1.035 0.191 0.135 0.000 0.012 0.008
Original ALT:TRAPEZOID-AREA -0.860 0.344 0.340 0.344 0.092 0.094
Original ALT:TRAPEZOID-HEIGHT -0.800 0.329 0.340 0.243 0.079 0.083
Original ALT:TRAPEZOID-BASE -0.498 0.334 0.334 0.233 0.084 0.085
Original ALT:TRIANGLE-AREA 0.964 0.249 0.237 0.042 0.028 0.027
Original ALT:TRIANGLE-SIDE 0.122 0.297 0.245 0.037 0.056 0.044
Original ALT:COMPOSE-BY-MULTIPLICATION 0.393 0.231 0.221 0.113 0.022 0.023
Original ALT:PENTAGON-AREA -1.000 0.334 0.327 0.392 0.081 0.083
Original ALT:PENTAGON-SIDE -0.413 0.235 0.226 0.151 0.028 0.029
Original ALT:CIRCLE-RADIUS 0.360 0.234 0.210 0.046 0.027 0.026
Original ALT:CIRCLE-AREA 0.473 0.209 0.197 0.104 0.019 0.020
Original ALT:CIRCLE-CIRCUMFERENCE 0.876 0.268 0.251 0.073 0.037 0.037
Original ALT:CIRCLE-DIAMETER 0.593 0.258 0.252 0.074 0.034 0.036

convenient when the Hessian of the log-likelihood is not eas-
ily calculated or inverted.

Our work also raised significant questions. For instance, the
identifiability of the AFM model needs to be addressed, as
it is likely that AFM could, like DINA be in trouble on a
dataset that “does not involve a single-attribute item for
each of the K attributes” [17].
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ABSTRACT 

In this paper, we describe the analysis of multimodal data 

collected on small collaborative learning groups. In a previous 

study [1], we asked pairs (N=84) with no programming 

experience to program a robot to solve a series of mazes. The 

quality of the dyad’s collaboration was evaluated, and two 

interventions were implemented to support collaborative learning. 

In the current study, we present the analysis of KinectTM and 

speech data gathered on dyads during the programming task. We 

first show how certain movements and patterns of gestures 

correlate positively with collaboration and learning gains. We 

next use clustering algorithms to find prototypical body positions 

of participants and relate amount of time spent in certain postures 

with learning gains as in Schneider & Blikstein’s work [2]. 

Finally, we examine measures of proxemics and physical 

orientation within the dyads to explore how to detect good 

collaboration. We discuss the relevance of these results to 

designing and assessing collaborative small group activities and 

outline future work related to other collected sensor data.   

Keywords 

Multi-modal learning analytics, physical synchrony, 

computational thinking, collaboration 

1. INTRODUCTION 
Collaboration is increasingly listed as a common factor in many 

frameworks of 21st Century Skills that highlight how classrooms 

and workplaces will differ from their traditional models due to 

deluges of digital data from information and communications 

technologies [3]. Likewise, computational thinking has been 

deemed an essential set of skills and attitudes that are now central 

to all science, technology, engineering, and mathematical (STEM) 

disciplines as well as computer science [4]. The ability to rapidly 

assess and evaluate collaborative computational thinking tasks can 

facilitate instruction that aligns with these important aspects of 

modern learning environments. 

Multi-modal learning analytics utilizing multiple sensor 

technologies and machine learning techniques can offer insights 

into student learning in complex, open-ended scenarios such as 

computer programming, robotics, and problem-based learning [5]. 

These methods allow researchers and educators to conduct 

quantitative research without necessarily losing the richness of 

open-ended, constructionist activities [6]. These techniques are 

intended to be scalable and help implement better instruction by 

generating formative feedback, visualizing performance, and 

increasing the salience of important information for instructors. 

This paper focuses on measuring the quality of collaboration by 

analyzing participant movement and correlating a variety of 

measures with task performance and a coding scheme for 

assessing collaboration quality in dyads. We first summarize 

relevant literature on collaborative problem solving and the 

importance of gesturing in collaboration. Next, we explain the 

design and methods of the study where our data originated. 

Finally, we report our current findings and describe future work 

for our research. 

2. LITERATURE REVIEW 

2.1 Collaborative Problem Solving 
Researchers in computer-supported collaborative learning (CSCL) 

have long studied how small groups collaborate and co-construct 

knowledge [7]. The joint problem space that collaboration entails 

requires active social negotiation of the current problem, what can 

be done to solve the problem, and the goals of the task [8]. By 

studying how collaboration proceeds at a fine-grained level, 

researchers can assess the quality of this collaboration and see 

what measurable markers denote high quality collaboration. 

Examples of such dimensions include synchrony of physical 

actions and eye gaze [2, 9], physical reactions of participants to 

the actions of others [10], and gestures made during activities 

[11]. 

2.2 Gestures and Movement in Collaboration 
Emerging literature from multi-modal learning analytics has 

explored the roles of gesture, posture, and gross motor movement 

in collaborative, co-located activities. For example, facial 

expressions and gestures related to the face predict engagement 

and frustration, while facial expression and body posture have 

been shown to predict learning [12]. Bimanual coordination has 

been shown to be predictive expertise, where experts use both 

hands in a construction task more equally than novices [13]. 

Researchers have also been able to predict agreement between 

participants with a 75% accuracy using motion sensors and audio 

data streams [21].  Automatically detected measures of non-verbal 

synchrony (computed from Kinect data) have been found to 

predict creativity in dyads [22]. Finally, interactive tabletops have 

been a fruitful area of research for studying collaborative learning 
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groups; motion sensors and microphones have been used to 

capture students’ interactions and provide feedback to teachers 

about the status of the group [23]. 

Even if meanings of gestures cannot be automatically deduced 

from sensor data, the amounts of gesticulation can be calculated 

and used to augment analysis of learning [14]. While expert 

coders in a qualitative study can extract context-dependent 

meaning from a wide variety of gestures [15], quantitative work 

can utilize unsupervised machine learning methods to cluster 

student postures and movement patterns automatically to gain a 

coarse-grained sense of how students are transitioning between 

states in an activity and how those state transitions relate to 

learning gains and collaboration measures [2]. 

This paper builds upon this emerging literature to look at 

students’ micro-behaviors during their learning process (e.g., 

[20]). More specifically, we explore how unsupervised machine 

learning algorithms can find prototypical states from dyads of 

students when learning to program a robot. 

3. The Study 

3.1 Participants 
Forty-two dyads completed the study (N = 84) and forty groups 

were used in the final data set (each researcher’s first session was 

removed to improve overall fidelity.) Participants were drawn 

from an existing study pool at a university in the northeastern 

United States. 62.2% of participants reported being students, with 

ages ranging from 19 to 51 years old with a mean age of 26.7 

years. 60% of participants identified as female.  

3.2 Design & Procedure 
Employing a two-by-two between-subjects design, dyads were 

randomly assigned to one of four conditions: Condition #1 

received neither intervention, Condition #2 received solely a 

visualization intervention, Condition #3 received solely an 

informational intervention, and Condition #4 received both 

interventions. The informational intervention was delivered 

verbally by the researcher and consisted of several research 

findings relevant to collaborative tasks such as equity of speech 

time predicting the overall quality of a collaboration. The 

visualization intervention utilized speech data from the motion 

sensor to visualize the relative proportion of speech coming from 

each participant over the prior 30 seconds of the activity. Each 

participant was represented by a color on their side of the tablet, 

and the screen would fill with more or less of their color to reflect 

their contribution (see Figure 1, right). 

After signing informed consent paperwork, participants were 

fitted with sensors described in 3.4. Participants were shown a 

tutorial video illustrating the basics of writing a simple program in 

Tinker, a block-based programming language. Participants then 

had five minutes to write code to move a simple robot across a 

line on the table roughly two feet in front of it. The robot 

consisted of a microcontroller, two DC motors with wheels, and 

proximity sensors mounted on the front, right, and left (see Figure 

1, left). 

 

Following the tutorial activity, dyads were shows a second tutorial 

video that highlighted more advanced features of Tinker such as 

using provided pre-written functions to turn the robot, checking 

the values of the proximity sensors, and using conditional 

statements. A hard copy of a reference sheet that summarized the 

contents of the video was provided following this. Dyads then had 

30 minutes to write code to allow the robot to solve a series of 

increasingly complex mazes (see Figure 1, center). Once the 

participants’ code successfully guided the robot through a maze 

twice, a new maze was provided. During the main portion of the 

activity, a series of predetermined hints were given to dyads at 5-

minute intervals regarding common pitfalls researchers identified 

in pilot testing. 

3.3 Dependent Measures 
The dyad’s collaboration and task behaviors were evaluated 

during the task by the researcher running that session. Quality of 

collaboration was assessed on nine scales based on Meier, Spada, 

and Rummel’s work [16]: sustaining mutual understanding, 

dialogue management, information pooling, reaching consensus, 

task division, time management, technical coordination, reciprocal 

interaction, and individual task orientation. Task behaviors 

evaluated were task performance, task understanding, and 

improvement over time. Following the activity, researchers coded 

the quality of the final block-based code each dyad produced to 

determine how well the code could theoretically guide the robot 

through a maze of unknown layout.  

To assess learning of computational thinking skills, participants 

individually completed a pre- and post-test with four questions 

assessing principles of computer science such as using conditional 

statements, looping, and predicting the output of given code 

(adapted from [17], [18]). Researchers coded the completeness of 

answers based on their demonstrations of understanding of 

computational thinking principles. Along with the post-test, 

 

Figure 1. Materials used in the study: the robot that participants had to program (left), one example maze (middle) and the 

Kinect-based speech visualization (right). 
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participants completed a self-assessment of the perceived quality 

of their collaboration with their partner (also adapted from [16]). 

Participants also filled out demographic information and 

completed a free response reflection regarding how their thinking 

changed over time. 

3.4 Process Data from Multi-modal Sensors 
We used three types of sensors during the study: two mobile eye-

trackers captured participants gaze movements at 50Hz; two 

Empatica wristbands captured physiological signals (e.g., 

electrodermal activity, heart rate, …) at various rates; and one 

Kinect sensor captured body postures and facial information. 

Finally, we also used several cameras and microphones to get an 

overview of the interaction. The details of the exact sensors used 

and the types of data collected are available in [1]. In this paper, 

we focus more closely on the Kinect data. 

The Kinect motion sensor collects roughly 100 variables related to 

a person’s body joints and skeleton (24 different points with 

columns for x, y, z coordinates), their facial expressions, and their 

amount of speech (Figure 2, top). Typically collected at 30 Hz (30 

times per second), this results in roughly 3,000 observations per 

second or 5.4 million observations per individual during a 30-

minute session of our study. When done with dyads, this amount 

of data doubles. 

3.5 Data Preprocessing 
Each session’s Kinect data contained 8-10 comma separated value 

(CSV) files as a new file was created every time a participant was 

lost and then detected again by the motion sensor. After cleaning 

the data to leave only observations collected during the main 

portion of the activity, CSV files were assigned to either the left 

or right participant based on their average spine locations. 

Experimental design prohibited participants from switching sides 

during the activity. 

Additional cleaning was required in instances where researchers 

briefly entered the frame of the Kinect while the session was 

underway. This often led to participant wireframes merging or 

otherwise becoming distorted (Figure 2, bottom). All instances 

where participant skeletons could not be clearly resolved were 

removed from our analysis. 

After assignment of participant side and cleaning, movement 

variables were calculated for each of the skeleton points by 

calculating the difference between the coordinates of a point at 

one observation and the coordinates of the same point at the next 

observation. If the skeletal point was occluded from the Kinect 

sensor (i.e., a hand below the surface of the table) positions of that 

point were automatically inferred by the sensor but no movement 

variables were calculated. Joint angles were also calculated for 

each major joint. 

CSV files were combined in two different ways:  all were 

concatenated to give an individual level file while left and right 

participant files were outer joined to create a dyad level file. The 

Kinect data computations for this paper were run in Python 2.7 

and analyses of pre-post survey data was done in R 3.4.3 and 

RStudio 1.1.423. 

4. RESULTS 
This section summarizes our analyses and results: first, we 

describe some trends in the dependent measures (4.1). Second, we 

look at the amount of movement generated by each participant / 

dyads, and how they correlate with the dependent measures (4.2). 

Third, we use clustering methods to find prototypical body 

postures to identify “(un)productive” states (4.3). Finally, we 

analyze dyadic interactions from the Kinect data (4.4). 

4.1 Task Performance and Collaboration 
We first briefly describe the main results of the study (also to be 

reported in [1]). The researcher-coded quality of collaboration 

differed significantly between the conditions that received the 

informational intervention (3&4) and those that did not (1&2). 

Dyads assigned to “explanation” scored 7.1 percentage points 

higher than those in “no interventions” (p < 0.001). Dyads in 

“both interventions” scored 4.8 percentage points higher than 

those in “visualization” (p = 0.03). 

Participant individual self-assessments of the quality of their 

collaboration different significantly from researcher assessment at 

the dyad level (F = 15.21, p < 0.001) but both are significantly 

positively correlated (r = 0.43, p = 0.001). Self-reported scores 

were higher for measures of task division, time management, and 

reciprocal interaction while being lower for reaching consensus, 

dialog management, and sustaining mutual understanding. 

Participants across all conditions gained an average of 19.8 

percentage points on the survey of computational thinking 

principles (t = 6.18, p < 0.001). Learning gains did not differ 

significantly by condition, gender, the gender makeup of the 

group, or level of previous education. Pre-test scores did not 

differ significantly by condition. The quality of the final block-

based code dyads produced was significantly correlated with the 

number of mazes completed (r = 0.45, p < 0.001), task 

understanding (r = 0.45, p < 0.001), and improvement over time (r 

= 0.54, p < 0.001). Significant correlations from these surveys and 

assessments are summarized in Figure 3. 

 

 

 

Figure 2. Visual representation of skeletons of participants 

(top), example of “messy” data caused by researcher 

entering the frame (bottom). 
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4.2 Movement Variables 
At the individual level, neither the total movement of any specific 

joint nor the average movement of those points correlated 

significantly with any of our collaboration or task performance 

metrics. Amount of time talking was significantly correlated with 

total quality of collaboration at the individual level (r = 0.30, p = 

0.01) and will be investigated in-depth.  

Most of our measures are at the dyad level, so movement variables 

were aggregated by session rather than participant. Improvement 

over time was significantly correlated with increased movement of 

the right elbow (r = 0.47, p = 0.006), right shoulder (r = 0.38, p = 

0.029), mid-spine (r = 0.41, p =0.018), and neck (r = 0.38, p = 

0.028). Task performance was significantly correlated with right 

elbow (r = 0.35, p =0.037), right shoulder (r = 0.35, p = 0.035), 

right hand (r = 0.36, p = 0.027), and mid-spine movement (r = 

0.40, p = 0.017). Code quality was significantly correlated with 

increased movement of the right elbow (r = 0.34, p = 0.025), right 

shoulder (r = 0.32, p = 0.032), mid-spine (r = 0.31, p =0.017), and 

neck (r = 0.34, p = 0.024). Overall collaboration more strongly 

correlated with higher average talk time at the dyad level than the 

individual level (r = 0.48, p = 0.0008).  

Clustering was done on the movement variables to identify 

patterns of movement that may be relevant to our measures of 

collaboration and task performance. Due to the unpredictable 

nature of missing data due to occluded limbs and joints, the 18 

movement variables per observation often had one or two missing 

values. Rather than throw out the entire row, we utilized the K-

POD algorithm [19], a variant of k-means clustering that can 

handle and impute missing data. We generated 2 through 9 

clusters and visually inspected the separation of the different 

centroids. We elected to keep three clusters due to good 

separation and ease of interpretability. 

Groups that spent a higher proportion of their time in the high 

movement cluster had significantly higher task performance (r = 

0.31, p = 0.049) and improvement over time (r = 0.44, p = 0.009). 

Our overall rating of collaboration did not significantly correlate 

with time spent in this cluster (p = 0.052) but ratings of reaching 

consensus and dialogue management did differ significantly (r = 

0.34, p = 0.04; r = 0.40, p = 0.02). Individuals overall spent 

roughly 13% of their time in high movement states with the 

remainder of their time evenly split between medium and low 

movement states. 

4.3 Angle Variables 
In this section, we replicate Schneider & Blikstein (2015)’s 

approach for identifying prototypical body postures using joint 

angle. Joint angles were calculated for 11 upper body joints for all 

observations. Due to having much less missing data for joint 

angles versus movement variables, k-means clustering was used to 

generate visualizations of prototypical postures participants held 

during the course of the activity. As with our prior clustering, 2 

through 9 clusters were fit with our model and we chose three 

clusters due to the interpretability of the resulting visualizations. 

As seen in Figure 4, the three postures are distinct in hand 

placement, symmetry, and arm position. The first posture (left) 

can be thought of as “planning” where both hands are close 

together and the participant is leaning forward. This is generally 

the default posture for someone looking at a computer screen. 

Dyads spent a large amount of their time looking over their code 

and the various options available to them.  

The second posture (Figure 4, center) we refer to as a “tinkering” 

state where the robot is being directly manipulated. In this state, 

participants are generally standing or leaning up out of their chairs 

to test different scenarios the robot might encounter and what 

sensor values those scenarios generate. Participants also had to 

manually reset their robot to the starting position after each 

attempt to solve a maze. 

 

Figure 3. Correlogram of performance metrics and ratings 

of collaboration. All correlations shown are significant. 

 

Figure 4. Three prototypical postures participants assumed during the study. 
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The final state (Figure 4, right) comes from a design decision 

made in the study. The small robot was tethered to the participant 

laptop via a USB cord for power and to upload new code, so each 

time the robot was in motion one participant had to hold the USB 

cord high enough to avoid it getting tangled in the maze. The 

prototypical posture shows this clearly. We refer to this posture as 

“iterating” as it is only observed when running code in an attempt 

to solve the maze. Examples of the “planning” and “iterating” 

postures can be seen in Figure 5. 

As with the movement variables, proportion of time spent in each 

posture was aggregated for each participant. Increased proportions 

of time spent in the “iterating” posture significantly correlated 

with task performance (r = 0.28, p = 0.002), code quality (r = 

0.24, p = 0.005), task understanding (r = 0.24, p = 0.02) and 

improvement over time (r = 0.20, p = 0.02). Proportion of time 

spent in the “tinkering” posture, however, negatively correlated 

with the same four metrics: task performance (r = -0.31, p = 

0.0004), code quality (r = -0.23, p = 0.008), task understanding (r 

= -0.27, p = 0.003) and improvement over time (r = -0.27, p = 

0.003). 

To analyze the probabilities of state transitions taking place 

between these prototypical postures, a Markov model was 

constructed to visualize the probabilities of different state 

transitions occurring (Figure 6). The size of the circles represents 

the relative amount of time spent in each state and the labels of 

the arrows indicate the probability of different transitions 

occurring. The most likely transitions for the average participant 

(Figure 6, center) all involve the “iterating” state, either staying in 

it or moving from the other states to it. The least likely transitions 

involve moving from “iterating” or “tinkering” back to the 

“planning” state. 

Markov models for individuals in the highest performing and 

lowest performing quartiles (according to their task performance) 

were generated to explore how state transitions may vary by 

outcome. High performing individuals (Figure 6, top) were 13% 

more likely to transition back from “iterating” to “planning” and 

38% more likely to transition from “tinkering” to “planning” 

versus their low performing peers (Figure 6, bottom). High 

performing individuals spent 12% less time in the “tinkering” 

state versus low performers, using this time to run more iterations 

of their code versus adjusting the robot itself. 

4.4 Dyad Interactions 
A proximity measure was calculated based on spine positions to 

determine how closely participants were seated next to each other, 

a leaning measure determined if participants were leaning towards 

each other or away from each other, a facing measure based on 

participant shoulders determined how much participant bodies 

 

Figure 5. Examples of “iterating” posture (holding wire) 

and “planning” (seated participant). 

High Quartile: 

 

Average Participant: 

 

Low Quartile: 

 

Figure 6. Markov state transition models. 
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were facing each other, and bimanual coordination was calculated 

for each participant to see how evenly they used both of their 

hands during the activity. While bimanual coordination is 

calculated at the individual level, the dyad analysis explores 

whether synchrony in bimanual coordination correlates with our 

outcome measures. 

Performance on the task correlates positively with dyads leaning 

towards each other (r = 0.34, p = 0.030). Increased bimanual 

coordination of the right participant correlates with task 

understanding (r = 0.34, p = 0.018) but synchrony of coordination 

does not seem significant. Due to the setup of the room where the 

study was conducted, the mouse of the participant laptop was 

placed on the right side and may have led the right participant to 

use the laptop more. This may have had an uneven influence on 

the impact of their bimanual coordination. 

Alignment and proximity are strongly correlated (r = 0.83, p < 

0.001) in our dyads but neither measure significantly correlates 

with our task performance measures. While proximity was not 

correlated with our overall measure of collaboration, participants 

being closer together is significantly correlated with information 

pooling (r = 0.35, p = 0.026). 

5. DISCUSSION 
This paper provides some preliminary and promising results 

describing the relationship between students’ body postures / 

movements and their quality of collaboration, task performance 

and learning gains. We found predictors for those dependent 

measures in a naturalistic, open-ended task that routinely takes 

place in makerspaces and engineering courses. While there are 

limitations to this work, our contribution paves the way to rich 

multimodal analyses of students’ collaboration. It also unlocks 

new opportunities to design innovative interventions to support 

social interactions in small groups (e.g., by providing visual 

representations of students’ behavior to support self-reflection) 

and classroom orchestration (e.g., by providing teachers with real-

time dashboards of the class).  

The significant correlations found between average movement of 

points along the upper right side of participants’ bodies with 

outcome measures indicates the importance of gesturing and 

physical movement when communicating ideas. Qualitative 

coding of exemplar videos may detect specific gestures or 

movements used more frequently by high performing groups, but 

these movement variables offer a quick way to potentially predict 

how well participants will do in an activity. While we do not 

make any causal claims regarding increasing movement to 

increase performance, future interventions could target visualizing 

gesture and movement data for dyads as they work instead of 

verbal contribution.  

The clusters generated by our joint angle data reveal interesting 

patterns in participant behavior. While time spent iterating has 

been shown here to correlate with better performance, dyads may 

benefit from more cycling through the three states to mimic ideal 

cycles of cognition [20].  While iterating and testing their code is 

certainly important, participants must be able to process what 

went wrong and try to fix it before attempting to test their code 

again. In several sessions, participants kept running their code 

over and over in hopes that the robot would perform better the 

next time. Even though they had the code in front of them to 

manipulate, some novices may have lacked the computational 

thinking knowledge to transfer errors they saw the robot making 

to errors in their code. 

6. LIMITATIONS 
We do not have data on the handedness of our participants, but an 

open question is whether the mouse placement on the right side of 

the shared laptop inadvertently lead the right participant to 

assume a leadership role with the laptop. The uneven importance 

of bimanual coordination for the right participant is an indication 

the physical setup of the room may have impacted the study in 

unintended ways. Analyzing the recordings of sessions and 

identifying leader behavior or who is assuming driver / passenger 

roles is an additional avenue for future work. 

Some of our posture results are fairly idiosyncratic to our study 

due to the USB cord attached to the robot, making generalization 

of findings difficult. 

As described in Section 3.5, the Kinect sensor generated a wide 

variety of malformed skeletons that led to a lengthy and imprecise 

period of manual cleaning prior to analysis. Experimental design 

must be conscious of the limitations of the sensors and ensure that 

as little noise as possible be added to the data. 

7. FUTURE WORK 
We plan to further identify productive micro-behaviors from the 

Kinect data to gain additional insights in the ways that dyads 

synchronized their actions. Future work with regards to 

prototypical postures would also explore both participants in a 

dyad at once, clustering on both joint angles simultaneously. This 

may reveal combinations of postures that are informative and 

could extend our exploration of physical synchrony within dyads. 

The differences between dyads in different conditions will also be 

a main focus of analysis moving forward. 

It should be noted that this paper only describes one aspect of a 

positive collaboration. In future work, we plan to extend this line 

of work to attentional alignment (also referred to as joint visual 

attention [24]) using the eye-tracking data, verbal coherence [25] 

using transcripts, physiological synchronization [26] using the 

Empatica data, and ultimately combine those modalities together. 

This will provide us with a richer and more comprehensive view 

of students’ collaboration and potentially feed machine learning 

algorithms to make predictions about the status of a group using 

multimodal streams of data. 

Future work will also revisit our coding of collaboration to 

improve inter-rater reliability (currently Cronbach’s alpha = 0.65, 

75% agreement). For our movement clustering, several 

correlations with collaboration measures were close to being 

significant but may have been hindered due to less-than-ideal 

reliability of our initial coding. Additionally, patterns of missing 

data in movement variables will be explored more thoroughly and 

other clustering algorithms will be tested. 

To further explore the importance of cycles of iteration, the 

number of times participants ran the code on their robot might be 

detected from screencast recordings of the participant laptop. We 

do not have log files from Tinker to analyze, but computer vision 

algorithms should be able to detect how often the “run” button 

was pressed during a session. With the Kinect sensor no longer 

being produced, future work may rely solely on video recording 

with joints and coordinates determined by computer vision 

software rather than sensors. This would aid the scalability of 

these techniques by reducing the cost of implementation in 

classrooms and other learning environments. 
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ABSTRACT
This work is a step towards full automation of auto-mentoring
processes in multi-player online environments such as virtual
internships. We focus on automatically identifying speaker’s
intentions, i.e. the speech acts of chat utterances, in such
virtual internships. Particularly, we explore several machine
learning methods to categorize speech acts, with promising
results. A novel approach based on pre-training a neural net-
work on a large set of (and noisy) labeled data and then on
expert-labeled data led to best results. The proposed meth-
ods can help understand patterns of conversations among
players in virtual internships which in turn could inform re-
finements of the design of such learning environments and
ultimately the development of virtual mentors that would
be able to monitor and scaffold students’ learning, i.e., the
acquisition of specific professional skills in this case.

Keywords
speech act, virtual internships, online tutoring, classifica-
tion, neural networks, machine learning

1. INTRODUCTION
Virtual internships are simulations where interns gain pro-
fessional experience while participating in an online fictional
company. That is, they go through an internship experience
without actually being present in a physical, actual com-
pany. In such virtual internships, the student interns par-
ticipate in activities such as solving designated problems or
tasks for which they actively interact with their mentor(s)
as well as other interns through instant text messages, voice
messages, chatrooms, and multimedia elements. The learn-
ing that occurs in engineering virtual internships, our focus,
can be characterized by epistemic frame theory. This the-
ory claims that professionals develop epistemic frames, or

the network of skills, knowledge, identity, values, and episte-
mology that are unique to that profession [17]. For example,
engineers share ways of understanding and doing (knowledge
and skills); beliefs about which problems are worth investi-
gating (values), characteristics that define them as members
of the profession (identity), and a ways of justifying decisions
(epistemology).

It is important to understand patterns of conversations be-
tween the various players in a virtual internship in order
to refine the design of such virtual internships and to ul-
timately develop a virtual mentor that would be able to
monitor and scaffold students’ learning, i.e., the acquisition
of specific professional skills in this case. Currently, virtual
internship environments rely on human mentors. Our work
here is a step towards a deeper understanding and full au-
tomation of the mentoring process. Indeed, understanding
the mentoring process implies detecting patterns of actions
by the mentor and by the students that are effective. Since
conversations are the main type of interactions between the
mentors and the student interns, understanding the actions
or intents behind each utterance in the conversations is crit-
ical. We offer here such solutions to automatically detect-
ing the intent, or speech act, behind chat utterances in vir-
tual internships. Furthermore, such solution are critical to
fully automate the mentoring process, i.e., to building auto-
mentors. Indeed, knowing students’ speech acts can inform
an automated mentoring agent to plan the best reply. For
instance, if a student is greeting, the system should respond
with a greeting or if a student is asking a question the system
should plan to, for instance, answer the question.

Speech acts are a construct in linguistics and the philosophy
of language that refers to the way natural language performs
actions in human-to-human language interactions, such as
dialogues. Speech act theory was developed based on the
“language as action” assumption. The basic idea is that be-
hind every utterance there is an underlying speaker intent,
called the speech act. For instance, the utterance “Hello,
John!”corresponds to a greeting, that is, the speaker’s inten-
tion is to greet, whereas the utterance “Which web browser
are you using?”is about asking a question. As already hinted
earlier, discovering learners’ patterns of actions in the form
of patterns of (speech) acts in virtual internships could be re-
vealing. For instance, we may find that interns that ask more
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questions acquire better and faster target professional skills
based on the theory that asking more relevant questions in-
dicates a more active and engaged learner which typically
leads to more effective and efficient learning processes.

Labeling utterances with speech acts requires both an anal-
ysis of the utterance itself, e.g., “Hello” clearly indicates a
greeting, but also accounting for the previous context, i.e.,
previous utterances in the conversation. For instance, af-
ter a question, a response most likely follows. This pattern
holds in dialogues, i.e., interactions between two conversa-
tional partners where there is a clear pattern of turn-taking;
that is, a speaker’s turn is followed by a turn by the other
speaker. However, in multi-player conversations such as the
one that we deal with in this work, identifying the previous
utterance that is most relevant to the current one is more
difficult. For example, in the snapshot of conversation shown
in Table 1 from one of our virtual internships, the question
in chat utterance 3 from player2 is addressed to the mentor
whose reply is in utterance 6. The next Player2’s reply is
in utterance 9. Indeed, in such multi-party conversations, it
becomes more challenging to link a target utterance to the
previous one that triggered it. The complexity of untangling
such multi-player conversations is further increased as the
number of participants increases. Therefore, even though
the speech act of an utterance is determined to some degree
by the previous, related chat utterances, in this work we ex-
plore a method for speech act classification that relies only
on the content of the target utterance itself, ignoring the
previous context.

Table 1: A Snapshot of Conversation in Nephrotex
S.N. Speaker Utterance

1 mentor I’m here to help you.
2 player1 hi!
3 player2 Has anyone been able to get the tu-

torial notebook to open?
4 player3 Hey
5 player4 Hello!
6 mentor Which web browser are you using?
7 player3 are you guys real?
8 player1 yes we’re real lol
9 player2 I switched to Firefox, now every-

thing is working. Thanks!

To this end, we used various existing classifiers such as Naive
Bayes and decision trees along with a Neural Network (NN)
approach. Based on previous experience such as [15, 14],
we selected leading words in each utterrance as the fea-
tures of the underlying model. The feature-based represen-
tations of utterances were then fed into Naive Bayes and
decision tree classifiers. For neural networks, we used the
pre-trained sent2vec[11] model, trained on a large collection
of Wikipedia articles, to map an entire utterance onto a vec-
tor representation or embedding. Nevertheless, our data is
dialogue data which differs from Wikipedia texts to some
degree. To compensate for this discrepancy, the basic model
is used to further train a small neural network using a com-
paratively small domain specific dataset in order to improve
the predictive power for the type of instances seen in our
dataset. That is, this is a form of transfer learning where
our model first uses generic knowledge from the pre-trained
Wikipedia model which is then tranferred or adapted to a

specific domain data by training with domain data. Fur-
thermore, using pre-trained models can also lead to better
parameter learning in NN [12].

We also investigated a novel approach to building a speech
act classifier for multi-player conversational systems using
a mix of noisy and golden data, as explained next. In this
approach, we trained a decision tree model with a small set
of human annotated data and then used that trained model
to generate (noisy) labels for a much larger collection of
utterances. The noisy labeled utterances were then used to
pre-train the neural network and then further trained with
the human annotated gold dataset. The advantage of pre-
training here is to have a huge collection of training data to
pre-train the network and then refine the training using the
(smaller) human-annotated (noise-free or gold) dataset.

Next, we present a quick overview of related work in this area
before presenting details of our methods and experiments
and resuts.

2. BACKGROUND
As mentioned, our approach to label utterances with speech
acts is based on the speech act theory according to which
when we say something we do something [1, 16]. Austin the-
orized the acts performed by natural language utterances.
Later on, Searle[16] refined Austin’s idea of speech acts by
emphasizing the psychological interpretation based on be-
liefs or intentions. According to Searle, there are three lev-
els of actions carried by language in parallel. First, there
is the locutionary act which consists of the actual utterance
and its exterior meaning. Second, there is the illocutionary
act, which is the real intended meaning of the utterance, its
semantic force. Third, there is the perlocutionary act which
is the practical effect of the utterance, such as persuading
and encouraging. In a few words, the locutionary act is
the act of saying something, the illocutionary act is an act
performed in saying something, and the perlocutionary act
is an actperformed by saying something. For example, the
phrase “Don’t go into the water” might be interpreted at the
three act levels in the following way: the locutionary level
is the utterance itself, the morphologically and syntactically
correct usage of a sequence of words; the illocutionary level
is the act of warning about the possible dangers of going
into the water; finally, the perlocutionary level is the actual
persuasion, if any, performed on the hearers of the message,
to not go into the water.

Many researchers have explored the task of automatically
classifying speech acts as well as the related task of dis-
covering speech acts. For instance, Rus and colleagues [14]
proposed a method to automatically discover speech act cat-
egories in dialogues by clustering utterances spoken by par-
ticipants in educational games. In our case, we use a pre-
defined taxonomy of speech acts which was inspired by Rus
and colleagues’ work and further refined by dialogue experts.

The same group of researchers explored the role of Hidden
Markov Models (HMMs), a generative model, and Condi-
tional Random Fields (CRFs), a discriminative model, in
classifying speech acts in one to one human tutorial sessions
[13]. They demonstrated that the CRF model with fea-
tures constructed from the first three tokens and last token
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of previous, next and current utterances, length of current
utterance, and other surface features such as bigrams and
the speech acts of context utterances performed better than
HMM models. They have not worked with multi-party con-
versations as it is the case in our work.

In other work, Moldovan and colleagues [9] applied super-
vised machine learning methods to automatically classify
chats in an online chat corpus. The corpus consisted of
online chat sessions in English between speakers of differ-
ent ages. Their supervised approach relied on an expert
defined set of speech act categories. In their work, they hy-
pothesized that the first few tokens were good predictors of
chat’s speech act. Samei et al. [15] adopted Moldovan’s hy-
pothesis about the predictive power of first few tokens and
extended the supervised machine learning model with con-
textual information, i.e., previous and following utterances.
From their experiments with data from an online collabo-
rative learning game, they found that the role of context is
minor and therefore context is not that important and can
mostly be ignored in predicting speech acts. Similar to those
works, we also explore the effectiveness of leading word to-
kens in utterances for Naive Bayes and decision tree based
classifiers.

Ezen and Boyer [4] proposed an unsupervised method for
dialogue act classification. They used a corpus from a col-
laborative learning programming tutor project which con-
sisted of dialogues between pairs of tutors and students col-
laborating on the task of solving a programming problem.
They applied an information retrieval approach in which the
target utterance was considered as a query and the rest of
the utterances were considered as documents. Based on the
ranked list of relevant utterances to the query utterance, a
vector representation is derived for each query utterance.
The vector representation is then fed into a k-means clus-
tering algorithm to identify clusters of utterances. For eval-
uation purposes, they used manually labeled data. Each
cluster was assigned the majority human-generated label of
all utterances in the cluster. An utterance that was placed in
a particular cluster by the k-means clustering algorithm was
assigned the label of that cluster as its speech act category
for evaluation purposes. It should be noted that they varied
the number of clusters to obtain a maximum overall accu-
racy of the discovered labels. Their algorithm outperformed
a previous approach for dialogue act clustering, which Ezen
and Boyer used for classification and which relied on a simple
tf-idf representation and cosine similarity for clustering.

Kim and colleagues investigated the task of classifying dia-
logue acts in multi-party chats[8]. They analyzed two dif-
ferent types of live chats: (i) live forum chats with multi-
ple participants from the US Library of Congress and (ii)
Naval Postgraduate School (NPS) casual chats [5]. In order
to classify the utterances in the chats in various speech act
categories, Kim and colleagues [7] used speech act patterns
which they defined manually using cue words derived from
the utterances. They classified the discussion contributions
into six speech act categories. They found that the previous
chat utterances used as context did not contribute signifi-
cantly to predicting speech acts in multi-party conversations
until the entanglement amongst the utterances was resolved.
Our work is similar to theirs in the sense that we analyze

multi-party conversations. Nevertheless, our work is con-
ducted in the context of the virtual internship Nephrotex,
where learners focus on specific design problems as opposed
to the types of conversations used by Kim and colleagues
such as the casual NPS chats, which did not focus on a par-
ticular given task. We do not explore the accuracy of our
methods in context. Furthermore, we do not resolve the en-
tangled dialogues and then use contextual information for
speech act classification. We do plan to address the role
of context and entanglement in multi-party conversations in
future work.

A regular expression based speech act classifier was proposed
by Olney et al[10]. Their classifier used regular expression
which they called a finite state transducer to classify utter-
ances of AutoTutor, an intelligent tutoring system. They
showed that the classifier constructed by cascading parts
of speech information, the finite state transducer, and word
sense disambiguation rules yielded good performance in clas-
sifying utterances into 18 categories. We have not compared
our work with a regular expression based classifier due to the
labor intensive aspects of such an approach. Typically, such
regular-expression approaches should lead to high-precision
results and not generalize very well unless they target speech
act categories which are more or less closed-class such as
greeting expressions (there is a limited number of expres-
sions in which someone can greet).

3. ENGINEERING VIRTUAL
INTERNSHIPS

Our work presented here was conducted on conversations
among students and mentors in Nephrotex (NTX), a virtual
internship. Nephrotex was designed and created to improve
engineering undergraduate students’ professional skills. It
was incorporated into first-year engineering undergraduate
courses at the University of Wisconsin-Madison[3].

In NTX, groups of students work together on a design prob-
lem, e.g. designing filtration membranes for hemodialysis
machines, with the help of a mentor. Working on a design
problem involves choosing design specifications from a set
of input categories. Each student is assigned to a team of
five members. There were five such teams who were each
expected to learn about one of five different materials.

After completing a set of preliminary tasks, students design
five prototypes to submit for testing. Later, they receive
performance results for these prototypes which they have to
analyze and interpret. Overall, students in each internship
complete two such cycles of designing, testing, and analy-
sis before deciding on a final design to recommend. During
these cycles, students hold team meetings via the virtual in-
ternship’s chat interface in which they reflect on their design
process and make decisions on how to move forward. Once
teams recommend a final design, they present this design to
their peers. The conversations among the participants take
place virtually via an online chat interface in Nephrotex, or
in person outside of the class.

As previously mentioned, in this work, we focus on analyz-
ing chat utterances in Nephrotex in order to discover the
underlying speech act. Automated speech acts classification
could have significant impact on scaling virtual internships
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to all students, anytime, anywhere via Internet-connected
devices. This is not currently possible because the human
mentors can only handle that much.

4. METHODS
Our approach to classifying learner utterances in virtual in-
ternships relies on machine learning algorithms that take as
input utterances represented in a feature space. The features
in our case are either surface features (such as leading words)
or latent features (such as dimensions in neural sentence em-
beddings). We developed and compared the performance of
two different categories of classifiers that rely on these two
types of representations. We describe briefly those classi-
fiers, the features we used, and the results obtained during
experiments meant to validate the proposed classifiers.

4.1 Classifier Using Surface Features
The surface feature representation of a text uses a number
of important lexical and syntactic elements such as leading
words or the punctuation mark at the end of the utterance,
e.g., the ending question mark at the end of a question. In
conversation data such as chat utterances in virtual intern-
ship, lexical features such as leading words alone have com-
petitive power in terms of speech act representation of the
utterance. Therefore we adopted the model representation
proposed previously [9, 14] due to its solid theoretical foun-
dations and competitive results. The basis of this approach
is that humans infer speakers’ intention after hearing only
few of the leading words of an utterance. One argument in
favor of this assumption is the evidence that hearers start
responding immediately (within milliseconds) or sometimes
before speakers finish their utterances[6]. Accordingly, we
selected few leading words (first few words) of the utterance
as the features to represent the utterance. Although we have
experimented with different number of leading words, we re-
port here results with the six leading words (first six words)
as this combination yielded best performance as explained
later. Once each utterance was mapped onto such a feature-
representation, we performed experiments with two different
types of classifiers: naive Bayes and decision trees.

Before feature construction, we pre-processed the utterances
by lemmatizing the words and removed the punctuations.
Although some of the punctuations, such as “question mark
(?)” or “exclamation mark (!)”, are predictive on some of
the speech acts, they seem to not always be present in or
seem to appear at improper places in the utterance. Hence
we ignored the punctuations for our analysis here.

4.2 Classifier Using Latent Features
The other category of classifiers we used relies on latent
features that were automatically learned using neural net-
works. These features are the components of automatically
generated vectors that represent sentences. Such neural net-
work generated vectors are derived from textual units such
as character, letter n-grams, words and words n-grams. In
our model, we adopted sent2vec, a sentence representation
model proposed by Pagliardini and colleagues [2, 11] and
which was developed by training a neural network on a col-
lection of Wikipedia articles.

Based on such latent representations of utterances, we de-
signed a neural network model in two stages. First, the

Table 2: Speech Act Taxonomy with Examples
Speech Acts Examples

expressive
evaluation
(xpe)

–It is excellent in all values except
for cost
–great
–The lag is pretty bad

greeting
(gre)

–Welcome back interns !
–Hello Team !

metastatements
(mst)

–sorry littles confused here
–Whoops , I was reading that wrong
.
–lol

other
(oth)

–or addition
–etc

question
(que)

–Is biocompatability cummulative ?
–who is going to write the email ?

reaction
(rea)

–I ’m ok with this
–alright , i think i agree with u guys

request
(req)

–Please keep that in mind during
your team selection of membrane
prototypes .
–K , I would like to start the team
meeting now .

statement
(stm)

–I read an article that said most di-
alyzers take 6 hours to run .
–I can start the meeting with jamon
...

model obtained a latent representation for an utterance us-
ing the generic pre-trained sent2vec model. In a second
stage, the embedded vector representation is used to further
train our neural network to perform speech act classification.

While training the neural network with domain specific data,
we applied two methods of training. In the first method, we
used a small set of human annotated gold data for training
and validation. In the second method, we pre-trained the
neural network with noisy labeled data generated from a
domain corpus and then further trained and validated the
model with gold data. We will discuss in detail the process
of generating noisy labels in the next section.

5. EXPERIMENTS AND RESULTS
In this section, we present the experiments that were con-
ducted and the results obtained, starting with a brief de-
scription of the data we used.

Table 3: Distribution of Speech Acts in Corpus
Human Labeled Noisy Labeled

Speech act # %Dist # %Dist

expressive evaluation 24 2.4 256 1.26
greeting 14 1.4 285 1.40
metastatements 40 4.0 405 2.00
other 11 1.1 166 0.82
question 173 17.3 3098 15.25
reaction 202 20.2 3347 16.47
request 56 5.6 1041 5.12
statement 480 48.0 11719 57.68

Total 1000 20317
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5.1 The Virtual Internship Conversation
Dataset

Our dataset consists of a collection of more than 22 thou-
sands utterances from the Nephrotex virtual internship. The
eight categories of speech acts we used are presented in Ta-
ble 2 (acronyms are shown in parentheses) together with
example utterances.

From the examples, it could be observed that the leading
tokens in each utterance are indicative of the underlying
speech act shown in the first column. For instance, greetings
start with “Hello” and “Welcome back” whereas questions
start with wh-words (“Who”) or auxiliary verbs (“Is”) while
requests start with “Please”, which is typically used to ask
for something in a nice manner.

Figure 1: Confusion matrix for classification of de-
cision tree (values refer to percentage expressed in
decimal, acronyms refer to the speech acts defined
in table 2)

Figure 2: Confusion matrix for classification of neu-
ral network (values refer to percentage expressed in
decimal, acronyms refer to the speech acts defined
in table 2)

5.1.1 The Data Annotation Process
Of the 22,317 utterances, 2,000 utterances were manually
annotated by three annotators. Out of these 2,000 utter-
ances, 1,000 utterances were used for training the annota-
tors. Agreement among annotators was computed as the
average of Cohen’s kappa between all possible pairs of anno-
tators. The average agreement between any two annotators
was 0.64.

Figure 3: Confusion matrix for classification of noise
label trained neural network (values refer to per-
centage expressed in decimal, acronyms refer to the
speech acts defined in table 2)

The remaining 1,000 utterances were labeled by the anno-
tators after finishing their training. The average agreement,
measured as Cohen’s kappa, among the coders was 0.69. To
generate a final, unique label for each annotated utterance
in cases in which there were any disagreements, a discussion
among the annotators took place as well as the group of
co-workers in the project team. We used the 1,000 human-
labeled utterances as a gold dataset on which a 10-fold cross
validation evaluation methodology was applied to evaluate
the proposed speech act classification methods.

5.1.2 The Noisy Label Generation
The rest of the utterances in the whole dataset of 22,317
utterances was automatically labeled using the decision tree
model trained on the first 1,000 instances labeled by trainee
annotators. We chose decision trees to generate noisy la-
bels because decision trees performed better than the Naive
Bayes classifier. It should be noted that we used the other
1000 human-labeled gold data for 10 folds cross validations
of our classifier models. Table 3 shows the distribution of
speech acts in the gold and noisy labeled datasets. From
the table, we observe that the noisy labels generated follow
roughly comparable pattern of distribution for the speech
acts that are more frequent in corpus. Therefore it makes
sense to some extent to use those noisy labels to pre-train
the neural network model.

5.2 Results
The results of the 10-fold cross-validation evaluation are
summarized in Table 4 and Table 5. We report performance
in terms of precision, recall, F-1 score, accuracy, and kappa.
The data in Table 4 suggests that the performance of the
neural network classifier is highest of all with an average F-
1 score and accuracy of 0.764 and 0.779, respectively, and
kappa of 0.666, which are the highest among all three types
of classifiers including Naive Bayes and decision trees. More-
over, the two sample t-test on 10-fold cross validation accu-
racies revealed that, neural network performed significantly
better than Naive Bayes (p−value ≈ 0.00) and decision tree
with (p− value ≈ 0.00).

The results shown in Table 5 shows that the neural net-
work model pre-trained with noisy labels improved the per-

Proceedings of the 11th International Conference on Educational Data Mining 345



Table 4: Performance of Naive Bayes, Decision Tree and Neural Network Classifiers
NB DT NN

Speech Act P R F1 P R F1 P R F1

expressive evaluation 0.200 0.042 0.069 0.000 0.000 0.000 0.556 0.208 0.303
greeting 1.000 0.143 0.250 0.000 0.000 0.000 0.667 0.143 0.235
metastatements 0.000 0.000 0.000 0.283 0.375 0.323 0.692 0.450 0.545
other 0.099 1.000 0.180 0.176 0.273 0.214 1.000 0.091 0.167
question 0.000 0.000 0.000 0.429 0.468 0.448 0.921 0.879 0.899
reaction 0.354 0.342 0.348 0.630 0.599 0.614 0.687 0.683 0.685
request 0.000 0.000 0.000 0.143 0.143 0.143 0.614 0.482 0.540
statement 0.581 0.831 0.684 0.680 0.642 0.660 0.791 0.908 0.846

Weighted Average 0.370 0.482 0.406 0.549 0.536 0.542 0.774 0.779 0.764
Accuracy = 0.482 Accuracy = 0.536 Accuracy = 0.779

Kappa = 0.177 Kappa = 0.341 Kappa = 0.666

Table 5: Performance of Noise Label Trained Neural
Network Classifier

Speech Act P R F1
expressive evaluation 0.900 0.375 0.529

greeting 1.000 0.357 0.526
metastatements 0.947 0.450 0.610

other 0.000 0.000 0.000
question 0.921 0.879 0.899
reaction 0.774 0.713 0.742
request 0.742 0.411 0.529

statement 0.762 0.925 0.835

Weighted Average 0.796 0.795 0.781
Accuracy 0.795

Kappa 0.685

formance. The overall improvement in precision, recall, F-1
score, and accuracy is about 2% with about 2% better kappa
when compared to the neural network classifier (Table 4)
without using the much larger, noisy label dataset. How-
ever, a t-test showed that the accuracy of the noisy label
trained neural network is not significantly better than neural
network trained without noisy label data (p−value ≈ 0.53).
This could have happened because of the small samples used
for the t-test: 10 from 10-folds cross validations. Using a
larger number of folds, say, 50, could help us getting a large
sample of accuracy values. It can be observed from the table
that the performance for the “other” category is the weak-
est among all four classifiers. The reason is because of the
nature of those utterances which contain only a few tokens,
i.e., one or two words (see Table 2), with a lot of variation
in terms of lexical content. In addition, the human labeled
dataset contained few instances for this category which re-
sulted in poor performance when the neural network model
was trained using the human labeled data. Similarly, in the
noisy, automatically-labeled dataset there are many misclas-
sified“other” instances which led to poor training of the neu-
ral network model. Furthermore, the next phase of training
the pre-trained neural network model with the human la-
beled data did not compensate enough because there were
not sufficient “other” instances in the human labeled data
to correct the pre-trained model. This is further supported
by analyzing the confusion matrix where the number of true
positives for the “other” category is 0%; the “other” cate-
gory is labeled as “statement” 90% of the time in the case of
the neural network model pre-trained with noisy labels (see
Figure 3). Further evidence for this is provided by analyzing

the confusion matrix for neural network trained only with
gold labels where true positives for “other” utterances was
9% (see Figure 2). In this case, “other” utterances were la-
beled as“question”and“reaction”. Other challenging speech
acts are ”request”, which is most often confused with “state-
ment”. This is not surprising as the lexical composition of
requests and statements is similar to some degree.

For decision trees, a quick analysis of the confusion matrix
(see Figure 1) revealed that the true positives for “expres-
sive evaluation” was 0%, being confused mostly with “re-
action” or “statement” (41% and 29% of the time, respec-
tively). Also, “greeting” is confused with “metastatement”
by 21%, “request” by 21%, and “statement by 28%”.

6. CONCLUSIONS
In this work, we explored several methods for speech act
classification. We explored various classifier models with
different categories of features as well as training strategies.
We found that the latent features generated by a pre-trained
sentence embeddings model (derived from a large Wikipedia
corpus) yielded better performance compared to the other
models. Besides that, the predictive power of the neural
network model was further boosted when pre-trained with
noisy label before training with expert-annotated data.

In future work, we plan to expand the current models by
using more contextual information. Given the multi-party
nature of our conversation data, before we can use contex-
tual information, it is necessary to disentangle the conversa-
tions into sets of related utterances. Our future models will
disentagle the multi-party conversations before attempting
to use contextual information for speech act classification.
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ABSTRACT 
A common goal of Intelligent Tutoring Systems (ITS) is to 
provide learning environments that adapt to the varying abilities 
and characteristics of users. To do this, researchers must identify 
the learning patterns exhibited by those interacting with the 
system. In the present work, we use clustering analysis to capture 
learning patterns in over 250 adults who used the ITS, CSAL 
(Center for the Study of Adult Literacy) AutoTutor, to gain 
reading comprehension skills. AutoTutor has conversational 
agentsth at teach literacy adults with low literacy skills 
comprehension strategies in 35 lessons. These comprehension 
strategies align with one or more of the following levels specified 
in the Graesser-McNamara theoretical framework of 
comprehension: word, textbase, situation model and rhetorical 
structure. We used the adult learners’ average response times per 
question and performance across lessons to cluster the students’ 
learning behavior. Performance was measured as the proportion of 
3-alternative-response questions answered correctly. Lessons were 
coded on one of the four theoretical levels of comprehension. 
Results of the cluster analyses converged on four types of 
learners: proficient readers, struggling readers, conscientious 
readers and disengaged readers. Proficient readers were fast and 
accurate; struggling readers worked slowly but were not accurate; 
conscientious readers worked slowly and performed 
comparatively well; disengaged readers were fast but did not 
perform well. Interestingly, the behaviors of learners in different 
clusters varied across the four theoretical levels.  Identifying types 
of readers can enhance the adaptivity of AutoTutor by allowing 
for more personalized feedback and interventions designed for 
particular learning behaviors. 

Keywords 
CSAL; AutoTutor; Adult reader; Learner clustering; Intelligent 
Tutoring; Personalized Instruction 

1.   INTRODUCTION 
1.1 AutoTutor 
AutoTutor is a conversation-based intelligent tutoring system 

(ITS) that has promoted learning on a wide range of topics [9, 13,  

22]. AutoTutor, on average, has shown learning gains of 0.8 σ 
[22] compared to various traditional teaching controls. AutoTutor 
holds a conversation with students following an expectation-
misconception tailored (EMT) approach [11]. This is a tutoring 
dialogue made up of questions that assess a learner’s 
understanding of the content by comparing it to expected answers 
or misconceptions in real time. Using this EMT approach, 
AutoTutor is constantly assessing the students by providing 
feedback, hints, pumps, prompts to guide learning of the content. 

Traditional AutoTutor systems implement conversations called 
dialogues that model the interactions that occur between a single 
human tutor and human student. More recent versions of 
AutoTutor oftenemploy trialogues which are tutorial 
conversations between three actors: a teacher agent, a human 
learner, and a peer agent [10, 12]. Trialogues offer several 
affordances over dialogues. For example, in a trialogue setting, 
the human learner can model productive learning behaviors that 
are programmed into the peer agent. The peer agent may also 
express misconceptions that the human learner shares and the 
negative feedback received from the tutor agent can be directed to 
the peer agent instead of the human learner. This helps avoid 
many of the undesirable effects from receiving direct negative 
feedback. Trialogues help students master difficult material. For 
example, trialogues successfully helped students learn scientific 
reasoning skills in an AutoTutor offshoot called Operation ARA 
[20, 21].   

Agent trialogues are implemented in AutoTutor for CSAL [9], an 
ITS developed at the Center for the Study of Adult Literacy 
(CSAL, http://csal.gsu.edu/content/homepage). The web-based 
system is designed to help adults with low literacy acquire 
strategies for comprehending text at multiple levels of language 
and discourse.  The system includes two computer agents (a 
teacher agent and a peer agent) which have conversations with 
human learners and between themselves. The learners are guided 
through their learning process by the computer agents. These 
three-way conversations are designed to (a) provide instruction on 
reading comprehension strategies, (b) help the learner apply these 
strategies to particular texts, (c) assess the learner’s performance 
on applying these strategies, and (d) guide the learner in using the 
digital facilities. While previous implementations of AutoTutor 
relied on written natural language input from the learner, the 
learners in AutoTutor for CSAL have difficulties with writing. 
Thus, this version of AutoTutor was designed so that students 
interact through point-and-click, answering multiple choice 
questions, or using drag-and-drop. The conversational feature of 
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AutoTutor still guides the learner, but the questions can be solved 
without typed input. The lessons typically start with a 2-3 minutes 
video that reviews a comprehension strategy. After the review, the 
computer agents scaffold students through the learning by asking 
questions, providing short feedback, explaining how the answers 
are right or wrong, and filling in gaps of information. Figure 1 is 
an example of the teacher agent (on the left) asking both the 
learner and the peer agent (on the right) to find the meaning of the 
word “bank” in the given context. The scores of both the human 
learner and peer agent are shown under their names. The learner 
chooses the answer by clicking while the peer agent gives his 
answer by talking. 

 

 
Figure 1: Example trialogue with competition which focuses 

on the meaning of words from context. 

 
1.2   Theoretical Framework of 
Comprehension 
The 35 lessons within AutoTutor align with the multilevel 
theoretical framework of comprehension proposed by Graesser 
and McNamara [13]. Six levels of comprehension were identified 
in Graesser and McNamara’s framework. They are words, syntax, 
textbase, situation model, rhetorical structure/discourse genre, and 
pragmatic communication [13]. In this study, we focus on four of 
the six levels: word, textbase, situation model and rhetorical 
structure. The word level includes morphology, vocabulary and 
word decoding. The textbase level focuses on the explicit ideas in 
the text, but not the precise wording and syntax. The situation 
model refers to the subject matter content described in the text, 
including inferences activated by the explicit text. The model 
varies based on text type. In narrative text, the situation model 
includes the characters, objects, settings, events and other details 
of the story. In informational text, the model corresponds to 
substantive subject matter such as topics and domain knowledge. 
Rhetorical structure/discourse genre focuses on the category of 
text, such as narration, exposition, persuasion, and description. 
The word level represents the lower-level basic reading 
components, while the textbase, situation model and rhetorical 
structure level cover discourse components which were assumed 
to be more difficult to master [5, 24, 25].  

1.3   Approaches of Categorizing Learners 
A common goal of the learning sciences is to categorize learners 
based on their cognitive, motivational, and affective states. In the 
ITS domain, this is referred to as student modeling [23]. Student 

modeling is largely what enables ITS to be adaptive, with systems 
being designed to incorporate information pertaining to particular 
user characteristics.  Specifically, ITS designers know that some 
specific cognitive states or behaviors are associated with learning 
and ensure the ITS can detect and respond appropriately to those 
features. Data mining approaches are often used to identify these 
attributes. For example, the ITS Cognitive Tutor employed a 
classifier to detect “gaming-the-system” behavior which occurred 
when users intentionally misused features of an ITS to progress 
through the content [1]. In another study that used data from 
students interacting with ALEKS (an ITS designed for math and 
science education), researchers were able to classify the learning 
persistence of a user as one of three distinct types [8]. Similarly, 
Del Valle and Duffy [7] clustered learners by their learning 
strategies in on online course and identified three types of 
learners: self-driven students, “get-it-done” students, and 
procrastinators. In another study, Wise et al. [27] clustered 
learners’ online listening behaviors, and found three types of 
listeners with distinct behavioral patterns: superficial listeners, 
broad listeners and concentrated listeners. 
 
In addition to categorizing or identifying learning behaviors from 
interacting with a system, researchers also categorize students 
based on individual differences in skill or knowledge gained a 
priori certain educational interventions. For example, in the ITS 
domain, students are often assessed on their prior knowledge of 
the domain material before interacting with an ITS, or at the early 
stages of the ITS content. They are commonly classified as having 
either high domain knowledge or low domain knowledge. There is 
evidence that high versus low domain knowledge students interact 
with ITS differently and require different pedagogical 
approaches to effectively learn from them. For example, an ITS 
using a vicarious learning design may benefit high domain 
knowledge students less than low-domain knowledge students [6]. 
This supports the idea that students with low-domain knowledge 
benefit more by observing peer agents or virtual tutees interacting 
with tutor agents. There is also evidence that high domain 
knowledge students sometimes suffer from an “expertise reversal 
effect” when presented with content they already understand [18]. 
When equipped with information about a learner’s level of 
domain knowledge, ITS can leverage different pedagogical 
strategies to best cater to that student’s capabilities.  
 
The present study utilizes clustering analysis to achieve two goals. 
First, we characterize the behaviors of adults with low literacy 
skills who interacted with AutoTutor. Second, we examine 
whether adult readers’ learning behaviors are associated with the 
different reading comprehension levels described above. 
 

2.   DATASETS AND DATA PROCESS 
2.1   Data Sets 
The data sets used for this study were taken from three waves of 
an intervention study consisting of 253 adult learners. The 
students participated in approximately 100 hours of hybrid classes 
which consisted of teacher-led sessions and AutoTutor sessions. 
The students took the Woodcock Johnson III Passage 
Comprehension subtest [28] before and after the intervention. 
While studying with AutoTutor, the logs of students’ online 
learning activities were recorded by the system. The log file 
included learner information, class information, lesson and 
question information, response time and learning outcome. 
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In the intervention studies, 26 out of 35 AutoTutor lessons were 
assigned to the students; these 26 lessons were used for our 
analyses. We coded theoretical level of the lessons according to 
their primary theoretical levels. The classification of the primary 
theoretical levels is based on four discrete levels: Word, Textbase, 
Situation Model and Rhetorical Structure. The major components 
of Word lessons are word parts, word-meaning clues, learning 
new words and multiple meaning words. The Textbase lessons 
focus on pronouns, punctuation, key information, and main ideas. 
The Situation Model lessons mainly cover nonliteral language, 
connecting ideas, and inferences from text. The Rhetorical 
Structure lessons covered purpose of texts, steps in procedures, 
problems and solutions, cause and effect, compare and contrast, 
time and order, and other categories of rhetorical composition. In 
each lesson there are 10 to 35 questions. The questions in most 
lessons fall into two different difficulty levels. Normally a lesson 
starts with 10-15 medium level questions. Depending on the 
performance of the medium level questions, the learners are 
branched into hard or easy level questions in that lesson. 

2.2 Data Process 
First, we removed hard and easy questions so that only medium 
level questions were included in our statistical analyses. The 
reason for removing easy and hard questions was that response 
time was an important measure in the analysis, and response time 
could be confounded by using different question difficulty levels. 
Second, we removed motivational items; a motivational item was 
defined as any item that all the students answered correctly. These 
items could not be used for discriminating students and therefore 
they were removed from the analysis. Third, we examined the 
response time on each question and removed the outliers. 
According to the experimenters, the adult students infrequently 
took long breaks without logging out the system for various 
reasons, which led to some observations with extremely long 
response time. Following the rule of thumb about extreme outliers 
[19], we removed the response time which was three IQR (i.e. 
interquartile range) higher than the third quartile. For the lower 
end, the rule did not apply, so we replaced the bottom 1% of the 
observations with response times between 0 and 2 seconds with 3 
seconds. The original log file had 102,519 observations. After 
data screening and cleaning, there were 42,289 observations from 
253 students in dataset. 

Next, we aggregated the data to student level and created 
variables for analyses. The aggregation was performed twice and 
two sets of features were created for analyses using the process 
described below.  

In the log file, each observation represents an attempt that a 
student made on answering a question. All the students attempted 
multiple lessons, and within each lesson there were multiple 
questions, so each student had multiple observations in the log. 
The variables we used for the aggregations were the system-
generated student ID, theoretical level of lessons, response time, 
and learning outcome. Each lesson was coded with a specific 
theoretical level (Word, Textbase, Situation Model or Rhetorical 
Structure) and the questions within the lesson were specific to the 
lesson’s level. Response time was the time the learner spent 
working on the question, excluding the reading time. Learning 
outcome was either correct or incorrect. We aggregated the data 
based on these variables and calculated each student’s average 
response time and accuracy at the four theoretical levels. After 
aggregation, the observations for each student were decreased to 
eight. The eight observations represented the average response 
time and accuracy at Word, Textbase, Situation Model and 

Rhetorical Structure levels. Response time was initially measured 
in seconds, which was a continuous variable. This measure 
remained the same after aggregation. Accuracy was a binary 
variable (i.e. 1 or 0) initially, but it became a continuous 
proportion correct variable after aggregation. Next, we changed 
the data format and combined the eight observations associated 
with one student into one observation with eight features. After 
this, there were 253 observations and each observation 
represented one student. The eight features were response time for 
Word, Textbase, Situation Model, and Rhetorical Structure level 
items, as well as the proportion correct for Word, Textbase, 
Situation Model, and Rhetorical Structure level items. This was 
how we created the first set of features. For the second feature set, 
we split response time into response time on correct answers and 
incorrect answers. Therefore, the response time features doubled 
from four to eight and the number of performance features 
remained four. Put together, we created two sets of features 
through aggregation. The first set had eight features and the 
second had twelve. 

3.   DATA EXPLORATION 
Before data mining was carried out, we examined the student 
sample’s response time and accuracy as a whole at the four 
theoretical levels to see whether response time was associated 
with theoretical level. The mean response time and accuracy at 
each level is shown in Table 1. 
 
Table 1: Means and standard deviations of response time and 
accuracy at four theoretical levels. 

 

Response 
Time 

Response 
Time 

(Correct) 

Response 
Time 

(Incorrect) Accuracy 

Word 
34.31 

(σ = 23.55) 
32.53 

(σ = 12.91) 
36.73 

(σ =16.71) 
0.67 

(σ = 0.47) 

Textbase 
35.15 

(σ = 23.38) 
34.06 

(σ = 11.23) 
40.91 

(σ = 17.44) 
0.65 

(σ = 0.48) 
Situation 

Model 
30.28 

(σ = 22.81) 
28.18 

(σ = 9.15) 
36.29 

(σ = 13.58) 
0.69 

(σ = 0.46) 
Rhetoric 
Structure 

31.43 
(σ = 23.95) 

29.11 
(σ = 11.10) 

38.87 
(σ = 12.66) 

0.69 
(σ = 0.46) 

 
One-way ANOVAs were conducted to compare the means of 
response time, response time on correct items, response time on 
incorrect items and accuracy between the four theoretical levels. 
Results of the ANOVAs indicated that there were no significant 
differences between the four theoretical levels on response time or 
accuracy (F (3, 996) = 1.90, p = 0.129). However, we found 
theoretical level of the text affected both the time to give a correct 
response (F (3, 996) = 17.75, p < 0.001), and the time to give an 
incorrect response    (F (3, 996) = 6.02, p < 0.001). Post hoc 
comparisons using the Tukey HSD test indicated that the average 
response time on correct attempts was longer at Word and 
Textbase levels than that of Situation Model and Rhetoric 
Structure levels. The average time on incorrect attempts at 
Textbase level was higher than that of Word and Situation Model 
levels. Since the differences found in response time on correct 
answers and incorrect were not consistent and did not show any 
pattern, we decided to group the students through clustering to 
investigate if theoretical levels influenced adult learners in a more 
nuanced way. 
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4.   CLUSTER ANALYSES 
Cluster analysis is a statistical exploratory tool used to find similar 
groups in an unsupervised fashion. It partitions objects into 
clusters so that the objects in the same cluster are more similar to 
each other than to those in other clusters. In educational settings, 
successful clustering has been achieved and the researchers 
identified learner groups with different behavioral patterns [3, 7, 
27].  For example, Wise et al. [27] clustered learners’ online 
listening behaviors and found three types of listeners with distinct 
behavioral patterns: superficial listeners, broad listeners and 
concentrated listeners. A similar goal can be transferred to our 
current context, with clustering possibly identifying groups with 
different learning behaviors across the four theoretical levels.  

4.1   K-means Cluster Analysis 
To carry out our clustering analysis, we applied a k-means 
clustering algorithm to our data. K-means clustering fits data 
points into clusters by iteratively reassigning and re-averaging the 
cluster centers until the points have reached convergence [15,16]. 
It is a common choice for clustering data since it is simple, 
effective and relatively efficient. We used R (version 3.3.3) to 
group students according to the k-means clustering algorithm of 
Hartigan and Wong [15]. 

Table 2: Cluster means and standard deviations on the eight 
features.  

 

Cluster 1 
(n = 64) 

Cluster 2 
(n = 45) 

Cluster 3 
(n = 88) 

Cluster 4 
(n = 53) 

Time 
 (Word) 

24.07 
(σ = 7.02) 

46.21 
(σ = 13.27) 

35.40 
(σ =9.32) 

31.33 
(σ = 8.37) 

Time  
(Textbase) 

25.80 
(σ = 5.33) 

51.31 
(σ = 9.98) 

36.15 
(σ =5.87) 

34.41 
(σ = 7.76) 

Time 
 (Situation) 

22.40 
(σ = 4.48) 

43.87 
(σ = 7.51) 

29.76 
(σ =4.90) 

31.57 
(σ = 7.76) 

Time 
(Rhetorical) 

22.10 
(σ = 4.81) 

44.36 
(σ = 7.77) 

31.86 
(σ =5.06) 

32.72 
(σ = 7.36) 

Accuracy 
(Word) 

0.73 
(σ = 0.13) 

0.69 
(σ = 0.14) 

0.71 
(σ = 0.13) 

0.54 
(σ = 0.17) 

Accuracy 
(Textbase) 

0.74 
(σ = 0.13) 

0.70 
(σ = 0.18) 

0.71 
(σ = 0.12) 

0.54 
(σ = 0.12) 

Accuracy 
(Situation) 

0.73 
(σ = 0.11) 

0.65 
(σ = 0.08) 

0.74 
(σ = 0.07) 

0.59 
(σ = 0.11) 

Accuracy 
(Rhetorical) 

0.75 
(σ = 0.08) 

0.72 
(σ = 0.09) 

0.71 
(σ = 0.07) 

0.61 
(σ = 0.10) 

 
Our choice to start with K=4 was guided by previous research. We 
assumed both engagement and disengagement existed while adult 
learners interacted with AutoTutor. For disengagement, a recent 
study on AutoTutor reported three types of behaviors associated 
with disengagement [14]. For engagement, another study used 
personalized time on item as a classifier, which was regard as a 
single type of behavior [21]. Put together, we assume there were 
four types of predominant behaviors that separate the learners into 
4 clusters.We performed k-means clustering with k=4 twice: once 
with eight features and once with twelve features. As explained in 
section 2.2 (Data Process), the twelve features were developed 
from the eight features by dividing response time into response 
time on correct answers and incorrect answers. We also 
experimented with k = 3 and k = 5 and using the two feature sets. 
Compared with the 4-cluster solution, the 3-cluster solution lost 
some meaningful information. In the 5-cluster solution, two 
clusters had similar patterns. Therefore, we selected 4 as the 

optimum number of clusters. The results of the 4-cluster solution 
using eight features and twelve features are shown in Table 2 and 
Table 3, respectively. 

We compared the 4-cluster solutions using 8 features with the one 
using 12 features. The four clusters showed similar patterns in the 
two solutions. The results of ANOVAs and post hoc tests 
comparing cluster differences on the grouping variables indicated 
similar between-cluster differences on response time and 
accuracy.  We also tried k=3 and k=5 clustering, and compared 
the solutions from 8 features to that from 12 features. Both results 
indicated the consistency between solutions using 8 and 12 
features. We further conducted Pearson correlation on the time 
variables (i.e. response time at different theoretical levels) with 
split time variables (i.e. response time on correct attempts and 
incorrect attempts at different theoretical levels). The results 
indicated significant moderate to strong correlations between 
these variables. The comparisons and statistical analyses 
suggested that splitting response time into two features did not 
contribute much to the discovery of the underlying structure. 
Following the principle of parsimony, we selected 8 features over 
12 features for further analyses. 

Table 3: Cluster means and standard deviations on the twelve 
features  

 

Cluster 1 
(n = 63) 

Cluster 2 
(n = 52) 

Cluster 3 
(n = 54) 

Cluster 4 
(n = 81) 

Time on 
Correct 
(Word) 

24.08 
(σ = 6.75) 

44.57 
(σ = 16.03) 

35.47 
(σ =8.11) 

30.05 
(σ = 9.15) 

Time on 
Incorrect 
(Word) 

23.78 
(σ = 9.50) 

47.59 
(σ = 15.87) 

48.03 
(σ =14.67) 

31.55 
(σ = 8.91) 

Time on 
Correct 

(Textbase) 
24.98 

(σ = 5.53) 
46.47 

(σ = 10.36) 
32.95 

(σ =6.41) 
33.90 

(σ = 8.60) 
Time on 
Incorrect 

(Textbase) 
31.23 

(σ = 11.12) 
57.05 

(σ = 19.39) 
43.25 

(σ =15.59) 
36.79 

(σ = 8.13) 
Time on 
Correct 

(Situation) 
22.39 

(σ = 3.84) 
39.78 

(σ = 8.59) 
26.80 

(σ =4.53) 
27.71 

(σ = 5.46) 
Time on 
Incorrect 

(Situation) 
27.35 

(σ = 8.69) 
50.84 

(σ = 10.84) 
34.91 

(σ =11.17) 
34.82 

(σ = 10.15) 
Time on 
Correct 

(Rhetorical) 
20.04 

(σ = 5.17) 
41.47 

(σ = 10.24) 
27.55 

(σ =4.76) 
28.58 

(σ = 5.69) 
Time on 
Incorrect 

(Rhetorical) 
29.11 

(σ = 7.19) 
51.85 

(σ = 12.47) 
40.21 

(σ =8.83) 
37.22 

(σ = 7.56) 

Accuracy 
(Word) 

0.73 
(σ = 0.12) 

0.69 
(σ = 0.15) 

0.76 
(σ = 0.12) 

0.57 
(σ = 0.15) 

Accuracy 
(Textbase) 

0.73 
(σ = 0.12) 

0.69 
(σ = 0.18) 

0.76 
(σ = 0.12) 

0.58 
(σ = 0.12) 

Accuracy 
(Situation) 

0.73 
(σ = 0.11) 

0.66 
(σ = 0.09) 

0.76 
(σ = 0.09) 

0.64 
(σ = 0.10) 

Accuracy 
(Rhetorical) 

0.73 
(σ = 0.09) 

0.72 
(σ = 0.11) 

0.73 
(σ = 0.08) 

0.64 
(σ = 0.09) 

  

4.2   Hierarchical Cluster Analysis 
In addition to k-means clustering, we performed hierarchical 
cluster analysis, since k-means clustering is sensitive to the initial 
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centroids and also does not do well with clusters with non-
spherical shape and different size [16]. Hierarchical clustering is 
different from k-means clustering that directly divides a dataset 
into a number of disjoint groups.  Hierarchical clustering proceeds 
successively either by merging smaller clusters into larger ones 
(bottom-up), or by splitting larger clusters into smaller clusters 
(top-down) [17]. We performed hierarchical clustering using 
Ward’s method [26], and compared 4-cluster solution with 3-
cluster and 5-cluster solution. Similar to what we found with k-
means clustering, 4-clustering solution was most meaningful.  
 
With the help of an R package clVaid [4], we compared the 4-
cluster solution based on k-means clustering algorithm with the 4-
cluster solution based on hierarchical clustering algorithm. The 
scores of the two solutions on three measures were computed. The 
measures were connectivity, Silhouette Width, and Dunn Index. 
Connectivity measures the degree of connectedness of the clusters 
based on the k-nearest neighbors, and the better solution 
minimizes it. The connectivity scores for k-means and 
hierarchical solutions were 118.69 and 13.31. Silhouette Width 
and the Dunn Index measure compactness and separation of the 
clusters. A higher Silhouette value indicates higher degrees of 
confidence in a clustering solution and a higher Dunn score 
indicates a better separated clustering solution. The Silhouette 
value for k-means and hierarchical solutions were 0.17 and 0.33, 
and the Dunn scores for k-means and hierarchical clustering were 
0.10 and 0.27. Hierarchical clustering outperformed k-means 
clustering on all three measures, so the final solution we selected 
was the 4-cluster solution based on hierarchical clustering 
algorithm. The response time and performance accuracy of the 
four clusters is shown in Figure 2. 

 

 
Figure 2: Time and accuracy of four clusters at four different 

theoretical level. 
To compare the accuracy and time across clusters at different 
theoretical levels, we performed linear mixed-effects models 
using lme4 package in R [2]. We analyzed the effects of cluster 
and theoretical level on both proportion correct scores and time 
per question. In both models, subjects were specified as a random 
factor to control for the subject variance. For proportion correct 
scores, there was a statistically significant interaction between 
cluster and theoretical level, F (9, 747) = 4.38, p<.001, with the 
percentage of variance explained being 37.79%. For time per 
question, there was also a statistically significant interaction 
between cluster and theoretical level, F (9, 747) = 11.45, p<.001, 

vairance explained = 58.35%. However, time per question should 
be interpreted with caution since Situation Model and Rhetorical 
Structure lessons have multiple questions per text, which would 
shorten the expected time per question as learners had already 
built up their mental model for the text for most of the questions. 
Given these interactions, we will discuss the patterns of each 
cluster separately.  

Cluster 1: Proficient readers 

Cluster 1 is the biggest cluster with 39% (n = 98) of the study 
sample. These learners can be distinguished by their high speed 
and accuracy. As indicated by the results of mixed-effects models, 
the response time of Cluster 1 was shorter than the other three 
clusters at Situation Model and Rhetorical Structure level. At 
Word and Textbase level, there was no significant difference 
between the response time of Cluster 1 and Cluster 4, and Cluster 
1 was faster than Cluster 2 and Cluster 3. Meanwhile, Cluster 1 
achieved the highest proportion correct scores across all 
theoretical levels. Due to the students’ high accuracy and short 
response time, we named this cluster “proficient readers.” 
Proficient readers did not seem to be affected by theoretical level 
for accuracy, since they did equally well in lessons across 
different levels. 

Cluster 2: Struggling readers 

Cluster 2 is a smaller cluster with 12% of the study sample (n = 
31). The response time of the learners in this cluster was 
comparatively long, and their accuracy was lower than the other 
clusters. According to the results of mixed-effects models, the 
response time of Cluster 2 on Word level questions was the 
longest, but their accuracy was the lowest. For Textbase, Situation 
Model and Rhetorical Structure level questions, the response time 
of Cluster 2 was the second longest, yet their accuracy remained 
the lowest among the four clusters. Due to the poor performance 
and long response time, we called this cluster “struggling readers.” 
Unlike proficient readers who had stable performance across 
different theoretical levels, struggling readers did better in 
Situation Model and Rhetorical Structure lessons than Word and 
Textbase lessons.  

Cluster 3: Conscientious readers 

Cluster 3, like Cluster 2, contains 12% of the study sample (n = 
31). The learners in Cluster 3 worked slowly and they achieved 
comparatively high performance accuracy. At Textbase, Situation 
model and Rhetorical Structure levels, the response time of 
Cluster 3 was the longest among the four clusters. Only at the 
Word level was the response time of Cluster 3 the second longest, 
trailing Cluster 2. Contrary to struggling readers who also worked 
slowly, Cluster 3 had the second highest accuracy. The proportion 
correct score differences between Cluster 1 and Cluster 3 ranged 
between 0.02 and 0.08 at different levels. We named this cluster 
“conscientious readers” because they achieved comparatively high 
accuracy through more effort. Similar to struggling readers, the 
conscientious readers’ performance was associated with 
theoretical level. The results of mixed-effects models indicated 
that their performance at Textbase level was better than other 
levels.  

Cluster 4: Disengaged readers 

Cluster 4 is another large group representing 36% (n = 93) of the 
study sample. The learners in this cluster were almost as fast as 
the proficient readers, but their accuracy was comparatively low 
among the four groups. In particular, Cluster 4 learners were less 
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accurate than both proficient readers and conscientious 
readers.  The response time of Cluster 4 was as short as Cluster 1 
at Word, Situation Model and Rhetorical Structure level. At 
Textbase level, the response time of Cluster 4 was the second 
shortest. However, there was a large gap between the performance 
of Cluster 4 and Cluster 1. Results of mixed-effects models 
indicated learners in Cluster 1 and Cluster 4 differed in their 
proportion correct score, and this difference ranged between 0.09 
to 0.16, depending on the theoretical level. We named learners in 
Cluster 4 “disengaged readers” because of their short response 
time and comparatively poor performance. Theoretical level also 
affected disengaged readers, since they performed worse on Word 
level lessons than Textbase, Situational Model and Rhetorical 
Structure level lessons.   

5.   DISCUSSION 
We developed AutoTutor for CSAL to teach adults with low 
literacy skills reading comprehension strategies in 35 lessons [9]. 
The lessons align with one or more of the following levels 
specified in Graesser-McNamara theoretical framework of 
comprehension [13]: Word, Textbase, Situational Model and 
Rhetorical Structure. To better understand how low literacy adult 
students interact with AutoTutor, we analyzed the online learning 
log of 253 adult students who participated in three intervention 
studies. Our first goal was to classify adult learners’ behavior 
patterns while they interacted with AutoTutor. Our second goal 
was to investigate whether adult learners’ behaviors were 
associated with different reading components represented by the 
theoretical levels. 

Regarding the first goal, we identified four clusters of adult 
learners with distinctive learning behaviors through cluster 
analysis. We named the four clusters proficient readers, struggling 
readers, conscientious readers and disengaged readers. Proficient 
readers worked fast and accurately. Among the four clusters, the 
response time of the proficient readers was the shortest, 
meanwhile, their accuracy was the highest at the four theoretical 
levels. Opposite to proficient readers, struggling readers worked 
slowly and inaccurately. Their response time was either the 
longest or the second longest at different theoretical levels, 
however, their accuracy remained the lowest overall. 
Conscientious readers also worked slowly, but unlike struggling 
readers, they achieved comparatively high accuracy. The response 
time of conscientious varied across the theoretical levels, but they 
achieved similar high accuracy at all the theoretical levels. This 
indicated their awareness of their skill level versus effort needed 
for mastery. Similar to proficient readers, disengaged readers 
worked fast. However, their performance was not as good. These 
readers might try to get through lessons quickly without paying 
much attention to the content. 

With respect to the second goal, we found learning behaviors of 
individuals in the four clusters varied across theoretical levels in 
different ways. Proficient readers performed equally well at 
different theoretical levels, but they spent less time on Situation 
Model and Rhetorical Structure level questions. One possible 
explanation for the variation in time across theoretical levels is 
that Situation Model and Rhetorical Structure lessons have many 
questions in each text. This could shorten the expected time per 
question as learners built their mental models after the first a few 
questions. Struggling readers’ behaviors indicated an obvious 
effect of theoretical level. Struggling readers performed worse on 
questions addressing Word and Textbase levels than Situation 
Model and Rhetorical Structure levels. Although struggling 
readers’ performance was poor, they were comparatively better at 

lessons with discourse components. For conscientious readers, 
their behavior on Textbase level lessons stood out. These readers 
spent more time on Textbase level questions, and as a result, they 
achieved higher accuracy on these questions than for questions 
addressing other theoretical levels. The behavior of disengaged 
readers varied the most when data for questions that tapped basic 
reading components and those questions concerning discourse 
components. Despite spending a similar amount of time on 
questions addressing Word and discourse levels, disengaged 
readers performance was better for discourse level material.   

According to previous research [5, 24, 25], Word items place 
lower loads on working memory than discourse items.  We thus 
assumed discourse level items would be more difficult than word 
level items, leading to better performance for the latter item type.  
Yet our data indicated that this assumption did not apply to the 
adult readers. Among the four types of readers we identified, the 
behavior of proficient readers and conscientious readers was not 
affected by whether the items tapped basic reading level or the 
discourse level processes.  We considered that disengaged readers 
and struggling readers might be influenced by the distinction in 
item type (basic versus discourse), but the trend in our data 
actually showed the opposite, with higher accuracy of discourse 
level items than word level items. In addition to finding that 
behavior differed across clusters when comparing word to 
discourse levels, we also found that behavior varied between the 
three discourse levels. For example, the performance of 
conscientious readers was best for Textbase level items, but the 
performance of struggling readers was best for Rhetorical 
Structure level items. Our finding that learner behavior varies by 
discourse level suggests these levels represent distinguishable 
components of comprehension, and supports previous work on 
AutoTutor, which found the three discourse levels were separable 
since they were not highly correlated [14].  

Based on the findings of this study, we suggest that clustering 
methods can be used to enhance the adaptivity of ITS. In 
particular, assessments and feedback can be personalized to assist 
different groups of students that exhibit particular patterns of 
learning behaviors. Differences in time and accuracy on 
theoretical levels indicate that ITS implementations that provide 
feedback on accuracy alone or on time alone would be misguided. 
Feedback and assessment in ITS that take into account both 
student trends in accuracy and time and their interaction, or lack 
of interaction, with theoretical level should better target the 
student type and prove to be more appropriate.   

Apart from separating learners according to their distinct behavior 
patterns, we could also identify the learners’ strength and 
weakness with regards to specific types of learning material. For 
example, some readers may struggle with word level but excel at 
discourse level comprehension. These readers might benefit more 
if the instruction is tailored towards word level comprehension 
training. Feedback based on a generalization that contains only 
one of these levels may be ineffective and miss groups of students 
entirely. 
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ABSTRACT
Developing tools to support students and learning in a tra-
ditional or online setting is a significant task in today’s ed-
ucational environment. The initial steps towards enabling
such technologies using machine learning techniques focused
on predicting the student’s performance in terms of the
achieved grades. The disadvantage of these approaches is
that they do not perform as well in predicting poor-performing
students. The objective of our work is two-fold. First, in
order to overcome this limitation, we explore if poorly per-
forming students can be more accurately predicted by formu-
lating the problem as binary classification. Second, in order
to gain insights as to which are the factors that can lead
to poor performance, we engineered a number of human-
interpretable features that quantify these factors. These
features were derived from the students’ grades from the
University of Minnesota, an undergraduate public institu-
tion. Based on these features, we perform a study to identify
different student groups of interest, while at the same time,
identify their importance.

Keywords
academic student success, classification, feature importance

1. INTRODUCTION
Higher educational institutions constantly try to improve
the retention and success of their enrolled students. Accord-
ing to the US National Center for Education Statistics [8],
60% of undergraduate students on four-year degrees will not
graduate at the same institution where they started within
the first six years. At the same time, 30% of college fresh-
men drop out after their first year of college. As a result,
colleges look for ways to serve students more efficiently and
effectively. This is where data mining is introduced to pro-
vide some solutions to these problems. Educational data
mining and learning analytics have been developed to pro-
vide tools for supporting the learning process, like monitor
and measure student progress, but also, predict success or

guide intervention strategies.

Most of the existing approaches focus on identifying stu-
dents at risk who could benefit from further assistance in
order to successfully complete a course or activity. A fun-
damental task in this process is to actually predict the stu-
dent’s performance in terms of grades. While reasonable
prediction accuracy has been achieved [14, 10], there is a
significant weakness of the models proposed to identify the
poor-performing students [18]. Usually, these models tend
to be over-optimistic for the performance of students, as the
majority of the students do well, or have satisfactory enough
performance.

In this paper, we investigate the problem of predicting the
performance of a student in the end of the semester before
he/she actually takes the course. In order to focus on the
poor-performing students, who are the ones that need these
systems the most, the prediction problem is formulated as a
classification task, where two groups of students are formed
according to their course performance. We essentially iden-
tify two complementary groups of students, the ones that
are likely to successfully complete a course or activity, and
the ones that seem to struggle. After identifying the latter
group, we can provide additional resources and support to
enhance their likelihood of success.

However, “success” and “failure” can be relative or not. For
example, a B− grade might be considered a bad grade for an
excellent student, while being a good grade for a very weak
student. We investigated different ways to define groups
of students taking a course: failing students, students drop-
ping the class, students performing worse than expected and
students performing worse than expected, while taking into
consideration the difficulty of a course.

In order to gain more insight into the learning process and
its most important characteristics, we have created features
that capture possible factors that influence the grades at the
end of the semester. Using these features, we present a com-
prehensive study to answer the following questions: which
features are good indicators of a student’s performance?
which features are the most important? The findings are
interesting, as different features are the most important for
different classification tasks.

The rest of the paper is organized as follows. Section 2 re-
views the work in the area of predicting student performance
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in the end of the semester. In Section 3, there is an overview
of the data that we used. Section 4 describes the features
extracted, and Section 5 the classification tasks and meth-
ods tested. In Section 6, there is a detailed discussion of the
experimental evaluation of the different methods tested, as
well as the feature importance study. Section 7 contains the
conclusions of the study.

2. RELATED WORK
As we are interested in estimating next-term student per-
formance, we will review the related work in this area of
research. The binary classification has been used in vari-
ous educational problems, like predicting if a student will
drop out from high school [6] or to predict if a student will
pass a module in a distance learning setting [7]. Multi-label
classification has been applied to provide a qualitative mea-
sure of students’ performance. In [17], decision tree and
naive Bayes classifiers are used with data from a survey. At-
tributes collected by a learning management system have
been employed to estimate the outcome as Fail, Pass, Good
and Excellent [16], or to classify students [12]. Some ap-
proaches [11, 9] test different ways to label the student
performance, with two (pass or fail) or more labels. The
majority of the aforementioned approaches are small-scale
studies, that are applied to a limited number of courses.

In recent years, influenced by advances in the recommender
systems, big data approaches have been also utilized in the
area of learning analytics. Initially, the term “next-term
grade prediction” was introduced by Sweeney et al. [18] in
the context of higher education, and it refers to the problem
of predicting the grades for each student in the courses that
he/she will take during the next semester. Models based on
SVD and factorization machines (FM) were tested. In an-
other approach [15], the previous performance of students
controls the grade estimation in two different ways while
building latent models. In [19], some additional state-of-
the-art methods were used, as well as, a hybrid of FM and
random forests (RF). The data used are the historical grades
and additional content features, representing student, course
and instructor characteristics. At the same setting, [14] and
[10] developed course-specific methods to perform next-term
grade prediction based on linear regression and matrix fac-
torization.

All these methods assign a specific numerical grade to each
student’s attempt to take a course. A limitation identified
in these approaches was that the developed models perform
poorly for failing students. In [5], failing students have been
completely removed from the dataset. As this is the subpop-
ulation of students that needs additional support the most,
it is very important for a model to be able to accurately
identify these students at risk.

This work is a more general study of the factors that in-
fluence the student performance, in a very large scale. The
only observed data that we have available are the students’
grades at the end of the semester. In our approach, we for-
mulated this problem as a binary classification task, in order
to detect the different group of students. In other words, we
keep the classification methodology, but apply it on the con-
text of big data.
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Figure 1: Percentage of each letter grade with re-
spect to the total grades.

3. DATASET
First, we will clarify the use of some terms in the current
context. An instance refers to the performance of a student,
s, in a course, c, at the end of the semester. All the courses
that a student took in past semesters, before taking course
c, are the prior courses, denoted by Cs,allprior. The set of
courses for a single semester x is denoted as Cs,x. Addition-
ally, for a course c there might exist a stated set of courses
that are required for a student to take before attempting c.
We refer to this set as the prerequisite courses. Every course
x worths a specified number of credits, crx.

An undergraduate student enrolled to a college or univer-
sity has to take some courses each semester, and receive a
satisfactory grade in order to successfully complete them.
Depending on the student’s degree program, these courses
might be required, electives, or simply courses that the stu-
dent takes for his/her own advancement, intellectual curios-
ity, or enjoyment. If a student withdraws from a course after
the first two weeks of classes, it is denoted by the letter ‘W’
in the student’s transcript.

The original dataset was obtained from the University of
Minnesota and it spans over 13 years. We removed any
instances with a letter grade not in the A–F grading scale
(A, A−, B+, B, B−, C+, C, C−, D+, D, F). Statistics
about the grades in the dataset are shown in Fig. 1. In
our dataset, the letter grade A is the most common. We
extract features for the instances occurring during the last
10 fall and spring semesters. Given a semester, we utilize
all the students that had taken the course before, and for
each student taking a course, we extract a set of features.
Additionally, we generate features for the instances awarded
with the letter W, but we do not utilize them in any other
way during the feature extraction process. These will be
used only when trying to predict the students that drop-out
from a course.

4. EXTRACTED FEATURES
Having as input the historical grading data, we derived dif-
ferent features to capture possible factors for a student’s
poor performance. The features can be separated into three
distinct categories: the student-specific (independent from
course c), course-specific features (independent from student
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s) and student- and course-specific features (they are a func-
tion of both s and c). All extracted features are described
in Tables 1, 2, where related features are grouped together
into eight different subcategories. The keywords on bold are
used to indicate the corresponding group of features later.
Note that for each {s, t, c}, where student s took course c in
semester t, we generate a different set of features. Every set
of features characterize a student’s attempt to take course c
at the specific point of his/her studies.

These features are either numerical, categorical or indica-
tor variables. For indicator features, we use the values of 0
or 1. The categorical features are encoded via a numerical
value. For example, the feature about the current semester is
categorical, and the values {fall, spring, summer} are trans-
formed to {0,1,2}, respectively.

5. CLASSIFICATION PROBLEMS
5.1 Classification tasks
Our motivation was to identify groups of students that need
further assistance and guidance in order to successfully com-
plete a course. These students could benefit from informed
interventions. We consider this to be a binary classification
problem, where these students form one of the classes and
the remaining students form the other class.

We consider different ways of measuring when a student does
not do well in a course to deal with the performance mea-
surement challenges we mentioned earlier. Unsatisfactory
performance can occur when the earned grade represents
a performance that is bellow the student’s potential. We
considered the following four ways for labelling, resulting to
these absolute and relative classification tasks:

1. Failing student performance, i.e., letter grades D and
F (denoted as the Fgr task).

2. The letter grade W (denoted as the Wgr task). This
represents the instances when the student dropped the
course. This behavior is worrisome as it shows that ei-
ther the student was not interested in the course any-
more or he/she expects to perform poorly.

3. Student performance that is worse than expected, i.e.,
the grade achieved is more than two letter grades lower
than the student’s GPA (denoted as the RelF task).

4. Student performance that is worse than expected while
taking into consideration the difficulty of the course
(denoted as the RelCF task). The difficulty of a
course is expressed by the average grade achieved by
the students that took the course in prior offerings. A
positive instance is when the grade achieved is more
than two letter grades lower than the average of the
student’s GPA and the course’s prior average grade.

Statistics for the different classification tasks can be found
at Table 3.

As discussed at the related work section, it is easier to pre-
dict the successful students. In order to have a better un-
derstanding of the relative difficulty of this task compared
with the four tasks mentioned above, we also examined the

task of predicting the students that completed a course with
the grade A (denoted as the Agr task).

5.2 Methods compared
In order to support students that need help to successfully
complete a course, we will use classification techniques to
identify them from the rest of the students. The instances of
interest will be labeled as 1, and the rest as 0. The problem
can be described as follows. We are given a set of training
examples that are in the form (x, y) and we want to learn
their structure. We assume that there is some unknown
function y = f(x), that corresponds the feature vector x
to a value y. In our case, y = {0, 1}. A classifier is an
hypothesis about the true function f . Given unseen values
of x, it predicts the corresponding y values.

We tested the following classifiers [4], using scikit-learn li-
brary in Python [13]: Decision Tree (DT) [2] and Linear
Support Vector Machine (SVM) [3] as base classifiers, and
Random Forest (RF) [1] and Gradient Boosting (GB) [4] as
ensemble classifiers.

While using DT, the classification process is modeled as a
series of hierarchical decisions on the features, forming a
tree-like structure. In other words, we ask a series of ques-
tions about the features of an instance, and based on the
answer, we may ask more questions, until we reach to a con-
clusion about the class label of that instance. The goal is
to get a split that allow us to make a confident prediction.
Consider the m-dimensional space that is defined by the fea-
ture vectors x, of length m. There, every training instance
corresponds to a single point. A Linear SVM looks for a
decision boundary between two classes, a hyperplane that
bisects the data with the largest possible margin between
the two different classes. The margin on each side of the
hyperplane is the area with no data points in it.

Ensemble methods try to increase the prediction accuracy
by combining the results from multiple base classifiers. RF is
a class of ensemble methods that uses decision trees as week
learners. Randomness has been explicitly inserted in the
model building process, as every splitting criterion considers
only a subset of features, randomly selected from the feature
vector of x, to select the best split. Once we build all the
trees, the majority class is reported. In boosting, a weight
is associated with each training instance. Using the same
algorithm, classifiers are training on a weighted training set
to focus on hard-to-classify instances. At the end of each
iteration, the weights of instances with high misclassification
error are relatively increased for future iterations. In GB for
binary classification, a single regression tree is built, where
in each splitting criterion, only a subset of the features is
considered. Once the tree is built, then, the corresponding
weight of the classifier in the current iteration is estimated.

6. EXPERIMENTS
6.1 Experimental design
The models constructed are global, i.e., a single model pre-
dicts the performance of all students over all the courses. All
features are extracted for any instance of a student taking
a course. As randomization takes part in the models while
sampling and/or initialization, we run the same model with
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Table 1: Feature groups describing the target student s in the target semester t.

(1) Student’s status in terms
of grades. (grades)

• Average grade of s in prior courses Cs,all prior.
∑

j gs,j/|Cs,all prior|, for j in Cs,all prior.

• GPA of s, i.e., weighted average of the grades in prior courses w.r.t. the credits worth.∑
j gs,jcrj/

∑
j crj , for j in Cs,all prior. crj is the number of credits of course j.

• GPA of s over the prior courses that belong in his/her major.
• GPA of s over the prior courses that do not belong in his/her major.
• GPA of s over the courses taken the previous semester, i.e. at the semester (t-1).
• GPA of s over prior courses taken the past two semesters i.e. at semesters (t-1) and
(t-2).
• GPA of s over prior courses taken on fall, spring and summer semesters. Essentially,
here there are 3 features, one for each semester type.
• Average grade of courses that s took with the same corresponding credit. There are 6
different features, each corresponding to prior courses that worth 1,2,3,4,5 or 6 credits.
• GPA of courses that s took at the same course level. There are 6 levels (1xxx, 2xxx,
3xxx, 4xxx, 5xxx, or 8xxx). Higher level courses are more advanced.

(2) Other info indicating a
student’s status. (status)

• The number of prior courses, |Cs,all prior|.
• Student’s major. Included majors: Aerospace Engineering, Biomedical Engineer-

ing, Chemical Engineering, Chemistry, Civil Engineering, Computer Science, Electri-
cal Engineering, Materials Science, Mathematics, Mechanical Engineering, Physics, and
Statistics.
• The total credits that s has earned in prior courses.

∑
j crj , for j in Cs,all prior.

• Indicator whether target semester t is a fall, spring, or summer semester.
• Indicator whether the student has ever registered for the summer semester. This is
an indicator of the past behavior of the student.
• The number of semesters that the student is active, nterms actives,t.
• The number of years student s is in the program.
• The number of transferred credits. It is quite common for students to transfer some
credits from other institutions, or from qualified courses they took at high school.

(3) Student’s course load.
(load)

• Average credits s earned in prior courses per semester.
∑

j crj/nterms actives,t, for
j in Cs,all prior.
• The number of credits s earned in the past semester.

∑
j crj , for j in Cs,t−1.

• The number of credits earned in the current semester.
∑

j crj , for j in Cs,t.

• The number of courses taken the current semester. |Cs,t|.
• Ratio of s’s course load in the current semester to his/her average course load over
the past semesters. This is a way to compare the usual load of the student with the
load for the target semester. (

∑
i cri/(

∑
j crj/nterms actives,t), for i in Cs,t and j in

Cs,all prior.

The set Cs,all prior represents the courses that the student took all the prior semester, before the target semester t. For
any semester x, Cs,x represents the set of courses that student s took on semester x.

5 different seeds and average out the performance achieved.
We used cross validation for classifier evaluation. The data
are partitioned into 5 disjoint subsets. For each fold, test on
one partition and use the remaining ones for training. The
average of the evaluation metrics across the 5 folds will be
the values reported.

Metrics. Precision is the ratio of true positives to all pre-
dicted positives. Recall is the ratio of true positives to all
actual positives. Precision is intuitively the ability of the
classifier not to label as positive a sample that is negative,
while recall is the ability to find all the positive samples. F1

score is a measure of accuracy, calculated as:

F1 =
2× Precision× Recall

Precision + Recall
. (1)

Area under the receiver operating characteristic (ROC) curve,
AUC, is also reported to understand the performance of a
classifier w.r.t. all the thresholds. ROC curve plots the

true positive rate against the false positive rate, at various
thresholds. AUC corresponds to the probability that the
classifier will rank a random positive instance higher than a
negative one.

Estimating positive threshold. Instead of assigning a label to
a test instance, we can assign a prediction score in the range
of [0,1] that will be the probability of the input samples to
belong to the positive class. In this way, we will be able to
compute metrics like AUC. To estimate a threshold of the
prediction score above which the object is assigned to the
positive class, we follow these steps: 1. Sort the prediction
scores in non-increasing order. 2. For each point L in this
sorted sequence, compute the F1 score, using Eq. 1, by as-
suming that any instances that have a prediction score that
is greater than that of the Lth instance is classified as posi-
tive and everything else is classified as negative. 3. The F1

score is the maximum F1 value obtained above.
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Table 2: Feature groups describing the student s in term t and course c.

(4) Course’s difficulty and
popularity. (c-diff)

• Relative course load when s took c w.r.t. the average credits of past students at the
semester they had taken c. For each past student, compute the number of credits earned
on that semester. Then, compute the fraction of

∑
j crj , for j in Cs,t, divided by the

average credits earned from past students on the same semester that they took course
c. Values greater than 1 indicate heavier load than other students.
• Average grade earned by past students.
• Average grade in c of past students within the same major as the s. Now, filter the
students in order to keep only the students that are in the same department as s.
• Average grade in c of students belonging to c’s major or not. This describes two

features, by separating the past students to the ones that are in the same major as the
department of c, and the ones that are out-of-the-department.

(5) Performance / Familiarity
with the course’s background
and department. (c-backgr)

• Fraction of students in the same major as s that have taken the c. This feature
measures how popular is course c across the students on the department of student s.
• Fraction of students from s’s major that took c, shows how common is c in s’s major.
• Number of courses that s took and belong to c’s department. Absolute measurement
of how familiar is s with the department of the course c.
• Ratio of courses that s took and belong to c’s department. Relative measure of how
familiar is s with the department of the course c.
• Ratio of credits that s took and belong to c’s department. Relative measurement of
how familiar is s with the department of the course c, in terms of credits.
• Ratio of credits that s took and belong to c’s department and the average credits that
past students took and belonged to c’s department. This is a relative measurement of
how familiar is s with the department of the course c, in comparison with past students.
• GPA over the courses that s took and belong to c’s department. This feature is a
quantitative measure of student’s performance in the c’s department.

(6) Information about the
prerequisites. (prerequ)

• GPA of the prerequisite and non-prerequisite courses that s has taken. Two features
that show the performance of the student in prerequisite and other courses.
• Number of the prerequisite courses taken by s, an absolute measurement.
• Ratio of prerequisite courses taken by s. Relative measure to show how much well-
prepared the student is, in terms of the stated prerequisites.
• Average terms past since prerequisite courses were taken by s.

(7) Performance relative to the
course’s level. (c-perform)

• The number of lower, same and higher level courses w.r.t. the level of c.
• GPA over lower, same, higher level courses w.r.t. the level of c.

(8) Course-specific features.
(c-spec)

• Course level that c belongs to.
• Indicator whether c is in the student’s major or not.
• Average grade earned by past students.

The set Cs,all prior represents the courses that the student took all the prior semester, before the target semester t. For
any semester x, Cs,x represents the set of courses that student s took on semester x.

Table 3: Statistics for the different classification
tasks.

Task Fgr Wgr RelF RelCF Agr

# instances 94,364 96,941 94,364 94,364 94,364
# positive 3,139 2,577 20,398 21,724 20,851
% positive 3.33 2.7 21.62 23.02 22.10

6.2 Performance analysis
Table 4 summarizes the performance of the various classifi-
cation methods for the classification tasks, in terms of the
AUC and the F1 score. Based on both metrics, GB is the
best performing method, closely followed by the RF classi-
fier. As expected, DT, which is the simplest method, has
the lowest performance. These results are better compared
to the performance of grade prediction methods for any clas-
sification task. When using Course-Specific Regression for

predicting the failing students, we get a F1 score of 0.118,
which is lower than any of the other methods we discuss.

While comparing the classification tasks, we can see that
the tasks that predict relative performance have lower AUC
values than when predicting absolute performance. In terms
of F1 scores, we can see clearly that the A-students are the
most accurately predicted. The F1 scores of the different
tasks are related to the percentage of positive instances in
each task. The tasks Fgr and Wgr, that are highly un-
balanced, have significantly lower F1 scores. Moreover, as
there is 81% overlap between the students that are positive
for both RelF and RelCF, the tasks of RelF and RelCF have
very similar performance.

6.3 Feature importance study
One of our goals is to study which factors are important
indicators of a student’s performance, so we performed the
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Table 4: Performance of the various classifiers.

Area under the ROC curve

Classiffier Fgr Wgr RelF RelCF Agr

DT 0.834 0.710 0.689 0.716 0.820
SVM 0.853 0.736 0.690 0.718 0.819
RF 0.873 0.778 0.748 0.759 0.850
GB 0.877 0.780 0.755 0.765 0.854

F1 score

Classifier Fgr Wgr RelF RelCF Agr

DT 0.255 0.123 0.450 0.466 0.573
SVM 0.276 0.171 0.452 0.469 0.570
RF 0.317 0.165 0.499 0.502 0.604
GB 0.319 0.181 0.506 0.507 0.610
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Figure 2: Percentage of performance managed to
recover using only one group of features.

following experiment. We categorize each extracted feature
to one of the the 8 groups, according to Table 1. Afterwards,
for each classification task, we built RF classifiers using only
the features belonging to one of the above groups. We se-
lected to use RF over GB, as they achieve similar perfor-
mance in less training time. The accuracy achieved for a
model using a single group of features is expected to be less
than the accuracy when using all the features. The per-
centage of accuracy that a model using only the features
belonging to one group manages to achieve, in terms of the
F1 score, are presented on Fig. 2. In this bar chart, we can
see the percentage of accuracy achieved from all the different
feature groups for all the discussed classification tasks. The
higher the percentage achieved by a single group of features,
the more predictive ability these features have.

From this figure, we can get many insights on the factors
that affect student performance. For example, the features
related to the students’ grades (group 1) have a very good
predictive capability in almost all the tasks, except the task
of predicting the W grades. In this task, features related
with the course’s difficulty and popularity (group 4) as well

as features that are course-specific (group 8), manage to
achieve the same accuracy as when using all the features.
This indicates that the reasons that a student drops a course
are related more to the course, rather than to the students
themselves. The next best indicator is the feature group
about the student’s course load during the semester.

On the other hand, this is not the case for predicting the
failing students, in the absolute sense, i.e., receive a D or
F. When using only course-related groups (groups 4, 8) for
predicting the students likely to fail a course (Fgr task),
we manage to recover half or less from the F1 score. As
a result, these factors do not influence the absolute failing
performance of a student, indicating that the reasons for
that are mostly related with the student. As the students’
grades manage to recover almost the same performance as
when using all the features, they are the ones that affect the
Fgr prediction the most. When using the other groups, it
is very difficult to achieve comparable performance, as they
recover 80% or less of the F1 score.

The feature groups are behaving similarly for RelF and RelCF.
However, we notice that for the RelCF task, the feature
groups that are related with student-course specific features
have slightly better performance, while the student-specific
groups have slightly worst performance, compared to the
task of RelF. This is happening because, for RelCF, we take
into consideration how other students usually perform on
the target course. Every single group has enough informa-
tion for the RF to utilize to achieve performance which is
as good as 75% of the best case, i.e., when using all the
features.

Finally, for identifying the A-students, the feature groups
1, 5, 6, 7 are the ones that manage to have the best per-
formance. These groups are related with students’ grades
in general, but also, with their grades relative to the target
course’s background, prerequisites and level. Using only one
of them can provide us with the information we need in or-
der to recover around 90% of the performance while using
all the features.

7. CONCLUSIONS
The purpose of this paper is to accurate identify students
that are at risk. These students might fail the class, drop
it, or perform worst than they usually do. We extracted
features from historical grading data, in order to test differ-
ent simple and sophisticated classification methods based on
big data approaches. The best performing methods are the
Gradient Boosting and Random Forest classifiers, based on
AUC and F1 score metrics. We also got interesting findings
that can explain the student performance.
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ABSTRACT
In this study we conducted behavioral analyses to gain in-
sights into patterns of user interaction in a video discussion
platform, Vialogues. Vialogues provides an asynchronous
online discussion environment around video. Using a hier-
archical clustering analysis on users’ clickstream data, we
identified four different behavior patterns: (1) video watch-
ers with no discussion activity, (2) opinion seekers and active
repliers with little to no video watching activity, (3) users
who watched and discussed videos, and (4) users focused on
viewing and/or creating metadata. Despite being the largest
group, Cluster (3) had the least classifiable characteristics.
Consequently we conducted additional analyses to examine
finer-grained user segments. For each segment we created a
transition network using weighted directed networks in order
to understand the transition pattern between two consecu-
tive click activities.

Keywords
Online discussion, video learning, hierarchical clustering, tran-
sition network, user behavior

1. INTRODUCTION
Using video as an instructional technology has been a pop-
ular approach across a broad range of educational contexts.
Video provides a way for learners to immediately connect
with subject matter; increasingly, it also provides a way for
learners to connect with each other. A number of benefits
to using video in education have been reported over several
decades of research [7, 8, 10, 11, 5]. While traditional video
platforms primarily support passive learning, social video
platforms, (e.g., YouTube), provide an active learning en-
vironment for learners to discuss video and share content
collaboratively.

Vialogues [1] is an asynchronous online video discussion plat-
form that facilitates collaborative conversations around video.
The platform allows users to comment directly on specific

points in time of a video, as opposed to commenting only in
the comment section that references the entire video. The
main video is shown on the left side of the screen, and the
discussion board is shown on the right side of the screen,
as shown in Figure 1. As described above, all comments are
coded to a specific point in time in the video, and the related
portions of the video are referenced. Also, the discussions
are threaded so that users are able to view and respond to
one another’s comments. The addition of this feature in
Vialogues allows deeper understanding of video by enabling
users to understand the context and to discuss via conversa-
tion threads; this resolves one of the main problems of many
existing video-discussion tools.

Figure 1: An example vialogue page. The page
shows the title and description of the vialogue (top),
the video player (left) and discussion panel (right).

Vialogues provides a comprehensive set of pedagogical tools
to assist teachers to flexibly design and monitor learning ac-
tivities, as well as receive feedback from students based on
instructional needs. Teachers can ask either survey ques-
tions, with a ‘check all that apply’ answer option or devise
poll questions, with a ‘single answer’ option. Teachers are
able to present these questions throughout different points
in the video. In addition, users can either open their discus-
sion to everyone, or they can restrict access to some specific
users. With these additional tools, discussion moderators
can effectively control the quality of their discussion and
tailor a discussion for an intended group of users.

In this paper, we conducted behavioral analyses to gain in-
sights into users’ interaction patterns in Vialogues. We per-
formed several types of analyses on users’ clickstream data
in a step wise way to develop deeper understanding of user
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Table 1: Four event categories on Vialogues, (1) video player, (2) video watch, (3) discussion, (4) other
features, and corresponding event actions of each event category

Video Player Video Watch
Discussion

Other Features
Comments Reply Poll

Video ready Watch 3 seconds Post comments Click reply Post poll Pause as typing

Play Watch 10 seconds Click edit comment Reply Add poll item Click time code

Pause Watch 30 seconds Cancel edit comment Expand reply Remove poll item Open Vialogues tab

Mute true Watch 50% Update comment Hide reply Close Vialogues tab

Mute false Watch 95% Click delete comment Open settings tab

Fullscreen true Watch 100% Delete comment Save edit Vialogue

Fullscreen false Save edit Video

Cancel edit Vialogue

engagement. First, we examined the overall usage patterns
based on the distribution of different user actions. Then we
investigated various interaction patterns by using a hierar-
chical clustering analysis. The clustering analysis identified
four user groups and we conducted in-depth analysis on each
groups to understand its distinctive behavior characteristics.
We found that different groups demonstrated different levels
of engagement, particularly in terms of discussion activity.
The findings of this study could be used to create a useful
reference for designing instruction based on video discussion
tools or for developing this kind of learning platforms.

2. DATA
2.1 Data Source
We analyzed the clickstream actions generated as users in-
teract with Vialogues. We considered four event categories
to understand users’ behaviors on a particular vialogue page
(e.g., Figure 1). First, we collected users’ actions interact-
ing with the video player, e.g., play, pause, mute, full screen.
Second, we recorded the video completion rate, e.g, watch
the first 3 seconds, watched 50% of the total duration of
video, etc. Third, we collected actions related to discussion.
For context, Vialogues supports three different ways to par-
ticipate in a discussion: commenting, replying and posting
polls. Actions related to each of these three activities were
collected, e.g, post comments, reply to others’ comments, ex-
pand replies, post a poll, etc. Lastly, other actions were also
tracked including whether they used a “Pause as Typing”
feature which automatically pauses the video while typing
comments; whether they clicked the “Time Code” in the dis-
cussion panel to find the corresponding part of video; and
whether they opened the vialogues tab to see more informa-
tion about the particular vialogue such as the uploader or
the shareable link. Table 1 presents the full list of tracked
actions under each of the four categories described above,
which we defined as ‘Video Player’, ‘Video Watch’, ‘Discus-
sion (Comments, Reply, Poll)’ and ‘Other Features’ respec-
tively. We used the data of users who visited a vialogue page
during the month of September 2017.

2.2 Data Pre-processing
We conducted data cleaning and exploratory analyses to
preprocess the original sample data. First, we excluded via-
logue contents created by Vialogues administrators. Second,
we examined the number of different vialogue pages a user
visited within a single session in order to understand its dis-
tribution and detect any outliers; this numbers varied from
1 to 37 but 95% of the data had values between 1 and 3.

We only considered those 95% of the data and assumed that
the data with values greater than 3 were outliers. We be-
lieve that when a user explores too many contents within
the same session, he or she is less likely to be fully engaged
in watching videos or participating in discussions. Next, we
processed data to create a vector for the sequence of ac-
tions for each case, where cases were defined as a unique
vialogue page within a session for each user. For example,
if a user interacted with two different vialogue pages dur-
ing a given session, two vectors were defined for this user.
We treated them as separate cases because users’ behaviors
can not only be different by sessions but also by vialogue
contents. From this process, we created 6,706 distinct cases
from the September data. In other words, the total unique
sets of sessions and vialogue pages viewed in September 2017
were 6,706. In vialogue pages, by the system setting, users’
first action were logged as “Video Ready”. However, 563
cases out of the total 6,706 started with different event ac-
tions other than video ready. This indicates that some users
could interact with the same vialogue pages through multi-
ple sessions. For example, users may pause their interaction
with Vialogues and come back to the same page after some
period of time. The event actions of those aforementioned
sessions are dependent with the actions of the correspond-
ing previous sessions. Thus, for the purpose of our analysis,
these 563 cases were excluded as they could not be treated
as independent cases like the others. We also examined the
length of action sequences. We found that its distribution
is extremely skewed: 90% of the cases were between 1 and
50 and there were outliers with extreme values up to 357.
After deleting these outliers, we also excluded the first ac-
tion, video ready, from every vector. This event action was
created by default, not by users’ intention, and is present in
every cases, so does not provide any useful information about
the user engagement. After such data processing steps, the
analytic sample from September 2017 included 3,485 unique
cases of 2,972 sessions from 1,516 unique user IDs and 991
unique vialogue contents.

3. OVERALL PATTERN OF USER INTER-
ACTION

In order to understand the overall pattern of users’ behav-
ior on vialogue pages, we first evaluated the frequencies
of event actions in September 2017. This analytic sam-
ple, constructed by the process described above, included
33 event actions from the actions given in Table 1, and ex-
cludes “Video Ready” as described above. Table 2 shows the
frequency count of the top 10 most frequent actions. The
distribution suggests that the actions of playing or pausing
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Table 2: Frequency of the top 10 most frequent ac-
tions

Event Action Freq

Video pause 9,818

Video play 8,445

Expand reply 4,262

Video watch 3 Secs 3,070

Video watch 10 Secs 2,839

Video watch 30 Secs 2,575

Post comment 2,157

Video watch 50% 1,878

Video watch 95% 1,181

Click reply comment 1,179

Video fullscreen true 1,109

videos occurred the most frequently, which was expected.
The next most frequent action, interestingly, was expanding
replies. In the platform, users can view others’ first-level
comments without any click activity but they need to click to
read replies to a particular comment. Although the system
cannot capture the action of simply reading others’ com-
ments without clickable actions, “Expand reply” can serve
as a proxy for the behavior of browsing others’ discussion
comments. Then, the events “Watch for 3 seconds,”“Watch
for 10 seconds,” and “Watch for 30 seconds” were the next
most frequent actions in that order. The next most frequent
action was “Post comment” followed by “Video watch 50%”
then “Video watch 95%.” This shows that users are not nec-
essarily watching the complete video before commenting. It
also suggests that some users are commenting while watch-
ing a video. One interesting finding regarding replying to
comments is that the count of “Reply comment” (freq =
907) is less than the count of “Click reply comment” (freq
= 1,179). It is possible that some users tried to reply to
a comment but ultimately decided not to post a reply. It
is also possible that some users were confused by the plat-
form’s layout and clicked the button by mistake. Overall,
it appears that viewers typically browse discussion contents,
watch a video for a certain duration, and post comments
(not replies) before completing a video. It also shows that
people reply to comments (freq = 907) less frequently than
completing 95% of a video (freq = 1,181). Note that these
observations are at the aggregate level and do not take into
consideration different user sessions or time sequences. How-
ever, our goal is not generalization. Instead our goal is to
develop a better sense of overall user activity patterns.

4. IDENTIFYING DISTINCT BEHAVIOR PAT-
TERNS

4.1 Method
To further investigate user groups with distinct behavior
patterns, we conducted a clustering analysis. For clustering,
we created a M × N matrix, where M is the total number
of cases and N is the number of different actions. Columns
indicate unique actions and rows indicate cases defined as
unique vialogue pages visited within an individual session.
The elements of each row are the frequency counts of each
action in each case. In the data processing step, we found
large variation in the total number of actions among dif-
ferent cases, and this may cause invalid clustering results.
To minimize such risks, we normalized each row and then
computed the distances between the pair of rows using the

cosine similarity. The cosine similarity measures the simi-
larity based on the angle between two vectors ignoring the
frequency of each element. For two vectors, a = {ai} and
b = {bi} for i = 1, ...,M , the cosine similarity is calculated

by Similarity = cos(θ) = a·b
||a||2||b||2

=
∑M

i=1 aibi√∑M
i=1 a2

i

√∑M
i=1 b2i

.

The corresponding distance was computed by 1−Similarity.
Using the cosine-based distances, we applied Ward’s hierar-
chical cluster method [6]. Specifically, we used the “agglom-
erative approach” which goes from the bottom up. This
approach starts with each data point in a cluster of its own.
Then, it repeats the process of finding the most similar pair
of clusters and merging them until all data are merged into
only one cluster. The Ward’s method uses the minimum
variance criterion which minimizes the total within-cluster
variance: at each step, combine two clusters whose merge
results in the smallest increase in the total within-cluster
variation. We determined the optimal number of clusters
based on the Calinski-Harabasz (CH) index [2]. The CH in-

dex is calculated by SSB/(k−1)
SSW /(N−k)

, where k is the number of

clusters and N is the total number of cases. SSB is the total
between-cluster variance, which measures how spread apart
the groups are from each other; and SSW is the total within-
cluster variance, which measures high tightly grouped the
clusters are. As the number of clusters increases, SSB keeps
increasing while SSW keeps decreasing. The CH index finds
the clustering assignment that simultaneously has a large
SSB and a small SSW by using the variance ratio criterion;
the largest CH index occurs with the optimal number of
clusters. The analysis was conducted using hclust() in R.

In order to interpret each of the different clusters, we con-
sidered the proportion vector of actions for each case. This
is calculated by the frequency of the particular action (e.g.,
play video) divided by the count of all actions. This allows
for more intuitive interpretation than using the normalized
vectors and still resolves the issue that arises from varying
the total number of actions for different cases. For each of
the resulting clusters, we then calculated the average of the
above described proportions across all the cases that were
assigned to the particular cluster. Based on these metrics,
we interpreted each cluster to identify distinct patterns.

4.2 Results
The resulting dendrogram from the Ward’s hierarchical clus-
tering is shown in Figure 2. The computed CH index sug-

Figure 2: Dendrogram of results from the Ward’s
hierarchical cluster method
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Figure 3: The four cluster profiles, or interaction
patterns

gested four clusters as the best number of clusters. For each
cluster, we examined the size of the cluster and the distri-
bution of different actions based on the average proportion
of each action per case, as described in a preceding method
section. In order to understand the different patterns of
each cluster, we plotted the average proportion of actions.
Figure 3 illustrates each cluster’s profile; in the x-axis, we
listed different actions that exhibit similar characteristics.
We first listed actions related to video watching behavior
and labeled as “Watch (Video)”: (in the listed order) video
play, video pause, video mute true, video mute false, video
full screen true, video full screen false, video watch 3 seconds,
video watch 10 seconds, video watch 30 seconds, video watch
50%, video watch 95%, video watch 100%. Then, we listed
those actions related to discussion activity and labeled it as
“Read & Interact (Discussion)”: (in the listed order) post
comment, expand reply, hide reply, click time code, pause
as typing, reply comment, click reply comment, click delete
comment, click edit comment, cancel edit comment, update
comment, delete comment, post poll, remove poll item, add

poll item. As the last category, we listed actions related to
viewing and creating/managing meta data and labeled as
“View & Manage (Metadata)”: (in the listed order) open
vialogues tab, close vialogues tab, open settings tab, save
edit vialogue, save edit video, cancel edit vialogue.

A graphical analysis of Figure 3 leads to the following ob-
servation: Cluster 1 shows high focus on video watching
activities with no noticeable occurrence of other actions. In
Cluster 2, the peaks, representing locally frequent actions,
are somewhat spread out, but the graph shows the highest
concentration in video watching and discussion activities.
In Cluster 3, frequent actions are centered around the view-
ing and creating metadata. Cluster 4 shows a heavy focus
on discussion activities with very limited number of other
activities.

Based on the preliminary analysis of the graphs, we con-
ducted additional examinations to understand each cluster.
For the purpose of this examination, we assigned ranks based
on the frequency of actions occurring in each cluster. Ta-
ble 3 presents the top 10 most frequent actions on average
for each cluster. In Cluster 1, the frequent actions were all
related to the video watching activities: video play/pause,
watch a video for a certain duration of time, and use of
a full screen mode, which suggests that Cluster 1’s domi-
nating pattern is pure video watching. In Cluster 2, how-
ever, we observed that the discussion activities (post com-
ments, expand reply) were also present in addition to video
watching actions. These discussion activities were limited to
the first-level interaction, and are more interactive than just
watching video. However, there was limited interaction with
other users/viewers. In other words, users in Cluster 2 were
commenting on the video but not discussing the video with
other users. Cluster 3 was unique in that the most frequent
action was “Open vialogues tab” which is often used when
users look for other information about the specific video
such as the uploader, the upload date, and sharing features.
The proportion of such actions was dominant at 0.64 while
other actions’ proportions were less than 0.1. Additionally,
for this cluster, other actions related to editing and setting
the vialogue contents were the next most frequent actions:
save/edit vialogue, open settings tab, which are only allowed
for content creators and moderators. Thus, the behaviors
present in Cluster 3 predominantly consist of exploring the
peripheral information and creating/editing vialogue meta-
data. In Cluster 4, the most frequent action was expanding
others’ replies, with the proportion of 0.69. This cluster
showed the heightened focus on discussion activity in that
eight of the top 10 actions were discussion-related: expand
reply, click reply comment, hide reply, reply comment, click
edit comment, update comment, cancel edit comment, post
comment. The remaining two actions were video play/pause
and no video watching for a certain period. Thus, Cluster 4
represents “opinion seeking” and “replying” behaviors.

In terms of the cluster size, the sizes were 1,137, 1,508, 282,
558 for Cluster 1, 2, 3, and 4, respectively. It is noteworthy
that Cluster 2 is the largest cluster; 43% (= 1,508/3,485)
of cases were assigned to Cluster 2, which was characterized
as a mix of video watching and discussion activities. This
behavior pattern, which combines both video and discussion,
was expected to be the most popular pattern considering
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Table 3: Top 10 most frequent actions and the averaged proportions in each cluster
Cluster 1 (size = 1,137) Cluster 2 (size = 1,508) Cluster 3 (size = 282) Cluster 4 (size = 558)

Video play 0.255 Video pause 0.292 Open vialogues tab 0.639 Expand reply 0.684

Video watch 3 Secs 0.144 Video play 0.187 Close vialogues tab 0.08 Click reply comment 0.071

Video watch 10 secs 0.129 Video watch 3 secs 0.08 Save edit vialogue 0.056 Hide reply 0.068

Video watch 30 secs 0.109 Video watch 10 secs 0.069 Open settings tab 0.051 Reply comment 0.044

Video pause 0.078 Post comment 0.067 Video play 0.039 Click edit comment 0.02

Video watch 50% 0.069 Video watch 30 secs 0.053 Video pause 0.028 Update comment 0.016

Video watch 95% 0.046 Expand reply 0.043 Video watch 3 secs 0.022 Cancel edit comment 0.014

Video watch 100% 0.04 Video watch 50% 0.033 Video watch 10 secs 0.017 Video play 0.012

Video full screen true 0.038 Video full screen true 0.02 Video watch 30 Secs 0.012 Video pause 0.011

Video full screen false 0.035 Video full screen false 0.018 Post comment 0.008 Post comment 0.01

that the key feature of Vialogues is its support of discussion
around video content. Also noticeable was Cluster 3, which
had the smallest size, with only 282 cases present (8% =
282/3,485). Cluster 3 consisted of exploring and creating
metadata. Its small cluster size can be partially explained
by the fact that most frequent actions of Cluster 3 were
creating or editing activities available only to creators or
moderators, not participants.

5. TRANSITION PATTERNS BETWEEN DIF-
FERENT EVENT ACTIONS

As the core objective of Vialogues is to promote discussion
around video, it is important to evaluate the case in which
users’ usage patterns exhibit both video watching and dis-
cussion activities, e.g., identifying sequences of actions [4].
In the clustering analysis above, Cluster 2 was the largest
group with both video watching and discussion, but did not
show a clear classifiable pattern. Thus, we examined finer-
grained user groups out of Cluster 2. In the Ward’s clus-
tering analysis, when the number of clusters increased to 6
(compared to 4 in the above analysis), Cluster 2 was fur-
ther broken down into 3 clusters while Cluster 1, 3 and 4
remained as is. For the 3 sub-clusters generated from Clus-
ter 2, using the same approach, the average proportions of
actions were examined. In this case, however, we only exam-
ined the actions associated with video watching and discus-
sion: video watch 3 secs, video watch 10 secs, video watch
30 secs, video watch 50%, video watch 95%, video watch
100%, click timecode, expand reply, post comment, and re-
ply comment. Using only these 10 actions, the proportions
of action frequency were recalculated for each action (i.e.,
the frequency of each action divided by the total number
of frequency of 10 actions). Figure 4 presents profiles of
each sub-clusters. Sub-cluster 1 represents modest amounts
of both video watching and discussion, with a high propor-
tion of posting comments among discussion activity. On
the other hand, Sub-cluster 2 and 3 show heavier focus on
discussion activities. Sub-cluster 2 had the highest propor-
tion of “posting comment” action and Sub-cluster 3 had the
highest peak at the “expanding replies” action.

We further examined each of the sub-clusters to understand
the sequence of actions when users are involved in both video
watching and discussing activities. We assumed that previ-
ous actions may potentially influence the following actions
and sought to explore the path that a user takes to partici-
pate in discussion. We performed a transition network anal-
ysis, specifically applying weighted directed networks [12].
The benefit of this method is that we can discover the tran-

Figure 4: Profiles of three sub-clusters of Cluster 2

sition pattern between the two consecutive click activities
and also gain insight about the degree by which the same
action transition patterns appear. We generated weighted
directed networks for each sub-cluster using the ngram [9]
and igraph [3] packages in R.

The networks for three sub-clusters are presented in Figure
5. Each action name was abbreviated as follows: ‘s’ is the
indication of start, ‘V-S’ indicates video watching for 3, 5,
10 seconds, ‘V-50’ includes video watching 50%, 95%, 100%,
‘PC’ indicates posting comments, ‘CT’ is clicking timecode,
‘ER’ indicates expanding others’ replies, and ‘RC’ is replying
to others comments, and ‘e’ indicates the end of the action.
The directed edges indicate transition between two consec-
utive actions and the width (weight) of the edges indicates
the number of that transition occuring. The node size for
each action indicates the total number of frequency of the
particular action in the aggregated sequence set.

The left network describes transition patterns of Sub-cluster
1. Since it was characterized by a combination of a modest
amount of both video watching and discussion activities, the
directed edges exist for various combinations of actions with
similar weights. Specifically, the transition from ‘s’ to ‘V-S’
had the largest weight, indicating many users in this sub-
cluster started by watching a video rather than conducting
other actions. Other frequent transitions were one from ‘V-
S’ to ‘V-50’ and two transitions from each of the ‘V-S’ and
‘V-50’ to ‘PC’. Overall, transitions between video watching
and posting comments were dominant. The network for Sub-
cluster 2 is presented in the middle. For this sub-cluster, the
most frequent action was posting comments. Interestingly,
the graph shows heavy weights on the edge from ‘s’ to ‘PC’
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Figure 5: Weighted directed networks for Sub-cluster 1 (left), Sub-cluster 2 (middle) and Sub-cluster 3 (right)

and the one from ‘PC’ to ‘e’, which implies that users in
this cluster tend to post their comment at the beginning
even before watching a video and then leave the page. This
could indicate that some users might read others’ first level
comments (which does not generate clickstream data in the
current system) and then post their own comments. If this
conjecture proves true, an interesting question for this group
would be why are these users only posting first-level com-
ments without replying to others’ replies. This could be
a future area of inquiry that helps to uncover users’ path
to interactive online discussion around video. Lastly, for
Sub-cluster 3, the transitions from replying to comments
(RC) to expanding other replies (ER) were noticeable. An
interesting finding from this graph is that interactions with
replies was not necessarily derived from video watching since
we could not observe any significantly noticeable transition
from video watching to interactive discussion with others.
This suggests that for some group of users, others’ comments
or other factors that were not captured in clickstream data
might have greater effects on replying behavior rather than
the video itself.

6. CONCLUSION
In our study, we identified users’ behavior patterns on Via-
logues in an exploratory manner. It is important to note
that while there exist a number of academic studies on the
value of video based education, there are limited research
papers that specifically deal with the discussion in the con-
text of a video platform. This paper contributes to the field
since it is focused on online video-based discussion, which
was made possible through the Vialogues video discussion
platform. Clustering analysis of different user group behav-
iors can provide a point of reference for future studies but
more importantly, this can help educators to enhance video-
based instruction and learning.
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ABSTRACT 

The “doer effect” is the assertion that the amount of interactive 

practice activity a student engages in is much more predictive of 

learning than the amount of passive reading or watching video the 

same student engages in.  Although the evidence for a doer effect 

is now substantial [6, 7, 12], the evidence for a causal doer effect is 

not as well developed.  To address this, we mined data for evidence 

of a causal doer effect across multiple domains.  We examined data 

from two online courses in Psychology, one in Biology, one in 

Statistics, and two in Information Science, applying causal 

discovery algorithms [14] in Tetrad  to each.  Assuming that factors 

driving a student’s choices regarding how to spend their time in an 

online course are temporally prior to their performance on quizzes 

and exams, we found evidence of a causal relationship in every 

domain we studied.  We did not find evidence that a unique causal 

model held in every domain we studied, but when we estimated the 

size of the causal relationships in the models we found in each 

domain, we did find evidence in every case that doing has a much 

stronger quantitative effect on learning than either reading or 

watching video.  This work may be the first EDM effort to explore 

the generalizability of a causal claim about learning across multiple 

datasets from a variety of courses and contexts of use.  It makes 

vivid the role of causal data mining algorithms in educational 

research. The evidence presented furthers the case for doer effect 

causality, but also recommends a need for richer data with more 

student background and learning process variables to better isolate 

causal directionality without assumptions about temporal order and 

unmeasured confounds.   

Keywords 

Doer effect; learning by doing; causal discovery 

1. INTRODUCTION 
When students take an online course, or use a cognitive tutor, a log 

of data is created that records their interactions with the course or 

tutor.  Mining this data for causal information concerning what 

sorts of student behaviors cause better learning outcomes is crucial 

if we are to intervene, either on the design of the online material, or 

on the student’s behavior more directly.    

In this paper, we explore the causes of learning in several online 

courses using Tetrad and Tigris/LearnSphere.  Tetrad 

(http://www.phil.cmu.edu/tetrad/) is a causal discovery tool that 

has already proved helpful in educational data mining [6, 10], and 

LearnSphere is a collaboration dedicated to providing data and 

tools for analyzing information pertaining to student learning 

(http://learnsphere.org/).  LearnSphere combines data and analysis 

tools with Tigris, a workflow tool that connects data from the 

educational data repository DataShop [5] to analytical programs 

such as Tetrad.  Tigris runs in a web browser and has functionality 

to use the abilities of Tetrad and share results of analyses with other 

Tigris users. Tigris allows users to test theories across diverse 

datasets, and this was precisely our goal in the work we describe 

here.  Tigris connects analytical tools to data and users via their 

research. LearnSphere users can upload datasets to DataShop [5] 

and make them available in workflows. They can also share their 

own analytics as well as workflows they construct in Tigris. The 

causal models and analysis in this paper were executed using the 

Tetrad implementation in Tigris. 

The causal discovery algorithms in Tetrad operate on graphical 

causal models [14], which allow us to rigorously represent the 

qualitative causal structure of a domain with a directed graph, and 

to connect the structure of the graph to statistical constraints that 

we can test on measured data. The algorithms compute the 

equivalence class of causal structures that are consistent with 

background knowledge about the domain.   In some cases the 

equivalence class is not very informative - for example the 

equivalence class of a system of two variables X,Y that are 

correlated is: X → Y, X ← Y,   X ← Confounder → Y.  In systems 

involving more than 2 variables, the causal information from an 

equivalence class can be much more informative.   

The question of how to judge whether or not to believe an 

equivalence class output by the algorithms is very complicated and 

very interesting.   All models within an equivalence class have the 

same “fit” with data, but whether the statistical fit is “good enough” 

to warrant belief depends on a large number of factors.  This is by 

no means a problem that is special to causal discovery algorithms, 

however, and it is not the subject of our work.  It is one that should 

concern all data-mining procedures, including ones that involve a 

single human building a hypothesis and then testing it on a single 

dataset.    

Our concern in this paper is whether or not evidence for a causal 

doer effect generalizes across courses and contexts.  We studied 

courses with diverse subject matter and diverse student 

populations.   

The “doer effect” is the assertion that the amount of interactive 

practice activity a student engages in is much more predictive of 

learning than the amount of passive reading or watching video the 

same student engages in.  We want evidence of a causal doer effect, 

that is, intervening to increase the amount of interactive practice 

would result in better learning outcomes. 

Previous work has provided some evidence for a causal doer effect. 

In [12], 52 students at the University of Pittsburgh took an online 

course in which five variables were measured: pretest, percent of 
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modules printed, percent of interactive exercises completed as a 

measure of “doing”, average end of module quiz score, and score 

on final exam.  

Printing out modules was convenient and more common among 

good students, but it reduced the likelihood that students would 

complete interactive exercises (they could not do these on the 

printed modules). It thus served as an “instrument” for the doing → 

Quiz → Final exam relationship. 

This relationship between performing active assignments and a 

learning outcome was directly researched in [6] and coined the 

“doer effect” in [7].  A dataset with six variables was examined in 

[6].  In this data, the relationship between doing and learning was 

far stronger than the relationship between passive activities such as 

watching videos or reading course material and learning.   

Furthering the evidence for the doer effect, in [7], the relationship 

was tested on four other datasets, using regression methods. These 

were a diverse set of courses, but all had shown a strong link 

between doing and learning.  While a strong correlation between 

doing and performance was shown in [7], the causal relationship 

was not tested.  In this paper, we extend the investigation of 

whether the doer effect is causal by explicitly employing causal 

discovery techniques in Tetrad to these additional datasets. 

We examined relationships between approximately six variables 

that are persistent throughout course subject matter, student 

populations, and time.  Our research question: Is there evidence that 

the doer effect is causal across multiple contexts/datasets? 

2. RELATED WORK 
Much of the EDM research has investigated correlational 

relationships in predictive models.  In [11], correlations of variables 

predict whether a student will enroll in college.  While having a 

successful predictor of college attendance is good, it would be more 

useful to educators to understand the causes of college attendance 

so they can make interventions and increase applications and yield. 

In [13], correlation mining is used to explore a relationship between 

the features of a math problem and student learning. They 

acknowledge that future work would have to go into determining if 

these relationships are causal. Only once the relationships are 

determined to be causal can they assuredly be used to influence 

course design.  Analyzing whether these relationships are causal by 

performing a randomized assignment experiment is the gold 

standard for making causal inferences, but this is often impractical, 

and there are thousands of non-experimental datasets available with 

which we can test the external validity (or generalizability) of 

hypotheses across multiple contexts [8].  Thus, it is worthwhile to 

pursue the use of causal discovery methods designed for non-

experimental data on such datasets [6, 9].   

Research into students’ attitudes toward a math tutor [4] conclude 

that correlations exist between empathetic messages in the tutor and 

a student’s mood toward it.  They suggest that the positive 

correlation they found is indicative of a relationship in which 

increasing the empathy of these messages would cause a better 

mood amongst the users of the tutor. This implies a causal 

relationship, but they do not consider confounding variables or 

causal discovery algorithms [14]. 

Previous work in EDM that has researched causal relationships 

include [3] and [9].  Both of these use causal discovery algorithms 

and [9] uses Tetrad.  Rather than resource use variables found in 

this paper, [3] uses variables that measure a student’s interest and 

actions in a tutor, and it provides evidence for causal relationships 

between these variables and a final exam grade. 

These past efforts [3, 6, 9, 12] have performed analyses on single 

datasets and, as such, there remains an opportunity to use the vast 

number of datasets available to probe external validity.  This paper 

is distinctive in this regard -- to our knowledge, this is the first EDM 

effort to explore the generalizability of a causal claim about 

learning across multiple datasets from a variety of courses and 

contexts of use. 

3. METHODS: CONFIRMATORY & 

EXPLORATORY WITH CRITERIA 
We pursued both confirmatory and exploratory approaches to 

addressing our research question by analogy, for example, to 

confirmatory and exploratory factor analysis [15].  

3.1 Method 1: Confirmatory Analysis of 

Causal Model Generality 
Our confirmatory analysis involved testing a causal model that 

displayed the doer effect that was derived from data aggregated 

from a class offered at Georgia Tech in 2013, 

(https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=863) on 

five other datasets. We tested if the model statistically fits each 

dataset, according to the goodness-of-fit measures common in 

linear causal models [14].  We know of no successful attempts to 

test a specific causal model discovered on one dataset on other 

datasets collected in widely varying contexts, as in our datasets 

which have different kinds of course activities collected in different 

educational settings and with different available measures of 

student performance and different sizes of data. In attempting this 

confirmatory analysis, we discovered that it was neither going to 

confirm nor deny the doer effect hypothesis. We present it 

nevertheless as a cautionary message for others who may be 

tempted to do the same and to explain how dataset variations, 

particularly dataset size, make inferences from a confirmatory 

analysis problematic.  

The causal model in Figure 1a was the model discovered on data 

from a 2013 Georgia Tech psychology course [6].  The model was 

previously [6] discovered using the Tetrad Java application, but in 

this paper, the analysis was performed using Tetrad’s 

implementation in LearnSphere’s Tigris workflow tool resulting in 

the same model structure, with negligible edge coefficient 

differences. The dataset features six variables measured on 939 

students.  One variable is a prior knowledge assessment (Pretest), 

one is a measure of doing in terms of the number interactive 

activities students performed (activities_started), two are measures 

of student use of passive learning resources including text page 

reading (non_activities_pageview) and video watching (play), and 

two are measures of learning outcome including the total across 11 

unit quizzes (T.Quiz) and a final exam score (Fina_Exam). A 

directed edge in a causal model depicts evidence of a direct causal 

relationship between the variables.  The coefficient on the edge is 

an indication of the strength of the causal relationship.   

The primary feature to note in the causal model in Figure 1a is that 

while the outcome measures (T.Quiz and, indirectly, Fina_Exam) 

are effects both of passive resource use (non_activities_pageview 

and play) and active resource use (activities_started), it is the active 

resource use that exhibits the much stronger relationship. This large 

difference (0.44 vs. .06) is the doer effect. It is also important to 

note that the edges in the model do not represent correlations 

between the variables; they express and quantify direct causal 

relationships. For example, while activities_started and Fina_Exam 

have a correlation coefficient of 0.28, the causal inference 

algorithm determines they do not have a direct causal relationship. 
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It does so by finding that when conditioned on T.Quiz, Fina_Exam 

and activities_started are independent.  

A final note is to emphasize that the causal claims are about the 

constructs being measured not about the measures themselves. For 

example, the causal link between T.Quiz and Fina_Exam indicates 

that better competence attained during the course (the construct that 

T.Quiz measures) causes better competence at the end of the course 

(the construct that Fina_Exam measures).  It does not imply that 

merely raising a T.Quiz (e.g., by making the quiz easier) would 

cause final exam scores to increase 

A difficulty with testing a model on different datasets is the 

fluctuating naming schemes of variables and the inconsistency with 

which variables are contained within datasets.  For instance, 

GTech’s psychology dataset contains seven variables while a 

dataset from The University of Maryland University College, 

which is also used in this paper, has four variables.  The four 

variables in the UMUC data are a subset of GTech’s psychology 

data.  For each dataset, we used the closest set of variables we could 

construct.  Table 1 shows our decisions.  

To facilitate comparison across datasets in the confirmatory 

analysis, we used the maximum number of variables that were 

common to the original dataset and the dataset being tested.  We 

used five variables when we tested the original model on C@CM 

and four variables when we tested it on the UMUC datasets. 

While we received UMUC data from the previous study [7], we 

added a sixth dataset from an online course on basic computing 

offered at Carnegie Mellon which we call Computing@Carnegie 

Mellon.  A pre-assessment variable was created for each student by 

averaging the highest scored attempt at each pre-assessment quiz.  

The same process was performed on unit level assessments for each 

student.  The number of active activities was the number of 

activities that each student started, and the number of passive 

activities was calculated in the same way as [6].  For a student to 

get to an activities page, they needed to visit a readable page.  To 

accurately represent the number of pages read by a student, the total 

number of readable pages each student visited was subtracted by 

the number of activities they performed divided by a ratio.  This 

ratio was the number of activities started to the total pageviews of 

the student with largest number of activities started.  Therefore, the 

page viewing variable would not quantify the pages that students 

viewed merely as a stepping stone to get to activities.  Once we 

made these datasets compatible with GTech’s data, we could test 

our original model on five datasets.  

3.2 Method 2: Exploratory Analysis with 

Criteria 
Our second pass at answering our research question involved 

exploratory analysis whereby we applied a causal discovery 

algorithm to each dataset instead of confirming the original model 

on the other datasets.  In this approach, we don’t expect to find the 

same model on each dataset, but we do hope to see evidence of a 

causal doer effect in each context.  We asked the question:  What 

are the properties of the search output that would constitute 

evidence of the causal doer effect?  These properties will be the 

criteria that we use to determine if each different context provides 

evidence of a causal doer effect.  We identified them as: 

Properties of a causal model exhibiting evidence of 

the causal doer effect. 

1. There exists a causal edge between doing and either of the 

outcome measures that has a positive coefficient estimate. 

2. The strength of this causal edge is larger than all the edges 

from passive resource use to the outcome measures. 

3. The edge(s) between doing and outcome(s) is oriented from 

doing to an outcome. 

 

4. RESULTS 
We now provide results from the two methods, first the 

confirmatory analysis and then the exploratory analysis. 

4.1 Confirmatory Analysis: Testing a Causal 

Model Across Multiple Datasets 
In order to determine if the causal model discovered on GTech’s 

psychology course data would fit other datasets, modifications to 

the data were made to ensure that all datasets were comparable.  We 

show in Figure 1 the causal model that was used as a “modified 

original” causal model, which was in turn then tested on new data.  

We arrived at the “modified original” model by applying the same 

causal search algorithm to the original data set – but with the set of 

variables that were common to both it and the dataset to be tested. 

Happily, these models are strongly consistent with the original.  For 

instance, when the play variable was removed, the value of the edge 

from non_activities_pageview to T.Quiz (i.e., 

non_activities_pageview→T.Quiz) should be adjusted.  This 

adjustment should be equal to the original edge between these 

variables plus the product of the edges from the two edges that were 

removed (i.e., non-activites_pageview→play and play→T.Quiz). 

 

Table 1.  How the various naming schemes of datasets relate to each other. 
 

Psychology Georgia Tech UMUC: Bio, Psych, Stat, InfoSci C@CM 

Pre-assessment  Pretest 
 

Pretest 

Doing activities activities_started activities_started activities_started 

Reading text pages non_activities_pageview non_activities_reading non_activities_pageview  

Watching lecture videos play 
  

Unit level assessments T.Quiz total_quiz_proportion T.Quiz  

Cumulative assessment Fina_Exam final_grade_in_number C@CM_Final_Exam 
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non_activities_pageview→T.Quiz + 

(non_activities_pageview→play * play→T.Quiz) = edge’s new 

value 

0.0650 + (0.1149*0.0645) = 0.0724 

The model estimated the new value for the edge from 

non_activities_pageview to T.Quiz to be 0.0713, which is 

consistent with the calculation above. 

The causal models in Figure 1 show yellow edges.  These edges 

were originally either unoriented in the representation of the 

equivalence class or were oriented as bidirected edges.  Before we 

can estimate and test a causal model, we must direct all edges to 

form a directed acyclic graph.  Therefore, before estimating, the 

undirected and bidirected edges were arbitrarily converted into 

directed edges - and such edges are shown in yellow to caution the 

user against inferring any directional information from such 

edges.  In Figure 1c, if the edge were directed the opposite way, the 

coefficient would still be 0.3927.  Removing variables such as play 

and Pretest still allowed for models that show strong doer effect to 

be discovered, which is consistent with [6]. 

The structures of the models in Figure 1 were then applied to the 

other five datasets, and these models were estimated to determine 

how well the exact causal structure of the “original model” fit the 

new data.   The results of the confirmatory analysis are summarized 

in Table 2.  As was expected, whether the original causal structure 

fit other datasets was inconsistent.  UMUC’s psychology dataset fit 

very well to this causal model having a p-value of 0.59, however, 

the rest of the p-values from full datasets were low.  It is worth 

noting that the only full data set to fit GTech’s psychology course, 

was another psychology course.  UMUC and GTech’s psychology 

courses have the same content (online readings and interactive 

activities).  The differences between these datasets were the 

population that created the data and the number of variables. 

GTech’s course had all of the variables that UMUC’s course had 

with the addition of the number of videos watched and a pretest. 

Therefore, once the video watching and pretest variables are 

removed from GTech’s psychology dataset, the same causal model 

would be expected to be discovered on GTech’s and UMUC’s 

psychology data. 

In large datasets, e.g., with N > 2000, the goodness-of-fit 2 statistic 

is of limited use, as it not only tests for causal structure, but it also 

becomes sensitive to small deviations from linearity, or normality, 

or other parametric assumptions that have little to do with the causal 

structure.  To test whether the statistic is rejecting the model 

structure or fine-grained violations of the parametric assumptions, 

we took a random sample of 300 students from each of the UMUC 

datasets and then re-estimated and tested the model.  The smaller 

biology sample showed a much better fit than its full dataset, 

however, at a p-value of 0.02, the model is still rejected.  The 

sample from the information science course showed an excellent fit 

with a p-value of 0.49 and a chi-square value that differs from the  

 

 

 

 

Figure 1.  Using subsets of variables from the 
Georgia Tech Psychology dataset, three causal 
models were discovered using the PC algorithm 

and an alpha value of 0.05 as in [6]. 

Table 2.  The causal model that was discovered on GTech’s psychology dataset was estimated using data from 
datasets listed in the first row of the table.  

 

UMUC 
Biology 

UMUC 
Info Sci 

UMUC 
Psychology 

UMUC 
Statistics 

C@CM 

UMUC 
Biology 
(sample) 

UMUC Info 
Sci 

(sample) 

#Students 3516 6112 89 61 383 300 300 

Chi-square 78.89 18.44 1.04 28.33 14.30 11.92* 3.32* 

DOF 2 2 2 2 4 2 2 

P-value 0 0 0.59 0 0 0.02* 0.49* 

*average of multiple trials with different samples 

 

χ2 = 7.27 
DOF = 7 
P-value = 0.4 

χ2 = 3.81 
DOF = 2 
P-value = 0.15 

χ2 = 4.52 
DOF = 4 
P-value = 0.34 

(a) 

(b) 

(c) 
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degrees of freedom of the model by only 1.32.  We take this to be 

evidence, although only weak evidence, that the causal structure in 

the “original model” is reasonably consistent with the measured 

data.  This marginal fit exceeds expectations given the history of 

difficulty in fitting single models across domains. Given the 

diversity of the datasets and lack of control between them, any 

indication of generalizability adds to external validity even though 

the fit was marginal. 

4.2 Exploratory Analysis: Causal Doer Effect 

Criteria Across Multiple Datasets 
The inconsistencies in fitting a single, exact causal model across 

such diverse datasets are to be expected.  A more targeted approach 

focuses the evaluation on just the variables of interest for assessing 

the causal doer effect. As described above, we defined three criteria 

to indicate whether a model provides causal evidence for the doer 

effect. We searched for causal models on each dataset and then 

evaluated them by these criteria.  Unlike the confirmatory strategy 

(as shown in Figure 1), where models were discovered on one 

dataset and estimated on another, these models were discovered and 

estimated on the same data, as is the norm in causal discovery and 

as was done previously [6, 12]. 

Figure 2 shows the results of this analysis. For every dataset we 

discovered a model that fit the data well (with the exception of 

Biology, where the model discovered is untestable because it 

entails no constraints and thus has 0 degrees of freedom). The 

causal model discovered in [6] was found using the PC algorithm 

with a p-value cutoff (alpha) of 0.05 for detection of reliable links 

between variables.  This is the algorithm and alpha value that 

produced a model with largest p-value upon estimation – indicating 

the model does not significantly deviate from the data and thus is a 

good one.  For the datasets in Figure 2, we also used the PC 

algorithm with alpha = .05, .1, or .15.   

In order to assess the goodness-of-fit of the whole model, we use 

the p-value of the χ2 statistic [1].  Unlike the usual logic in 

hypothesis testing, the p-value in this context uses a null of the 

specified model.  So, a low p-value indicates that we should reject 

the specified model, while a p-value over .05 indicates that we 

cannot reject the specified model from the data measured.  In 

general, the χ2 test is more tolerant of simple models, and simple 

models are also favorable since they only show the strong, 

important edges. 

The models in Figure 2 were discovered using the same many-

tiered prior knowledge as the models in Figure 1 and Table 2.  This 

 

Georgia Tech Psychology 

 

Computing@Carnegie Mellon 

 

UMUC Psychology 

 

UMUC Information Science 

 
UMUC Statistics 

 

UMUC Biology 

 

 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 7.27 
DOF = 7 
P-value = 0.4 
 

Alg.: PC 
Alpha: 0.1 
 

χ2 = 3.85 
DOF = 4 
P-value = 0.43 
 

Alg.: PC 
Alpha: 0.15 
 

χ2 = 1.21 
DOF = 3 
P-value = 0.75 
 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 0.27 
DOF = 1 
P-value = 0.60 

 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 0.32 
DOF = 2 
P-value = 0.85 

Alg.: PC 
Alpha: 0.05 
 

χ2 = 0 
DOF = 0 
P-value = NaN 

Figure 2.  Causal models of various datasets.  To the bottom right of each model are the search algorithm and p-value cutoff 

for searching (alpha) used to discover the model.  Below that are the model statistics when estimating the model on the dataset: 

Chi-square (χ2), degrees of freedom in the model (DOF), and p-value. 

 

Proceedings of the 11th International Conference on Educational Data Mining 373



prior knowledge assumes that the pre-assessments and weekly/unit 

assessments were taken before and after the doing and passive 

activities, respectively.  This is an assumption that prohibits causal 

directionality that violate the temporal order, but it is not an 

assumption that a causal edge exists.  That is, the assumption does 

not guarantee that the algorithms will find any edge between doing 

and learning.  If it does find an edge, then it will be directed from 

doing to outcome as opposed to vice versa.  

Setting these tiers for input in the search algorithms in Tetrad 

dictates that if a causal link is to be found between variables 

between temporal tiers, then the directionality of the edge will be 

from the tier earlier in time to the tier later in time.  Again, putting 

the doing variable in an earlier tier than an outcome variable does 

not guarantee that Tetrad will find a causal link between the two 

variables.  

We then asked whether the models discovered from each data set 

satisfy any of the three properties that indicate a causal doer effect 

as we had listed before.  Analyzing Figure 2, all six datasets we 

used in this paper produced causal models that meet all three 

criteria of a model with a causal doer effect.  For example, 

C@CM’s causal model has a directed edge with a coefficient of 

0.2074 from doing to an outcome measure, therefore displaying the 

first and third properties.  The coefficient from the only other 

resource use variable (non_activities_pageview) was -0.122.  The 

strength of the causal edge is larger than the edge from passive 

resource use to the outcome in C@CM, thereby showing the second 

property.  The model for UMUC’s biology class is not testable as a 

model, as it has 0 degrees of freedom.  Nevertheless, the model 

along with the estimated coefficients on the edges support all three 

criteria of a causal doer effect.   

5. DISCUSSION 
We build off of the work in [6] by providing evidence to suggest 

that the doer effect is indeed causal.  Data from a variety of different 

online courses (Psychology, Computing, Information Science, 

Statistics, and Biology) and course use scenarios (MOOCs and for-

credit college courses), analyzed with causal discovery algorithms 

all provide evidence that the doer effect is causal and not just 

associational.   

The correlation between doing and outcome is interesting, but 

establishing the correlation does not specify whether an 

intervention on doing would affect outcome.  If the doer effect is 

causal, then modifying learning environments to guide or 

encourage students to spend more time engaging in interactive 

activities will result in more learning. 

In addition to finding evidence for a causal relationship between 

doing and learning, we articulated what we hope are useful new 

methods for discovering and testing for cause-effect relationships 

across diverse datasets.   

For our confirmatory strategy, we tested models discovered in one 

context on data from another.  Finding models that fit a held-out 

subset of data is protection against overfitting – but it does not mean 

that those models will fit datasets collected in entirely new contexts, 

in fact, it is nearly impossible to fit across datasets as diverse as 

these.  Although models developed for educational research seem 

unlikely to fit in new contexts, we found that features of the causal 

model of the doer effect found in Georgia Tech data did seem to 

generalize. The specific model discovered on Georgia Tech’s 

Psychology course data fit extremely well on the data from 

UMUC’s Psychology data.  The courses had the same content, but 

they had different students and were offered in quite different 

settings (MOOC vs. for-credit course). A marginal fit of the causal 

model from GTech’s Psychology course onto UMUC’s Biology 

and Information Science courses provides some support, albeit 

limited, for even broader generalization of a specific causal model 

across different contexts.  Given that task has been shown to be 

nearly impossible, these results are significant even though most 

fits were marginal. 

The inconsistencies of fitting a specific model across contexts is not 

an indication that a causal doer effect is not present throughout the 

contexts, it is, however, an indication that an exact model is 

inconsistently present throughout the contexts.  The difficulty of 

fitting a specific model across contexts led us to reconsider this 

confirmatory approach. Although a fully specified causal model 

failed to generalize, it appeared to be due to differences in links 

between variables that are not relevant to the main question of 

whether the doer effect is causal. Thus, we developed a method to 

examine just the key claims of the target theory, in our case, a 

theory of a causal doer effect.  We did so by generating a causal 

model in an exploratory fashion for each dataset and then 

evaluating the resulting model as to whether it fit the key criteria 

for providing evidence of the doer effect.  

In all datasets we found that: 1) there was a positive causal edge 

between active doing and either of the outcome measures, 2) the 

strength of this causal edge was larger than all edges from passive 

resource use (reading and watching) to the outcome measures, and 

3) the edge(s) between active doing and outcome(s) was oriented 

from doing to an outcome.   

This work provides many possible subsequent inquiries.  One area 

of future work is to test the assumption on the directionality of the 

causal link between doing and learning outcome.  In this paper, we 

used temporal knowledge to constrain the search algorithms to 

direct a causal relationship, if one was found between doing and 

outcome, to be directed from doing to outcome.  This temporal 

knowledge does not make it more likely to find that there is an edge 

between doing and outcome, it only constrains its orientation.  The 

fact that we found a causal edge between doing and outcome in all 

six domains is exciting, but we need to investigate further to see if 

the direction of these edges can be determined from the data or from 

other plausible assumptions.    

When we relax the assumption that doing is temporally prior to 

outcome, Tetrad is not as likely to orient the edges between doing 

and learning.  Unlike the dataset from Pitt described in the 

introduction [12], where we were lucky to find a natural 

“instrument,” we do not have a variable in the datasets we studied 

that is likely to take on that role.  Identifying a broader set of 

variables in this dataset (e.g., by distinguishing counts of error-free 

doing from errorful doing) or in other datasets may lead such a 

natural instrument. Particularly useful datasets would involve more 

student background variables, such as demographics and prior 

aptitudes, as well as more detailed process data, such as when 

scrolling makes parts of a web page, whether text, video, or activity, 

visible or not to a student. 

We also hope to perform an experiment to test and hopefully 

confirm the causal doer effect, much as Rau, et al., [10] did by 

performing an experiment to test hypotheses generated with causal 

discovery algorithms on non-experimental data.   
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ABSTRACT 

This study proposes a formal multi-step methodology for 

qualitative assessment of topic modeling results in the context of 

online learner motivation to purchase Statements of Participation 

(SoP).  We developed Latent Dirichlet Allocation (LDA) based 

topic models on open-ended responses of three post-course survey 

questions from 280 open courses offered on the FutureLearn 

learning platform. For qualitative assessment, we first determined 

the theme of the topic based on the words that constituted the 

topic and responses that were most strongly associated with the 

topic. Then, we verified the theme by comparing the topics 

assigned by LDA model on a test set with manual annotation. We 

also performed sentiment analysis to check for alignment with 

human judgment. Learner motivations in each theme were 

interpreted with the Expectancy-Value-Cost framework. Our 

analyses indicated that, primarily, learners were motivated to 

purchase the SoP based on perceptions of the utility value and 

financial cost of the certificate. We found that human judgment 

agreed with the topic model more frequently when LDA topic 

weights were larger.  

Keywords 

MOOC Certificates, Topic Modeling, Latent Dirichlet Allocation, 

Text Mining 

1. INTRODUCTION 
Open-ended survey responses contain rich information that is 

often hard to capture through closed-ended questions. Open-ended 

questions allow users to not only answer the question asked but 

also express their opinions freely, offer insights that may be novel, 

and provide suggestions for improvement. For an evolving system 

such as Massive Open Online Courses (MOOCs), where there is a 

large variation in the learners’ backgrounds and learning 

objectives, it is challenging to design closed-ended surveys with 

predetermined options encompassing all aspects. Therefore, use of 

open-ended surveys that allow obtaining detailed feedback and 

insights from users on different aspects can be very useful. 

However, manually analyzing open-ended survey responses from 

large, diverse populations can be challenging. Data mining 

techniques can be helpful in this regard, but they involve issues 

related to interpretability of their results.  

In the context of our research, the primary issue is the extent to 

which topics identified by topic modeling techniques represent 

qualitatively meaningful themes.  

1.1 Topic Models 
While manual analysis of open-ended responses is extremely 

tedious, topic modeling algorithms can find emerging themes 

from a large collection of documents [1] and have been used for 

exploratory analysis of large textual collections such as MOOC 

discussion forums [2]. In this study, we used Latent Dirichlet 

Allocation (LDA) based topic modeling, which is a probabilistic 

unsupervised classification method that models each document as 

a mixture of underlying topics and each topic as a collection of 

related words. The LDA model tries to identify these topics 

iteratively based on the co-occurrence of words in documents and 

represents each document as a composition of different topics 

with associated weights. A good explanation of the algorithm can 

be found in [3]. “Topic models provide useful descriptive 

statistics for a collection, which facilitates tasks like browsing, 

searching, and assessing document similarity” [4].  

Notably, the topic model algorithms have no domain knowledge 

and the documents are not annotated with topics or keywords. 

However, the generated topics often resemble the thematic 

structure of the document collection and topic annotations by 

model are useful for tasks such as classification and data 

exploration. “In this way, topic modeling provides an algorithmic 

solution to managing, organizing, and annotating large archives of 

texts” [5].  

Since topic modeling is an unsupervised method, the ground truth 

set of topics is unknown—which makes it hard to judge the 

quality and relevance of topics identified by models such as LDA. 

Also, the interpretability of the topics generated from these 

models is not guaranteed [6].  Measures such as Perplexity or 

Probability of held-out documents [7] have been proposed for 

evaluating the quality of topic models but they have not been 

found to correlate well with human judgment because they do not 

capture topic coherence or semantic interpretability [8], [9].  On 

the other hand, ‘Topic Coherence’ measures have been found to 

better correlate with human judgment [6], [10], [11]. Finding out 

the exact meanings of the topics requires additional information 

and domain knowledge [12]. In a study comparing human 

evaluation of topics with these traditional metrics, authors 

recommended that “practitioners developing topic models should 

thus focus on evaluations that depend on real-world task 

performance, rather than optimizing likelihood-based measures” 

[8]. Therefore, in this study, we conducted qualitative analysis of 

topics identified by LDA model to determine their theme and 

relevance in context of online course certificates. 

1.2 Online Participation Certificates 
MOOCs provide the opportunity to deliver knowledge and skills 

to learners anywhere in the world, at relatively low cost.  Learners 

can document their MOOC achievements through certificates, 

which are increasingly becoming an acceptable medium for skill 

or knowledge validation among employers [13], [14]. It has also 

been found that learners who opt for certification in MOOCs are 

more likely to actively participate in and complete courses [14], 
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[15]. As such, identifying factors associated with certificate 

purchasing can lead to better participation and learning. 

Our aim in this study was to understand the value that learners 

associate with the course participation certificate. To our 

knowledge, previous literature has not studied large-scale learner 

feedback to assess the importance of online learning certificates. 

In this study, we analyzed the open-ended responses to post-

course survey questions from about 280 courses offered on the 

FutureLearn platform to understand the reasons why learners were 

interested or not interested in the Statement of Participation (SoP), 

and what would make it more appealing to them. On the platform 

used for this study, the SoP can be purchased by learners if they 

“mark over 50% of the steps on a course as complete and attempt 

all test questions” [16]. 

1.3 Learner Motivation and the 

Expectancy-Value-Cost Model 
The Expectancy-Value-Cost (EVC) model of motivation has been 

shown to capture the important features of learning, persistence, 

and performance-based behaviors. EVC theory characterizes 

motivation to engage in a given task by the expectation of success, 

the perceived value, and the perceived cost of engaging in the task 

[17]. Expectancy is related to a learner's self-conception of their 

ability, task difficulty, and academic mindset, and it helps predict 

achievement. Value is based on intrinsic motivation, perceived 

utility, and attainment (affirmation of identity), and it is highly 

related to continued interest and persistence. Cost has four 

associated elements related to task effort, outside effort, loss of 

valued alternatives (including money), and emotion. Cost 

negatively affects both expectancy and value in different ways 

[18]. Because retention in MOOCs is a common problem, this 

study aims to understand the values and costs associated with 

SoPs which can help increase MOOC completion rates. 

When learners decide to participate in MOOCs, they come with a 

wide variety of backgrounds and motivations. Their varying 

circumstances affect their ability to invest time, effort, and money 

to participate, and through EVC theory these variations can help 

develop our understanding and strategies to increase motivation, 

such as offering the chance to invest in a SoP [19], [20]. However, 

there are a variety of influences on learners’ decisions to purchase 

SoPs. When a learner enrolls in a MOOC and purchases the SoP, 

their investment is often associated with its value and cost and can 

provide a motivational tool for learning and course completion. 

Thus, the reasons why learners do or do not purchase SoPs can 

inform this motivational strategy for improved retention and 

learning. 

2. METHOD 
We analyzed following three post-course survey questions: 

Q1. Why are you interested in a SoP? 

Q2. If no (not interested in SoP), why not? 

Q3. What would make a SoP more appealing to you? 

The post-course survey data was provided to us by the platform in 

the form of separate CSV files for each course. We first collated 

together all the responses to each of the listed questions from 

different courses. From the collected responses, we removed the 

records that did not contain any text. It is to be noted that 

considerably more learners answered the post-course survey 

question Q2- why they were not interested in the SoP (~56,000), 

than Q1-why they were interested in it (~12,600). It was 

encouraging that a lot of learners (~49,000) answered Q3-what 

would make the SoP more appealing to them. Regarding the 

length of responses, about 30% of responses for Q1 and Q2, and 

40% for Q3, had 5 or fewer words. For all questions, about 60% 

responses had 10 or fewer words and about 75% responses had 15 

or fewer words. For each question, we randomly selected 100 

responses to be used as the TEST set and the remainder to be the 

TRAIN set.  

2.1 Topic Modeling 
We used the MALLET library [21] for developing the LDA topic 

models for each question using the respective TRAINING set. 

During the model development, stopwords that were in the 

MALLET Stopword list were removed. We did not perform 

stemming of words and considered only single words. The LDA 

model requires the number of topics to be provided as an input. 

We conducted a preliminary analysis by providing 10 topics as 

input and qualitatively examining the words that constituted the 

topic and responses that were strongly associated with each topic. 

We observed that some of the topics were very similar which 

indicated that the optimal number of topics was fewer than 10. To 

determine the optimal number of topics, we used the 

CV_Coherence measure using the package PyLDAvis [22], as 

earlier studies have found CV_Coherence to be well-correlated 

with human judgment. We compared the CV_Coherence values of 

different number of topics between 5 and 10 and selected the 

optimal number of topics as the one with highest CV_Coherence 

for each question. Subsequently, LDA models were developed on 

the TRAINING dataset for all three questions. MALLET provides 

following outputs that were used for qualitative analysis:  

a) A list of the top words that constitute each topic. For 

example, for topic Ti, the list of the top k words, Wi = {wi
1, 

wi
2, ..., wi

k}, that constitute the topic are outputted. The value 

of k was set to be 20 for this study. 

b) The composition of each document (open-ended responses, 

in our case) in terms of topics and associated weights. For 

example, for given topic model with n topics {T1, T2, …, Tn}, 

the composition of a response Ri is represented as:  

C(Ri)= pi
1T1 + pi

2T2 + pi
3T3+ ... + pi

nTn, where pi
j represents 

the relative weight associated with topic Tj and the sum of all 

topic weights for a document is one. Therefore, documents 

composed of multiple topics are expected to get assigned 

smaller weights for multiple topics, and documents 

composed of a single topic are expected to have a high 

weight associated for that topic. 

2.2 Qualitative Analysis 
The objective of qualitative analysis of the topics generated by the 

LDA model was to validate the understanding of underlying 

themes. The qualitative analysis involved the following steps: 

1) First, two researchers developed initial themes for each topic 

from the list of top words that constituted the topic. Then, the 

100 responses with the largest weights for that topic were 

examined to check if they corresponded to the initial theme 

and the themes were updated if any missing aspects were 

discovered. Thus, the themes were iteratively developed by 

sampling more instances. We selected high weight examples 

for theme development as they were composed mainly of a 

single topic of interest. To illustrate this process, one of the 

topics that emerged from the responses to Q3 (What would 

make SoP more appealing to you?) comprised the following 

words: free, cheaper, cost, price, charge, expensive, print, 

download, version, pay, lower, certificate, online, bit, 

downloadable, digital, purchase, statement, pdf, copy. By 

inspecting the words in context of the question asked, we can 
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deduce that this topic was related to the SoP cost being too 

expensive and a downloadable, digital copy would be a good 

alternative. Then, by examining strongly associated 

responses with this topic, such as, “A more affordable price 

point. Possibly this could be done by having the option of a 

downloadable certificate so would save on printing, 

packaging, and postage,” we could confirm that the theme 

we developed for the topic was appropriate but should 

include that a digital certificate would be considered a 

cheaper option. 

2) The next step was to evaluate the LDA model trained on the 

TRAIN dataset by assessing its topic-assignment on the 

TEST dataset, which was not used to train the LDA model. 

The responses in the TEST set were manually annotated with 

up to three most likely topics, then checked if the top topic 

assigned by the LDA model was among those three. Notably, 

it was difficult to manually assign only one topic to 

responses in the TEST set, as many topics contained 

overlapping ideas. This is discussed further in the Results 

section. We also studied the relationship between the weight 

associated with the top topic and the level of agreement 

between the LDA model and human judgment. 

3) We also performed qualitative analyses of responses that 

were composed of multiple topics according to the LDA 

model to further test our understanding of the topic theme. 

For each question, we randomly selected 100 sample cases 

where the LDA output had two topics with weights greater 

than 0.4. A researcher, who was blinded to the topic-

composition assigned by the model, annotated the cases with 

two most prominent topics. The manual annotation was 

compared with the topic-composition of LDA model. 

4) Sentiment analysis was performed on the responses and the 

sentiment-polarity of the responses associated with each 

topic was examined as an additional validation. We used the 

Natural Language Toolkit NLTK Vader sentiment intensity 

analyzer [23], [24], that is pre-trained on a large corpus of 

annotated social media text and outputs a score for Positive, 

Negative, and Neutral sentiments. The average sentiment 

score for each topic was determined by averaging the 

Positive, Negative and Neutral sentiment scores of responses 

with that as top-topic. Next, we examined whether the 

sentiment scores were consistent with the expected prevalent 

sentiment of the topic or not. 

3. RESULTS 
We observed the highest CV_Coherence at 6 topics for Q1 and 

Q2, and at 5 topics for Q3. Therefore, these were selected as the 

optimum number of topics and provided as input to the LDA topic 

model. The topics that emerged for Q1, Q2 and Q3, their themes 

and top-10 words, are presented in Table 1. The qualitative and 

sentiment analyses of topics for each question are discussed 

below. 

3.1 Q1: Why are you interested in 

Statement of Participation? 
The LDA model identified six topics describing interest in the 

SoP. Table 2 summarizes the results of qualitative and sentiment 

analyses for Q1. The column “%Top Topic” indicates the 

percentage of cases in the TRAIN and TEST datasets where that 

topic was the top topic. The column “%Agree-TRAIN” indicates 

the percentage of cases among the top 100 cases of that topic in 

the TRAIN dataset where the response was consistent with the 

theme of the topic. The column “%Agree-TEST” indicates the 

percentage of cases for each topic where the top topic assigned by 

the LDA topic model was among the three topics assigned 

manually. The column “Average Sentiment Score-TRAIN” 

indicates the average score of Positive (Pos in Table 2), Negative 

(Neg in Table 2) and Neutral (Neu in Table 2) sentiments as 

outputted by the NLTK Sentiment Intensity Analyzer for all the 

responses in the TRAIN dataset that had the respective topic as 

the top topic identified by the LDA model.  

Table 2. Qualitative and Sentiment Analyses Summary: Q1  

Topic %Top Topic  %Agree 
Average Sentiment 

Score-TRAIN 

 Train Test Train Test Pos Neg Neu 

Q1T1 29 25 87 80 0.11 0.01 0.88 

Q1T2 33 38 84 71 0.14 0.01 0.85 

Q1T3 16 0 96 0 0.07 0.00 0.92 

Q1T4 13 38 86 42 0.16 0.01 0.83 

Q1T5 6 0 59 0 0.17 0.02 0.81 

Q1T6 4 0 77 0 0.14 0.01 0.84 

 

The agreement of the theme of the topics with human judgment in 

the TRAIN set was relatively good (close to 90%) for all the 

topics except topic Q1T5. However, we did not observe a similar 

level of agreement between the topic predicted by the topic model 

and manual annotation in the TEST set. One of the primary 

reasons for this effect is that the 100 responses reviewed manually 

in the TRAIN set had a considerably high topic-weight (>0.85) 

while the weights of top-topic in the TEST set were not as high 

(being as low as 0.28 for some cases). For the qualitative analysis 

of 100 responses that were mostly composed of two topics, we 

found that a) for 18% of the cases, the model and human 

judgment agreed for both topics, b) for 64% of the cases, only one 

of the topics assigned by the model and human agreed, and c) for 

the remaining 19%, neither of the two topics assigned by the 

model and human agreed. 

Given the positive framing of Q1, the expected prevalent 

sentiment in learners’ responses was positive or neutral, but not 

negative. The sentiment analysis also agrees with expectations.  

The responses within each topic were predominantly classified as 

neutral (81-92%) and positive (7-17%).  It is to be noted that the 

NLTK sentiment analyzer, trained on annotated media corpus 

differing from our dataset, may produce somewhat noisy results. 

Based on topic themes for Q1 as shown in Table 1, it seems that 

learners would be interested in obtaining the SoP if they perceive  

a) personal attainment value and/or a high time or effort cost for 

the course, for example, keeping the SoP as a memento of their 

hard work, b) professional utility value, such as demonstrating 

interest in an area to employers and universities, or c) low 

financial cost of the SoP and high utility or interest value of the 

courses, wanted to contribute back to the platform for providing 

great learning experiences free of charge.  

3.2 Q2: If not interested in Statement of 

Participation, why not? 
The LDA model identified six topics related to learners’ 

disinterest in the SoP, as described in Table 1. 

 

 

Proceedings of the 11th International Conference on Educational Data Mining 378



 

Table 1: List of Topics, their Themes and Top-10 Words for Q1, Q2 and Q3 

Topic Theme of the topic Top 10 words 

Q1T1 
Learners wanted SoP as a proof of completing the course for personal (record of their personal 

achievement of finishing the course) and professional (a good addition to their resume) reasons. 

record, participation, achievement, 

proof, cpd, completed, personal, part, 
add, work 

Q1T2 

Learners want to demonstrate their interest in a particular area for professional purposes, such as 

applying to universities for higher studies or demonstrating interest or skills to a potential future 

employer. 

future, show, career, interest, proof, 

job, knowledge, study, university, 

work 

Q1T3 
For many learners who were working professionals, the SoP fulfilled their work-related requirement 

of “continuous professional development (CPD)” or training hours. 

development, professional, cpd, 
evidence, learning, portfolio, 

continuing, personal, work, education 

Q1T4 

They wanted SoP as a reminder of the great learning experience or the time and effort they put in 

the course. They perceived interest or attainment value in the SoP and recognized a high time or 
effort cost for the course. They also wanted to show it to family and friends with pride.  

time, show, learning, work, put, 

learn, reminder, effort, good, I’ve 

Q1T5 
Given that the courses are offered for free on the platform, learners who could easily afford to pay 
for the SoP wanted to support the platform so that it could continue to offer courses for free.  

courses, certificate, free, pay, 

FutureLearn, statement, money, it's, 

feel, back.  

Q1T6 
Learners felt the SoP would be professionally useful due to various reasons, such as the course 

being related to their area work or coming from a reputable university.  

history, university, interested, 
knowledge, health, teaching, work, 

college, education, science 

Q2T1 
Learners did the course out of personal interest in the subject or for leisure. They were either retired 

or the course was not related to their professional field.  

interest, retired, personal, don’t, 

certificate, career, participation, 
learning, prove, feel.  

Q2T2 
The price of the SoP seemed expensive to learners and they could not afford it at that time due to 
their financial situation. 

money, purchase, buy, afford, 

expensive, moment, time, courses, 

future, cost. 

Q2T3 
Some learners did not need the SoP as a) they already had advanced degrees, b) they were very 

experienced professionally, or c) they were retired.  

paper, retired, don’t, certificates, 
knowledge, certificate, learn, 

learning, piece, interested. 

Q2T4 

Learners were not sure about the worth of SoP as it a) indicated only participation in the course and 

did not specify course accomplishments, learning, scores, or level of engagement, or b) was not 
clearly recognized by employers and universities.  

certificate, participation, statement, 

completed, feel, complete, didnt, 
time, purchase, work 

Q2T5 
The current price of the SoP seemed high to learners due to different reasons such as their financial 

situation, or high currency exchange rates (if they lived in developing countries).  

expensive, free, certificate, pay, cost, 

bit, paper, price, high, courses 

Q2T6 

It was difficult for international learners to buy the SoP due to high currency exchange rates and 

non-availability of convenient payment methods.  Learners mentioned that payment through credit 
card or international bank transfer was not easy in their country.  

card, credit, pay, payment, country, 

money, don’t, online, bank, live.  

Q3T1 

Learners suggested that a) SoP should be cheaper, b) digital version of SoP should be downloadable 
for free, and payment should be needed for a formally verified hard copy, d) pricing should be 

based on the country, e) more payment methods such as PayPal should be supported, and f) there 

should be option to choose soft copy or hard copy of SoP as shipping may be difficult and costly for 
remote locations 

free, cheaper, cost, price, charge, 

expensive, print, download, version, 

pay.  

Q3T2 
SoP would be more appealing if it were more relevant for their career or job, such as being 

recognized by employers as qualification or counting as CPD. 

career, work, needed, don't, 

statement, job, interest, participation, 
retired, relevant.  

Q3T3 

This topic had two themes: a) the price of the SoP was too high for which some learners suggested 

membership model and subsidized costs for low income learners; and b) learners were not sure how 

to answer Q3 as some had got the SoP and some didn’t want it as they did the course for recreation 

courses, free, don't, appealing, 

money, cost, make, statement, paper, 

answer 

Q3T4 
Learners suggested that instead of showing just participation, the SoP should show detailed course 

achievements to properly reflect their efforts and achievements  

statement, participation, certificate, 

completed, test, level, completion, 

achievement, score, tests 

Q3T5 

Learners would be interested in buying the SoP if it was more recognized professionally, such as 

course credits, recognition by employers and valid continuous professional development. Some 
learners suggested a more formal look of SoP with university logo. 

university, qualification, recognized, 

credit, credits, certificate, courses, 
points, degree, academic 
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Similar to Table 2, Table 3 presents the distribution of topics, 

level of agreement between the topic assignment by LDA model 

and manual annotation, and the average sentiment scores for each 

topic for Q2. As shown in Table 3, the level of agreement with the 

human annotation in the TRAIN set is not consistently higher than 

the TEST set, and for some topics, it is higher for the TEST set. 

 

Table 3. Qualitative and Sentiment Analyses Summary: Q2 

Topic %Top Topic  
%Agree 
 

Average Sentiment 

Score-TRAIN 

 Train Test Train Test Pos Neg Neu 

Q2T1 38 58 100 79 0.11 0.06 0.83 

Q2T2 25 15 80 71 0.05 0.06 0.89 

Q2T3 15 12 72 100 0.08 0.07 0.85 

Q2T4 12 5 65 67 0.07 0.07 0.86 

Q2T5 8 6 65 100 0.08 0.06 0.86 

Q2T6 3 4 93 75 0.06 0.10 0.84 

 

Some of the possible reasons for this behavior, which is 

considerably different from Q1 (as shown in Table 2), may be: a) 

the higher number of responses for Q2 (55,000) as compared to 

Q1 (12,600), which may lead to samples in the TEST set being 

more similar to TRAIN set, and b) greater level of overlap 

between the topics generated for Q2 as compared to Q1. To 

illustrate the latter point, as shown in Table 1, there seems to be 

considerable amount of overlap between the themes of topics 

Q2T2, Q2T5, and Q2T6, with all being related to the financial 

cost of the SoP. This may cause the LDA model to assign either of 

these topics as top-topic based on the words present in the 

response. Additionally, these topics are highly likely to be 

assigned as top-3 topics during manual annotation of responses in 

the TEST involving cost aspect of the SoP. Therefore, it is likely 

to result in a higher level of agreement between manual 

annotation and top-topic assigned by LDA model in TEST set.   

For the qualitative analysis of 100 responses that were mostly 

composed of two topics, we found that a) for 30% of the cases, 

the model and human judgment agreed for both topics, b) for 56% 

of the cases, only one of the topics assigned by the model and 

human agreed, and c) for the remaining 14%, neither of the two 

topics assigned by the model and human agreed. We observed 

higher level of agreement for top-two topics as compared to Q1. 

Given the negative framing of Q2, the prevalent sentiment of 

responses was expected to be between neutral and negative. The 

sentiment scores for Q2 in Table 3 indicate that the responses 

were largely neutral in nature. We did not observe relatively 

higher score for Negative sentiment as compared to Positive 

sentiment (in fact, for some topics such as Q2T5, Positive had a 

higher average score). This differed from our expectation about 

the prevalent sentiment in Q2 responses.  

Based on topic themes for Q2 as shown in Table 1, it seemed that 

learners would not opt for SoP if they perceived a) high financial 

or effort costs, or b) low utility or attainment value, as they did the 

course for leisure or did not benefit from it professionally. 

3.3 Q3: What would make a SOP more 

appealing to you? 
For Q3, the five topics that emerged from the LDA topic model 

are presented in Table 1. As expected, Q3 topics were similar in 

theme to Q2 topics, as, in Q3, learners suggested approaches to 

address the concerns they mentioned in Q2. Similar to Tables 2 

and 3, Table 4 summarizes the distribution of topics, agreement 

between LDA model and manual annotation, and the average 

sentiment scores for Q3. 

Table 4. Qualitative and Sentiment Analyses Summary: Q3 

Topic %Top Topic  
%Agree 
 

Average Sentiment 

Score-TRAIN 

 Train Test Train Test Pos Neg Neu 

Q3T1 35 46 90 65 0.16 0.06 0.77 

Q3T2 26 16 82 94 0.11 0.05 0.84 

Q3T3 17 12 80 83 0.12 0.06 0.82 

Q3T4 14 13 80 54 0.10 0.04 0.85 

Q3T5 9 13 83 85 0.11 0.02 0.86 

 

As shown in Table 4, we observe a high level of agreement 

between the LDA model and human judgment for most topics in 

the TRAIN set, and for all other topics except Q3T1 and Q3T4 in 

the TEST set. For Q3T1, the lower level of agreement in the 

TEST set may be due to considerable overlap in the themes of 

Q3T1 and Q3T3 on the cost aspect of SoP. Similarly, there is 

overlap in themes of topics Q3T4, Q3T5, and Q3T2 regarding the 

professional recognition of the SoP by employers.  

For the qualitative analysis of 100 responses that were mostly 

composed of two topics, we found that a) for 49% of the cases, 

the model and human judgment agreed for both topics, b) for 44% 

of the cases, only one of the topics assigned by the model and 

human agreed, and c) for the remaining 6%, neither of the two 

topics assigned by the model and human agreed. We observed a 

higher level of agreement for top-two topics in Q3 as compared to 

Q1 and Q2.  

Our expectation of the prevalent sentiment of Q3 responses was 

between neutral and positive and not as negative as Q2. The 

sentiment scores for Q3 responses are similar to Q1, with 

relatively high score for Neutral, followed by Positive, and then 

Negative. In summary, the learners suggested that they would be 

more inclined to buy the SoP if it were more affordable, 

recognized professionally, detailed their accomplishments and 

learnings; and convenient payment options were available.  

4. DISCUSSION 
In this study, we analyzed large number of open-ended responses 

using LDA topic model followed by qualitative analysis of the 

topics to determine and verify the topic-themes. It is important to 

mention the limitations associated with our study. While the topic 

model brought up some prominent themes from the responses, 

there may be other important themes that did not get highlighted 

because of low frequency. Therefore, the results from the topic 

model are not exhaustive and cannot replace detailed manual 

qualitative analysis that can identify such themes. It is to be noted 

that the topic themes were not distinct in nature and had 

overlapping elements with other topics, for example, in Q2, there 

were multiple topics on the financial cost of the SoP. During 

manual review process, we also noticed that learner responses 

often involve multiple topics and the weights assigned by the 

LDA model for prevalent topics may not represent the actual 

composition strength of the topic.  

We also observed a consistent pattern for all questions that the 

top-topic predicted by LDA model in the TEST dataset agreed 

better with human annotation when the weight of the top-topic (as 

assigned by the LDA model) was higher. This is represented in 

Figure 2 as the plot between the weight of top-topic (shown as w) 

with agreement between LDA model and human annotation for 

TEST datasets of Q1, Q2, and Q3.  
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Figure 1. Weight of top-topic and level of agreement with 

human annotation in TEST dataset for Q1, Q2, and Q3 
 

As shown in Figure 1, there is a relatively low level of agreement 

between the topic model and human judgment when the top-topic 

weight is less than 0.5, but picks up in the range of 0.5-0.75, and 

is extremely high when the weight is more than 0.75.  

From the topic model analysis, there were some clear connections 

with aspects of value and cost in EVC theory. As expected, the 

expectancy dimension of motivation was not relevant for these 

questions. For learners for who purchased the SoP, interest, 

utility, and attainment values were associated with personal and 

career related considerations and the reputation of those offering 

the MOOCs, while costs were associated with task effort and time 

commitment. Complimentary to these findings, reasons for not 

purchasing the SoP were the perceived lack of value for both 

current and future needs, but cost focused, primarily, on the 

financial expense, even when high values were expressed. The 

suggestions for making the SoP more appealing also centered 

around motivational aspects of increased value and professional 

utility and decreasing financial or effort costs. 

5. IMPLICATIONS 
The implications of this study relate to the methodology of 

qualitative validation of topic models and learner motivations to 

purchase SoPs. 

5.1 Methodology 
Manual analysis of open-ended responses involves multiple steps 

such as developing a coding scheme and then coding the data, 

which can be challenging for large numbers of responses. Topic 

models provide an effective means for exploratory data analysis 

for a large collection of textual data but mostly require qualitative 

analysis for interpretability. Our results indicated that the 

proposed methodology for qualitative evaluation of topics 

generated by LDA is reliable and can be replicated for similar 

studies involving large-scale open-ended survey data. We also 

found that the topics predicted by the LDA model were more 

likely to agree with human judgment if the weight assigned by the 

LDA model was higher (>0.75). This indicates that the weight 

assigned by the LDA model is in line with human judgment. Still, 

the probabilistic nature of the LDA algorithm is such that the 

weights may not be perfectly representative of the composition of 

themes present in a response, particularly when topics are highly 

overlapping or consist of disparate sub-themes. 

5.2 Learner Motivation  
Given there is a large variation in background and learning 

objectives of online learners, their need for certification also 

varies. Research indicates that participants who pay for 

certification have a higher completion rate than students who 

choose to audit the course. Furthermore, the majority of 

participants report that they intend to fully participate in all 

aspects of the course; however, most do not fulfill this 

commitment. Therefore, it is important to understand what 

learners feel about participation certificates to improve the 

offering by platforms and to take advantage of the motivational 

benefits of certificates to increase course completion.  

Based on the topics generated from learner responses, we obtained 

the following insights about learners’ opinions of course 

participation certificates: a) learners were interested in buying the 

SoP if they valued it personally or professionally or wanted to 

contribute to the platform, b) learners were not interested in 

buying the SoP if they thought it was too expensive, lacked utility 

value, or were taking the course for purely recreational reasons, 

and c) learners believed the SoP would be more appealing if it 

were professionally recognized, adequately reflected effort, and 

cost less. 

6. CONCLUSIONS 
Our results showed that our multi-step approach for qualitative 

analysis is robust as there was high level of agreement between 

human judgment and topic assignment by the LDA model when 

the model assigned larger weight to the topic–which meant that 

the theme developed for the topic in the first step of qualitative 

analysis was appropriate. This approach for qualitative analysis of 

topic models would be applicable for similar studies analyzing 

large amounts of textual data.  

This study examined how learners perceive the value of online 

learning certificates based on their responses to post-survey 

questions. It is worth mentioning that the post-course survey was 

taken only by learners who completed the course and not all 

enrollees. Future work may involve collecting feedback from all 

enrollees about certification in online courses that may lead to 

insights on their motivations for the course.  

We found that one group of learners reported value in obtaining 

the certificate and appreciated the artifact to keep of their 

learning. However, another group of learners cited cost and lack 

of value as main reasons for not opting in for the certificate. One 

potential explanation may be the individual learner’s socio-

economic status or country location and their ability to pay for the 

MOOC. 

MOOCs were founded as affordable learning opportunities; 

however, many learners indicated the certificate was priced out of 

their range. While obtaining a certificate may increase a learner’s 

participation in a course and provide documentation of their 

achievement, it must be priced at an amount that learners world-

wide can afford.  

EVC theory provided a useful interpretive lens for the 

motivational aspects of investing in a SoP, which can be used to 

inform strategies for encouraging this investment and increasing 

course completion. Future studies could examine employer 

perceptions of MOOC certificates and ways of increasing the 

credibility of learning in a MOOC. 
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ABSTRACT
Colleges are increasingly interested in identifying the fac-
tors that maximize their enrollment. These factors allow
enrollment management administrators to identify the ap-
plicants who have higher tendency to enroll at their insti-
tutions and accordingly to better allocate their money re-
wards (i.e., scholarship and financial aid). In this paper
we identify factors that affect the likelihood of enrolling.
We use machine learning methods to statistically analyze
the enrollment predictability of such factors. In particu-
lar, we use logistic regression (LR), support vector machines
(SVMs) and semi-supervised probability methods. The LR
and the SVMs methods predict the enrollment of applicants
at an individual level whereas the semi-supervised proba-
bility method does that at a cohort level. We validate our
methods using real data for applicants admitted to the uni-
versity of New Mexico (UNM). The results show that a small
set of factors related to student and college characteristics
are highly correlated to the applicant decision of enrollment.
This outcome is supported by the relatively high prediction
accuracy of the proposed methods.

Keywords
Student enrollment, student characteristics, college charac-
teristics, classification, logistic regression, support vector
machines, time series analysis, variable selection

1. INTRODUCTION
In the past years enrollment management emerged as an
important structure in academic institutions [3]. Its direct
influence on the performance of such institutions made it a
cornerstone. Don Hossler, John P. Bean, and colleagues de-
fined enrollment management as ”an organizational concept

∗Associate Vice President of Enrollment Management

and a systematic set of activities designed to enable educa-
tional institutions to exert more influence over their student
enrollments. Organized by strategic planning and supported
by institutional research, enrollment management activities
concern student college choice, transition to college, student
attrition and retention, and student outcomes. These pro-
cesses are studied to guide institutional practices in the areas
of new student recruitment and financial aid, student sup-
port services, curriculum development, and other academic
areas that affect enrollments, student persistence, and stu-
dent outcomes from college” [5].

A direct consequence of this process is the major involve-
ment of enrollment management in budgeting and financial
aid planning. This requires that administrators of the en-
rollment management communicate with administrators of
the financial aid office to better allocate scholarship and fi-
nancial aid rewards in order to maximize enrollment. Con-
sidering the large expenditure on the scholarship and the
financial aid awards, this research explores different factors
that presumably influence the enrollment decision of appli-
cants. The intention of this work is to provide decision mak-
ers in the enrollment management administration a better
understanding of the factors that are highly correlated to
the enrollment process. These factors might better identify
the applicants who have higher tendency to enroll at an in-
stitution relative to others. This allows enrollment manage-
ment to assign money rewards efficiently and thus not only
maximize enrollment but also save a big portion of institu-
tional money. These factors basically include a wide range of
features related to student characteristics and institutional
characteristics.

For this purpose, we use real data for applicants admitted
to the university of New Mexico (UNM) as a case study.
UNM represents a variety of regional comprehensive uni-
versities and thus the results of this work could be widely
applicable to other universities. UNM is a public research
university in Albuquerque, New Mexico. It is the largest
post-secondary institution in the state in total enrollment
across all campuses and one of the state’s largest employ-
ers. The acceptance rate at UNM is 45% with an average
enrollment of 3,500 new beginning student per year [2].
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The results in this work are presented using machine learn-
ing methods and data mining techniques. We use logistic
regression (LR) and support vector machines (SVMs) mod-
els in addition to time series analysis and probability ap-
proaches.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a descriptive definition of nationally effective
student and institutional characteristics in addition to oth-
ers that are introduced for the first time in the literature.
Section 3 introduces our proposed models. Section 4 shows
some experimental results. Finally, Section 5 presents some
concluding remarks.

2. FEATURE DESCRIPTION
The data set used in this work contains more than fifty fea-
tures for admitted students at UNM. These features describe
some of the student and the college characteristics. These
features are represented by a set of binary, categorical, dis-
crete and continuous variables. The section below lists a
description for each of these features and explains the intu-
ition guiding us to include them in our analysis.

• GENDER: a binary variable indicating the sex of the
applicant (i.e., male or female). This feature might be
a good enrollment predictor if the population at UNM
tends to lean towards one sex more than the other one.

• ETHNICITY: a categorical variable indicating the eth-
nicity of the applicant (i.e., black, white, latino and
others). This feature might be a good predictor in
case applicants of certain ethnicity has a tendency to
enroll at UNM more than others.

• ACT SCORE, SAT SCORE: discrete variables reflect-
ing the competence level of the applicant. These vari-
ables are represented by the ACT and/or the SAT
scores. This feature might be a good predictor since
students usually would rather enroll in colleges whose
student population has a similar competence level.

• GPA: a continuous variable representing the high school
GPA of the applicant. Its value ranges between 0 and
5. Similar to the ACT SCORE and SAT SCORE vari-
ables, GPA reflects the competence level of the appli-
cant.

• FIRST GENERATION: a binary variable indicating
the education level of the parents. The label is 1 if at
least one of the parents went to college and 0 otherwise.
Usually parents provide their children with an advice
on deciding which college to attend. Thus this variable
might be a good predictor.

• PARENT INCOME: a continuous variable indicating
the total income of the parents. As mentioned ear-
lier, this feature reflects the socioeconomic status of
the parents and should have a major influence on the
student’s decision choosing which institution to attend.

• STUDENT INCOME: a continuous variable indicat-
ing the income of the student in case he or she has a
job. Similar to the PARENT INCOME variable, STU-
DENT INCOME has an influence on the applicant’s
decision.

• RESIDENCY STATE: a categorical variable indicat-
ing the residency status of the applicant. This variable
is a relative measure of the distance from the appli-
cant’s residency to UNM campus. It has four labels:
0 indicating that the applicant resides in New Mexico
and thus considered as in-state student; 1 indicating
that the applicant resides in either Texas, California,
Arizona or Colorado. Applicants in those states are
eligible to the Amigo scholarship which allows them to
pay in-state tuition if they meet certain criteria; 2 indi-
cating that the applicant is non-resident; 3 indicating
that the applicant is international. This variable might
be a good predictor since it reveals the type of relation
between the distance from the campus (implicitly the
cost) and the applicant’s decision.

• INSTITUTIONAL MONEY: a continuous variable in-
dicating the amount of the financial aid assigned to the
applicant by the institution (i.e., UNM).

• BRIDGE, SUCCESS: binary variables indicating the
type of the financial aid offered by UNM. BRIDGE
is a reward given for freshman students in their first
semester. It is exclusively given to applicants with
certain aptitude levels; SUCCESS is a reward given for
freshman students in their first semester. It is eligible
to applicants with financial needs.

• FEDERAL MONEY: a continuous variable indicating
the amount of the financial aid assigned to the appli-
cant by the federal government.

• APPL DECISION DIFF: a discrete variable indicat-
ing the total number of days between the time of the
application submission and the time of the admission
decision. The gap between these two events might be
a good predictor. For example, if the admission de-
cision was taken shortly after the application submis-
sion, this might provoke the applicant’s tendency to
enroll at UNM.

• APPLY AFEB: a binary variable indicating the month
during which the application is submitted. The label
is 1 if the application is submitted after February and
0 otherwise.

There are many other features that are used in this work.
However we did not mention them all because their charac-
teristics are similar-to an extent- to the above listed features.
We believe that the features described above give realistic
examples of factors that have the potential to influence the
applicant’s decision of enrollment.

3. MODELS
In this work we approach the enrollment prediction question
from a classification perspective. That is we have a pool of
applicants and we want to identify or classify those that are
most likely to enroll at UNM. We further divide the classi-
fication problem into two main approaches: classification at
individual level and classification at a cohort level. The indi-
vidual level approach predicts the enrollment of an applicant
based on a given set of features. Then it determines the total
number of enrollment by simply counting the applicants who
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are predicted to enroll. For this purpose, we use two com-
mon machine learning classifiers with two class responses:
LR and SVMs. The LR with two class responses is one of
the basic classification models that aim to find the relation-
ship between a binary response y and a predictor variable(s)
x, which can be in a categorical or numerical scale [6]. The
response variable y of the binary logistic regression consists
of two categories i.e. success and fail. In some cases, the
categories are denoted as 1 for success and 0 for fail. In our
case the label is 1 if the applicant is predicted to enroll and 0
otherwise. However, a disadvantage of logistic regression is
that the technique is not able to identify possible nonlinear
structures in the data. A good alternative in this case would
be SVMs. On the other side the cohort approach predicts
the enrollment of a cohort of applicants based on a given
set of features. Using this approach we directly determine
the portion of the applicants’ pool that would enroll without
identifying them individually. The sections below explain in
more detail the difference between these approaches and the
models used to implement them.

Variable selection
In this work we use a total of 60 features to predict enroll-
ment. It is always possible that some of these features are
redundant or irrelevant. Thus they can be removed from the
prediction models without incurring much loss of informa-
tion. One approach to encounter such features is variable
selection. The objective of variable selection is three-fold:
improving the prediction performance of the predictors, pro-
viding faster and more cost-effective predictors, and provid-
ing a better understanding of the underlying process that
generated the data [4]. The variable selection methods are
typically presented in three classes: filter method, wrapper
method and embedded method. In this work we implement
the wrapper methodology which come in two flavors: for-
ward selection and backward elimination. In forward selec-
tion, variables are continuously added into bigger and bigger
subsets, whereas in backward elimination we start with a set
containing all the variables and iteratively remove the vari-
able with the least predictability. Both methods yield nested
subsets of variables.

3.1 Classification at cohort level
The LR and SMVs models used in this work predict enroll-
ment at individual level. That is, given a set of features
for an applicant ai, the LR and SVMs models predict the
probability of enrollment of ai (LR) or alternatively give a
0/1 flag indicating if ai will enroll or not (SVMs). In this
work we present a new approach in which we predict en-
rollment at cohort level. That is, given a set of features for
a cohort of applicants ci, we predict the portion of ci that
would enroll. The main concepts underlying this approach
are probability and time series analysis. In the probabilistic
approach we define a probability distribution over the fea-
tures of ci and accordingly compute the respective portion
that would enroll. The results shown by this approach prove
to be promising.

The probabilistic model is based on a semi-supervised learn-
ing method. It is defined as following:

pX(x) = P0.pX|0(x) + P1.pX|1(x) (1)

where

pX|0 is the distribution over the features of applicants
that do not enroll. It is estimated from the training
data.

pX|1 is the distribution over the features of applicants
that do enroll. It is estimated from the training data.

P1 = 1−P0 is the fraction of applicants that do enroll.

pX is the distribution over the features of unlabeled
applicant data.

So if the total number of applicants is n then the predicted
number that would enroll is nenroll = nP1. In this case all
what we need to do is to estimate P1. Solving (1) for P1

(using P1 = 1 − P0) gives:

P1 =
pX(x) − pX|0(x)

pX|1(x) − pX|0(x)
(2)

true for all x.

The second approach used in this work to predict enroll-
ment at cohort level is based on time series analysis. A
time series is a sequence of observations collected over time.
Usually these observations are taken at constant intervals
(i.e., daily, monthly, annually, etc.). The main object of
time series analysis is to reveal the model underlying the
process generating the series data. Such a model is used to
describe the patterns in the series (i.e., trend , seasonality),
explain how past observations influence future ones, and ac-
cordingly forecast future values of the series [1]. In this work
we use a seasonal autoregressive integrated moving average
(ARIMA) model to forecast the number of applicants that
would enroll at UNM. A seasonal ARIMA model is defined
as an ARIMA(p, d, q)x(P,D,Q)m model, where

• p is the number of autoregressive terms

• d is the number of differences

• q is the number of moving average terms

• P is the number of seasonal autoregressive terms

• D is the number of seasonal differences

• Q is the number of seasonal moving average terms

• m is the number of periods per season

4. EXPERIMENTAL RESULTS
In an attempt to empirically validate the performance of
our proposed models, we analyzed actual university data.
For this purpose we used the data of 54,692 First Time Full
Time (FTFT) students who were admittted to UNM be-
tween years 2009 and 2016. We used this data set in our
work in order to layout the needed features, train our mod-
els and test their performance.
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4.1 Data-preprocessing
In order to get more consistent and discipline results it is
essential to preprocess the data set. For this purpose, we
implemented a number of common preprocessing techniques
used in machine learning.

For various reasons, the data set used in this work contains
missing values. That is for some admitted students, UNM
does not have all the required information (ex. parents in-
come). This leaves the values of some features in our data
set blank. A basic strategy to overcome this problem is to
implement imputation methods such as the mean, median
or mode of the row or column in which the missing values
are located. Another strategy would be simply to discard or
remove the rows and/or columns containing missing values.
This might come at the price of losing information. How-
ever, this might not be the case if the training data set is
big enough in which removing some rows will not impact the
model performance. In this work we simply discarded the
rows with missing values. Consequently, we were left with
a data set of 37,500 student which is enough to train our
models. Next we standardized the continuous and discrete
features of the data set. We removed the mean value of those
features and scale them by their respective standard devi-
ation values. Standardization improve the performance of
the models by adjusting the features to the same scale. We
also converted categorical features to binary features using
one-hot encoding. This estimator transforms each categor-
ical feature with m possible values into m binary features,
with only one active.

4.2 Numerical results
We used 60 features to train the LR and the SVMs models.
We used 10-fold cross validation to examine the performance
of these models and compare their results as well. The per-
formance accuracy of both models is presented in Table 1.

Performance Accuracy (%)
LR 89.41
SVMs 91.25

Table 1: The performance accuracy of the LR and SVMs
models using 10-fold cross validation.

It is important to mention that in our training data set the
number of observations in each class is not equal. The num-
ber of applicants who enroll at UNM is relatively higher
than those who do not enroll. In this case the performance
accuracy of the classifier can be misleading. A better metric
to test the performance of a classifier is a confusion matrix.
It is a technique for summarizing the performance of a clas-
sification algorithm. A confusion matrix gives a better idea
of what the classification model is getting right and what
types of errors it is making. Table 2 and Table 3 show the
confusion matrices for the LR model and the SVMs model.

The precision and recall values for the LR and the SVMs
models are shown in Fig. 1. Both precision and recall are
good measures to examine the relevance of the predicted
instances to the actual ones. They are calculated using the
confusion matrices and hence they are reliable measures to
summarize such matrices.

actual
value

Prediction outcome

p n total

p′
2060 267 2327

n′
130 1293 1423

total 2190 1560

Table 2: The confusion matrix of the LR model.

actual
value

Prediction outcome

p n total

p′
2063 201 2265

n′
127 1359 1485

total 2190 1560

Table 3: The confusion matrix of the SVMs model.

The performance accuracy, the confusion matrices and the
precision and recall scores of the LR and the SVMs models
are very similar. Thus the advantage of the SVMs model
over the LR model in identifying nonlinear structures is not
utilized here. This suggests that the LR model is sufficient
to achieve enrollment prediction with a reliable performance.
In this context we applied the LR model again to find a sub-
set of the features that attain a similar performance accuracy
without losing much information. So we implemented the
forward and the backward variable selection models to re-
move possible redundant and irrelevant features. The results
are shown in Fig. 2. The figure presents the classification
error of the LR model using 5-fold cross validation for both
backward and forward methods. It shows that the forward
method has slightly better performance over the backward
method. In fact using a subset of 14 features only (the red
circle) can achieve a performance accuracy of 89%. This re-
sult is almost equal to the performance accuracy of the LR
model when using all the features (Table 1). In other words,
we can use these 14 features only to predict the enrollment
for any future pool of applicants without the need to include
the rest of the features in our prediction models. We pro-
vide a description for 10 of these features. The description
is provided below. These features are sorted according to
the predictive importance criterion proposed by the forward
selection method. They are listed in a descending order:

• STATE AWARD ORIGINAL: This is a continuous vari-
able. It is the amount of the scholarship offered to the
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Figure 1: The precision and recall for the LR and SVMs
models.

applicants by the state of New Mexico. Perhaps the
most important among others is the lottery scholar-
ship. The results presented by our LR model show
that on average applicants with state awards tend to
enroll more at UNM.

• FIRST DECISION AFEB: This is a binary variable.
It represents the time of the admission decision. The
label is 1 if the admission decision is taken after Febru-
ary (i.e., March, April, May, June and July) and 0 oth-
erwise. The results show that applicants have more
tendency to enroll at UNM if the admission decision is
taken after February.

• SUCCESS: This is a binary variable. It is the reward
given for applicants in their first semester. It is eligible
to those with financial needs. The total amount of the
reward is 1,000 $. The LR model shows that applicants
with SUCCESS rewards are more likely to enroll at
UNM.

• GPA: This is a continuous variable. It represents the
high school GPA of the applicants. The results show
that applicants with high school GPA between 3.0 and
3.5 tend to enroll more at UNM compared to other
applicants.

• RESIDENCY STATE: This is a categorical variable
indicating the residency status of the applicant. The
results show that applicants who resides in NM are
more likely to enroll at UNM (not surprising!).

• FAFSA BDEADLINE: This is a binary variable. It
indicates if the applicants submit the Free Application
for Federal Student Aid (FAFSA) before the deadline
set by UNM. The results show that applicants who
submit the FAFSA before the deadline tend to enroll
more at UNM compared to those who submit after the
deadline.

• LOW INCOME: This is a binary variable. It reflects
the socioeconomic status of the parents. The results
show that applicants whose parents have a low income
are more likely to enroll at UNM.

• BRIDGE: This is a binary variable. It is the reward
given for freshman students in their first semester. It

is exclusively given to applicants with certain aptitude
levels. The total amount of the reward is 1,500 $.
The LR model shows that applicants with BRIDGE
rewards are more likely to enroll at UNM.

• APP AFEB: This is a binary variable. It represents
the time when the applicants submit their applica-
tions. The label is 1 if the submission is done after
February (i.e., March, April, May) and 0 otherwise.
The results show that applicants have more tendency
to enroll at UNM if the submission is done after Febru-
ary.

• FED AWARD ORIGINAL: This is a continuous vari-
able. It is the amount of the financial aid offered to
the applicants by the federal state. Perhaps the most
important is the Pell grant. The results presented by
our LR model show that on overage applicants with
federal awards tend to enroll more at UNM.

Figure 2: The classification error of the backward and for-
ward variable selection methods implemented using the LR
model to predict enrollment.

Cohort prediction
As mentioned earlier the LR and the SVMs models predict
enrollment at individual level. In this work we propose al-
ternative approaches where we predict enrollment at cohort
level. The first approach is probabilistic in which the to-
tal enrollment is computed using (2). We implemented this
approach following these set of steps:

• Use previous year data to estimate pX|0 and pX|1 (la-
beled data).

• Use current year data to estimate pX (unlabeled data).

• Use (2) to estimate P1 for current year.

• Predict the total enrollment: nenroll = nP1

To empirically validate our proposed model we used actual
university data for UNM students admitted in years 2015
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and 2016. We used the 2015 cohort as a training data set
to estimate pX|0 and pX|1. Then we used the 2016 cohort
to estimate pX and accordingly compute P1 using (2). The
actual and the predicted total enrollment for the 2016 cohort
are shown in Table 4.

Total enrollment (2016)
Actual 3402
Predicted 3478

Table 4: The total enrollment of 2016 cohort at UNM.

We repeated the same procedure, however this time using
the 2016 cohort as a training data set to predict the enroll-
ment of the 2015 cohort. The results are shown in Table 5.

Total enrollment (2015)
Actual 3320
Predicted 3239

Table 5: The total enrollment of 2015 cohort at UNM.

It is essential to mention that we estimated pX , pX|0 and
pX|1 using only one feature. We evaluated these densities
using the histogram method. Then we used (2) to estimate
P1 at multiple x values (histogram bins) and averaged these
results to obtain a final P1 estimate. A remarkable obser-
vation using this approach is the accurate predictions using
just one feature. This is reasonable. The feature does not
have to provide good discrimination because we are not try-
ing to predict individual enrollment; instead we just need to
estimate P1.

Time series analysis is another approach to forecast student
enrollment. Unlike the other classification models used in
this work, a time series model does not require features to
carry out predictions. It only requires a sequence of ob-
servations collected over time. This sequence enables us to
reveal the model underlying the process generating the series
data. In this context we collected the number of students
enrolled at UNM for spring, summer and fall semesters of
each year. The study contains students enrolled at UNM
between years 2003 and 2016. The time series data for this
study is shown in Fig. 3 (black color). Note that the number
of periods, m, in the series is 3 referring to spring, summer
and fall semesters. In this work we used the Akaike Infor-
mation Critera (AIC) as a statistical measure to choose the
ARIMA model that best fits the series. AIC is a widely used
measure in statistics. It reflects the robustness of the fitted
model in a single value. When comparing two ARIMA mod-
els, the one with the lower AIC is generally “better”. The
parameters of the ARIMA model that best fit the time se-
ries of the UNM enrollment data are p = 0, d = 0, q = 0,
P = 1, D = 0 and Q = 3 (i.e., ARIMA(0, 0, 0)x(1, 0, 3)3).
The fitted model is represented by the red curve in Fig. 3.
This model has the lowest AIC and we used it to predict the
enrollment at UNM for spring, summer and fall semesters of
the 2017 cohort. The predicted numbers are represented by
the blue curve of Fig. 3. Table 6 shows the actual versus the
predicted enrollment numbers at UNM for the 2017 cohort
with 80% confidence interval.

Figure 3: The ARIMA(0, 0, 0)x(1, 0, 3)3 model for the en-
rollment data at UNM.

Actual total
enrollment

(2017)

Predicted total
enrollment

(2017)

Lower
bound
(80%)

Upper
bound
(80%)

Spring 70 57 48 68
Summer 132 153 129 181
Fall 3219 3380 2850 4010

Table 6: The actual and the predicted enrollment of the
2017 cohort at UNM.

5. CONCLUSION
In this paper we shed the light on factors that influence the
enrollment decision of applicants. We use machine learning
methods to measure the level of correlation between enroll-
ment and such factors. In particular we approach the en-
rollment prediction question from a classification perspec-
tive where we need to identify the likelihood of enrollment
for a pool of applicants. We further divide the classification
problem into two main approaches: classification at individ-
ual level and classification at a cohort level. The individual
level approach predicts the enrollment of an applicant based
on a given set of features. Then it determines the total num-
ber of enrollment by simply counting the applicants who are
predicted to enroll. For this approach we implemented a LR
model and an SVM model. On the other side the cohort
approach predicts the enrollment of a cohort of applicants
based on a given set of features. For this approach we imple-
ment a semi-supervised probability model and a time series
model. Using this approach we directly determine the por-
tion of the applicants’ pool that would enroll without identi-
fying them individually. The results show that our proposed
models can predict enrollment with reliable accuracy using
only a small set of features related to student and college
characteristics.
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ABSTRACT 
The amount of information contained in any educational data set is 
fundamentally constrained by the instructional conditions under 
which the data are collected. In this study, we show that by re-
designing the structure of traditional online courses, we can 
improve the ability of educational data mining to provide useful 
information for instructors. This new design, referred to as Online 
Learning Modules, blends frequent learning assessment as seen in 
intelligent tutoring systems into the structure of conventional online 
courses, allowing learning behavior data and learning outcome data 
to be collected from the same learning module. By applying 
relatively straightforward clustering analysis to data collected from 
a sequence of four modules, we are able to gain insight on whether 
students are spending enough time studying and on the 
effectiveness of the instructional materials, two questions most 
instructors ask each day. 

Keywords 

Online Instructional Design; Clustering Analysis; Data 
Interpretability; Supporting Teachers 

1. INTRODUCTION 
The central goal of educational data mining is to “mine educational 
data sets to answer educational research questions that shed light 
on the learning process”. To this end, the predominant focus of the 
EDM community has been on developing and advancing methods 
and algorithms to effectively extract information from existing 
educational data sets. However, the amount of information 
contained in any given data set is fundamentally constrained by the 
instructional conditions under which the data is collected [17], such 
as the nature of the learning tasks, the design and organization of 
instructional contents, and even the available features of the 
educational platform. As a simple example, if the final exam is the 
only assessment administered in an online course, then information 
about students’ content mastery at any other time during the course 
is obviously not contained in the data. Therefore, we ask the 
question: is it possible to enhance the ability of EDM to provide 

useful information for instructors, by re-designing the structure of 
the online course to improve the quality of the data that it produces?  
Many of today’s online courses more or less inherited their 
structure from their off-line, face-to-face predecessors. For 
example, many MOOCs are created directly based on existing face-
to-face courses [9, 29, 33]. Those courses typically contain a variety 
of learning resources, from e-text and videos to problems and 
forums, organized into week-long units. This structure allows 
students to display a plethora of different learning behaviors, which 
has become the focus of many recent studies in EDM.  [2, 14, 20, 
24, 27] 
On the other hand, students’ learning outcome is assessed relatively 
sparsely in a typical online course. Many recent studies still use 
“certification rate” or “retention rate” as a proxy for learning over 
the entire course [14, 21, 27], which can be problematic [19]. 
Moreover, very few online courses contain any form of pre-test 
[12],. This is particularly problematic for learning measurement in 
MOOCs, as there are significant variations in students’ incoming 
knowledge and background [11, 19]. Insufficient assessment of 
learning outcome made it difficult for researchers to make 
meaningful correlations between learning behavior and learning 
outcome.  
In contrast, students’ knowledge state is being constantly assessed 
in intelligent tutoring systems (ITS), another online instructional 
system widely studied by the EDM community [4, 15, 18, 30]. A 
number of methods have been developed to measure students’ 
learning progress in a ITS with high resolution [13, 22, 23]. 
However, students’ learning behavior is much more restricted in 
many ITS as compared to online courses, and oftentimes 
instructional materials in a ITS consist of only simple hints or 
feedback texts. 
Can we re-design the structure of online courses to include certain 
features of ITS so that it contains more frequent and accurate 
learning assessment, while still providing enough freedom for 
students to display a variety of learning behavior? In this paper we 
present such an attempt at combining the advantages of both 
systems, by constructing a small online course consisting of a 
sequence of four Online Learning Modules (OLMs). Each module 
contains both instruction and assessment, which enables us to make 
correlated measurements on students’ learning behavior and 
learning outcome in close proximity. Moreover, students are 
required to make one attempt on the assessment before accessing 
the instruction, which serves as a de-facto pre-test for each learning 
module. We demonstrate that by applying relatively simple data 
mining algorithms, data produced by OLMs could provide valuable 
insight on two questions that every instructor encounters on a daily 
basis: Q1: Are students spending enough time and effort studying 

 

 

Proceedings of the 11th International Conference on Educational Data Mining 390



the materials? Q2: How effective are the instructional resources in 
the course?  
Both questions are best answered when considering learning 
behavior and learning outcomes together. For Q1, “enough time” is 
best defined for a given instructional resource when students 
spending less than that time have poorer learning outcomes; For 
Q2, “effectiveness” can be more accurately measured from the 
learning outcome of students who spent adequate time and effort 
learning from the resources. In the remainder of this paper, we will 
first introduce the design of OLMs and implementation of the 
current study, then describe the data collection procedure, analysis 
and visualization methods, followed by the outcomes of the study 
and ending with a discussion of the impact of this study on potential 
future research. 

2. METHODS 
2.1 Design of OLMs 
The design of OLM is inspired by research on deliberate practice 
[16] and mastery-based learning [7, 8], and in particular influenced 
by the design of the ASSISTMENTs tutoring platform [3, 18]. Each 
OLM module contains an instructional component (IC) and an 
assessment component (AC) (Figure 1). The IC consists of both 
instructional text and ungraded practice problems separated into 
multiple pages, focused on teaching a single physics concept or a 
problem-solving skill. Students receive immediate feedback and 
have access to the problem solution after attempting any practice 
problem.  Each IC typically takes about 10 minutes to an hour for 
a student to finish, which resembles a small unit in an online course. 
The AC consists of either 2-3 simple multiple-choice concept 
problems or 1 complex multiple-choice problem, depending on the 
focus of the module. 

 
Figure 1: Schematic representation of the structure of OLM 

and OLM sequence 

A series of OLMs are combined sequentially to form a learning unit 
on a given topic. A student passes a module by correctly answering 
all the questions in the assessment component, and can proceed 
onto the next module only after passing the current one. Each 
student can have multiple attempts on the AC. On each new 
attempt, a slightly different version of the assessment problem(s) 
drawn from a problem bank is presented to the student.   
A key feature of OLM is that students are required to make at least 
one attempt on the assessment before being given access to the IC. 
After the initial attempt, students can either study the IC, or make 
additional attempts on the assessment. On each attempt the student 
is presented with a slightly different problem until the problem 
bank in the assessment component is depleted. During an attempt 
the IC is temporarily locked from access.  
The OLM design has three major advantages for data collection and 
analysis: First, students’ AC attempts before and after instruction 
serve as de-facto pre and post-tests, increasing the accuracy and 
frequency of learning measurement. Second, the length and types 
of learning resources in the IC allows for a richer variety of student 
learning behavior to be observed compared to many ITS. Finally, 
by combining instruction and assessment into one module, it allows 

for observations of learning outcome and learning behavior to be 
interpreted in the context of each other. 

2.2 Study Design and Data Collection 
Individual OLMs were created on the award-winning learning 
objects platform, Obojobo, developed by the Learning System and 
Technology (LS&T) team at the Center for Distributed Learning at 
University of Central Florida [6], and administered to students as a 
sequence via the Canvas learning management system. For the 
current study, student subjects were recruited from three sections 
of calculus-based college introductory physics course at University 
of Central Florida during the Spring 2017 semester. The OLMs 
were provided to students as an optional reviewing tool for an 
upcoming exam.  

Four OLMs were created on the topic of conservation of 
mechanical energy with each module focusing on a single concept 
or a problem-solving skill. The problem bank of each AC contains 
3 isomorphic multiple-choice problems authored based on 
published assessment instruments in physics[32]. The distractors in 
each problem are designed to capture common student 
misconceptions. 

The number of students who made at least 1 attempt on the AC of 
modules 1-4 are 75, 54, 47 and 40 respectively.  In this study, 
students were allowed 50 attempts on each module to ensure that 
they can all proceed to the next module.  

Time-stamp data on the following types of student events are 
collected by the Obojobo platform: Entering and exiting a page in 
both IC and AC; Starting and finishing an attempt on either an 
assessment problem or a practice problem; Viewing a practice or 
assessment problem; Submitting an answer to a practice or 
assessment problem; Outcome of each attempt at the AC.  

2.3 Data Analysis 
2.3.1 Capturing Learning Behavior within Longest 
Study Session 
All of the interactions by one student with the IC that took place 
between two consecutive assessment attempts are treated as a single 
“study session” (SS). A student can have multiple SS by going back 
and forth between the IC and the assessment component. For 
answering the questions in this manuscript, we only consider SS 
that took place before the first time a student passes the assessment 
component is recorded.  

In a total of 168 occasions where a student interacted with the IC 
of a module, 76% (127) of the time all interactions took place in a 
single SS. In most of the other occasions, there is a major SS that is 
significantly longer than the other SS. In only 4 cases did the second 
longest SS reach at least 50% as long as the longest SS (LSS). Since 
the majority of students’ learning behavior for each module took 
place during their LSS, it serves as a good approximation for 
measuring students’ learning effort of the given module. For the 
current analysis, students’ learning behavior within the LSS is 
characterized along three dimensions:   

1. The duration of the LSS, measured as the sum of the times spent 
on each accessed page in the IC.  

2. The average number of attempts made on practice problems, 
measured as the total attempts made divided by the number of 
practice problems viewed by the student.  

3. The percentage of contents accessed, measured as the sum of 
page entering events plus problem viewing events, divided by the 
sum of the number of pages and the number of practice problems 
in each module.  
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2.3.2 Clustering Analysis of students’ learning 
behavior 
In this study, we assume that students’ learning behavior will form 
multiple clusters due to different learning strategies, habits and 
incoming knowledge states. In order to identify such subgroup, we 
used a mixture model in which the whole population distribution is 
represented by the sum of component distributions representing 
subgroups, and the probabilities of students’ belonging to 
subgroups or classes are estimated. We used Mplus software [28]to 
fit the mixture model to our data. The optimal number of classes 
was judged based on six statistical indices provided by Mplus: 
Akaike Information Criterion (AIC)[1], Bayesian Information 
Criterion (BIC)[31], Sample-size Adjusted BIC, Vuong-Lo-
Mendell-Rubin Likelihood Ratio (VLMRLR) Test[34], Lo-
Mendell-Rubin Adjusted LRT (LMRALRT) test[25], and 
Bootstrap Likelihood Ratio (BLR) test[26]. AIC, BIC, and sBIC 
are goodness of fit indices which consist of -2 log (likelihood) and 
an additional term for penalizing a complex model. Each tries to 
strike balance between fit (-2 log (likelihood)) and parsimony (a 
penalty term), and a smaller value indicates better fit. The other 
three indices are the statistical tests comparing how well the data is 
fitted by models with n and n-1 classes, i.e. p-value less than .05 
from those tests indicates that the current model with n-classes has 
a significantly better fit than the model with (n-1)-classes. In short, 
the optimal number of classes can be determined by running 
mixture models with a different number of classes (e.g., models 
with 1,2,3, and 4 classes) and by selecting the model showing the 
overall best fit to the data based on those six indices. 

2.3.3 Categorizing Learning Outcome 
Students’ learning outcome from each module can be classified into 
four classes according to performance in the AC and time of 
attempt relative to the LSS:  

1. Initial Pass (InitP): Passing the AC within 2 attempts before 
LSS. Those students did not need to learn from the IC, although a 
small fraction still interacted with the IC. An earlier study on 
students’ test-taking effort on the initial attempt estimated that 80-
85% of the students took the attempt seriously. [10]   

2. Effective (Eff): Passing the AC within 2 attempts after LSS (not 
including attempts before LSS).  

3. Ineffective (Ineff): Passing the AC using more than 2 attempts 
after LSS.  

4. Abort: Never passing the AC, thus cannot access the next 
module in the sequence. 

In addition, in a few cases a student passes the AC using more than 
2 attempts without accessing the IC. Since those students are more 
likely to be randomly guessing the answer rather than actually 
doing the problem, we also categorized them as “Abort”. 

3. RESULTS AND DISCUSSION 

3.1 Results 
3.1.1 Identifying Clusters of Learning Behavior 
Cluster Analysis was performed on all three dimensions of learning 
behavior for each module, for all students who didn’t pass the 
module on their attempt before LSS. The 3-dimensional clustering 
analysis did not converge for any module likely due to small sample 
size. Clustering analysis on both average number of attempts and 
percentage of content accessed always favored single cluster for 
every module. The mean average number of practice problem 
attempts are between 1 and 3 attempts for all modules, and the mean 
content accessed is more than 95% for all modules.  

For the time-on-task dimension, initial clustering results were 
significantly distorted by a few data points with extremely long and 
scattered LSS durations, most likely due to students leaving their 
computer without logging off of the system or idling. Thus, clusters 
with less than 5 students and significantly larger mean values were 
removed and the clustering analysis re-run, until no such cluster 
existed. We also found a small cluster of students with mean LSS 
time of 30 seconds and interacted with the IC of Module 1 only.  
Those students were also removed since they are likely students 
who are curious about the new system but did not seriously study 
the content. The resulting statistical indices for different number of 
clusters are listed in TABLE 1.  

TABLE 1: Statistical indices of mixture-model clustering 
analysis. Favorable values are highlighted in red. 

Module class AIC BIC sBIC VLMR 
(p) 

LMR 
(p) 

BLRT 
(p) 

Module 1 
(N = 36) 

1 38.6 41.8 35.5 NA NA NA 
2 37.4 45.3 29.7 0.05 0.07 1.00 
3 37.3 50.0 25.0 0.08 0.11 0.43 
4 did not converge 

Module 2 
(N = 38) 

1 100.4 103.6 96.4 NA NA NA 
2 88.6 96.8 81.2 0.01 0.01 0.00 
3 90.8 103.9 78.9 0.56 0.58 1.00 
4 90.0 108.0 73.6 1.00 1.00 1.00 

Module 3 
(N = 37) 

1 119.4 122.7 116.4 NA NA NA 
2 116.3 124.3 108.7 0.02 0.03 0.15 
3 116.6 129.5 104.5 0.02 0.03 1.00 
4 116.8 134.5 100.1 0.27 0.30 1.00 

Module 4 
(N = 26) 

1 95.2 97.7 91.5 NA NA NA 
2 90.1 96.4 80.9 0.01 0.01 1.00 
3 88.2 98.3 73.4 0.05 0.06 1.00 
4 88.5 102.3 68.2 0.14 0.17 1.00 

 

For all four modules, a 2-cluster model is either most favorable, or 
equally as favorable as a 3-cluster model. Therefore, we adopt a 2-
cluster model for the LSS duration dimension for each module, 
referring to the cluster with shorter mean time as “Brief” and the 
longer mean time as “Extensive” (Ext). One possible interpretation 
is that the “Brief” clusters consist of students who had some level 
of initial understanding and needed a quick refresh of the content 
knowledge, while the “Extensive” clusters are students who failed 
to learn the content properly during regular lecture, and are actually 
learning from the IC of the modules. 

 
Figure 2: Example of refinement of clustering analysis 

outcome: Horizontal solid line divides the two clusters. The 
vertical dashed line indicates 1.5 standard deviation from 

population mean.   
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The clusters are further refined by labeling a few students who 
displayed inconsistent behavior along the other two dimensions as 
“other”. As illustrated in Figure 2 , a student in the “brief” cluster 
who makes significantly more attempts on practice problem (more 
than 1.5 sd above the group mean) is labeled as “other” since his/her 
learning behavior is very different from other students (lower right 
purple area). Similarly, any student in the “Extensive” cluster 
whose average practice problem attempt or percentage of content 
accessed is 1.5 sd less than the population mean is also labeled as 
“other”, since the student is most likely not meaningfully engaged 
with the learning material. Finally, a few students who didn’t 
attempt any practice problems, and/or interacted with the IC for less 
than 60 seconds are also labeled as “other” as their learning 
behavior is significantly different from the rest of the population. 

The refinement strategy is illustrated in Figure 2 using data from 
Module 2 as an example. The final clusters of students’ learning 
behavior are listed in TABLE 2. 

TABLE 2: Refined learning behavior clusters 

Modules Cluster N mean (s) Var. (s) 

1 
 

Brief 25 519 75 
Ext 8 1272 12 
Other 3 NA NA 

2 
Brief 15 416 36 
Ext 19 1594 675 
Other 4 NA NA 

3 
Brief 18 1233 495 
Ext 16 3382 165 
Other 3 NA NA 

4 
Brief 18 1141 576 
Ext 5 4175 256 
Other 3 NA NA 

 

3.1.2 Combining Learning Behavior with Learning 
Outcome 
To visually represent the relation between learning behavior and 
learning outcome in each module, we plot both types of information 
together in four sunburst charts shown in Figure 3. The inner rings 
show the distribution of four classes of learning outcome, while the 
outer ring shows the distribution of the three learning behavior 
clusters within each learning outcome classes. Some of the key 
observations from the data are summarized in TABLE 3. 

Looking at assessment performance alone, Modules 3 and 4 are 
significantly harder than modules 1 and 2, judging by both the 
fraction of students in InitP (Fisher’s exact test, ݌ ൌ 0.01) and the 
total fraction of students who passed the module either before or 

after accessing the IC (Tot.Pass) (݌ ൏ 0.01, ߯ଶ ൌ 40, ݂݀ ൌ 3). The 
total number of passing students is the sum of the InitP group and 
the Eff group.  

A noteworthy observation is that initially less students passed 
module 2 than module 1, but after studying the IC the trend was 
reversed.  

The effectiveness of the IC can be estimated by the ratio of the size 
of Eff vs. Ineff classes. For simplicity, in the remainder of the paper 
(including TABLE 3) we will include the students in the “Abort” 
class into the “Ineff” class, which now contain all students who 
failed to pass within two attempts after LSS. Modules 1 and 2 have 
a significantly higher ratio of Eff vs. Ineff ( ݌ ൏ 0.01, ߯ଶ ൌ
34.39, ݂݀ ൌ 3). (Test still significant when either module 2 or 
module 4 is excluded). 

From the learning behavior perspective, Modules 2 and 3 have 
significantly higher Ext vs. Brief ratio (݌ ൌ 0.01, ߯ଶ ൌ 11, ݂݀ ൌ
3) as compared to the other two modules. Somewhat unexpectedly, 
the size of “Extensive” group in module 4 is the smallest of the four, 
consisting of only 5 students.  

TABLE 3: Main observations. The total number includes 
students who passed the AC before studying IC 

Modules N InitP Tot. Pass Eff/Ineff Ext/Brief 
1 47 0.26 0.79 2.50 0.32 
2 40 0.12 0.88 6.00 1.27 
3 35 0.03 0.57 1.27 0.89 
4 25 0.04 0.16 0.14 0.28 

 

Finally, the correlation between the learning behavior clusters 
(“Brief”, “Extensive”) and the learning outcome measures (“Eff”, 
“Ineff”) are not significant when the four modules are combined 
(Fisher’s exact test, ݌ ൌ 0.35,	OR ൌ 0.65). This correlation is also 
not statistically significant at ݌ ൌ 0.05 level when each of the four 
modules were tested individually. In other words, there is no 
significant difference in the probability of passing each module 
after learning from the IC between the “Brief” and “Extensive” 
groups.  

Of the 61 students that are not excluded as an outlier in at least one 
of the modules, only 4 are Brief and Ineff (including Abort) for 2 
modules, and no student is both Brief and Ineffective for more than 
2 modules. In comparison, 3 students are Extensive and Effective 
for 3 out of 4 modules.  

 

 
Figure 3: Sunburst charts representing students' learning behavior and learning outcome 
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3.2 Discussion 
By combining learning behavior measurement with learning 
outcome measurement, we are able to answer both research 
questions introduced in Section 1 and provide useful information 
for instructors regarding the four OLMs. For RQ1, data suggests 
that students in this study are consciously adjusting their learning 
effort according to their own learning needs and the difficulty of 
the task. This claim is supported by the lack of correlation between 
the two learning effort clusters and the three learning outcome 
clusters, together with the fact that only a few students were 
consistently “Brief and Ineffective” or “Brief and Abort”. In other 
words, all of the students can be viewed as spending “enough time” 
on the IC, as there are no clear benefits associated spending longer 
time. At least, the instructor should be advised to only give the 
suggestion of “study harder” to the 4 students who are “Brief” and 
“Ineffective” for 2 out of 4 modules. Had we only considered 
behavior measurement alone, many more students who have better 
incoming knowledge on the topic would have been misclassified as 
less motivated.  

One possible explanation for this observation is that since this is a 
voluntary, not-for-credit activity, only motivated students 
attempted the OLMs. In future studies it will be interesting to see if 
the outcome changes when OLMs are being assigned for credit to 
the entire class. 

Our data analysis also provides rich information with regard to the 
quality of learning resources in the OLMs (RQ2). Among the four 
modules, Module 1 is the easiest, with high initial passing rate and 
low “Extensive” vs. “Brief” ratio, suggesting that many students 
only needed a quick “refresh” of the content. The assessment of 
Module 2 is slightly harder (lower fraction of InitP), but most 
students were able to successfully learn the content by carefully 
studying the IC, as indicated by significantly higher Eff to Ineff 
ratio and the highest Extensive to Brief ratio. These data suggest 
that the resources in the IC of Module 2 are effective for the current 
student population. Note that if only a posttest were given in this 
course, we might have concluded that problems in modules 2 were 
easier than those in module 1 without considering students’ prior 
knowledge and learning effort.  The AC of Module 3 is even harder, 
and despite a significant fraction of students in the “Extensive” 
cluster, a smaller fraction of students passed the AC after studying 
the IC, suggesting that the instructional resources in the IC of 
module 3 are less effective and need more improvement. 

Module 4 has an unusually large fraction of “Abort” students, and 
a surprisingly small “Ext” cluster despite being the hardest of all 
four modules. A likely explanation is that many weaker students 
find this module too challenging, and lack both the confidence and 
the incentive to study it as it is the last module in the sequence. In 
fact, half of the students (9 out of 16) belonging to the “Ext” cluster 
in Module 3 aborted module 4, whereas only a third (6 out of 18) 
of students in the “Brief” cluster of Module 3 aborted Module 4. 

The majority of the above information is intuitively represented in 
the sunburst charts in Figure 3, which clearly signals to the 
instructor that Modules 3 and 4 needs to be improved, and that at 
least on Module 3, students’ lower performance is not caused by 
insufficient learning effort, but rather ineffective instructional 
resources.  

It is worth pointing out that the mean duration of the “Brief” cluster 
for modules 3 and 4 are similar to that of the “Ext” cluster for 
Modules 1 and 2. One possibility is that the learning behavior of 
the “Brief” cluster in Modules 3 and 4 are more similar to the “Ext” 
cluster of Modules 1 and 2. However, we only found 4 students 

who changed from the “Ext” cluster in Module 2 to the “Brief” 
cluster in Module 3. We think that a more dominant factor is simply 
that the IC in Modules 3 and 4 contains instructional resources that 
took longer to go through than Modules 1 and 2. However, 
examining whether the same cluster across different modules 
originate from similar learning behavior is an important question 
for future research. 

Finally, we would like to address a couple of detailed choices in 
both study design and data analysis. First of all, the choice of using 
2 attempts instead of one as the threshold for passing a unit is to 
mitigate the effect of carelessness in students and the possibility of 
accidentally selecting the wrong choice item. Furthermore, 
research on multiple attempts has shown that subsequent attempts 
on problems have equal discrimination power as the initial attempt 
[5].  

Secondly, even though students have already been exposed to the 
content in lecture, it is clear from the analysis that most of them still 
need to either refresh or learn the content from the OLMs. We 
believe that the methods developed in this research are general to 
most online-courses, especially when we are facing an increasingly 
diverse student population in higher education and MOOCs in 
particular. 

Finally, choosing mixture-model clustering analysis to capture 
patterns in students’ learning behavior has two major advantages. 
First, it provides a systematic method to remove outliers in the data, 
and second, it accommodates the fact that different resources 
intrinsically require different amounts of time to study, by 
providing natural cutoffs between “Brief” and “Extensive” clusters.  

4. SUMMARY  

In this paper, we presented a case where a re-design of the online 
course structure enabled new methods of data analysis and 
visualization that provide useful information for instructors. The 
OLMs are designed to measure both learning behavior and learning 
outcome in the same module, greatly improving the interpretability 
of both types of data. Future larger scale studies involving more 
advanced data mining methods will likely provide insight into even 
more aspects of students’ learning process, such as knowledge 
transfer, motivation, and meta-cognitive skills. 

As data collection and analysis becomes an increasingly important 
and integrated part of today’s technology enhanced education 
system, it is valuable for data scientists to be more actively involved 
in the design of instructional systems, resources and environments, 
rather than simply being on the receiving end of educational data. 
Design choices that are made to improve the quality of data, even 
as small as requiring an extra click to view a given problem, may 
significantly enhance the power of educational data mining, which 
eventually benefits teaching and learning.  
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ABSTRACT
Recent works on Intelligent Tutoring Systems have focused
on more complicated knowledge domains, which pose chal-
lenges in automated assessment of student performance. In
particular, while the system can log every user action and
keep track of the student’s solution state, it is unable to de-
termine the hidden intermediate steps leading to such state
or what the student is trying to achieve. In this paper,
we show that this information can be acquired through data
mining, along with the type, frequency and context of errors
that students made. Our technique has been implemented
as part of the student model in a tutor that teaches red-black
trees. The system was evaluated on three semesters of stu-
dent data. Analysis of the results shows that the proposed
framework of error analysis can help the system in predicting
student performance with good accuracy and the instructor
in determining difficulties that students encounter, both in-
dividually and collectively as a class.

Keywords
Data structures, Bayesian Learning, Error analysis

1. INTRODUCTION
An important goal in assessing student performance is to
find out why the student makes certain errors, as it helps the
instructor adapt the teaching style/materials accordingly to
address the cause of such errors. With the rise of educational
technology, it is now often the tutoring system that performs
grading tasks in place of the instructor, thereby raising the
need for an automated error analysis mechanism. Tradition-
ally, tutoring exercises are often designed as multiple choice
questions, where there is a single correct option, while the
incorrect options are each worded in a way that targets a spe-
cific misconception (e.g., [6]). In this case, knowing which
option a student picked is sufficient to infer why she made
that decision. However, multiple-choice questions can be an-
swered by pure guessing, and the options presented might
not capture the full space of misconceptions that students

have, especially if each decision is not a simple primitive
choice. Furthermore, recent development of tutoring sys-
tems has moved on to more complicated knowledge domains,
such as protein folding [2], programming language [7], and
database [19]. These domains require students to engage in
high level problem-solving tasks instead of simple multiple-
choice and short-answer questions. In turn, they also pose
challenges to the tutoring system in assessing student per-
formance, namely (1) recognizing when the student is cor-
rect, (2) identifying the analyzing the errors made, and (3)
predicting when a previous error might occur again.

Tree data structure exercises are an example of problems
where the steps are best input graphically to show how
the data structure is transformed at each step. Conven-
tional question formats such as multiple-choice would there-
fore greatly constrain the student’s answer and allow for the
possibility of guessing. An ideal input mechanism, in this
case, should allow the student to freely and easily specify
the tree structure, reveal no clue or bias about the solution,
and support automated assessment of student answer. In
other words, it is to closely resemble a paper exam where
students construct their answers from scratch.

The solution to an insertion/deletion tree problem is a se-
quence of transformations (steps) to be applied to the initial
tree; alternatively, it can also be viewed as a list of trees,
each resulting from applying a transformation to the tree
before it. Determining if an answer is correct is straight-
forward - we simply check that the default solution’s final
tree matches that of the student’s answer. If they differ,
however, determining where and how the student made an
error is much more difficult. The primary reason is that
there can be multiple valid solutions, each with a different
partial ordering of the same set of transformations. Fur-
thermore, when unconstrained by the system, students also
tend to combine several base (primitive) steps together into
a macro-step, in which case their solution sequence can be
shorter than the default solution yet still correct. Despite
these difficulties, the assessment task plays an important
role in both assigning partial credits to test submissions and
informing the instructors about difficulties that students are
facing, so that necessary interventions may take place.

This paper presents our approach in solving the assessment
problem in the domain of red-black tree, a type of self-
balancing binary search tree. In particular, based on anal-
ysis of the tutoring system’s log data and student answers,
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we have devised a framework to identify and categorize the
errors in their problem-solving process. The output is then
used to construct a Bayesian student model, which predicts
student performance throughout the tutoring session (i.e.,
whether the student’s next answer will be correct or not).
We show that categorizing the identified errors by not only
their types but also contexts can help the model achieve
good accuracy and provide insights into common patterns of
problem-solving behavior in our chosen domain. The con-
texts can be identified by mining the logs and judiciously
combining data to identify contexts that might be tempo-
rally connected. The mined data can help identify when
temporally adjacent contexts affect student decisions and
point out non obvious connections.

2. RED-BLACK TREES
A red-black tree is a self-balancing binary search tree with
a number of properties which guarantee an O(logN) height
when the tree has N nodes [5]:

1. The nodes of the tree are colored either red or black.

2. The root node is always black.

3. A red node cannot have any red children.

4. Every path from the root to a null node contains the
same number of black nodes.

Search in a red-black tree’s operation is identical to that in
a conventional binary search tree, while insertion and dele-
tion are performed differently. The top-down algorithm to
insert or delete a value from a red-black tree starts at the
root and, at every iteration, moves down to the next node,
which is a child of the current node. At each node, it applies
one or more transformation rules; there are six rules used in
insertion: color flip, single rotate, double rotate, insert node,
forward, and color root black. Deletion involves another two,
switch value and drop rotate. The role of these transforma-
tions is to change the tree in such a way that when the actual
insertion (or deletion) is performed at the leaf node, in most
cases no subsequent modifications to the tree are needed in
order to preserve its properties. Other types of balanced
trees also employ a similar approach. In our work we used
red-black tree as an exemplar to evaluate our ideas and im-
plementations, but they should be applicable to balanced
trees in general.

In a standard curriculum, students learn about red-black
trees right after finishing binary search tree, but often strug-
gle because the tree transformations are quite complicated,
especially on a medium-sized tree of more than 10 nodes.
Furthermore, the insertion and deletion version of the same
transformation (for example, color flip) operate differently,
causing another source of confusion. A previous study on
this domain by Liew & Xhakaj [15] found that red-black
trees can be taught and learned effectively using a granu-
larity approach - students should iteratively break down the
problem into three steps of (1) identifying the current node,
(2) selecting the applicable transformation, and (3) apply-
ing the selected transformation. Our tutoring system also
follows the same approach.

3. RELATED WORK
There are well-studied advantages and disadvantages of both
multiple-choice and free-response questions [10]. As the do-
main knowledge gets more complicated, it becomes more
difficult to design multiple-choice tests that accurately re-
flect the student’s level of understanding; on the other hand,
free-response questions are not scalable because of the need
for human graders. In practice, many intelligent tutoring
systems opted for the middle ground by using a restricted
language such as numerics for student answers. In this way,
there is still a large solution space that makes guessing inef-
fective while the information derived from students’ assess-
ment is accurate enough to be used in constructing a student
model. For example, physics tutors such as ANDES [4] and
OLAE [16] teach college-level Newtonian mechanics by hav-
ing students identify the forces acting on a physical object
and express them in a system of equations.

Several past works have explored automated assessment in
complex domains. For example, [3] uses an online judge sys-
tem for an introductory programming course that is capable
of detecting plagiarism and performing efficient, bias-free
assessment. [17] constructs an adaptive grading system that
can grade multiple and complex computer literacy assign-
ments while being able to “learn” the correct and incorrect
responses and add them to the rubric. Combining both hu-
man graders and computer graders, [8] introduces a collabo-
ration framework that aims to minimize human effort in the
domain of medical case analysis, using supervised machine
learning.

Efforts have also been made to output not only a binary re-
sult (correct/incorrect) or numerical score, but also to pro-
vide reasonable feedback for both the students and the in-
structors. Many research works in the domain of introduc-
tory programming have been following this direction [9, 20,
21]. In other domains, [14] shows that in the PHYSICS-
TUTOR system, where students enter algebraic equations
as answer, it is possible to check for dimensional correctness
and isolate errors by parsing the submitted answers into
binary expression trees. Finally, [11] proposes using case-
based reasoning to deliver past instructor feedback to new
students who are solving a similar problem, which has been
adapted in various tutoring systems.

Predicting student performance is one of the primary goals
of student modeling. Traditionally, Bayesian network and
its variations [1] are often used because of their accuracy
and interpretability. This line of technique has been shown
to be effective for tutoring systems that have no prior knowl-
edge about their students, such as the ANDES physics tutor.
Later on, ITSs are often deployed multiple times in succes-
sive semesters, and the data log from past student inter-
actions can be analyzed by data mining techniques to bet-
ter predict future students’ performance. For instance, [12]
builds a logistic regression model on the ANDES dataset to
correctly identify 70% of the student’s performance, while
[18] uses pattern classifier and genetic algorithm to improve
the tutoring system’s prediction accuracy, which helps iden-
tifying weak students early on even in large classes.

In the domain of red-black trees, [15] was among the first
tutoring systems developed. Its result shows that the gran-
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ularity approach, which require students to follow explicit
small steps, helped significantly improve their performance
in insertion exercises. The system was built only for tutor-
ing, while the tests were conducted on paper and evaluated
by a human instructor. [13] proposes preliminary results in
automating the test environments and grading with an al-
gorithm that can detect the first error made by students in
tree insertion questions.

4. THE RED-BLACK TREE TUTOR
Our tutoring system has three sections - the pre-test, the
tutor, and the post-test. In the test sections, a typical inser-
tion (deletion) problem for red-black trees involves inserting
a sequence of numbers to a starting tree (or deleting from
it). Students have to show the state of the tree after every
insertion/ deletion; they are also encouraged to show any in-
termediate states (the trees that are created along the path
to the solution). To this end, the test interface displays a
“blank” binary tree canvas of 31 empty nodes. The student
can click on any node to specify its value and color - submit-
ting a tree is therefore equivalent to entering all of its nodes
to the corresponding position in the tree canvas; nodes that
are left empty are assumed to be null black nodes. The in-
terface is designed to look like a sheet of paper with blanks
to fill in - in this way, we ensure that (1) the tests do not
provide any hints or clues as to what the desired answer
would be, and (2) the student’s answer is always in a format
that can be interpreted and analyzed by the system.

In the tutoring section, students perform the same task of
inserting to (or deleting from) a starting tree. However,
a node-by-node modification of the current tree is not re-
quired; instead, students only need to select a node and the
transformation to apply at that node from a drop-down list.
The tutoring system has a solver module that can generate
a solution for any problem and also check the correctness of
the student’s selection. If it is correct, the system will auto-
matically apply the chosen transformation and update the
information shown in the interface; otherwise, a message is
displayed to the student indicating that the current selection
is incorrect. We chose this approach based on the finding
that learners often have difficulty identifying the transforma-
tions rather than applying them [15]; students also find the
task of repeated application of the transformations tedious
and time consuming.

5. PREDICTION OF STUDENT PERFOR-
MANCE

In order for the system to be dynamic (i.e., to generate dy-
namic exercises that address an individual student’s weak-
ness), it needs to have knowledge of what the student knows
and does not know at any given time. In the context of our
tutor, the system should be able to predict whether the stu-
dent’s next answer is correct, based on her performance so
far in the tutoring session and in the pre-test. To our knowl-
edge there has not been any prior work on performance pre-
diction in the domain of binary search tree. Therefore, to
get a better sense of how well the student model performs,
we implemented and evaluated three approaches.

5.1 Baseline prediction

Every time the student submits an answer in the tutoring
session, the system predicts that the answer is correct with
a fixed p = 0.5 probability. The performance of this method
will serve as a baseline to compare with that of the next two
methods.

5.2 Bayesian model with error contexts
We first analyze student answers in the pre-test and identify
the first error made (if any) each time the student attempts
to insert/delete a single node to/from a tree. Besides the
type of error - incorrect node selection/incorrect transfor-
mation selection/ incorrect transformation application - and
its location - how far did the student progress when the error
was made - we are also interested in its context. In insertion
exercises, an error context is the subtree surrounding the
node at which the error occurred, which includes its parent
and two children. In deletion exercises, the context sub-
tree also contains the node’s sibling and sibling’s children.
These definitions were devised based on the knowledge that
(1) the transformation to select and apply at each node de-
pends on the subtree surrounding it, and (2) even the same
tree transformation may operate differently in different con-
texts, so it’s important to recognize which specific context
poses problems for the student.

We then construct a two-part Bayesian network using Bayesian
Knowledge Tracing (BKT) [22] similar to that of the AN-
DES tutor [4]. This architecture is summarized in Figure 1.
The domain-general network encodes long-term knowledge
and represents the system’s assessment of the student’s rule
mastery after the last performed exercise. It consists of two
kinds of nodes: Rule node, which conveys the student’s rule
mastery in general, and Context-Rule node, which conveys
rule mastery in a specific context. Both have as value a mas-
tery probability 0 ≤ p ≤ 1, while the conditional probability
of each Context-Rule given its parent Rule is

P (Contexti | Rule = T ) = 1,

P (Contexti | Rule = F ) = diffi,

where diffi is the difficulty of context i, determined by the
number of errors in context i divided by the total number
of time that such context occurs (in the pre-test).

The task-specific network encodes the student’s rule mas-
tery in a specific exercise. We employ three kinds of nodes:
Context-Rule, Fact and Rule-Application. Each Fact node
expresses a property of the current tree, i.e., the current
node is black or the parent node is red. These nodes rep-
resent the hypotheses that the student is aware of what to
look for in the preconditions of the next step. The Rule-
Application node has a boolean value, which is set to True
if the student applies the rule correctly, and False other-
wise. In essence, the system analyzes the current context,
expressed by the Fact nodes, to bring up the correspond-
ing Context-Rule node, whose probability value is used to
predict the student answer’s correctness. After the student
submits the answer, the system records whether the predic-
tion is right or wrong and updates the posterior value of
the Context-Rule node, according to BKT. The rationale is
that if the student previously made an error in a particular
context, when that context shows up again in the current ex-
ercise, we would like to see whether the same error occurs.
If no error is made, the student’s mastery in this context
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Figure 1: The structure of the domain-general net-
work (top) and task-specific network (bottom).

has improved. This mechanism is expressed by the weight
of the edge leading to each Rule-Application node:

P (Rule-Application = T | all parents = T ) = 1− P (S),

P (Rule-Application = T | at least one parent = F ) = P (G),

where P (S) and P (G) are the slip and guess probabilities,
which are part of the BKT parameters and set to a default
value of 20%.

Once the student finishes an exercise, its task-specific net-
work is discarded, but the context rule mastery probabilities
are saved back to the domain-general network, so that they
can be used as prior probabilities for future exercises.

5.3 Bayesian student model with extended er-
ror contexts

So far we have considered each transformation in isolation,
but the nature of the solution to a red-black tree problem is
a sequence of transformations, one following another. Our
third approach experiments with the idea that the correct-
ness of a student’s answer may also depend on her previous
answer. We perform pre-test analysis and Bayesian mod-

eling as described in Section 5.2, but now the error con-
text includes both the surrounding subtree and the previous
transformation. With this distinction, there will be more
contexts to analyze, and we would like to see how it affects
the sytem’s accuracy.

6. EVALUATION & RESULTS
We evaluated our approaches on four semesters of data from
students in a computer science class at our institution. The
semester enrollments are 20 (Fall 2016), 50 (Spring 2017),
26 (Fall 2017) and 33 (Spring 2018).

The pre and post tests are identical in content, both consist-
ing of a small number of exercises in which students attempt
to insert (delete) a node, given a starting tree. Problems in
the insertion tutor require students to insert 9 numbers to
an empty tree. Similarly, problems in the deletion tutor re-
quire students to delete all values from an initial tree with
9 nodes. The number of questions in each session is listed
in Table 1.

Pre-test Tutor Post-test
Insertion 4 20 4

Deletion 7

25 (F2017, S2018)

20 (others) 7

Table 1: Number of questions in each session. Each
question has 9 parts, each of which requires multiple
steps to solve.

In the tutoring section, Each time the student submits an
answer, the system attempts to predict whether that answer
is correct, based on the student model’s knowledge. Then
the actual grading is performed to check whether this predic-
tion is right. The accuracy of the student model is defined
as the number of correct predictions divided by the total
number of predictions. In all subsequent tables, unless oth-
erwise specified, the data are averaged across all students in
each semester.

6.1 Evaluating performance prediction accu-
racy

6.1.1 Baseline prediction
When predicting with fixed probability, the resulting aver-
age accuracies approximate 50% in all semesters, with small
standard deviations (5%).

6.1.2 Bayesian model with error contexts
We evaluate the Bayesian student model on both the inser-
tion tutor and deletion tutor (Table 2). The columns, from
top to bottom, respectively refer to the followings: num-
ber of average and total correct predictions, mean accuracy,
standard deviation of accuracy, lowest and highest accuracy
across all students in the semester.

Note that because we decided to add five more exercises in
Fall 2017 and Spring 2018, the number of answers submitted
(and the number of predictions) in this semester is higher
than in the others. We can see that data across the fall
semesters are consistent. There is more variation in Spring
2017 due to the larger number of students enrolled, but only
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Insertion F2016 S2017 F2017 S2018
Correct/Total 268/372 259/399 267/371 272/375

Accuracy 72% 66% 72% 73%
Stdev Acc 4% 8% 5% 5%
Min Acc 63% 50% 62% 65%
Max Acc 81% 86% 83% 84%

Deletion F2016 S2017 F2017 S2018
Correct/Total 270/383 268/383 351/461 360/472

Accuracy 70% 70% 76% 74%
Stdev Acc 5% 4% 4% 4%
Min Acc 64% 61% 68% 65%
Max Acc 82% 80% 83% 81%

Table 2: System’s accuracy on the insertion tutor
and deletion tutor, using Bayesian modeling.

in the insertion tutor. The system achieves the highest accu-
racy (76%) when predicting performance in the deletion tu-
tor of Fall 2017 - this can be explained by the increased num-
ber of exercises, which allows the Bayesian network more op-
portunities to update itself and to yield better predictions
in turn. Overall, using Bayesian modeling yields a 20% im-
provement in accuracy, compared to baseline prediction.

6.1.3 Bayesian model with extended error contexts
Table 3 shows the model’s accuracy when accounting for
the previous transformations in the contexts. The average
accuracy is around 80%, while the maximum accuracy can
reach as high as 96% (in Fall 2017). Hence this approach
has by far yielded the best accuracy, about 10% more than
using Bayesian model with the standard error context, and
30% more than baseline prediction.

Insertion F2016 S2017 F2017 S2018
Correct/Total 310/372 325/399 322/371 330/375

Accuracy 85% 81% 87% 83%
Stdev Acc 7% 7% 7% 8%
Min Acc 63% 62% 58% 60%
Max Acc 92% 94% 96% 92%

Deletion F2016 S2017 F2017 S2018
Correct/Total 320/383 305/383 388/461 390/472

Accuracy 82% 79% 85% 81%
Stdev Acc 7% 8% 7% 7%
Min Acc 62% 57% 65% 61%
Max Acc 91% 87% 90% 88%

Table 3: System’s accuracy on the insertion tutor
and deletion tutor, using Bayesian modeling with
extended error context.

We then performed additional analysis in this direction to
see whether there is room for improvement and what problem-
solving patterns students might have. Table 4 breaks down
the accuracy in more detail; each prediction is categorized as
either correct (C), false positive (FP) or false negative (FN).
False positive occurs when the student answer is incorrect
but predicted to be correct; false negative occurs when the
student answer is correct but predicted to be incorrect. We
see that in most cases, if the student is correct, the system

can predict so. The majority of incorrect predictions occur
in the false positive condition, where the system thinks that
the student has mastered the transformation but in actuality
the student still has an erroneous model. This suggests that
we may be able to fine-tune the Bayesian network’s behav-
ior, in particular by decreasing the conditional probability
that the student can submit a correct answer if the system
thinks she understands the corresponding transformation.

Insertion F2016 S2017 F2017 S2018
C 85% 81% 87% 85%

FP 11% 14% 10% 13%
FN 4% 5% 3% 2%

Deletion F2016 S2017 F2017 S2018
C 82% 79% 85% 80%

FP 15% 16% 13% 14%
FN 3% 5% 2% 6%

Table 4: System’s prediction results on insertion tu-
tor and deletion tutor, averaged by students.

Next, we look at the cumulative statistics for each semester.
Specifically, we would like to know the transformations in-
volved in the answers that the system can predict accurately
and in those that the system cannot. Table 5 breaks down
this information from Fall 2017 based on the three categories
C, FP and FN mentioned above. Here the tree insertion
transformations of interest are Insert node (Insert), Color
flip (Cflip), Single rotate (SingleR), Double rotate (Dou-
bleR). Data from the other two semesters are also similar.

Insert Cflip SingleR DoubleR
C 3353 (90%) 792 (73%) 331 (79%) 348 (80%)

FP 327 (9%) 229 (21%) 59 (14%) 66 (15%)
FN 53 (1%) 71 (6%) 31 (7%) 23 (5%)

Total 3733 1092 421 437

Table 5: System’s prediction result count for inser-
tion tutor, cumulative in Fall 2017.

Delete Cflip SingleR
C 3413 (89%) 786 (71%) 341 (74%)

FP 385 (10%) 243 (22%) 79 (17%)
FN 52 (1%) 78 (8%) 41 (9%)

Total 3850 1107 461

DoubleR DropR Switch
C 367 (80%) 292 (68%) 795 (95%)

FP 54 (12%) 101 (24%) 27 (3%)
FN 33 (7%) 36 (8%) 15 (2%)

Total 454 429 837

Table 6: System’s prediction result count for dele-
tion tutor, cumulative in Fall 2017.

Table 6 presents the same kind of data for the deletion tutor
in Fall 2017. Here the tree transformations of interest are
Delete node (Delete), Color flip (Cflip), Single rotate (Sin-
gleR), Double rotate (DoubleR), Drop rotate (DropR) and
Switch value (Switch).
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We also look at, among all the error contexts identified,
which pair of sequential transformations (i.e., the current
transformation following a previous transformation) occurs
the most, since our analysis includes the previous transfor-
mation in the error contexts. Table 7 shows that, in red-
black tree insertion, students are most likely to make mis-
takes in rotation operations if they previously performed an
insert node operation. This pattern can be explained by the
fact that in most tree insertion problems, the final step is to
insert a new node at a leaf node’s child. However, in some
cases, this leaf is already red; adding a red child to it would
then yield two consecutive red nodes, violating the proper-
ties of red-black trees. Hence another rotation at the newly
inserted node is required to remedy the situation, which stu-
dents tend to forget. It should be noted that a color flip may
also result in consecutive red nodes, thereby forcing a rota-
tion to follow; the third and fourth row in Table 7 represent
this case. In general, from our teaching experience, all four
cases occur very often, but this is the first time we obtain a
relative ranking of their frequencies.

Transformation Previous Trans Count
SingleR Insert 90
DoubleR Insert 72
SingleR Cflip 65
DoubleR Cflip 50

Table 7: Most common pairs of insertion transfor-
mations in students’ errors across three semesters.

Table 8 shows that, in red-black tree deletion, students are
most likely to make mistakes in delete node following switch
value. Interestingly, as we previously analyzed, students
usually perform switch value correctly. However, after this
step, they tend to move straight to the leaf whose value
was switched and delete it - this is correct in normal binary
search trees, but in red-black trees, we still have to traverse
down one node at a time until reaching the leaf, performing
necessary transformations along the way before the actual
deletion. Another noteworthy point is that students tend to
forget to execute the drop rotate operation, but only when
it is necessary to do so at the root (in this case, drop rotate
is the first transformation in the solution sequence, so it has
no previous transformation).

Transformation Previous Trans Count
Delete Switch 98

DoubleR Cflip 78
SingleR Cflip 76

Drop rotate - 27

Table 8: Most common pairs of deletion transfor-
mations in students’ errors across three semesters.

6.2 Assessing students’ test performances
While the previous study by Liew & Xhakaj [15] reported an
improvement in individual student performance from pre-
test to post-test, it was conducted on a small sample of
12 students. To measure this effect on a larger scale, we
performed a paired samples t-test to compare the student’s
number of first errors in the pre-test epre and in the post-
test epost. Results show that in tree insertion, there was a
significant difference between epre (M = 2.81, SD = 1.35)

and epost (M = 1.72, SD = 1.35); t(137) = −8.23, p =
2.95 · 10−13. Similarly, in deletion, there was a significant
difference between epre and epost (M = 3.63, SD = 1.08)
and epost (M = 2.68, SD = 1.48); t(137) = −5.33, p =
3.12 · 10−7. Hence the impact of the tutoring system on
reducing student errors is statistically significant at the 1%
level, which is consistent with [15].

Further analysis on the total number of errors overall and
per each transformation rule reveals that the errors in node
selection decrease across all semesters; in insertion exercises
there is a steady 50% reduction from pre test to post test,
whereas the differences vary more in deletion exercises. In-
terestingly, the number of errors in applications do not seem
to decrease by much; in particular, errors in single rotation
and double rotation do not decrease significantly, and even
increase in some cases, between the pre and post test. The
reason is that in the pre-test, because most students for-
get about color flip, they do not have many opportunities
to apply single rotation or double rotation, resulting in few
application errors reported. On the other hand. in the post-
test, students have already mastered color flip, which then
prompted them to apply rotations on more occasions, in
which case more application errors were likely to occur. On
further analysis, if we only consider students who did make
rotation errors in the pre-test, then their number of rota-
tion errors in the post-test also decreased significantly, by
almost 75%. A more detailed breakdown of students’ test
performance is presented in [13].

7. CONCLUSION
This paper has described how we have mined logs of stu-
dent actions on red-black tree operations to build a Bayesian
model of their mastery of the skills involved. The analysis
of the logs has helped us to determine (1) the most frequent
errors that the students make, and (2) the contexts in which
the errors are made. This knowledge can and will be used
to improve both the tutoring system and the classroom in-
struction. The instructors can use the data to modify and
customize their instruction to focus more attention on the
problematic areas.

Results from this study also open up several future direc-
tions. First and foremost, the student model has demon-
strated a reasonable performance and can now be used to
build an adaptive learning system, which can potentially fur-
ther reduce the number of errors. Second, gathering more
student data would allow the implementation of more so-
phisticated techniques, such as hierarchical Bayesian learn-
ing or deep learning, in student model construction, which
would in turn enhance the model’s accuracy. Finally, bal-
anced trees in general share many common properties and
transformations; an adaptation of the current system to a re-
lated domain (e.g., AVL trees, AA trees, splay trees), could
therefore provide insights on how general the underlying
framework is.

8. REFERENCES
[1] Almond, R. G., Mislevy, R. J., Steinberg, L. S.,

Yan, D., and Williamson, D. M. Bayesian
networks in educational assessment. Springer, 2015.

[2] Bauer, A., and Popović, Z. Collaborative problem
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ABSTRACT
The high level of attrition and low rate of certification in Massive
Open Online Courses (MOOCs) has prompted a great deal of
research. Prior researchers have focused on predicting dropout
based upon behavioral features such as student confusion, click-
stream patterns, and social interactions. However, few studies
have focused on combining student logs with forum data. In this
work, we use data from two different offerings of the same MOOC.
We conduct a survival analysis to identify likely dropouts. We
then examine two classes of features, social and behavioral, and
apply a combination of modeling and feature-selection methods
to identify the most relevant features to predict both dropout and
certification. We examine the utility of three different model types
and we consider the impact of different definitions of dropout
on the predictors. Finally we assess the reliability of the models
over time by evaluating whether or not models from week 1 can
predict dropout in week 2, and so on. The outcomes of this study
will help instructors identify students likely to fail or dropout as
soon as the first two weeks and provide them with more support.

1. INTRODUCTION
Massive Open Online Courses (MOOCs) can provide broad and
potentially scalable platforms for learning. Truly open MOOCs
allow students around the world to enroll in any course that
piques their interest or meets professional needs. Most of the
available MOOCs are free, and many stay open perpetually even
after their official offerings are complete thus allowing students
to use them as a regular reference point or as a social platform.

One major concern with MOOCs is that they have extremely
high rates of dropout. More than 85% of students who register
for a MOOC quit without completing it [17]. Prior research
has indicated that student dropout in MOOCs, and student
performance more generally, is highly correlated with features
of the students’ online activities such as viewing lectures or
attempting mastery quizzes [22, 3, 16, 5, 20, 24, 23, 28, 29, 13, 9, 1,
6, 8, 1, 14, 15]. These activities can be classified as student-system
interactions (e.g. video viewing) [22, 3, 20] and student-student
interactions (e.g. posting to a forum) [16, 5, 23, 8, 1, 14, 15].

Social network analyses of interactions among students has shown
that students’ social interactions and social presence metrics can be
used to predict their performance [16, 5, 23, 30]. However, in most
of these studies, the authors did not focus on how the students form
their social networks over time. Nor did they examine whether or
not the different types of user forums produced substantively dif-
ferent networks. Similarly, prior studies of dropout prediction from
activity logs have shown that students’ study habits can be used to
predict attrition [9, 28, 28, 1, 24]. However activity logs and social
metrics cover very different aspects of student behavior. Therefore
it is possible that by combining the two, we may be able to im-
prove our insights into students’ behaviors and thus, improve our
ability to predict both performance and dropout. Few researchers
have combined behavioral and social metrics to improve prediction
performance [9, 25]. Thus it is beneficial to make this comparison
on new datasets to check the generality of the outcomes.

Prior researchers have also shown that students’ actions during the
first few weeks of a course can be used to predict their subsequent
performance [3, 9, 20, 25, 15]. It has also been shown that models
trained on one class can sometimes be applied to other classes [3,
26, 2], but these findings have only been tested on a few MOOCs
and are not yet reliable. Therefore it is an open question whether
metrics of the type that we consider will be transferable.

In this study, we used two different offerings of a MOOC on Big
Data in Education, offered by Dr. Ryan Baker on the Coursera
Platform in 2013 and EdX in 2015. We generated social networks
based upon two approaches taken by the prior studies for the
same dataset based on different sets of assumptions, compared
them and show how changing assumptions can affect the findings
and also, how forum structure can help us make assumptions
with more caution [30, 5]. We also perform a survival analysis to
find the groups of students that are more likely to dropout and
compare the findings among both classes. Then we use feature
selection to find out which features can provide us with more
information gain. Later, we train predictive models using the
top features in our feature selection and predict dropout and
certification. Finally, we use the prediction models trained on
each week of the first offering of the earlier course to predict
dropout and certificate earning early in the second offering.

Overall, we aim to investigate the following research questions:

1. What features are most predictive of student drop-out?
2. How will the choice of target label, social graph generation,

and features affect prediction results?
3. How early can we predict student dropout in MOOCs?
4. Can we make predictions across course offerings by using

models trained on one year to predict others?
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As part of this work we will show how important the assump-
tions we make are on the performance and findings of the study.
The generated models can also help MOOC instructors identify
students who are likely to dropout early in the semester using
models from prior classes and provide the students with more
support and motivation to complete the course.

2. BACKGROUND
Prior research on 39 MOOCs showed that on average only 6.5% of
the users who enroll in a MOOC finish with a passing grade and
earn a certificate [17]. As Yang et al. noted, this high attrition may
be caused by several factors such as students losing interest over
time, or by mounting confusion and frustration. Or it may simply
be the case that they never intended to complete the course in the
first place [28]. We acknowledge that some users enroll in MOOCs
only to access specific parts of the material and with no intention of
obtaining a certificate and that intention to finish the course is cor-
related with course completion [22, 12]. Pursel et al., for example,
showed that students’ plans to watch videos and earn a certificate
is a significant predictor of their course completion [22]. Gutl et al.
surveyed students who did not complete a course and found that
only 22% of them had intended to do so in the first place [12].

In addition to intentions and motivation, researchers have also
observed that other attributes are useful for predicting students’
course completion. These include: the number of videos that a
student watches in a week; the number of quiz or assignments they
attempt; the number of forum posts made per week along with the
post length; the time spent on assignments; whether they spend
more time on forums or on the assignments; whether or not they
start early; and demographic data such as their age, fluency with
English, and their education level [22, 9, 23, 29, 1, 6, 24]. Some
researchers have also utilized social network metrics such as degree,
centrality, hub, and authority scores [11, 14, 29, 16, 5, 23, 30].

Joksimovic et al. showed that students’ social presence metrics can
be used to predict their final grades [16]. Some examples of these
parameters include: continuing a thread, complimenting other
users, and expressing appreciation. Eckles et al. went further
than general graph attributes and observed that whether or not a
students’ best friend stays in the course is strongly correlated with
whether or not they do so [8]. Unlike other researchers, Eckles
et al. did not use a social network to define this relationship but
surveyed the students directly. Brown et al. analyzed the same
2013 dataset that we use here. They showed that students form
communities based on their interactions on the discussion forum
and membership of these groups are correlated with the students’
grades [4]. In the prior literature, different methods have been
used to generate social networks, but few comparative studies
have been done to highlight their effects. Brown et al. [4] and
Zhu et al. [30] exemplify some of the alternatives. Brown et al.
formed a weighted undirected social network by connecting each
author that posts to a discussion thread with all of the authors
that had previously contributed to it, on the assumption that each
author reads the current thread before adding to the conversation
and that the reply is intended for all authors [5]. Thus, the
graph assumes an implicit social connection by virtue of the group
conversation. Zhu et al., by contrast, added a connection from
each author who contributes to a thread to the author of the
first post alone on the assumption that the thread consists of a
series of flat replies to the original post and that users will only
read the first post before replying [30]. Whether or not these
assumptions are valid depends upon the structure of the forums
and the habits of the students themselves. Indeed they depend
upon the “culture” of the class. It is therefore important to study
the impact of these assumptions on the outcome of a study.

Prior research has shown that these predictive models can not
only be used to predict students’ performance based upon the
data from the entire semester in the same class, that they can also
be used to make early predictions, based upon partial class data,
or to make predictions across classes. Previous studies used a
model trained on one offering of a MOOC to make predictions for
another [2, 3]. An early notifier to identify student performance
in the course using only the first few weeks of data in MOOCs
has also been investigated before [3, 15].

As prior research shows, both behavioral and social features are
predictive of dropout. These features cover different aspects of
student activities, we therefore decided to use a selection of both
types of features to train our predictive models. Fei et al. used a
combination of these features to generate predictive models, but
they did not evaluate this hybrid approach against pure activity
or social models [9]. Taylor et al., however, has shown that in
their MOOC, the addition of forum activity did not add much
value to a previous log-based predictive model [25]. It is therefore
important to study whether or not combining these feature types
can make a difference in different courses because it might depend
on the course structure and its use of the discussion forum.

3. DATASET
We analyzed data from two different offerings of the “Big Data in
Education” MOOC (BDE MOOC), from 2013 and 2015. Table
1 presents some basic characteristics of these two datasets. The
presentation and storage formats were slightly different as in 2013
it was offered on the Coursera platform while in 2015 it was
deployed on EdX. We will therefore describe them separately in
the following sub-sections.

“Big Data in Education” course was offered by the Teacher’s Col-
lege at Columbia University on the Coursera platform in 2013. A
total of 55,013 students registered for the course, but only 17,295
had any activity recorded in the logs. Only 750 students made
one or more posts or replies on the discussion forum. Our dataset
does not include view records so we cannot estimate how many
students visited the forum but made no contribution. Roughly
1,599 students submitted assignments or quizzes. In this study,
we considered 23,080 students who had at least a recorded activity
in the forum, assignment submission, or lecture view. Both of
the courses were open for students after the official offering was
over. Therefore the datasets included students who worked on
their own well after the instructor and the rest of the class had
left. For this analysis we decided to focus solely on those students
who started and finished the courses on schedule so that their
activities would fit properly into the official weeks and the course
calendar. This left a total of 17,295 students remaining in our
dataset. We extracted the grades for these remaining students.
Among all, only 1,381 had non-zero final grades.

This class was offered again on the EdX platform in 2015. As
before, the provided data consisted of activity logs, final certifi-
cates, and forum posts. In addition to the threaded discussion
forum, edX also offers a chat platform among participants of
the course called Bazaar where a lot of the discussions among
students take place. Unfortunately, the data from that plat-
form was not available for this study. A total of 10,190 stu-
dents were initially enrolled in this class. Only 519 students
posted or replied on the forum, 1,437 submitted at least one
of the problems, and 320 students had a non-zero final grade.
As with the 2013 dataset, we removed the students who had
submissions before or after the course dates leaving 5,077 stu-
dents.
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Data
Enrolled
Students

Forum Active
Students

Students Who
Had Some Submissions

Number of
Forum Posts

Students Who
Had Some Activity

Non-zero
Grades

Earned
Certificates

Thread
Count

Thread Avg
Length

Thread Max
Length

Thread Min
Length

BDE 2013 55,013 750 1,599 4,261 17,295 1,381 638 281 5.31 89 1
BDE 2015 10,190 519 1,437 2,063 5,077 320 117 624 2.24 36 1

Table 1: BDE MOOC 2013 and 2015 Characteristics, Including Only the Students Who Started and Finished the Course On-schedule

4. METHODS
We began our analysis by generating a social network, and extract-
ing structural and behavioral features from it and the logs. We
ran feature selection to determine whether or not a combination
of these features can improve the performance of the overall
model, when compared to using each of the groups separately. In
the final step of this process we rah a machine learning analysis
to predict dropout and certification. We extracted each of the
features on a week-by-week basis. Thus we produced a set of
per-week datasets each of which includes all data before the end
of the associated week. This will help us to analyze how early
we can predict dropout and certificate earning based on their
activities so far. We will discuss each of these steps in the following
subsections.

4.1 Graph Generation
In both classes the forums consist of a series of threaded discussions.
Class participants may initiate a thread by making a root post
and may reply to existing threads by adding comments at the
end or by replying to a specific post. As mentioned above,
two approaches have been used to generate social graphs from
discussion forums. Brown et al. connected authors of all the posts
and replies in a thread to authors of all the preceding contributions
in the thread [5]. This method assumes that everyone who posts
on a thread or replies to a post has read all of the preceding
posts on the same thread first and is responding to all of them.
Another approach used by Zhu et al. suggests connecting all the
authors in a thread to the author who originated it [30]. This
approach is more reasonable for flat forums where each thread
is a separate question and all of the replies are directed towards
the first post. In this study, we generated the social graphs based
upon both approaches. We designate Brown’s approach “Type
1” and Zhu’s approach “Type 2”. Figure 1 shows an example of
a thread structure and the two corresponding graphs to highlight
differences between these methods. We then compared these
graphs in terms of their ability to predict both dropout and
whether or not students would earn a certificate, only among
those who lie on the graph. The structures of the forums differ
between Edx and Coursera, so we expect that this difference will
be reflected in the relative performance of the classifiers on these
graphs. On the Coursera platform, used for BDE 2013, clicking
on the first post in a thread will show all of the remaining posts
as well as replies to them. Thus it makes sense to construct a
Type 1 graph and to connect every author to the authors of the
preceding posts. However, the structure of the EdX forum is
slightly different. Once a thread is selected, you see the beginning
of all the posts but not the full text. By selecting each post you
can view the full content and the replies. Therefore, when reaching
a specific post, the users do not necessarily need to view preceding
comments. In this case, it seems more reasonable to construct
a Type 2 graph by connecting replies to the original post alone.

The length and the number of threads for each class is shown
in Table 1. In 2013 there were fewer threads than in 2015 but
the threads themselves were generally longer. This may be a
consequence of the difference in the platforms, the nature of the
discussion forums, the addition of the chat platform, or how the
users learned to interact with the tools.

(a)

(b) (c)
Figure 1: Graph construction of Type 1 and 2 for post/reply
structure example

Since we are focused on student to student interactions we chose
to remove the instructor from the graphs. We also removed all
of the isolated nodes (students who did not make posts or receive
replies) before calculating the social metrics as all metrics for an
isolated node would be zero.

4.2 Generated Features
For each student in the graphs we calculated the following fea-
tures: Betweenness Centrality showing to what extent a vertex
lies on the paths between other users [10], which indicates the
importance of the student in connecting other students together;
Hub score showing the extent that a node points to many good
authorities [19], students with higher hub scores, respond to active
students’ posts more frequently; Authority score showing the
extent that a node is pointed by many good hubs [19], students
with higher authority scores, receive comments from hub students
more frequently; In-degree showing the number of connections
a student has received by getting replies from others; Out-degree
showing the number of connections the student has made by
posting replies to others; and Dropped out neighbors showing the
proportion of a user’s neighbors that have already dropped out in
each week. This metric was inspired by Eckles et al. [8], and was
defined as a way to estimate whether or not the students’ attrition
can be affected by their closest neighbors. This feature can show
how much a user has been exposed to unmotivated users.

In addition to the social features described above, we defined other
general features based upon students’ log data and forum activity.
Some of these, which we call forum features, are based on activities
on the forum including the total posts, total comments, as well
as the total number of votes (total upvotes − total downvotes)
that the student received on their posts. The third group of
features, called behavioral features, is extracted from the activity
logs. We extracted the total video views and video downloads
for the 2013 students class. The 2015 offering did not provide
download information. In 2015 students were offered ‘chapters’ to
view. We therefore extracted the total number of video views and
chapter views for this class. The total attempts is also included
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in both cases. This represents the total number of assignment
submissions for each student.

The last group of extracted features, which is our target for
prediction, includes semester dropout, week dropout, inactive next
week, and certificate. Defining dropout based on observations of
online activities is not trivial because the students do not explicitly
declare their leaving. Prior studies have proposed different mea-
sures reflecting dropout [9, 28]. We define our measures similar to
Fei et al. as described below and generate our predictive models
based on all of them [9]. Mostly our focus in this paper will be
on semester dropout and certificate earning because they provide
a static label for students over all the weeks of the semester.
Semester dropout: Will this student stop engaging at some
point? This feature is represented by a boolean flag which indi-
cates that the student dropped out of the course before the end.
Thus if a student quits performing actions in the course in any
week but the last then this will be set to 1 for all weeks. We do
not consider students with no activity in the last week as dropout
since they may have finished earlier in the week.
Week dropout: Will this student stop working from next week?
This is a boolean flag that is used to designate when a student
drops out. It will be set to 1 for a week if the student does not
perform any activities in the subsequent weeks. The activities
we consider include: posting or commenting on the forum, sub-
mitting assignment, and watching or downloading lecture videos
(or chapter view in BDE 2015 data).
Inactive next week: shows whether the student will be inactive
in the following week.
Certificate: shows whether the student has earned a certificate.

4.3 Survival Analysis
Survival analysis is the analysis of data involving the time remain-
ing to the occurrence of some event of interest. This method was
originally introduced in medical research and is used to predict
how long patients would survive, or go without some change,
based upon their data [21]. It has since been adapted to a number
of other fields where estimating the time until the occurrence of
an event or a boolean flag is of interest [28]. One objective of
survival analysis is to examine whether the survival times are
related to other features. For this purpose, regression models can
be used to assess the effect of covariates on an outcome. In this
study we used a multivariate version of Cox proportional hazards
model to fit the hazard ratio at time t as follows:

h(t;x1,...,xn)=h0(t)e
β1x1+...+βnxn (1)

In this formula, h0(t) is the baseline hazard that is the hazard
ratio of an individual, at time t where all the covariates are zero.
The effect of variable xk while all other variables are fixed is
interpreted as: for each unit increase in xk with all other variables
held fixed, the hazard is multiplied by eβk [18].

Here, we used the week of dropout as the target time. For the
students who have not dropped out until week 6, we consider them
as not dropping out, via right censoring. Right censoring occurs
when an individual has not had the event of interest until the end
of study. Further, we normalized all the variables to have a mean
of zero and a standard deviation of one. Therefore, the resulting
hazard ratio of 1.2 for total number of attempts for example, shows
that students with one standard deviation higher attempts than
average are 20% more likely to dropout. Likewise, a hazard ratio of
80% would show the users are 20% less likely to dropout. For this
study, we generated two models, the first included social features
alone while the second one included all of the predefined features.

4.4 Dropout Prediction
As mentioned earlier, we generated multiple datasets for each class,
each of which corresponds to the activities up to the end of a given
week, starting from the first week of the course. We then built clas-
sifiers for each dataset to evaluate their performance. Our primary
goal was to determine how early the data would be sufficient for
the model to train and to predict the outcome with high accuracy.
In both classes, the percentage of students who stayed engaged
in the course until the end was less than 20% and the ones who
earned a certificate were around 2%, so a model trained on that
data would generate biased results. To make the dataset balanced,
we randomly removed some of the majority class instances until
the number of users in both the classes were equal. For the
prediction, we began by employing decision tree-based feature se-
lection based on Gini impurity index to select the most important
features for the prediction of each target class [7]. We then applied
Support Vector Machine (SVMs) and Logistic Regression (LR)
for the classification task. Since Logistic Regression outperformed
SVM in all cases, we only report the AUC performance of the
logistic regression when comparing different models. In order
to tune the parameters and validate the training procedure, we
applied 10-fold nested cross-validation to estimate each outcome.

5. RESULTS AND DISCUSSION
5.1 Graph Construction
The construction method used when making a social graph can
affect the predictive performance. In this section, we assess the
predictive power of the graph features, for both dropout and
certification, that we extracted from the two different social graph
types. Table 2 presents the predictive performance of an LR
classifier trained on the aforementioned features extracted from
the two graph types for BDE 2013 class. As we hypothesized, for
both semester dropout and certificate prediction, Type 1 graph
features perform slightly better than the Type 2.

Class Target
AUC F-measure

Graph 1 Graph 2 Graph 1 Graph 2

BDE 2013
Semester Dropout 0.72 0.707 0.709 0.689
Certificate 0.808 0.796 0.763 0.749

BDE 2015
Semester Dropout 0.548 0.577 0.559 0.666
Certificate 0.545 0.607 0.491 0.676

Table 2: Graph Construction Effect on Dropout and Certification

Table 2 shows the same comparisons for the BDE 2015 class
offered on the EdX platform. Consistent with our hypothesis, the
predictive model based on graph 2 features performs considerably
better than the graph 1-based model. Thus, we will use this
construction of the graph for dropout and certificate prediction
later. Overall, the graph features in BDE 2015 are less predictive
of student outcomes than with the BDE 2013 data. Similar to
the difference in the length of the threads, this may also be due in
part to the presence of the separate chat platform where part of
the discussion among students takes place. Those interactions are
not represented in our dataset. As our results show, the methods
and assumptions used for the generation of social graphs should
be tailored to the class and forum structure and some methods
may not generalize to all of the other classes or platforms.

5.2 Survival Analysis
We explored two different sets of features in our survival analysis
to discover the impact of the features on dropout in the two course
offerings. In BDE 2013, when including all the aforementioned
features in Section 4.2, we observed that both the behavioral and
social features have a high hazard ratio and significant p-values
as shown in Table 3. Accordingly, the hazard ratio (HR) 0.71 for
video download indicates that students who download one stan-
dard deviation (SD) more videos than average are 29% less likely

Proceedings of the 11th International Conference on Educational Data Mining 407



to dropout compared to the ones with an average number of video
downloads. Betweenness with a hazard ratio of 1.74 illustrates
that the students with one SD more betweenness than average
are 74% more likely to dropout. We examined some sample posts
made by the students with high betweenness. It appears that
many of the posts are social niceties such as expressions of grat-
itude or appreciation for the instructor or fellow students rather
than being substantive contributions to the discussion (e.g. “Nice
work” or “Your kind of persistence will always pay off eventually”).

In our social model, we only considered the features that were
extracted from the social graph in order to assess their effect
on students’ survival in the course. As our results suggest, the
students whose out-degree or in-degree are one SD higher than the
average are 22% and 40% less likely to dropout respectively. This
means that the students who typically answer others’ questions
or post new questions are more likely to stay active in the course.
When comparing this finding with betweenness from the previous
model, we can conclude that the students with only high in-degree
might be more confused, while the students with high out-degree
probably understand the material better, or think that they do,
and are more willing to share information. Doing both at the
same time however, may show that the student is interested in
socializing rather than information exchange, which may not help
them to understand the material, complete the course, or gain a
certificate because the socialization may take priority over learning.

Features
No grade Social

Mean SD HR SE HR SE
video download 14.46 68.25 0.71*** 0.03 —
total attempts 0.66 3.27 0.57*** 0.04 —
total posts 0.03 0.34 0.63*** 0.13 —
indegree 0.27 2.67 0.75** 0.09 0.60*** 0.10
outdegree 0.27 2.68 0.78* 0.09
betweenness 17.58 326.42 1.74*** 0.14

Table 3: BDE MOOC 2013 - Survival Analysis for Different
Models (*: p<0.05, **: p<0.01, ***: p<0.001, —: not included)

The survival analysis results for the BDE 2015 course is shown
in Table 4. The strongest features in this offering are largely
behavioral features such as chapter views, total posts, and the
total number of attempts. Chapter views had a hazard ratio of
0.53. Thus students with 1.5 more views than 2.32, are 47% more
likely to continue in the course. In this case, the social features are
not significant unlike the 2013 class. Additionally, having more
posts in the 2013 class seemed to help people complete more, while
in this class it had a negative influence. Comparing the instructor
and TA activity in both classes shows that the instructor and the
most active TA made many more comments in 2013 than in 2015.
In 2013, the instructor and the most active TA made a total of 432
comments, while in 2015 only 133 comments were made by the
instructor, and we identified no TA with significant activity. If we
assume that most of the posts were expressions of confusion, the
more replies that they received, the more likely it is for their confu-
sion to get resolved. Based on the observed reply behavior of the
teaching staff in those classes, it seems likely that confused students
had a better chance of finding an answer in the 2013 class than in
2015. It is also possible that part of the support was provided to
students via the separate chat platform, but in either case it seems
that posting on the forum was less helpful in 2015 than 2013. This
may indicate that posts and replies did not resolve confusion. Ad-
ditionally, the results of the survival analysis align with the results
of the comparison among predictive models presented in Table 2.

5.3 Feature Selection
The five most important features for each prediction task and their
importance scores for BDE MOOC 2013 is shown in Table 5. As

Features
No grade Social

Mean SD HR SE HR SE
chapter view 2.32 1.57 0.53*** 0.03 —
total posts 0.2 1.31 1.43* 0.14 —
total attempts 1.36 3.27 0.88** 0.04 —
outdegree 0.02 0.26 0.43*** 0.18

Table 4: BDE MOOC 2015 - Survival Analysis for Different
Models (*: p<0.05, **: p<0.01, ***: p<0.001, —: not included)

the dropout feature selection results show, video download, video
view, and total attempts are the most important features for pre-
diction of the semester dropout, while total posts and indegree are
significantly less important and the remainder of the features do
not show up. Therefore, we used the top three features to train our
semester dropout classifier. Furthermore, when predicting certifica-
tion, total attempt and video view features had the highest impor-
tance score and we used them for training the model. Similarly, in
2015, video view, chapter view, and total attempts had the highest
importance score for both dropout and certificate prediction.

Semester Dropout Certificate

Rank Feature Importance Feature Importance

1 video download 0.604 total attempts 0.692
2 video view 0.230 video view 0.178
3 total attempts 0.111 votes 0.045
4 total posts 0.013 indegree 0.038
5 indegree 0.011 total posts 0.019

Table 5: BDE MOOC 2013 - Feature selection using Decision Tree

Our observations showed that none of the forum features rep-
resenting participation were as informative as the behavioral
features. This was due in part to the fact that there was a small
proportion of students who had any forum activity. Additionally,
we have access to a survey completed by students before starting
the course. A total of 155 and 229 students from the 682 and 483
forum active ones participated in the survey respectively in the
2013 and 2015 classes. An analysis on the responses of the forum
active students shows that more than 66% of them indicated the
reason for taking the class as it being relevant to their field of
study, more than 77% of them indicated that it is relevant to
their career, more than 87% of them believed that it will help
them expand their knowledge of the field, and only less than
40% mentioned that it will help their resume. So, it seems like
not many of them were concerned about finishing the course,
getting a certificate, and using it as a boost to their resume. More
information on the structure of the survey is available in Wang
et al. [27]. Also, some more analysis on the student replies to the
survey and their certificate earning is available in Andres et al. [1].

5.4 Model Performance
To train our models, we only considered features with more than
a 0.1 importance score in feature selection and applied logistic
regression with 10-fold cross-validation to evaluate the model.
Figure 2 presents the AUC performance of each classifier over the
first six weeks of the course. F-Measure performance also had a
similar trend. As we observed, the certificate prediction model had
an AUC above 90% from the first week of the course. While the
model for semester dropout obtained an AUC of approximately
79% in the first week and gradually increased thereafter. The
Week dropout and inactive next week models behaved similarly.

The classification performance of the models for the BDE 2015
dataset was similar to 2013. As with the BDE 2013 dataset, the
certificate prediction performance is above 85% from the first week
and improves gradually thereafter. The three dropout definitions
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Figure 2: BDE 2013 - AUC Prediction Performance of Three
Dropout Targets and Certificate

have almost the same trend and behavior while obtaining an
F-measure performance around 70%.

Our results show that even though most of the more complicated
metrics were removed during the feature selection method, the
trained models for both of the classes were able to predict dropout
with an F-Measure and AUC of ≈70% as early as the third week
of the class. They were also able to predict certification with an
F-Measure and AUC of ≈90% from the very first week. It also
appears that the students who earn a certificate have relatively
distinct behavior from that of their peers starting at the beginning
of the semester.

It is interesting to note that some of the features showed significant
outcomes in the survival analysis, but were not selected by the
feature selection algorithm. This was surprising as one argument
that has been advanced for survival analysis is that it is better
at handling time-aware events. In order to evaluate this apparent
conflict we trained a separate model based on the features that
were significant for the survival analysis. The resulting model
did not outperform the models that relied on the tree-based
approach. In most cases the resulting models were comparable or
the survival model underperformed. While this does not prove that
survival-based selection is unusable it does merit further study.

5.5 Cross-Class Dropout and Certification
In order to evaluate the generalizability of the classification models,
we took a cross-class approach. To do so, we used all of the data
from each week of the first offering, based on the behavioral fea-
tures common among both classes, which includes only video view
and total attempts. Then we tested the model on all data from the
corresponding week of BDE 2015. Table 6 presents the F-measure
and AUC performance of this model over six weeks of the course
for the task of semester dropout and certificate prediction. As the
results suggest, the predictive power of this model is relatively high
when using only the two aforementioned features, especially for the
certificate prediction task. This finding suggests that even though
there are some differences among these classes and the features
selected for the classification of each might be slightly different, the
models are able to predict students’ outcome as early as the first
one or two weeks with reasonable accuracy. However, these results
need to be validated on other courses with multiple offerings.

Semester Dropout Certificate

Week F-measure AUC F-measure AUC

1 0.606 0.764 0.727 0.885
2 0.723 0.883 0.776 0.935
3 0.706 0.882 0.741 0.879
4 0.627 0.879 0.721 0.871
5 0.490 0.915 0.750 0.861
6 0.586 0.915 0.836 0.951

Table 6: AUC and F-measure performance of Cross-class dropout
and certificate prediction model

6. CONCLUSION
Our primary goal in this study was to predict student performance
and dropout based upon different social and behavioral features.
One focus of our work here was on the testing assumptions that
are usually made when generating social features and choosing
the analysis method. These findings suggest that even for sim-
ilar classes with the same instructor, a change in platform or
instructor/TA behavior can change the impact or appearance
of student engagement in the forums. As a result, the choice
of model features and the feature generation methods matter
a great deal. For example, we tried two different social graph
generation methods that both were suggested in the literature and
based on the forum structure the better choice for each class was
different. Additionally, as our results suggest, behavioral features
such as submissions and video watching are better predictors of
student dropout and certification than social behavior. Adding
social metrics to the trained behavioral models does not seem
to improve their performance because very few users seem to
place any value on those features. Additionally, we observed that
a behavior-based predictive model trained on a former offering
is applicable to a new offering, despite the differences in course
structure. This suggests that we may be able to generate pre-
dictive models based upon early offerings of MOOCs and then
use them on to enhance the later iterations. This will enable
instructors to identify students who are likely to earn a certificate
or to dropout in the first few weeks of the course and may be
able to help or provide more support for the students in need.

One limitation of this work is that dropout is not pre-defined in
the dataset, and we have no ground truth on the students’ in-
tentions when they quit. We therefore need to make assumptions
when defining dropout, which can change the findings of the study.
Our definitions of dropout, would count students with any kind of
activity still engaged, thus if a student kept watching videos but
not submitting assignments, they would not be counted as having
dropped out. However, different assumptions on the definition
of dropout might change the findings. Also, our analysis of the
posts made by the central users is limited. Deeper study of the
content in posts and replies, or whether they are on topic, can
make the findings stronger.

One other limitation of our study was the imbalanced nature
of our dataset. In both offerings, the majority of the students
dropped out according to our definitions. In order to address this
problem we randomly removed most of the dropped out students
to balance this label as half true and half false. In future studies,
more approaches should be tried to balance the dataset, and to
include more variety of data while removing the duplicates.
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ABSTRACT
Online tools provide unique access to research students’ study
habits and problem-solving behavior. In MOOCs, this online
data can be used to inform instructors and to provide automatic
guidance to students. However, these techniques may not apply
in blended courses with face to face and online components. We
report on a study of integrated user-system interaction logs from 3
computer science courses using four online systems: LMS, forum,
version control, and homework system. Our results show that
students rarely work across platforms in a single session, and that
final class performance can be predicted from students’ system
use.

Keywords
logs, blended courses, MOOCs, study habits, predictive models

1. INTRODUCTION
Today, students enrolled in university courses, particularly those in
STEM disciplines, supplement or even supplant class attendance
with online materials such as Learning Management Systems
(LMSs), discussion forums, intelligent tutoring systems, automatic
graders, and homework helpers. TAs now offer online office hours
even for local students and lecture videos are reviewed in lieu of
note-taking. The goal of these tools is to foster a rich learning
environment; to support good study habits; and to enable instruc-
tors to give and grade realistic activities such as collaborative
learning and project development [10]. In addition to planning
class lectures, course instructors now manage a constellation
of online services which students can use, or not, at their own
pace. In practical terms, many traditional face-to-face on campus
courses are blended courses.

While these tools can be beneficial, blended courses normally
use several different tools, requiring students to switch between
different websites several times to access lecture notes, online
discussions, and assignment submission systems. Even when the
tools are linked through a single LMS such as Moodle, the need
to transition from platform to platform can be challenging. In
order to engage effectively with such hybrid materials, students
need to develop good online study skills and need to effectively

integrate information across platforms. While we have generally
assumed that technically-savvy students have these skills, little
work has been done to empirically evaluate how students use
these platforms and whether or not their observed habits can be
used to predict their performance.

While many of the systems used in blended courses are similar
to those in Massive Open Online Courses (MOOC), studies of
blended courses are limited. Prior work has mostly focused on
single tools, and generally lack early prediction power [24, 18, 16,
1, 9, 19]. Prior research has suggested novel methods that can be
used to predict student performance in MOOCs, based upon fea-
tures extracted from students’ interactions with different learning
materials [5, 21, 14, 11]. Since not all of the students’ learning
activities can be monitored online, it is not certain whether the
same methods can be applied [3].

In this paper, we present our work on the automatic analysis
of students’ study behaviors in blended courses. We focus on
3 Computer Science courses at North Carolina State University
using 4 online platforms: Moodle, a large-scale LMS; Piazza, an
online discussion forum for student questions; Github Enterprise,
a project management platform for software development; and
WebAssign, an online homework and automatic grading platform.
Our goals in this work are: to synthesize data from these heteroge-
neous learning platforms; to extract meaningful student behaviors
from the interaction data; and to model students’ behaviors to
predict their future performance and thus to provide a basis for
automatic feedback or instructor support. We want to leverage
this synthesized data to analyze not only what features of these
online platforms students use but when they do so. This, in turn,
can give us a deeper understanding of students’ study habits and
allow us to distinguish effective strategies from ineffective ones,
facilitating automated support.

We address the following research questions: (Q1) Do students
focus on one tool at a time or work across platforms?; (Q2) Do
students’ online study habits follow clear patterns based upon the
course deadlines?; and (Q3) Can students’ study habits be used
to predict their final scores? We hypothesize that students tend
to silo their work in one platform at a time, and that their tool
use will predictably follow course deadlines. We also hypothesize
that these patterns, or deviations from them, can be used to
predict their overall performance across classes.

2. RELATED WORK
The use of online tools such as discussion forums, learning manage-
ment systems (LMS), and online assignment submission systems
in classrooms can provide researchers with more information on
students’ behavior than they can obtain through observation
alone. MOOCs are attractive to researchers in part because they
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provide a data choke-point which highlights most relevant student
interactions. While most of the data available in MOOCs is also
available in blended courses, many of the findings on MOOCs have
not been replicated in blended (face to face and online) courses
in part due to a lack of available datasets and the fact that not
all learning activities are tracked or logged. In this section, we
first discuss some of the studies on MOOCs and performance
prediction, then we discuss the research on blended courses.

There have been a number of studies of students’ behavior in
MOOCs and whether or not it is correlated with their overall per-
formance. Seaton et al., analyzed students’ use of course materials
on an existing EdX MOOC with the goal of determining when and
how the students attempt assignments and how they divide their
time over the differing activities [20], finding that only 25% of
the students attempt more than 5% of the assignments but those
students account for 92% of the total time spent on the course.
Sixty percent of the total time spent on the class was invested
by the 6% of students who earned a certificate. There have been
several attempts to predict student certification and dropout in
MOOCs using features extracted from their online activities such
as the number of videos watched in a week, the number of quiz or
assignment attempts, the number of forum posts made per week,
post length, relative time spent on assignments, and so on [17,
8, 4, 6]. Some researchers have gone further by defining study
sessions for students, and using the sequence of students’ access to
the online material to make predictions on performance [2, 5, 14].
Amnueypornsakul et. al. defined active study sessions for each
student and used the sequence of actions within sessions to define
features such as length of the action sequence, the number of oc-
currences of each activity, and the number of Wiki page views [2].
Li et. al. applied the idea of N-grams to the sequence of student
actions in a session and used those N-grams to predict the stu-
dents’ certification [14]. Brooks et. al. defined sessions with fixed
duration such as 1 day, 3 days, 1 week, and 1 month throughout
the semester and recorded students’ activity within each time unit
as a binary feature [5]. They defined N-grams on the sequences
of features to make early and cross-class predictions of student
dropout. Sinha et. al. added the concept of an interaction graph
which connected students to the resources they accessed and
found that a predictive model trained on the graph features can
outperform N-gram based models for student behaviors [21].

These prediction methods, if applicable to blended courses, could
help instructors to identify struggling students early in the semester
for support. But it is still not clear how or if these behaviors can
transfer from one domain to another. An et. al. tried replicating
some of the predictive methods found in MOOCs to a blended
course and found that those findings can be applied with some
caveats as there were some changes needed in the design process
for it to be applicable in other contexts [3]. For example, students’
download activities were shown to cluster students into two cate-
gories of completing and auditing both in a MOOC and an online
course, but this pattern was not visible in the blended course
of their study. However, this clustering based upon assessment
scores could identify some of the groups visible in MOOCs, also
in the blended course.

Prior analyses of student behaviors in blended courses show
that the overall level of activity increases when exam, quiz, or
assignment deadlines are near at hand [16]. Analyses of students’
login behaviors also show that the students’ activities follow a
predictable weekly cycle dropping on Saturdays and then rising on
Sundays as they prepare for the week ahead [1]. Research has also
shown that better performing students usually start and end their
activities earlier than their lower performing peers [23] and that

Class Source Total actions Avg. per student σ
DM 2013 Moodle 17148 166 88

Piazza 2557 15 28
WebAssign 265510 1062 201

DM 2015 Moodle 21972 80 59
Piazza 2208 12 17

Java 2015 Moodle 101180 613 266
Piazza 2556 20 25
Github 31438 196 140

Table 1: Actions Taken by Platform

it is possible to use some student activity features to predict their
performance [24, 18, 9, 1, 22]. Some examples of these features
are attendance, emotions during lecture, number of assignments
done, the time they took to do those assignments, number of
posts on the discussion forum, prior scores, number of attempts,
etc. Most of this prior work has been based upon complete
datasets which represent all of the information obtained during a
semester. Such models cannot therefore be used for early warnings
or interventions. Munson et. al., by contrast, showed that features
such as early scores, hours coding, error ratio, and file size can
identify struggling students in the first three weeks of the class [15].

We focus on evaluating students’ online tool use in terms of ses-
sions, consecutive sequences of study actions that occur between
breaks for food or sleep. Sessions have been previously used to
analyze student behavior in MOOCs and in other cohesive online
tools such as an LMS (e.g. [12]). Our work here extends that
research by applying to heterogeneous data from blended courses
where students can work across platforms and over longer periods
of time with the goal of developing early predictors that can be
used to identify high- or low-performing students in time for an
intervention.

3. DATASETS
In order to address our research questions, we collected student
data from three blended courses in Computer Science offered at
North Carolina State University. Two are offerings of “Discrete
Mathematics for Computer Science,” (DM) from 2013 and 2015
respectively. The other was an offering of“Programming Concepts
in Java” (Java) from 2015. Both courses are core courses for stu-
dents majoring in CS and both are structured as blended courses.
Students in both DM and Java use Moodle, an open-source LMS
that is used for all courses at NC State University, and Piazza,
an on-line Q&A platform for question answering that can be used
for threaded discussions. The students in the DM classes use
WebAssign and the students in the Java class used Github for
assignment submissions.

We collected data from Piazza and Moodle for all these classes as
well as data from the WebAssign system for the 2013 DM course.
We also collected a complete record of students’ Github commits
from the 2015 Java course. The data was collected as web logs,
database dumps, and in the case of WebAssign, via screen scraping.
We then cleaned up the raw data, linked it across platforms, and
anonymized it to produce a single coherent database for analysis.

For the purposes of this analysis, we focused solely on the students’
actions and ignored actions by the course instructors. We also
eliminated students who dropped out of the course (only possible
during the first two weeks of the course) as well as students who
did not get a grade (at most 20 students per class). Table 1 shows
the total number of actions recorded for each tool along with the
average number of actions per student removing zero values.
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The final grades of all the students were provided to us by the in-
structors. In each case, the Grades are represented ordinally from
A+to F from left to right. The relative distribution of student
grades in the courses are shown in Figure 1. A majority of the stu-
dents achieved good grades in each course offering (i.e. B or above)
and fewer than 16% of them failed. We therefore based our predic-
tive models on distinguishing students who achieved distinction in
the course (A- to A+ grades) from those who did not. Due to the
high proportion of distinction this yielded nearly balanced datasets.

Figure 1: Grade Distribution for the Three Classes

3.1 Discrete Mathematics
Discrete Mathematics (DM) is a core CS course that introduces
students to the basics of logic and proofs, set theory, and probabil-
ity. Students typically enroll in the course during their second year
and must pass it with a C or better to progress in the curriculum.
Our data comes from the Fall 2013 and Fall 2015 offerings of the
course. In both cases, the course was broken into two sections
with two instructors and five shared Teaching Assistants (TAs).
The 2013 offering had 250 students enrolled while the 2015 offering
had 277. The average final grades in 2013 and 2015 were 89.5
and 86.9 out of 100 respectively. In both years the course had
10 homework assignments (30%), 5 lab assignments (10%) and
4 tests accounting for 60% of their final grades.

Students in the DM courses used WebAssign, an online homework
platform. It is used to deliver, view, and grade student assignments.
Assignments may be graded both manually and automatically.
WebAssign is used in the DM course for weekly assignments
linked via Moodle. We have access to WebAssign data for 2013
DM offering. Each submission shows a single attempt to answer a
question in an assignment and provides information on the student
making the submission, the time of the submission, the assignment,
question information and the sub-question part being completed.

3.2 Programming Concepts in Java
Programming Concepts in Java is also a core CS course that covers
software topics such as: system design and testing, encapsulation,
polymorphism, finite-state automata, and linear data structures
and recursion. Like the DM course it is offered to students during
their second year and students must pass with a C or better.
To obtain the letter grade earned, the students must obtain an
average of 60% or better on the exams and assignments. In 2015,
this class was structured into three sections with one instructor per
section. One section was a pure distance education section with a
completely separate student population. This was omitted from
our analysis for the sake of consistency. Our dataset, therefore,
covers 2 sections with 2 instructors, 9 teaching assistants, and 180
local students. The high TA to student ratio is due to the fact
that this course involve a substantial coding project components
and also the external funding supporting additional TAs. The
course included 3 projects, 2 midterms, and one final exam and

their final grades are generated based on the grades on all these
activities. The average final grade for this class was 79.7.

Students in the Java course use GitHub, a version control system
used widely in Software Engineering projects to allow users track
changes to the code and share coding tasks within a team. Github
is used in the Java class as a tool for individual and team projects,
and also as an assignment submission system. The system is
connected to an automatic test suite and students are graded
based on their latest Github commits. Each record in our logs
identifies the author, the number of changes to the code, and the
time of submission.

4. SESSIONS
We aggregated the heterogeneous actions described above into a
unified transaction log. This data consists of 285,465 transactions
from the DM 2013 class, 24,180 transactions from the DM 2015
class, and 135,351 transactions from the Java class. As Table
1 shows, the lion’s share of these transactions are WebAssign
actions from Discrete Math 2013 and Moodle actions from the
other two course offerings.

We divided the individual transactions into sessions representing
contiguous sequences of student actions using data-driven cutoffs.
Our goal in grouping the student actions was to better understand
the students’ online study habits and their longer-term strategies.
Aggregating student actions into sessions is a nontrivial problem.
Fixed time cutoffs can have incorrect edge cases and the time
cutoff used can affect our final results. Kovanovic et. al., for
example, evaluated the impact of different time cutoff strategies
for a dataset extracted from a single LMS [12]. They found that
there was no one best cutoff and recommended exploring the
data to select a context-appropriate cutoff. Some techniques that
have been used to estimate sessions are:

Fixed duration: Sessions can be defined based upon a fixed
(often a priori) unit of time such as an hour or a day as in
[5]. Sessions can also be defined by considering periods between
assignment deadlines as the duration of the session.

Cutoff: Another method is using a fixed timeout or cutoff
similar to Amnueypornsakul et. al. [2]. Here we group student
actions into sections and separate sections when they go offline or
pause for a set period of time. The consecutive actions between
pauses then belong to a single session irrespective of its duration.

Navigation: In this approach, common in web-analysis, the
actions themselves are analyzed to determine when a session has
ended. If, for example, a user traverses to an unrelated content or
engages in off-task browsing then we consider the session to be over.

Fixed duration sessions are unusable in this context as there
is no clear time limit for the students’ work to be completed.
Navigation-based sessions are likewise unsuitable as our research
questions are focused on all class activities and we do not have
other external data that could be used to detect when students
leave the systems. The selection of a cutoff is complicated by the
fact that our data includes heterogeneous tasks. Some, such as
answering a true/false question on WebAssign, are quick while
others, such as composing Piazza posts, take time. In the absence
of clear sign-off behavior, we chose to take a data-driven approach
to selecting our cutoff values.

To that end, we began by plotting a histogram of the relative gaps
between sequential actions on the different platforms. Most of the
actions occurred quite close to one another with our histograms
showing an exponential reduction in frequency from 1 to 201
seconds where it trails off. While informative, that analysis
conflated two kinds of breaks, some where the student later
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Figure 2: Histogram for Gap Length with Change of
Platform for the 2013 Discrete Math Class.

returns to the same system (the most common case) with those
where they shift to a different platform. We, therefore, plotted
separate histograms for each type of gap, an example for gap
length with cross platform activities is shown in Figure 2. The plot
for actions on a single platform is similar but with shorter cut-off
time visible. All three classes show a similar breakdown of gaps,
thus we have only included the figure generated from the 2013 DM
class here. As the figures illustrated, the gaps in which students
change from one platform to another are generally longer and have
longer tails. The within-platform gaps follow the same pattern as
the full set with a sharp dropoff after 210 seconds. By contrast,
the cross-platform gap has a mild dropoff after 600 seconds.

Given the variation of the data, it is not possible to define a single
cutoff value that accurately captures all cases. We, therefore,
opted to define two session types with two different cutoff values.

Browser Session: m=15 minutes indicating a short break
likely with the same browser open.

Study Session: m= 40 minutes indicating that student
likely changed tasks or quit working entirely.

The Browser Session can be characterized as a case where the
students are actively working on a single task with little change.
This may include working on a multi-part WebAssign question,
reading through materials on Moodle, or diagnosing an issue with
their code with guidance from Piazza. Sessions of this type were
comparatively short in duration. The Study Session by contrast
allows for a much larger gap where students may shift from reading
materials to answering questions or engaging in (online) discussions
with their peers, and back again. This large cutoff was based
upon the cross-platform breakdown and was in part intended to
address our lack of data regarding the students’ offline activities.

5. RESULTS & ANALYSIS
Table 2 presents basic statistics on the two types of sessions across
the three classes. Because these sessions are defined by a time
cutoff they have overlapping instances. Thus in DM 2013, 12,349
of the sessions were both study and browser sessions meaning
that the gap between them and the neighboring sessions was over
40 minutes long and all of the internal gaps were less than 15
minutes. When analyzing the session duration, we found that
almost half of the sessions (of both types) were comparatively
short with the students making less than five actions. The rel-
ative frequency of the sessions drops quickly as the session length
increases. Similar trends were exhibited when we examine the
length of each session based on their duration. We also observe
that the average duration of the sessions in DM 2015 dataset was

Class Session Count Avg Homogeneous Heterogeneous
Duration

DM 2013 Browser 17699 9 min 16892 777
Study 14574 16 min 13668 906

DM 2015 Browser 10981 2 min 10963 18
Study 10038 2 min 9994 44

Java 2015 Browser 28768 5 min 28645 123
Study 25005 17 min 21932 223

Table 2: Information on Different Types of Sessions

drastically shorter than those in DM 2013 and Java 2015. This
may be explained by the fact that the WebAssign records were
present in DM 2013 while GitHub was included in Java 2015.
This would give a more frequent and detailed picture of students’
problem-solving. Removing Github activities from the Java class
records resulted in a similar pattern of shorter sessions.

5.1 Q1: Homogeneity
The browser and study sessions can be classified as heterogeneous
and homogeneous sessions. Heterogeneous sessions occur when the
student switches between platforms at least once during the session.
Homogeneous sessions occur when no such change takes place.
Table 2 presents a breakdown of the two types across the classes.
As the table illustrates, in all of the classes more than 95.5% of the
browser sessions are homogeneous as are more than 93.8% of the
study sessions. These results are consistent with our hypothesis
that students do not work across platforms but instead silo their
activities working on one system at a time. This is true even with
the long timeout for the study sessions. When they do transition
from one platform to another it is largely a transition between
Moodle, which links course schedules to assignments, and We-
bAssign, which allows them to complete their assignments in the
DM 2013 class, or between Moodle and Github in the Java class.

5.2 Q2: Patterns
As noted above, the grade distribution for the courses is quite high.
We therefore classified the students into one of three categories
for analysis: Distinction (A+, A, or A-); Pass (B+, B-, B, C+, or
C-); and Fail (D or F). We plotted the the frequency of individual
browser sessions day by day over the course of the semester, and
example of them for DM 2013 is shown in Figure 3. The red
line indicates the Fail group, the blue line corresponds to Pass
group and green represents the Distinction group. The vertical
bars show the due dates for assignments and exams. As the
plot illustrates, the number of sessions spike before each deadline
for all three of the performance groups. A similar pattern was
observed for the other classes, the frequency of the study sessions
and also for the duration of both session types sessions. These
results are consistent with our hypothesis and prior studies that
students are deadline-driven even in blended courses. We also
observe that the Fail group performs much fewer activities than
the other two groups, getting close to zero in DM 2015 class. This
shows that most of the actions the Fail group performed were
WebAssign actions, which we do not analyze for the 2015 class.

5.3 Q3: Prediction
As Figure 3 and the other class plots illustrated, all three perfor-
mance groups in all three classes followed a similar pattern. All
of the groups have irregular activity patterns and all of them see
spikes prior to each of the deadlines and exams. Yet there are im-
portant differences among the groups. As a group, the Distinction
students were always active, with the number of active sessions
rarely if ever, reaching zero. The Fail students, by contrast, were
frequently inactive as a group with long periods where no fail
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Figure 3: Frequency of Browser Sessions with Assignment Deadlines and Test Dates for Discrete Math 2013

Table 3: Kruskal-Wallis P-values for Succeed/Fail Clas-
sification, Values Less than 0.05 Are Illustrates in Bold

Pre Test 1 Pre Test 2 Full Semester
Parameter DM DM Java DM DM Java DM DM Java

2013 2015 2015 2013 2015 2015 2013 2015 2015
Avg Gap 0.15 0.02 0.00 0.00 0.03 0.12 0.10 0.04 0.02
Num Sessions 0.01 0.03 0.00 0.00 0.02 0.06 0.00 0.01 0.04
Pratio 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08
Total Time 0.00 0.13 0.04 0.00 0.23 0.25 0.01 0.20 0.08
Consistency 0.07 0.01 0.00 0.00 0.03 0.10 0.08 0.03 0.03
Total Actions 0.00 0.14 0.02 0.00 0.08 0.14 0.01 0.17 0.19
Piazza Questions 0.00 0.00 0.04 0.00 0.00 0.08 0.00 0.00 0.10
Piazza Answers 0.00 0.00 0.04 0.00 0.00 0.09 0.00 0.00 0.11
MultipleAttempts 0.00 0.00 0.00

student was active at all. The Pass students, by contrast, occupy
an interesting middle ground with less consistent activity than
the Distinction group but far more than the Fail group. This
suggests that students who succeed in the courses are broadly
more consistent and engage in online activity at regular intervals.
However, all the students are given to cramming (spending much
more time on classes right before tests) with the better students
cramming as much or more than their peers. These results also
indicate that the relative gap between sessions may be a significant
predictor of students’ individual performance.

Based upon those results we then identified a set of 16 session
features for deeper analysis: Sessions: count, avg actions, total
actions; avg duration, time=count* avg duration, avg gap, consis-
tency, homogeneous, heterogeneous; Piazza: questions, answers,
ratio of sessions containing Piazza activity; Webassign (DM2013
only): parts submitted, first attempts, multiple attempts;
Performance (distinction, pass, fail);

Consistency=AvgGap∗(max(SessionsCount)−SessionsCount)

We reclassified the students into two categories, Distinction and
Non-distinction (Fail and Pass students) and applied the Kruskal-
Wallis (KW) test, a non-parametric analogue to the Analysis of
Variance test (ANOVA) [13], to determine whether or not any
of these features are significantly correlated with having high
performance in the course. The Kruskal-Wallis test is a good choice
in this context because it does not assume normally-distributed
data. Table 3 lists the features that were significant among the
groups. As that table illustrates 9 of the features were statistically
significant predictors of whether or not the students would pass the
course. Crucially, some of these features were significant predictors
of student performance even when we restricted our focus to data

from the first half of the semester or to the first quarter (3
weeks). It is not surprising that the significant features differed
between the classes given the absence of WebAssign data from
two of the courses and the use of GitHub in the Java class. It is
interesting however, that even without including WebAssign data
source in the Discrete Math 2015 class, we can observe significant
correlations between the defined features and performance. Our
results illustrate that in all the classes, most of these features are
significant early in the semester and the sign of the coefficients
do not change in different time frames and across classes.

We extended this analysis by testing whether or not these val-
ues correlated with students’ final grades using Kendall’s τ a
non-parametric correlation coefficient that works well with small
sample sizes and is robust in the presence of ties [7]. Table 4 lists
the τ coefficient and p-values for the features that were signif-
icantly correlated with the students’ final grades. As the table
illustrates, most of the features were significantly correlated with
the final grades in all the classes, though the coefficients were small.
Moreover, the direction of the correlations did not change over the
course of the semester. In the 2015 Java dataset however, none of
the features were correlated with the data before test 2. It is not en-
tirely clear why the results are so different for this course. The gap
may be explained by a change in the course activities in the second
part of the class that is not adequately reflected in our dataset.

These results are largely consistent with our hypotheses, partic-
ularly for the DM offerings. We can use individual variables to
predict whether or not the students will pass the course with high
performance, based upon some of their per-session features. More
importantly, we can do so based on the first few weeks of the course.
Thus, it is possible to identify students who may be in need of
support early when there is still time to change student behaviors.

5.4 Predictive Models
We expanded on these results by training predictive classifiers
for the students’ course performance based upon the correlated
features. For the models including data after test 1, we included
the test 1 grade and for the model based on all semester data, we
included both tests 1 and 2 grades. We used logistic regression,
decision tree, and K Nearest Neighbor classifiers to predict student
performance using data generated before test 1, before test 2, and
over the course of the entire semester. We generated a model
for each course and subset, which could classify students into
Distinction/Non-Distinction groups. The F1 scores for these
models are shown in Table 5. While the best performing classifier
varies among different classes and subsets, the best models based
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Data before Test 1 Data before Test 2 Total Semester Data
DM 2013 DM 2015 Java 2015 DM 2013 DM 2015 Java 2015 DM 2013 DM 2015 Java 2015

Avg Gap -0.075 -0.1209** -0.1334* -0.1411** -0.1171** -0.0994 -0.0917* -0.1212** -0.1629**
Num Sessions 0.1413** 0.1445*** 0.1548** 0.1833*** 0.1386*** 0.0913 0.2121*** 0.1484*** 0.1427**
Pratio 0.2461*** 0.2036*** 0.1192* 0.2502*** 0.2196*** 0.0712 0.3090*** 0.2299*** 0.0716
Total Time 0.1638*** 0.1382*** 0.1205* 0.1858*** 0.1205** 0.0795 0.1759*** 0.1210** 0.1647**
Consistency -0.0879* -0.1253** -0.1374** -0.1456*** -0.1197** -0.099 -0.0996* -0.1233** -0.1535**
Total Actions 0.1782*** 0.1225** 0.1154* 0.2038*** 0.1265** 0.076 0.1648*** 0.1131** 0.1319*
Test 1 0.5141*** 0.5216*** 0.5141***
Test 2 0.4783*** 0.6582*** 0.4783***

Table 4: Kendall’s τ for the Defined Parameters and the Final Course Outcome (*: p<0.05, **: p<0.01, ***: p<0.001)

Before Test 1 Before Test 2 Full Semester
Parameter DM 2013 DM 2015 Java 2015 DM 2013 DM 2015 Java 2015 DM 2013 DM 2015 Java 2015
Decision Tree 0.5432 0.3881 0.5172 0.6750 0.6032 0.7500 0.6774 0.6769 0.7273
KNN 0.5067 0.4815 0.3922 0.5352 0.4444 0.5333 0.7164 0.7857 0.7778
Logistic Regression 0.6364 0.3182 0.6885 0.6333 0.5763 0.7600 0.6452 0.8077 0.6939

Table 5: F-Measure Performance for Distinction Group Prediction

upon full semester or even before test 2 activities for all the classes
performed with decent accuracy.

6. CONCLUSIONS & FUTURE WORK
Blended courses which pair face to face lectures with multiple
distinct online learning platforms are increasingly the norm, partic-
ularly in STEM domains. Our goal in this paper was to determine
whether or not it is possible to automatically analyze students’
online study behaviors to identify good and poor study habits with
the goal of supporting instructors and of providing automated
guidance. In particular, we sought to address the following three
research questions: (Q1) When working with online resources do
students focus on a one tool at a time or do they work across
platforms?; (Q2) Do students’ online study habits follow clear
patterns based upon the course deadlines?; and (Q3) Can students’
observed study habits be used to predict their final scores?

In order to address these questions, we collected data from three
CS course offerings at North Carolina State University. Two were
separate instances of the same course while the other represented a
different topic and instructor. All three courses used a range of on-
line tools, we collected data from four critical ones: a shared LMS,
an online discussion forum, an online homework platform, and a
version control system. We then developed methods to synthesize
this heterogeneous student data across the platforms and exam-
ined students’ individual study actions grouping them into study
and browser sessions using empirical cutoffs. We then grouped
students into separate categories based on their performance and
analyzed the pattern of sessions observed for each group. And
finally, we identified key features of the students’ online habits,
assessed the relative correlation of those habits with their final
performance, and trained classifiers to predict their performance.

In each case, we found that the data was consistent with our
hypotheses. Students in the course typically siloed their work on
the platforms (homogeneous sessions) and rarely, if ever, used
two or more platforms in a single session. The students’ study
and browser sessions spiked in advance of each course deadline
or test and dropped precipitously afterward. This pattern was
consistent for these undergraduate students regardless of their
final performance.. And finally, we found that the students’ study
habits did differ based upon their level of performance and that

key features of the study habits were significantly correlated with
the students’ performance and final grades. Moreover, some of
these correlations were observed even in the first few weeks of
the course, at a time when change is still possible. The features
identified can be used to construct successful classifiers to predict
performance and the individual features (e.g. average gap between
sessions), lend themselves to clear direct feedback.

Prior researchers have shown that it is possible to analyze stu-
dents’ actions on MOOCs to predict their ultimate performance
in the course. In MOOCs, we have a data choke point that yields
largely complete records of students’ course activities. In blended
courses, however, we lack a complete data picture as the students
still engage in face-to-face lectures, visit office hours, and meet
directly to discuss materials, or to exchange solutions. In spite
of this incomplete information we have shown that it is possible
to analyze students’ behaviors to derive pedagogically relevant
information that can be used to support instructors or to provide
automated guidance. While the induced classifiers are not perfect,
and while they depend upon some crucial design decisions such
as the session selection, they still have the potential to provide
real benefits in everyday classrooms.

In the near term, we plan to extend this work by incorporating
additional data that was unavailable for our present analysis
such as records from Jenkins, an automatic test suite. We also
plan to investigate other mechanisms to detect off-task behavior
and to estimate time on task that are sensitive to the specific
actions being taken. In longer-term work, we plan to develop
a centralized platform for automatically logging and integrating
data from heterogeneous sources to provide automatic strategic
feedback. It is our hypothesis that regular feedback from a virtual
“study buddy” can be useful in encouraging students to develop
better work habits even with a relatively low rate of guidance.
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ABSTRACT 
Students who actively engage with learning materials, for example 
by completing more practice activities, show better learning 
outcomes. A straightforward step to stimulate this desirable 
behavior is to require students to complete activities and downplay 
the role of reading materials. However, this approach might have 
undesirable consequences, such as inflating the number of activities 
completed in a short period of time until maximum performance is 
achieved (“gaming the system”). In this paper, we analyze the 
relative benefits of completing activities vs. readings for learning 
outcomes in an online course that required students to perform 
practice activities. The results show that students who read more 
pages have better learning outcomes than students who completed 
more activities. This pattern of results holds even when considering 
different measures of active engagement but is reversed when 
considering only activities classified as effective active 
engagement by a “gaming behavior” classifier. Overall, these 
results suggest that, when completing activities is required, students 
benefit from complementing the activities with optional readings. 
One possibility is that completing optional readings can be an 
active learning activity in itself, driven by students who are going 
beyond the minimum requirement, and actively seeking further 
information and robust feedback that complements the activities. 

Keywords 

Active learning; online learning; “game the system” classifiers 

1. INTRODUCTION 
Students learn better when they engage in active learning [11,19]. 
Yet, much instructional practice emphasizes passive learning such 
as reading text, attending lectures, and watching videos. Contrary 
to evidence of the clear benefits of active learning, students (and a 
surprisingly high number of instructors) feel that passive strategies 
such as re-reading are useful study methods [16]. This disconnect 
between evidence and practice highlights the need to develop active 
learning practices that are grounded in empirical evidence and can 
support effective learning. In this paper we investigate the positive 
benefits of active learning in an online course and the effect of 

encouraging students to engage in pre-determined active learning 
activities. 

Online courses might, by their nature, lead to fewer active learning 
practices. For example, online courses often rely on text and videos 
to convey information, typical passive learning practices. However, 
although video- or text-based online courses are common, previous 
work by Koedinger and collaborators has suggested that greater 
engagement with practice activities in online courses is a better 
predictor of improved learning than greater engagement with video 
or text materials [7,13,14]. In light of this research, one suggestion 
would be that more activities should be included in online courses, 
and students should be encouraged to complete them. However, 
two problems arise from trying to implement this suggestion: how 
to encourage students to complete activities and what type of 
activities to use.  

Effective self-regulation skills play an important role for successful 
learning in in-person instruction [5], as well as in online courses 
[4,12]. With the added autonomy afforded by online courses 
compared to in-person instruction, students who lack appropriate 
self-regulation skills or try to complete the course with the 
minimum amount of time and effort might not perform as well. 
Thus, it is important to encourage students who might not otherwise 
engage in active learning to do so [5], both because it might be more 
time consuming and effortful than passive learning techniques but 
also because engaging in active learning stimulates self-regulation 
and accurate learning calibration [10]. One straightforward way to 
do so in online courses is to include multiple practice activities in 
each online lesson and make performance in the activities count 
towards the students’ grade. This suggestion is not without its 
challenges, however. While this approach might encourage 
students who otherwise would not complete the activities to do so, 
it might be problematic if regulating one’s own activities is a 
critical ingredient in the learning process. Indeed, previous research 
on other cognitive approaches to improve learning, have repeatedly 
shown a difference in outcomes between when students are in 
control of their study and when they are not [6,8]. Another issue is 
related to “gaming the system” behaviors. Making activity 
completion explicitly related to grade outcomes, might lead 
students to attempt to exploit the activities not as learning devices, 
but a way to quickly achieve better grades [1,2]. 

There is also the issue of how the activities should be designed. 
Previous research investigating the positive effect of completing 
more activities in online courses looked at courses using activities 
that not only were optional, but also included extensive feedback, 
both for correct and incorrect responses. It is possible that the 
characteristics of the activity used play a role on whether they 
contribute to improved learning [15]. 
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With these questions in mind, in the current study we investigated 
the relative benefits of completing activities and reading textbook 
materials for learning outcomes in an online course. The main 
research questions were (1) whether completing more practice 
activities would contribute to better learning outcomes than 
accessing more textbook pages when students are required to 
complete the activities and are provided minimal feedback in the 
activities, and (2) whether we could detect students’ active 
engagement in the activities and distinguish it from ‘gaming the 
system’ behaviors such as completing the same activity multiple 
times quickly until a high score was achieved. 

We use data from an exclusively online course taught at Indiana 
University. This course had a few characteristics that made it 
particularly relevant for the current research questions: (1) it 
included many practice activities in each unit, (2) the activities were 
required, graded and made up a large part of the students’ final 
grade, but (3) students were allowed to complete the activities as 
many times as desired, (4) the activities included only correctness 
feedback, and (5) the textbook materials were separated from the 
rest of the course materials. 

We start by analyzing the relative benefits of completing more 
activities vs. accessing more textbook pages as in previous 
research. Next, we investigate possible markers of “active learning” 
engagement that might influence the relative benefit of completing 
more activities on learning outcomes that help identify behaviors to 
use in the classifiers. Finally, we developed two classifiers to 
detect, among all activity completion attempts, which ones might 
involve “active learning” behaviors, and which might involve 
“gaming the system” behaviors. We then use measures derived 
from these classifiers to evaluate the relative benefits of more active 
completions of activities vs. accessing more textbook pages. 

2. DATA AND METHODS 
We used data from two semesters of an online introductory 
psychology course at Indiana University (N = 247 and N = 492, 
respectively). All students enrolled in the course were 
undergraduate students at one of the campuses of Indiana 
University taking the course for credit. All students’ rights as 
research participants were protected under a protocol approved by 
the local review board and were informed in the course syllabus 
that their data would be analyzed. 

2.1 Course Description 
 
Table 1. Number of assigned activities and textbook readings 

available in Units 2-7. 

Unit Number of 
lesson activities 

Number of 
Textbook 
readings 

2 – Methods 34 68 
3 – Neuroscience 24 46 

4 – Perception 30 43 
5 – Memory 19 37 
6 – Learning 20 44 
7 - Cognition 18 36 

 
The course was developed by the third author and delivered through 
Canvas. The course had seven units, but the first unit was purely 
introductory (there was no quiz at the end of the first unit) and is 
not included in the present analysis, leaving six content units for 
the current study (listed in Table 1). All units started with a short 

video from the instructor presenting an overview of the main topics 
of the unit. Moreover, every unit contained a different number of 
lessons, and within each lesson a different number of pages, each 
dedicated to a sub-topic. Every page contained an abbreviated 
summary of the main points of the sub-topic, links to the relevant 
readings of the online textbook, and lesson activities. Some pages 
also included videos and demonstrations. The number of lesson 
activities and textbook pages varied from unit to unit (see Table 1). 

2.1.1 Lesson activities 
Students were required to complete all the practice activities within 
the lessons of all units, using a custom LTI-based assessment 
platform installed in Canvas (Quick Check; 
https://github.com/IUeDS/quickcheck). Performance on these 
activities accounted for 45% of the students’ final grade. Lessons 
were scheduled, and activities had to be completed within the 
scheduled time for each lesson. Students were allowed to complete 
the activities as many times as desired before or after the lesson 
completion deadline. Only their highest score before the lesson 
completion deadline was considered for their grade, and activities 
completed after the deadline never counted toward the students’ 
grade. The lowest four aggregate lesson scores were automatically 
dropped. Aggregate lesson scores indicate the scores of all 
activities in the same lesson. 
Lesson activities covered the content of the specific lesson they 
were assigned to and varied in format across lessons, including, for 
example, multiple-choice and graph interpretation activities. An 
example of two activities is included in Figure 1. 

 
Figure 1. Examples of two lesson activities. 
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2.1.2 Textbook readings 
The course used an online version of a commercially available 
Introductory Psychology textbook through the Unizin platform 
(eText). All students had access to the eText as part of their 
enrollment in the course. The relevant pages of the textbook for 
each topic covered in each page of every lesson across all units was 
provided in the course (see Figure 2 for an image). Students could 
access the eText at any point, including during the exams. 
Importantly, reading the eText was not incentivized or rewarded 
with points. 

 
Figure 2. Example of link to eText pages on lesson (top right) 

and corresponding eText page in new window (bottom). 
 

2.1.3 Quizzes 
At the end of every unit, students completed a timed quiz online. 
Students could only attempt the quiz once within the time-frame 
allotted. Quizzes included a series of multiple-choice questions 
randomly chosen for each student from a larger pool. Quizzes 
accounted for 40% of the student’s final grade and the lowest quiz 
grade was automatically dropped. 

2.1.4 Reflection activities 
Finally, students also completed a reflection activity for each unit. 
These activities were a writing assignment designed to help 
students think about the course materials for that unit in more depth. 
These assignments were due when the quiz for the unit became 
available and accounted for 15% of the students’ final grade. The 
lowest score was automatically dropped. 

2.2 Data 
Detailed logged information was collected for this course. We 
analyzed information regarding when each lesson activity was 
attempted and how many times, how many eText pages were 
accessed and when, as well as scores on the lesson activities and 
the quizzes. The logged information allowed us to determine how 
long students took completing activities, but not how long they 
spent reading. 

2.3 Model building 
In order to compare the relative effect of different student behavior 
we normalized all measures by converting them to z-scores. Unless 
otherwise stated, we used mixed effects regression models to 
investigate the effect of different student behaviors on quiz scores. 
The baseline model included number of activities completed and 
the number of eText pages accessed. We predict quiz performance 
for each quiz, considering only behaviors that took place before the 
quiz was made available to the students: 

  ZquizScores ~ Zactivities + Zpages + (1|student) + (1|quiz)  (1) 
This base model includes activities completed before the 
corresponding due date or after the due date as long as it was before 
the start of the quiz period. Considering only activities completed 
before the corresponding due date does not change any of the result 
patterns reported here. To help establish potential causal relations, 
we also ran the same baseline model predicting quiz grades using 
only behaviors that took place after the quiz was made available. 
We included student and quiz number as random effects in all 
models. We extracted different student behavior features and added 
them to the baseline model to infer the relative benefit of doing and 
reading using different properties of doing (e.g., time and 
accuracy). We use chi-square to compare models. 
In addition, we developed two different classifiers to identify active 
engagement with the activities and discriminate it from possible 
“gaming the system” behaviors by the students (see below for 
details). We then include the ‘gamer’ classifier as an added 
predictor to the baseline model. 

3. RESULTS 
We started by running all analyses separately for each semester. All 
patterns were similar across both datasets; thus, we combined the 
two datasets into a single dataset for all analyses reported below. 
For brevity, we focus only on quiz performance as outcome 
measure, a similar pattern of results was found when considering 
the reflection activities as outcome measure. 

3.1 Description of main variables 
3.1.1 Lesson activities 
Students completed an average of 74 activities before the quiz 
(Median = 71, SD = 40), and took on average 201 minutes (Median 
= 114, SD = 246) doing so. Only an average of 22% of these 
activities were completed after the activity due date but before the 
quiz, therefore in all subsequent analyses we consider any activity 
completed before the start of the quiz, regardless of the activity 
specific due date. After the corresponding quiz start date, students 
completed an average of 17 activities (Median = 5, SD = 25), taking 
on average 20 minutes doing so (Median = 0, SD = 61). 

3.1.2 eText 
Students opened an average of 22.5 eText pages before the 
corresponding quiz (Median = 5, SD = 35) and 12 pages after the 
corresponding quiz was made available (Median = 5, SD = 17). 

3.1.3 Quizzes 
The mean quiz score was 23.88 (Median = 25, SD = 4.80) out of 30 
possible points. The distribution of quiz scores as a function of 
number of activities completed and number of pages opened before 
the quiz is presented in Figure 4. 

3.2 Base models: Relative benefit of doing and 
reading before the quiz start date 
3.2.1 Behavior before the quiz start date 
Accessing more eText pages before the quiz being made available 
predicts better quiz performance, b = 0.14, t (3689) = 8.07, p < 
.0001. Conversely, completing more activities before the quiz was 
made available predicts worse quiz performance, b = -0.04, t (3733) 
= -2.06, p = .039. 
Overall, we do not see a “doer effect”, i.e., that completing more 
practice activities improves learning outcomes to a larger degree 
than completing more readings. 
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Figure 3. Distribution of quiz scores as a function of number 

of lesson activities (top panel) and eText pages (bottom panel) 
accessed before the quiz start date. 

3.2.2 Behavior after quiz start date 
Accessing more eText pages after the quiz was made available 
predicts better quiz performance, b = 0.05, t (3590) = 2.94, p < 
.0001, potentially because students were using the eText to 
complete the quiz. Completing more activities after the quiz was 
made available also predicts better quiz performance, b = 0.18, t 
(3810) = 12.38, p < .0001. 
Thus, completing more activities after the quiz was made available 
had a larger effect on outcomes than accessing more eText pages, 
contrary to what we saw when analyzing behaviors before the quiz 
was made available. 

3.3 Time and performance models 
The learning benefit of completing more activities is likely to be 
connected with active engagement with the activities. However, the 

requirement to complete activities and the fact that performance on 
these activities directly affected students’ grades might have led 
students to complete the activities multiple times in quick 
succession for maximum performance (a “gaming the system” 
behavior). This is potentially a different type of activity 
engagement that would not lead to a doer effect. To test this 
hypothesis, we created models that include measures potentially 
more related to active engagement: (a) time working on activities, 
(b) average performance across all activity attempts, and (c) best 
performance weighted by number of activity attempts. We compare 
models including each of these measures as added predictors with 
the baseline model for behaviors before the quiz described above. 

3.3.1   Time working on activities 
Spending more time working on the activities before the quiz has a 
positive impact on quiz performance, b = 0.09, t (3818) = 5.47, p < 
.0001. Moreover, compared to the baseline model, the activity time 
model provided a significantly better fit to the data, c2= 29.34, p < 
.0001 (see Table 2). 

3.3.2 Average performance on activities 
Higher average performance on the activities completed before the 
quiz is also related to higher quiz performance, b = 0.04, t (3796) = 
2.604, p = .009. Compared to the baseline model, the activity 
performance model provided a significantly better fit to the data, 
c2= 6.64, p =.01 (see Table 2). 

3.3.3 Number-weighted best performance 
Only the highest score across all attempts was considered for 
student final grade. Therefore, it is likely that students who 
achieved higher scores with less attempts were more actively 
engaged in the activities than students who achieved higher scores 
with more attempts. The latter group was likely to be attempting to 
achieve a high score by completing the activity multiple times 
without attending to the actual question or feedback. Achieving 
highest scores in less attempts predicted better quiz results, b = 
0.04, t (3365) = 3.10, p = .002. This model also provides a 
significantly better fit to the data compared to the baseline model, 
c2= 9.46, p < .002 (see Table 2). 

3.4 Detecting effective activity use 
The findings of the previous section suggest that not all activity 
completion is active learning, and some might reflect “gaming the 
system” behaviors. This raises the important question of being able 
to distinguish effective active learning in activity use from other 
uses. From the previous analyses, we concluded spending more 
time, being more accurate across all attempts and achieving highest 
score with less attempts all predict better quiz performance and 
provide better fit to the data. Using these findings, we created two 
classifiers of “gaming the system” behaviors. One that takes only 
attempt duration into account and another that takes into account 
not only duration but also accuracy of each attempt. 

Table 2. Summary of regression models used to evaluate the benefits of doing and reading in the online course. 

Model Number 
activities eText pages Added 

predictor AIC BIC 

Baseline (before quiz start) -0.04* 0.14*** - 9404.7 9442.2 
Baseline (after quiz start) 0.18*** 0.05** - 9311.3 9348.8 
Time working on activities -0.05** 0.12*** 0.10*** 9377.4 9421.1 
Average performance on activities -0.02 0.14*** 0.04** 9400.1 9443.8 
Number-weighted best performance on activities -0.03 0.14*** 0.04** 9397.3 9441.0 
Effective active learning activity use (duration-based) 0.29 0.14*** -0.33 9404.0 9447.8 
Effective active learning activity use (duration+accuracy) -0.21** 0.14*** 0.17* 9400.1 9443.8 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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3.4.1 Duration-based classifier 
Using the raw attempt log for each activity for each student, we 
determined whether each attempt was faster than what is “normal” 
for that student by considering that students’ median time 
completing similar activities. An attempt was considered as not 
effective active engagement if it was shorter than the median of all 
attempts for that student for the same activity. Thus, in essence, this 
classifier positions each attempt as too quick to be likely to involve 
active engagement, based on how long students often take to 
complete similar activities, and is consistent with our findings in 
the previous section that time is a better predictor of effective 
activity use. This classifier identified approximately 47% of 
attempts before the quiz as not involving active engagement. 

3.4.2 Duration+accuracy classifier 
Using the raw attempt log for each activity for each student, we 
determined whether each attempt was faster and less accurate than 
what is “normal” for that student by considering that students’ 
median time completing all activities and their median accuracy. 
The previous analyses suggested that accuracy in the activities was 
also a good predictor of effective activity use. Thus, the premise for 
this classifier was that if students were merely completing the same 
activity multiple times by randomly varying their answers until 
reaching high scores, one would expect that it would involve 
multiple short attempts with low accuracy. Active engagement, on 
the other hand, would involve longer attempts with higher 
accuracy. Approximately 22% of attempts were identified as fast 
and inaccurate by this classifier and were classified as non-effective 
activity use. These attempts were a subset of the attempts identified 
by the previous classifier, i.e., the low accuracy subset. 

3.5 Effective activity use models 
We included the counts of “effective activity use” from each 
classifier in two different models and compared the models with 
the baseline model. These analyses tell us whether, when 
considering effective activity use, we are able to capture the 
learning benefit of engaging with activities. 

3.5.1 Active learning use of activities as identified by 
the duration-based classifier 
When using the duration-based classifier, we found that the number 
of effective activity use was not related to quiz performance, b = -
0.33, p = .101 and this model did not improve fit to the data, c2= 
2.69, p =.103 (see Table 2).  

3.5.2 Active learning use of activities as identified by 
the duration+accuracy classifier 
When we considered the counts obtained using the 
duration+accuracy classifier, we found that greater effective 
activity use predicted better quiz performance, b = 0.17, t (3053) = 
2.56, p =.011, and this effect was 1.2 times larger than that of 
accessing more eText pages, b = 0.14. This model provided a better 
fit to the data, c2= 6.63, p =.010 (see Table 2). 

4. DISCUSSION 
The two main aims of this study were (1) to investigate the relative 
benefits of completing activities versus reading in an online course 
in which completing activities was mandatory, and (2) to explore 
the key features of effective active engagement with activities and 
how to detect them in student online behavior. 
Previous research suggests that the most beneficial practice 
activities involve effortful, active engagement and knowledge 
manipulation by the students [9,18,19]. Indeed, we found evidence 

that features connected with effort and engagement with the 
activities were better predictors of learning than completing 
activities per se (time spent and accuracy). However, overall, we 
found that, when activities are required and graded, completing 
more activities is not necessarily a good predictor of improved 
learning. Instead, spending more time completing the activities and 
being more accurate across attempts, are better predictors of 
improved quiz performance. These analyses offer the perfect case-
study for the “doer effect” and the characteristics of the learning 
activities that contribute to improved learning outcomes. 
Across all models, more reading (accessing more eText pages) 
remained the best overall predictor of learning outcomes, even 
when compared to features indicative of active engagement with 
the activities. There are multiple reasons for this finding. It is 
possible that students who accessed the eText were engaging in 
active learning by autonomously searching answers to activities. 
Indeed, in a departure from previous studies [13], the activities in 
this course offered only corrective feedback, implicitly 
encouraging students to seek more information in the eText, which 
might have contributed to the results presented here. Another 
possibility is that better students, who ultimately perform better in 
the course, access a course material that is not mandatory or 
rewarded. The reduced correlation between pages read after 
starting the quiz and quiz performance, suggest that this possibility 
of a third variable explanation is somewhat less likely than the first 
possibility that reading behavior in this course is associated with 
active learning of completing the activities because of the type of 
feedback used in the activities. 
Another main novelty of the present work is the development of 
analytical processes to identify which activity engagement might 
be productive and which might not. Under the assumption that the 
same activity might be completed effortfully and involve 
knowledge manipulation or only involve “action”, we developed 
two classifiers. The first classifier took into account only the 
duration of the attempt, whereas the second classifier took into 
account the duration as well as accuracy of the attempt. The 
outcome of the first detector did not seem to improve the model fits 
predicting quiz performance. Conversely when we tested activity 
use considering only attempts that were classified as effective 
active learning by the second classifier, we saw that greater 
effective activity use was a positive predictor of better quiz 
performance. In fact, greater effective activity use as defined by the 
second classifier resulted in 1.2 times better quiz performance than 
accessing more eText pages. Conversely, considering every 
activity attempt was a negative predictor of quiz performance. 
The difference in outcomes between the two classifiers suggests 
that time to solve a problem by itself might not be sufficient to 
identify gaming. Fast but accurate attempts might be effective or at 
least do not negatively impact performance. One possibility is that 
students learn from fast correct attempts or that fast and correct 
attempts reflect already learned knowledge. This finding is also 
congruent with previous findings that some students or some 
activities might not be harmed by gaming [1,17]. 
Our approach to defining classifiers differs from previous 
approaches in educational data mining. We used an explanatory 
approach; our gaming classifiers were very simple and identified 
gaming events based on initial data analytics and the literature. This 
approach might yield less predictive models than previous efforts 
using more complex (and potentially more predictive) models [1]. 
However, one benefit of our approach is its explanatory power. The 
gaming detectors we created can not only identify gaming behavior 
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from the student data but also contribute to a better understanding 
of what characterizes these types of behaviors (see also [17]). 
The findings presented here are a critical first step towards 
developing effective active learning activities in online courses. 
Given the greater student autonomy often associated with online 
courses, it is important to develop methods to identify effective 
activity use. Critical next steps are to create generalized detectors 
that can be used online to provide students with feedback not only 
about the content of the activity, but also their use of the activity as 
active learning tool. For example, the activity could alert the 
student to the fast pace and low accuracy and suggest that they try 
a different approach to the task. Similar classifiers of these “gaming 
the system” behaviors have been suggested before in the context of 
intelligent tutoring systems with good success [3].  
In sum, the work presented here suggests that not all activity use is 
active learning and therefore contributes to better learning 
outcomes. Some activity use might reflect “gaming the system” 
behaviors that might yield high immediate scores but are not 
reflective of better learning and later quiz performance (for a 
discussion see [5]). Similarly, not all reading is passive learning, 
and intentional use of reading materials might reflect active 
learning. Accordingly, it is important to be able to detect when 
students are engaging in active learning and when they are not, 
regardless of the type of learning activity. The current work 
establishes an initial step in that direction by identifying which 
features are associated with active learning engagement when 
students’ complete activities in online courses, and by developing 
classifiers of this type of behavior that can be adapted and 
generalized to other courses. 
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ABSTRACT 
Analyses of student data in post-secondary education should be 
sensitive to the fact that there are many different topics of study.  
These different areas will interest different kinds of students, and 
entail different experiences and learning activities. However, it 
can be challenging to identify the distinct academic themes that 
students might pursue in higher education, where students 
commonly have the freedom to sample from thousands of courses 
in dozens of degree programs. In this paper, we describe the use 
of topic modeling to identify distinct themes of study and classify 
students according their observed course enrollments, and present 
possible applications of this technique for the broader field of 
educational data mining.   
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1. INTRODUCTION 
At any large educational institution, the student population is 
likely to be rather heterogeneous.  One prominent source of 
variability is the range of academic topics available to students, 
reflected in the breadth of courses available to them, and the 
diverse requirements of numerous degree and pre-professional 
programs.  This variability can make it challenging to analytically 
characterize the behaviors of students (e.g., graduation rates, 
engagement, grades), because students with different academic 
interests will have different experiences of higher education. 
But nevertheless, some students will share similar experiences.  
There may be ways of parceling the diverse population to identify 
distinct groups of students whose academic interests are relatively 
homogenous within-groups, but differ between-groups.  A 
simplistic strategy would divide students by major; but it may be 
desirable to identify groups before students have explicitly 
declared a degree program.  In addition, these data may be 
unreliable as students often switch majors, and majors may 
artificially segregate students with generally similar interests and 
behaviors (e.g., students majoring in Chemistry, Biochemistry, or 
Biotechnology are probably quite similar).  And dividing students 
by major may also be circular: Do majors describe student 
interests or merely describe the administrative landscape of degree 
programs?  Instead of segmenting by major, the analytical 
challenge is to identify distinct areas of study directly from 
student course enrollments, where students assigned to each area 
have similar academic interests, experiences, and behaviors. 
In educational data mining, clustering is the most commonly-
applied method for classifying students [3, 19].  Vellido et al. [21] 
recently summarized a range of cluster analysis techniques, 
reviewed their applications to educational data mining, and 

compiled a bibliography of published studies that pursued such 
applications, particularly in e-learning environments. 
It is conceivable that one might perform cluster analysis with 
course enrollments, as recorded on student transcripts.  Each 
individual course might be treated as a single dimension in a high-
dimensional space (e.g., one dimension for every course), and a 
transcript would be a single point in this space (with enrollments, 
0 or 1, along each dimension).  But there are major problems with 
this approach, particularly the “curse of dimensionality.”  In high-
dimensional space, the data become sparse, and distances between 
individual points become almost equal, often yielding 
meaningless clustering results [1].  Recently-developed 
algorithms and distance metrics may improve the performance of 
high-dimensional clustering [13], but in this paper, we propose an 
entirely different approach that is better-suited to this particular 
analytical case. 
We propose the use of topic modeling to address the challenge of 
classifying student transcripts.  Topic modeling is commonly used 
for natural language processing applications (e.g., [10]) to identify 
abstract themes, or “topics,” that exist in a collection of 
documents by analyzing the statistical distribution of words across 
these documents (for a review, see [5]).  For our purposes, each 
document is a student transcript and each word is a course 
enrollment. 

2. METHOD AND CONSIDERATIONS 
Topic modeling is an umbrella term for a handful of methods that 
accomplish similar goals.  The most popular method, and the one 
that we recommend for this application, is Latent Dirichlet 
allocation (LDA; [6]).  Intuitively, in its simplest form, the 
approach initializes by assigning every token (each word in each 
document, or in the present analysis, each course in each 
transcript) to a random topic, and then repetitively iterates through 
the tokens, updating topic assignments in order to reduce the 
occurrence of individual words across multiple topics, while still 
preserving the contexts of words that tend to appear together 
within individual documents.  Ultimately the method will produce 
a model of topics, a description of the words that tend to occur 
together. 
Topic modeling has many advantages for the purposes of 
classifying academic topics:   

• Rather than unequivocally classifying documents to topics, 
LDA assigns each word to a topic, producing a distribution 
of topic assignments for each document, and a probabilistic 
distribution of words for each topic (similar to soft-
clustering approaches [18]).  For educational data mining 
purposes, this is advantageous because a single course 
might occur in several topics with different probabilities, 
depending on the course’s context in different students’ 
transcripts (e.g., the course “Elementary Calculus” might be 
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differentially-predictive for students interested in Biology 
vs. Computer Science).  In order to produce a coarse 
classification of students, we can simply assign students to 
the topic that appears most frequently in their transcripts.   

• LDA is insensitive to the order of words (although it 
needn’t be; [22]), which therefore allows the analysis of 
courses that are not taken in a strict sequence 

• LDA is also generally insensitive to the length of 
documents (for documents with a small number of words, 
the prior probability of the topic distribution across all 
documents has a larger effect), allowing the analysis of 
incomplete transcripts.   

• LDA can be parameterized in a way that tends to yield 
similarly-sized topics, minimizing the possibility of 
disproportionately large or small groups (which tends to 
occur with clustering).  

Many software implementations of topic modeling methods are 
available1; we selected MALLET [15], which is open-source and 
has a large community of active users.   

2.1 Case Data and Preprocessing 
We identified all full-time students enrolled in a baccalaureate 
program at Indiana University Bloomington who initially became 
new or transfer students between 1995 and 2009.  Students who 
did not complete any courses at our local institution were 
excluded.  We then constructed course identifiers (which served 
as “words”) by concatenating the academic program code, the 
course inventory, and the course number for every enrolled course 
appearing on the students’ transcripts2, irrespective of earned 
grade.  There were 9,566 unique courses, 86,808 unique students, 
and students had an average of 29.3 courses listed on each 
transcript. 

2.2 Modeling Topics 
In traditional lexical analyses, documents contain words, and the 
topic model probabilistically associates the latent topics to each 
document through the words that it contains. In our analysis, 
courses were treated as words, and each student was represented 
by a document, the student transcript, that contained a collection 
of all courses taken by the student as part of their undergraduate 
education. Thus we are able to associate both students and courses 
with the discovered latent topics. 
In its most basic form, the only parameter that needs to be 
supplied when modeling topics is the desired number of topics 
(see Section 2.3, below).   
While there are various ways to visualize extracted topics (e.g., 
[8]), perhaps the easiest way to summarize a topic model is to 
present the words that are most probable in a particular topic for a 
set of representative topics, sometimes called “topic keys.”  A 
summary of a topic model on our transcript dataset, describing 6 
of 24 topics, is shown in Figure 1.  An interpretive gloss (in 

1  David Mimno maintains a reference list including software tools 
for topic modeling: http://mimno.infosci.cornell.edu/topics.html 

2  When dealing with this type of codified data, with course 
identifiers that may include numbers and punctuation symbols, 
it is important to specify the structure of the words as a regular 
expression in the analysis software, so that the documents are 
parsed appropriately. 

quotations) is provided above the ten most probable courses for 
that topic, listed in descending order (labels for the full set of 24 
topics are shown on the right side of Figure 3, which is described 
later in this article).  Students were assigned to the topic that 
appeared most frequently on their transcript, and the percent of 
the full student cohort that was assigned to each topic is also 
provided next to the topic label (if students had been evenly-
allocated to the 24 topics, there would be 4.2% of the cohort in 
each topic).  At face value, the algorithm did an impressive job of 
allocating the nearly 10,000 courses into distinct academic topics, 
particularly when considering that the model is entirely 
unsupervised.  These topics were identified simply by analyzing 
the contextual trends in students’ transcripts. 
Importantly, one should not assume that these topics would 
emerge if the same analysis were performed on a different dataset. 
Different institutions have different academic programs and 
requirements, and different enrollment patterns.  The current 
results are presented as a methodological case study, not as results 
that should be expected to generalize. 
Some predictable patterns emerge in the current dataset, such as 
topics that clearly reflect the curriculum of popular majors, 
including “Business” and “Psychology.”  Other topics seem to 
slice across traditional academic silos, such as “Language 
Education,” or the “Government” topic, which features courses 
from the Department of History and also from the Department of 
Political Science, even though neither department’s undergraduate 
degree program explicitly requires courses from the other.  Yet 
other topics seem to identify subgroups within a field, such as 
“Health Science” and “Basic Science,” which segregates 
premedical interests from more basic science coursework, even 
though many of the students assigned to these topics are pursuing 
the same undergraduate degrees (e.g., Biology). 
An essential caveat with topic modeling is that the algorithm 
yields a description of latent topics (in this case, themes of 
undergraduate study), but does not describe the behavior of any 
individual student.  The topics can be used to partition students 
into distinct groups (e.g., by assigning a student to the most 
frequent topic in their transcript), but the topics themselves do not 
characterize individual students with any specificity.  Rather, they 
describe statistically separable academic themes.  When 
interpreting topic models, it is important to remember that the 
topics characterize themes of study, but individual student 
behaviors may be more complex, as any student’s transcript 
would be expected to contain courses from multiple topics with 
different frequencies. 

2.3 The Number of Topics 
Topic modeling requires that the analyst specify the appropriate 
number of topics (T) in the dataset.  For some applications, T may 
be a known quantity; perhaps there are predetermined academic 
tracks that any student might pursue, and the goal is simply to 
characterize the enrollments that co-occur with these known 
topics.  However, for most analyses, the number of topics is 
unknown, and the analyst must determine the appropriate number 
of topics to account for information in the dataset, according to 
the desired granularity of the analysis.  There are methods for 
automatically inferring optimal values for T according to model 
performance measures [2, 16], but we preferred a more 
exploratory approach. Specifically, we extracted topics for a range 
of desirable values for T, evaluated these models using hold-out 
data, and then selected a value T to maximize likelihood while 
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balancing the risk of overfitting with too many topics for the 
intended analysis. 

2.3.1 Evaluating using hold-out data 
Current guidelines for topic model evaluation were proposed by 
Wallach et al. [23].  This approach seeks to estimate the 
probability of hold-out data, given a particular topic model.  The 
first step was to segregate the documents into a training set 
(random 90% of documents) and a hold-out set (remaining 10%).  
Topic models were then developed on the training set for a range 
of reasonable values for T (we used 2 to 100, in steps of 2).  For 
each of these models, we estimated a log likelihood (LL) value for 
every document in the hold-out set, given that particular model.  
LL is a negative number, and intuitively, it provides an estimate of 
how unexpected the hold-out document’s collection of words 
would be, considering the model’s configuration of topics; LL 
values closer to zero indicate that the model was better, as any 
given document was less unexpected.  Because the evaluation 
process is non-deterministic, we repeated the evaluation process 
10 times, averaged the LL for each document across these 10 runs 
to obtain a more stable probability estimate, and then summed the 
averaged LL across all hold-out documents. This summed, 
averaged LL was finally divided by the total number of tokens in 
the hold-out set to produce a normalized-LL estimate; in many 
studies, this normalized value ranges between -10 and -6.  The 
solid black line in Figure 2A illustrates the averaged LL/token for 
topic models on student transcripts, for a range of T. 

2.3.2 Finding the inflection point 
Ultimately, the desired number of topics should be determined 
through a combination of statistical analysis, general insights into 
the structure of the data, and consideration of the purpose of the 
model.  Increasing the number of topics will generally improve 

the LL/token estimates, but above a certain point, these 
incremental improvements are trivial.  For the current application, 
we sought to determine the fewest number of topics, such that 
additional topics would yield minimal improvements to the 
quality of the model.  To find this inflection point, we fit a 
piecewise linear regression model on the LL/token estimates, 
seeking the value T* that minimized the root mean square error of 
the linear trends, T<T* and T>T*.  As illustrated by the dashed 
lines in Figure 2A, this point was T*=24 topics; importantly, the 
topic keys (six are shown in Figure 1) made intuitive sense, and 
yielded an insightful model for this analysis. 

2.3.3 Stop lists and frequent courses 
There is a convention in topic modeling to remove high-frequency 
tokens from the training dataset.  When modeling topics in 
linguistic corpora, this pre-processing step is intended to filter 
words that do not contain meaning (such as “the”, “a”, “of”, etc.) 
and would add unnecessary noise to the identification of topics.  
These excluded tokens are called a stop list.  
Along these lines, it may be useful to exclude high frequency 
courses when modeling academic topics.  Courses that appear on 
a large proportion of student transcripts (general education 
courses, high-enrollment prerequisites, etc.) may be practically 
meaningless for the purposes of classifying student interests.  
However, there has been relatively little empirical work 
evaluating the use of stop lists when modeling topics.  In 
information retrieval algorithms more generally, Manning et al. 
[14] note that the cost of including high-frequency tokens (in 
computational time) is minimal, and that the recent trend is to use 
smaller stop lists, if any at all. 
We approached this issue as an empirical question (i.e., a 
sensitivity analysis): Will the use of a stop list affect model 

"GOVERNMENT"  (3.2% of cohort) "BUSINESS"  (12.5% of cohort) "PSYCHOLOGY"  (4.6% of cohort)

POLSY200: Contemporary Political Topics BUSX201: Technology & Business Analysis PSYP324: Abnormal Psychology

POLSY103: Introduction to American Politics BUSX420: Business Career Planning PSYK300: Statisti cal Techniques

HISTH105: American History I BUSA202: Intro to Managerial Accounting PSYP102: Introductory Psychology II

HISTA300: Issues in United States History BUSX220: Career Perspectives PSYP199: Career Planning for Psychology

COASW333: Intensive Writing BUSZ302: Managing & Behavior in Organizations PSYP151: Introductory Psychology I for Majors

POLSY109: Introduction to International Relations BUSF370: Integrated Business ‐ Finance PSYP335: Cognitive Psychology

HISTB300: Issues in Western European History ECONE370: Statisti cal Analysis for Business PSYP320: Social Psychology

HISTH106: American History II BUSX204: Business Communication PSYP211: Methods in Experimental Psychology

POLSY100: American Political Controversies BUSP370: Integrated Business ‐ Operations PSYP315: Developmental Psychology

HISTJ300: Seminar in History BUSJ370: Integrated Business ‐ Strategy PSYP152: Introductory Psychology II for Majors

"LANGUAGE EDUCATION"  (4.1% of cohort) "HEALTH SCIENCE" (4% of cohort) "BASIC SCIENCE"  (7.8% of cohort)

HISPS275: Intro to Hispanic Culture ANATA215: Basic Human Anatomy CHEMC117: Principles of Chemistry II

HISPS310: Intro to Hispanic Linguistics MSCIM131: Disease and the Human Body BIOLL112: Biological Mechanisms

COASW333: Intensive Writing SOCS100: Introduction to Sociology BIOLL113: Biology Laboratory

ENGL202: Literary Interpretation PSYP101: Introductory Psychology I BIOLL111: Evolution & Diversity

EDUCM300: Teaching in Pluralistic Society PHSLP215: Basic Human Physiology PHYSP201: General Physics I

ENGW203: Creative Writing CHEMC101: Elementary Chemistry CHEMC341: Organic Chemistry I

HISPS331: The Hispanic World ENGW131: Elementary Composition BIOLL211: Molecular Biology

ENGW103: Introductory Creative Writing PSYP102: Introductory Psychology II PHYSP202: General Physics II

HISPS317: Spanish Conversation & Diction CLASC209: Medical Terms from Greek & Latin CHEMC105: Principles of Chemistry I

EDUCH340: Education & American Culture HPERH160: First Aid and Emergency Care CHEMC342: Organic Chemistry II  

Figure 1: Top 10 most probable courses for 6 representative topics (of 24 total).  These results are 
provided for illustration purposes, and topics will likely vary between institutions. 
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performance?  The previously-described modeling analysis was 
repeated three additional times, filtering the top-10, top-20, and 
top-30 most-frequent courses (the 10th-most-frequent course 
appears in 19.7% of transcripts, the 20th- appears in 13.0%, and 
the 30th- appears in 10.5%).  For reference, the highest-frequency 
course at our institution (Elementary Composition) appeared on 
46.3% of student transcripts.  The log-likelihood of these models, 
with T ranging from 2-100, is illustrated in Figure 2B. 
There was no clear effect of including a stop list on the model’s 
performance, irrespective of the number of topics or the number 
of words on the stop list.  It may be that, at our institution, the 
highest-enrollment courses impart a minor amount of information 
about the thematic structure of a student’s enrollments, but not 
enough to substantively improve or impair the model’s 
performance.  For most natural language processing applications, 
stop lists typically aim to filter words that occur in a very large 
proportion (e.g. 85%) of documents, so even though they’re 
relatively popular at an institutional level, the highest-enrollment 
courses (appearing in less than 50% of transcripts) simply might 
not rise to the level of frequency that would merit their exclusion. 
These effects may vary across institutions, but without a clear 
separation in model performance, we suggest including all 
relevant courses in the analysis, and do not advocate the use of a 
stop list. 

3. EXAMPLE APPLICATIONS 
In a rapidly growing field such as educational data mining, it is 
difficult to anticipate the full range of uses of a relatively new 
method, such as topic modeling, or any analytical technique. The 
following three examples are only intended to help illustrate, at a 
very high level, the general value of identifying academic topics, 
and the wide range of potential applications. 

3.1 Sandwich Estimator 
In educational data mining, researchers commonly try to predict 
the effect of one variable on another variable, such as the effect of 
an automated flagging system on graduation rates.  Common 
modeling approaches (such as ordinary least squares regression) 
typically carry the assumption that each observation is 
independent from the others.  But in higher education, this is a 
weak assumption.  Different students are jointly exposed to the 
same classes, instructors, student groups, and graduation 
requirements, and moreover, they might be expected to 

communicate with each other about these experiences, and 
influence each other’s behaviors.  Although violating the 
independence assumption will not affect the point estimate (i.e., 
magnitude) of a regression parameter, it can significantly change 
the interval estimate (i.e., precision) of the parameter, which in 
turn, changes the probability of making a Type I or Type II error.   
One solution to this issue would be to fit multilevel random 
effects models to account for the non-independence of 
observations and the cross-classified data structure (with students 
not strictly nested within grouping variables).  However, this 
would be an absurdly complex model, with every course, 
semester, instructor, etc. included as a crossed random effect; we 
feel that such an effort is impractical. 
But considering that topic models are derived from patterns in 
course enrollments, the topic classifications can be used as a 
grouping variable that will account for the non-independence of 
student experiences and produce corrected (i.e., sandwich) 
estimates of the standard errors for the model parameters [24].  By 
classifying students according to the most frequent topic in their 
transcript, we are able to identify subgroups of students such that 
their coursework and learning activities are correlated within-
groups, and are independent between-groups. In our enrollment 
data, using T=24 and a binary response variable indexing 
graduation within four years of initial enrollment, we obtained an 
estimated intraclass correlation of 0.254.  This suggests that about 
a quarter of the variance of within-class 4-year graduation rates 
are explained by topic assignment, heteroscedasticity that can be 
easily corrected in regression models. 

3.2 The Alignment of Programs and Topics 
There are latent interests held by students that influence the 
courses they select.  Sometimes these enrollment choices are 
codified in degree requirements or prerequisites, or even by 
external forces (such as medical school requirements).  However, 
as mentioned in the Introduction, the nuanced boundaries that 
delineate different degrees do not necessarily provide a fair 
representation of the different topical interests that might motivate 
students’ course selections.  This relative alignment of degree 
programs with students’ interests can be investigated using topic 
modeling. 
For example, in discussions of such academic restructuring, it is 
often suggested that departments with similar interests should 
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Figure 2: Model performance for a range of values for T (A), and comparing stop lists (B). 
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merge or combine resources [11].  The current topic modeling 
approach may reveal different degree programs that are jointly 
represented by a single topic, and these might be candidates for 
this type of restructuring.  At our institution, our analysis reveals 
notable overlap between History and Political Science, and there 
may be administrative synergies between these programs.  
In contrast, there may be topics that integrate courses from 
different departments in stable ways that are unaccommodated by 
any degree. Beyond mere overlap between programs, students 
may be sampling courses from multiple programs to construct 
“hidden majors,” academic chimeras that may not exist as 
formalized degree programs, but that integrate diverse coursework 
to create stable topics of interest.  For example, course 
enrollments at our institution revealed a “Media Studies” topic of 
study that was not accommodated by any single major; it blended 
courses from Communications, Comparative Literature, 
Sociology, and more.  Our discovery of this topic provided 
support for our institution’s recent initiative to create a new 
Media School.  
And topic modeling might also be used to reveal separable sub-
disciplines within a single degree program.  Even within an 
individual major (such as Psychology) there is ample opportunity 
for students to focus on subdisciplines (such as counseling, 
human factors, child development, behavioral research, etc.).  Just 
as topic modeling can reveal latent academic themes in an entire 
university’s course catalogue, it can also be applied to a single 
academic division or program, to evaluate the thematic structure 
within a single unit.  At our institution, by modeling topics from 
the enrollments of recent graduates in Psychology, we identified 
themes related to law, medicine, and social psychology.  These 
have enabled us to tailor career planning events, course offerings, 
and advising materials to the specific interests of our students. 

3.3 Transitions and Outcomes 
At colleges with flexible degree requirements, undergraduate 
students typically undergo an academic metamorphosis, enrolling 
in first-year general survey courses to eventually enrolling in 
specialized advanced courses [4].  This transition, from the 
nonspecific enrollment behaviors of freshmen to the niche upper-
division coursework of soon-to-be graduates, is an area that has 
begun to receive increasing attention in higher education research, 
particularly in efforts to improve retention and eliminate 
boundaries and bottlenecks to STEM fields.  By characterizing the 
various transitional paths from first year study to subsequent 
disciplinary specialization (and the success rates associated with 
these paths), institutions would be better-equipped to test 
hypotheses about pipeline issues, and to develop effective 
advising strategies and interventions for beginning students [12].   
Along these lines, topic modeling might be applied to first year 
enrollments, in order to identify the broad thematic enrollment 
trends of beginning students.  And then we might draw the paths 
from first year topics to the topics derived from full transcripts, to 
illustrate how students transition from initial coursework to 
eventual specialization in an established topic.  This analysis is 
described below, and illustrated in Figure 3. 

3.3.1 Visualizing Paths from First Year Topics 
The previously-described topic modeling approach was performed 
on the same set of students, but we limited their transcripts to only 
include courses that were credited during the student’s first year 
of study.  There were 3,330 distinct courses on these truncated 
transcripts, and on average, there were 9.0 courses per student 
during this first year.  After evaluating models for a range of 
values for T we found an inflection point at 5 topics, and 
determined that this provided the appropriate balance of model 
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Figure 3: Diagram of transitions between first year and full transcript enrollment topics. 

Proceedings of the 11th International Conference on Educational Data Mining 428



performance and face validity.  And, as previously discussed, 
students were assigned to the topic that appeared most frequently 
on their first-year transcripts.  For every student in our sample, we 
now had one topic assignment (1-5) for their first year 
enrollments, and another topic assignment (1-24) for their 
complete transcript. 
For each student, we also identified whether they received a 
baccalaureate degree up to 4 years after their initial enrollment. 
For this sample of students during this time frame, the overall 4-
year graduation rate was 51.2%.  Of course, many more students 
will eventually receive a degree after their 4th year, but this 4-year 
rate is relevant for institutional benchmarking purposes. 
Figure 3 was produced using the Sankey diagram plugin for D3 
[7].  Paths are green or red if the students within that path have a 
4-year graduation rate above or below 51.2%, respectively.  The 
relative size of the gray boxes and colored paths represent the 
number of students assigned to the topic or transition.  To make 
this diagram more readable, we have only included the two largest 
entry paths for each of the full-transcript enrollment topics. 

3.3.2 Interpreting Topic Transitions 
One of the immediate observations from this analysis is that a 
student’s first year enrollments tend to be reasonably predictive of 
the themes of study where the student may ultimately arrive at the 
end of their career—the flat paths tend to be thicker than the 
sloped cross-cutting paths. Initially one might attribute this to the 
fact that first-year enrollments are included in the full-enrollment 
transcripts. This artifact may play a role, however, looking back to 
Figure 1, an important observation is that the most probable 
courses for full-enrollment topics (those at the top of the list) are 
commonly 200-level courses, typically beyond the first year (100-
level) introductory sequence. We observe that students’ first year 
enrollments are not dissociated from their future enrollment 
tendencies. 
This observation might suggest that students who transition to a 
relatively unrelated topic after their first year would be at a 
disadvantage to graduate in 4 years.  But the data seem to suggest 
otherwise: that some full-transcript topics simply have lower 4-
year graduation rates than others, regardless of whether the 
students followed a straight thematic trajectory, or seemed to 
originate from an untraditional first-year topic.  For example, 
students who ultimately study “Recreation and Culture” have 
lower graduation rates, regardless of whether they began college 
by studying “Lifestyle and Health” (a structurally similar theme) 
or “Social Studies and Humanities” (a relatively distant theme).   
These exploratory analyses and interpretations have their 
limitations, and the hypotheses derived from a visualization like 
this should receive further scrutiny on the local level. As 
discussed previously, our topic models describe abstract themes of 
study, and do not characterize students per se.  The students 
whom we’ve identified as being members of a theme (because the 
theme appears most commonly on their transcript) may have other 
similarities, besides their course enrollments (e.g., third variables 
such as family expectations, cultural values), that contribute to 
their graduation rates or enrollment behaviors more directly than 
their coursework.  Nevertheless, being able to easily visualize the 
flow of the entire student body (albeit indirectly) across the 
academic landscape can serve useful purposes toward 
understanding the inflow into a particular area, and ultimately 
developing better-informed advising strategies.   

4. CONCLUSION 
Blanket generalizations that treat an institution’s “students” as a 
single group are likely to be either ineffectively vague, or not 
applicable to all members of the student population [20].  In the 
classroom, post-secondary instructors find value in knowing the 
differentiating characteristics of the students in their classes, and 
tailoring instruction to accommodate their unique attributes [17].  
Data-driven interventions and analytical characterizations of 
student behaviors should also be sensitive to the differences 
between students.  In this paper, we’ve described an effective 
method for identifying one prominent source of variability: 
students’ academic interests.  By applying topic modeling to 
student transcripts, we are able to identify separable topics of 
study at our institution, and these topics can be further used to 
roughly classify students into distinct groups that feature similar 
enrollment behaviors. 
Considering that it was originally developed as a natural language 
processing tool, topic modeling has well-documented applications 
to educational data mining in the analysis of student discourse 
(e.g., in a discussion forum; [9]) or written coursework, but it 
could also be applied to any form of unstructured categorical data 
at the university, such as LMS web traffic, library checkouts, or 
even meal point expenditures.  Similarly, we believe that topic 
modeling is a straightforward and uniquely suitable method for 
identifying patterns in raw enrollment data. 
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ABSTRACT
When engaging with a textbook, students are inclined to
highlight key content. Although students believe that high-
lighting and subsequent review of the highlights will further
their educational goals, the psychological literature provides
no evidence of benefits. Nonetheless, a student’s choice of
text for highlighting may serve as a window into their men-
tal state—their level of comprehension, grasp of the key
ideas, reading goals, etc. We explore this hypothesis via an
experiment in which 198 participants read sections from a
college-level biology text, briefly reviewed the text, and then
took a quiz on the material. During initial reading, partici-
pants were able to highlight words, phrases, and sentences,
and these highlights were displayed along with the complete
text during the subsequent review. Consistent with past re-
search, the amount of highlighted material is unrelated to
quiz performance. However, our main goal is to examine
highlighting as a data source for inferring student under-
standing. We explored multiple representations of the high-
lighting patterns and tested Bayesian linear regression and
neural network models, but we found little or no relationship
between a student’s highlights and quiz performance. Our
long-term goal is to design digital textbooks that serve not
only as conduits of information into the mind of the reader,
but also allow us to draw inferences about the reader at a
point where interventions may increase the effectiveness of
the material.

Keywords
student modeling, bayesian regression, neural networks

1. INTRODUCTION
A premise of educational data mining is that the knowledge
state of a student can be inferred by observation. How-
ever, knowledge state is opaque until students reach a level
of understanding that they can be tested or they can solve
problems. This delay makes interventions at an early stage

of exposure quite challenging. Consider a student’s first en-
gagement with new material in a textbook. Reading times
and gaze patterns may be useful for modeling student en-
gagement and comprehension [3]. However, these implicit
measures are quite difficult to collect. Fortunately, students
often willingly provide explicit measures: students will vol-
untarily highlight sections of text and write notes in the
margins. With the advent of electronic texts, the opportu-
nity now exists to collect data from students during their
early exposure to new material, and if knowledge state can
be inferred, interventions can be performed early. In this
article, we explore the hypothesis that these annotations—
specifically highlights—can be used to predict comprehen-
sion, as assessed by a follow-up quiz.

Highlighting has been studied in the psychological litera-
ture from the perspective of whether highlighting is an ef-
fective study strategy. The current understanding is that
the mere act of highlighting does not promote learning, nor
does re-reading isolated sentences that were highlighted [1].
No relationship has been found between coarse statistics of
highlighting (e.g. the total amount of text highlighted) and
a student’s performance/understanding [2].

In a few cases, highlighting has been shown to provide ben-
efits. First, text which is pre-highlighted by an informed
instructor can guide a student to focus on key content [4].
Second, restricting highlighting to encourage consideration
of the material—e.g., permitting the student to highlight
only one sentence per paragraph—can support understand-
ing [5]. In contrast to this traditional literature that exam-
ines highlighting as a study tool, here we examine highlight-
ing as a data source for inferring student understanding.

2. EXPERIMENT
We conducted an experiment in which participants read pas-
sages from a biology textbook. They later reviewed the
passages, and then took a short quiz drawing on material
from the passages. During initial reading, participants were
allowed to highlight portions of the text (words, phrases,
or sentences). These highlights were displayed along with
the text during the review phase, and participants were in-
structed that highlighting could assist in the review.
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2.1 Methodology
2.1.1 Participants

Participants aged 18 and above were recruited from Ama-
zon Mechanical Turk. A total of 198 people completed the
experiment and were paid $3.60. Data from six participants
was discarded because these participants reported that they
were unable to use the highlighting functionality in their web
browser. The experiment took 25-30 minutes to complete.
No screening was performed to determine an individual’s
background in biology. To incentivize attention to the task,
participants were told that they would be entered into a raf-
fle for a bonus prize of $15.00, with the number of entries
equal to the number of correct reponses to the quiz ques-
tions.

2.1.2 Materials
Three passages were selected from the Openstax Biology
textbook [7]. The passages were chosen with the expecta-
tion that they could be understood by a college-aged reader
with no background in biology. The three passages concern
the topic of sterilization, with one serving as an introduc-
tion, one discussing procedures, and the last summarizing
commercial use. Twelve factual quiz questions were gener-
ated by selecting particular sentences from the passages and
turning the factual statements in these sentences into fill-
in-the-blank questions. These twelve questions were trans-
formed into twelve additional multiple choice questions, each
question comprised of the correct response and three lures
as alternatives. Three questions are drawn from the first
passage, four from the second passage, and five from the
final passage.

For each participant a normalized quiz score is computed as
follows. For each of the twelve questions, a score of 1.0 is
assigned if both the fill-in-the-blank and multiple-choice re-
sponse are correct; a score of 0.66 is assigned if the fill-in-the-
blank (FIB) response is correct; a score of 0.33 is assigned if
the multiple-choice (MC) response is correct; and a score of
0 is assigned if neither is correct. The normalized quiz score
is the sum of these scores divided by 12, yielding a value
in the range [0,1]. A liberal criterion was used for judging
FIB response correctness: A response is considered correct
if the edit distance between the actual and correct responses
is less than 25% of the length of the correct response. Ta-
ble 1 shows the distribution of response correctness on MC
and FIB versions of a question.

2.1.3 Procedure
The experiment is divided into three phases. During the
reading phase, the three passages are presented on the screen
sequentially, each on screen for five minutes. During the re-
view phase, the three passages are again presented sequen-
tially, along along with any highlights the participant made

Table 1: Distribution of response correctness on multiple
choice (MC) and fill-in-the-blank (FIB) versions of a ques-
tion

MC Incorrect MC Correct
FIB Incorrect 0.259 0.415
FIB Correct 0.038 0.288

Figure 1: A paragraph of text as highlighted by three ran-
domly selected participants.

during the reading phase, each for one minute. Finally, dur-
ing the quiz phase, the 12 FIB questions are shown, followed
by the 12 MC questions, randomized within question type.
During the first two phases, a timer at the top of the screen
indicates time remaining for the current passage. After the
timer has expired, the screen blanks and displays a message
describing the next step of the experiment (either the next
passage or the next phase of the experiment). Throughout
the course of the experiment, a progress bar is displayed at
the bottom of the screen that indicates the current propor-
tion of the experiment completed.

In the reading phase, participants may highlight text by se-
lecting one or more words using the mouse, which we will
refer to as a highlighting interaction. If the selected text
exactly corresponds to an existing highlight, the highlight is
deleted. If the selected text captures any portion of an exist-
ing highlight but extends beyond it, the existing highlight is
expanded to include the new selection. A single interaction
may highlight more than one sentence at a time, but cannot
cross paragraph boundaries. In the review phase, the pre-
viously selected highlights are displayed, but no additional
highlights can be made.

3. RESULTS
Figure 1 presents an example of three participants’ high-
lights of one paragraph of text. As these examples make
clear, there is diversity in the manner in which individuals
highlight. Highlights are used to note single words, phrases,
and complete sentences.

In order to analyze the relationship between an individual’s
highlights and quiz performance, we need to first specify a
representation of the highlights. In all analyses, we ignore
the time course and sequence of actions that the partici-
pant took to create and/or delete highlights, and instead
consider only the terminal highlighted state of each passage.
The three passages contain 117 complete sentences delin-
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Figure 2: Scatter plot of proportion of sentences highlighted
(using the binary encoding) versus normalized quiz score
for each participant. The marginal distributions are shown
above and to the right of the scatter plot.

eated by periods, exclamation marks, and question marks.
The first analyses we perform are based on a sentence-level
representation in which the pattern of highlights are coded
as a 117-dimensional feature vector, either as a binary en-
coding in which each element i of the vector is set to 1 if any
portion of sentence i is highlighted, or as a graded encoding
in which element i is set to the proportion of words in the
sentence that are highlighted.

Figure 2 shows the relationship between the proportion of
sentences highlighted according to the binary encoding and
the normalized quiz score. Each point is a single participant.
As shown along the margin, the proportion of sentences
highlighted is a unimodal distribution with a mean of 0.40.
The normalized quiz score is also unimodal with a mean of
0.45. The scatter plot suggests no functional relationship—
linear or otherwise—between the amount of highlighting and
quiz performance; the correlation coefficient is 0.08.

Although the total number of highlights fails as a predic-
tor of quiz score, the specific pattern of highlighting may
prove more useful. To begin analyzing the relationship be-
tween highlighting patterns and performance, we performed
a locally-linear embedding (LLE) with 11 neighbors [6] to re-
duce the dimensionality of the 117-dimensional binary sen-
tence-level highlighting vector to a 2D space. Figure 3(a)
plots the embedded points, colored to indicate the corre-
sponding quiz score. The embedding has interesting struc-
ture, but no simple relationship to quiz performance. To
understand what the LLE has captured, the points are re-
colored by proportion of sentences highlighted in Figure 3(b).
This figure reveals that the abscissa captures the proportion,
and the ordinate captures some of the diversity in the rep-
resentation for a particular proportion. Referring back to
Figure 3(a), there is no discernible relationship between the
variation along the ordinate and performance, even when
there is diversity in the embedding (i.e., the mid-range along
the abscissa).

Figure 3: 2D LLE embedding of the binary sentence-level
highlights with each point corresponding to one participant’s
data, and the coloring of points indicating (a) normalized
quiz score and (b) the proportion of sentences highlighted.

We explored other parameterizations of LLE and other di-
mensionality reduction methods (e.g., k means clustering)
but found no discernible relationship between performance
and the reduced representations.

3.1 Modeling results
We constructed a series of models that map the highlighted-
sentence representation—either the binary or graded enco-
ding—to either total quiz score or correctness on specific
problems. In all model testing, we perform nested cross
validation to optimize model hyperparameters and evalu-
ate model generalization to new participants. Our nested
procedure consists of an outer 10-fold cross validation loop
to partition the entire data set by participants into train-
ing and test sets, and an inner 3-fold cross validation loop
further splitting the training set to select hyperparameters.
The best set of hyperparameters chosen from the inner loop
are selected and the entire training set is then used to build
a model which predicts test set performance. This process is
repeated over the outer loop to obtain an average normalized
model loss.

The normalized model loss is defined as:

L =
Ei[Ej [(sij − ŝij)2]]

Ei[Ej [(sij − s̄i)2]]
,
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where sij is the test score of participant j in outer fold i, ŝij
is the corresponding model prediction, s̄i is the mean score
of the participants in the training set for fold i, and Ei and
Ej are the expectations taken over folds and participants,
respectively. This normalized loss is 1.0 if the model does
no better than predicting the mean score of the training
participants, and drops to 0.0 if predictions are perfect. The
proportion of variance explained by the model is 1− L.

3.1.1 Linear models
The first set of models we examine are based on Bayesian
linear regression. The general form of these models is y =
Wx+b, where y is the predicted quiz score, x is the highlight
vector, and W and b are free parameters. This variant of lin-
ear regression is well suited for domains in which the number
of input features is high relative to the volume of data. The
model coefficients are regularized via a prior which achieves
a ridge penalty (a penalty for large weights). The model is
specified with a prior distribution on the precision of the ob-
servation noise, Gamma(shape = 10−κ1 , rate = 10−κ2) and
prior on the precision of the coefficients, Gamma(shape =
10−κ3 , rate = 10−κ4), where κ∗ ∈ {3, 4, 5, 6, 7, 8, 9} was cho-
sen by the inner cross validation loop.

Consistent with the scatter plot in Figure 2, when predict-
ing on overall quiz performance, we found that a regression
on the total number of sentence-level highlights obtains a
mean normalized loss of 1.01 (SEM 0.0029). Similarly, a
regression on the total number of words highlighted obtains
a mean normalized loss of 1.01 (SEM 0.0028). Table 2 sum-
marizes these and subsequent results.

Although the summary statistics fail to predict performance,
one might hope to see a relationship between the specific
pattern of highlights and performance. Unfortunately, re-
gressions on the binary and graded sentence-level represen-
tations of highlights obtain mean normalized losses of 0.99
(SEM 0.0028) and 1.03 (SEM 0.0032), respectively.

We hypothesized that the sentence-level representations of
highlights may be too coarse to capture important differ-
ences in the highlighting patterns. We therefore parsed the
text based on a sentence-fragment representation in which
the passages are segmented by periods, exclamation marks,
question marks, colons, semicolons, as well as phrase-sepa-
rating commas. The inclusion or exclusion of commas as seg-
ment boundaries was subjective; our strategy was to exclude
commas that were used to delineate lists of items. Figure 4
gives an example of the sentence-fragment partition scheme.
This partition scheme yields 235 sentence fragments across
the three passages. We examined both binary and graded
representations of the fragment-level highlights. The regres-
sion on the binary and graded fragment-level representations
yields mean normalized losses of 0.93 (SEM 0.0024) and
1.03 (SEM 0.0032), respectively.

Parsing the passages at an even finer granularity, we con-
structed a representation of the individual words highlighted.
The three passages have a total of 2291 word tokens. A
regression on this raw representation of highlights yields a
mean normalized loss of 0.93 (SEM 0.0024).

Although we obtain a modest (7%) reduction in variance

Figure 4: Example of sentence-fragment representation
where the alternating colors signify the different fragments.

with the binary fragment-level highlights and the individual-
word highlights, it is likely that these seemingly promising
results are meaningless because the model degrees of free-
dom (235 and 2291, respectively) are larger than the number
of subjects in our data set (198).

Because our models have sufficient degrees of freedom that
they are not well constrained by the data, we turn to sim-
ple models that leverage domain knowledge, specifically, our
knowledge of which sentence in the text contains the crit-
ical information for a given quiz question. We tested the
correlation between highlighting a critical sentence and im-
proved performance on the corresponding quiz question. An-
alyzing the fill-in-the-blank (FIB) and multiple choice (MC)
questions separately, a two-tailed matched-sample t-test in-
dicates that MC quiz scores are significantly higher for those
who highlighted the critical sentence than for those who did
not (0.74 versus 0.63, t(11) = 4.05, p = 0.002, d = 0.73).
A marginal effect in the expected direction was also found
for FIB by those who highlighted the critical sentence ver-
sus those who did not (0.34 versus 0.29, t(11) = 2.034, p =
0.067, d = 0.23).

We then built linear regression models to determine how the
conditional analysis of the previous paragraph translates to
predictive model performance. Models were built predict-
ing specific quiz question accuracy from the corresponding
critical sentence, separately for MC and FIB and for each of
the 12 questions. Models were evaluated using 10-fold cross
validation. Averaging across the 12 questions, the normal-
ized loss is 0.99 for MC, ranging over questions from 0.94 to
1.02, and the normalized loss is 1.00 for FIB, ranging over
questions from 0.95 to 1.03.

Although pre-selecting the critical passage elements does not
appear to boost prediction, we are optimistic, based on the
conditional probability analysis, that with additional data,
our models will begin to reveal dependencies.

In conclusion, none of the linear models are particularly
promising. Although two of the models do seem to predict
some variance in the test scores—models utilizing the binary
fragment-level and the word-level representations—one has
to be cautious in reaching a positive conclusion given the
large number of models we constructed.

3.1.2 Nonlinear models
We also evaluated nonlinear regression models, specifically
neural networks. The neural networks had one or two hid-
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den layers with tanh activation functions and an output layer
with a single sigmoid unit to represent the normalized test
score prediction. The nets were trained by the Adam opti-
mizer to minimize the mean square error between the nor-
malized quiz score and the prediction, with an initial learn-
ing rate of 0.001 and batch size equal to 20% of the size
of the training set. All weights were initially drawn using
Xavier initialization. A validation set was created from 10%
of the supplied training data, which was used to stop train-
ing after the normalized error on the validation set plateaued
after 50 epochs. Model hyperparameters (see table below)
were chosen by a grid search in the inner cross validation
loop. The regularizers include an L2 weight penalty on the
input-to-hidden weights and dropout on the nodes in the
hidden layers.

Grid Search
Hyper Parameter Values
Dropout rate 0, 0.5
Hidden layer 1 size 5, 10, 15, 20
Hidden layer 2 size 0, 5, 10, 15
L2 regulariz. relative learn rate 0, 0.25, 0.5, 0.75, 1

For each highlight representation (sentence-level, sentence-
fragment, individual words), we found the best hyperparam-
eters over the grid search and evaluated the models using 10-
fold cross validation. We present the results of each of these
networks in Table 3. Unfortunately, none of these models
outperformed the baseline.

We hypothesized that there might be information to lever-
age by predicting performance on individual questions rather
than their sum (the total quiz score). We therefore built
neural net models with outputs that represent the indi-
vidual questions, with two output units for each of the 12
questions. The target tuple (0,0) represents neither fill-in-
the-blank (FIB) nor multiple-choice (MC) response correct;
(0,1) represents FIB incorrect but MC correct; (1,0) rep-
resents FIB correct but MC incorrect; and (1,1) represents
both FIB and MC correct. The logic of this coding scheme
is that the first bit indicates strong knowledge of the answer
and the second bit indicates at least weak knowledge.

The training and evaluation process was the same as the
neural networks that predict on overall quiz score, with the
normalized loss an expectation over the 24 outputs. We
evaluated networks for each of the highlight representations,
and Table 3 lists the results. Unfortunately, no predictions
were better than baseline.

4. DISCUSSION
If you pick up any textbook in a used bookstore, you’ll be
surprised if it isn’t marked up with student annotations and
highlights. Students seem compelled to highlight because
they believe it supports learning. Our goal was to lever-
age this compulsion to better understand what students
are learning from their textbooks. We hypothesized that
a learner’s choice of material for highlighting could differ-
entiate among individuals and predict comprehension. We
constructed a wide range of models that use the specific pat-
tern of highlights to predict subsequent quiz performance

and specific quiz answers, yet we failed to obtain strong
support for our hypothesis.

The most generous interpretation of our modeling effort
is that when highlights are represented at a fine-level of
granularity—sentence fragments or individual words—linear
models can predict about 6% of the variability in quiz score.
It’s difficult to explain why the linear models (Table 2) out-
perform the nonlinear models with the same input represen-
tation, but perhaps we are not successfully controlling for
overfitting of the more complex models. The variance in
model predictions across cross-validation folds is an indica-
tion that the models are perhaps still too flexible and would
benefit by stronger regularization.

The present experiment had several sources of uncontrolled
variability that, in retrospect, should have been taken into
account.

• We neglected to ask participants about their familiar-
ity with biology and we did not exclude participants
based on their knowledge. Prior knowledge could be a
significant uncontrolled factor. In subsequent experi-
ments, it would be sensible to screen participants based
on whether they have had a biology class in the past
three years.

• The randomized order of quiz questions influences the
interval of time for which knowledge must be retained.
For example, if the first quiz question is on the third
passage of text, then the lag between reviewing that
passage and the quiz question is just a matter of sec-
onds. It would be more sensible to present the quiz
questions in order by section and to randomize the or-
der within a passage.

• In the present experiment, participants had little idea
of what the quiz would entail until they completed the
initial reading and review stages of all three passages.
We suspect that participants may highlight in a more
informed manner if they can better anticipate what
is to come in the experiment. Thus, we might have
included in the instructions a sample paragraph and
several typical exam questions.

• We encouraged participants to highlight, but we did
not ask participants whether they ordinarily highlight
text as they read. There seems to be individual dif-
ferences in the proclivity to highlight, and it would be
useful to perform analyses of the highlights for the sub-
populations who either do or do not ordinarily high-
light.

A natural thought for improving predictive models is to en-
code information about the content of the text and semantic
relationships among the individual sentences and phrases.
We argue that such encodings will not improve our models
for the specific experiment we have performed. If our goal
was to devise a general passage-independent representation
of text, then incorporating such encodings would be critical,
but because we have three specific passages and our high-
light representation allows for the reconstruction of which
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Table 2: Summary of linear regression results

Input Features Target Output
Mean Normalized

Loss
Standard Error of

Mean
Total number of sentence-level highlights Normalized Quiz Score 1.01 0.0029

Total number of words highlighted Normalized Quiz Score 1.01 0.0028

Binary sentence-level highlights Normalized Quiz Score 0.99 0.0028

Graded sentence-level highlights Normalized Quiz Score 1.03 0.0032

Binary sentence-fragment highlights Normalized Quiz Score 0.93 0.0024

Graded sentence-fragment highlights Normalized Quiz Score 1.03 0.0032

Word-level highlights Normalized Quiz Score 0.93 0.0024

Critical-sentence highlight Corresponding FIB Question Score 1.00 N/A

Critical-sentence highlight Corresponding MC Question Score 0.99 N/A

Table 3: Summary of neural network results

Input Features Target Output
Mean Normalized

Loss
Standard Error of

Mean
Binary sentence-level highlights Normalized Quiz Score 1.01 0.0030

Graded sentence-level highlights Normalized Quiz Score 1.00 0.0022

Binary sentence-fragment highlights Normalized Quiz Score 0.99 0.0026

Graded sentence-fragment highlights Normalized Quiz Score 1.20 0.0032

Word-level highlights Normalized Quiz Score 1.03 0.0021

Binary sentence-level highlights Individual Question Scores 1.00 0.0049

Graded sentence-level highlights Individual Question Scores 1.00 0.0052

Binary sentence-fragment highlights Individual Question Scores 1.00 0.0054

Graded sentence-fragment highlights Individual Question Scores 1.00 0.0053

Word-level highlights Individual Question Scores 1.00 0.0050

specific sentences, phrases, or words were highlighted, we ar-
gue that this representation is sufficient for prediction. For
example, if the participant were to highlight all phrases re-
lated to thermal death time, we do not need an explicit rep-
resentation of this concept because the pattern of sentences
highlighted contains this information implicitly.

We have ideas for extending the present work with the hope
that highlighting might serve as a valuable data source for
inferring student knowledge. We mention several key ideas
here.

• We explored a variety of highlighting representations
in order to capture critical differences among highlight-
ing patterns. However, we are not convinced that all
critical differences are captured. Consider the follow-
ing sentence from one of the passages in the experi-
ment: Unlike disinfectants, antiseptics are antimicro-
bial chemicals safe for use on living skin or tissues.
Highlights of this sentence in our data set include:

– antiseptics
– antiseptics are antimicrobial chemicals
– antiseptics are antimicrobial chemicals safe for

use on living skin or tissues.

All three of these highlights are treated the same by
the sentence and fragment representations with the bi-
nary encoding, but one might imagine that they pro-
vide different windows into the student’s intentions.

The individual word representation does distinguish
these patterns, though at the cost of a much larger
input and parameter space. The sentence-level and
sentence-fragment graded encodings seem to be a sen-
sible intermediate, but we suspect there are other in-
termediate encodings that would be fruitful to explore.

• One potentially useful source of information would be
the detailed time course of reading, i.e., fixation pat-
terns as a function of time, or at least obtaining in-
formation on the rate at which sentences are read and
when backtracking occurs. In our current experiment,
timing information is recorded only when a sentence
is highlighted; these data are too sparse to provide a
useful representation that can be compared across in-
dividuals.

In order to record better timing information, we have
considered conducting the experiment using a small
screen e-reader (or a small window on a computer mon-
itor) which necessitates scrolling from one paragraph
to the next.
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ABSTRACT
In most contexts of student skills assessment, whether the
test material is administered by the teacher or within a
learning environment, there is a strong incentive to mini-
mize the number of questions or exercises administered in
order to get an accurate assessment. This minimization ob-
jective can be framed as a Q-matrix design problem: given
a set of skills to assess and a fixed number of question items,
determine the optimal set of items, out of a potentially large
pool, that will yield the most accurate assessment. In recent
years, the Q-matrix identifiability under DINA/DINO mod-
els has been proposed as a guiding principle for that purpose.
We empirically investigate the extent to which identifiability
can serve that purpose. Identifiability of Q-matrices is stud-
ied throughout a range of conditions in an effort to measure
and understand its relation to student skills assessment. The
investigation relies on simulation studies of skills assessment
with synthetic data. Results show that identifiability is an
important factor that determines the capacity of a Q-matrix
to lead to accurate skills assessment with the least number
of questions.

1. INTRODUCTION
Consider a set of items intended to assess a student’s mas-
tery over a set of skills, or knowledge components (KC).
These items, along with the set of skills, can be designed
to test a single skill at once. Or, they can be designed to
involve two or more skills. A test composed of a fixed num-
ber of items can either be composed of a mixture of single
and multiple skills items, or composed of one type of items
only. Skills can themselves be defined so as to facilitate the
creation of task/problem items that involve single skill per
item, or multiple skills per items. By which principles should
a teacher choose among these different options?

This paper addresses this question, with the general objec-
tive of designing a test that will bring the most accurate
assessment of a student’s skill mastery state with the least
number of questions items.

The investigation is framed within the DINA model, which
was a widely researched model and originally proposed in
the research of a rule space method for obtaining diagnostic
scores (Tatsuoka, 1983). In this model, question items can
involve one or more skills, and all skills are required in or-
der to succeed the question, while a success can still occur
through a guessing factor, and failure can also occur through
a slip factor.

2. Q-MATRIX, DINA MODEL AND
IDENTIFIABILITY

The mapping of items to skills is referred to as a Q-matrix,
where items are mapped to latent skills whose mastery is
deemed necessary in order for the student to succeed at the
items. An item can represent a question, an exercise, or
any task that can have a positive or negative outcome. In
the DINA model, the conjunctive version of the Q-matrix is
adopted: all skills are considered necessary for success.

In the last decade, a number of papers have been devoted to
deriving a Q-matrix from student test results data (Barnes,
2010; Liu, Xu, & Ying, 2012; Desmarais, Xu, & Beheshti,
2015; P. Xu & Desmarais, 2016). Another line of research
on Q-matrices has been devoted to refine or to validate an
expert-given Q-matrix (de la Torre & Chiu, 2015; Chiu,
2013; Desmarais & Naceur, 2013). While the problems of
deriving or refining a Q-matrix from data are related to Q-
matrix design, they do not provide insight into how best to
design them.

In parallel to these investigations, some researchers have
looked at the question of the identifiability. The general
idea behind identifiability is that two or more configurations
of model parameters can be considered as equivalent. Sets
of parameters will be considered equivalent if, for example,
their likelihood is equal given a data sample. Or, conversely,
if the parameters are part of a generative model, two sets of
equivalent parameters would generate data having the same
characteristics of interest, in particular equal joint probabil-
ity distributions (see Doroudi & Brunskill, 2017, for more
details).

The issue of identifiability for student skills assessment
was first researched in multiple diagnosis model compar-
ison (Yan, Almond, & Mislevy, 2004), Bayesian Knowl-
edge Tracing (Beck & Chang, 2007) and later discussed by
more researchers (van De Sande, 2013; Doroudi & Brun-
skill, 2017). A mathematically rigorous treatment Q-matrix
identifiability under the DINA/DINO setting was presented
under zero slip and guess parameters (Chiu, Douglas, & Li,
2009), and under known slip and guess (Liu, Xu, & Ying,
2013), and finally under unknown slip and guess parame-
ters (Chen, Liu, Xu, & Ying, 2015). An overall discussion
can also be found (G. Xu & Zhang, 2015; Qin et al., 2015).
These studies provide theoretical basis to derive Q-matrices
from data, but not to the design of Q-matrices itself. In this
paper, we consider the identifiability of the Q-matrix with

Proceedings of the 11th International Conference on Educational Data Mining 438



regards to the DINA model.

Identifiability is a general concept for statistical models. Its
formal definition is:

Definition (1) (Casella & Berger, 2002) A parameter θ for a
family of distribution f(x|θ : θ ∈ Θ) is identifiable if distinct
values of θ correspond to distinct pdfs or pmfs. That is, if
θ 6= θ′, then f(x|θ) is not the same function of x as f(x|θ′).

The DINA model has parameters θ = {Q, p, s, g}, where Q
is the Q-matrix. p is the categorical distribution parameter
for all student profile categories. That is, it indicates the
probability that a student belongs to each profile category.
For example, in a 3-skill case, there are 23 = 8 categories
for students to belong to, and the 8-component probabil-
ity vector of students belongs to each of these categories is
the model parameter p. Finally, s and g are both vectors
denoting the slip and guess of each item.

The identifiability of all parameters in DINA model have
been thoroughly investigated and several theorems are given
(G. Xu & Zhang, 2015). But for the Q-matrix design prob-
lem that is the focus of this paper, we solely need to ensure
that the model parameter p is identifiable, meaning that we
can distinguish different profile categories. Fortunately, for
the case when s and g are known, the requirement is easily
satisfied, since it only requires the Q-matrix to be complete.

Definition (2) (Chen et al., 2015) The matrix Q is complete
if {ei : i = 1, ...,K} ⊂ RQ, where K is the number of skills
(columns of Q), RQ is the set of row vectors of Q, and ei is
a row vector such that the i-th element is one and the rest
are zero (i.e. a binary unit vector, also known as a “one-hot
vector”). Stated differently, the rows of the identity matrix,
IK×K , must be in Q for this matrix to be complete.

And the heart of the current investigation is based on the
following proposition:

Proposition (Chen et al., 2015) Under the DINA and
DINO models, with Q, s and g being known, the popula-
tion proportional parameter p is identifiable if and only if Q
is complete.

We show an example of Q-matrix that is not complete below
for better illustration. 

k1 k2 k3

q1 1 0 0
q2 0 1 1
q3 1 0 1


This Q-matrix does not contain e2 : [0, 1, 0] or e3 : [0, 0, 1],
and is therefore not complete, even though its items (rows)
cover all skills (columns). Using this Q-matrix under DINA
model setting entails that the model parameters are not
identifiable according to the proposition above, and would
in turn compromise student profile diagnosis. In fact, stu-
dents who only master skill 2 and students who only master
skill 3 are indistinguishable under this Q-matrix.

But while the use of a non identifiable Q-matrix should be
avoided according to the proposition, the question remains:

among all the complete Q-matrix, which ones are most effi-
cient for student profile diagnosis?

In the next section, we investigate empirically the Q-matrix
design options in light of the completeness requirement,
using synthetic student performance data with the DINA
model. Synthetic data is essential for this investigation be-
cause we need to know the underlying ground truth. We
return to the issue of using real data in the conclusion.

3. EXPERIMENT
The Q-matrix design problem is essentially an optimization
problem. Basically, we have a pool of Q-matrices, and each
of them is formed by a selection with replacement from a
pool of q-vectors. Each Q-matrix will yield some capacity
to diagnose students, as measured by a loss function. We
aim to choose a Q-matrix that minimizes the loss function.

Our experiments follow a Bayesian framework to diagnose
students under DINA Q-matrices. First, we use one-hot
encoding to denote all profile categories. Set M to be the
number of profile categories. Then, in the 3-skill case, the
M = 8 profile categories pci are:

k1 k2 k3

pc1 0 0 0
pc2 1 0 0
pc3 0 1 0
pc4 0 0 1
pc5 1 1 0
pc6 1 0 1
pc7 0 1 1
pc8 1 1 1


Therefore, a student belonging to profile pc1 is encoded as
a binary unit vector α1 = (1, 0, 0, 0, 0, 0, 0, 0), and so on for
pc2 encoded as α2 = (0, 1, 0, 0, 0, 0, 0, 0), ..., and pc8 encoded
as α8 = (0, 0, 0, 0, 0, 0, 0, 1). The DINA model parameter p
is represented as a probability vector p = (p1, p2, ..., p8) =
(P (α1), P (α2), ..., P (α8)). Then, we set the prior of each
student profile to be:

α0 = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8)

With the conditional independence assumed (i.e, condi-
tioned on a given profile category, the probability to answer
each question correct is independent), the likelihood is given
by (De La Torre, 2009; Chen et al., 2015):

L(p,Q, s, g|X) = P (X|p,Q, s, g)

=

I∏
i=1

∑
α

pαP (Xi|α,Q, s, g)

=

I∏
i=1

∑
α

pα

J∏
j=1

Pj(α)Xij [1− Pj(α)]1−Xij

(1)

in which X is the response matrix and Xi is the i-th row,
I is the number of records (students), J is the number of
questions. Pj(α) is the probability of student profile α to
answer correctly of question j, notice α in 3-skill case has
only 8 possible values, for any of them αm,m = 1, ..., 8, the
probability is given by DINA model

Pj(αm) = P (Xij = 1|αm) = g
1−ηmj

j (1− sj)ηmj
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in which ηmj is the latent response of profile αm to question
j, that is, the response when slip and guess is 0. It can be
calculated by

ηmj =

K∏
k=1

α
qjk
mk

where K is the number of skills and qjk is the (j, k)-th ele-
ment of Q-matrix Q.

Given the prior and likelihood, the posterior α̂ for each stu-
dent can be calculated. It has the form:

α̂ = (p̂1, p̂2, p̂3, p̂4, p̂5, p̂6, p̂7, p̂8)

and we then calculate the loss between this posterior and
the true profile αtrue, which is one of the one-hot encoding
vector.

For any Q-matrix configuration, the loss function is defined
by

loss(Q) =
∑

i∈students

‖α̂i − αtrue‖2

To implement the experiment, for each Q-matrix configu-
ration, we generate a response matrix based on the DINA
model given fixed slip and guess parameters, using function
’DINAsim’ from the R package DINA (Culpepper, 2015).
Then, we calculate the posterior estimation for all students
and evaluate the total loss. The reported result is an average
loss of 100 runs.

In our experiments, we consider the 3-skills and 4-skills
cases. For the 3-skills case, experiments are conducted with
N = 200 students, of which 25 students fall into each of
8 categories. For the 4-skills case, we use N = 400 students,
of which 25 students fall into each of 16 categories.

3.1 Experiment 1: Comparison of three
strategies

In the first experiment, we compare three different Q-matrix
design strategies. They are all based on repetition of a spe-
cific pool of q-vectors.

• Strategy 1 (Q-matrix 1): Using the identifiability con-
dition (definition (1)) by using only combinations of
the vectors {ei : i = 1, ...,K} (binary unit vectors, or
one-hot encodings).

• Strategy 2 (Q-matrix 2): Using the vectors {ei : i =
1, ...,K} plus an all-one vector (1, 1, 1) (in 3-skill case)
or (1, 1, 1, 1) (in 4-skill case). This is inspired by or-
thogonal array design, which is a commonly seen de-
sign of experiments (Montgomery, 2017).

• Strategy 3 (Q-matrix 3): Repeatedly using all q-
vectors.

For the 3-skills case, all these three Q-matrices are shown in
Figure 1. The general pattern is to recycle the rows above
the lines denoted by ...[..., ..., ...].

The 4-skills case is similar, which is omitted here. Results
of these two cases are shown in Figure 2a and Figure 2b.

Q-matrix 1
(binary unit vectors)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
... ... ... ...
q19 1 0 0
q20 0 1 0
q21 0 0 1



Q-matrix 2
(binary unit + all-1s vectors)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
q4 1 1 1
... ... ... ...
q17 1 0 0
q18 0 1 0
q19 0 0 1
q20 1 1 1
q21 1 0 0



Q-matrix 3
(all combinations)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
q4 1 1 0
q5 1 0 1
q6 0 1 1
q7 1 1 1
... ... ... ...
q15 1 0 0
q16 0 1 0
q17 0 0 1
q18 1 1 0
q19 1 0 1
q20 0 1 1
q21 1 1 1



Figure 1: Q-matrix design strategies

3.2 Experiment 2: Find best configuration
The second experiment takes the brute force approach. We
directly examine all possible Q-matrix configurations. First,
for a given pool of q-vectors to choose from and an integer
indicating the number of questions, we need to know the
number of possible configurations of Q-matrices we have.
This is equivalent to a classical combinatorial problem, that
is, to allocate marbles (q-vectors) to bins (questions). It can
be easily computed by combinatorial coefficients and inter-
preted by using stars and bars methods. For example, in
3-skills case, we have 7 q-vectors, and if we have 4 ques-
tions to allocate them, then we have

(
4+7−1
7−1

)
= 210 possible

configurations. This number grows up sharply as a number
of questions increases or number of patterns increases. As
a comparison, in the 4-skills case, if we have 5 questions
to allocate them, then we have

(
5+15−1
15−1

)
= 11628 possible

configurations.

For each configuration, we calculate the MAP estimation for
all categories of each student, and compare with the one-hot
encoding for their true categories. The total loss is reported
as the performance index.

Figure 3 shows the results of 6 combinations of different
numbers of skills and questions:

• 3-skills case, 4 questions: Figure 3a, Figure 3b

• 3-skills case, 8 questions: Figure 3c, Figure 3d

• 4-skills case, 5 questions: Figure 3e, Figure 3f
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Figure 2: Experiment 1: Three Strategy Comparison on 3- and 4-skills cases

4. DISCUSSION
From the result of experiment 1 we can see that strategy 1
always works better than the other two strategies, mean-
ing that simply repeating the vectors {ei : i = 1, ...,K} in
Q-matrix design, without using any combination of skills,
yields better student diagnosis performance.

From the result of experiment 2, when slip and guess pa-
rameters are as low as 0.01, we can see obvious graded pat-
terns among different configurations. This can be explained
by the the distinguishability of a Q-matrix. For example,
in Figure 3a, we can see there are 7 layers. In fact, the
first layer consisted of Q-matrix that can only cluster stu-
dents into 2 categories. One example of such a Q-matrix is

k1 k2 k3

q1 1 0 0
q1 1 0 0
q1 1 0 0
q1 1 0 0


This Q-matrix can only discriminate between a student that
mastered skill 1 or not. We know that there are in fact 8
categories of students, the 7 layers in Figure 3a from top
to bottom correspond to the Q-matrix that can separate
students into 2 to 8 categories. We can see that complete
Q-matrices always fall in the bottom layer, which concurs
with the proposition of Section 2. The 4-skills case is similar
in Figure 3e.

When slip and guess parameter increase, the points become
more divergent, as can be seen by comparison between fig-
ures 3a and 3b. In order to see some greater details, we
distinguish three types of Q-matrices.

• Type I: Complete and confined, meaning it is only con-
sisted of vectors {ei : i = 1, ...,K}.

• Type II: Complete but not confined, meaning it not
only contains all vectors {ei : i = 1, ...,K}, but also

contains at least one other q-vector.

• Type III: Incomplete Q-matrix.

Type I and Type II Q-matrices performs the same when slip
and guess are low (figures 3a, 3e), but when they get higher,
Type I Q-matrices show a better performance (figures 3b,
3f).

However, when more questions are involved in a high slip and
guess condition, the performance becomes more unstable.
Therefore, we again consider more subtypes. In 3-skills case
for 8 questions, we consider three subtypes below.

• Subtype 1: Q-matrix contains each component of {ei :
i = 1, ...,K} at least twice.

• Subtype 2: Other situations (e.g A complete Q-matrix
but all the other vectors are just repeated e1).

• Subtype 3: Q-matrix contains all q-vectors.

From Figure 3d we can see that the subtype 1 (denoted by
triangle) shows better performance than subtype 2, meaning
that repeating the whole set of {ei : i = 1, ...,K} is a better
strategy just like the strategy 1 we used in experiment 1.
Subtype 3 corresponds to the strategy 3 in experiment 1, it
has only 7 possible configurations in 8-question setting and
we can see that they do not perform well.

Therefore, we argue that the best Q-matrix design is to use
only the vectors {ei : i = 1, ...,K} since it offers quicker
convergence speed (as shown in experiment 1) and better
robustness against slip and guess (as shown both in experi-
ments 1 and 2).

5. CONCLUSION
This work is still in an early stage and has limitations, in
particular because it is conducted with synthetic data. But
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Figure 3: Experiment 2: Configurations of different slip and guess parameters and number of skills, J .
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the main finding is wide reaching and warrants further in-
vestigations. The support for designing Q-matrices that sat-
isfy the identifiability condition by single-skill items is com-
pelling in the experiments conducted with synthetic data.
The results clearly show such matrices yield more accurate
student skills assessment. In particular, they show that Q-
matrices that contains items that span the whole range of
potential combinations of skills tend to yield lower skills as-
sessment than Q-matrices that simply repeat the pattern of
single-skill items.

The finding that tests composed of single-skill items are bet-
ter for skills assessment is somewhat counter-intuitive, as
intuition suggests that a good test should also include items
with combinations of skills. But intuition also suggests that
items that involve combination of skills are more difficult,
and it may not simply be because they involve more than one
skill. It might be that solving items that combine different
skills in a single problem is a new skill in itself. This conjec-
ture is in fact probably familiar to a majority of educators,
and the current work provides formal evidence to support
it. And the immediate consequence is that Q-matrices, as
we currently conceive them, fail to reflect that a task that
combines skill involves a new skill.

Ideally, future work should be conducted with real data.
However, given that we do not know the real Q-matrix that
underlies real data, investigating the questions raised by
the current study is non trivial. Meanwhile, further experi-
ments with synthetic data can be considered with different
choices on student profiles distribution, and different num-
ber of skills involved. Besides, the case where slip and guess
are unknown should also be considered, which involves a
different identifiability requirement (G. Xu & Zhang, 2015).
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ABSTRACT 
Identifying at-risk students at an early stage is a challenging task 
for colleges and universities. In this paper, we use students’ on-
campus network traffic volume to construct several useful features 
in predicting their first semester GPA. In particular, we build 
proxies for their attendance, class engagement, and out-of-class 
study hours based on their network traffic volume.  We then test 
how much these network-based features can increase the 
performance of a model with only conventional features (e.g., 
demographics, high school GPA, standardized test scores, etc.). We 
labeled students as “above median” and “below median” students 
based on their first term GPA. Several machine learning models 
were then applied, ranging from logistic regression, SVM, and 
random forests, to AdaBoost. The result shows that the model with 
network-based features consistently outperforms the ones without, 
in terms of accuracy, f1 score, and AUC. Given that network 
activity data is readily available data in most colleges and 
universities, this study provides practical insights on how to build 
more powerful models to predict student success. 

Keywords 
Student success prediction, Engagement, Attendance, Study time, 
Network activity.  

1. INTRODUCTION 
Students’ academic performance is of interest for important 
practical reasons. To start with, one’s college GPA is related to an 
individual’s labor market performance [9, 16] and future 
educational pursuits [3]. More importantly, studies have shown that 
academic performance, especially in the early stage, is a strong 
predictor of students’ retention [1, 5, 11]. Therefore, it could be 
used to identify at-risk students. 

Unfortunately, predicting students’ early academic performance is 
a challenge, essentially because it is difficult to obtain informative 
data. In this study, we propose to use students’ on-campus network 
traffic volume to infer their location and behaviors. Through the 
inferred location and behavior, we construct several features that 

∗ Shi Pu is the corresponding author. 

have been shown to be related to students’ academic success, 
namely, attendance, in-class engagement, and out-class study effort. 
We then demonstrate that including these features into predicting 
models will improve the model performance in all conventional 
performance metrics.  

Specifically, our research questions are: 

1. How accurate is the location inferred from students’ network 
traffic? 

2. How much gain could we obtain by incorporating students’ 
network inferred behavior in predicting their academic 
success?  

2. RELATED STUDIES 
Empirical studies have accumulated considerable evidence on the 
effect of attendance, engagement, and study time on a student’s 
academic performance. The most rigorous literature comes from 
the Economics discipline, where experimental or quasi-
experimental designs were applied. To name a few, in a randomized 
experiment, Chen and Lin [6] found that attendance increases 
students’ final exam course grade by 9.4% – 18%. In another field 
experiment, Marburger [14] showed that mandatory attendance 
policy improves exam performance through reducing absenteeism. 
Using an instrumental variable approach, Stinebrickner and 
Stinebrickner [18] showed that college students’ study time has a 
positive impact on their first year grade. In another study, Andrietti 
and Velasco [2] used first difference to remove time-invariant 
confounding variables, such as ability, in the estimating of effects 
of study time. They also found that study time had a large impact 
on students’ final grades in two econometrics courses. Credé, Roch, 
and Kieszczynka [7] conducted a recent meta-analysis on the effect 
of attendance on grades. They found that attendance has strong 
relationships with both course grades and GPA. 

In correlational studies, the well-cited work by Kuh, Cruce, Shoup, 
Kinzie, and Gonyea [13] showed that the time spent studying per 
week and the engagement in educational purposeful activities like 
asking questions in class are positively correlated to a student’s 
first-year GPA. In a recent literature review, Trowler [19] 
concluded that studies in engagement in general found it to be 
positively correlated to student learning.  

Though significantly correlated with academic performance, a 
student’s behavioral data is difficult to obtain. Recent effort usually 
relies on measuring individuals’ interaction with the learning 
management system as a proxy for their study effort [4, 8, 12, 15, 
17]. Such practice has value, especially for the courses that are pre-
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dominantly online. However, when the interested population are 
students taking courses on a traditional campus and learning 
management systems are mainly used as a mean to disseminate 
lecture notes and collect homework, interaction with the learning 
management system is unlikely to be an informative proxy for 
study effort. 

To our best knowledge, this paper is the first study to use network 
traffic to build meaningful features in predicting students’ 
academic success. A few previous works have demonstrated the 
possibility of inferring students’ attendance through smartphone 
GPS and WiFi connections [10, 20, 21].  In general, they use 
smartphones to track individuals’ location and check if students 
appear to be in class when they should be. These studies shed light 
on an innovative approach to collect real-time students’ attendance 
data. However, all of them involve installing a third-party software, 
which provides an extra roadblock for scaling. As we will 
demonstrate later, students’ attendance can also be inferred from 
their on-campus network traffic. This approach utilizes the existing 
network data, thus is arguably more scalable.  

3. DATA AND METHOD 
The study utilizes the data collected for an advanced learning 
analytics endeavor at Purdue University, namely Academic 
Forecast1. The project built cutting-edge machine learning models 
for students’ course performance and accumulative GPA. 
Academic Forecast intends to identify student behaviors that are 
positively correlated with their academic performance and to 
encourage students to increase such beneficial behaviors. Though 
utilizing a part of the data from Academic Forecast, the models we 
experiment in this study are not directly related to the ones 
implemented for Academic Forecast.  

The study utilize students’ individual-level administrative and 
network traffic data from Purdue University2. The sample included 
all first-time, full-time freshmen that entered the university in fall 
2017, with 7555 students in total. The response variable of interest 
is a student’s fall semester GPA. The response is coded as 1 if a 
student’s GPA is larger than the median, 0 otherwise. Notice that 
the choice of median ensures that the label is balanced. The network 
traffic volume provides two pieces of important information about 
students: 1) a student’s approximate location (the campus building 
name) when s/he is connected to the network, and 2) a student’s 
network traffic volume during a time period.  

The first research question concerns how accurate the network 
inferred location is. To validate the inferred location, we need some 
form of ground truth. Fortunately, as many first-year students live 
on campus in Purdue, we can safely assume that most students 
should be in their residential buildings during early morning hours. 
Thus, we can compare the network-inferred location with students’ 
on-file residential buildings3. 

The second research question concerns the contribution of network-
inferred behavior data to prediction models. The follow paragraphs 

1 Website: https://www.academicforecast.org 
2 The scope and procedure of this study strictly follow a proved 
IRB. All of the analysis of the data occurs within the existing 
Purdue data security infrastructure and guidelines controlling data 
utilized for campus daily operations. Data can only be accessed 
via a machine controlled by Purdue data security protocols.  

 

will briefly cover the construction of the network-inferred 
behaviors. 

A student i is considered attending a registered course j’s session k 
if the student appears to be in the building where the session k is 
held during the class time. Then, the average attendance rate for 
student i in the first semester is inferred by averaging student i’s 
attendance across sessions and across all courses: 

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = �1,  𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 =  𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗, 𝑡𝑡 ∈ [𝑗𝑗𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗 𝑒𝑒𝑒𝑒𝑒𝑒]
0, 𝑜𝑜. 𝑤𝑤  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 =
1
𝑛𝑛�(

1
𝑚𝑚𝑗𝑗

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑗𝑗

𝑘𝑘=1

)
𝑛𝑛

𝑗𝑗=1

 

Note that 𝑛𝑛 is the total number of courses a student i has in the first 
term. 𝑚𝑚𝑗𝑗 stands for the total number of sessions for course j. 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 
indicates a student i’s campus building id at time t , and 𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 
indicates the campus building id for course j at session k. 
Essentially, 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 =  𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 if and only if a student i shows up in the 
class building during the scheduled class time. 
A student’s out-class study time is approximated by the total time 
spent in buildings that are predominantly used for learning 
purposes (indicated by  𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  in the formula), for example, 
libraries and active learning centers. Out-class time is obtained by 
excluding the time when a registered course is taking place. 
Formally: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = �𝑡𝑡 × �𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ==  𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 

Where t does not belong to any scheduled class time for student i. 
Note that 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ==  𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 if and only if a student i is in a “study 
related” building at none-class time t. 

In-class engagement for a student i in course j session k is inferred 
by the network traffic volume a student has during that class session. 
The average in-class engagement during the first semester is again 
averaged across sessions and across all courses. Noting that the 
higher the traffic volume, the more likely that a student is dis-
engaged4 in the class: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 =
1
𝑛𝑛�(

1
𝑚𝑚𝑗𝑗

� 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑗𝑗

𝑘𝑘=1

)
𝑛𝑛

𝑗𝑗=1

 

The network-inferred behaviors, along with a set of pre-college 
variables, were then fed to several common machine learning 
algorithms to predict if a student is going to score higher than the 
median. The common pre-college variables include high school 
GPA, high school quality, standardized test scores, gender, 
residency, race, etc. A 20-fold cross-validation is applied to 

3 Students’ locations after the late night and before early morning 
were never used in any of our predictive models, due to potential 
privacy concerns. However, for the purpose of validating the merit 
of network inferred index, we checked at the aggregate level if 
students’ night locations agree with their residential buildings on 
the book. We did not further investigate which students’ inferred 
location and theoretical location did not match.  
4  This is not necessarily true for classes that entail the use of 
internet.  
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estimate the model performance on unseen data. All models used 
pre-defined hyper-parameters to avoid being over-optimistic on 
performance estimation. 

4. RESULT 
To validate the accuracy of our network-inferred location, we 
choose an early Tuesday morning in September 2017 that is neither 
a public holiday nor a university holiday. Recall that students 
should be in their dormitory rooms at this time, thus their on-file 
residential building could be used as a ground truth to validate our 
network inferred location.  

 
Figure 1 demonstrate the result of this validation. As shown in the 
upper part of the graph, only a portion of all students living on 
campus have network activity before 6am, and the number 
increases rapidly after 7am. The lower part of the graph 
demonstrates the accuracy of the network inferred location. The 
accuracy is defined as the percentage of students whose on-file 
residential building agrees with the network inferred location. As 
we expected, the accuracy is high during the early morning, ranging 
from 89.20% - 95.70% between 0 to 6 am. The accuracy dropped 
rapidly after 7am; this plunge is likely due to the fact that students 
start to leave their residential buildings, thus it can no longer serve 
as a ground truth. 

Students’ on-file residential location never fully agrees with the 
network-inferred location. This does not necessary suggest that 
there is some noise in the inferred location, as we cannot be fully 
sure that all students are in their residential buildings at any given 
time. However, this result indicates that network-inferred location 
should be a good proxy for a student’s real location. Thus, it can 
provide useful information on students’ behaviors. 

In Table1, we compare the classification accuracy between models 
with network features and the ones without. A 20-fold cross-
validation is applied to estimate the model performance on unseen 
data. As the label is balanced (exactly 50% of students score higher 
than the median), accuracy serves a good performance metric. We 
experiment on several common algorithms to check if the 
performance gap is model dependent. All models used pre-defined 
hyper-parameters. 

5 Paired sample t-tests are used here to compare the difference 
between models with network features and the ones without. 

As shown in Table 1, models with network-inferred behaviors 
consistently outperform the models without network-inferred 
behaviors. The difference in accuracy ranges from 0.016 to 0.021. 
The right-most column records the t-statistics 5  for improved 
accuracy. The improvement is statistically significant at 0.05 level 
with one-side t-test for logistic model, random forest model, and 
AdaBoost model. The improvement on SVM model is only 
significant at 0.1 level. After including Bonferroni correction, only 
the improvement on AdaBoost remains statistically significant.  

 
Table 1: Accuracy comparison : with/out network 

behaviors (t-test with Bonferroni correction, α = 0.05) 

Classifier 
No Network  
Behaviors 

Network  
Behaviors Diff t-stat 

Logistic 0.669 (0.02) 0.686 (0.03) 0.017 2.01* 
SVM  0.667 (0.03) 0.683 (0.03) 0.016 1.67 

Random Forest 0.678 (0.03) 0.696 (0.03) 0.018 1.96* 
AdaBoost 0.676 (0.03) 0.696 (0.03) 0.021 2.39* 

Note: standard errors in parentheses 
 

Table 2: Model performance comparison: with/out network 
behaviors 

Classifier  Network F1 Precision Recall AUC 
Logistic No 0.68 0.654 0.711 0.732 

Yes 0.696 0.671 0.724 0.751 
SVM No 0.672 0.661 0.687 0.726 

Yes 0.683 0.678 0.691 0.747 
Random 
Forest 

No 0.679 0.671 0.688 0.735 
Yes 0.687 0.702 0.674 0.761 

AdaBoost No 0.67 0.675 0.668 0.734 
Yes 0.690 0.698 0.682 0.757 

 

 

Figure 1. Validate network inferred location 

Figure 2. Mean ROC curves for different models, with v.s. 
with-out network-inferred behaviors 
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Table 2 and Figure 2 report further performance comparison. 
Models with network-inferred behaviors again consistently 
outperform the models without such information on F1 score, 
precision, recall, and AUC. The differences are small but consistent 
in the ROC curves. 

At last, Table 3 demonstrates the top 10 important feature 
importance in Random Forest and AdaBoost. Network-inferred 
behaviors are always among the top important features. In 
AdaBoost, student engagement is the single most important feature, 
followed by students’ high school GPA, high school quality6, study 
time, and attendance. The Random Forest relies disproportionally 
on students’ high school GPA. Students’ attendance, study time, 
and in-class engagement are more informative for the model than 
the rest predictors. Note that network-inferred behaviors are always 
more important than standardized test scores7 in the two models. 

 
Table 3: Feature importance8 

Random Forest AdaBoost 
Feature Name Importance Feature Name Importance 
High school GPA 0.385 Engagement 0.224 
Attendance 0.157 High school GPA 0.145 
Engagement 0.107 School quality 0.143 
Study time 0.106 Study time 0.143 
Std test score 0.091 Attendance 0.141 
Zip code income 0.067 Zip code income 0.120 
School quality 0.061 Std test score 0.059 
Female 0.009 International 0.009 
International 0.009 Asian 0.006 
Asian 0.005 Hispanic 0.004 

 

5. DISCUSSION 
This study proposed a novel way to utilize on- campus network 
traffic data to improve student success prediction models. In 
particular, we have demonstrated that network-inferred location is 
a good proxy for students’ actual location. Experimenting on a 
randomly chosen early morning, we found that 89.20% - 95.70% 
of students’ network-inferred location matches their on-file 
residential location. In addition, we demonstrate that including the 
network traffic data improves the model performance in 
conventional performance metrics. Interestingly, the improvement 
is consistent across different models, ranging from the basic logistic 
regression models to more complicated ensemble classifiers.  

The network-inferred behaviors are rooted in existing literature on 
student success. Namely, attendance, engagement, and study time 
have been found to be related to a student’s GPA in various 
researches. Therefore, we believe the result should not be a 
peculiarity in Purdue’s data but can be generalized to other colleges 
and universities.  

In addition to generalization, our approach has two important 
practical advantages. First, models based on network-inferred 
behavior provide actionable suggestions for student advisors. To 
elaborate, the pre-college predictors can only tell advisors whether 
a student is well-prepared for college. Other analytical models 
usually only inform the advisor how well a student is doing in each 

6 Measured by the average Purdue GPA for students come from that 
high school.  
7 Constructed based on SAT and ACT scores.  
8 A feature’s importance in Random Forest is the average decrease 
in impurity by that feature across all trees, the higher the better. 

class. Neither type of predictor could provide suggestions on why a 
student is having trouble. The network-inferred behaviors, on the 
contrary, could possibly pinpoint the student’s action that directly 
leads to their poor performance, e.g., poor attendance. Second, 
network-inferred behaviors are based on existing network data in 
each university, thus the scaling cost is arguably low.  

The study, nevertheless, has several important limitations. First, the 
chosen response is median GPA instead of more meaningful 
classifications, e.g., retention and academic probation. Therefore, it 
is unclear if the network features are still informative for detecting 
at-risk students. Second, the improvement in accuracy is limited. 
Future study should seek to uncover deeper pattern from the 
location data to improve model performance. 
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ABSTRACT 

We analyze results from paired pre- and post-instruction 

administration of the Mechanics Baseline Test to 2238 students in 

introductory mechanics classes. We investigate pairs of specific 

wrong answers given with unusual frequency by students on the 

pretest.  We also identify transitions between pre- and post-test 

answers on the same question which elucidate student learning due 

to instruction. We define criteria for excess transitions above a 

random response model. Some common transitions are found to be 

associated specifically with students within a particular range of 

skills. Further, transitions from pre- to post-test revealed that 

incorrect pretest answers that were frequently repeated on the post-

test often correspond to known misconceptions from physics or 

math. Thus, our data mining techniques can elucidate common 

student misunderstandings of mechanics concepts and how 

instruction affects these misunderstandings. This opens the way for 

finding improved interventions for specific misunderstandings 

revealed by analyzing results from pre- and post conceptual tests.  

Keywords 

Pre- and post- Testing; Common Student Misconceptions; 

Educational Data Mining; Analyzing Wrong Answers. 

1. INTRODUCTION 
The Force Concept Inventory [9] by Hestenes group 

revolutionized physics instruction by showing that students trained 

mostly on end-of-chapter problems in standard textbooks did not 

learn to answer easy (so teachers thought) questions based on 

fundamental concepts in the domain.  This has led to tremendous 

reform of physics instruction worldwide and a series of concept 

tests covering introductory physics and astronomy [7].  The present 

study uses another research-based assessment, the Mechanics 

Baseline Test ("MBT").  The MBT is designed for students with 

more physics background and is appropriate for introductory 

students at MIT.  

 

 

 

 

 

 

 

 

 

 

 

 

Research-based assessments such as concept inventories and 

surveys are typically developed by first administering the questions 

in open response format.  Analysis often reveals clusters of related 

responses which are then made into distractors in a multiple-choice 

version of the assessment. Since these assessments typically center 

only a particular subdomain, e.g. force and motion, a part of 

Newtonian mechanics, it is expected that common misconceptions 

(also called alternate conceptions and misunderstandings) will 

manifest as correlated selections of distractors to different 

questions.  We searched for these, as well as for statistically 

significant deviations of specific learning transitions from a random 

guessing hypothesis.  

 
This paper addresses several questions relative to the deep 

assessment of students' knowledge structure based on results on the 

Mechanics Baseline Test.  Our objective is to find the ‘atomic’ 

student conceptions and abilities that underlie their answers to the 

questions (possibly incorrectly)?  Our approach is data mining on a 

large sample of pre and post-tests, and concentrates on these 

research questions  

• Are there pairs of wrong answers to different questions 

that reveal common misunderstandings?  

• Are there exceptionally prevalent transitions from pre- to 

post-test that seem to indicate learning some specific 

knowledge?  

• Can we suggest new questions or improvements to 

existing ones that will improve the assessment?  

 

We are not the first to attempt to extract actionable analysis from 

concept tests.  Indeed, the FCI has been analyzed using factor 

analysis [4]; however, that analysis has been questioned [5].  The 

MBT has been refined using Item Response Theory analysis 

[3].  Recently Brewe et al. [2] have applied Network analysis to the 

FCI to predict post scores. The Colorado Learning Attitudes about 

Science Survey [1] has a nice web-based multicategory analysis 

based on factor analysis that is used.  But it’s fair to say that most 

concept tests are not analyzed beyond the score and whether it 

seems appropriate for each particular class based on quality of 

students & instructional style [8].  This provides a good 

characterization of the students’ (and class) overall knowledge and 

gives a useful indication of the amount of learning if the assessment 

is administered both pre- and post-instruction.    Unfortunately, 

such one-dimensional analysis ignores the category-specific 

information that the method of construction of these assessments 

would seem to generate.  Therefore, administering these 

assessments neither informs the student about which concept(s) 

they know well or poorly nor informs the teacher about the areas in 

which they most need to improve their instruction.  
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The goal of finding specific difficulties and misconceptions of 

students continues to appear reasonable yet remains tantalizingly 

out of reach.  The progress made here shows the promise of analysis 

of learning data at scale. But while our findings are clearly 

revelatory, they beg for further development to make them 

useful.  We discuss ways of closing this gap in the last section: 

Future.  

 

Table 1: The students in our dataset represent five years of 

an introductory mechanics course at MIT. Since some 

students lack either a pre- or post-test score, we have 

calculated grades and normalized gain using only those 

students who took both tests. The pretest was administered at 

the beginning of the semester, and the post-test was 

administered – often as part of the final exam - at the end of 

the semester. 

year  #pre  #post  #both  fraction pre  fraction post  gain  

2005  485  509  438  .57±.15  .66±.13  0.34  

2007  356  356  355  .56±.15  .76±.12  0.46  

2008  414  414  410  .58±.15  .79±.12  0.51  

2009  612  565  527  .58±.14  .75±.12  0.41  

2010  589  554  508  .60±.18  .78±.12  0.44  

all  2456  2398  2238  .58±.15  .75±.15  0.40  

 

2. CORRELATIONS ON PRE- AND POST-

TESTS  
Assuming that there are fundamental misconceptions shared by 

many students, the question becomes “how can we detect these in 

the test results”.  Since the MBT was designed with distractors 

compiled from open responses to those questions, one would expect 

that a specific misconception would lead students to give a specific 

wrong answer. If a misconception leads to wrong answers on two 

(or more) questions, we expect that students with this 

misconception would submit this particular pair of wrong answers 

with more than random frequency. We seek to detect such 

correlated pairs of wrong answers by looking for statistically 

excessive pairs of wrong answers, and that these will offer insight 

into the nature and prevalence of specific student  

 

Table 2: Correlations between wrong answers on MBT 

pretest.  For each pair of correlated wrong answers we show 

the overall correlation coefficient, the fraction of all students 

who gave the paired response, the Student’s t-statistic, and the 

p-value. X indicates that a student did not answer the question 

(this is considered as a specific response). 

Responses 1&2 Correlation 

[%] 

Fraction 

[%] 

t p-value 

Q1A   Q2E  67  13  15.1  ~10-37  

Q4D   Q5C  41  19  9.3  ~10-18  

Q11X Q12X  57  7  8.5  ~10-14  

Q9X   Q11X  48  8  7.4  ~10-11  

Q9X   Q12X  47  7  6.8  ~10-10  

Q13A Q14A  52  5  6.0  ~10-8  

Q13X Q14X  60  2  4.7  ~10-5  

Q20B Q21C  35  7  4.6  ~10-5  

Q20D Q22D  44  4  4.6  ~10-5  

Q20A Q22C  19  15  3.5  0.001   

Q16C Q16D  18  13  3.0  0.004   

misconceptions.  We examine only correlations between wrong 

answers, since correct answers do not provide much information 

about misconceptions.  

 

We examined all possible wrong answer pairs, defining a binary 

variable for each possible wrong answer, specifying whether a 

particular student did or did not give that answer. We calculated the 

tetrachoric correlation between every pair of answers, as well as the 

amount by which the observed number of students giving the paired 

wrong answers exceeded the number expected assuming that each 

wrong answer was selected independently at random with the 

observed answer probability distribution for each question alone. 

All pretest correlations found to be significant at the p = 0.01 level 

are displayed in Table 2.  

 

Because students with very low skill may have weak or inconsistent 

preconceptions and students with very high skill presumably have 

few misconceptions of any sort, we expect that certain 

misconceptions will be held primarily by students lying within a 

limited range of overall ability or perhaps in students only of low 

ability.  To test this hypothesis, we divided the students into 7 equal 

partitions sorted by overall score and calculated correlation 

coefficients for each partition independently. 

 

Figure 1: Questions 1 & 2: Velocity and 

Acceleration Graphs, correlation of 1A and 

2E. The tetrachoric correlation and excess paired responses 

are plotted in each of seven cohorts divided by overall score. 

In Questions 1 and 2, shown in Figure 1, the paired errors both 

correspond the same misinterpretation of a stroboscopic image of 

an accelerating object.  The very high correlation coefficient 

implies that roughly 90% of the students who answered 1A also 

answered 2E.  This suggests that the students determined the 
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acceleration (Q2) from the answer to the velocity (Q1), thereby 

making the same time-base error. This hypothesis is supported by 

the fact that the better cohorts made relatively fewer mistakes 

carrying out this prescription, hence had (even) higher correlations, 

as did all students on the post-test.   

 

 

Figure 2: Question 4 and 5: Direction of Acceleration on 

Ramp - correlation of 4D with 5C. 

Correlated wrong answers on Questions 4 and 5, shown in Figure 

2, both correspond to ignoring real forces when applying F=ma. It 

is apparent that the prevalence of this error maximizes at score 

levels ~ 0.6 suggesting a specific misconception that shows some, 

but not too much, knowledge.  

Correlated responses 13A and 14A both correspond to confusing 

the mass of a system with the force required to support it. This 

correlation is very strong (R ~ 0.9), but the probability of making  

 

 

Figure 3: Questions 13 & 14: Elevator with Two Hanging 

Blocks – correlations between 13A and 14A. 

this error drops dramatically with score, reflective of the fact that 

the associated error is virtually at a random rate with prevalence < 

½% for all students scoring above 75% (where the correlation has 

huge errors).  This seems to be an error predominantly made by 

low-ability students, and we suggest that it results from omitting 

g=10 m/s2 when calculating weight from mass.  

 

Figure 4: Questions 20 & 22: Pushing Different Masses the 

Same Distance with the Same Force, correlation of 20A & 

22C.  
The triplet of questions 20 through 22, Pushing Different Masses 

the Same Distance with the Same Force, yields several highly 

correlated pairs of wrong answers.  These problems, particularly 20 

and 22, are among the most difficult on the test, with respectively 

36% and 47% of students answering them correctly on the pretest. 
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Figure 5: Questions 20 & 21: Pushing Different Masses the 

Same Distance with the Same Force, correlations 

between 20B and 21C.  
The correlated pair consisting of 20A and 22C correspond to 

confusing the change in energy of a system with the change in 

momentum.  About 4% of students showed this excess pairing on 

the pretest, rising to 10% on the post-test, the most dramatic of the 

only two increases in excess correlated responses found in this 

study.  There is clear evidence that this excess correlation has a 

peak, probably around score 75%.  Together with the dramatic 

increase in excess correlated responses on the post, we argue that 

this paired response requires confusion of work with impulse 

augmented by some understanding of momentum.  

 

Similarly, the responses 20B and 21C, shown in Figure 5, seem to 

correspond to the idea that equal force results in equal acceleration, 

regardless of mass. This response decreases with increasing score 

and also from pretest to post-test.  The correlation coefficient 

increases dramatically with score on both pre- and post-test.  

 

The final correlated pair that comes from questions 20-22 is 20D 

and 22D, shown in Figure 6. These answers are both "too little 

information" to calculate the energy and momentum of two pushed 

pucks.  Not surprisingly, this paired response shows the greatest 

decrease from pre- to post-test (~ 5:1), presumably because 

most students learn about either energy or momentum during the 

course. 

 
Figure 6: Questions 20 & 22: Pushing Different Masses the 

Same Distance with the Same Force: correlation 

between 20D and 22D.  

3. TRANSITION ANALYSIS: PRE →POST 

ON THE SAME QUESTION 

3.1 Robust Wrong Answers: Null Hypothesis 

and Findings 
 

If a certain wrong answer on the pretest corresponds to an 

entrenched misconception, students should give that same answer 

on the post-test.  We therefore use a baseline null hypothesis for 

comparison that assumes that students answer the post-test 

independently of their response on the pretest. We search for 

“excess” transitions above this null.  When looking for wrong 

answers which are unusually strongly held (what we call “robust 

wrongs”), for example, our null hypothesis is that the student is 

unaffected by instruction and would answer with the same 

probability on the post-test as on the pretest.  If 30% of all students 

answered correctly on the pretest, this would imply a 9% robust 

rate.  This null hypothesis would reflect reality if all students were 

guessing on both pre and post.  

 

The most robust wrong answer seen in Table 3, answer E on 

question 12, is “none of the above” on a numerical question, which 

does not suggest a specific physics misconception. The next two 

correspond to the same error in interpreting the motion diagram in 

a related pair of questions, namely reversal of the time axis. The 

fourth corresponds to claiming that the middle of the range of a 

graphed function is its average value. The fifth indicates that 

students have erroneously used the mass of part of a system instead 

of the total mass of the system in F=ma, and the sixth involves 

treating the speed of an object as its acceleration in an F=ma 
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problem. The first four of these give little insight into physics 

misconceptions, though they do seem to highlight mathematical 

deficiencies, but the robust wrong responses in Q17 and Q13 reveal 

difficulty with applying Newton’s Second Law. Confusing speed 

and acceleration is a well-known student misconception.  

 
Table 3: Six wrong answers were given by students on both 

the pre- and the post test at rates which were significantly 

greater than chance at the p<0.0001 level. Here we present the 

p-values for each of these responses and the frequency with 

which these responses were given as a percentage of all 

responses to the questions. 

 

p-value Question % 

~10-9 Q12E 14 

~10-8 Q1A 6 

~10-7 Q2E 5 

~10-6 Q25B 4 

~10-5 Q17C 10 

~10-4 Q13C 3 

3.2 Wrong to Correct: Null Hypothesis and 

Findings 
 

Since the wrong answers on the MBT are designed to represent 

specific misconceptions, the question arises of whether students 

who give certain wrong answers on the pretest might be more or 

less likely than other students to subsequently provide the correct 

answer on the post-test. In other words, we wish to ascertain 

whether some misconceptions are more resistant to instruction than 

others. In calculating the excess (or deficit) relative to chance of 

students making a transition from a wrong answer to the correct 

answer, our null hypothesis is again that a student’s likelihood of 

answering correctly on the post-test is independent of the answer 

they gave on the pretest. However, we must take into account that 

a non-trivial fraction of the students answer any given problem 

correctly on both pre- and post-test not by chance but because they 

understand the relevant physical concepts-- in some cases as many 

as 80% of students answered a problem correctly on both tests. We 

therefore use a slightly different null hypothesis that eliminates 

students who do not change their answer after instruction.  This 

posits that the conditional probability of a student offering the 

correct answer to a particular problem given that they gave a 

particular incorrect answer to that problem on the pretest should be 

equal to the ratio of the number of students who transitioned to the 

correct answer from any incorrect answer over the total number of 

students who changed their answer in any direction.  The most 

statistically significant wrong to correct transitions are displayed in 

Table 4 and discussed below.  

 

3.2.1 Q1 and Q2: Find velocity and acceleration 

from a graph 
Both transitions have moderate excess probability (~ 60%) of 

switching to the correct answer, and very small probability that the 

wrong is robust.  This suggests that these wrongs are mainly due to 

careless errors in reading the graph.  

3.2.2 Q14: Force from lower rope on top block of 

two hanging in stationary elevator 
About 6.5% answered D (20N, twice the answer) or A (forgot 

multiplying by g) and at least 80% of both switch to correct.  This 

generally shows strong growth on applying Newton’s 

Laws.  (Although most students probably saw this example in the 

course.)  The very small number of robust wrongs shows that the 

initial answers may have been mostly due to lack of full 

understanding of tension rather than strongly held 

misconceptions.   

3.2.3 Q23: Average acceleration from graph of 
velocity versus time 
The two most attractive wrong answers, taking v=0 at t=0 (p < 10-

4) and “none of above” (p < 10-3) both exhibited excess transitions 

to the correct answer.  Students with pre-answers switched to 

correct with 78% and 80% likelihood.  This is a graphing question, 

so possibly learning about graphs is reinforced due to 

complimentary instruction on graphs of functions in the 

introductory calculus courses which a majority of students are co-

registered for. NOTE: 14% of those who were correct on the pretest 

answered incorrectly on the post.  

 

Table 4: Wrong to correct transitions which occur 

significantly more frequently than would be expected due to 

chance. We display the p-values and the overall frequency 

with which the transition occurred for all such transitions 

with p<0.001. 

 

p-value Transition Freq. [%] 

~10-6 Q2E2D 10 

~10-5 Q1A2B 11 

~10-4 Q23C2D 9 

~10-3 Q14D2B 8 

 

4. CONCLUSIONS AND DISCUSSION 

4.1 Excess Correlated Wrong Responses 
“Excess correlated responses” (ECR) are in addition to those that 

would occur if the correlated questions were independently 

answered randomly with the observed frequency of wrong 

answers.  Correlated wrong answers between different questions 

were detected and described in two ways: by the 

excess fraction of students who selected both wrong answers (vs. 

assuming independently answered questions), and by the fraction 

of students who selected one wrong answer who also selected the 

other (tetrachoric correlation).  Both quantities varied considerably 

with the overall ability of the students as measured by their overall 

fraction correct (score) on the assessment.  For this reason, we 

discuss only results specific to student overall score.  
The correlated wrong answers found here are surprisingly 

prevalent, with ~10% or more of the students in one of the score 

groups selecting both of the paired wrongs in all cases except the 

last two which have the lowest statistical significance.  Our most 

important findings are:  
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1. The percentage of correlated wrongs always drops for 

students with score >0.7, and typically decreases to 1% or 

lower for the top score group on the post-test.  

2. In the two cases suggesting a real misconception, force 

from ramp and kinetic energy of masses, the percentage of 

correlated wrongs also decreased for the lowest-scoring 

groups.    

 

The tetrachoric correlation measures the “purity” of the observed 

correlations.  In every case presented, it reaches or exceeds 0.8 for 

groups with high test scores.  This shows that essentially every 

skilled student giving one of the paired wrong answers also gives 

the other.  Equivalently, the mistake or misconception is the main 

cause of the wrong answers on both questions.  In cases where low-

skill students appear to lack the correct physics knowledge 

(energy/momentum and direction of force on curved ramp), the 

correlation decreases to well below 0.5.  Low tetrachoric 

correlation probably indicates that students are using a variety of 

incorrect reasons in their responses, so that many are led to answer 

one of the paired wrong answers but not the other.  
In summary, the search for excess correlated answers has revealed 

two cases where the excess peaks for students in a particular range 

of overall score.  This is a clear guide for instruction: if you teach a 

class is in this score range, then you should carefully address 

situations like this to tease out and rectify the underlying 

misconception.  Additionally, the dramatic increase in mistaking 

work as the source of momentum on the post-test indicates that our 

instruction has to be clarified on this point.  We find that the 

correlation of all wrong answer pairs increases for better students - 

indicating that this misconception is the main reason for these 

wrong  answers and is being consistently applied to both questions 

I.e. skillful students don’t make errors on just one of the problems 

due to some reason unrelated to the identified misconception.  

4.2 Excess and Robust Transitions 
We found that the none of the transitions from wrong to right 

indicated that that particular wrong answer was conceptually 

closely related to the correct answer; rather it seemed that the 

wrongs were due to careless responses or fuzzy thinking.  On the 

other hand, several of the robust wrong answers seemed to reflect 

physics misconceptions.  

 

5. SUMMARY 
The probability of each particular ECR varies substantially with 

the overall ability (measured by total score) of the students, ranging 

up to a maximum of  4,5,8,10, and 11%.  Although it always drops 

to ~ 1% or less at the highest ability, we find examples where the 

probability of ECR peaks at low and at medium student score.  In 

all cases, the fraction of students giving one wrong answer who also 

give the other exceeds 80% for the highest-scoring students.  This 

suggests that teachers concentrate on remediating ECR’s common 

to their students’ scores. ECR's seem to be a good method to 

detect significant misconceptions or missing knowledge held by 

students of a particular ability.  
The transition analysis showed that robust wrongs often reflected 

misconceptions in math or physics, but that excess transitions from 

wrong to correct generally reflected carelessness rather than a 

mindset primed for learning the correct response.  
 

6. FUTURE DIRECTIONS 
The present work offers a new method for finding excess 

correlations of wrong answers between different questions, and 

particularly common (or uncommon) learning transitions within 

one question from pre- to post-test.  Two future directions seem 

important to explore:  

1. This method should be compared with network analysis 

which has a similar objective [2].  

2. The students at MIT are significantly stronger than most 

who take the MBT.  It is therefore important to extend the 

analysis to students with lower overall ability as evidenced by 

lower overall scores on the pre-test.  

3. We have a new way to assess misconceptions; this should 

enable us to find better ways to remediate them. 

 

7. ACKNOWLEDGEMENTS 
We thank the Office of Digital Learning at MIT for financial and 

technical support.  ÁPL thanks the Distinguished Scholar program 

of Spain for support.  

8. REFERENCES 
[1] Adams, W., Perkins, K., Podolefsky, N., Dubson, M., 

Finkelstein, N., & Wieman, C. (2006). New instrument 

for measuring student beliefs about physics and learning 

physics: The Colorado Learning Attitudes about Science 

Survey. Physical Review Special Topics - Physics 

Education Research, 2(1), 

10101. http://doi.org/10.1103/PhysRevSTPER.2.010101

  

[2] Brewe, E., Bruun, J., & Bearden, I. G. (2016). Using 

module analysis for multiple choice responses: A new 

method applied to Force Concept Inventory 

data. Physical Review Physics Education 

Research, 12(2), 1–

19. http://doi.org/10.1103/PhysRevPhysEducRes.12.020

131  

[3] Cardamone, C. N., Abbott, J. E., Rayyan, S., Seaton, D. 

T., Pawl, A., & Pritchard, D. E. (2011). Item response 

theory analysis of the mechanics baseline test. 

In Physics Education Research Conference (Vol. 1413, 

pp. 135–138). Omaha, Nebraska. Retrieved 

from http://dspace.mit.edu/handle/1721.1/78319  

[4] Heller, P., & Huffman, D. (1995). Interpreting the force 

concept inventory: A reply 

to Hestenes and Halloun. The Physics Teacher, 33(8), 

503. http://doi.org/10.1119/1.2344279  

[5] Hestenes, B. D., & Halloun, I. (1995). Interpreting the 

Force Concept Inventory A response to Huffman and 

Heller. The Physics Teacher, 502–506.  

[6] Hestenes, B. D., & Wells, M. (1992). A Mechanics 

Baseline Test, (March).  

[7] Lindell, R. S., Peak, E., & Foster, T. M. (2007). Are 

they all created equal? A comparison of different 

concept inventory development methodologies. Physics 

Education Research Conference, 883, 14–17. Retrieved 

from http://scitation.aip.org/content/aip/proceeding/aipc

p/10.1063/1.2508680%5Cnpapers3://publication/doi/10.

1063/1.2508680  

[8] McKagan, S. (2018). Physport.  

[9] Swackhamer, G., Hestenes, D., & Wells, M. (1992). 

Force concept inventory. The Physics 

Teacher. http://doi.org/10.1119/1.2343497  

 

Proceedings of the 11th International Conference on Educational Data Mining 454

http://doi.org/10.1103/PhysRevSTPER.2.010101
http://doi.org/10.1103/PhysRevSTPER.2.010101
http://doi.org/10.1103/PhysRevPhysEducRes.12.020131
http://doi.org/10.1103/PhysRevPhysEducRes.12.020131
http://dspace.mit.edu/handle/1721.1/78319
http://doi.org/10.1119/1.2344279
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2508680%5Cnpapers3:/publication/doi/10.1063/1.2508680
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2508680%5Cnpapers3:/publication/doi/10.1063/1.2508680
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2508680%5Cnpapers3:/publication/doi/10.1063/1.2508680
http://doi.org/10.1119/1.2343497


Predicting Learning by Analyzing Eye-Gaze Data of Read-
ing Behavior 

 

Ramkumar Rajendran 
Vanderbilt University 
Nashville, TN, USA 

ramkumar.rajendran@vander-
bilt.edu 

 
Daniel T. Levin 
Peabody College  

Vanderbilt University 
Nashville, TN, USA 

daniel.t.levin@vanderbilt.edu 

Anurag Kumar 
Vanderbilt University 
Nashville, TN, USA 

anurag.kumar@vanderbilt.edu 
 
 

Gautam Biswas 
Vanderbilt University 
Nashville, TN, USA 

gautam.biswas@vanderbilt.edu 
 
 
 

Kelly E. Carter 
Peabody College  

Vanderbilt University 
Nashville, TN, USA 

kelly.e.carter@vanderbilt.edu 

 

 
 

ABSTRACT 

Researchers have highlighted how tracking learners’ eye-gaze can 

reveal their reading behaviors and strategies, and this provides a 

framework for developing personalized feedback to improve learn-

ing and problem solving skills. In this paper, we describe analyses 

of eye-gaze data collected from 16 middle school students who 

worked with Betty’s Brain, an open-ended learning environment, 

where students learn science by building causal models to teach a 

virtual agent. Our goal was to test whether newly available con-

sumer-level eye trackers could provide the data that would allow us 

to probe further into the relations between students’ reading of hy-

pertext resources and building of graphical causal maps. We col-

lected substantial amounts of gaze data and then constructed clas-

sifier models to predict whether students would be successful in 

constructing correct causal links. These models predicted correct 

map-building actions with an accuracy of 80% (F1 = 0.82; Cohen’s 

kappa κ = 0.62). The proportions of correct link additions are in 

turn directly related to learners’ performance in Betty's Brain. 

Therefore, students’ gaze patterns when reading the resources may 

be good indicators of their overall performance. These findings can 

be used to support the development of a real-time eye gaze analysis 

system, which can detect students reading patterns, and when nec-

essary provide support to help them become better readers.   

Keywords 

Eye-Gaze Data Analysis; Computer-Based Learning Environment; 

Reading Behavior; Classification. 

1. INTRODUCTION 
In a number of computer-based learning environments (CBLEs), 

students are expected to learn and refresh their domain knowledge 

from resources (typically in text or hypertext form with figures), 

then to construct solutions to assigned problems based on their 

learned knowledge. Such environments are known to help students 

develop cognitive skills and strategic reasoning processes, and, 

therefore, help students not only learn the domain content but pre-

pare them for future learning [2, 3, 5, 17, 30-32]. However, because 

of the open-ended nature of these environments, novice learners of-

ten have difficulties in making progress toward their goals and 

completing their solutions. Therefore, the ability to track and un-

derstand learners’ performance and behaviors is important for their 

overall success, so that relevant personalized feedback and instruc-

tion can be provided to them as necessary. However, tracking stu-

dents’ reading behaviors with sufficient precision and accuracy in 

computer-based learning environments is a non-trivial task. 

  

Use of technologies, such as eye tracking devices can provide be-

havioral metrics that researchers can use to study learners basic 

cognitive processes and other information processing skills during 

reading [12, 27, 28, 35]. For educational research and applications, 

use of eye-tracking data has mainly focused on studying the effects 

of instructional strategies on eye-gaze behavior [21]. Some of these 

studies focus on learning how students’ spatial contiguity [16], at-

tention level [23] and viewing behavior [1] affect the cognitive pro-

cesses that mediate learning outcomes. Conati et al. [7] have re-

viewed previous studies that modeled students’ cognitive, metacog-

nitive and affective states in intelligent learning environments using 

eye-gaze data. For example, Bondareva, et al. [4] assessed student 

learning from eye-gaze data during interaction with MetaTutor, an 

intelligent CBLE designed to develop self-regulated learning skills 

when generating summaries after reading about complex science 

topics. The MetaTutor study reported 78% classification accuracy 

on student learning based on the features extracted by gaze data 

alone. Similar results were reported by Kardan and Conati [18], in 

modeling students’ learning with interactive simulations.  

 

Peterson, et al. [25] report that learners’ eye-gaze and pupil dilation 

data were used to predict performance and learning gains in Chem-

Tutor, designed to teach chemistry. Hutt, et al. [14] studied stu-

dents’ mind wandering using eye-gaze on specific areas of interest 

(AOI) [10]. All of these results show that eye-tracking devices help 

to track learners’ reading behaviors in CBLEs. Most of this research 

has relied upon expensive research-grade eye-tracking devices ap-

propriate primarily for lab settings. However, newly available con-

sumer-level eye-trackers are relatively inexpensive and have re-

cently been deployed in classroom environments [14]. Our goal in 

this study is to run an initial proof of concept case study to demon-

strate that these consumer-grade eye-tracking devices with sam-

pling rates less than 90 Hz can effectively predict learners’ behav-

iors in CBLEs.  
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In the research reviewed above [1, 4, 7, 16, 18, 22, 23], eye gaze 

features were extracted using global gaze features computed across 

broad Areas of Interest (AOI) that do not differentiate between 

more fine-grained screen contents. For example, the features ex-

tracted in [4] are based on predefined window position in the learn-

ing environment. This can be a limiting factor in CBLEs, where 

students are expected to learn by combining information from mul-

tiple hypertext resources. In Betty's Brain, a CBLE developed by 

our group [3, 24], students build a causal map to teach their agent, 

using hypertext resources that span multiple pages. Students are ex-

pected to find, read, and interpret sentences that provide infor-

mation about entities and causal relations between entities, and add 

the link(s) to the current causal model. Extracting students’ eye-

gaze features as they read these hypertext resources would require 

a different AOI for each hypertext resource page. To address this 

challenge we propose a methodology to extract eye-gaze features 

that are directly related to content in each of the hypertext resource 

pages.  

 

The proposed methodology was applied to eye-gaze data collected 

from middle school students who worked on Betty’s Brain learning 

environment. The features extracted from the eye-gaze data were 

then used to construct classifier models that predict learners’ model 

building effectiveness given their reading characteristics. For our 

study, we were able to predict learner performance in causal map 

building with an accuracy of 80% (F1 = 0.82; Cohen’s kappa κ = 

0.62). The learned classifier model was then used to classify learn-

ers reading behavior and directly related to learners’ performance 

on map building action in Betty's Brain. These findings can be used 

to support the development of a real-time eye-gaze analysis system 

to provide personalized feedback and adaptive instructions.  

 

The rest of the paper is organized as follows. Section 2 describes 

the learning environment. Section 3 describes the proposed meth-

odology to extract content based eye-gaze features from learning 

environment with multiple hypertext resources. Section 4 describes 

the experimental design, data collection, methodology to prepro-

cess the data and train the classifiers to predict learning based on 

features extracted solely from eye-gaze data. The results are reports 

in section 5. Conclusions, limitations and future work are discussed 

in section 6. 

2. BACKGROUND: THE BETTY’S BRAIN 

LEARNING ENVIRONMENT 
The Betty’s Brain learning environment [24] assigns learners the 

task of teaching a science topic to a teachable agent named Betty 

by constructing a visual causal map consisting of a set of entities 

connected by directed causal links. As students build their map, 

they can ask Betty questions, and can answer them and explain her 

answers. The students’ goal is to teach Betty a causal map that 

matches a hidden expert model of the topic.  

Students’ activities are categorized into three primary action types: 

(1) reading hypertext resources on the science topic (READ), (2) 

building the causal map (BUILD), and (3) assessing (ASSESS) the 

correctness of the map [8]. Students iterate among these activities 

until they have taught Betty a correct model. In this paper, we study 

learners’ information acquisition processes primarily as reading the 

hypertext resources that describe the science topic under study 

(e.g., human causes and effects of climate change) by breaking it 

down into a set of subtopics. Each sub-topic describes a system or 

a process (e.g., the greenhouse effect) in terms of entities (e.g., ab-

sorbed heat energy) and causal relations among these entities (ab-

sorbed heat energy increases the average global temperature). As 

students read about the topic, they extract the causal relations be-

tween entities and construct the causal map to teach Betty. Figures 

1 illustrates the Betty’s Brain READ (set of hypertext resources) 

and BUILD interfaces. 

 

(a) 

 

(b) 

Figure 1. Betty’s Brain system showing (a) READ (Science re-

sources) and (b) BUILD (Causal Map) Interfaces 

 

Students can assess their own understanding and success in teach-

ing Betty by:  

1. Querying Betty using a template for asking cause-effect ques-

tions. A second pedagogical “mentor” agent, Mr. Davis, helps 

grade Betty’s answers by comparing them against the expert 

model.  

2. Asking Betty to take a quiz, which helps them evaluate the 

current state of the map. 

 

In addition to the three major actions (READ, BUILD, and AS-

SESS), students can also take NOTES on information from the sci-

ence book, and CONVERSE with Betty or Mr. Davis. Students’ in-

teractions with the environment are recorded, in log files with as-

sociated timestamps.  

Student performance in the Betty’s Brain environment is measured 

by their current “map score”, which is computed as the difference 

between the number of correct and incorrect links present in the 

student’s map at any point of time. Depending on the edit actions 

performed by the student, map score can increase, decrease, or re-

main the same. Map score patterns vary among students and display 

their individual learning behaviors.  
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Students’ learning behaviors in Betty’s Brain are modeled accord-

ing to a cognitive/metacognitive task model [19]. Their interactions 

with the system are mapped to particular skills (for example, read-

ing hypertext resources is mapped to an information acquisition 

skill), which are then interpreted in terms of the overall learning 

objectives. A sequential combination of skills, performed in a con-

text, is interpreted as a problem solving strategy. Researchers have 

employed a combination of analytics methods [34] and exploratory 

sequence mining techniques for detecting and characterizing stu-

dents’ metacognitive processes [20] in the Betty’s Brain environ-

ment.  Betty’s Brain has been shown to significantly improve stu-

dent learning, as measured by gains observed from pre- to post-

tests. [9, 19, 20, 24, 34].  

An important component that governs students’ learning and causal 

reasoning processes in Betty’s Brain is their ability to interpret the 

information provided in the hypertext resources and convert it into 

efficient causal links. However, this information extraction and in-

terpretation procedure cannot be captured completely from our log 

files. The use of eye tracking devices can help us track the reading 

behaviors of students and provide more insight into this procedure. 

Hence, our goal in this work is to use eye tracking devices in class-

rooms to better understand students’ learning behaviors as they in-

teract with Betty’s Brain in authentic settings. In the next section, 

we describe our proposed methodology to extract eye-gaze features 

that are directly related to content in each of the hypertext re-

sources. 

3. METHODOLOGY TO EXTRACT EYE-

GAZE FEATURES 
The steps involved in extracting content based eye-gaze features 

from hypertext resources in an open-ended learning environment 

are shown in Figure 2. In order to extract features, we first align the 

log data (in Figure 2(a)) from the learning environment and raw 

data (b) from the eye-tracking device. Then the Area of Interest 

(AOI) from each section of the hypertext resources (key file) are 

aligned, and used to extract the content based eye-gaze features. 

The details of log data and the key file are described below. 

 

Students’ interactions with the learning environment are stored 

with timestamps, in log files. This includes all student activities 

such as Read, Build, Notes, and Assess actions. To extract the con-

tent based eye-gaze features, we define the bounding box coordi-

nates [x, y] of three AOI regions: a) the title, b) the image c) the 

sentence that explains the causal relationship between entities. The 

AOI positions vary for each resource page, hence a key file is cre-

ated with start and end positions of AOI region of each hypertext 

resource in the learning environment. Table 1 shows a sample key 

file with details of AOIs for a science resource page “Solar Energy 

and Absorbed Light” [33]. The sentence “The more solar energy 

that the Earth receives, the more light energy it will absorb.” de-

scribes the causal relationship between the two entities “Solar en-

ergy” and “Absorbed light energy” that is relevant for the causal 

model. The [x, y] coordinates of starting position and ending posi-

tion of the AOIs are identified, for a display with screen resolution 

of 1600*900, and recorded in the key file. 

The raw data from the eye-tracking device contains eye-gaze posi-

tion on the display represented as [x, y] coordinates with the 

timestamp for each sample. The number of samples per second are 

based on the sampling rate of the eye-tracking device. The 

timestamp in the log data and raw data from eye-tracking are used 

to align and combine them for further analyses. Using the aligned 

data and position of AOIs from the key file, the eye-gaze infor-

mation on AOIs is extracted and then used to extract content based 

eye-gaze features. Eye movements while reading are measured by 

fixations (duration of gaze focused on the same point) and saccades 

(movement of gaze between two fixations) [27, 28]. In this study, 

we used four frequently used [15, 29] measures of fixation, and two 

frequently used measures based on saccades as the features as sum-

marized in Table 2. The features are computed for each of the three 

AOIs discussed above and also for the total page, thus providing a 

minimum of 4 x 4 = 16 content-based eye-gaze features for each 

hypertext resource page. Some of the hypertext resources contained 

multiple sentences that explain the causal relationship between en-

tities. 

 

 

Figure 2: Algorithm to Extract Content Based Eye-Gaze Fea-

tures from Multiple Hypertext Resources 

 
Table 1: Sample Key file with AOIs for a resource page 

AOI Starting posi-
tion in  [x, y] 
coordinates 

Ending position in 
[x, y] coordinates 

Image [415,350] [810,640] 

Title [417,120] [734, 145] 

Causal Rela-
tion 

[416, 281] [1330,305] 

Entities Solar energy Absorbed light en-
ergy 

Causal Rela-
tionship be-
tween entities 

The more solar energy that the Earth 
receives, the more light energy it will 
absorb.  

 

4. EXPERIMENTAL METHODOLOGY  
The analysis presented in this paper is based on a recent study of 

Betty’s Brain. The data was collected from eighteen 6th grade stu-

dents from two classrooms of a middle school in Nashville, Ten-

nessee, USA.  

Students used the Betty’s Brain system to learn about the causes 

and effects of climate change. The students' goal was to develop a 

causal map containing 22 concepts and 25 links representing the 

greenhouse effect (e.g. solar energy, absorbed light energy), hu-

man activities affecting global climate change (e.g. deforestation, 
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vehicle use), and impacts on climate (e.g. sea ice, ocean level, 

drought). The hypertext resources were organized into one intro-

ductory page, three pages covering the greenhouse effect, four 

pages covering human activities, and two pages covering impacts 

on climate. Additionally, a glossary section provided a description 

of some of the concepts, one per page. The complete resources were 

made up of 31 hypertext pages.1 

Table 2: Description of eye-gaze features 

Feature Description 

Fixation Count Total number of fixations counted 

in a page 

Average Fixation Du-

ration in milliseconds 
Mean of fixation duration on a page 

(i.e., Gaze duration mean) 

Fixations Count on 

AOI 
Total number of fixations counted 

in an AOI 

Average Fixation Du-

ration on AOI 
Mean of fixation duration on AOI 

Relative Saccade an-

gle in degrees 
The relative angle between two 

consecutive saccades.  

Saccade Amplitude The size of the saccade measured in 

degrees or mins of arc 

 

4.1 Study Procedure 
The study was conducted over seven school days, with students 

participating in the study for one 60-minute class period each day. 

On day 1, students completed the pretest. On day 2, students 

worked with Betty’s Brain introduction topic to get hands-on train-

ing on how to identify causal relation with reading text passages. 

During the second day, we also trained the students on how to cal-

ibrate the eye tracker and helped them to create their eye-tracking 

profile on the laptop. In this study, we used nine Tobii 4c eye-track-

ing device to collect students’ eye-gaze data. The eye trackers were 

attached to the laptop computer just below the screen using mag-

netic strips. Students calibrated using the inbuilt Tobii Eye Track-

ing software2 that displays on-screen instructions followed by a six 

point calibration sequence, where the points appear on the screen 

and disappear when students fixated on each point. Students 

worked on Betty’s Brain climate change topic for four class periods 

(day 3-6). During these periods, students first selected their eye-

tracking profile and calibrated their gaze points using nine-point 

calibration without the help of researchers. On the last day, students 

completed the post-test that was identical to the pre-test. 

4.2 Data Collection 
To extract content based eye-gaze features we combined data from 

the Tobii 4c eye-tracking devices with log data from Betty’s Brain 

system as they worked on the Climate change topic on days 3-6 of 

the study.  

                                                                 

1 The Betty’s Brain system can be downloaded from 

https://wp0.vanderbilt.edu/oele/software/ 
 

2 The Tobii Eye Tracking software was downloaded 

from  https://tobiigaming.com/getstarted/ 

4.3 Validation of Eye-Tracking Data 
Researchers helped the students to set up and calibrate the eye-

tracking device during the training day (second session) for a total 

of 18 students. However, we are not able to use the data from two 

students’ due to continuous calibration failure; hence we used the 

eye-gaze data collected from 16 students’ in this analysis.  

 

On an average, eye gaze data were obtained for 53.3% of the entire 

duration that each student interacted with the learning environment. 

The reason for the loss of data can be attributed to students’ a) focus 

on the keyboard while taking notes and typing labels for keywords, 

b) interaction with other students and c) focus on the teacher or re-

searcher during instructions. To assess the degree to which the pro-

portion of data collected was caused by stable individual differ-

ences between students; we correlated the average proportion of 

data collected over days 1 & 3 for each student with the average 

duration of data collected over days 2 & 4. This correlation was 

very strong (𝑟 =  0.89), demonstrating that factors causing varia-

tion in the amount of data collected for each student were strongly 

affected by individual differences between students. However, 

given the noisy classroom environment, the overall amount of eye-

gaze data collected for 16 of the 18 students was a promising sign 

that consumer-level eye trackers could be useful in this setting. 

4.4 Data Analysis and Methodology  
We processed the eye-gaze data using pygaze analyzer, an open-

source toolbox for eye-tracking [8] to extract fixation and saccades. 

The key file, as shown in table 1, is developed based on AOIs in 

ten hypertext resources. Eye-gaze features as described in table 2 

are extracted using the data collected from 16 students.  

 

To predict learners’ performance in the map building activity using 

only the eye gaze data, we considered the map-building activities 

(ADD, EDIT and DELETE causal links) that were immediately fol-

lowed by a supported3 by hypertext Read actions [34]. The research 

methodology to model learners’ performance using eye-gaze data 

on hypertext resources during Read action is shown in Figure 3. 

The eye-gaze features extracted during each Read action, and per-

formance on the subsequent supported Build actions were used as 

a labeled data to train and validate the classifier. The trained clas-

sifier was then applied on eye-gaze features extracted during all 

Read actions to classify the learner’s reading behavior on hypertext 

resources as effective or ineffective. The average number of effec-

tive and ineffective Read actions over a session were then used to 

model learners’ performance on causal map building actions in the 

same session. 

5. RESULTS 
In this section, we first describe the results of eye-gaze feature ex-

traction and performance of the classifier trained using labeled data. 

Then the analysis of modeling learners’ performance using reading 

behavior is discussed. 

 

 

 

3 The two sequential actions Read → Build, is considered sup-

ported, only if the information acquired in Read action is used in 

the Build action. 
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Figure 3: Research Methodology to Predict Learning from 

learner’s Reading Behavior 

We extracted eye-gaze features during 160 Read actions that were 

immediately followed and supported by Build actions from 16 stu-

dent’s log and eye-tracking data. Out of 160 eye-gaze features, 36 

(22%) were removed due to insufficient eye-gaze data (total dura-

tion of eye-gaze on page < 1 millisecond). Of the remaining 124 

eye-gaze features collected during Read actions, 104 Build actions 

were correct, resulting in an increased map score, and only 20 edit 

actions resulted in a decrease in performance. In order to develop a 

classifier model using this imbalanced dataset we used Synthetic 

Minority Over-sampling Technique (SMOTE) algorithm [6], to up-

sample the minority data (incorrect edits).  SMOTE is used to avoid 

overfitting when replicating the minor samples during up-sampling. 

In SMOTE, a subset of data is taken from the minority class to cre-

ate a synthetic similar instances which are then added to the original 

dataset. 

We used the Gradient tree boosting algorithm [11] for predicting 

map edit action. In this algorithm, many classification models are 

trained sequentially, and the loss function of each model is mini-

mized using a gradient descent method. In this analysis, we used 

decision trees as the classification model for gradient boosting. We 

used Rapidminer [13] for implementing upsampling and Gradient 

tree boosting. The classification results using 10 fold cross-valida-

tion are shown in Table 3.  

The gradient tree boosting algorithm predicted the correctness of 

map edit action with an accuracy of 80.83%, Cohen’s kappa κ = 

0.62, and F1 Score = 0.82.  

Table 3: Predicting Performance on Map Edit Actions. 

 Actual  

Predicted Map Edit (+) Map Edit (-) Class Preci-

sion 

Map Edit (+) 79 15 84.04% 

Map Edit (-) 25 89 78.07% 

Class Recall 75.96% 85.58% 
 

 

The trained gradient tree boosting classifier was then used to clas-

sify learners’ reading behavior as effective or ineffective using eye-

gaze data during from all of the Read actions. We extracted 1987 

eye-gaze features during Read actions of all students. Out of 1987 

Reading behaviors extracted, 329 (16.5%) were classified as inef-

fective and rest were classified as effective. Without applying any 

up sampling technique, for each student, we computed the number 

of effective and ineffective read actions per session. To model 

learners’ performance in map building actions using their reading 

behavior on hypertext resources, we used a linear regression with 

the net change in map scores per session as a dependent variable. 

The regression statistics are described in Table 4.  

 

Table 4: Regression Statistics 

Multiple R 0.515 

R Square 0.262 

Adjusted R Square 0.229 

Standard Error 3.675 

Observations 49 

 

Learner’s performance in the map building task could be predicted 

from a number of effective and effective Read actions by using the 

following formula:  

Performance = 0.17 * # of effective page Read actions + 0.21 * # 

of Ineffective Page Read actions - 1.46;   R = 0.51.  

The correlation value, R, indicates a moderate degree of correlation 

between the independent variable (Number of effective and inef-

fective read actions) and dependent value (Performance in the map 

building actions).  

The results of classifier models trained using the imbalanced data 

show that prediction of learners’ performance for each link-creation 

event,  only using content-based eye-gaze features, was signifi-

cantly greater than chance (Kappa score κ = 0.62, and F1 Score = 

0.82). The results of the linear regression model indicate the ability 

to predict learner’s performance on map building tasks based on 

their reading behaviors observed during Read actions. 

6. CONCLUSIONS, LIMITATIONS AND 

FUTURE WORK 
Our goals in this research were threefold: (1) to test the effective-

ness of using consumer-level eye-tracking devices in a noisy class-

room environment; (2) to extract the content level eye-gaze features 

during learners reading hypertext resources in the learning environ-

ment; and (3) to predict the learner's performance based on their 

reading behavior. In this study, we collected eye-gaze data from 16 

middle school student while working on Betty's Brain learning en-

vironment in a noisy classroom environment. We proposed a meth-

odology to extract content level eye-gaze features and applied it to 

the data collected from our study. The extracted features were able 

to predict learner's performance in map building task with an F1 

score of 0.82.  These results show the ability to track and predict 

learner’s performance that can be used to provide real-time feed-

back and adaptive instructions to them. 

The present study has two limitations. First, we were able to extract 

only 124 eye-gaze features during the reading task to train the clas-

sifier to predict learning. Also, the eye-gaze features extracted were 

imbalanced necessitating use of an upsampling technique to train 

and validate the classifier. Second, we were able to collect eye-
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tracking data only for 54% of the entire duration that student's in-

teraction with the learning environment in the real classroom set-

ting due to the unstructured nature of the environment. 

In addition to collecting more data in our future studies, we propose 

to analyze students’ learning behaviors not only from their reading 

behaviors, but also from learner's other interactions with the sys-

tem, such as analyzing the quiz answers and interactions with the 

two virtual agents in the system -- the Mentor, Mr. Davis, and the 

Teachable Agent, Betty. The goal is to derive more precise infor-

mation of the coherence relations between actions (see [34]). We 

also propose to implement real-time eye-gaze analysis to provide 

personalized feedback based on learner’s reading behavior.  
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ABSTRACT
Personalized learning environments requiring the elicitation
of a student’s knowledge state have inspired researchers to
propose distinct models to understand that knowledge state.
Recently, the spotlight has shone on comparisons between
traditional, interpretable models such as Bayesian Knowl-
edge Tracing (BKT) and complex, opaque neural network
models such as Deep Knowledge Tracing (DKT). Although
DKT appears to be a powerful predictive model, little ef-
fort has been expended to dissect the source of its strength.
We begin with the observation that DKT differs from BKT
along three dimensions: (1) DKT is a neural network with
many free parameters, whereas BKT is a probabilistic model
with few free parameters; (2) a single instance of DKT is
used to model all skills in a domain, whereas a separate
instance of BKT is constructed for each skill; and (3) the in-
put to DKT interlaces practice from multiple skills, whereas
the input to BKT is separated by skill. We tease apart these
three dimensions by constructing versions of DKT which are
trained on single skills and which are trained on sequences
separated by skill. Exploration of three data sets reveals
that dimensions (1) and (3) are critical; dimension (2) is
not. Our investigation gives us insight into the structural
regularities in the data that DKT is able to exploit but that
BKT cannot.

Keywords
Personalized learning, Online education, Knowledge tracing,
Deep learning, Sequential modeling

1. INTRODUCTION
∗Denotes equal contribution by authors

The optimization of the human learning is a recurring topic
in educational research. Traditional human instructors mon-
itor and assess a student’s knowledge and adapt instruc-
tional activities to help the student achieve her goals. As-
suming the knowledge in a domain has been decomposed
in a hierarchy of skills, the sequence of learning activities
becomes a scaffold for the learning process, helping the stu-
dent to acquire prerequisite skills before moving to more
complex skills in the hierarchy [1]. Therefore, in tailor-
ing the sequence to the needs of the student it is essential
to track, assess, and predict the student’s changing knowl-
edge state, thereby personalizing the design. In reality, with
limited educational resources a standardized lesson design
is more the norm than the exception. Nevertheless, au-
tomated tutoring/self-study designs have presented an in-
teresting attempt to personalize learning, and offer a more
budget-friendly option in the long term. To be effective, au-
tomated tutoring systems should model the student’s knowl-
edge state, known as knowledge tracing [3], substituting the
cues that a human instructor would use to assess the student
with the student’s performance along the sequence of forma-
tive and summative learning activities. However, knowledge
tracing and the evaluation of the personalized learning en-
vironments remain a complex endeavor and the focus of in-
terest for applied machine learning research.

1.1 Knowledge Tracing
A knowledge-tracing model tracks a student’s evolving knowl-
edge state as the student practices a sequence of problems
[3]. The knowledge state is decomposed into a set of do-
main skills required to solve the specific problems that the
student is attempting. Each problem is labeled with the
corresponding skill required for that problem. The criti-
cal data to be modeled thus consist of a sequence of pairs,
Dq = {. . . (Xqt, Yqt) . . .}, where Xqt is a categorical random
variable indicating the specific skill required to be able to
solve the problem presented to student q on trial t, and Yqt

is a binary random variable denoting the outcome of the
trial, with Yqt ∈ {correct , error}. Of course, most modern
data sets have far richer information—the use of supporting
materials or hints, response latencies, time between trials,
number of attempts, the specific problems being attempted,
etc. For the present research, we are not considering these
additional sources of data.
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In Bayesian knowledge tracing (BKT), the data are parti-
tioned by skill, leading to a skill specific dataset,

Dqs = {(Xqt, Yqt)|Xqt = s}

in which the trial sequence is re-indexed for each skill s.
BKT is a hidden Markov model that performs inference to
determine a latent binary skill variable Kqst, denoting the
knowledge state of student q on skill s at the start of trial
t. The model for skill s has 4 parameters [5], θs, with the
following interpretations in terms of the model:

θs ={P (Kqs0) = 1, P (Yqt = 1|Kqst = 0),

1− P (Yqt = 0|Kqst = 1), P (Kqst = 1|Kq,s,t−1 = 0}.

In this form the model assumes no forgetting, i.e., the knowl-
edge state K cannot transition from 1 to 0. Note that each
skill is treated independently; cross-skill interactions are not
modeled.

DKT [5, 7] is a recurrent neural network whose input layer
is a representation of the previous trial, (Xq,t−1, Yq,t−1) and
whose output layer is a prediction, for every possible skill,
of whether the student would answer problems of that skill
correctly, i.e., ∀s, P (Yq,t|Xq,t = s).1 Internally, DKT has a
layer of recurrent hidden units that, through training, learn
to hold the student’s knowledge state in order to make pre-
dictions. Typically, the hidden layer contains LSTM units,
often used to handle sequence processing tasks because of
their ability to maintain state over time.

As originally implemented, DKT makes three assumptions
that distinguish it from BKT:

1. All skills are interleaved in a single sequence over time,
and predictions are made for each trial in the sequence.
In contrast, BKT assumes that skills are presented in
separate sequences. We will refer to this distinction
as combined sequence (CS) versus separate sequences
(SS).

2. All skills are learned by a single model that combines
information across skills. In contrast, BKT assumes
that a separate model is trained on each skill, and thus
the parameters for different skills do not interact. We
refer to this distinction as combined model (CM) versus
separate models (SM).

3. DKT is of course based on a neural network, whereas
BKT is a probabilistic model. The neural network
has far greater flexibility. For example, BKT assumes
that once a student learns they stay in the ‘knowing’
state. In contrast, DKT can model forgetting. To
illustrate another difference, DKT can in principle re-
member the last n trials and condition its prediction
on this complex state representation, whereas BKT is

1The inputs and outputs of DKT can be representations of
either skills or problems. For example, DKT could represent
4+3 and 7+2 as two distinct problems or it could represent
them as the skill single-digit addition. Because BKT oper-
ates with the level of representation being skills and we wish
to compare DKT to BKT, our implementation of DKT does
the same: its representation of the current trial is a skill
index and the correctness of the response; its representation
of the output is one prediction per skill index.

Markovian—it embodies the input history in a single
binary state variable.

Assumption 1 is conditioned on assumptions 2 and 3; as-
sumption 2 is conditioned on assumption 3. Our goal is to
tease apart these assumptions and examine them individu-
ally, allowing us to determine which assumptions are most
responsible for the improvements in performance that DKT
achieves over BKT. In addition to the standard form of BKT
and DKT, we introduce two new variants of DKT: one that
drops assumption 1, and one that drops assumptions 1 and
2. For the sake of understanding the relationship among
the four models, we relabel the standard forms of BKT and
DKT, obtaining the following progression of models:

• DKT-CM-CS: The standard form of DKT, which is
a single neural network that learns all skills (the com-
bined model or CM) and its input sequence consists
of the interlaced sequence of trials across all skills (the
combined sequence or CS). This model incorporates
assumptions 1-3.

• DKT-CM-SS: DKT minus assumption 1. This vari-
ant is trained on a separate sequence for each skill. A
single model is still used to predict for all skills (the
combined model or CM) but the input is separated by
skill (the separate sequences or SS).

• DKT-SM-SS: DKT minus assumptions 1 and 2. This
variant trains a different model for each skill (separate
models or SM) and because each skill is fed into a dif-
ferent model, it is necessary to separate the sequences
by skill (SS).

• BKT-SM-SS: The standard form of BKT. We aug-
ment the name with SM to remind the reader that
a separate instantiation of the model is constructed
for each skill, and with SS to indicate that sequences
are separated by skill and fed into the correspond-
ing model. This model drops all three assumptions
of DKT.

Pairwise comparisons among models allow us to examine in-
dividual assumptions: DKT-CM-CS and DKT-CM-SS differ
only in assumption 1; DKT-CM-SS and DKT-SM-SS differ
only in assumption 2; and DKT-SM-SS and BKT-SM-SS
differ only in assumption 3. By examining the performance
differences between each pair, we can determine the value of
each assumption.

1.2 Related Work
Recent studies compare traditional models such as Bayesian
Knowledge Tracing (BKT) and its variants against complex
neural network models such as Deep Knowledge Tracing
(DKT) [4, 5, 6, 7, 8, 10, 11, 12]. The basic BKT (or BKT-
SM-SS) is at a distinct disadvantage relative to the standard
DKT (or DKT-CM-CS) when it comes to exploiting inter-
skill similarities, integrating recency effects, contextualizing
trials and representing variations on the student’s abilities.
Therefore, DKT on balance outperforms basic BKT. Efforts
have been made to show that when additional machinery is
added to BKT, it rises in performance to a comparable level
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with DKT [5]. But little has been done to examine what
factors are contributing to the superiority of DKT.

2. METHODOLOGY
2.1 Data sets
We examined three data sets which vary in the number of
students and the number of skills. Two data sets, ASSIST-
ments 09-10(b) and KDD Cup 2010, are well studied in the
educational data mining literature. The ASSISTments data
set is generated from an online grade school mathematics tu-
tor. The 09-10(b) version of the data were cleaned by Xiong
et al. [11] to remove repeated multiple skill problems which,
in the original data base, were duplicated for each compo-
nent skill, and when left in the data set give an advantage
to DKT over BKT. ASSISTments 09-10(b) consists of 4217
students and 124 skills. The KDD Cup 2010 data is from the
2005-2006 Cognitive Algebra Tutor [9]. These data consist
of 574 students and 100 skills. Both data sets were obtained

Figure 1: Example distribution of the trials in Woot
Math dataset among the skills and the correctness
of their outcomes used for training.

Figure 2: Example distribution of the trials in Woot
Math dataset among the skills and the correctness
of their outcomes used for evaluation.

from a GitHub repository of one of the authors [13]. The
data in the repository are divided into a training and a test
set.

The third data set was collected by Woot Math, a Boulder
Colorado start up that develops adaptive learning environ-
ments for mathematics. The focus is on helping students
in grades 3-8 master core math concepts, beginning with
rational numbers. The Woot Math software delivers a per-
sonalized progression of interleaved video instruction and
scaffolded problems to mimic the natural give-and-take be-
tween a student and a tutor. The content within the environ-
ment is divided in units. Each unit is a collection of lessons
related to a specific area of a subject from the elementary
mathematics curriculum, e.g, fractions. Further, each lesson
comprises several sets of problems and instructional content
that focus on a particular aspect of a unit. Ultimately, each
problem set is coupled to a skill. It is worth noting that the
learning trajectories are adaptive, and as consequence dif-
ferent students have different numbers of trials in a lesson.

That dataset consists of anonymized data capturing the state
of the learning platform when the student interacted with a
particular labeled exercise. Although more secondary data
features are available, we selected only the following as the
primary features: an identifier tag, which is an unique iden-
tifier for a skill, and the correctness of the answer of binary
outcome of the interaction. In order to decrease sparsity,
we limited our data set to those students who had at least
50% of their trials within ten most popular skills completed.
This selection rendered a set of 625,619 trials from 11,659
students, with exercises drawn from among 10 skills. The
data were split by student to obtain an 80:20 ratio of train-
ing to testing examples (9,327 students for training, 2,332
students for testing). The distributions of trials among the
ten skills and the correctness of their outcomes are shown in
Figure 1 for data used during training and Figure 2 for data
used during the evaluation.

2.2 Data encoding
For DKT, input vectors are a one-hot encoding of the pre-
vious trial, specified by the conjunction of (a) the skill to
which the trial belonged, and (b) whether or not the trial
was answered correctly. Thus, if there are ns skills in total,
then the input vector has 2ns units, exactly one of which
would be turned on for any input. The input vectors are
fed into the models in a sequence sorted by the temporal or-
der of the trials. The output from DKT is a vector with ns

elements, each element s being the model’s estimate of the
probability that the student had acquired skill s given the
performance history of the student. This probability also
specifies how likely the student will be to answer the next
trial correctly if it is a problem requiring skill s.

2.3 Model implementation
To implement DKT methods, we modified the source code
used by Xiong et al. [11], as obtained from one of the au-
thor’s GitHub repository [13]. The modifications pertained
the way the data were to be fed to the model when single
skill sequences were used. For DKT, we ran five replications
of training the neural net with different random weight ini-
tializations each replication. The same training and test
split was used for all five replications.
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For initializing weights in all the DKT methods, we used
random uniform weights in the range [−.05,+.05]. All DKT
models had a single hidden layer. DKT-SM-SS used 10
LSTM units for all datasets. For DKT-CM-SS and DKT-
CM-CS, we used one hidden layer with 50 LSTM units for
the Woot Math dataset and 200 LSTM units for the other
two datasets, due to the fact that they contain more skills.
Additionally, for all DKT models, we used drop-out on the
hidden layer with keep probability of 0.6.

Rather than run BKT on ASSISTments and KDD, we report
the results from Xiong et al. [11]. Our own implementation
of BKT was used to obtain performance estimates for the
Woot Math data.

3. RESULTS
We estimate the discriminative performance of each model—
its ability to predict when a student will answer correctly or
incorrectly—using the signal detection AUC (area under the
curve) measure. There are a two methods by which AUC
can be computed. One method, within-skill AUC, involves
separating the test data for all students by skill and com-
puting an AUC value for each skill and then computing the
mean across skills. The other method, between-skill AUC,
involves combining data from all students and all skills and
computing a single AUC score. In general, the between-skill
AUC is larger than the within-skill AUC for two reasons.
First, it incorporates the degree to which models are success-
ful at predicting relative performance among skills. Second,
the between-skill AUC weighs all trials equally, whereas the
within-skill AUC de-emphasizes skills with many trials. In
our work, we compute between-skill AUC, both because it is
sensitive to aspects of the data we care about and it matches
the methodology used by Xiong et al. [11].

Table 1 shows a summary of results for the three data sets
(rows of the table) and the four models (columns 4-7 of the
table). From left to right, BKT-SM-SS is the basic BKT
model, for which a separate model is trained per skill and
the sequences are separated by skill. DKT-SM-SS is an
implementation of DKT in which a separate model is con-
structed for each skill and the sequences are separated by
skill; this procedure is analogous to the manner in which
BKT is trained, except the model is a neural network in-
stead. DKT-CM-SS involves a single combined model trained
on all skills, but the sequences fed to the model are separated
by skill. Finally, DKT-CM-CS is the standard implementa-
tion of DKT in which a combined model is trained on all
skills and the input sequences combine skills to obtain an
interleaved trial history.

3.1 Interleaved- vs. blocked-skill sequences
DKT-CM-CS and DKT-CM-SS differ only in the manner in
which the student sequences are parsed. The combined se-
quences interleave various skills; the separate sequences are
blocked or filtered by skill. For example, 1-3-3-2-2-1-1-2-3
is an interleaved sequence, and {1-1-1, 3-3-3, 2-2-2} are the
set of blocked sequences. In both cases, the sequence or-
der corresponds to temporal order of the trials. Our results
show a win for DKT-CM-CS for ASSISTments and KDD. In
these cases, DKT is able to leverage the interaction among
skills. One likely form of interaction that the model exploits
is the fact that strong students perform well on all skills,

weak students perform more poorly on all skills. Conse-
quently, there should be an inter-skill correlation for a given
student. To elaborate, consider the sequence of trials with
two skills, 1-1-1-2-2-2. If the student performs extraordinar-
ily well on the 1-1-1 sequence, this observation should be
predictive of better-than-average performance on 2-2-2. We
suspect that adding IRT-like student ability parameters to
DKT might eliminate the difference between the combined-
and separate-sequence versions of DKT.

For the Woot Math data set, there was no benefit to com-
bining. We hypothesize that the reason for this finding is
that there are only 10 skills, and the breakdown by skill
is fairly coarse. Because the skills have little in common,
there is less likely to be transfer from one skill to another,
and therefore predicting performance on one skill would not
benefit from knowing performance on another skill. (Simi-
larly, you wouldn’t expect, say, someone’s driving ability to
predict their juggling ability.)

3.2 Combined-skill vs. separated-skill models
Both DKT-CM-SS and DKT-SM-SS are trained on sequences
blocked by skill. They differ in that DKT-CM-SS is trained
on all skills at once. Thus its parameters are shared across
skills. In contrast, a separate instance of DKT-SM-SS is
trained for each skill. Thus, its parameters are not shared
across skills. In both cases, AUCs are computed by pool-
ing data across skills and computing a single AUC—the
between-skill AUC we referred to earlier.

We do not observe a significant difference in performance
between DKT-CM-SS and DKT-SM-SS. On KDD they per-
form almost identically. On ASSISTments, DKT-SM-SS
does slightly better. And on Woot Math, DKT-CM-SS does
slightly better. In principle, training a combined model on
all skills will be beneficial if different skills are learned in a
similar fashion, i.e., if the time course of learning skill s1 is
related to the time course of learning skill s2. When there
is similarity across skills, there can be inter-skill transfer
in modeling the temporal dynamics of learning. However,
the benefit of this transfer should diminish as data sets get
larger. With a large enough data set for skill s1, the weak
inductive bias of s2 provides little benefit. We suspect that
the reason for observing no benefit by training a single model
on all skills is that our data sets are relatively large. It is
possible on much smaller data sets, we would observe a ben-
efit of using data from skill s1 to constrain predictions on
skill s2.

3.3 Neural network vs probabilistic model
DKT-SM-SS and BKT-SM-SS are trained in exactly the
same way: each model has distinct parameters for each skill,
and data from one skill is not used to inform performance
on other skills. The models differ in that DKT-SM-SS is an
intrinsically flexible neural network with hundreds of param-
eters, whereas BKT-SM-SS has 4 parameters. By restricting
our neural network to model only single skills we are taking
out of the equation the possibility of exploiting inter-skill
similarities, leveling the playing field for the more restricted
BKT model. Nonetheless, the results indicate better perfor-
mance of the neural net than the probabilistic model on all
three data sets. This is consistent with the neural net being
more flexible in characterizing the time course of learning.
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Table 1: Test set performance (AUC) for four models. Standard deviations (N =5) are in parenthesis.
Dataset # Students # Skills BKT-SM-SS DKT-SM-SS DKT-CM-SS DKT-CM-CS

ASSISTments 09-10(b) 4217 124 0.630 0.733 (0.0003) 0.726 (0.0008) 0.809 (0.0021)
KDD 574 100 0.620 0.771 (0.0003) 0.764 (0.0013) 0.818 (0.0025)

Woot Math 11659 10 0.727 0.745 (0.0007) 0.760 (0.0005) 0.745 (0.0032)

BKT-SM-SS embodies a strongly restricted model of learn-
ing. For example, BKT-SM-SS assumes that the probability
of learning on trial t1 is identical to the probability of learn-
ing on t2, for any t1 and t2. In contrast, DKT-SM-SS might
discover that if a student does not learn early on, they are
not likely to learn later on.

4. CONCLUSIONS
Our goal in this research is to understand the factors that
contribute to the strong performance of DKT. We explored
three factors that differentiate DKT and BKT, and we devel-
oped a continuum of 4 models which, when paired, allowed
us to evaluate one factor at a time. Our three key findings
are as follows. First, DKT benefits from being presented
with a sequence of interleaved skills. We hypothesize that
this benefit is due to being able to estimate strength of a stu-
dent based on their performance on one skill and then use
this estimate to predict performance on another skill. Sec-
ond, DKT does not benefit per se by learning about multiple
skills at once versus learning about a single skill. We specu-
late that the reason for this finding is that we have relatively
large data sets, and the inductive bias provided by one skill
offers little leverage in modeling other skills. Third, DKT
shows a large benefit by being a flexible model that does
not incorporate a strong theory of human learning, as does
BKT. This is perhaps our most significant finding, as it sug-
gests that the simple all-or-none learning-without-forgetting
theory that BKT posits is too simplistic.
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ABSTRACT
This paper addresses the question of identifying a concept depen-
dency graph for a MOOC through unsupervised analysis of lecture
transcripts. The problem is important: extracting a concept graph
is the first step in helping students with varying preparation to un-
derstand course material. The problem is challenging: instructors
are unaware of the student preparation diversity and may be unable
to identify the right resolution of the concepts, necessitating costly
updates; inferring concepts from groups suffers from polysemy; the
temporal order of concepts depends on the concepts in question.
We propose innovative unsupervised methods to discover a directed
concept dependency within and between lectures. Our main tech-
nical innovation lies in exploiting the temporal ordering amongst
concepts to discover the graph. We propose two measures—the
Bridge Ensemble Measure and the Global Direction Measure—to
infer the existence and the direction of the dependency relations
between concepts. The bridge ensemble measure identifies concept
overlap between lectures, determines concept co-occurrence within
short windows, and the lecture where concepts occur first. The global
direction measure incorporates time directly by analyzing the con-
cept time ordering both globally and within lectures. Experiments
over real-world MOOC data show that our method outperforms the
baseline in both AUC and precision/recall curves.

Keywords
Concept Dependency Graph, Temporal Order, Bridge Ensemble
Measure, Global Direction Measure, Edge Direction, Edge Existence.
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1. INTRODUCTION
This paper presents two methods to identify extant concept relation-
ships in lectures from a Massive Open Online Course (MOOC).

The problem of concept relationship discovery within MOCCs will
help adapt to learner diversity where students from all over the globe
take classes fromMOOCs. Developing a fine-grainedmap of the con-
cepts presented in the MOOC, indicating pre-requisite relationships,
can facilitate students browsing into course materials flexibly. In
addition, such a map can help in emphasizing the important topics in
the course and how they are related, which can help improve students
understanding. It can be further used to represent the knowledge
state of a student at the concept level, and thus enable personalization
in recommending course materials or quiz questions to students. In
this paper, our goal is to construct such a map automatically for any
course in order to accommodate students’ diversity by supporting
personalized learning.

Generating such a concept dependency graph presents a number of
challenges. First, the instructor cannot predict the prior preparation
of the students taking the class or the granularity at which she
should develop the concept graph, and ensuring that such a concept
graph remains up to date every year is time consuming. Second, an
instructor does not introduce concepts in a rigid order, wherein she
will always present the prerequisite concept before introducing the
main concept; which makes it difficult in determining the presence
and the direction of a relationship between concepts.

We propose innovative unsupervised methods to discover a directed
concept dependency graph. We use lecture transcripts, as do Chaplot
and Koedinger [2], to model the dependency structure between
course concepts. Where Chaplot and Koedinger focus on modeling
the prerequisite structure between units or lectures, we instead focus
on inferring the dependency structure among concepts that appear
within and between lectures. Our main technical innovation lies
in exploiting the temporal ordering amongst concepts to discover
the graph. To the best of our knowledge, we are the first to use
temporal features to construct the dependency graph. We propose two
measures—the Bridge Ensemble Measure and the Global Direction
Measure—to infer the existence and the direction of the dependency
relations between concepts.Both proposed measures outperform the
baseline method [2] in AUC and the precision/recall curves.
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The rest of the paper is organized as follows. In section 2, we formally
frame our problem before describing the two proposed measures in
section 3. Section 4 elaborates our approach for the evaluation and
section 5 presents some limitations. Finally, we discuss some related
work in section 6 before concluding our work on section 7.

2. PROBLEM DEFINITION
Informally, the problem explored in this work can be stated as follows:
given course data, predict the dependency relationships between the
course concepts. More formally, let X be the course represented
by an ordered list of transcripts corresponding to each lecture:
X = [T1,T2, . . . ,TM ]where M is the total number of lectures. LetCX

be the set of concepts discussed in the course CX = {c1, c2, . . . , cN },
where N is the total number of unique concepts. Given X andCX , we
aim to generate the concept dependency graph that relates concepts
in CX according to their prerequisite relationships. The resulting
concept dependency graph is described by an edge weight matrix
A ∈ RN×N . Each entry ai j of matrix A will contain the edge weight
for the associated relationship ci → cj , which means concept ci
is a prerequisite for concept cj . The edge weight reflects the level
of confidence in the inferred relationship. Notice that since the
prerequisite relationship has a direction, A is not symmetric.

A =


0 ... ... W(c1 → cN )

W(c2 → c1) 0 ... W(c2 → cN )
... ... ... ...

W(cN → c1) W(cN → c2) ... 0


The problem of constructing the concept dependency graph can be
reduced to the problem of computing the edge weight between pairs
of concepts given course data.

3. LINKING COURSE CONCEPTS
To relate the course concepts according to their dependency relation-
ships, we propose two measures: the Bridge Ensemble Measure and
the Global Direction Measure.

3.1 Bridge Ensemble Measure
The Bridge Ensemble Measure (BEM) captures concept dependency
structure utilizing inter-lecture and intra-lecture strategies. It contains
three components: Bridges, Sliding Windows, and the First Lecture
Indicator.

3.1.1 Bridges
Let us look at how instructors naturally introduce concepts and their
prerequisite(s). Let CX be the set of concepts presented in course X
and let ca and cb be concepts in that set. Determining the presence of
a concept ca in a lecture transcript Ti is discussed further in section
4.1. Suppose that ca is a prerequisite to cb . Then it stands to reason
that (1) ca will be introduced before cb in the course progression,
and (2) while explaining or talking about cb , the instructor will
naturally refer to ca .

Bridge concepts allow us to exploit the temporal nature of lectures
to infer concept dependency relationships across lectures. Intuitively,
bridge concepts are introduced in an earlier lecture but re-appear in a
later lecture when some new concept(s) are introduced. Accordingly,
bridge concepts signal a prerequisite relationship from the bridge
concepts to the new concepts introduced in the later lecture. For
example, in Figure 1, the bridge concepts c3 and c4 are more likely
to be prerequisite to concepts c5, c6, and c7 discussed in lecture L2.
Formally, let Li be the set of concepts in the lecture i in course X ,

C1

C2

C3

C4

C5

L1 L2

C6

C7

Figure 1: The bridging concepts (c3 and c4) between
lecture L1 and L2 and the resulting candidate prerequisite
relationships.

and Lj be the set of concepts for the lecture j where j > i. The
intersection Lj ∩ Li contains all the concepts that appear in both
lectures. We call these bridge concepts. The difference Lj \ Li
contains difference concepts which are the concepts present in the
later lecture j but not in the earlier lecture i. If ca belongs to the
bridge concepts and cb belongs to the difference concepts, then
there is evidence for the dependency relationship ca → cb and the
edge weight W(ca → cb) should increase. As a result, the bridge
set Bji = {(ca → cb) | ca ∈ Lj ∩ Li ∧ cb ∈ Lj \ Li} contains all
candidate prerequisite edges from lecture Li to lecture Lj . If we
replicate this exercise for every possible pair of lectures, we will end
up with a comprehensive set of all possible candidate bridge edges
Bridges for the course:

Bridges = BM(M−1) ∪ BM(M−2) ∪ ... ∪ B21 (1)

To calculate the edge weight of candidate edges in Bridges, we use
the following bridge scoring function

W(ca → cb) ≈ FBridges(ca → cb) (2)

where

FBridges(ca → cb)

=
The number of lectures where we observe both ca and cb

The number of lectures where we observe cb

=
|{Lj |ca, cb ∈ Lj }|
|{Lj |cb ∈ Lj }|

. (3)

Keep in mind that the bridge scoring function will only calculated
for candidate edges belong to Bridges. Other pairs of concepts will
have zero value for the bridging score.

3.1.2 Sliding Windows
Bridge edges determined by the Bridge Method do not capture every
possible prerequisite relationship. Consider the case where concept
cb has a strong prerequisite ca , but ca and cb only appear together
either in the set of bridge concepts (Lj ∩Li) or in the set of difference
concepts (Lj \Li). As a result, ca → cb will never appear inBridges
and hence the Bridge method cannot infer the prerequisite relations
between them.

To solve this problem and capture intra-lecture prerequisite rela-
tionships, we zoom into each lecture and consider the proximity of
concepts being presented in the lecture. Let ®Lj = [c1, c2, ..., cn] be
an ordered list of concepts discussed in lecture j, where n is the total
number of concepts. Keep in mind that this ordered list contains
redundant concepts which appear in the order where the instructor
mentioned them. In the sliding windows method, we segment ®Lj
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C1 C2 C1 C3 C4 C2 C1 C5 C6 C7Lj =
W1 Wr

K = 4
t0 t1 t2 ………………………… tn-1tn-2

Figure 2: A visualization example of lecture ®Lj with
r = n − K + 1 sliding windows of size K = 4. The sliding
windows captures the proximity of concepts.

into windows Wi = [ci, . . . , ci+K−1] as follows:

Windowsj =
{
{Wi | 1 ≤ i ≤ n − K + 1} n ≥ K{
®Lj

}
n < K .

(4)

Figure 2 depicts the representation of lecture ®Lj using r = n−K + 1
windows of size K = 4. In this study, we choose the K that gives the
best performance; K is set to 10 concepts.

The more windows in which ca and cb appear together, the stronger
the relationship between ca and cb is; thus the edge weight should
increase. The second component of the BEM for edge weights is
the probability of the edge ca → cb given the information we have
about all windows in all lectures Windows =

⋃
j Windowsj .

W(ca → cb) ≈ FBridges(ca → cb) + FWindows(ca → cb) (5)

Where:

FWindows(ca → cb)

=
The number of windows where we observe ca and cb together

The number of windows where we observe cb

=
|{Wi ∈Windows | ca, cb ∈ Wi}|
|{Wi ∈Windows | cb ∈ Wi}|

(6)

We choose to accumulate the bridge weight with the sliding windows
weight because these methods complement each other. Some edges
that captured by the sliding windows method have zero bridging
score and vice versa. Multiplying these two components instead of
accumulating them would eliminate their effect in capturing inter-
and intra-lecture prerequisite edges as the value of these edges will
be zero.

3.1.3 First Lecture Indicator
The third component of the BEM for edge weights comes from the
intuition that the context (other observed concepts) in which a new
concept cb is first introduced plays a strong role in determining what
the prerequisite concepts of cb are. We will assume that cb is first
introduced in lecture j when it has the highest term frequency of the
concept cb compared to other lectures. We call j the lecture indicator
of cb and denote it by LI(cb). When concept ca appears in the lecture
indicator of cb (ca ∈ LLI (cb )), then ca might be a prerequisite to
cb . Another condition we need to examine is the temporal order of
the lecture indicator of concept ca. Naturally, when the instructor
discusses a new concept, he or she needs to explain its prerequisite
concepts beforehand, either in earlier lectures or in the same lecture
where the new concept is being introduced. More formally, then,
LI(ca) ≤ LI(cb). Thus when calculating W(ca → cb) we consider
the first lecture indicator variable FLIca,cb where:

FLIca,cb =

{
1, if ca ∈ LLI(cb ) and LI(ca) ≤ LI(cb)
0, otherwise

C1 C2 C3 C2 Cj C1X =

C1 C2 C3 ……

C1 0 2 1 ……

C2 1 0 1 ……

C3 1 1 0 ……

: : : : ::::::

Global Direction 
Indicator 

(Before Normalization)

Figure 3: A visualizing explanation of the Global Di-
rection Indicator. X represents the course. The matrix
contains the Global Direction Indicator (Before the nor-
malization). Each element in the matrix represents how
many times the concept crow appears before the concept
ccolumn in the whole entire course.

The BEM for edge weights now becomes:

W(ca → cb) ≈ FBridges(ca → cb)
+ FWindows(ca → cb) + FLIca,cb (7)

3.2 Global Direction Measure
The Global Direction Measure (GDM) is an alternative measure
we propose to capture the dependency relationships between course
concepts by incorporating time directly to consider not only the time
ordering within lectures but also globally throughout the course
delivery. In the Bridge Ensemble Measure, one problem with the
sliding windows method is that the temporal order of concepts within
a window Wi is ignored. This seems reasonable since in a single
window, the instructor might mention the dependent concept before
the prerequisite concepts. However, utilizing the temporal order of
concepts in the entire course might improve the inference of the
direction of the dependency relation. Thus, we propose the idea of
the Global Direction Indicator (GDI).

The global direction indicator keeps track of the global temporal
order frequency of concepts discussed in the course. In other words,
it captures how many times concept ca appears before concept cb in
the whole entire course. The more the concept ca appears before the
concept cb , the more likelihood that the direction of the prerequisite
relation is from ca to cb (ca → cb). To capture the global direction
indicator, we represent the course X as an ordered list of concepts dis-
cussed in all course lectures: ®X = [c11, c12, ..., ci j, ..., cM1, cM2, ...]
where i is the lecture number, j is the concept number, and M is
the total number of lectures. Then, we keep track of temporal order
frequency between any pair of concepts in the whole entire course.
Figure 3 depicts the idea of the global direction indicator.

The formula of the global direction indicator is as follow:

GDI(ca, cb) =
TOF(ca → cb)∑

ci ∈CX
TOF(ca → ci)

(8)

where TOF is the temporal order frequency, ci are all concepts
appear after ca in the course progression. We normalize the TOF of
ca → cb by the total number of times ca appears before any other
concept in the course to reduce the impact of popular concepts that
tend to appear before almost every other concept in the course.

In addition to the global direction indicator, we modify the sliding
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windows method to consider the local temporal order of concepts
within a single window:

FDir-Windows(ca → cb)

=
The number of windows where we observe ca → cb

The number of windows where we observe cb

=
|{Wi ∈Windows | ca → cb ∈ Wi}|
|{Wi ∈Windows | cb ∈ Wi}|

(9)

In this case, the directed sliding windows (Dir-Windows) method
captures not only the proximity of pair of concepts but also the local
direction within lectures while the global direction indicator captures
the frequency of the global direction.

The edge weight function according to the GDM is as follow:

W(ca → cb) ≈ GDI(ca, cb) × FDir-Windows(ca → cb) (10)

The rationale behind combining the GDM Components by multiply-
ing them instead of accumulating them is to use the global direction
indicator to improve the direction of edges predicted by the directed
windows instead of predicting the existence of edges. The problem
with the global direction indicator in predicting the edge existence
is that it might give high weight to concepts that appear very often
with the same direction order even if they do not appear together in
any lecture.

4. EVALUATION
In this section, we demonstrate the evaluation process conducted
to assess the performance of the proposed measures. We utilize the
course “Text Retrieval and Search Engines”1 to construct the concept
dependency graph to evaluate our developed measures.

4.1 Building the Course Concept Space
The focus of ourwork is on understanding how to infer the dependency
relationship between concepts, but in order to evaluate the proposed
measures, we must first construct a set of concepts. There is a wide
body of work which attempts to solve the problem of defining and
inferring concepts [3, 9, 10]. In this paper, we use a pre-trained part-
of-speech-guided phrasal segmentation, called Autophrase [10, 8], to
extract salient phrases from lectures’ transcripts. While Autophrase
generates many good salient phrases, some phrases are either too
general or are verb phrases. Our approach to improve the quality
of the selected phrases is to extract phrases from weekly overviews
using the same phrasal segmentation method. At the beginning of
each week in the course, there is a week overview page that explains
the goals and objectives of that week along with the key phrases and
concepts that students need to understand. Utilizing the overview
page of each week aids in filtering out meaningless phrases.

After extracting salient phrases, we manually group synonym phrases
together to construct a concept. We follow Siddiqui et al. [11]
definition of concepts by defining a concept as a set of salient phrases
that describe it. This design decision was made to allow for flexibility
in concept description since the same concept can be referred to
using different phrases by different people.

4.2 Ground Truth
To evaluate the effectiveness of the proposed measures, we form
a ground truth concept graph by leveraging students submissions
1https://www.coursera.org/learn/text-retrieval
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Figure 4: The visualization of the ground truth graph
generated from students data.

about concept dependencies in a course (CS 410) at UIUC offered in
the Spring 2017 semester that follows Coursera’s “Text Retrieval and
Search Engines.” Students were asked to submit a weekly summary
of new concepts they have learned along with prerequisite concepts.
The following is an example of a student entry from week 3:

# f-measure: precision, recall
# pr curve: precision, recall
# map: arithmetic mean of average precision
# gmap: geometric mean of average precision

The total number of edges in the ground truth were 239 edges for
74 concepts in the concept space. Figure 4 visualizes the ground
truth concept graph to see how concepts are related. It is clear that
concepts such as “information retrieval”, “search engines”, “ranking
function”, and “evaluation methodology” have higher degree as these
concepts are connected with many other concepts in the course. This
is reasonable as these concepts considered fundamental in this course.
Such a figure can also be seen as a useful topic map that can facilitate
students browsing into course materials covering different topics
flexibly; however, the map shown in this figure was constructed
based on student submissions—with the proposed methods, we can
construct such a map automatically for any course.

4.3 Baseline Approach
Since the problem formulation of using only transcripts to predict
concept dependency is novel, strictly speaking, no previous method
can be directly used to produce the desired output. The closest work
that we can compare with is the work of Chaplot and Koedinger [2],
which also only uses course content without any external knowledge.
In their paper, they develop two methods: a text-based method called
the overlap method, and a performance-based method. Since our
work is a text-based method, we compare our measures to the overlap
method. The main difference between our work and the overlap
method is that we exploit the temporal features of course delivery
while the overlap method does not; this makes the overlap method
an ideal baseline to study the effect of the temporal features on the
accuracy of edge prediction.

The overlap method, however, only predicts the prerequisite relations
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Table 1: Performance (area under ROC curve) of concept
graph generation for the three methods considered. Both
of the new measures introduced in the paper outperform
the state-of-the-art ExtendedOverlap method on both edge
existence and edge direction tasks.

AUC (ROC)

Method Existence Direction

Bridge Ensemble Measure 0.80 0.81
Global Direction Measure 0.80 0.78
ExtendedOverlap Method 0.74 0.74
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Figure 5:ThePrecision/RecallCurves ofBridge Ensemble
Measure (BEM), Global Direction Measure (GDM), and
the baseline ExtendedOverlap Method (EOM). GDM and
BEM outperform the baseline method (EOM) in both the
existence evaluation and direction evaluation.

between units (e.g. lectures) using the text overlap between units.
Thus the method cannot be used directly to predict dependency
between concepts, the problem that we attempt to solve. Therefore,
we propose an extension called ExtendedOverlap for solving our
problem as a baseline for comparison. Ourmain idea for extending the
overlap method is to first map a course to a set of lectures where the
concept occurred and then leverage the lecture dependency relations
predicted using the overlapmethod to assess the dependency between
two concepts by accumulating the weight of the dependency relations
of lectures they belong to. All weights are normalized to be between
zero and one. We implemented the overlap method using the noun
phrases with document frequency normalization since they achieve
the highest performance [2].

4.4 Concept Graph Performance
We conduct the evaluation of the performance of the generated con-
cept graphs over two dimensions: edge existence and edge direction.
Edge existence evaluates whether the method predicts correct edges
or not while edge direction evaluation ensures not only the correct-
ness of the edge prediction but also their direction. The AUC values
of all the methods are shown in Table 1. We can notice that both the
Bridge Ensemble Methods (BEM) and Global Direction Measure
(GDM) outperform the baseline ExtendedOverlap (EOM) in terms
of the AUC values for both the existence task and the direction task.

We also use the precision/recall curve to compare various methods
as shown in Figure 5. It appears that the Global Direction Measure
has the highest curve followed by the Bridge Ensemble Measure
in both dimensions. This indicates that for various recall values
our measures predict more accurate edges than the baseline. It is
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Figure 6: The comparison between the performance of
the Bridge Ensemble Measure components. While the
undirected sliding windows correctly captured the edge
existence in the interval [0.0, 0.2], it fails at predicting
edge directions.

also interesting to notice that in the precision/recall curve of the
existence evaluation (Figure 5 (a)), the Bridge Ensemble Measure
has the highest precision when the recall is less than 0.1 while
in the precision/recall curve of the direction evaluation (Figure 5
(b)) has the lowest precision until it reaches the recall value of 0.2.
This indicates that, in the interval [0.0,0.2], the Bridge Ensemble
method captures the existence of the edges but fails at specifying the
correct direction. To examine the reason, we study the performance
of various components of the Bridge Ensemble Measure as depicted
in Figure 6. It is appear that the undirected sliding windows method
has the highest curve in the existence evaluation (Figure 6 (a)) and
since it only captures the proximity of pair of concepts and how
they are related, it surges the precision/recall curve of the existence
performance in the interval [0.0,0.2] by capturing correct prerequisite
edges. However, since the temporal feature is only used in limited
way as a binary variable among lectures through bridges and first
lecture indicator components, it sometimes fails at predicting the
correct direction of edges between concepts that only appears within
the same lectures. In contrast, the Global Direction Measure exploits
the global direction indicator that keeps track of the global temporal
order frequency and hence emphasizes or corrects the direction
captured by the directed sliding windows method as depicted in
Figure 7. It is clear from Figure 7 that the global direction indicator
improves the edge direction of the directed windows method when
the recall value is less than 0.2 while it emphasize the edge direction
of the directed windows after that.

To further analyze the differences between the Bridge EnsembleMea-
sure and the Global Direction Measure, we examine their behavior
in the existence dimension. We found that all true positive edges and
false positive edges captured by Global Direction measure are also
captured by Bridge Ensemble Measure. However, Bridge Ensemble
Measure has more false positive edges (59 edges) and more true
positive edges (only 4 edges). We examine the source of the extra
false positive edges in the Bridge Ensemble Measure and found that
73% came from the bridge method, 3% came from the first lecture
indicator, and 22% are from both the bridge method and the first
lecture indicator while the sliding windows has zero contribution
(0%). Further examination of these extra false positive errors shows
that some of them capture long distance dependencies such as the
relation “natural language processing”→ “recommender systems”,
which captures the dependency between the concepts explained in
the first and last lectures. By examining the source of this relation, we
found that the bridge method makes the inference of the relation. As
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Figure 7: The effect of the global direction indicator on
the Global Direction Measure. The GDI improves the edge
direction of the directed windows method when the recall
value is less than 0.2 while it emphasize the edge direction
of the directed windows after that

mentioned earlier, bridge method captures the dependency relations
between concepts across lectures and, in contrast to the sliding win-
dows method, it does not require the proximity of concepts within
lectures’ transcripts. This property of the bridge method gives the
Bridge Ensemble Measure the ability to capture long distance rela-
tions between concepts in contrast to the Global Direction Measure
which only captures the local dependencies between concepts (within
lectures).

We also conduct a qualitative analysis of the false positive edges to
examine the reason of the high values and hence the low precision
values. We found three types of false positive edges that we may
actually consider correct relations. First, the transitive property edges
that are captured by our measures are not always specified in the
ground truth edges. For example, students specify the relations
“length normalization”→ “ranking function”, and “ranking function”
→ “vector space model”. While both our measures and the baseline
capture these relations, they go further and also capture the transitive
relation “length normalization”→ “vector space model”. Second,
there are issues with relations with differing concept granularities.
For instance, students specify a dependency relation “language
models”→ “dirichlet prior smoothing” while the generated graphs
by the three methods capture the relation “language models” →
“smoothing methods.” The concept “smoothing methods” is more
general than the concept “dirichlet prior smoothing.” Third, there
are missing “true” relations that the students did not specify in the
ground truth. For example, students did not specify the following
relations that are captured by our measures: “tfidf”→ “bm25”, and
“length normalization”→ “bm25.” In general, the three types of false
positive errors can justify to some extent the high values of the false
positive errors and thus the low values of the precision.

In general, the Bridge Ensemble Measure and the Global Direc-
tion Measure outperform the baseline in terms of AUC and preci-
sion/recall curves, with the Global Direction Measure having the
overall highest performance. These results emphasize the positive
effect of the temporal feature on improving the accuracy of the
generated concept graph.

5. LIMITATIONS
There are some limitations in our study. First, in the evaluation we
have not examined the robustness of our measures compared to
the baseline utilizing other courses taught by different instructors.
Second, we use the students’ perspectives of the concept dependency

graph as a ground truth, and we are the first study to do so. However,
in the future we plan to compare various methods’ performance by
utilizing not only the students’ perspectives of the concept graph but
also one generated by instructors. Third, in this study, we include an
edge in the ground truth even if only one student specifies it; in the
future we plan to use some agreement measures before including an
edge in the ground truth. Fourth, we represent the course concept
graph according to the dependency structure without distinguishing
whether the dependency relation captures the hierarchical structure
or real prerequisite relationships. We believe that the ideal structure
of the concept dependency graph is a hierarchical graph with cross
link edges where the hierarchical structure captures the “general
concept” to “specific concept” relations while the cross links depict
the prerequisite relationships between concepts.

6. RELATED WORK
Most prior work focuses on relationships between concepts such
as similarity relations [13] and hierarchical relations [5]. Although
the most important concept relation to learners is the dependency
or prerequisite relation, this relation has been the least studied [4].
Some prior works utilize Wikipedia articles [6, 12, 1, 7], scien-
tific corpora [4], or educational materials from online educational
platforms [14, 2, 7] to model the dependency structure between
concepts. While many studies utilized external knowledge to recover
the prerequisite relations [14, 7] , Chaplot and Koedinger [2] utilize
the course content with students performance to infer such relation.
In contrast, to make our method more accessible, we exploit only
the easily accessible educational materials to model the dependency
relations among course concepts.

Previous research represents graph concepts in various ways. Gordon
et al. [4] identify concepts using LDA topic modeling that fails in
identifying finer-grained concepts. Yang et al. [14] explored four
different representations and found that word and category represen-
tations have similar performance; however, word representation has
slightly better performance on some data sets. One problem with
using category representations is that mapping phrases to Wikipedia
categories affects concept granularities by preferring more general
concepts. On the other hand, Chaplot and Koedinger [2] found that
noun phrase representation outperforms other representations. There-
fore, in this study, we utilize noun phrase representation but extend
it using temporal information.

Previous work developed supervised [1, 12, 14] and unsupervised
approaches [6, 7, 2] to predict the dependency relationships among
concepts. Several studies rely on external knowledge to predict
prerequisite relations across courses [14, 7] while we only lever-
age course materials to model the dependency relations within a
course not between courses. Chaplot and Koedinger [2] address the
dependency structure within courses, but between units instead of
concepts taught within units. Another main difference is the use of
the temporal feature in the course delivery to model the dependency
structure as we are the first study that exploits the temporal feature.

7. CONCLUSIONS
In this paper, we leverage the accessible MOOC content and in-
corporate the temporal feature of the course to construct a concept
dependency graph. We developed Bridge Ensemble Measure and
Global Direction Measure that exploit the temporal order in course
delivery to model the dependency structure. We revealed in the eval-
uation that both developed measures outperform the baseline method
in AUC and in precision recall curves. This finding emphasizes the
positive effect of utilizing the temporal feature of course progression.
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ABSTRACT
In this work we use prior to tutor-session data to generate an indi-
vidualized student knowledge model. Intelligent learning environ-
ments use student models to individualize curriculum sequencing
and help messages. Researchers decompose the learning tasks into
sets of Knowledge Components (KCs) that represent individual
units of knowledge; the student model estimates a parameters for
each KC, but not for each student. Using existing performance data
to adjust parameters for each individual student improves model
fit, and leads to different practice recommendations. However, in
order to be implemented in a live system we need to have a method
to estimate the student parameters using only the student‘s prior
activities. In this work, we use data collected from student reading,
prior tutor lessons, to predict individualized difference weights for
parameters of a Bayesian Knowledge Tracing (BKT) variant. We
find that best-fitting student parameters trained on previous lessons
do not directly transfer to new lessons; however, we can effectively
predict the student parameters for the new lesson by using fea-
tures derived from prior lessons, and prior to tutor text-reading
transaction data.

KEYWORDS
Individualization, Student Modeling, BKT, Genetics

1 INTRODUCTION
Learner models of domain knowledge have been successfully em-
ployed for decades in intelligent tutoring systems (ITS), to individu-
alize both curriculum sequencing [8, 19, 23, 24] and help messages
[6, 13]. Bayesian methods are frequently employed in ITSs to infer
student knowledge from performance accuracy, as in the citations
above, as well as in other types of learning environments [21], and
Bayesian modeling systems have been shown to accurately predict
students‘ tutor and/or posttest performance [7, 8, 14, 24]. These
models generally individualize modeling parameters for individual
knowledge components (KCs, also referred to as skills) [16], but
not for individual students. Several studies have shown that indi-
vidualizing parameters for students, as well as for KCs, improves
the quality of the models [7, 18, 22, 27]. These approaches to model-
ing individual differences among students have monitored student
performance after the fact, in tutor logs that have been previously
collected to derive individualized student parameters for the tu-
tor module(s). While these efforts have proven successful, they
don‘t achieve the goal of dynamic student modeling within an ITS,
since estimating and using individualized parameters concurrently
within a tutor lesson is quite difficult. In this paper we examine how
well individual differences in student learning in a lesson of the

EDM‘18, July 2018, El Buffalo, New York USA
.

Genetics Cognitive Tutor [7] can be predicted ahead of time from
two types of prior online activities: reading instructional text and
solving problems in prior tutor lessons. In the following sections
we describe Knowledge Tracing, the on-line student activities, the
predictors derived from students‘ reading and prior tutor activi-
ties, and our success in using these predictors to model individual
differences in the tutor.

1.1 Modeling Framework
Bayesian Knowledge Tracing (BKT) estimates the probability that a
student knows each of the knowledge components (KC) in a tutor
lesson. It employs a two-state Bayesian learning model — at any
time a student either knows or does not know a given KC — and
employs four parameters, which are estimated separately for each
KC: p(L0) — initial knowledge the probability a student has learned
how to apply a KC prior to the first opportunity to apply it in a
lesson. p(T ) — learning rate the probability a student learns a KC at
each chance to apply it. p(G) — guessing the probability a student
will guess correctly if the KC is not learned. p(S) — slips the proba-
bility a student will make an error when the KC has been learned.
BKT is employed in Cognitive Tutors to implement Cognitive Mas-
tery, in which the curriculum is individualized to assign only the
number of practice opportunities needed to enable the student to
“master“ each of the KCs, which is generally operationalized as a
0.95 probability that the student has learned the KC.

1.1.1 Individual Differences. Knowledge Tracing and Cognitive
Mastery generally employ best-fitting estimates of each of the four
parameters for each individual KC but not for individual students.
In this work, we incorporate individual differences among students
into the model in the form of individual difference weights. Fol-
lowing Corbett and Anderson [8], four best-fitting weights are
estimated for each student, one weight for each of the four param-
eter types, wL0, wT, wG, wS. In estimating and employing these
individual difference weights (IDWs), we convert each of the four
probability estimates to odds form (p/(1-p)), multiply the odds by
the corresponding student-specific weight and convert the resulting
odds back to a probability. (See [8] for computational details.)

In this paper we focus on four types of BKT models for the
third lesson in a Genetics Cognitive Tutor curriculum on genetic
pathways analysis to examine how well IDWs in a tutor lesson can
be predicted from prior online activities. The four models are: (1) a
standard BKT model (SBKT) with no individualization, (2) a model
with best-fitting IDWs for lesson 3 (BFIDW-L3), (3) models with
best-fitting IDWs from prior lessons, and (4) a model with predicted
individual difference weights derived from earlier activities. We
compare howmuch each of the three types of individualized models
improves upon the non-individualized SBKT fit (1).
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Eagle et al. [11] estimated individual difference weights using
reading performance data, pretest scores, resulting in a predictive
model 40% as effective as the best-fitting model; the predictive
model was improved for a second lesson reaching 60% of the best-
fitting model by using previous lesson data [11]. As pretests do
not necessarily appear in all online environments, in this paper,
we examine how well we can predict IDWs in a third lesson with
the same types of reading measures as in [11, 12] along with an
expanded set of tutor performance measures.

2 STUDENT ACTIVITIES IN THIS STUDY
The students in this study worked through two successive topics
in the genetic pathway analysis curriculum within the Genetics
Cognitive Tutor. The first topic, gene interaction, examines the
different ways two genes can interact in controlling a single trait.
e.g., coat color in cattle. The second topic, gene regulation, focuses
on three-gene systems in which two genes function together to
control the expression of the third gene.

For each topic students completed five activities: reading instruc-
tional text, taking a conceptual-knowledge pretest, completing two
Genetics Cognitive Tutor lessons and completing a problem-solving
posttest. The two tutor lessons for each topic require students to
think about the topic in contrasting ways. In the first, “forward rea-
soning“ or process modeling lesson, students are given descriptions
of how genes interact in a system and reason about the result-
ing behavior of the system. In the second, “backward reasoning,“
or abductive reasoning lesson, students are given descriptions of
how genetic systems behave, and draw conclusions about how the
underlying genes interact.

Online Instructional Text: The first text on gene interaction con-
sists of 23 screens, and the second gene regulation text consists of
20 screens. The screens are structured like pages in a book. Students
can move forward and backward through the screens, one screen
at a time. After a student touches each page once a “done“ button
appears and the student can then continue reading, or exit at any
time.

Cognitive Tutor Lessons: The first tutor lesson, Gene Interaction
Process Modeling, consists of 5 problems, averaging 45 steps per
problem. The second tutor lesson, Gene Interaction Abductive Rea-
soning, consists of 6 problems, averaging 25 steps each. Features
of student performance in these two lessons (along with features
of their reading performance) are employed to predict individual
differences in the third tutor lesson, Gene Regulation Process Mod-
eling, which consists of 9 problems with 27 steps each.

3 PREDICTORS
In this study, we examine three types of student performance vari-
ables as predictors of best fitting Lesson 3 IDWs: Aspects of reading
the two texts, Lesson 1 and Lesson 2 IDWs, and features of student
performance in completing tutor Lessons 1 and 2.

3.1 Instructional Text Reading Predictors
Two types of measures of students‘ reading performance were
derived for both the Topic 1 (gene interaction) and Topic 2 (gene
regulation) instructional texts: reading time per page and pages
revisited in the text. Eagle et al [11, 12] found that both types of

reading measures for the gene interaction text entered reliably into
predictive models for IDWs for both of the gene interaction tutor
lessons.

Reading Time: A factor analysis was performed on log reading
times for the 23 Topic 1 pages and a factor analysis on log reading
times for the 20 Topic 2 pages to reduce the number of predictors.
Each analysis yielded (a different set of) four reading time factors.

Text Pages Revisited: Students may choose to strictly read forward
through a text, or may choose to revisit earlier pages. Twomeasures
of student behavior in revisiting text pages were calculated: the
number of pages re-read and the number of intervening pages
traversed in re-reading text pages.

3.2 Prior Lesson Model Predictors
We derived a total of total of 16 predictors from the lesson 1 and 2
student models.

Individual DifferenceWeights: Three sets of best-fitting individual-
difference weights were derived (1) for the 31 KCs in Lesson 1, (2)
for the 22 KCs in Lesson 2, and (3) for the combined set of 53 KCs
in Lessons 1 and 2.

Probabilities students learned the Lesson 1 & 2 KCs: At the end of
a lesson, BKT yields a probability that a student knows each KC in
the lesson. Two measures of each student‘s knowledge at the end
of each lesson were calculated: the number of unmastered skills
and the minimum probability the student knows any single KC.

3.3 Tutor Performance Features
Finally, thirteen predictors based on student performance in each of
the two tutor lessons were derived. Raw error rate for students‘ first
action at each problem- solving step in each lesson, and average
response time for students‘ first action at each problem-solving
step in each lesson were calculated.

In addition, for each of the two lessons the following 11 measures
of students‘ metacognitive skills were calculated. Most of these
have previously been shown [10] to correlate with measures of
robust learning, including direct transfer of knowledge, which is
similar students‘ initial knowledge, pL0, and preparation for future
learning, which is similar to students; learning rate wT:

Help avoidance [1]: the proportion of problem solving steps in
which the probability the student knows the relevant KC is low and
the student‘s first action is an error instead of a hint request.

Bug Messages: the proportion of each student‘s actions in which a
bugmessage (an errormessage generatedwhen a student‘s behavior
matches a known misconception) is followed by a long pause, and
the proportion in which a bug message is followed by a short pause.

Hint Messages: the proportion of each student‘s actions in which
a hint request is followed by a long pause, and the proportion in
which a hint request is followed by a short pause.

Known-KCs: the proportion of each student‘s actions in which
the student knows the relevant skill well and there is a long pause
before responding, and the proportion in which the student knows
the skill well and there is a short pause.

Off-Task and Gaming Variables: The proportion of actions in
which an automatic detector determined the student was gaming
the system [9] was calculated, (e.g., systematic guessing, or quickly
drilling down through the tutor‘s hints to find the correct answer),
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as was the proportion of fast responses that were not identified as
gaming by the detector. Also, we calculated for each student both
the proportion of actions in which an automatic detector deter-
mined the student was off task [3] and the proportion of actions
where there was a long pause not identified as off-task.

4 METHODS AND MATERIALS
The data analyzed in this study come from 80 CMU undergraduates
enrolled in either genetics or introductory biology courses who
were recruited to participate in this study for pay. The students
participated in two 2.5-hour sessions on consecutive days in a cam-
pus computer lab. The first session focused on the first topic, gene
interaction and the second session focused on the second topic,
gene regulation. In each session students completed five activities:
Read an on-line instructional text on the session topic; completed
a pretest on the topic; completed two Genetics Cognitive Tutor
modules on the session topic, a “forward“ process-modeling mod-
ule and a “backward“ abductive reasoning module; and completed
a problem-solving posttest. This study focuses on modeling the
22,681 problem-solving steps in the third, gene regulation process-
modeling tutor lesson.

4.1 Fitting Procedures
We first found best-fitting group parameter estimates for each of the
4 parameters (pL0, pT, pG, pS) in the standard BKT (SBKT) model
for each of the 47 KCs in Lesson 3, with nonlinear optimization. We
optimize on negative log-likelihood and generate the best fitting
set of group parameters for each of the 47 KCs. Both pG and pS
were bounded to be less than 0.5, as in Baker et al., [4] to avoid
paradoxical results that arise when these performance parameters
exceed 0.5 (e.g., a student with a higher probability of knowing a
KC is less likely to apply it correctly.)

Second, we generate individualized BKT models by optimizing a
new set of four Individual Difference Weights (IDWs,) one for each
of the four standard BKT parameters, wL0, wT, wG, wS, for each of
the 80 students. The optimization process takes as input the SBKT
model, and the observed student opportunities, and produces the
best fitting set of IDWs for each student.

Third, we derived the 6 reading features for text 2, and tutor
performance measures for Lesson 1 and 2 that had not previously
been derived in [11, 12]. Along with the measures from text 1, the
best-fitting IDWs for Lessons 1 and 2, and the Lesson-1 measures
that had been derived previously [11, 12], this yields a total set of
50 predictor variables.

We employed these 12 reading variables (6 for each topic) and the
38 tutor performance variables (19 for each lesson) to independently
predict the four Lesson 3 IDWs: wL0, wT, wG, wS. Since we are
predicting multiplicative weights, we fit a transformation of the
weights w/(1+w). This transformation has the property that the
neutral weight 0.5 (which does not modify the corresponding best-
fitting group parameter), is the midpoint of the transformed scale.

4.2 Model and Feature Selection
In order to generate the predictive IDW model we first reduced
the number of features with Least Angle Regression (LAR) [25] a
variant of Lasso. For each of the four Lesson 3 IDWs we use LAR

Table 1: Goodness of fit for Lesson 3 tutor performance.

Model RMSE Accuracy

SBKT 0.399 0.765
BFIDW-L3 0.368 0.806
BFIDW-L1 0.4 0.766
BFIDW-L2 0.394 0.774
BFIDW-L12 0.389 0.778
PrIDW-L12 0.38 0.791

to select the best 12 predictors (out of 50,) Twelve predictors were
selected to match with models presented in work by Eagle et al.,
[11, 12].

We then built a robust regression model with the 12 predictors
for each of the IDWs. Robust regression is less sensitive to outliers,
variable normality, and other violations of standard linear regres-
sion assumptions [2]. In order to control for the false discovery rate,
we adjusted for multiple comparisons in the coefficient significance
tests [5].

Finally, we employed the standard BKT model for lesson 3, the
best fitting IDWs from each of the three lessons, and the various
sets of predictor variables to generate 5 new IDW BKT models for
Lesson 3, yielding a total of six BKT model variants displayed below.
Analysis work was performed using R [15], Optimx [20], rlm [26],
and lars [25].

Six BKT models calculated in this analysis for Lesson 3:
SBKT: Standard BKT non-individualized model with best-fitting

group parameter estimates
BFIDW-L3: Individualized BKT model with best-fitting IDWs for

Lesson 3
BFIDW-L1: Individualized BKT model with best-fitting IDWs for

KCs in Lesson 1
BFIDW-L2: Individualized BKT model with best-fitting IDWs for

KCs in Lesson 2
BFIDW-L12: Individualized BKT model with best-fitting IDWs for

KCs in both Lessons 1 & 2
PrIDW-L12: Individualized BKT with predicted IDWs from read-

ing and from Lesson 1 and Lesson 2 tutor performance fea-
tures.

5 RESULTS AND DISCUSSION
Table 2 displays the overall fit to students‘ Lesson 3 tutor perfor-
mance of the six models. Column 2 displays root mean squared error
(RMSE) for the fits and column 3 displays Accuracy (the probability
a model correctly predicts students‘ correct or incorrect responses
with a 0.5 threshold on predicted accuracy).

Best-fitting IDWs for Lesson 3. The RMSE for the SBKT model
with best fitting Lesson 3 parameter estimates, but no individualiza-
tion is 0.399, as displayed in row 1. The remaining five rows display
the five individualized models. BFIDW-L3 in row 2 employs best-
fitting IDWs derived from the lesson 3 data. This model necessarily
yields the best fit; it improves the goodness of fit by 7.8% over the
SBKT model, reducing RMSE from 0.399 to 0.368.

Direct transfer of IDWs from Lessons 1 and 2. The next 3 rows
display goodness of fit when the best fitting IDWs from Lesson 1,
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from Lesson 2, and from Lessons 1 & 2 combined, are employed
directly in modeling Lesson 3 performance. As can be seen, BFIDW-
L1, with IDWs from Lesson 1, and BFIDW-L2 with IDWs from
Lesson 2 have little impact on the overall goodness of fit compared
to SBKT, changing RMSE -0.03% and 1.6% respectively. BFIDW-L12
with refitted IDWs for the 53 KCs in both lessons has a slightly
larger effect, improving on the SBKT fit by 3.2% reducing it to 0.394.

Predicted IDWs based on reading and Lessons 1 and 2 perfor-
mance. The last row in the table displays RMSE for the PrIDW-L12
model in which reading measures from both texts and tutor per-
formance measures from lessons 1 and 2 are employed to predict
Lesson 3 IDWs. This model reduces RMSE to 0.380; it is about 60%
as successful as the best-fitting BFIDW-L3 in reducing RMSE (and
twice as successful as BFIDW-12).

Individualization and Mastery. Small differences in model fits
can have large effects on the amount of practice assigned to stu-
dents [11, 12, 17]. Following [11, 12], we calculated the approximate
amount of practice that would be necessary for students to reach
mastery under each of the six models in Table 2, and found general
agreement among the five IDW models compared to the standard
SBKT model. On average 51 students would have needed less prac-
tice under any of the 5 IDW models than under the SBKT model
(range 46-57) and on average they would have required 54 fewer
practice opportunities across all the lesson-3 KCs (range 42-64). On
average 29 students would have needed more practice (range 22-30)
and they would have needed an average of 23 more opportunities
across all KCs (range 18-23). We take BFIDW-L3 (with best fitting
Lesson-3 IDWs) as the gold standard in this comparison, and while
the PrIDW-L3 model fits the lesson 3 data better than BFIDW-L12,
the latter model agrees slightly better with BFIDW-L3 than does
PrIDW-L3 (94% vs 91%). More work is needed to understand the
relationship between model fit and mastery recommendations, but
the general agreement between the IDW models suggests that a va-
riety of evidenced-based IDW sets can improve efficiency in guiding
students to mastery, compared to the SBKT model.

5.1 IDW Predictive Models
Table 3 displays the coefficients for each of the predictors in the
regression models for each of the four Lesson 3 IDWs. As in [11],
Lasso was used to identify the best 12 predictors for each of the
four IDWs. The predictors that enter reliably into the four robust
regression models are highlighted with asterisks.

The predictors that enter into the four models are rather eclec-
tic. Reading time factors from the first text are among the top 12
predictors in three of the four IDWs models, as are reading time
factors for the second text. The first text is on a different topic
(gene interaction) than Lesson 3 (gene regulation). This suggests
the reading time factors may be tapping learning strategy rather
than the specific knowledge acquired.

Among the tutor performance measures in Table 3, slightly more
came from Lesson 2 than Lesson 1, 25 vs. 15, but the difference
is not significant. Whereas Lesson 1 and Lesson 3 employ related
reasoning strategies — “forward“ process modeling rather than
“backward“ abduction, Lessons 2 and 3 are closer in time; both of
these relationships may contribute to predictive effectiveness, with
perhaps a slight advantage for recency.

Table 2: Coefficient Summary Table

Pred. wL0 wT wG wS

(Inter.) 1.012*** 0.866*** 0.242 0.306*
RT T1F110.63 T2F3 0.043 T1F1 -0.034 T1F4 -0.034*
RT T1F3 -0.066 T1F4 0.060 T2F1 -0.025
RT T2F3 -0.039
RT T2F1 -0.017
Pg re.
Pg dist.
wL0 L1 0.106
wT L2 0.171 L2 -0.080
wG L120.095 L2 0.034 L2 0.026
wS L1 -0.235 L1 -0.433*** L2 0.214

L2 -0.239
Min. pLn
Mast. KC L2 -0.006***
Err Rate. L2 -0.411 L2 0.068
Mean RT L2 0.010 L2 0.016
Help Av L1 -2.996 L1 -1.773 L1 1.036

L2 1.714*
Bug-LP L2 15.672
Bug-SP L2 -5.514 L1 9.728 L2 -4.978
Hint-LP
Hint-SP
Kn-LP L2 -0.726 L2 -0.275 L2 -0.616
Kn-SP L2 -1.869*** L1 1.287 L2 0.386

L1 0.791
Gaming L1 -0.107 L2 -0.851 L2 0.534
SP-NotG
Off-Task L1 -1.766 L1 -4.94** L1 2.847 L1 2.378

L2 -2.624*
LP-NotOT L2 0.033
RMSE 0.16 0.157 0.192 0.139

(* < 0.10, ** < 0.05, *** < 0.01)
1 T1F1 = Topic 1 (gene interaction), Factor 1
2 L1 = Lesson 1 wS (slip IDW)

The 19 total tutor performance variables fall into four broad
types: the 4 IDWs, two BKT measures of student knowledge at the
end of each lesson, two rawmeasures of performance, error rate and
mean response time, and finally, the 11 “metacognitive“ measures,
including use of help, response time in specific contexts, gaming
and off-task behaviors. None of these four categories emerges as a
stronger predictor than the others. Overall, each of the 19 variables
enters into an average of 2.1 models, and the average number of
models for the variables within any of the four categories does not
depart much from this mean. Perhaps most surprisingly, the Lesson
1 and Lesson 2 IDWs are not especially strong predictors of Lesson
3 IDWs. Lesson 1 wL0 is among the top 12 predictors for just one
model, Lesson 2 wT appears twice in Table 3, Lesson 1 or 2 wG
appears three times, and Lesson 1 or 2 wS appears four times. The
average number of models in which these variables appear, 2.5, is
not much different from the overall average of 2.1.

Finally, among the 11 metacognitive features, Lesson 1 off-task
behavior is perhaps the strongest predictor of Lesson 3 IDWs; it
appears among the top 12 variables in all four models, and is signif-
icant in one of the models.
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6 CONCLUSION
This study examines methods for predicting individual difference
weights for students in BKT learning parameters (intercept and
rate) and performance (guess and slip) for the third lesson in a
Cognitive Tutor curriculum. This is an important issue because
integrating IDWs into an intelligent tutor lesson is easier if the
IDWs can be assigned before the student starts working in the
lesson. We evaluate the different estimated IDWs by examining
how well they fit student performance in Lesson 3, compared to
(1) standard SBKT with no IDWs, and (2) a model with best-fitting
weights for Lesson 3.

We find that directly applying the best-fitting IDWs from either
of two prior lessons in the curriculum, or from both lessons com-
bined, does not appreciably improve goodness of fit for Lesson 3,
compared to the SBKTmodel. In contrast, estimating lesson-3 IDWs
from measures of students‘ prior reading performance, and perfor-
mance in the two prior tutor lessons, is more successful; it is 60%
as successful as the best-fitting Lesson-3 IDW model in improving
the goodness of fit compared to the SBKT model.

Several secondary conclusions emerge. First, a prior study [12]
obtained very similar success in predicting IDWs based on read-
ing performance, pretest performance and a smaller set of tutor
performance measures. This study demonstrates that IDWs can
be successful predicted without including pretest measures. This
is potentially important since pretests may not be available in on-
line learning environments. Second, among reading time measures
and a wide range of tutor performance measures, no category of
measures emerged as an especially strong predictor of Lesson 3
IDWs; instead it appears that predictive success depends on a broad
range of predictor variables. Finally, reading time measures prove
to be useful predictors of students‘ problem-solving behaviors in a
subsequent tutor lesson, including reading time measures for text
on a topic unrelated to that tutor lesson. This suggests that the read-
ing time measures may reflect knowledge-acquisition strategies, as
well as any knowledge acquired.
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ABSTRACT
Randomized A/B tests in educational software are not run
in a vacuum: often, reams of historical data are available
alongside the data from a randomized trial. This paper
proposes a method to use this historical data–often high-
dimensional and longitudinal–to improve causal estimates
from A/B tests. The method proceeds in two steps: first, fit
a machine learning model to the historical data predicting
students’ outcomes as a function of their covariates. Then,
use that model to predict the outcomes of the randomized
students in the A/B test. Finally, use design-based methods
to estimate the treatment effect in the A/B test, using pre-
diction errors in place of outcomes. This method retains all
of the advantages of design-based inference, while, under cer-
tain conditions, yielding more precise estimators. This pa-
per will give a theoretical condition under which the method
improves statistical precision, and demonstrates it using a
deep learning algorithm to help estimate effects in a set of
experiments run inside ASSISTments.

1. INTRODUCTION
Randomized A/B tests hold a lot of promise for the study
of student learning within intelligent tutors. Not only do
they allow for causal inference without fear of confounding,
but they also allow for “design-based” effect and standard
error estimates that are virtually guaranteed to be unbiased
[13]. These strengths are to the fact that data analysts know
exactly how, and with what probability, conditions were as-
signed to subjects.

The traditional tools for analyzing experiments estimate ef-
fects using only data from the experiments themselves, dis-

carding data from (potential) subjects that were not ran-
domized. For instance, data from past users or from con-
current users who, for whatever reason, were not included
in the A/B test, are excluded from the analysis. We refer to
users such as these, with similar covariate and outcome data
as the participants in the A/B test, but who were not ran-
domized, as the “remnant.” Excluding the remnant makes
good statistical sense: after all, the probabilities of assign-
ment are known only for participants in the experiment,
not for the remnant. However, data from the remnant may
be quite useful—in particular, the extra sample size could
improve the statistical precision, i.e. reduce the standard
errors, of experimental effect estimates. This is especially
the case for experiments run within intelligent tutors or
other big data environments. Vast amounts of log data,
collected prior to the experiment, in conjunction with pow-
erful machine-learning methods, could help sharpen causal
estimates considerably.

This paper introduces a method for using the remnant in an-
alyzing experiments, without sacrificing any of the benefits
of experimentation or making additional modeling assump-
tions. The core of the method is residualization—predicting
experimental subjects’ outcomes using a model fit to the
remnant, and then estimating effects using prediction resid-
uals instead of the outcomes themselves. We call the method
“remnant-based residualization,” or“rebar.” Rebar builds on
methods suggested in [9], [7], and [1]. Rebar was first intro-
duced in [12] as a method to reduce confounding bias in
observational studies. Here we show that rebar can also re-
duce standard errors in randomized A/B tests, particularly
in educational data mining contexts.

Most other methods incorporating machine learning into
analysis of experiments, either to estimate average effects
(e.g. [16]), to estimate subgroup effects (e.g. [3]), or to
optimally allocate treatment (e.g. [11], [19]) use machine
learning to replace, rather than complement, design based
methods. This is a very promising avenue of research, but
lacks the statistical guarantees of well-worn design-based es-
timates.
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The next section will formally introduce rebar, and sections
3, 4, and 5 will illustrate it using a deep-learning model to
sharpen effect estimates in a set of 22 experiments run within
the ASSISTments system [14]. Section 6 will conclude.

2. REBAR
2.1 Experiments and Modeling
To learn if an intervention worked, or to figure out which of
two conditions (say, condition 0 and condition 1) produces
better outcomes, statistical models can often be quite help-
ful. To take a common example, analysts might regress an
outcome Y on an indicator for condition Z, along with a
vector of covariates x. Then, the estimated coefficient on
Z is taken as the estimated effect of condition 1 versus 0,
controlling for x [18].

The shortcomings of this approach are well-known: if the
vector x is missing a confounder—a covariate that predicts
both subjects’ choice of condition, 0 or 1, and outcomes Y—
then the regression estimate will be biased. Moreover, even
if there are no unmeasured confounders, if the regression
model is misspecified, for instance, modeling the relation-
ship between Y and x as linear, then the estimate will also
be biased. On the other hand, a regression model may be
run on all available data, producing precise (if inaccurate)
estimates.

Randomized experiments correct regression’s faults. If sub-
jects are randomly assigned to conditions 0 or 1, then the
difference in mean outcomes between the two groups is an
unbiased estimate of the average treatment effect. More
precisely, following [15] and [10], let y1i be the outcome a
subject i would experience if assigned to condition 1, and
let y0i be the outcome i would experience under condition
0. A subject’s observed outcome Yi = y1i if i is assigned to
1, Zi = 1; Yi = y0i if i is assigned to 0. (Since observed
outcomes Y are a function of Z, they are random; we may
model potential outcomes y0 and y1 as fixed.)

Under this framework, we define causal effects based on po-
tential outcomes y0 and y1, rather than observed outcomes
Y . An individual i’s treatment effect τi is the difference of
those two: τi ≡ y1i−y0i—the difference between i’s outcome
under treatment versus under control. Without strong as-
sumptions, these individual effects are not identified by the
data; instead, we estimate quantities such as the average
treatment effect (ATE) over all subjects τ̄ =

∑
i τi/n, or

the average effect of the treatment on the treated (TOT)
τ̄Z=1 =

∑
i Ziτi/n1, where n and n1 are the total num-

ber of subjects and the number of treated subjects, respec-
tively. In a simple randomized experiment, the ATE and
TOT have the expectation, but their estimators may have
different standard errors. For the sake of simplicity, we will
focus on the TOT.

Observed outcomes may be used to estimate the ATE, TOT,
or other causal parameters. In particular, an unbiased esti-
mator of the TOT is:

τ̂ = Ȳ Z=1 − Ȳ Z=0

where Ȳ Z=1 is the mean of Y for treated subjects,∑
i ZiYi/n1, and Ȳ Z=0 is the mean of Y in the control group.

An unbiased estimator of the squared standard error is:

SE2
TOT = n/(n1n0)s2(Y )Z=0

where s2(Y )Z=0 is the sample variance of Y in the control
group. See the Technical Appendix, and [4] for more details.
Estimators τ̂ and SETOT , and their properties, are derived
solely from the experimental design, via survey sampling
theory; they do not depend on the (unknown) distributions
of y1 and y0, or any other modeling assumptions. They are
“design-based.”

In a randomized experiment there are no confounders. Since
the probability distribution of Z is known exactly, no sta-
tistical models, or modeling assumptions, are necessary—
the analysis may be “design-based” instead of model-based.
In particular, the estimate τ̂ and its standard error derive
from survey sampling theory, not the distribution of y0 or
y1. On the other hand, any data from the “remnant” of
an experiment—the set of subjects outside the experiment,
who were not randomized to either condition—play no role
in this analysis. Since subjects in the remnant were not ran-
domized, there is no telling how they may differ from the
Z = 0 or Z = 1 groups, in ways measured or unmeasured,
and there is no telling (exactly, statistically) how their data
came to be, so design-based analysis is impossible and any
model fit to the remnant is most likely misspecified. How-
ever, though dropping the remnant from the analysis brings
unbiasedness, it also brings a loss of precision—all that sam-
ple size, thrown away.

2.2 A Role for the Remnant
Assume the following setup: a set of users, “the experimen-
tal set”were randomized to either condition 0 or condition 1,
and their outcomes Y were measured at the end of the exper-
iment. Conditions 0 or 1 could be two different treatments,
or control and treatment condition; we will refer to condition
0, as “control” and 1 as “treatment.” The goal of the experi-
ment is to estimate the TOT, τ̄Z=1, the average effect in the
treatment group. Some more subjects, the remnant, were
not randomized; instead, they all received condition 0, the
default (this isn’t strictly necessary—the theory also works if
they received condition 1, a mix of conditions, or something
else altogether—but it makes things simpler). Outcomes Y
were also measured for members of the remnant. Finally,
a set of covariates x, possibly high-dimensional, of mixed-
types, and/or longitudinal, were measured for everyone, in
the experimental set and in the remnant.

Experimental estimates typically drop the remnant, and pay
the price of lower precision. Instead, we suggest training
a machine-learning model on the remnant, and using it to
“residualize” the data from the experimental set—that is, es-
timate effects using prediction residuals. We call this algo-
rithm “remnant-based residualization” or “rebar.” The pro-
cess is as follows:

1. Using data from the remnant, train a model ŷ0(·) to
predict y0 as a function of x.

2. Validate ŷ0(·) (using cross-validation or other tech-
niques). if it performs well, proceed; otherwise return
to step 1, choosing a different model.
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3. Use ŷ0(·) and covariates x in the experimental set to
generate predicted outcomes ŷ0(x) and residuals, e =
Y − ŷ0(x).

4. Estimate the TOT as a difference in mean residuals,

τ̂rebar = ēZ=1 − ēZ=0

with estimated standard error

SErebar =
√
n/(n1n0)s(e)Z=0

Where s(e)Z=0 is the sample standard deviation of e
in the control group.

Just like the traditional estimator τ̂ , the rebar estimator
τ̂rebar is design-based—its logical basis is the designed ex-
periment, not a model. On the other hand, it harvests in-
formation from the remnant to improve upon τ̂ .

Rebar works because the predictions ŷ0(x) were generated
from an external sample—the remnant—and pre-treatment
covariates x. Subject i’s prediction ŷ0(xi) will be the same
whether i is assigned to 0 or to 1. Since there’s no treat-
ment effect on ŷ0(x), subtracting ŷ0(x) from Y only removes
noise—not part of the treatment effect. When treatment
is randomized, Z is independent of ŷ0(x), so, in expecta-
tion, the mean of ŷ0(x) will be equal across the two treat-
ment groups. In fact, the rebar estimator can be re-written
as τ̂rebar = ȲZ=1 − ȲZ=0 − (ŷ0(x)Z=1 − ŷ0(x)Z=0). The
first term is τ̂ , which is unbiased for the TOT. The sec-
ond term is the difference in means of ŷ0(x), which is zero
in expectation—therefore, τ̂rebar is unbiased. This property
holds not just for the difference-in-means estimator—rebar
can sharpen any treatment effect estimator that is linear in
Y and unbiased.

Rebar’s main tool is the model ŷ0(·), which predicts y0 as
a function of x. In EDM settings, the dimension of avail-
able covariates is often very large, and sample sizes are of-
ten large as well—machine learning algorithms make strong
candidates for ŷ0(·). ŷ0(·) is not a statistical model per se,
estimating the parameters of a probability distribution, but
as a tool for prediction. It need not be correct in any sense,
and its estimates need not be unbiased or consistent. Since
ŷ0(·) is fit on a separate sample from the experimental sub-
jects, the process of fitting it—steps 1 and 2 above—do not
affect standard errors, and model misspecification does not
lead to bias.

On the other hand, for rebar to be more precise than the
usual difference in means, ŷ0(·) must be able to generate
decent predictions of y0 in the experimental set. This will
be the case if ŷ0(x) is a good prediction of y0—by residual-
izing, we subtract out the component of Y ’s variance that
is predicted by ŷ0(·). The variance of the rebar estimator
is proportional to the difference between the mean-squared
prediction error of ŷ0(·), MSE = ||y0 − ŷ0(x)||2/n and its
squared bias. (Recall that both τ̂ and τ̂rebar are unbiased
estimates of the TOT; the bias here refers to ŷ0(·)’s predic-
tions of y0, not to treatment effect estimates.) The extent
to which it outperforms the standard estimate τ̂ , measured
as percent improvement (SE2

TOT − SE2
rebar)/SE2

TOT , is at
least as large as ŷ0(·)’s prediction R2 in the control group,
R2 = 1 − ||Y − ŷ0(x)||2Z=0/||Y − Ȳ ||2Z=0 (see the Technical

Appendix for derivations). If ŷ0(·) performs poorly in the
control group—so that ||Y − ŷ0(x)|| > ||Y − Ȳ ||—then this
R2, as we have defined it, could be negative, and τ̂rebar will
be less precise than τ̂ ; however, it will still be unbiased. The
improvement τ̂rebar offers rests entirely on the performance
of ŷ0(·). The better we can predict how subjects would have
performed in the control condition, the more precisely we
can estimate treatment effects.

Since ŷ0(·) is trained in the remnant, its performance in the
experimental set (as measured by, e.g. prediction R2) will
be hard to gauge at the outset. If the distribution of Y , con-
ditional on x, differs widely from the between the two sets,
ŷ0(·)’s performance may suffer in extrapolation. This prob-
lem is not fatal: the rebar estimate is unbiased regardless
of ŷ0(·)’s properties. However, a model with poor predic-
tive power in the experimental set will not reduce standard
errors substantially, and may increase them. Of course an
analyst may calculate ŷ0(·)’s R2 in the experimental set, but
choosing a model based on Y induces dependence between
Y and ŷ0(x), and may cause bias. Models trained on a sub-
set of the remnant that resembles the experimental set—or
which weight such a remnant more heavily—may perform
better than those trained on the entire remnant.

The previous discussion assumed simple randomization.
However, rebar easily extends to more complex designs, in-
cluding experiments with more than two treatment condi-
tions. Further, as we will illustrate below, rebar can be ex-
tended to regression estimators of causal effects as well, mod-
eling low-dimensional covariates within sample and high-
dimensional covariates out of sample.

3. DATA: 22 EXPERIMENTS AND MORE
The 22 experiment dataset is a feature-rich dataset on
students who participated in randomized controlled trials
(RCTs) ran inside a free, online tutoring called ASSIST-
ments [14]. This dataset consists of student-level data from
8,205 unique students participating in 22 A/B tests, 14,947
unique student-RCT pairs in total.

These RCTs were run within skill builders. Inside ASSIST-
ments, a skill builder is a type of problem set that requires
students to practice solving problems until they master the
associated skill. Skill mastery is determined by the student’s
ability to answer a certain number of problems correctly,
usually three, in a row.

This feature-rich dataset includes 30 features, including
both categorical features, such as student grade levels, and
numerical features, such as student performances prior to
the experiment. This dataset also includes two dependent
measures. The first dependent measure, “completion,” is
whether the student completed the assignment and achieved
mastery. The other dependent measure is the number of
problems attempted; for students who achieved mastery, this
may be interpreted as mastery speed. The analysis in this
paper will focus on the first dependent measure, completion.

4. DEEP LEARNING TO PREDICT COM-
PLETION
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As described in Section 2.1, the model ŷ0(·) is an integral
part of the rebar methodology with the purpose of producing
predicted outcome y0 as a function of x. The methodology
does not rely on a specific type of model, nor any specific
algorithm to be used so long as an estimate for the outcome
variable of interest is generated by the model from included
covariates. As also stated in that section, the accuracy of
the model, however poor, does not lead to bias. That said,
models that are more accurate at estimating the outcome
variable of interest will likely lead to better estimates of
treatment effects. Deep learning models have been previ-
ously applied in educational contexts with promising results,
often reporting higher performance over existing methods
[8][6][2]. While the application of such methods is not ap-
propriate to all problem applications due to the size and
complexity, the use of such models in this work is justified
due to 1) the scale of data available for model training and
2) the inconsequence of producing an uninterpretable model
(e.g. the significance and coefficients of individual variables
in the model are not intended for study or knowledge discov-
ery). What is needed, again, is simply a prediction model.

We develop and apply a type of deep learning model known
as a long short term memory (LSTM) [5] network. This
model is a variant of a recurrent neural network (RNN) [17]
that is commonly applied to time series data to model tem-
poral relationships within the sequences. The model pro-
duces its estimates for each time step by utilizing both co-
variates provided corresponding to the current time step as
well as information from all previous time steps within the
series. As such, the model is developed as a sequence-to-
sequence method that observes a sequence of student data
as input and produces a sequence of outcome estimates of
equal length. The model structure utilizes a 3-layer design,
with an input layer feeding into a recurrent hidden layer
(represented as a layer also connected to itself in previous
time steps), before then proceeding to an output layer.

Two separate datasets are used to train and apply the model.
The application dataset, comprised of student data from the
22 experiment dataset combined with assignment-level in-
formation for all work each student started before begin-
ning the respective experiment. In an attempt to reduce the
complexity of the data from which the model must learn,
the sequence length of student assignment history is limited
such that no more than 10 prior assignments are included
for each student. In other words, students who were in a sin-
gle experiment have a sequence length of 10, with the last
time step representing the most recent assignment prior to
beginning the experiment. Conversely, students in multiple
students may exhibit sequences longer than 10 if partici-
pation in the experiments was separated by fewer than 10
assignments. The dataset is comprised of data from 8,297
distinct students and a total of 130,935 student assignments.

The second dataset, used to train and validate the model, is
comprised of student data exclusive to that comprising the
22 experiment dataset. Student data, again non-inclusive
of students within the 22 experiment dataset, is collected
from the non-experimental problem sets found in the ap-
plication dataset. From these, assignments are randomly
sampled, with which the dataset is constructed using the 10
most recent assignments before students begin the sampled

assignment. This step, helps to ensure a similar structure
of the dataset to that of the application set. Again, for pur-
poses of validity, it is important to stress that no students
are found in both the training and application datasets. The
dataset contains data from 134,141 distinct students and a
total of 686,590 student assignments.

The model uses just 4 assignment-level covariates per time
step to predict assignment-level performance on the subse-
quent assignment. These covariates include the simple mea-
sures of completion of the assignment, the number of prob-
lems attempted, the number of problems completed, and
a measure of inverse mastery speed; this last measure is
a transformation of mastery speed, using 1 divided by the
number of problems when the assignment was complete, or
0 when the assignment was not completed. While simple in
the number of covariates, again, the model also uses infor-
mation from previous time steps, adding to its complexity
(i.e. time step 2 is informed by time step 1, time step 3
is informed by time steps 2 and 1, etc.). The model pro-
duces two values per time step corresponding with the de-
sired outcome variable of completion of the next assignment,
and also an estimate of inverse mastery speed on the next
assignment, using a combined cost of these two measures to
update model parameters during training; this second mea-
sure was included as it is believed the model may better
learn from the data by observing a continuous variable in
addition to the binary value of completion and also acts as
an example as to how future works may utilize the same
methodology to observe beyond the measure of completion
presented in this work.

The model is first evaluated using a 5-fold student-level
cross-validation. The model is trained for multiple epochs,
or training cycles through the data, using a 30% holdout
set, sampled from the training set of each fold, to determine
the stopping point of model training; this holdout set also
helps stop the model training process before overfitting is
detected. It is found that the model produces average AUC
of 0.81 and an RMSE of 0.34 for next assignment completion
over the 5 folds. Once completed, a final model is trained
over the entirety of the training dataset and applied to the
application dataset, which has acted as a holdout set during
the training and validation process. The next assignment
completion estimates, collected from the most recent assign-
ment before students begin each experiment, is then used as
the estimated value of completion that is used in subsequent
steps of the rebar analyses.

5. RESULTS
We estimated treatment effects of interventions on skill-
builder completion for the 22 experiments using both raw
outcomes Y , the usual approach, and using e = Y − ŷ0(x),
the rebar estimator. We also estimated standard errors in
both cases. We used difference in means estimators, so the
effect estimates are in units of percentage points—how much
more likely were students to finish skill builders under the
treatment condition than under control.

Figure 1 shows improvement in precision of the rebar es-
timator over the usual estimator: the difference of the
two standard errors, divided by the usual standard error,
(SEusual−SErebar)/SEusual. The x-axis shows the predic-

Proceedings of the 11th International Conference on Educational Data Mining 482



Figure 1: The improvement in precision of effect es-
timates as a percentage of the usual precision esti-
mate, [SE(τ̂)−SE(τ̂rebar)]/SE(τ̂), plotted as a function
of ŷ0(·)’s prediction R2 in the experimental set.

tion R2 of the deep learning model when extrapolated to
each of the 22 experimental datasets. In 19 of the datasets,
the rebar standard errors were lower than the usual stan-
dard errors. In 15 of those datasets, there was a greater
than 25% improvement, and in four datasets the improve-
ment was greater than 40%. The extent of the reduction in
standard error corresponded closely to the prediction R2 of
ŷ0(·), with the most dramatic improvements occurring when
R2 & 0.5.

Figure 2 shows the estimated treatment effects and approx-
imate 95% confidence intervals (two standard errors in each
direction) for the two sets of estimators. In all but three
cases, the rebar estimate was slightly closer to zero than the
usual estimate. This is what we would expect if most of
the true effects were null, so that reducing the noise of the
treatment effect estimates would draw them closer to their
true values. For that reason, although rebar reduced the
standard errors in almost all of the experiments, it did not
cause any of the non-significant results to become statisti-
cally significant. In fact, in two cases it had the opposite
effect; though this may be disappointing for researchers, it
is probably more accurate.

We also used linear regression to estimate treatment effects,
regressing either indicators for completion or prediction er-
rors on indicators for treatment assignment and two covari-
ates: the proportions of students’ prior skill builders com-
pleted and the proportions of prior skill builder problems
students worked that they answered correctly. The results,
available upon request, are nearly identical. Although the
two covariates improved precision slightly, rebar continued

Figure 2: Effect estimates and 95% confidence in-
tervals for the 22 experiments, using both the usual
and rebar estimates. Experiments are ordered by
their estimated effect.

to dominate the usual estimate.

6. DISCUSSION
The rich, high-dimensional, fine-grained data that educa-
tional technology makes available should be a boon to causal
inference. However, big data is subject to the same maladies
as small data—confounding from unmeasured variables, and
model misspecification. Classical randomized experiments
remain relevant.

The same may not be true for classical design based estima-
tors. Big data may not be able to correct unmeasured con-
founding and may exacerbate model misspecification, but we
have shown that it can play a significant role reducing the
standard errors of treatment effect estimates. The method
we proposed here retains all of the statistical properties that
recommend design-based estimators, while, in most cases,
delivering substantially lower standard errors. We demon-
strated the method’s effectiveness using a cutting-edge deep
learning algorithm trained to log data from ASSISTments
which yielded impressive gains in precision when used to
analyze a set of 22 experiments.

Rebar’s most important tool in this exercise was the deep
learning algorithm, which in 17 of the 22 experiments pre-
dicted completion better than the within-sample proportion.
In general, designing prediction algorithms that perform well
in the target dataset is the central challenge to effectively
implementing rebar. Along the same lines, the most impor-
tant open question is how to design diagnostics for predic-
tion performance that do not rely on “peeking” at the exper-
imental outcomes. One such diagnostic, termed “proximal
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validation,” was described in [12]—extending it to experi-
mental studies and showing that it works is the next step in
developing this method.

Wedding classical randomization-based causal inference
with modern machine learning and big data can yield
unbiased, robust, precise treatment effect estimates in
technology-based educational datasets.

Technical Appendix
This discussion roughly follows [4], Section 1.1. The
TOT

∑
i Zi(y1i − y0i)/n1 may be re-written as

n−1
1

(∑
i Yi −

∑
i y0i

)
, the difference between the total

of Y across both treatment groups, and the total that
would have been observed had everyone received the control
condition. The first sum is known exactly, but the second
must be estimated using data from the control group.
From elementary survey sampling, nȲ Z=0 is unbiased
for

∑
i y0i. Further, the standard deviation of nȲ Z=0

is
√
n2(1− n0/n)s2(y0)/n0 =

√
n/(n1n0)s2(y0), where

s2(y0) is the sample variance, over the whole sample, of y0,
and 1 − n0/n = n1/n is the finite population correction.
Finally, due to random sampling, s2(Y )Z=0 is an unbiased
estimator for s2(y0). Substituting σZ=0 for σ0 and dividing
by n1 gives the expression for SETOT .

Each individual treatment effect τi is the same whether the
outcome (dependent variable) is Y or e:

e1 − e0 = (y1 − ŷ0(x))− (y1 − ŷ0(x)) = y1 − y0

since ŷ0(x) is invariant to treatment. Therefore, the theory
supporting standard estimates τ̂ and SETOT applies equally
to τ̂rebar and SErebar. In particular, τ̂rebar is unbiased for
the TOT with consistent standard error estimate SErebar,
due to survey sampling theory.

The sample variance of e in the control group is

s2(e)Z=0 =
||e− ē||2Z=0

n0 − 1

=
||Y − ŷ0(x)− (Ȳ − ŷ0(x))||2Z=0

n0 − 1

=
||Y − ŷ0(x)||2Z=0

n0 − 1
− n0

n0 − 1

(
ȲZ=0 − ŷ0(x)Z=0

)2
or the MSE of ŷ0(·) in the control group, minus its squared
bias. Since the squared bias is always positive,

s2(e)Z=0 ≤
||Y − ŷ0(x)||2Z=0

n0 − 1

Therefore, the ratio of the estimated rebar standard error to
the usual TOT standard error is:(
SErebar

SETOT

)2

=
s2(e)Z=0

s2(Y )Z=0
≤ ||Y − ŷ0(x)||2Z=0

||Y − Ȳ ||2Z=0

= 1−R2
Z=0

with equality if ŷ0(·) is unbiased.
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ABSTRACT 

With the advent of virtual reality-based social training for autistic 

children, treatment integrity of training has been a key measure to 

determine the quality of the intervention. This study introduces 

Jaccard index to evaluate autistic children’s behaviors in guided 

discovery-designed virtual training. The finding from this study 

confirmed that Jaccard index could potentially gauge how much 

autistic children behave corresponding to required social 

behaviors in virtual reality-based training. 

Keywords 

Virtual reality, Jaccard Index, Social skill training, and 

Intervention integrity and quality, and High functioning autism. 

1. INTRODUCTION 
Virtual reality-based social training has been one of 

promising approaches to facilitate socially-required interaction 

skills of children with high-functioning autism (HFA) (Didehbani, 

Allen, Kandalaft, Krawczyk, & Chapman, 2016; Stichter, Laffey, 

Galyen, & Herzog, 2014). According to weak central coherence 

(WCC) theory, children with HFA usually have normal cognitive 

abilities to process their information but low capabilities to figure 

out malleable social senses to identify “big picture” of the context 

(Mottron, Burack, Iarocci, Belleville, & Enns, 2003). The virtual 

reality-based social training may reduce autistic children’s social 

anxiety level as well as provoke their motivation when employing 

social interaction in the training (Stichter et al., 2014). This could 

allow HFA children to smoothly become familiar with social 

interaction in real world. In virtual reality-based training, it is 

normally designed to promote learners’ participation together with 

much social interaction with others in guided discovery 

environment (Didehbani et al., 2016). As guided discovery 

learning design for social training for children with HFA, the 

designers are supposed to purposefully plan interactive events to 

initiate their social skills. The flow of the virtual training session 

is intended to provoke HFA students’ socially-acceptable morale 

behaviors. It means that the training by the guided discovery may 

allow children with HFA themselves to follow socially-required 

behaviors to provoke ideal social skills. 

Currently, the key issue as to virtual reality-based training 

should be assessment. Much research as to social training for 

children with HFA (Didehbani et al., 2016; Stichter et al., 2014) 

has addressed how to maintain reliable effectiveness of the 

training program itself. Treatment integrity is generally a crucial 

degree to determine how much training for autistic children could 

be reliable to be implemented as evidence-based practices (Ke, 

Whalon, & Yun, 2017). Even if a quality indicator of a training 

intervention for children with HFA has been emphasized 

dominantly, there is still few approaches to gauge how children 

with HFA coherently estimate what they are supposed to behave 

in their training.  

Derived by the ideas from serious game analytics (Loh & 

Sheng, 2015), utilizing Jaccard index could be an alternative 

technique to capture sequential steps whether children with HFA 

clearly replicate standard behaviors as what each training session 

deliberately facilitates. Jaccard index is one of measures to 

evaluate users’ behaviors compared with experts’ behaviors as 

standard one. In other words, it quantifies the ratios of behavior 

sequences of one user compared to standard behavioral sequences. 

The kernel of Jaccard index should be the comparison between 

behaviors of children with HFA and normally acceptable social 

behaviors in each session for social training.  The research 

question of this study is following: How does Jaccard index of 

each child with HFA reflect the improvement of social behaviors 

in virtual reality-based social training?  

2. METHOD 
The samples of this study are nine children with HFA 

(Male = 8 / Female = 1), who attended virtual reality-based social 

training sessions. The operating system to simulate virtual reality 

was Opensimulator, which simulates collaborative virtual 

environment. With two facilitators for training in virtual reality, 

all children with HFA in this study went over three guided 

discovery-oriented training sessions: (1) roleplaying as a server in 

a restaurant, (2) scavenge hunting, and (3) librarian interviews. 

All sessions of each participant in this study were video-captured. 

On average, each session lasted around 60 minutes. Via using 

content analyses of captured videos of the participants as well as 

preplanned design documents of each session, two evaluators 

created the rubric of standard behaviors in each session. The 

rubric has been iteratively revised until two evaluators acquire 

100 % agreement of the rubric. Derived from the concept of 

Jaccard index, the rubric described each different number of 

critical behaviors in each session respectively. Based on the 

rubric, the study calculated each individual’s Jaccard index scores 

(0 < XJaccard < 1).  
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Figure 1. Equation to calculate Jaccard index score of each 

participant in each session. 

Figure 1 is the equation for calculating Jaccard index 

scores to estimate their behaviors in each session. To confirm the 

reliability of the index, additional in-depth video analyses were 

also implemented. 

3. Findings 
Figure 2 shows the average scores of Jaccard index of 

each child with HFA as well as the scores across participants and 

types of training sessions. Most participants in the study had 

higher Jaccard index scores in the roleplaying session (M=.87, 

SD= .20) compared to those in other sessions (Scavenger hunting 

= .51 / Librarian interview = .37). As shown by using in-depth 

video analysis, the participants, who had scores lower than .5, 

were confirmed that they were mostly inattentive toward the 

activity or did not figure out how to start with their actions to 

resolve a given task in the sessions. 

 

Figure 2. Jaccard index scores across each participant as well 

as types of training sessions 

4. CONCLUSION 
As findings of this study shown by Jaccard index, most 

participants might have difficulties to follow proposed steps of 

behaviors in librarian interviews while they were usually able to 

act as a server of the restaurant in roleplaying. Via using Jaccard 

index, this study potentially proposed that additional scaffolding 

for children with HFA should be necessary for librarian 

interviews, which were likely to make learners be much 

responsible for interacting with an interviewee as face-to-face 

interaction compared to other sessions.  

Treatment integrity in social training for autistic children 

could be a determinant whether an intervention deliberately 

provokes proposed social behaviors. In a same vein with this 

context, this study revealed that Jaccard index could be promising 

to represent whether children with HFA clearly behave by the 

intervention in order to ensure the quality of treatment integrity. 
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ABSTRACT 

This paper describes a desktop Java tool for allowing instructors 

to preprocess Moodle data sets. Our idea is to provide instructors 

with an easy to use tool for preparing the raw Excel students data 

files directly downloaded from Moodle’s courses interface. 

Several traditional preprocessing techniques are considered to 

transform input data into well-formatted data sets that can be later 

used by most of the popular data mining frameworks. 
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1. INTRODUCTION 
Nowadays, there is a great interest in analyzing and mining any 

students’ usage/interaction information gathered by Learning 

Management Systems (LMS) such as Moodle [1]. However, to 

obtain and preprocess these data can be an arduous and tedious 

task [2]. Generally, it is necessary to know SQL language as well 

as to be an user with administrator role in order to have access to 

all the course information. And to our knowledge there isn’t any 

specific Moodle data mining tool for preprocessing [2]. So, in 

order to resolve these problems, we have developed an easy to use 

Java GUI application oriented to be used by non-expert users in 

data mining and SQL, such as instructors. Our idea is to provide 

the instructor of a Moodle course the possibility of using Excel 

files directly downloaded from Moodle’s interface without a labor 

and time-intensive preprocessing step. Finally, the obtained files 

from our desktop tool are well-formatted datasets that can be used 

by most of the well-known data mining frameworks (Weka, 

RapidMiner, Knime, R, etc.) for applying data mining algorithms. 

2. TOOL DESCRIPTION 
Our Moodle data preprocessing desktop tool has been developed 

in Java language and it includes six main steps and taps (see 

Figure 1).  

 

Figure 1: Preprocessing flow 

2.1 Log file selection  

This tab enables a log file (directly downloaded from Moodle’s 

course interface in spreadsheet Excel format) to be opened/loaded. 

After that, it shows the content of the file and allows selecting the 

specific columns where the required information is located (Name 

of the students, Date and Events). This tab also provides basic 

information about the loaded file such as the total number of 

records, and the first and last update for all the records (see Figure 

2). 

 

Figure 2: Selecting a log file. 

2.2 Grades file selection  

This tab is used by instructors to load a file (in spreadsheet Excel 

format) containing the students’ grades (directly downloaded from 

Moodle or provided by the own instructors). Instructors can also 

fill in the students’ mark manually (see Figure 3). Finally, those 

students with no final mark in the course can be removed, set as 

fail or even set as withdraw. 

 

Figure 3: Loading a grades file. 
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2.3 Events selection 

This tab allows the instructor to select what events (all of them or 

just a few) should be used as attributes in the final dataset. It is 

also possible to group these raw events in new high level 

attributes manually or automatically by using an ontology (see 

Figure 4). This ontology can be created, saved, loaded and 

viewed.  

 

Figure 4: Selecting events using an ontology. 

2.4 Date and partitions selection 

The specific starting and ending date of the course can be 

established from this tab in order to use only the events that 

occurred between these dates (see Figure 5). It is also possible to 

specify whether the user requires a single summarization file or a 

number of cumulative data partitions (e.g. one per week/month). 

 

 

Figure 5: Selecting dates and partitions. 

2.5 Discretization  

For the sake of transforming those attributes or variables defined 

in a continuous domain/range into discrete values, this tab 

provides the option of performing a manual discretization as well 

as traditional techniques such as equal-width or equal-frequency 

(see Figure 6). 

 

 

Figure 6: Discretizing variables. 

2.6 Dataset generation 

Finally, this last tab allows the instructor to generate the 

preprocessed data file, or several data files in case he/she selected 

several partitions that can be downloaded in three different file 

formats: .ARFF (Attribute-Relation File Format), .CSV (Comma-

Separated Values) and .XLS (eXceL Spreadsheet). This tab 

includes additional options such as data anonymization and 

previous discretization techniques (see Figure 7). It also gives the 

possibility to generate a student’s engagement variable that unifies 

the time, in minutes and days that each student has been 

connected in Moodle, as well as the total number of 

records/instances of each student in the log file.  

 

Figure 7: Generating preprocessed datasets. 
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ABSTRACT 
This study explored game-based learning behaviors via sequential 
data mining. A systematic behavior analysis was conducted with a 
total of 98 videos from 25 middle school students who played E-
Rebuild – an architectural simulation game based mathematical 
learning platform. A transition matrix analysis in sequential data 
mining was implemented to explore the game actions that 
promoted cognitive and content engagement with high 
probability.   

Keywords 

Sequential analysis, game-based learning, behavior analysis. 

1. INTRODUCTION 
Prior research indicated that game-based learning engagement is 
not a naturalistic occurrence in educational gaming and should be 
purposefully designed and supported (Ke, Xie, & Xie, 2015). 
Learners usually interact with multiple game objects and events in 
their play. However, it is challenging to predict and explain what 
game actions are most likely to promote learning engagement. In 
this study, we explored learners’ in-game behaviors to predict the 
association between diverse game actions and their learning 
engagement via sequential data mining. 

2. METHOD 
2.1 Game-based learning platform 
The game E-Rebuild is a single-player, multi-episode 3D 
architecture game of which the overall game goal is to rebuild a 
natural disaster damaged space to fulfill diverse design parameters 
or needs. The targeted math content topics by E-Rebuild are (a) 
ratio and proportional relationships, and (b) angle measure, area, 
and surface area. A learner in E-Rebuild will perform the 
following core game actions: surveying the construction site, 
collecting construction items, a series of building actions 
(including object positioning and stacking), materials trading, and 
space and resource allocation. 

2.2 Participants and data collection 
A total of 98 videos capturing 25 (male=15, female=10) middle 
school students’ game-play behaviors and facial expressions were 
analyzed. Each video lasted around 50 minutes. Multiple coders 
conducted an exploratory behavior analysis to construct a gaming 
behavior coding framework (Figure 1). The framework was 
refined until the coders achieved a 100% inter-rater agreement on 
the categories, definitions, and exemplifying events of core 
behaviors. As Figure 1 shows, action categories represent the 
gameplay actions in which the learners engaged. The outcome 

variable, learning engagement, comprised two types of 
subordinate states: generic cognitive engagement (e.g., planning, 
evaluation, refining) and content engagement (e.g., information 
processing, knowledge application, calculation). Using the coding 
framework and BORIS (Friard & Gamba, 2016), four trained 
coders coded 20% of gaming recordings blindly, with the 
interrater agreement being .82. After further peer debriefing to 
resolve the disagreements, the coders then coded an equal part of 
the remained recordings independently. 

 
Figure 1. Coding framework via BORIS 

2.3 Sequential data mining 
With the behavior coding results, we then employed a transition 
matrix analysis in sequential data mining (Friard & Gamba, 2016) 
to explore game actions that predict learning engagement with 
certain probabilities. The underlying principle from the transition 
matrix analysis is hidden Markov chain algorithm (Martin & 
Sherin, 2013). In comparison with other algorithms in sequential 
analyses, the hidden Markov chain can better illustrate a causal 
relationship between event variables and predictors (Hou, 2015). 
Different from a lag-sequential analysis (Gottman & Roy, 1990), 
in this study we focused on the exploration of potentially-
prominent game actions that promote learning engagement but not 
to compare whether a predictive model is statistically significant. 
In hidden Markov chain, there are the transition probability 
representing probability values between two events in a same 
behavior category and the emission probability representing the 
probability that one event can predict another event in each 
different category. In this study we examined mainly the emission 
probability to identify the game events or actions that predict two 
types of learning engagement (Hand, Mannila, & Smyth, 2001). 
We only included the causal relationships that had a .1+ 
probability value (Pr > .1) and can be prominent for the outcome 
variables. Predefined outcome variables for the analysis were two 
types of learning engagement (cognitive engagement and content 
engagement) together with subordinate modifiers for each type of 
learning engagement (Ke et al., 2015). 

3. FINDINGS AND IMPLICATIONS 
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As shown by Figure 2, the sequential data mining results indicated 
that all major game actions promoted two types of learning 
engagement (i.e., cognitive and content engagement) differently. 
Accurate Trading action in the game was more likely to provoke 
knowledge Application (Pr =.329) and information Processing (Pr 
=.278) states of the content engagement. Appropriate Allocation 
action was another salient event to foster Application in content 
engagement (Pr = .4). On the other hand, Positioning move of the 
Building action showed a high probability (Pr = .467) in initiating 
the Testing and Refining state in cognitive engagement. 

The study indicated the feasibility of using the combination of 
behavior analysis and sequential data mining for the research of 
game-based learning. The study findings suggested that learning 
game designers should purposefully design, evaluate, and select 
game events and actions that better promote learning engagement. 

 
Figure 2. Emission probability values of game interactions to 

promote two types of learning engagement. 
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ABSTRACT 

In this paper, we compare predictive models for students’ final 

performance in a blended course using a set of generic features 

collected from the first six weeks of class.  These features were 

extracted from students’ online homework submission logs as 

well as other online actions. We compare the effectiveness of 5 

different ML algorithms (SVMs, Support Vector Regression, 

Decision Tree, Naive Bayes and K-Nearest Neighbor). We found 

that SVMs outperform other models and improve when compared 

to the baseline. This study demonstrates feasible implementations 

for predictive models that rely on common data from blended 

courses that can be used to monitor students’ progress and to 

tailor instruction.  

Keywords 

Predictive model, machine learning, blended course, generic 

feature, support-vector machines  

1. INTRODUCTION 
In recent years, universities have begun to employ more online 

educational tools such as e-Textbooks, forums and homework 

submission systems. Online homework platforms, such as 

Webassign, support students and instructors by providing 

opportunities for automated grading and feedback. They can also 

support real-time monitoring of students’ progress in the course. 

If we can observe students’ progress as they work and reliably 

predict their final grades, then can tailor the support provided to 

their needs. If, for example, a student’s behavior indicates that 

they will succeed then simple encouragement (e.g. "keep up the 

good work") may be all that is required. If, however they are 

likely to fail, then they can be flagged for individual tutoring.  Or 

they can be provided with automated guidance to useful resources 

or additional practice opportunities. 

Our goal is to develop an accurate early predictor of students' final 

course grades from their user-system interaction logs. In order to 

strike a balance between early intervention and prediction 

accuracy. we trained our predictors based on the first 6 weeks of 

our 14-week course. 

A number of researchers have sought to apply machine learning to 

predict students' course performance. Li et al. [9] proposed 

composite machine learning models based on features derived 

from students’ interactions with forums, lectures, and assignments 

to identify at-risk students, and found that a Stacked Sparse 

Autoencoder+Softmax model achieved best AUC score 

consistently. Jiang et al. [8] sought to predict whether students 

would receive a completion certificate in a MOOC and if so what 

level it would be.  To that end he combined their week 1 

assignment performance with their online social interactions via 

logistic regression.  They achieved 92.6% accuracy. Lopez et al. 

[10] applied a range of clustering methods to predict students’ 

final marks in an online course based on their forum participation. 

They compared Expectation-Maximisation (EM) clustering, 

XMeans, Simple KMeans, and DTNB, using a set of four textual 

attributes and two network attributes: messages sent per student, 

replies per student, number of words written and the average 

expert rating of each message as well as the student's centrality 

and level of prestige within the social network.  They found that 

the EM algorithm had higher accuracy than the alternatives. 

Similarly, Agnihotri et al. [1] applied K-Means clustering to login 

data from a web-based assessment platform called Connect and 

found a strong correlation between students’ login patterns (e.g.  

opening assignments / attempting questions) and their scores. 

Brooks et al. [3] built a predictive model from time-series logs of 

student interactions with an online learning platform including 

quiz attempts, lecture views and posting to the forum. They used a 

decision tree to predict the students’ final marks based on 

counting the different types of interactions over different time 

frames. Sabourin et al. [11] combined decision trees and Logistic 

Regression to classify students' self-regulated learning behaviors 

on an existing computer-based platform called Crystal Island. 

They found a weighted-by-Precision model to be most successful 

in classifying students’ level of Self-Regulated Learning (“the 

process by which students activate and sustain cognitive, 

behaviors, and affects that are systematically directed toward the 

attainment of goals” [12]) performance (low, medium, high) 

through self-report prompts in game. 

Bydzovska [5] evaluated multiple approaches to identify 

unsuccessful students.  One approach used Support Vector 

machines (SVMs) and regression models based on social metrics, 

including measures of the students' betweenness and centrality 

(how many paths between students go through them).  The other 

used collaborative filtering based on similarities between 

students’ prior achievements. He found that the first approach 

reaches significantly better results for courses with a small 

number of students. In contrast, the second approach achieves 

significantly better results for mathematical courses. Stapel et al. 

[13] incorporated Knowledge Tracing with traditional machine 

learning such as K-Nearest Neighbor (KNN) and Naive Bayes to 

build an ensemble method to predict students’ performance over 

specific math objectives, achieving an accuracy of 73.5%. 

Holsta et al. [7] built a classification model to identify at-risk 

students without legacy data from other courses.  This model used 

students’ demographic, registration information in combination 

with online activity logs such as clicks in forum or assignment 

submissions. They compared the performance of these models on 

seven different datasets and found that XGBoost performanced 

better on average than SVMs, Linear Regression, KNN and 

Random Forests. Bote-Lorenzo et al. [2] found that Stochastic 
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Gradient Descent outperformed Linear Regression, SVMs and 

Random Forest at predicting the decrease of engagement of the 

students in a MOOC using a combination of assignment grades 

and submission statistics. 

While most prior research was based on comparing the accuracy 

of different machine learning methods, the models used were 

either based on traditional onsite courses or MOOCs, and the 

number of features used was limited. In this paper, we built a 

model using generic features on homework submissions that are 

not unique to any specific course. We tested the accuracy of 5 

different machine learning algorithms on data collected from a 

blended course, which pairs in-person lectures and office hours 

with an array of online tools including discussion forums, 

intelligent tutoring systems, and homework helpers. We employed 

Leave-One-Out cross validation to compare the accuracy of the 

different algorithms. 

2. DATASET & FEATURES 

We analyzed student data from CSC226 "Discrete Mathematics 

for Computer Scientists", a course offered by the Department of 

Computer Science at North Carolina State University. This is an 

introductory course for Computer Science (CS) and Computer 

Engineering students.  It covers logic proofs, probability, set 

theory, combinatorics, graph theory, and finite automata. The 

dataset was collected from the Spring 2013 offering.  This course 

has 2 lecture sections meeting 3 times per week, with 249 students 

total. The course lasted one semester (14 weeks) with 10 

homework assignments, 2 intelligent tutors as labs and 4 tests 

(including the final). The final grade was based on the test scores 

(60%) and on the homework and lab assignments (40%). The final 

grade distribution is shown in Figure 1. 

 

Figure 1: The grade distribution of course analyzed 

We designed and compared a series of predictors based on the 

students' first 6 weeks of the coursework that includes four 

homework assignments and one test. The students completed their 

homework on Webassign, an online platform that supports 

automated grading and multiple retries. The homework questions 

were structured as short answer, fill in the blank (including 

Boolean values), or multiple choice questions.  Complex 

questions such as the logic circuit shown in Figure 2, were broken 

into multiple submissions. 

The students were typically given 1 attempt for each Boolean 

question and 3 attempts for all others. Our final dataset included 

409 distinct questions with 265,510 submission attempts overall. 

The submission time was recorded as well as the student’s section. 

The offline test was completed on paper as part of the students’ 

class session and includes multiple open-ended questions.  The 

test was graded manually. Homework and test scores are floating 

numbers between 0 and 100, inclusive. 

 

Figure 2: A sample question on Webassign 

3. METHODS 
We represented student performance with the features to represent 

shown in Table 1.  

3.1 Feature Selection 
We used the VarianceThreshold method from the Sci-Kit Learn 

Python library (version 0.19.0) to perform feature selection.  The 

dataset includes some easy questions that almost every student 

answered correctly in one submission, indicating the 

corresponding features did not have much variance. Therefore, no 

good predictions can be made from these features, so we 

eliminated them from analysis.   To save computing power and 

avoid spurious correlation between these features, we tested 

several combinations of thresholds of variance. The combinations 

tested for Per-Question Performance and Submissions Per 

Question respectively were (0.00, 0.00), (0.02,0.05), (0.03, 0.07), 

(0.04, 0.10). By checking the final accuracy of predictors after 

running the models under different thresholds, we found (0.02, 

0.05) achieved the best accuracy. Therefore, we chose (0.02, 0.05) 

as the threshold in our analysis, and it selects 311 and 329 

features for Per-Question Performance and Submissions Per 

Question, where original number of features are all 409. 

                                Table 1: The feature list 

Feature Total 

Per-Question Performance: Whether a student 

answers questions correctly indicating skill mastery. 

409 

Submissions Per Question: Number of tries per 

question indicating the number of errors or guesses. 

409 

Response Time: Extra-long response times 

indicate that the student may be distracted or having 

difficulty with the question while very short response 

times may indicate guesses.  Long responses are 

defined as response times two standard deviations 

above average while quick response times are > 5 per 

minute.  We exclude responses that are longer than 2 

hours as this indicates a disconnected session. 

4 

Sessions Per Assignment: A session is defined as 

a period of time taken on homework. Two adjacent 

tries within 2 hours are treated as the same session. 

Multiple sessions per assignment may indicate 

difficulty with the assignment. 

4 

Homework and Test Scores: are used in 

calculating the final grade. 

5 
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3.2 Normalization and Manual Segmentation 
After eliminating uninformative features, we normalized each 

value to the range [0,1] to prevent any one feature from 

dominating the others.  We then compared the performance of our 

trained models on both the normalized and unnormalized data to 

assess the impact of this step. 

We also plotted the distribution of the submission attempts and 

response times for each question in order to assess their utility. 

Both distributions are dramatically right-skewed.  Therefore, we 

did not expect manual segmentation from the decision tree to be 

more meaningful than the automatic segmentation provided by the 

Sci-Kit library. Therefore, we therefore opted not to perform any 

manual segmentation in this study. 

3.3 Machine Learning and Cross Validation 
We used the following standard implementations of the machine 

learning methods from the Sci-Kit library to train our models:  

Support Vector Machine (RBF kernel), Support Vector 

Regression, Decision Tree (Scikit-Learn uses an optimized 

version of the CART algorithm.), Naive Bayes and K-Nearest 

Neighbors (K=5). In order to assess the performance of the trained 

models, we also added two baseline models: random prediction 

and predicting the most frequent grade (A in this case). 

We then estimated the stability of the models using Leave-One-

Out cross validation we report the overall accuracy and a 

confusion matrix for each algorithm along with an, average 

precision score (micro over cross-validation), AUROC (exactly 

correct vs. not exactly correct), f1 score and mean squared error is 

also calculated to better compare the performances of models. 

4. RESULTS 
Because Support Vector Machine and Support Vector Regression 

use regularization (C=1.0) to prevent overfit, and the other models 

are sensitive to changes in attributes’ values, the normalization 

process impacted performance. However, it did not lead to any 

consistent improvement in the accuracy relative to the non-

normalized models.  Because the accuracy of the Support Vector 

Machine and Linear Regression methods dropped significantly 

after normalization, we will focus solely on the non-normalized 

models in the remainder of the paper. 

Based on Leave-One-Out cross validation, Support Vector 

Machines perform best among all the five algorithms, achieving 

54.1% accuracy. Support Vector Regression, Decision Tree and 

K-Nearest neighbor reached more than 40% accuracy, but Naive  

Table 2: Performance for non-normalized input 

 Accuracy 

Mean 

Square 

Error 

Average 

Precision 

(Micro) AUROC f1 score 

SVM 51.4% 1.755 0.36 0.573 0.514 

Lin. Reg 45.8% 1.304 0.23 0.558 0.289 

Decision 

Tree 43.8% 1.803 0.3 0.590 0.437 

Naive 

Bayes 24.1% 3.108 0.21 0.539 0.240 

KNN 41.8% 1.510 0.29 0.595 0.417 

Random 20.0% 4.807 0.2 0.492 0.196 

All A 47.8% 2.674 0.33 0.500 0.477 

Bayes performed just slightly above chance. The other 

performance statistics showed the same trend. 

Table 3: Performance for normalized input 

 Accuracy 

Mean 

Square Error 

Average 

Precision 

(Micro) AUROC f1 

SVM 51.0% 2.160 0.36 0.536 0.510 

Lin. Reg 23.7% 1.459 0.23 0.523 0.301 

Decision 

Tree 42.2% 1.702 0.29 0.576 0.421 

Naive 

Bayes 25.3% 3.108 0.21 0.543 0.253 

KNN 24.1% 1.767 0.21 0.554 0.240 

Random 20.0% 4.807 0.2 0.492 0.196 

All A 47.8% 2.674 0.33 0.500 0.477 

 

We then generated confusion matrices for the different approaches. 

These matrices are shown in Tables 4 & 5.  Here the difference is 

the absolute distance between the predicted grade and the actual 

grade on an integer scale (5-A 4-B 3-C 2-D 1-F) 

Table 4: Confusion matrix for unnormalized input 

 

0 1 2 3 4 

SVM 128 81 19 8 13 

Lin. Reg 114 89 34 7 5 

Decision Tree 109 94 23 15 8 

Naive Bayes 60 82 78 12 17 

KNN 104 98 36 6 5 

All predict to A 119 72 22 10 26 

Table 5: Confusion matrix for normalized input 

Difference 0 1 2 3 4 

SVM 127 72 22 10 18 

Lin. Reg 59 159 13 16 2 

Decision Tree 105 98 26 14 6 

Naive Bayes 63 78 79 12 17 

KNN 60 116 68 4 1 

 

5. DISCUSSION & FUTURE WORK 
While the machine learning models described in this study can be 

used to predict students’ final grades to some extent, the accuracy 

is still far from ideal for real-world applications. Although the 

best model (SVMs) performed better than the naive baseline 

models, the advantage is not significant. At the same time, 

normalization did not bring us any notable improvement. When 

examining the misclassified students, we found that a 

considerable portion of students who did well in the homework 
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actually performed poorly in the first test. Given the high 

percentage (47.8%) of A grades in this course and the fact that 

homework typically permitted multiple tries we concluded that the 

homework may have been too easy, and that students' final 

homework scores were not reliable predictors of their future test 

scores, which are in turn the largest portion of final score. Thus, it 

was not possible to derive a good predictive model that relies 

heavily on homework submission logs. We also noticed that 

almost all of the students who did not complete or performed 

poorly in one of the assignments eventually dropped the course. 

We believe that these are students who may have wanted to drop 

the course and who thus quit doing the homework before 

dropping or who were motivated to do so after a particularly bad 

homework score. Unfortunately, none of the models correctly 

captured this phenomenon. 

In the future, we hope to examine if feature engineering can be 

used to address the limitations above. If we can predict dropouts 

in advance, then we can make the models much more robust. One 

other possible way to improve upon this is to add additional 

features. A richer model may be more robust in the face of noise.  

Combining this interaction model with models based on social 

network data, for example, may improve our performance 

particularly in cases where help-seeking is an important indicator 

of performance. Brown et. al [4] have shown that students on 

MOOCs formed detectable communities, and community 

membership was significantly correlated with performance. In 

addition, Gitinabard et. al [6] showed that students who asked 

more questions and received more feedback on the forum tended 

to obtain higher grades in blended courses. It will be interesting to 

see if students closely connected in a social network in course 

influence each other and further change the homework pattern of 

features overtime. 
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ABSTRACT 

Learner-created artifacts are social learning objects that enable 

creativity, augment learning and reflect learners’ thoughts. The 

purpose of this study was to identify psychosocial characteristics 

of learners that predict artifact creation. Learners (N = 1708) 

enrolled in a Massive Open Online Course (MOOC) called The 

Science and Practice of Yoga and created artifacts as part of their 

weekly activity. Learners used popular social media tools like 

blog posts, memes, inspirational posters, concept maps and 

animated gifs to create artifacts. The course design required 

learners to share their creative work with their peers. In the pre-

course survey, learners self-reported personality traits, 

mindfulness, emotion regulation, psychological well-being and 

health. We divided the learners into two groups based on whether 

or not they posted course related artifacts and performed an 

independent samples t-test for each of the psychological scales. 

We observed that learners reporting higher scores on 

psychological and general health were more likely to create 

artifacts. We infer that these learners would have enrolled in this 

MOOC to use yoga as way to improve their physical and mental 

health while using artifacts as a channel to share their thoughts 

and connect with other students in the MOOC.   

Keywords 

Student-produced artifacts, psychosocial characteristics, MOOC, 

Knowledge space 

1. INTRODUCTION 
The increased use of social technologies in society is being 

reflected in formal and informal learning [1, 2]. Limited analysis 

has been conducted [3] regarding how learners in MOOCs use 

social media. In our study, we investigated the use of social media 

and artifact creation. Learners’ usage of social media platforms 

and the survey responses in The Science and Practice of Yoga 

indicated that learning could be augmented by providing learners 

with an opportunity to share resources and communicate thoughts 

and reflections effectively.  

 

 

 

Often, the conversations in social media include usage of tools 

and objects such as memes, animated gifs, URLs to blog posts or 

other web resources [3-5]. These tools give learners greater 

autonomy to express themselves and their conception of course 

content. These contributions may be related to the topic being 

discussed or completely detour and create a new conversation 

surrounding. We refer to these social objects as artifacts.  

When artifacts are incorporated into online courses, they have 

potential to enhance learning [6]. These artifacts are learner-

created and are social in nature – sharing how the learner 

interpreted course material and the connections made to existing 

knowledge.  Previous research has examined different learning 

pathways and knowledge spaces involved in the usage of social 

media that could enhance the learning experience of students, 

rather than a traditional instructor driven pathway [7, 8]. 

Similarly, the creation of artifacts can serve as an alternative 

learning pathway and space for building knowledge.  

In our MOOC, The Science and Practice of Yoga, learners were 

required to use social media tools, like blog posts, memes, 

inspirational posters, concept maps and animated gifs to create 

content that expressed their thoughts and reflections. For example, 

a learner could create an image that related to a certain concept of 

yoga and post it to the general discussion forum of the course. 

Other learners could share their reactions, critique the image, and 

even add to it. Such an activity creates an additional knowledge 

contribution that augments what was designed in the course. 

Although a course might explicitly ask learners to create artifacts, 

not everyone will participate. Understanding who creates artifacts 

in a MOOC is an open, empirical question. To address this 

question, we grouped learners from the MOOC on The Science 

and Practice of Yoga based on whether or not they created 

artifacts and investigated psychological differences between these 

groups. We administered a number of validated psychological 

scales related to psychological health and well-being in order to 

investigate whether or not psychological factors could 

differentiate groups and predict artifact creation in our MOOC. 

2. METHOD 

2.1 Participants 
Initially, 20347 learners signed up to take a 6-week MOOC on the 

science and practice of yoga. The course lasted for 6 weeks 

between October and December 2017. Of those learners who 

initially signed up, 3755 learners consented for the pre-course 

survey. 1708 learners completed the survey. Among those that 
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completed the survey, 178 posted at least one course related 

artifact in the discussion forum of the MOOC.  

2.2 Survey Measures 
The pre-course survey was created to assess a variety of 

demographic and psychological variables. These variables were 

selected because we thought that they might either broadly relate 

to learner participation in course activities or specifically relate to 

activities in a MOOC about yoga and meditation. Demographic 

variables included age, gender, education, and a measure of 

income. 

We assessed participants’ self-efficacy (i.e. confidence in their 

own abilities), beliefs about the effectiveness of yoga and 

meditation, their intentions to perform yoga and meditation, prior 

yoga and meditation experience, and prior online course 

experience. We also assessed a number of mental and physical 

health variables using validated scales.  The Patient-Reported 

Outcomes Measurement Information System (PROMIS) scale was 

used to measure physical and mental health, where higher scores 

represent better physical and health [9]. The Curiosity and 

Exploration Inventory-II (CEI) was used to measure stretching 

(motivation to seek new experiences) and embracing (willingness 

to embrace new situations); higher scores represent more of each 

[10]. The Emotion Regulation Questionnaire (ERQ) was used to 

measure the two emotion regulation strategies of reappraisal and 

suppression (reappraisal is believed to be a healthy strategy, 

whereas suppression is not); higher scores on each represent a 

greater tendency toward that regulation strategy [11]. The Five 

Facet Mindfulness Questionnaire (FFMQ) was used to measure 

the five elements of mindfulness including observing, describing, 

acting with awareness, nonjudging of inner experiences, and 

nonreactivity of inner experiences; higher scores for each 

represent greater mindfulness levels for each [12]. The 18-

question version of the Psychological Well-being (PWB) Scale 

was used to measure six well-being elements including self-

acceptance, environmental mastery, positive relations with others, 

purpose in life, personal growth, and autonomy; higher scores for 

each represent greater psychological well-being [13]. The 4-item 

Perceived Stress Scale (PSS) was used to measure perceived 

stress over the past month prior to course participation; higher 

scores represent greater stress [14]. The Sense-Of-Self Scale 

(SOSS) was used to measure understanding of one’s self; higher 

scores represent a poorer understanding of one’s self [15]. The 

Ten-Item Personality Inventory (TIPI) was used to measure the 

Big-5 personality constructs of openness, conscientiousness, 

extraversion, agreeableness, and emotional stability; higher 

scores represent a greater amount of each personality trait [16].  

2.3 Procedure 
At the beginning of the MOOC, learners were asked to complete 

an optional pre-course survey involving the above-mentioned 

scales, which was administered by Qualtrics through EdX. The 

survey took approximately 45 minutes to complete. Learner 

mental and physical health data were collected throughout the 6 

weeks.    

While learners were participating in the MOOC they had access to 

the course discussion forum where they could interact with other 

learners and instructors. The learners were required to post the 

course related artifacts in this space. The artifacts (memes, blog 

posts, gif, etc.) had a URL associated with it, which was recorded 

along with all of the discussion forum posts.    

Learner’s discussion forum posts were collected from the EdX 

data repository of the course. The posts containing artifacts were 

filtered out. A unique list of learners who posted at least one 

course related artifact was created. Only learners who completed 

the pre-survey were considered. A final data set was created 

containing the learners who completed the pre-survey, their 

survey results and a binary value was given to each learner based 

on whether or not they posted a course related artifact. This 

dataset was used for investigation of psychological and health 

differences between the two groups.    

2.4 Analysis of Survey Data 
Using SPSS statistical software, we used Independent Samples T-

tests to examine differences in mental and physical health between 

those who created artifacts and those who did not. Outcome 

variables included all the psychological scales from the pre-

survey. 

3. RESULTS 
The mean, standard deviation and effect size values of all outcome 

variables are reported in table 1. Our alpha value over 26 tests was 

calculated to be .0019.  

On the PROMIS scale, artifact creators reported to be significantly 

phsycially healthier than learners’ who had no artifacts. t(1706) = 

3.593,  p < .001 and represented a moderate-size effect, d = 0.3. 

On the PWB scales, we oberserved that artifact creators had 

significantly greater scores on environmental mastery (t(1706) = 

3.961,  p < .001), postive relations (t(1706) = 3.394,  p = .001) and 

self acceptance (t(1706) = 3.603,  p < .001) than rest of the 

learners. These three PWB scales represented a small to moderate 

size effect with Cohen’s d value of 0.34, 0.28, 0.30 respectively. 

 

Table 1: Means, SDs, and effect sizes (Cohen’s d) for outcome 

variables across artifact creators (n=178) and no artifacts 

(n=1530) 

 

 

On the TIPI scale, artifact creators self-reported to have 

significantly higher scores on personality traits like extraversion 

(t(1706) = 3.59,  p < .001) and conscientiousness (t(1706) = 3.96,  
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p < .001) representing a small to medium size effect with Cohen’s 

d value of  0.28, 0.33 respectively. 

4. DISCUSSION 
A higher score on physical health indicates artifact creators were 

higher functioning and had a better quality of life, before taking 

the course. Artifact creators exhibited higher environmental 

mastery, which meant they are always in charge of any situation in 

their lives. They also had higher score on positive relations with 

others, which shows that they were willing to share time with their 

peers through creation of artifacts and indulging in conversations 

surrounding it. They had a good self-acceptance score meaning 

that they had a positive attitude towards themselves.    

Artifact creators were outgoing and energetic (extraversion) while 

being efficient and organized (conscientiousness) all together. We 

can infer that these set of learners were self-disciplined, work 

towards a goal and have a tendency to lead in a social 

environment. All these characteristics describe their active 

participation in all the artifact creation activities of the MOOC. 

They were likely to use artifacts as a channel to share their 

thoughts and connect with other students in the MOOC.  

While additional investigation is required, these results suggest 

that an active and engaged approach to learning – creating rather 

than consuming – may be related to psychological attributes that 

are currently not well understood in MOOC literature. For 

example, active learning in classrooms contributes to significantly 

better learning outcomes than lecture-based learning [17]. There 

is reason to believe that artifact creation, as a form of active 

learning, produces similar learning gains. Additionally, questions 

exist regarding the ability to shape psychological attributes, 

through course design or teaching practices, to involve currently 

passive learners in artifact creation. 

5. Conclusion 
We showed that learners who posted course related artifacts could 

be differentiated from those who do not based on underlying 

psychological characteristics. Primarily, we showed that students 

who posted artifacts were generally mentally and physically 

healthier than those who did not post artifacts. Our findings 

suggest that underlying psychological factors may influence 

student performance in MOOCs. However, it is important to note 

that the effect sizes in the present study were small to moderate in 

size.  Although psychological factors may be able to discriminate 

these groups, other unobserved factors could be playing a much 

larger role.  Further research is required to investigate group 

differences and increase our understanding of student artifact 

creation and active learning in MOOCs.  
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ABSTRACT 

There has been much interest in developing profiles of learners 

engaging in Massive Open Online Courses (MOOCs) in order to 

better predict learner behavior and maximize learning outcomes. 

Recent work by Kizilcec, Piech, and Schneider (2013) showed that 

weekly patterns of learner engagement with course materials could 

be used to cluster learners into four groups: completing, auditing, 

disengaged, and sampling. In the present study, we sought to 

understand the characteristics of these learners by investigating 

demographic and psychological variables collected from a pre-

course survey in an EdX MOOC called The Science and Practice 

of Yoga. First, we employed hierarchical and K-means clustering 

on weekly engagement patterns in the MOOC and clustered 

learners into highly similar groups as in Kizilcec et al., thereby 

replicating their findings. Next, we employed principal component 

analysis and discriminant function analysis to compare 

demographic and psychological variables. Principal component 

analysis suggested three categories: mental health, self and course 

beliefs, and curiosity and openness. Discriminant function analysis 

was able to discriminate groups based on these variables. Function 

1 separated Completing Learners from the rest, and Function 2 

separated Disengaged Learners from the rest. These findings 

suggested that engagement patterns in MOOCs might be partly 

explained by learners’ psychological traits and pre-course states. 

This has implications for how MOOCs are designed to foster 

planned interactions that learners have with one another and with 

the course content by advancing consideration of learner 

psychological attributes, rather than primarily the content to be 

learned.  

Keywords 

MOOC, Learner Profiles, Engagement 

1. INTRODUCTION 
Massive open online courses (MOOCs) continues to gain global 

attraction. The large data sets generated have proven useful for 

learning analytics, educational data mining, and learning sciences 

in general. The analysis of these data sets has to date largely 

focused on content and learner interactions, with minimal attention 

paid to psychological attributes of learners. In our study, we begin 

to address this gap. In 2013, Kizilzec and others developed a 

clustering method for organizing learners into groups based on their 

participation and engagement patterns in MOOCs. In their study [1], 

engagement was determined by their participation and assignment 

completion rates. Engagement was measured on a weekly basis and 

summed to create a score used for clustering. For each week, 

learners were characterized as “on track” (completed work on 

time), “behind” (completed work late), “auditing” (didn’t complete 

work, but engaged by watching videos), or “out” (didn’t participate 

at all), and were given a score of 3 for on track, 2 for behind, 1 for 

auditing, and 0 for out. At the end of the course, these scores were 

summed and the summed values were used for clustering.  

In the present study, we replicated this method using learner 

participation and engagement patterns in the EdX MOOC, The 

Science and Practice of Yoga.  We also sought to investigate 

psychological differences between these groups using a pre-course 

survey. We administered a number of validated psychological 

scales related to psychological health and well-being in order to 

investigate whether or not psychological factors could differentiate 

groups and predict participation and engagement patterns in our 

MOOC. 

2. METHOD 

2.1 Participants 
Initially, 20347 learners signed up to take a 6-week MOOC on the 

science and practice of yoga. Of those learners who initially signed 

up, 3755 learners consented to participate in the study and 

completed a pre-course survey.  These 3755 were included in the 

analyses. 

2.2 Survey Measures 
The pre-course survey was created to assess a variety of 

demographic and psychological variables. These variables were 

selected to assess if they either broadly related to learner 

engagement or specifically related to engagement in a MOOC 

about yoga and meditation. Demographic variables included age, 

gender, education, and a measure of income. 

Psychological variables were measured through scores on scales 

created by the authors, including those designed to assess 
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participants’ self-efficacy (i.e. confidence in their own abilities), 

beliefs about the effectiveness of yoga and meditation, their 

intentions to perform yoga and meditation, prior yoga and 

meditation experience, and prior online course experience. We also 

assessed a number of psychophysiological health variables using 

validated scales.  The Patient-Reported Outcomes Measurement 

Information System (PROMIS) scale was used to measure physical 

and mental health; higher scores represent better physical and 

health [2]. The Curiosity and Exploration Inventory-II (CEI) was 

used to measure stretching (motivation to seek new experiences) 

and embracing (willingness to embrace new situations); higher 

scores represent more of each [3]. The Emotion Regulation 

Questionnaire (ERQ) was used to measure the two emotion 

regulation strategies of reappraisal and suppression (reappraisal is 

believed to be a healthy strategy, whereas suppression is not); 

higher scores on each represent a greater tendency toward that 

regulation strategy [4]. The Five Facet Mindfulness Questionnaire 

(FFMQ) was used to measure the five elements of mindfulness 

including observing, describing, acting with awareness, 

nonjudging of inner experiences, and nonreactivity of inner 

experiences; higher scores for each represent greater mindfulness 

levels for each [5]. The 18-question version of the Psychological 

Well-being (PWB) Scale was used to measure six well-being 

elements including self-acceptance, environmental mastery, 

positive relations with others, purpose in life, personal growth, and 

autonomy; higher scores for each represent greater psychological 

well-being [6]. The 4-item Perceived Stress Scale (PSS) was used to 

measure perceived stress over the past month prior to course 

participation; higher scores represent greater stress [7]. The Sense-

Of-Self Scale (SOSS) was used to measure a lack of understanding 

of one’s self; higher scores represent a poorer understanding of 

one’s self [8].  The Ten-Item Personality Inventory (TIPI) was used 

to measure the Big-5 personality constructs of openness, 

conscientiousness, extraversion, agreeableness, and emotional 

stability; higher scores represent a greater amount of each 

personality trait [9].  

2.3 Procedure 
Survey data and engagement patterns were collected from 

participants in the Science and Practice of Yoga MOOC.  The 

course lasted for 6 weeks between October and December 2017. 

Learners were asked to complete an optional pre-course survey 

involving the abovementioned scales, which was administered by 

Qualtrics through EdX. The survey took roughly 30 minutes to 

complete (95% trimmed mean of 30.7 minutes). Engagement data 

were collected throughout the 6 weeks, and included video viewing 

and quiz completion throughout those 6 weeks.  

Clustering based on learner engagement was conducted following 

the procedures outlined in Kizilcec et al. [1] based on learner 

engagement patterns. Like Kizilcec et al., learners were given a 

score between 0 and 3 for each week. Learners considered on track 

received a 3, learners considered behind received a 2, learners 

considered auditing received a 1, and learners considered out 

received a 0. These scores were summed and then used for 

clustering. However, our MOOC requirements were slightly 

different from those in Kizilcec et al. We did not have weekly 

assignments, but instead had weekly quizzes that did not have a 

deadline. Therefore, our weekly engagement patterns were 

measured slightly differently. Learners were classified as on track, 

behind, auditing, or out each week based on when they completed 

their weekly quizzes. Quiz completion times were z-transformed.  

Learners were considered on track if they completed their 

assignments earlier than the mean time, and learners were 

considered behind if they completed their assignments later than 

the mean time. Auditing learners did not complete the quiz at all, 

but still watched the weekly videos. Out learners did not watch any 

video or complete any quiz for that week. Data were clustered 

initially using hierarchical clustering, where the order of the data 

were randomized. Clustering of data were conducted on the 3755 

learners who completed the pre-course survey. For each, 

dendrograms from hierarchical centroid clustering based on 

squared Euclidean distances suggested that 4 clusters could be a 

viable option for our data (Figure 1). K-means clustering with 4 

solutions was used to create the 4 groups of learners reported in 

Kizilcec et al. (i.e. Completing, Auditing, Disengaged, and 

Sampling learners). 

 

Figure 1. Three dendrograms from hierarchical cluster analyses. 

Data were randomly sorted for each 

2.4 Analysis of Survey Data 
Initially, principal component analysis was used on the individual 

scales of the survey to determine unique components in our dataset. 

Because many of the survey measures included relate to similar 

psychological constructs, we used PCA to reduce the number of 

measures prior discriminant function analysis. The variables 

making up each of these three components were then entered into a 

discriminant function analysis designed to discriminate based on 

group clusters (i.e. completing, auditing, disengaged, or sampling 

learners).  

3. RESULTS 

3.1 Clustering 
K-means clustering results largely matched the results of Kizilcec 

et al. Learners were clustered into 4 groups: Completing learners 

(those who completed most of the quizzes and videos throughout 

the course), Auditing learners (those who were engaged 

consistently throughout the course but did not often complete the 

quizzes), Disengaged learners (those who initially showed high 

engagement, and then dropped off sharply later in the course), and 

Sampling learners (those who watched a video every now and 

then). These findings are presented in Figure 2.  

 

Figure 2. Results of Clustering Based on Learner Engagement 

Per Week. 
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3.2 Survey Data 
Principal components analysis suggested that our scales were 

measuring three large components. Component 1 could be 

described as “mental health” and was comprised of PSS stress 

scores, PROMIS physical and mental health scores, PWB 

environmental mastery scores, SOSS lack of self-understanding 

scores, TIPI emotional stability scores, and FFMQ nonjudge and 

act with awareness scores. Component 2 could be described as “self 

and course beliefs” and was comprised of self-efficacy scores, 

beliefs about the effectiveness of yoga and meditation, and 

intentions to perform yoga and meditation. Component 3 could be 

described as “curiosity and openness” and was comprised of CEI 

embracing and stretching and TIPI openness and extraversion.  

The discriminant function analysis was able to separate groups 

based on the results from the survey data. Function 1 had an 

eigenvalue of .023, accounted for 50% of the predicted variance, 

and had a canonical correlation of .15. Function 2 had an eigenvalue 

of .016, accounted for 35% of the predicted variance, and had a 

canonical correlation of .13. Function 3 had an eigenvalue of .007, 

accounted for 15% of predicted variance, and had a canonical 

correlation of .08. All functions taken together could significantly 

discriminate groups, Wilks  = .96, 2 = 84.12, p < .001. With 

function 1 removed, functions 2 and 3 could significantly 

discriminate groups, Wilks  = .98, 2 = 41.97, p = .025. Function 

3 on its own could not discriminate groups, Wilks  = .99, 2 = 

12.84, p = .381. Group centroids for Functions 1 and 2 are presented 

in Figure 3. 

 

Figure 3. Group Centroids from Discriminant Function Analysis 

 

Function 1 appears to separate Completing Learners from the rest, 

based on PWB environmental mastery scores, PSS stress scores, 

PROMIS mental and physical health scores, SOSS lack of self-

understanding scores, FFMQ nonjudge scores, and TIPI emotional 

stability scores. Function 2 appears to separate Disengaged 

Learners from the rest, based on FFMQ nonjudge, TIPI 

extraversion, and TIPI emotional stability. Because of the small 

effect size, Function 3 was not interpreted. Mean values for the 

relevant scales are shown in Table 1.  

 

Table 1. Survey Scores by Group, M(SE) 

 

4. DISCUSSION 
These results represent two important findings. First, we showed 

that the learner clusters proposed by Kizilcec et al. were observable 

in our MOOC, therefore replicating previous findings. Second, we 

showed that these groups could be differentiated based on 

underlying psychological profiles. Primarily, we showed that 

Completing Learners were generally healthier psychologically than 

the rest of the learners, prior to participating in the MOOC.   These 

findings suggest that underlying psychological factors may 

influence learner performance in MOOCs. Furthermore, the 

findings on perceived stress suggest that external environmental 

factors may also play a role in learner engagement patterns.  

However, it is important to note that the effect sizes related to group 

discrimination in the present study were small.  Therefore, although 

psychological factors may be able to discriminate these groups, 

other unobserved factors could be playing a much larger role.  

Future research is needed to further investigate group differences 

and increase our understanding of learner engagement.  Additional 

research is also required to determine how to best apply this 

knowledge to ultimately improve learner success.  
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ABSTRACT 
 
We show some preliminary findings and propose a framework to 
use dynamic Bayesian networks with latent variables for 
combining information from different educational sources into a 
learner profile representing the strengths and weaknesses of a 
learner on multiple learning dimensions.   
 
Keywords 

Bayesian modeling, adaptive learning, Dynamic Bayesian 
Networks, psychometric models, game-based assessment 

1. INTRODUCTION 
 

Recent years saw an explosive increase in adaptive learning and 
intelligent tutoring systems. Most of these systems are focusing on 
adaptivity and feedback in one specific domain of study within a 
single educational product or environment. In this poster we will 
present some preliminary findings of a model we are working on 
that combines results from different educational environments 
into one comprehensive learner profile.   

In our model, rather than using “knowledge components” we 
assume that interaction with educational content will result in 
relatively unidimensional and continuous latent ability estimates 
or scores like those resulting from a psychometric model like item 
response theory (IRT) [e.g. 1] or the Elo rating system [e.g. 2]. 
We also assume that the model to discover these scores (e.g., 
difficulty parameters for an IRT model) is known and fixed.  

Our approach uses the resulting scores to track progress over time 
and combines scores from products related to similar learning 
dimensions in such a way that they represent progress on those 
learning dimensions. To represent the temporal component in this 
model we will use a dynamic Bayesian network [e.g. 3] with a 
first order Markov component.   

2. MODEL 
The full model (illustrated in Figure 1) consists of different parts: 
a measurement model part connecting item responses to a latent 
game score𝜃using the item difficulty 𝑏, a factor model part 
representing the factor loadings 𝐶 of these game scores on the 
latent learning dimensions 𝜆, and a first order markov model part 
representing the temporal component of the dynamic network. 
The first order Markov component can exist both on the level of 
the latent learning dimensions 𝜆, as well as on the residual game 
score variance𝑤  not explained by the latent learning dimensions. 
This can explain variation in game scores unrelated to the learning 
dimension, such as variation due to mastery of specific game 

mechanics. Equations 1-3 describe the structure of the model. The 
autoregressive weights for the latent learning dimensions are 
denoted by 𝐴, while the autoregressive weights for the score 
residuals are denoted by ℎ. The residual latent score variance is 
denoted by 𝑒!.  

𝑃(𝑌 = 1| 𝜃! , 𝑏)  = !

!!!(!!!!)
(1)  

𝜃!  = 𝐶𝛬!  +  ℎ 𝑤!!!  +  𝑤!(2) 

𝛬!  = 𝐴𝛬!!!  +  𝑒!  (3) 

 
Figure 1. Dynamic Bayesian network structure    

3. SHAPES AND PATTERNS 
To show that the proposed model is identified and estimable, and 
to explore the usability of the resulting learning dimension scores, 
we use data from an app for preschoolers (2–5 years old) created 
to advance shape understanding and to teach pattern recognition 
and extension.  

3.1 Data 
The app contained two shape games (Figure 2) and two pattern 
games (Figure 3), along with many short educational video clips. 
In the two shape games, participants worked on shape 
identification and manipulation (translation, rotation, scaling, and 
composition). In the two pattern games, participants were shown a 
sequence of objects (such as ABAB, ABCABC, or ABBABB) 
and had to choose the correct object(s) to continue the pattern. 
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Shapes Game A Level 2               Patterns Game D Level 7 
Task:Identify Advanced Shape     Task: Extend ABB(_)(_)(_) 

Figure 2: Screenshots of two games   
During six weeks, 91 participants in adaptive (44) and non-
adaptive (47) conditions were asked to use the app. The six weeks 
were divided into 18 lessons, with each lesson lasting two or three 
days.  During each lesson, participants were asked to play each of 
the four games at least once, after which they could replay games 
as often as they wished. Previously presented results [4] showed 
that scores estimated within the game showed increasing ability of 
participants in the shapes game, but not in the patterns game. 
Further investigation revealed that a large group of participants 
had trouble with even the easiest pattern questions, which would 
explain why they did not make much progress on this dimension.  

3.2 Results 
JAGS [5] was used to estimate a proof-of-concept model limited 
to four sources of information (the four games) and two latent 
dimensions (presumably shape and pattern knowledge).  

The 18 lessons were used to represent separate time points t. To 
identify the latent learning dimension scores, in models 3 and 4 
the loadings c of the first pattern and shape games on the latent 
dimensions were set to 1. Four different models with an 
increasing level of complexity were estimated, as described in 
Table 1.    

Table 1. Description of models and DIC  

Models pD, DIC   

Model 1: Separate latent 
game score estimates for 
each game and time point 

2333, 
21202 

 

Model 2: Basic DBN with 
autoregressive component 
for each latent game score 
separately  

1575, 
20158 

 

Model 3: DBN with latent 
learning dimension scores + 
autoregressive component 
on the latent learning 
dimension scores only  

1976, 
20017 

 

Model 4: Full model, Model 
3 + autoregressive 
component on the residuals 
of the game scores  

1853, 
19902 

 

Relative to a baseline model (Model 1) where latent game scores 
are estimated separately at each time point, the DIC improved 
when a temporal component was added (Model 2), and even more 
when latent learning dimensions (Model 3) and an autoregressive 
component on the residual latent games scores (Model 4) were 
added.  

The estimated factor loadings and correlations showed that the 
shapes game scores (.7-1) but not the pattern game scores (.5-.4) 
were highly correlated with the first latent learning dimension 
scores. All games were highly correlated with the second 
estimated learning dimension score (.5-.9), although the patterns 
games somewhat higher. Inspection of the estimated latent scores 
revealed that the main trends of interest (e.g. the fact that 
regarding the patterns games, low ability learners were staying 
behind) were clearly visible in the estimated latent learning 
dimension scores    

4. DISCUSSION 
This work demonstrates that it is possible to estimate longitudinal 
multidimensional latent scores with a dynamic Bayesian network 
approach. The full model (Model 4) had improved fit compared to 
an several less complex models and led to, on first inspection, 
useable latent scores. This was a small example, however, and the 
scalability of this method is limited. In addition, we made some 
strong assumptions about the measurement models and time units.   

We will continue to investigate more scalable methods of 
estimating dynamic Bayesian networks for multidimensional and 
longitudinal learner profiles based on data from different sources, 
and we will be running simulation studies to look at the limits of 
those methods.     

On important future extension we plan to make is to anchor the 
latent learning dimension scores by independent standardized tests 
outside of the educational environment or game. This should lead 
to a more valid estimation and interpretation of the latent learning 
dimension scores. 
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ABSTRACT 
Online “open Web” exams present a more authentic assessment 

environment, but pose the risk of cheating via online messaging or 

access to shared web pages during the exam.  This paper presents a 

data-mining approach to detecting cheating among students in 

online exams. Two techniques are explored: weirdness vectors and 

Levenshtein distances. The algorithms were tested on multiple-

choice questions, fill-in-the blank questions, and essay questions. 

Both weirdness and Levenshtein approaches can provide a list of 

students who may have cheated, based on the similarity of their 

answers.  Both approaches produce good results for objective 

(multiple-choice and fill-in-the-blank) tests, but only Levenshtein 

can detect suspicious similarities on essay tests. 

Keywords 

Online exams, plagiarism detection, collusion, MOOCs, Leven-

shtein distance 

1. INTRODUCTION 
Online exams are increasingly prevalent in MOOCs and distance 

education, and they are becoming more common in regular 

classrooms as well.  Academic integrity is always a concern, and 

concern is heightened if students are allowed to surf the web 

during the exam, instead of being confined to a locked-down 

browser [1].  Current security approaches rely on watching the 

students, either with a live proctor or a webcam.  But it is difficult, 

if not impossible, to catch all incidents of illicit communication 

between students, or students and outside parties. To address this 

issue, researchers  started  working  on  plagiarism  detection  in  

different  languages  since  1990.  It  was pioneered  by  a  copy  

detection  method  in  digital  documents [6]. 

For the purposes of this paper, we define cheating as: sharing of 

answers between two or more students. Students may simply copy 

or modify answers of peers to pass off as their own. They may, for 

example, take a peer’s answer and make small changes by either 

adding, deleting or substituting particular characters to that answer 

and submitting it.  

Data mining can uncover potential violations. We hypothesize that 

two students having the same wrong answer to the same questions 

(or question parts) is indicative of possible plagiarism or illicit 

communication between them. In order to detect this, we make use 

of two potential approaches: a “weirdness” vector, and weighted 

Levenshtein distance.  We apply these two algorithms to two 

different types of exams: exams with mostly multiple-choice 

questions and exams with mostly essay questions.  

2. RELATED WORK 
Plagiarism detection can be formalized as a problem of computing 

a similarity between documents [2]. Some researchers have 

focused on String Similarity Metric [7]. Others focus their work on 

vector distance calculations [8]. Another  approach  is  using  

statistics  of word occurrences such as the bag-of-words model [3]. 

One might also use patterns of word occurrences, such as the edit 

distance and its weighted and local versions [4]. There already 

exist plagiarism-detection methods based on modifications to the 

Levenshtein distance algorithm [5] but they are complex. We seek 

a simpler approach. 

3. ALGORITHMS 

3.1 Weirdness vector 
Let us assume that two exams are suspiciously similar if they have 

very unusual,, or “weird” answers for the same questions or 

question parts.  We define a weird answer as an answer to a 

particular part of a particular question that is very unusual among 

all the answers submitted for that question part.  In other words, 

the term frequency of this answer is low, among all the answers 

submitted to this question part.  

The basic idea is that if two students have weird answers in the 

same places on the exam, and moreover, they are the same weird 

answers, then their submitted answers should be examined 

carefully for evidence of plagiarism. 

For each student, we can create a “weirdness vector,” which is 

formed from the weirdness values for that student’s answers to 

each question on the test.  Weird answers have a low frequency of 

occurrence, i.e., a frequency near 0.  However, we compare 

weirdness vectors using cosine similarity, which requires nonzero 

values.  So instead of using the frequency f directly, we form the 

weirdness vector from values 1−f  for each of the student’s 

answers. 

Cosine similarity is  defined as 
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where x and y are the components of the two vectors X and Y say. 

Cosine similarity between two non-zero vectors is a measure of 

their similarity. It measures the cosine of the angles between the 

two vectors.  

Zeros in either of two vectors between which cosine similarity is 

measured do not contribute or influence the similarity value; only 

non-zero values are of importance. Thus, high-frequency answers 

contribute little to cosine similarity, and cause the similarity 

measure to depend heavily on the answers that are really unusual. 

The program reports the top matches, and the instructor can look at 

the exams of these students to verify whether there are suspicious 

similarities.  As in programs that detect plagiarism in programming 

assignments, a high similarity may not be indicative of 

unauthorized collaboration. It really depends on the type of 

questions. For multiple-choice questions, where only a few 

answers are possible, there is much more of a chance of answers 

matching by accident than for fill-in-the-blank questions, where 

student answers can consist of arbitrary strings of text. 

Consequently, a high cosine similarity for a multiple-choice test of 

k questions is much less suspicious than it would be for k fill-in-

the-blank questions, or for a multiple-choice test of m >> k 

questions. 

3.1.1.  Weirdness-based plagiarism algorithm   

The following is a step-by-step description of the algorithm that 

uses Weirdness Vector to detect similar answers: 

A weirdness score w is generated for each student’s answer to each 

question part, by a term-frequency calculation on the set of 

answers to this question part provided by the whole class.  

Let f be the proportion (frequency) of students having a given 

answer a to a question part q.  Then w is set to 1−f. Thus, an 

answer that is “weird” will have a higher w value than an answer 

that is common. The weirdness score is rescaled to range between 

0−1 as explained above.  The pairs of students with cosine 

similarity higher than a threshold value t are generated and 

displayed to the instructor. 

Among all question types, this approach works best for fill-in-the-

blank questions.  These questions allow a much greater diversity of 

answers than multiple-choice, checkbox, or matching questions. 

Short-answer, or essay questions have an answer space that is 

much larger still, but here, cosmetic differences in wording, or 

even whitespace, can prevent a match from being detected. 

3.1.2. Pseudo-code for weirdness algorithm 

Here is the pseudo-code for the weirdness algorithm.  

1. for the ith row in A, 

a. for the  jth column in A, 

i. fi, j = term frequency of Ai, j 

ii. wi, j = 1 − fi, j 

2. for the ith row in w, 

a. for the jth row in w, 

i. d = cosine_similarity(wi, wj) 

ii. scores.append(i, j, d) 

3. display scores with d > t 

In the above algorithm,  

A = matrix of answers by students where Ai, j represents 

the answer given by the ith student to the jth question. 

w = matrix of weirdness of each answer where wi, j 

represents weirdness of the ith student’s jth answer.  

3.2 Levenshtein distance 
One limitation of “weirdness” is that it looks for which answers 

have low frequency, without taking into account answers that are 

similar to those answers.  In the real world, plagiarized answers 

might differ in wording and whitespace, and we would like to 

detect them even when they are cosmetically different.  Toward 

that end, we implemented another algorithm that makes use of 

Levenshtein distance. Levenshtein distance is the minimum edit 

distance between two strings.  It is defined as the number of 

characters to be changed in order to change one string into the 

other.  

For every pair of students, we consider what the Levenshtein 

distance is between each of their corresponding answers. 

Assuming this distance is d, the similarity becomes 1−d. For 

example, consider two students whose answers are “hello” and 

“hello world”. In this case, 6 out of 11 characters in the second 

string are new; thus the distance d = 6/11 ≅ 0.6, so the similarity = 

0.4. And indeed, the strings are approximately 40% similar. A 

higher similarity means that fewer edits were required to convert 

one answer into the other. This helps detect the case where a 

student copies an answer from another student and edits it to make 

it look different. Thus Levenshtein distance serves as a good 

metric to detect a possibility of plagiarism.  

Just as for weirdness, we can collect Levenshtein distances into a 

vector.  This vector holds values that measure similarities between 

corresponding answers of those 2 students. We use the median of 

these values as a proxy for the overall distribution, and let this 

represent our estimate of the likelihood that the students have 

cheated.  This prevents the estimate from being unduly affected by 

a few large or small Levenshtein distances. 

Consider a 5-question exam where the similarity vector for 2 

students is  [0.2, 0.4, 0.7, 0.8, 0.9]. The median of values in this 

vector is 0.7. The probability of plagiarism seems like it might be 

high (of course, we would have to look at the answers themselves 

to make a judgment).  Now consider the vector [0.2, 0.2, 0.3, 0.4, 

0.5] with median 0.3. Most values in the second vector lie near 0.3. 
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The lack of similarity in the corresponding answers makes it 

appear less likely that this pair of students have cheated.  

3.2.1.  Overview of Levenshtein distance algorithm 

The following is a step-by-step description of the algorithm that 

makes use of Levenshtein distance: 

● For every pair of students, a vector v is calculated, 

consisting of the Levenshtein similarities for each 

question for this pair of students. 

● For each vector, calculate the median value. 

● The pairs of students with the median higher than a 

threshold value t are displayed to the instructor. 

3.2.2. Pseudo-code for Levenshtein distance algo-

rithm 

The following is the pseudo for plagiarism detection using 

Levenshtein distance algorithm: 

● for the ith row in A 

○ for the jth row in A 

■ If i = j, skip 

■ for the kth column in A 

● vectork = levenshtein(Ai, k, Aj, k) 

○ similarityi,  j = median(vector) 

● display similarity values greater than threshold 

In the above algorithm,  

A = matrix of answers by students where Ai, j represents 

the answer given by the ith student to the jth question.  

similarity = matrix of similarity where similarityi, j 

represents similarity between the ith student and the jth 

student. 

 

3.2.3. Levenshtein distance over other distance 

types 

Many cases of plagiarism originate from a student copying an 

answer and then changing a few words or characters to make it 

look like his/her own. So Levenshtein seems an appropriate metric 

for comparing free form text answers. 

Instead of Levenshtein distance, we could use the Hamming 

distance. This distance denotes the number of places where string 

S1 is different from S2. This kind of distance seems to be a poorer 

metric for our purposes than Levenshtein distance because 

Hamming distance takes into account only the edits, i.e., 

replacements of characters, whereas Levenshtein takes into 

account insertions and deletions as well as edits. 

4. EXPERIMENTAL TUNING OF VARIA-

BLES 
Several variables are used in both algorithms can be varied to get 

better results. Section 4.1. and 4.2 explain them and how the 

variation may have an effect on the overall results. 

4.1 Threshold value in weirdness  

We make use of a threshold value t while displaying the results. 

This value denotes the similarity score beyond which the students 

are considered potentially to have cheated. For some exams this 

threshold value may be very high, e.g., multiple-choice exams. For 

such exams, only a limited number of answers are possible, and 

thus high similarities are very possible by chance. Therefore in this 

case, setting a very high threshold avoids identifying pairs of 

students who did not really collude. Similarly for an exam where 

essay questions dominate, even a similarity of 60% may provoke 

suspicion of plagiarism. In this scenario, a lower threshold may 

work better. Again, these are speculations and a value that works 

well for an exam can best be found by experimentation. 

4.2 Median in Levenshtein distance 

It is also possible to experiment with using metrics other than the 

vector median to represent the possibility of plagiarism. For 

example, we might use the 3rd quartile of values in the vector as a 

measure of how likely the students were to have cheated.  The 3rd 

quartile would work well if students who cheated plagiarized only 

¼ of the answers on the exam. 

5. IMPLEMENTATION AND RESULTS 
The two algorithms were tested on multiple choice (MCQ) exam 

taken by about 68 students, and a subjective essay exam taken by 

105 students. For each of the tests we then plotted the weirdness 

score and the weighted Levenshtein scores of each student pair and 

the graphs have been shown below. 

  
Figure 1 Similarity plot for weirdness on a MCQ exam 

The weirdness algorithm when tested on multiple choice type 

questions returned similarities which mostly lie between 0.8 and 1, 

as shown in Figure 1. 
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Figure 2 Similarity plot for Levenshtein on a MCQ exam 

When the Levenshtein approach was tested on the same file it 

returned a good spread of values with similarities lying either very 

close to 0 to or very close to 1, as shown in Figure 2.  

This is because the MCQ answers are usually a choice between 

one of four or five characters. So either students chose the same 

answers (same characters), which resulted in a similarity score of 1 

or they didn’t, which resulted in a score of 0.  

Figure 3. Similarity plot for weirdness on an essay exam 

We then ran the two algorithms on essay type questions. Plotting 

the similarity scores from the Weirdness algorithm we see that 

most of the answers lie at at around 1 as shown in Figure 3.  

 

Figure 4 Similarity plot for Levenshtein on an essay exam 

The plot of the similarity scores from the Levenshtein algorithm 

when plotted, demonstrates a wide range of similarity scores, as 

shown in Figure 4. Ostensibly this is because essay questions 

admit a wider range of responses, depending on students’ 

knowledge and writing style.  A high similarity score is thus more 

suspicious than it would be on a more objective exam. 

6. SUMMARY 
We observed in conclusion that Levenshtein works better than 

Weirdness in case of essay type exams. For MCQs results of both 

the algorithms are comparable. In addition to this, adding a metric 

to incorporate the correct answers may prove helpful. We have 

devised a method to do so but we are still experimenting with the 

results to see what effect it may have on the current results. 
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ABSTRACT
German state universities often only have little data about
their students. Existing data includes study history data
such as grades, module names, number of attempts, and
dates. This data can be used to extract interesting informa-
tion, although it is often not used. It is stored in various
databases and systems in the universities, so that each uni-
versity has to develop its own analysis tools. We have devel-
oped a tool that allows various universities to easily import
the data and retrieve first visualizations of it.

Keywords
educational dashboard, student data integration, educational
data visualization

1. INTRODUCTION
German state universities often do not offer any e-learning
in addition to the usual teaching materials, so there is usu-
ally no data from interactions with an e-learning system.
Only the study course data such as grade, module name,
number of attempts, and date are available. Even if there
are a few features, this data could be analyzed. Since state
universities often have no educational dashboards or eval-
uation systems, the existing data is not used. The data is
available in different database systems and formats, so each
university would have to develop its own system to generate
knowledge from its own data.

To solve this problem, we developed a dashboard which
should be able to integrate data from different universities.
The courses are usually organized in modules, which can
be constructed in a hierarchical structure so that, for ex-
ample, the module ”Mathematics“ is considered as passed
if the submodules ”Calculus I“ and ”Linear Algebra I“ are
passed. The system must, therefore, be able to integrate
various hierarchical structures.

Once the data is integrated, it can be visualized and data
mining procedures can be applied to it. The development of
the visualization and data mining procedures can be done in
a central place and does not have to be redeveloped at every
university. The individual universities should only have to
synchronize their data with our dashboard.

2. METHOD
To integrate data from different universities, we propose a
simplified data model. Four of the required tables are shown
in Figure 1. The student table contains all necessary stu-
dents’ data. The more attributes, the more information
can be analyzed. However, the features Completed, En-
rollmentDate, and ExmatriculationDate at least should be
specified. Completed denotes students who have success-
fully completed their studies. Students who have an Exma-
triculationDate and at the same time have the value false in
the Completed field can be regarded as students who have
dropped out of their studies.

Figure 1: Simplified version of the model

To import the data, the universities only need to export two
tables: students and student achievements. Table 1 gives
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two examples of student data. The student with Id 1 gradu-
ated successfully and the student with Id 2 is still studying.

Table 1: Student Data

Id Completed EnrollmentDate ExmatricualtionDate
1 True 2009/10/01 2012/09/30
2 False 2009/10/01 null

Table 2 shows the achievements of two examples in which
the student with Id 1 passed two modules X and Y at the
first attempt and gained a total of 20 credit points (CP) in
the 1st semester.

Table 2: Student Achievements (Course of Studies)

Id
Stud

Sem-
ester

Att-
empt

Exam
status

Mod-
ule

Parent
Module

CP

1 1 1 Passed X Z 10
1 1 1 Passed Y Z 10

The hierarchy of the modules can be extracted from this
table based on the parent relation of the modules.

Each university is able to freely select the module hierar-
chy level that should be used for the analysis. We suggest
that this should be chosen with a clickable treeview. Figure
2 illustrates how the module Mathematics containing the
overall information of its submodules is selected.

Figure 2: Selecting the required module for the data analysis

By combining the data from Tables 1 and 2, the model spec-
ified in Figure 1 can be filled in and the first analyses auto-
matically created. Below are several practical visualizations
that can be created from such data.

The heat map in Figure 3 shows students who dropped out
their studies. Each row shows a student and each column
shows how many exam attempts they had each semester.
For example, we see that students who drop out in the first
semester usually do not have more than 2 exam attempts.

To find out which combinations of exams are passed to-
gether, Venn diagrams can be used. Our dashboard gener-
ates Venn diagrams for the combination of selected drop out
semesters and selected exams. The Venn diagram in Figure
4 visualizes which exams are passed by students who drop
out in the 1st semester. For visualization, the four modules
Calculus I, Linear Algebra I, Technical Computer Science
and Operating Systems were selected, with Operating Sys-
tems not being part of the syllabus in the 1st semester. From
Figure 4 we can see that students who pass Calculus I are
also able to pass the other planned exams. For further infor-
mation, one could compare this with a Venn diagram that
shows the attempts made.
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# semesters
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u
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en

ts
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Figure 3: Heatmap visualization of study progress of stu-
dents before they have canceled their studies. The number
of exam registrations per semester is shown with colors in
each row.

Figure 4: Exams passed in the 1st semester by students who
drop out after the 1st semester

Figure 5 shows a violin plot of graduates and how many CP
they have earned per semester. This visualization shows us
that successful students with a few exceptions earned ap-
prox. 10-40 CP per semester. With the violin plots, aver-
ages and distributions for different features can be clearly
visualized.

Figure 5: CP per semester of graduated students

3. CONCLUSION AND FUTURE WORKS
We have presented a first version of the dashboard that is
able to import data from various state universities and to vi-
sualize the data. In the future, we will implement additional
visualizations as well as add predictive models.
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ABSTRACT
This study discuss how students resolve compilation errors
with textbooks in C programming exercises. A student’s
understanding of the programming language is strongly con-
nected with compilation results. Resolving compilation er-
rors requires one to check source code carefully and under-
stand the language better. Reading textbooks is a typical
learning activity of students in resolving errors as well as
asking teachers. Therefore, learning processes in a program-
ming exercise course could be understood by combining stu-
dents’ compilation logs and reading logs of e-textbooks. In
this paper, we present preliminary results of analysis on stu-
dents’ struggling to resolve errors. Using a dataset collected
during a semester in our university, we discuss the univer-
sality of errors in terms of students and exercise questions.
Furthermore, we reveal the positive and negative impact of
reading e-textbooks on error resolutions on a per-page ba-
sis.

Keywords
programming exercise, learning process, error resolution

1. INTRODUCTION
Programming techniques are getting more and more atten-
tion recent years, and are being introduced into educational
curriculum in primary and secondary education as well as
higher education. The C programming language is one of the

most important and popular programming language widely
used in industries over the past decades. However, there are
many obstacles for students in learning the programming
language, and thus how to understand and support their
learning is an important question.

On the one hand, we need to support students to fix errors
in their source code. It is said nearly half of the time and
effort are spent in debugging during the development of a
program [3]. Park et al. reported that common syntax errors
tend to remain in source code for a long time [4]. It requires
too much effort for a student to identify and fix such errors
in learning.

On the other hand, we have to grasp how students strug-
gle to resolve errors in source code. We can consider that
many types of mistakes in source code reflect a student’s
understanding at some point of his or her learning process.
Tracking the resolution of compilation errors, we could un-
derstand the learning processes of students better.

To this end, many work analyzed errors in programming
courses. Fu et al. [1] have proposed a web-based system that
helps teachers to support student during class by providing
real-time dashboard to grasp students’ learning situations.
Their system is helpful to overview the current situation
of a single class at a glance. However, the information on
the dashboard is somewhat superficial and based on short-
period data, and how they struggle to resolve errors is not
discussed.

Helminen et al. [2] addressed the process in which students
struggle to resolve errors. However, in their study, only lim-
ited activities of selecting, ordering, and indenting code frag-
ments are analyzed, and activities such as referring external
learning materials are not considered. For understanding
students’ learning processes, it is significant to know how
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students search learning resources for necessary information
and acquire knowledges. Nevertheless, only a limited num-
ber of studies focused on students’ try-and-error and knowl-
edge acquisition in learning processes of programming lan-
guages.

In this paper, we analyze how students struggle to resolve
compilation errors with course materials in a programming
exercise course. Toward this end, we employ both compila-
tion logs and page view logs of e-textbooks, and characterize
compilation errors in relation to exercise questions and indi-
vidual students. Furthermore, our preliminary result shows
the positive or negative contribution of every page of course
materials in resolution of a particular error.

2. METHOD
2.1 Compilation and e-Book Operation Logs
We focus on the data obtained from the multiple classes of
the C programming course of our university offered in the
first semester 2017. The course is manly for freshmen, and
includes lectures and coding exercises. There are about 20
classes for the course in a semester, and almost all of the
courses are taught by different teachers. We have a set of
standard course materials and usually they use it in their
teaching, but it is not enforced.

In exercise, we use the compiler “gcc”, from the GNU com-
piler collection, on a remote Linux server. The compiler
program is modified from the original version so that it can
record students’ learning logs. More precisely, when it is ex-
ecuted, it saves given commandline arguments, the contents
of given source files, and the output of the compiler as well
as the time and user of the invocation. Since a commandline
and source code are available as logs, we can reproduce what
a student tried and what he or she obtained as a result.

In most cases, the compiler’s output is produced only when
there are some problems. The majority of problems are in
source code, which result in compilation errors. The others
are caused by errors outside source code, such as inadequate
arguments and wrong filenames, and they are not recognized
as compilation errors. We ignore the latter type of errors in
this study since we are not interested in the learning process
of compilation itself but in that of a programming language.

We also utilize students’ activity data of reading course ma-
terials. Our materials are provided on our own e-book sys-
tem. Students read those materials on the web, and their op-
erations on the system are collected immediately as events.
There are variety of operation types including page flipping,
full text searching, bookmarking, and so on.

Combined with compilation logs, these event logs tell us how
students learned during exercise. For example, after a com-
pilation failure, some students just repeat compilation with-
out necessary modification of source code, and some other
students go back to course materials and try to find the key
to solve the problem. It might be also possible to evalu-
ate the ability of students. If a student can quickly rewrite
source code without looking any materials when a compi-
lation failed, we can consider he or she is well experienced.
We should care a student who read many pages of course
materials and still failing to compile their source code.

e sv v e v v v

c-interval

c-interval

error-to-error

error-to-success

time

compilation event
bad

compilation event
successful

e-book page
view event

Figure 1: An example of a session and c-intervals.

4_a-1.c: In function ‘main’:
4_a-1.c:9: error: conflicting types for ‘X’
4_a-1.c:5: note: previous declaration of ‘X’ was here

Figure 2: An example output of compilation error.
The first line describes a context where the following
error of the second line happened. The final line
represents an error, but a note. Only a single error
is included in this example output.

2.2 Timeline
We call a sequence of events a timeline. A timeline is com-
posed of compilation events and e-book system’s page view
events, and represents a students’ activities in a class. A
timeline can be divided into shorter parts by exercise prob-
lems that a student was working on at a point of time. In
exercise, students are given several problems to solve and
instructed to save source code for the problems in separate
files with specified filenames. Since a filename and a exercise
problem is connected, we can identify a corresponding task
from a compilation event log and split timelines into some
parts. We call such a part session in this paper.

Furthermore, we introduce the concept of c-interval. A c-
interval is a part of a session which starts and ends with com-
pilation events, and includes only non-compilation events
between them. This is a basic unit considered in our anal-
ysis because we are interested in what a student does after
a compilations and how such activities affect the succeeding
compilation.

Seeing if compilation events of a c-intervals are successful
or not, we can classify c-intervals into four types: error-
to-error, error-to-success, success-to-error, and success-to-
success. Figure 1 shows an example of a session. In this
example, a session consists of eight events; three are compi-
lation events and five are e-book system’s page view events.
Two types of c-interval, error-to-error and error-to-success
ones, are also shown.

2.3 Compilation Errors
First of all, we normalize the language of error messages.
Some of the error messages could be recorded in a non-
English language of a student’s preference. In our dataset,
most of error messages are written in English, but some
Japanese or Chinese words are also included. Therefore, we
translate such non-English portions of messages into English
by a dictionary based method. Please note that the dictio-
nary is currently incomplete and it affects the results shown
later in this paper.
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c_b-1.c: In function ‘main’:
c_b-1.c:8: error: expected ‘;’ before ‘}’ token
c_b-1.c:9: error: ‘else’ without a previous ‘if’
c_b-1.c:9: error: expected ‘;’ before ‘}’ token
c_b-1.c:10: error: ‘else’ without a previous ‘if’
c_b-1.c:10: error: expected ‘;’ before ‘}’ token

Figure 3: An example of compilation output with
multiple errors. In this example five error messages
are included led by a message describing a context
in which those errors happened.

{param1}: error: stray ‘{param2}’ in program
{param1}: warning: null character(s) ignored
{param1}: error: expected ‘{param2}’ before ‘{param3}’ token
{param1}: error: expected ‘{param2}’ before ‘{param3}’
{param1}: error: expected expression before ‘{param2}’ token
{param1}: error: expected expression before ‘{param2}’
{param1}: error: too few arguments to function ‘{param2}’
{param1}: error: stray ’{param2}’ in program
{param1}: error: conflicting types for ‘{param2}’
{param1}: error: invalid suffix "{param2}" on integer constant

Figure 4: Example templates of error messages ob-
tained from our dataset.

We identify every error message in compiler output with
our own parser. We developed a parser program that auto-
matically identify error messages in compiler output based
on a heuristic algorithm. Figure 2 shows an example out-
put of compilation error. The first line describes a context
where the following error of the second line happened. The
final line represents an error, but a note. Consequently, our
program identifies only a single error in this example. Fig-
ure 3 shows another example output of compilation error
with multiple errors. In this example 11 error messages are
identified by the parser which is led by a message describing
a context in which those errors happened.

Many of found error messages share the same underlying
structures, for example:

4_a-1.c:9: error: conflicting types for ‘X’

8_b-2.c:21: error: conflicting types for ‘count’

Such a structure can be represented as a single template like

{p1}:{p2}: error: conflicting types for ‘{p3}’

where {p1}, {p2}, and {p3} are placeholders of the template.
We believe such a template represents the essentials of errors
better than raw messages. Hence we identify a template text
with an error in later analysis.

We investigated actual error messages and found out heuris-
tic rules to obtain a template from a message. Based on
the rules, we extracted all the templates from our dataset.
There are 52,384 different error messages in our normalized
dataset, and they were greatly reduced into 247 message
templates. Figure 4 shows a set of examples from them.

Figure 5: Histogram of student universality of er-
rors. The horizontal axis indicates student univer-
sality of errors, and the vertical axis shows the num-
ber of errors.

2.4 Analysis
We analyze the universality of errors to know the diversity
of students’ struggling. Since every student have different
understanding, it is expected that there are only a few com-
mon errors and many student-specific errors. We also con-
sider the topics of exercise questions influence the tendency
of compilation errors. Therefore, we consider two kinds of
universality: one based on student and the other based on
questions.

Given an error, the former universality can be quantified as
the ratio of students out of all students who encountered
the error. The latter can be similarly computed as the ratio
of questions among all exercise questions where students en-
countered the error. We call these ratios student universality
and question universality of an error, respectively.

We also analyze how reading material pages impacted on er-
ror resolution in students’ struggling. To this end, we focus
on error-to-error and error-to-success c-intervals. We as-
sume that all pages viewed during these types of c-intervals
were for fixing compilation errors, especially errors found
in the earlier compilation event of c-intervals. In the case
of error-to-success, we consider pages contributed positively
in error resolution; contrastingly, we consider pages worked
negatively in the case of error-to-error.

The contribution of every page are measured for each error
as follows. We count how many times a page pi contributed
positively or negatively for the resolution of an error ej .
Given pi and ej , let Ci,j

pos and Ci,j
neg be the numbers of positive

or negative cases, respectively. The contribution of pi for ej
is defined as follows:

Contribution(pi, ej) =
Ci,j

pos − Ci,j
neg

Ci,j
pos + Ci,j

neg

With this formulation, contributions are represented by val-
ues in [−1, 1]. A positive value indicates more positive con-
tributions than negative ones, and vice versa.

3. EXPERIMENT
Figure 5 shows the distribution of the student universality of
errors as a histogram. The horizontal axis indicates the stu-
dent universality, and the vertical axis shows the frequency
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Figure 6: Histogram of the question universality of
errors. The horizontal axis indicates the question
universality of errors, and the vertical axis shows
the frequency of errors.

of errors. From the figure, we can say that there is a small
number of common errors, while most of the errors occur
to a limited number of students. To be precise, about the
three quarters of the errors were encountered by at most five
percent of students, and about the half of the errors were
encountered by at most one percent of students. Moreover,
the common errors that a majority of students encountered
were limited to only five particular types.

Figure 6 shows the distribution of the question universality
of errors as a histogram. The horizontal axis indicates the
universality, and the vertical axis shows the frequency of
errors. The figure shows there are more than ten errors
that are not problem-specific. It seems that most errors are
associated with a few exercise problems. However, compared
to that of student universality, there are more errors which
occurs for more than half of questions.

Figure 7 is the heatmap that shows contributions of material
pages to error resolutions. Each row corresponds to an error,
and each column represents a page of a material. Pages
are sorted by the order of material usage and then by page
numbers. In the heatmap, a cell with positive contribution
value is colored reddish. In the reverse case, a cell is colored
bluish.

From the figure we can observe positive and negative cases
are clearly separated in fairly many cases. This fact suggests
that pages does matter for resolving compilation errors. It
also seems that students tend to read many useless pages
when they struggled to fix errors. Consequently, it may be
helpful for teachers to teach student how to understand error
messages and find effective material pages.

4. CONCLUSIONS
In this study, we investigated how students struggle to re-
solve compilation errors with textbooks during exercises,
and we employed compilation logs and browsing history of e-
textbooks to this end. As the preliminary results, we found
that most of the errors are student- and question-specific,
and errors universally observable are quite limited. Read-
ing course materials seems to be helpful for error resolution
though it is highly dependent on a type of errors. Hence, we
conclude that students have different situations individually

Figure 7: Heatmap showing contribution of material
pages to error resolutions. Each row corresponds to
an error, and each column represents a page of a
material. Reddish color represents positive contri-
bution values, and bluish color represents negative
values.

and they have to find helpful material pages to resolve par-
ticular errors. This suggests the need of personalized analy-
sis and support in programming education. The limitation
of the work includes the lack of student-wise and statistical
analyses. We are going to do more personal analysis with
more data through several semesters as future work.
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ABSTRACT
Connected learning is a model that aims to enable youth
to explore their interests across settings. However, finding
learning opportunities that are aligned to their interests can
be challenging. Creating structured pathways by hand is
also too time consuming to be done at scale. This poster
introduces a scalable computational approach for automat-
ically constructing interest-driven pathways through a net-
work of informal learning opportunities using graph traversal
and natural language processing.

1. INTRODUCTION
Connected learning is a model for helping students discover
new interests and pursue interest-related learning across dif-
ferent settings [1]. The abundance of online and face-to-face
learning opportunities can allow students to follow their in-
terest down a multitude of pathways, but the sheer variety
and amount of opportunities can be daunting to choose from.
For students to effectively deepen their interests, it is impor-
tant to help them determine what they want to explore.

Chicago Cities of Learning (CCOL) is an online environment
that provides youth in Chicago with access to informal learn-
ing opportunities across the city by enabling organizations
to list and advertise their programs and creating institu-
tional linkages between organizations. While CCOL pro-
vides youth with entry points to explore their own interests,
it does not have an organized set of pathways across all pro-
gram areas to help youth deepen their experiences in their
interest-related pursuits. There is limited evidence from the
site’s badging system that youth created their own pathways
in pursuit of these badges, rather most followed suggested
pathways, suggesting that offering more visible pathway op-
tions would be of significant interest to participating youth.
For example, the most frequently earned badges required
completion of 3-4 programs from the same category [3].

The goal of this poster is to introduce a scalable computa-
tional approach to provide pathways for youth, aiding their
exploration of related or more advanced programs within
the same category. CCOL hosts 20279 educational programs

across 10 different categories, making it prohibitive to create
pathways by hand. This initial work, in collaboration with
the CCOL team at Northwestern University, will lead to-
ward a mobile app with a built-in recommender system that
uses program participation patterns, youth interests, and lo-
cations of users and programs to recommend programs for
youth to deepen their interests. This poster will explore
pathway creation in one category, ’Coding + Games’, which
has 698 programs, to show the promise of this approach.

2. RESEARCH METHODOLOGY
The process of pathway construction is composed of three
components: extracting keywords, connecting programs based
on their similarity into a network, and path discovery within
the network. The set of keywords is determined by compar-
ing the word frequencies of all program descriptions in a
category to the word frequencies of the descriptions from
all remaining categories. This comparison uses the Dirichlet
prior model as used in[2], which is a probability distribution
used to determine the relative importance of each keyword
to both the text and the corpus of interest. We chose to
use this model instead of more common LDA topic models
because many descriptions in our corpus were too short to
observe meaningful topic distributions. Fifty keywords are
extracted from each category, which allows over 90% of the
programs to be assigned at least one keyword. More key-
words were not used, as the increase in program coverage
per keyword decreases as the number of keywords increases.

To establish the connections between programs, the similar-
ity between each pair of programs is calculated. Program
similarity is computed as the cosine distance between two
programs’ keyword vectors. Each program is represented by
a vector of length 50, one for each of the extracted keywords.
For each element of the vector, if the program contains that
keyword it is a 1, otherwise it will be 0. For programs to be
related, they must share at least one keyword. Using these
connections, a graph is then constructed to represent these
relationships. The weight of an edge is the similarity be-
tween the nodes on either end, and each node is represented
by the program identifier and the keywords of that program.
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We use a graph search approach, based on the A* algorithm,
to determine learning pathways through this network. Pre-
vious attempts to create pathways based on program diffi-
culty proved ineffective due to the introductory nature of
many of these programs, as well as the tendency for pro-
gram providers to write descriptions for a broad audience.
Our approach links programs based on their conceptual over-
lap, rather than difficulty levels. The challenge is to iden-
tify programs with some overlap, but not too much, so that
youth are building on their previous experiences and inter-
ests. This encourages paths that cover all the topics in a cat-
egory, resulting in numerous possible paths from any given
starting point in the network. A user of this system would
see the possible pathways available from a pathway once
they have selected it to view or enroll.

3. RESULTS AND DISCUSSION
Our extraction approach yielded a set of keywords that were
relevant to 92% of the programs in our sample, showing good
coverage of the programs. Each of these programs contained
2.5 keywords on average, with the maximal program con-
taining 11. While most of the keywords were relevant to
the category, there were also ”noisy keywords”, which were
either overly general (i.e., ”tech”) or irrelevant (i.e., ”board
games”). This suggests that CCOL needs to provide better
descriptions of the intent behind these high-level categories
and that program providers could use additional support in
crafting program descriptions to contain more accurate in-
formation about the nature of the program. To this end, we
have worked with the CCOL team at Northwestern to de-
velop a rubric for program providers to create descriptions
that are more useful to both the youth using the system and
the algorithm described here. At the time of writing there
is limited new data to measure the effect of this tool.

Among the programs covered by the keywords, each was
connected to an average of 25% of the programs in the cat-
egory, with the maximally connected program being linked
to 73% of the programs in the category. On the positive
side, this is a sign of category coherence. On the negative
side, this density of linkages can be attributed to the gen-
eral nature of many of the program descriptions. Our graph
search algorithm constructed multiple learning pathways for
a given program in the network, with each path completing
all keywords in the category. Figure 1 shows an excerpt
from a constructed learning pathway. Most of these pro-
grams build towards a set of common ideas such as fashion,
design, tinkering, and coding, resulting in a seemingly coher-
ent pathway. However, there is an example that illustrate
the problems with overly general descriptions: it is ambigu-

ous what the Youth Programs offering is about, or how it
fits into this pathway.

The length of the pathways generated is also a point of con-
cern. Given the population using CCOL and the nature of
the programs offered, pathways need to be short so as not to
lose youth interest. Since the length of any path is depen-
dent on the number of topics extracted from the category, a
natural solution would be to limit the number of topics. This
would decrease pathway length as well as eliminate some of
the less useful keywords. However, the number of programs
covered by the extracted topics drops off drastically as the
number of topics decreases. This is concerning, as creating
pathways to support interest deepening should not come at
the cost of limiting the available program choices youth are
offered. At time of writing, this problem is not addressed.

4. CONCLUSIONS
In this pilot study, we showed the promise of an automatic
and scalable method for learning pathway creation. We suc-
cessfully generated a representative set of keywords for a
specific category of educational programs, and used these
labels to create a similarity network between programs. We
constructed multiple pathways through this network from a
given starting point. The pathways created from this ap-
proach will inform a recommender system for youth using
CCOL as well as provide youth with important informa-
tion about how a new program may relate to their interests,
helping support their interest-driven learning. The scalabil-
ity of this approach is the key contribution of this work, as
no fixed set of learning pathways will be appropriate for all
types of learners, especially in connected and personalized
learning environments such as CCOL. We hope to empiri-
cally demonstrate the effectiveness of this approach in the
future through user studies.

Despite the promise of this method, it has some impor-
tant limitations. Given the naive nature of the algorithm,
the connections between programs and the pathways in the
graph are only as meaningful as the keywords. In our work,
we discovered multiple areas in which program description
and the resulting keywords could be improved. Improving
descriptions will help the performance of our algorithm, in-
creasing users’ awareness of the programs they can choose.
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ABSTRACT
In this paper, we propose a methodology under the cog-
nitive diagnostic measurement (CDM) to estimate global
item discrimination without specifying the cognitive diag-
nostic model and the Q-Matrix. To achieve the estimation,
we firstly design a deep belief network (DBN) based dimen-
sional reduction framework to project high dimensional item
response data to a low dimensional attribute space; secondly,
by using the attribute estimates, the global item discrimi-
nation can be calculated. Unlike traditional model based
method, only item responses and the total number of at-
tributes are required for our methodology.

Keywords
CDM, deep belief network, item discrimination

1. INTRODUCTION
The purpose of cognitive diagnostic measurement (CDM)
is to provide students’ latent knowledge (attributes) mas-
tery status through their responses to items from designed
assessments, in other words, CDM can group students to
different latent classes of which the attribute mastery sta-
tus (attribute profiles) of group members are same. Due
to the ability to provide educators the diagnostic feedback
on students’ assessment results, CDM has already attracted
lots of research attention, and various types of diagnostic
classification models (DCMs), such as DINA model, DINO
model and LCDM, are designed based on different cognitive
theories [2].

In classified test theory (CTT), item discrimination is a mea-
sure of the relationship between an item score and the total
test score. An item is more discriminating if the examinees
with high total score answer it correctly and the examinees
with low total score answer it incorrectly. There is a similar
concept can be used for DCMs. After obtaining the esti-
mates of item parameters for a DCM, the goal of the item
discrimination is to evaluate the diagnostic quality of items,
which is how well does one item to differentiate between the
examinees who master more attributes and the examinees

who master fewer attributes. Let πi,αh denote the probabil-
ities of a correct response to an item for examinees who have
master more attributes, and πi,αl denote the probabilities of
a correct response to an item for examinees who have mas-
ter fewer attributes, so the generic discrimination index for
item i in the context of LCDM can be defined as p-value:
di = πi,αh − πi,αl . Item discrimination plays an very im-
portant role in diagnostic measurement because more items
with high discrimination can achieve more accurate analysis
results in contrast to items with lower discrimination [6].

There are two different definitions of item discrimination:
global item discrimination and attribute-specific item dis-
crimination. The global item discrimination is to compare
the item performance of examinees master all required at-
tributes and the examinees master none of the required at-
tributes of one item. The attribute-specific item discrimi-
nation is to evaluate the item diagnostic quality for specific
attribute. Global item discrimination is more alternative
and attribute-specific item discrimination is more specific.
In this paper, the item discrimination indicates global item
discrimination.

To estimate global item discrimination, DCMs require both
known specific models and correct Q-matrix, which indicates
the relationship between items and attributes. However,
in some cases, models are hard to determine before data
analysis, and Q-matrices are misspecified or missing [5, 4].
To solve these two issues, we proposed an non-model based
methodology to estimate global item discrimination using
deep belief network (DBN) dimensional reduction method,
which only requires item responses from students and the
total number of attributes all items measure.

2. METHODOLOGY
Deep Belief Network (DBN) is a type of classic neural net-
work and can be viewed as a composition of Restricted
Boltzmann machine (RBM), which is generative stochastic
artificial neural network that can learn a probability distri-
bution over its set of inputs [1, 3]. In our framework, we
assume that only the item responses and the number of at-
tributes are known. Thus, in the DBN structure (Figure 1),
the number of inputs equals to the number of item responses,
the number of outputs equals to the number of attributes.
The number of notes in hidden layer equals to (Number of
inputs + outputs)/2. After constructing the DBN, the con-
nection weights between two layers are estimated through
minimize the following reconstruction errors using Stochas-
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Figure 1: The structure of the DBN.
tic Gradient Descent (SGD):

L(X,X ′) = ||X −X ′||2

X ′ = σ(W ′hidden(σ(W ′outputY + b′hidden) + binput))

Y = σ(Woutput(σ(WhiddenX + bhidden) + boutput))

(1)

where σ(.) is called sigmoid function, W ′ is the transpose of
W , b and b′ are the bias vectors, X indicates the inputs, X ′

is the reconstruction of inputs.

After training the DBN, when input a response vector from a
student, the value of each output note indicates the probabil-
ity this student mastery one attribute. Since the Q-Matrix
is assumed unknown in our framework, this method cannot
correspond one output note to a specific attribute. However,
we can determine the following two latent classes according
to the group mean of total scores (numbers of correct an-
swers): the latent class C0 of which the members have the

attribute profile vector ~0, and the latent class C1 of which
the members have the attribute profile vector ~1. In other
word, students in C0 master none of the required attributes,
students in C1 master all of the required attributes. The
average total score of C0 is the minimum among all latent
classes, and the average total score of C1 is the maximum
among all latent classes.

Let α0 and α1 indicate attribute profiles from C0 and C1
respectively. It is easy to know that for ith item, πi,α0 ≈
πi,αl , and πi,α1 ≈ πi,αh , where αl is the attribute profiles
that none of the attribute elements required by the ith item
are mastered, and αh is the attribute profiles that all of the
attribute elements required by the ith item are mastered.
Thus, the global item discrimination for ith item (p-value)
can be calculated directly as following: di ≈ πi,α1 − πi,α0 .

3. RESULTS
In this paper, we use simulated data to test the performance
of our methodology. The data set is simulated under a gen-
eral item by latent classes matrix [7], and it contains 5000
examinees and 40 items measure 3 attributes. First we com-
pare the classification performance of the two latent classes
C0 and C1 with two widely used DCMs, DINA and LCDM
under two conditions: 1). assume the correct Q-Matrix is
known for DCMs, 2). assume the Q-Matrix is missing for
DINA and LCDM (all elements of Q-Matrix is randomized,
the total error rate is 58%). All model based methods are
conducted using “CDM package” in R. DBN method is ac-
complished using “tensorflow library” in Python. The F1

score is used to quantify the quality of classification of the
two latent classes C0 and C1. From the comparison results
shown in Table 3, under the first condition, the F1(C0) using
DBN is very close to the ones using DINA and LCDM, the
F1(C1) using DBN is very close to LCDM but much higher

Methods F1 (C0) F1 (C1) F ∗1 (C0) F ∗1 (C0)

DBN .9514 .9637 .9514 .9637
DINA .9545 .8684 .6363 .6591
LCDM .9720 .9777 .7271 .7331

Table 1: The classification comparison. F1 indicates
the F1 score under the first condition, F ∗1 indicates
the F1 score under the second condition. Noting
that F1 = F ∗1 for DBN.

than DINA. Since our DBN based method doesn’t rely on
Q-Matrix, the accuracy is same under the second condition.
By contrast, both F1(C0) and F1(C1) for DINA and LCDM
decrease significantly when Q-Matrix is misspecified.

Secondly, we evaluate the global item discrimination (p-
value) di by comparing with the traditional methods using
item parameter estimates under DINA and LCDM. The cri-
terion used to quantify estimation quality is the mean square
error (MSE) of {di} for all items. As shown in Table 2, the
MSE of DBN method is much lower than the ones using
DINA and LCDM with correct Q-Matrix.

Methods DBN DINA LCDM

MSE .0015 .0744 .0542

Table 2: Comparison of p-value estimation.

4. CONCLUSION
This paper proposes an non-model based method to evalu-
ate global discrimination without using Q-Matrix through
deep belief network. Our methodology first projects high
dimensional responses vectors to low dimensional attribute
space. Then global item discrimination can be calculated
using the responses of two special latent classes (C0 and C1)
which are estimated using DBN. The simulated experimen-
tal results show that our DBN method performs much better
in classifying these two latent classes than using DINA and
LCDM when Q-Matrix is unknown. Our methodology also
provides more accurate global item discrimination than us-
ing item parameter estimates.
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ABSTRACT
In this paper, we design a framework to estimate attribute
without specific model for cognitive diagnosis measurement
(CDM) using artificial neural network (ANN). In contrast to
the previous research which relied on correctly specified Q-
Matrix, our methodology only requires partial Q-Matrix in-
formation (simple items’ q-vector). Simulated experiments
are conducted to test the effect of three types of test fac-
tors to our method. The simulated study shows that our
methodology provides an good option to analyze the data
when the prior information is insufficient.

Keywords
CDM, ANN, Q-Matrix, attribute estimation

1. INTRODUCTION
The purpose of cognitive diagnostic measurement (CDM) is
to group students to different latent classes based on a set of
latent knowledges or attributes mastery status through their
responses to items designed to measure these attributes.
Students within the same latent class have same attribute
profiles. In last two decades, CDM has attracted lots of
research attention, and various of diagnostic classification
models (DCMs), such as DINA, DINO and LCDM, are de-
signed based on different types of cognitive theories [5].

Although different DCMs have various statistic structure,
all recent DCMs are built with a fully probabilistic model
structure rely on latent variables and and most research ef-
forts have begun that represent a “step back” from the ex-
isting DCMs [9]. Another key concepts of current DCMs
is Q-Matrix, which traditionally contains the items in the
rows and the attributes in the columns, specifies which at-
tributes are measured by each item. Each row of Q-Matrix
is called q-vector. Simple item measures only one attribute,
and complex item measures more than one attribute. Sev-
eral researchers have already showed the effects of Q-Matrix
misspecification to different types of diagnostic classification

models from experiments [7, 8, 6].

With the rapid development of deep learning, in last sev-
eral years, some research works started to introduce ANNs
(MLP, SOM) to estimate students’ attribute profiles to cat-
egory students [2, 4]. However, there are still some limits
of these researches: 1) correct Q-Matrix is assumed to be
known; 2) the data is simulated under DINA model. In
this paper, we propose an ANN based method to estimate
students attribute profile only using partial Q-Matrix infor-
mation. To accomplish our method, three test conditions
are assumed to hold: 1) the number of attributes is known;
2) q-vectors of simple items are known; 3) at least one sim-
ple item with high discrimination1 measure one attribute.
All these three conditions are easy to be hold in real assess-
ments.

Figure 1: The structure of modified autoencoder.

2. METHODOLOGY
ANNs is a computational system inspired by biological neu-
ral systems for information processing in animals’ brains.
ANNs have showed competitive performance in large data
set tasks because the universal approximation theorem be-
hind neural networks [1]. In our proposed methodology, we
designed a modified autoencoder network [3] to estimate stu-
dents’ attribute profiles using their item responses. The aim
of an autoencoder is to learn a representation for a set of
data, typically for the purpose of dimensionality reduction.
As shown in Figure 1, our autoencoder contains two part:

1The goal of the item discrimination is to evaluate the di-
agnostic quality of items, which is how well does one item
to differentiate between the students who master more at-
tributes and the students who master fewer attributes.
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encoder and decoder. Encoder contains input layer, encoder
hidden layer and code layer, and decoder contains code layer,
decoder hidden layer and output layer.

The number of inputs and outputs equal to the number of
items I. The number of codes equals to the number of at-
tributes A. The number of notes in encoder hidden layer
equals to He = (I + A)/2. All the neurons in encoder are
fully connected. Let Xi denote the ith neuron in input layer,
He

h denote the hth neuron in encoder hidden layer and Ca
denote the ath neuron in code layer. By given the input sets
X , the value of ath code neurons can be calculated through
the following equation:

Ca = σ(

He∑
h=1

wh,aHe
h + ba)

= σ(

He∑
h=1

wh,a(σ(

I∑
i=1

wi,hXi + bh)) + ba)

(1)

where wi,h and wh,a are the connection weight from the ith
input neuron to the hth hidden neuron and from the hth
hidden neuron to the ath code neuron, bh and ba denote the
bias for hidden neuron and code neuron respectively, and
σ(·) indicates the sigmoid function.

After obtaining the values of code neurons, the decoder uses
these values as input to reconstruct the item responses. Un-
likely the typical decoder of which neurons are fully con-
nected, we use a sparse connection strategy according to the
partial know Q-matrix. LetHd

h, X ′
i denote the hth neuron in

decoder hidden layer and the ith neuron in output layer re-
spectively. This strategy can be mathematically represented
as following:

X ′
i =

{
σ(wa,iCa + bi), ith item is simple item

σ(
∑Hd

h=1 wh,iHd
h + bi), ith item is complex item

(2)

andHd
h = σ(

∑A
a=1 wa,hCa+bh), where wa,h is the connection

weight from the ath code neuron to the hth decoder hidden
neuron, wa,i is the connection weight from ath code neuron
to the ith output neuron, wh,i is the connection weight from
the hth decoder hidden neuron to the ith output neuron,
and bh, bi are biases of neurons. Noting that the number
of neurons in output layer equals to the one in input layer,
and the number of neurons in decoder hidden layers Hd =
(A+ Ic)/2, Ic is the number of complex items in the test.

After building up our modified autoencoder structure, the
stochastic gradient descent (SGD) [3] is used to train this
network using examinees’ responses to items by minimizing
the cost function ||X − X ′||2. After training, once inputing
eth examinee’s response vector Xe into the autoencoder,
a code vector α̂e can be obtained, each element of the α̂e

indicates whether one attribute is mastered. For example,
if α̂e = [1, 1, 0], the eth examinee masters attribute 1 and 2.

3. RESULTS
In this section, we design an experimental test using sim-
ulated data set to evaluate our framework under different
assessment conditions which vary under 3 assessment fac-
tors: test length, number of simple items per attribute, test
discrimination. Test length is the number of items contained

in assessment. 10, 15 and 20 items are contained in short,
medium and long test respectively. The number of simple
items per attribute varies from 1 to 3. Because in real test,
the proportion of simple items cannot be too high, so for
short test, there are only two types of simple item propor-
tions (1 or 2 simple items per attribute). Test discrimination
indicates the proportion of items with high discrimination
an assessment contains. Three levels, 50%, 70%, and 90%
are set for low, medium and high test discrimination or test
diagnostic quality. In contrast to some previous research,
the response data is simulated using a item by latent class
matrix [10], which is more general than the DINA model
based simulation. The number of examinees is 2000, and
the number of attributes in the test is 3.

First, we test the effects of the 3 assessment factors on at-
tribute estimation. From Figure 2, we can find that 1) the
marginal estimation accuracy for each attribute across sim-
ple items per attribute given test length is over 70%, which is
under the condition that test length is 10 and only 1 simple
item measures each attribute, and over 80% for half number
of test conditions; when the test length of assessment and
the number of simple items are sufficient, the accuracy is
close to 90%; 2) if the test length is fixed, adding more sim-
ple items with Q-matrix to replace the complex item with-
out Q-matrix can improve the estimation accuracy; 3) The
last observation from Figure 2 is when fixing the number of
simple items, adding more items without specified Q-matrix
can still improve the estimation performance which is not
available for latent classification model requiring Q-matrix.
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Figure 2: Marginal attribute estimation accuracy
vs. number of simple items per attribute given test
length.

From Figure 3, 1) we can get the similar overview like Fig-
ure 2, the marginal estimation accuracy for each attribute
across the test discrimination is over 70%, and over 80%
for half number of test conditions; when the test length of
assessment and number of simple items are sufficient, the ac-
curacy is close to 90%; 2) we can also observe that the test
diagnostic quality has a positive correlation to the marginal
estimation accuracy when fixing the test length; 3) another
observation from Figure 3 is that our method has the power
to improve the estimation accuracy just by adding items
without knowing its q-vectors and discrimination levels, in
other word, bad test items. For example, the short test with
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medium test discrimination, which contains total 7 items
with high discrimination, has the same number of items with
high discrimination contained by the medium test with low
test discrimination. The medium test with low test discrim-
ination has a more accurate estimation than the short test
with medium test discrimination.
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Figure 3: Marginal attribute estimation accuracy
vs. test discrimination level given test length. 05,
07 and 09 indicate low, medium and high test dis-
crimination, respectively.

Secondly, we conduct a comparison between our method and
the latent classification model based methods. Since when
giving the correct Q-matrix and select appropriate model,
latent model based methods always achieve the best esti-
mation accuracy [2]. Thus in this part, we only compare
the methods under the condition that Q-matrix is misspeci-
fied: the test which contains 20 items measure 3 attributes,
and 12 of them are simple items. The diagnostic quality
of this test is medium (70% of items are high discrimina-
tive), and we assume 50% elements of the Q-matrix for 8
complex items are misspecified, the Q-matrix for 12 simple
items is correct, and the total misspecification rate is 20%
for whole Q-matrix. Since the data are simulated under
LCDM, we choose DINA (noncompensatory) and LCDM
(compensatory, general) model for comparison. The model
based estimation is accomplished using “CDM package” in
R. The results are shown in Table 1. From Table 1, we can
firstly find that LCDM achieves a better performance on
both single attribute and attribute pattern estimation than
DINA because it is a more general latent model. Secondly,
we can observe that our proposed method shows the highest
accuracy on attribute 1, attribute 3 and attribute pattern
estimation; for attribute 2, the estimation accuracy is very
close to LCDM model and higher than DINA model.

Models attr 1 attr 2 attr 3 attr pattern

DINA .901 .914 .900 .739
LCDM .903 .919 .907 .756
ANN .909 .916 .931 .777

Table 1: Comparison with model based method in
estimation accuracy

4. CONCLUSION

The object of this paper is to propose a non-model based
method with less constrains according to two potential is-
sues in model based cognitive diagnosis: model selection and
Q-matrix misspecification. To achieve this target, we design
a modified autoencoder neural network for attribute estima-
tion which doesn’t rely on specific model assumption and
just require partial Q-matrix information (simple items’ q-
vector). We test our methodology under different types of
simulated test conditions according to test length, number
of simple items per attribute, and the test diagnostic qual-
ity. The experimental results show that our methodology
provides an option for users to analyze the data when lack-
ing of prior knowledge about the items. Another advan-
tage of this methodology showed in experimental results is
that even adding “bad” items without correct q-vector, this
method can improve the estimation accuracy.
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ABSTRACT
This paper will explain how analyzing experiments as a
group can improve estimation and inference of causal effects–
even when the experiments are testing unrelated treatments.
The method, composed of ideas from meta-analysis, shrink-
age estimators, and Bayesian hierarchical modeling, is par-
ticularly relevant in studies of educational technology. An-
alyzing experiments as a group–”partially pooling” their re-
spective datasets–increases overall accuracy and avoids is-
sues of multiple comparisons, while incurring small bias.
The paper will explain how the method works, demonstrate
it on a set of randomized experiments run within the AS-
SISTments platform, and illustrate its properties in a simu-
lation study.

1. INTRODUCTION
Using educational technology to conduct many experiments,
as in the ASSISTments TestBed [7], allows education re-
searchers to rigorously answer many causal questions and
test many hypotheses independently. Perhaps more surpris-
ingly, the various experiments can help each other. Effect
estimates that partially pool data across experiments—even
those that are testing very different interventions—are of-
ten more precise and accurate, and less error-prone, than
estimates based on the experiments individually.

This poster will illustrate a Bayesian approach to analyzing
several experiments simultaneously. (By “Bayesian,” here,
we mean merely that the goal of the approach is a posterior
distribution for treatment effects.) The method combines
ideas from [8] and [1] on shrinkage, from [12] on Bayesian
partial pooling to examine treatment effect heterogeneity,
and [6] on multiple comparisons. The paper’s main contribu-
tions will be to introduce these ideas to an EDM audience—
where, due to proliferation of online experiments, they are
particularly applicable—and to illustrate their potential.

Previously, [10] combined data across experiments to im-

prove covariance adjustment; that method is orthogonal,
and perhaps complementary, to ours, which does not use
covariates. [3], [9], and many others have used multilevel,
hierarchical Bayesian modeling to analyze intelligent tutor
data, but not in the context of experiments.

After describing and explaining the method (Section 2), we
will illustrate it in an analysis of a dataset comprised of 22
parallel experiments run inside ASSISTments [13] (Section
3) and in a simulation study (Section 4). We will show that
partially pooling data from across experiments increases pre-
cision while lowering type-I error rates, decreases the width
of confidence intervals while improving their coverage, and
substantially reduces the incidence of drawing incorrect con-
clusions from experimental data.

2. SHRINKAGE, PARTIAL POOLING, AND
REGRESSION TO THE MEAN

Unbiased estimates d̂np of effect sizes d from randomized
A/B tests are noisy—a different estimate would have re-
sulted had the treatment been randomized differently. The
standard error of a particular effect size estimate, σi =
SD(d̂npi |di), depends on a number of factors, most princi-
pally the sample size ni, but in practice it is never zero.
Similarly, among a group of K experiments, the true effect
sizes di, i = 1, ...,K, (presumably) vary as well—var(d) = τ ,
say. Considered together, the variance of a group of effect
size estimates is the sum of both components: the variance
of the true effects plus the average of the (squared) standard
errors of the individual estimates:

var(d̂np) = τ2 + E[σ2]

In other words, the distribution of effect size estimates is
wider than the distribution of true effect sizes. Therefore,
the largest effect size estimates d̂np typically overestimate
their respective true effects d, and that the smallest ef-
fect size estimates typically underestimate their true effects.
This is an example of regression to the mean [4] (also see
[16]).

The implication for estimating effects can be startling. When
A/B tests are analyzed independently, the best estimate for

the true effect size di in experiment i is d̂npi . However, when

the K experiments are considered as a group, d̂np is inad-
missible. A better estimate, d̂pp, corrects for the fact that
the extreme estimates are probably too extreme, and shrinks
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them toward the overall mean effect size µ [2]:

d̂ppi = µ+ ci
(
d̂npi − µ

)
(1)

where ci is a “shrinkage coefficient” between 0 and 1. When
ci = 1, d̂ppi = d̂npi ; when ci = 0, d̂ppi = µ.

Another term for this procedure is “partial pooling” [5]. The
overall mean treatment effect, µ, can be estimated by com-
pletely pooling the data across all K experiments. In con-
trast, individualized estimates d̂np result if data from differ-
ent A/B tests are not pooled at all—d̂np is a “no pooling”

estimate. The optimal estimate d̂pp combines the the no-
pooling estimate d̂np with a complete-pooling estimate of
µ—hence, partial pooling.

In general, the size of the shrinkage coefficient ci, which
regulates the extent of the partial pooling, depends both on
the standard deviation of the true effects, τ , and σi, the
standard error of d̂npi . When τ is large, the experiments
differ widely from each other, so the overall mean effect µ
tells us little about the individual effects d. When σi is
large, then d̂npi is quite noisy, and tells us little about di.
The shrinkage coefficient ci balances these two factors.

For instance, Rubin [12] models each d̂npi as normal, with
mean di (since it is unbiased) and standard error σi:

d̂npi ∼ N (di, σi) (2)

This would be approximately the case if estimators d̂np were
difference-in-means or regression estimators from sufficiently
large experiments. Then, he models the effects themselves
as drawn from a normal distribution:

di ∼ N (µ, τ). (3)

Under model (2)–(3),

ci =
τ2

τ2 + σ2
i

. (4)

When τ is large (so the true effects are very different from

each other) and σi is small (so d̂npi is very precise), ci is close

to one—the partial pooling estimator d̂ppi ≈ d̂npi —data are
barely pooled across experiments at all. Conversely, when σi
is large (so d̂npi is noisy) and τ is small (so the true effects are

similar to each other), then ci is close to zero, and d̂pp ≈ µ,
the overall mean effect size, completely pooling data across
experiments. In general ci is in between zero and one, and
the estimator d̂pp partially pools information between the
individual effect estimate d̂npi and the overall mean µ. The
mean of the true effects µ and their variance τ are, of course,
unknown, but they may be estimated from the data.

Unlike d̂npi , d̂ppi is biased—it is shrunk towards the overall

mean µ. To compensate for the bias, d̂ppi is less noisy than

d̂npi ; its standard error is
√
ciσi. Since ci < 1, this is al-

ways less than d̂npi ’s standard error σi. Overall, [15] shows

the root mean squared error (RMSE) of the estimates d̂pp,
considered as a group, will be less than the RMSE of the
individual unbiased estimates d̂np. This result is that it
applies even when the causal estimates do not need to be
related in any way.

When analyzing a set of A/B tests run inside intelligent
tutors, estimates of the effects based on partial pooling will
be more accurate, on average, than estimates that consider
each test individually.

3. ANALYZING 22 EXPERIMENTS
How does partial pooling work in practice, in an authentic
EDM setting?

The ASSISTments TestBed [7] allows education researchers
to propose and conduct minimally-invasive A/B tests within
the ASSISTments intelligent tutor. The TestBed infrastruc-
ture automatically publishes anonymized data from these
experiments. Conveniently, [13] combined 22 of these datasets
into one publicly available file. All 22 experiments were skill
builders, which are problem sets designed to teach, or bol-
ster, a specific topic or skill. Inside a skill builder, students
are required to solve problems associated to that skill un-
til mastery is achieved, typically defined as answering three
questions in a row.

The dataset includes a number of student features and two
dependent measures. In this paper, We will focus only on
one dependent measure complete, a binary variable indi-
cating completion of the skill builder, taking value 1 if the
student achieved mastery or 0 if the student either stopped
working before achieving mastery or exhausted all of the
skill builder’s problems without achieving mastery.

To estimate treatment effects conventionally, without pool-
ing across experiments, we fit a separate logistic regression
to each of the 22 experiments, regressing complete on an
indicator for treatment condition.

Pr(complete = 1) = invLogit (αexpr + βexprZ) (5)

Where invLogit(·) is the inverse logit function. The inter-
cept αexpr and treatment effect βexpr (the log odds ratio of
completion for the treatment vs the control condition) were
estimated separately in each experiment expr.

To estimate effects using partial pooling, we re-fit (5) within
a Bayesian multilevel logistic regression using the rstanarm

package [14] in R [11]. That is, we assigned models αexpr ∼
N (α0, σα) and βexpr ∼ N (β0, τ), where hyperparamters α0,
β0, σα and σβ were estimated from the data using weakly-
informative priors.

Figure 1 plots estimated treatment effects and approximate
95% confidence intervals (±2SE) for the 22 experiments,
using both the conventional no-pooling estimator and the
partially-pooling estimator. The partial pooling shrunk the
estimates quite a bit: while the no-pooling estimates ranged
from approximately -1.3 to 0.6, the partial pooling estimates
were all close to zero, ranging from -0.2 to 0.1. The esti-
mated standard errors were also much smaller for the par-
tially pooled estimators. The average standard error for the
no-pooling estimates was 0.39, whereas the average stan-
dard error for the partial-pooling estimates was less than
half that, 0.17. Finally, though two of the no-pooling esti-
mates were statistically significant, with confidence intervals
excluding zero, none of the partial-pooling estimates was.

Figure 2 plots the estimated standard errors from the two
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Figure 1: Partial-pooling an no-pooling treatment
estimates and approximate 95% confidence intervals
for the 22 experiments, arranged horizontally by the
no-pooling treatment effect. The outcome was com-

plete, and the treatment effects are log-odds ratios.

Figure 2: Partial-pooling vs no-pooling standard er-
rors, with point size proportional to sample size in
the experiment.

sets of estimates. The sizes of the points in the plot are pro-
portional to experimental sample sizes. The partial-pooling
standard errors are all smaller than those from the no-pooling
estimates. However, the differences are not uniform. Exper-
iments with large sample sizes and low no-pooling standard
errors had partial-pooling standard errors that were only
slightly smaller. As the sample sizes shrunk, both sets of
standard errors grew. However, the no-pooling standard er-
rors grew much faster. The largest difference in standard
errors between the two methods was for studies with the
smallest samples and the largest no-pooling standard errors.

4. A SIMULATION STUDY
Partial pooling worked as advertised when applied to the
ASSISTments dataset, shrinking estimates towards zero and
reducing standard errors, sometimes drastically—but did it
get the right answers?

We ran a simulation study to investigate the performance
of the partial-pooling estimator when the right answer is
known.

4.1 Data Generating and Analysis Models
We simulated batches of K = 20 experiments each. Within
a batch, sample sizes n varied from 20 to 115. Treatment Z
was randomized to half of the subjects in each experiment.
For each batch, outcomes Y were generated as

Yi ∼ N (αexpr[i] + βexpr[i]Zi, σY ) (6)

with random intercepts αexpr ∼ N (0, 1) and treatment ef-
fects βexpr ∼ N (0, τ), both varying at the experiment level.
The between-experiment standard deviation of treatment ef-
fects τ varied between runs. It took the values of τ = 0,
corresponding to βexpr ≡ 0 across all experiments, and τ =
{0.1, 0.2, 0.5, 1.0}. When τ was positive but low, there was
a treatment effect in every experiment, but nearly all effects
were very small. Larger values of τ corresponded to more
variance in the treatment effects, including some that were
substantial. For every study, σY = 1.

The 20 experiments in each batch were analyzed both sepa-
rately, with no-pooling estimators, and jointly, with a partial-
pooling estimator. Both estimators fit model 6 to each
dataset to estimate treatment effects βexpr; however, the
partial-pooling estimator additionally modeled βexpr ∼ N (β0, τ)
and αexpr ∼ N (α0, σα).

For each value of τ we ran 500 iterations of 20 experiments
each, producing 10,000 experimental datasets.

4.2 Simulation Results
Table 1 gives the results of the the simulation. The esti-
mated standard errors and root mean squared errors of par-
tial pooling estimates were consistently substantially lower
than those of no-pooling estimates—partial pooling increased
both accuracy and precision. The differences between the
estimators diminished as the variance of true treatment ef-
fects, τ increased. This is predicted by (4): as τ increases
relative to no-pooling standard errors σ, the shrinkage co-
efficient tends towards 1 and the the partial pooling esti-
mate tends towards the no-pooling estimate. Intuitively,
when τ increases various experiments become less informa-
tive about each other, so partial pooling decreases in value.
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τ
Pooling 0 0.1 0.2 0.5 1

SE
Partial 0.13 0.14 0.17 0.23 0.25

None 0.26 0.27 0.26 0.27 0.26

|Bias| Partial 0.00 -0.05 -0.08 -0.08 -0.05
None 0.00 -0.00 0.00 0.00 0.00

RMSE
Partial 0.09 0.12 0.17 0.24 0.26

None 0.28 0.27 0.27 0.28 0.27

Coverage
Partial 1.00 0.98 0.95 0.95 0.95

None 0.95 0.95 0.95 0.95 0.95

Table 1: Average standard error (SE), bias magni-
tude, root mean squared error (RMSE), and empir-
ical coverage of 95% confidence intervals (Coverage)
for partial pooling and no pooling estimates for dif-
ferent values of τ .

Table 1 also shows that while the no-pooling estimates are
unbiased, the partial pooling estimates are slightly biased
towards zero, as expected, with the bias decreasing as τ in-
creases. This bias does not cause undercoverage of 95% con-
fidence intervals. Remarkably, for low τ , the partial pooling
confidence intervals over -covered—more than 95% of the re-
alized confidence intervals included the true parameter. The
width of the confidence interval is four times the standard
error, by construction—so partial-pooling confidence inter-
vals were both substantially smaller and more often correct.

5. DISCUSSION
Partial pooling is a surprising, and surprisingly effective,
technique to improve education sciences in the big data era.
As educational technology allows A/B testing to proliferate,
partial pooling is a method to use some of the oldest results
in statistics—such as regression to the mean—alongside new
Bayesian technology to improve the precision and accuracy
of experimental estimates. When experiments can be ana-
lyzed in a group, the result is smaller confidence intervals
with the same or higher coverage.

Partial pooling is a model based technique, and it remains
to be seen how it performs when the model is severely mis-
specified. A host of Bayesian model checking procedures,
including some suggested in [12], may be brought to bear on
this question. In any event, most effect estimates are approx-
imately normally distributed, by the central limit theorem,
so methods based on normal theory will apply.

All code and data for this paper may be found at https:

// github. com/ adamSales/ EDMpartialPooling .
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ABSTRACT 
A substantial amount of research has been conducted by the 
educational data mining community to track and model learning. 
Previous work in modeling student knowledge has focused on 
predicting student performance at the problem level. While 
informative, problem-to-problem predictions leave little time for 
interventions within the system and relatively no time for human 
interventions. As such, modeling student performance at higher 
levels, such as by assignment, may provide a better opportunity to 
develop and apply learning interventions preemptively to remedy 
gaps in student knowledge. We aim to identify assignment-level 
features that predict whether or a not a student will finish their next 
homework assignment once started. We employ logistic regression 
models to test which features best predict whether a student will be 
a “starter” or a “finisher” on the next assignment.   
Keywords 
Student Modeling, Mathematics Education, Classification 
1. INTRODUCTION 
Online learning environments, paired with educational data mining 
research, provide student and teacher supports for learning. These 
environments are able to map student learning and behavior to 
personalize content, offer scaffolding, and provide real time 
support such as informational or motivational messages [11], 
making them nearly as effective as one-on-one human tutoring 
[14]. While great strides have been made in refining online learning 
environments to optimize learning, past work has primarily focused 
on student learning at the problem-level or using problem-level 
features within learning systems [3, 4]. These models provide 
immediate feedback to students and personalize learning within a 
user’s session. Less work has been done at higher granularities, 
such as modeling learning from assignment to assignment, to 
capture broader models of student learning.  

While problem-level models of student learning are important, 
teachers more often care about higher level aspects of student 
learning such as whether students will be able to complete their 

homework assignment and if not, why? Building on previous work 
to track learning in online learning environments, as well as studies 
that have utilized similar data, we present our first attempt to build 
interpretable, predictive models of next-assignment completion. 
These models should indicate the best predictors of next-
assignment completion to interpret reasons that a student might be 
a “starter” who is unable to finish the next homework assignment 
rather than a “finisher” who will complete the next assignment.  

2. LITERATURE REVIEW 
Online learning environments and tutoring systems contain rich 
data that can be applied to any level of fine- or coarse-grained 
research questions pertaining to student learning and behavior [9]. 
Using data from online systems, researchers have modeled student 
learning at various levels to better understand predictive behaviors, 
affective states, and system features of learning.  From skill-level 
within problems [10], to problem-level [5], and across topics [2], 
the educational data mining community has tracked student 
learning and performance in a variety of contexts. Though steady 
progress has been made in predicting low-level behaviors, we can 
also leverage the prediction power of student logs to predict higher 
level behaviors and outcomes [1].  
 
Research has also turned to predicting negative student behaviors 
and outcomes, such as student dropout rate. For instance, modeling 
student dropout rates has been a focus within massive open online 
courses (MOOCs) to understand why students complete online 
courses or dropout along the way [13, 16]. Similarly, attritional 
behavior in MOOCs has been modeled to identify and intervene 
with students who appear to be most likely to “stopout” [7]. While 
tutoring systems developed for K-12 curricula differ from MOOCs 
and secondary education settings, modeling dropout rates in online 
assignments would be beneficial at the K-12 level. Drawing from 
this work, we intend to develop predictive models of assignment 
dropout in an online learning environment to identify students 
likely to dropout of future assignments with time to intervene. 
 
To accomplish this, we will use ASSISTments, a free, web-based 
tutoring system for K-college curricula that primarily features 
middle school mathematics content [8]. The current project will 
focus on “Skill Builders”, which are pre-built problem sets that map 
onto content areas to provide students with practice on topics 
featured on standardized tests. Skill Builders present problems 
from a given content area in a randomized order and are designed 
to challenge a student until that student achieves content mastery.  
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Under default settings, students must consecutively answer three 
problems correctly to achieve mastery status for the assignment.  
 
Previous research using ASSISTments and Skill Builders has 
sought to detect and fine-tune features of ASSISTments to be most 
beneficial to students and educators in practice. Most notably, a 
recent efficacy trial found that students who used ASSISTments 
throughout the school year performed better on an end-of-year 
standardized test than their counterparts who continued to use pen-
and-paper homework assignments [12]. The researchers theorized 
that the difference in achievement may have been attributed to 
teacher reports generated in ASSISTments that provide teachers 
with information and timely homework feedback for students. This 
suggests that providing predictive feedback to teachers may better 
prepare them to provide additional support needed before difficult 
assignments. Predictive reports on future assignments would enable 
teachers to target specific content and assist students beforehand.  
3. CURRENT PROJECT 
We build off previous work that has modeled next problem 
performance at the student level, as well as approaches to modeling 
dropout rates in secondary education settings, to build predictive 
models of completion at the assignment level. While problem-level 
predictive models are limited to immediate, online-tutor 
interventions, making predictions about student behavior at the 
assignment level would allocate time for teacher interventions.  
 
We use logistic regression to predict whether a student will be a 
“starter” or a “finisher” on the next ASSISTments assignment. 
Specifically, if a student opens the next assignment, will he be able 
to complete that assignment, achieving content mastery? We use 
the predictive model to identify features most predictive of next 
assignment completion. We focus first on using current completion 
features to predict next assignment completion and then progress to 
the predictive abilities of student behavior metrics within the tutor. 
This work is guided by the following three research questions: How 
well does student completion on the current assignment predict 
completion on the next assignment? Does the number of completed 
problems matter when predicting next assignment completion? Do 
student behaviors within the tutor predict next assignment 
completion above current assignment completion features?  

4. DATA AND PREPROCESSING 
We used publically available ASSISTments data [6] from Skill 
Builders during the 2016-2017 school year. Skill Builders were 
restricted to mathematics content and mastery parameters of 3+ 
correctly solved, consecutive problems. Using descriptive 
statistics, outliers were trimmed from any variables with a 

skewness statistic > |3|. After cleaning, the dataset contained 77,200 
cases of assignments started or completed by 9,231 students in 
grades 3-12 across 5,143 unique Skill Builder assignments. 
Students completed the current assignment 92.65% of the time and 
completed the next assignment, our outcome variable, in 88.08% of 
cases. We constructed nine features from the dataset using 
assignment-level and problem-level variables aggregated by 
student at the assignment level (Table 1). In addition to current 
assignment completion, we selected assignment mastery speed, 
average attempt count per problem, and average hint count per 
problem as features. Assignment mastery speed is based on the 
number of problems students solve to fulfill the requirements of the 
skill builder assignment and “master” the content.  
 

 
Figure 1. Rate of problem completion within complete and 

incomplete assignments. 
 

We created three categories of mastery speed based on a method 
previously used [17]. We extended the method to account for the 
duration of student persistence prior to dropping out of the 
assignment, which we use as a dropout rate (Figure 1). To find a 
predictive model of future homework completion that optimized 
simplicity and fit, we created three models through logistic 
regression to compare and evaluate. We began with the completion 
model, with only current assignment completion as a predictor of 
next assignment completion. Then, we delved into student behavior 
within current assignments to build the binned completion model 
with completion status and number of problems completed within 
the assignment as predictors. Lastly, the binned completion and 
student features model used the binned completion predictors, the 
average hint use per problem, and average attempt count per 
problem as features. We used optimized thresholds for kappa and 
accuracy since our models were biased towards the majority class. 
By optimizing the threshold, we removed this bias. The optimized 
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threshold was calculated only on training data. Five-fold cross 
validation was applied at the student level for each model.  

5. RESULTS 
Table 2 overviews the performance for each of the three models. 
Each model performs above chance (AUC > 0.50; kappa > 0.00) 
though performance slightly decreases (kappa, F1, Accuracy) and 
AUC slightly increases as the models increase in complexity.  
 
Table 2.  Model comparison across performance metrics.  

Model AUC Kappa F1 Accuracy 

Completion 0.617 0.281 93.04 87.42 

Mastery & Dropout 0.632 0.258 91.82 85.44 

Mastery, Dropout, & 
Student Features 

0.641 0.250 91.41 84.79 

 
Model 1: Completion Model 
The first model was a logistic regression that used completion on 
the current assignment to predict completion on the next 
assignment. This served as a base rate model that simply consists 
of completion as the predictor for future completion. For the 
Completion Model (kappa=0.281, AUC=0.617), completion was a 
positive predictor of next assignment completion, b= 2.10, 
z(77,200) = 71.05, p < 0.01. 
 
Model 2: Mastery and Dropout Model 
The second model expanded on the base rate model by categorizing 
completeness and number of problems solved. We applied logistic 
regression using completeness and incompleteness categories as 
features to predict next assignment completion. Mastery speeds 
were significant, positive predictors of next assignment completion 
while dropout rates were not statistically significant (Table 3). 
 
Table 3. Logistic regression with Mastery Speeds and Dropout 
Rates. 

Feature b B SE z value p value 

Intercept 0.51 2.13 0.00 175.35 0.00 

Mastery (3-4) 1.83 0.85 0.52 3.53 0.00 

Mastery (5-8) 1.69 0.69 0.52 3.27 0.00 

Mastery (9+) 1.26 0.21 0.52 2.43 0.02 

Dropout (0) -0.46 -0.10 0.52 -0.88 0.38 

Dropout (1-3) -0.10 -0.01 0.52 -0.20 0.84 

Dropout (4+) -0.05 -0.01 0.52 -0.10 0.92 
 
Model 3: Mastery, Dropout and Student Features Model 
The final model incorporates two student-related features: hints and 
attempts. We applied logistic regression using completeness and 
incompleteness categories, as well as the two student features, to 
predict next assignment completion. Table 4 shows that in addition 
to mastery speeds, average attempts was also a significant, negative 
predictor of next assignment completion. This suggests that more 

attempts in the current assignment results in a lower likelihood of 
finishing the next assignment.  
 
Table 4. Logistic regression with Mastery Speed and student 
features. 

Feature b B SE z value p value 

Intercept 0.67 2.13 0.00 3.53 0.00 

Mastery (3-4) 1.82 0.84 0.52 3.52 0.00 

Mastery (5-8) 1.75 0.72 0.52 3.38 0.00 

Ave Attempt Count -1.40 -0.06 0.04 -3.92 0.00 

Mastery (9+) 1.34 0.22 0.52 2.57 0.01 

Dropout (0) -0.58 -0.13 0.52 -1.12 0.26 

Ave Hint Count -0.02 -0.00 0.07 -0.29 0.77 

Dropout (4+) 0.07 0.00 0.52 0.14 0.89 

Dropout (1-3) -0.06 -0.00 0.52 -0.11 0.91 

6. DISCUSSION 
The models presented in this paper predict next assignment 
completion, which compared to predicting next problem 
completion, could provide more timely and practical information 
about student learning that could be applied through teacher 
intervention. Though most of the performance measures slightly 
decreased as more features were added, all three models performed 
similarly as a whole. Out of the student features we analyzed, 
completeness on the current assignment is the most prominent 
predictor of completion on the next assignment, which answered 
our first research question. This suggests that a simple model using 
only completeness as a predictor would be appropriate for uses such 
as creating an alert in a teacher dashboard to signal when students 
may not complete their next assignment.  
 
That said, Models 2 and 3 add a more detailed explanation 
regarding how completeness breaks down and what other features 
may contribute to next assignment completion. We answered our 
second research question with Model 2 by categorizing 
completeness into mastery speed and dropout rate based on how 
many problems students completed. Though dropout rates were not 
significant predictors, higher mastery speeds in the current 
assignment increased the likelihood of students completing their 
next assignment. This is to be expected, as students who complete 
their current assignment in fewer problems are generally 
performing more efficiently, which may be suggestive of future 
performance due to underlying knowledge levels, motivational and 
behavioral tendencies, or other student-level characteristics.  
 
To answer our third research question, Model 3 incorporated 
within-problem student behaviors, average attempts made, and 
average hints used per problem. The number of attempts was a 
negative predictor of next assignment completion, suggesting that 
students who make more attempts per problem are less likely to 
complete the next assignment. It seems that lower performing 
students (based on those who finish the assignment in more 
problems and take more attempts per problem) are less likely to 
complete the next assignment. While this is not a surprising finding, 
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it brings us closer to teasing apart the integral facets of students’ 
knowledge, behavior, and interaction with the system which leads 
them to become starters or finishers on their next assignment.  
 
Though the models presented herein serve as a valuable first step 
towards understanding student and system contributions to student 
learning at a higher level, we acknowledge limitations in our dataset 
and analyses. We had a limited sample of incomplete current 
assignment behavior, as the majority of next-assignments were 
completed. When binning into completeness and incompleteness 
categories, the majority of data fell in the first two categories of 
completeness (3-4 problems solved 69%, 5-8 problems solved 
21%), resulting in disproportionate pools for other categories (≤ 
5%). These characteristics of the data made it more difficult to 
predict next assignment incompletion and instead, bias towards the 
larger current completeness categories. These models also only 
included measures of completeness (mastery speed and dropout 
rate) with a small selection of student behavior features. We started 
with simple models to identify the most logical predictive features. 
Moving forward, our analyses will include more holistic models of 
learning with parameters based on student and assignment features. 
Prior student knowledge and exposure, as well as problem content 
and difficulty, could be logical predictors of assignment completion 
and student learning. As such, future work will assess the 
generalizability of our three models while working to extend our 
predictive capacity further through the addition of new parameters. 
 
We also plan to extend our models to predict next assignment 
performance. Similar to how we binned completeness to predict 
next assignment completeness, we can also use binary or binned 
correctness (partial credit) [15] to predict next assignment 
performance. This will expand our scope on higher level learning 
modeling and has the potential to provide more useful feedback to 
teachers when deciding on which content to review to increase the 
number of homework “finishers.”  

7. CONCLUSION 
We have presented three predictive models of next assignment 
completion in ASSISTments that vary in complexity but perform 
comparably to one another. By modeling student performance at 
the assignment level, we were able to broadly model student 
behavior to predict whether students will be a homework “starter” 
or “finisher” on the next assignment. This approach to student 
modeling could serve as a foundation for a predictive teacher 
feedback tool within ASSISTments to increase teacher ability to 
target key content areas in class to increase the likelihood of all 
students being assignment finishers.  
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ABSTRACT
We explore implementation tradeoffs for automatically con-
structing a frequently asked questions list (FAQ) over multi-
year class forum archives. Our ground truth was obtained
from paid experts. They voted for or against inclusion of
sample posts in a FAQ. Using the resulting labels we im-
plemented and present two models for classifying posts for
inclusion: logistic regression, and a random forest classi-
fier. Results are presented for predicting both majority
vote, and unanimous-yes decisions by the experts. We mea-
sured accuracy resulting from training on both, split dataset,
and the full dataset with repeated 10-fold cross validation.
When training on the full set the logistic regression classi-
fier reaches an accuracy of 69% for predicting the majority
decision, and 72% when predicting unanimous-yes. Random
forest reaches 98% when using the full set. The predictors
are easily obtained features from forum facilities, such as
upvotes, unique views, and unique collaborations.

Keywords
Online Discussion forums, MOOCs, residential courses, FAQ,
logistic regression, random forest, instructor support

1. INTRODUCTION
Online discussion forums empower instructors and students
to engage one another in ways that promote critical think-
ing, collaborative problem solving, and knowledge construc-
tion [5] [7]. Several years’ worth of a course forum archive
hold treasures for a number of stakeholders. The answers to
many relevant questions might be buried in those archives,
and would save time for future students and teaching staff
alike, if they were made available. Instructors could learn
from those archives where students tend to falter, and mod-
ify their lectures accordingly. On the other hand, students
could use the archive as a source for answers to questions
without having to wait for responses.

Unfortunately, this potential is not tapped today. Questions

are often re-raised, because their earlier answers are unavail-
able. This limitation motivates the construction of course
specific frequently asked questions lists (FAQs). However,
manual selection of archival posts for inclusion in a FAQ
is not feasible. Thus, automated construction and mainte-
nance of such a list is needed.

We present the details of FAQtor, an early version of our
automatic FAQ generation system. Our contribution in this
work is: (i) to show the initial prediction performance of
logistic regression and random forest models in selecting fo-
rum posts for FAQs. And (ii) to show the relative impor-
tance of the readily available predictors that can be used for
automatic FAQ selection.

2. AUTOMATIC FAQ GENERATION
We envision two types of FAQ lists, each for a different au-
dience.

Students’ FAQ : This FAQ is intended to include mostly
conceptual questions. Given that the key concepts covered
in most classes change very little over the years, this FAQ
can help increase student productivity. For the course staff,
the Students’ FAQ translates to reduced work load in an-
swering repeated questions.

Instructors’ FAQ : This FAQ is meant to serve as a snap-
shot of the previous offerings of the course. The list is fo-
cused on topics that students struggled with in the past. The
intent is for instructors to fix shortcomings in their courses,
including operational mishaps. Entries in this FAQ thus
need different types of entries than the list for students. The
list should be useful as well when new instructors take over
a course.

We focus here on generating the Students’ FAQ.

The goal then is an algorithm that works well enough to pick
initial posts for inclusion in frequently asked question lists.
This task is not critical, so an approximate success strong
enough to obviate the human selection of posts will suffice.
The obvious choice for this task is a binary classifier, with
a modest manually labeled set of posts serving as training
and test sets.

We compared two classification mechanisms: logistic regres-
sion, and random forest. We present how both these meth-
ods performed.
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3. OBTAINING A LABELED SET
We used a survey format in which the experts were presented
with a series of Piazza [9] question–answer pairs, and notes.
Experts were asked to make a binary include/exclude choice
for each item.

The next section discusses how we chose contributions to be
used in the survey, and created the ground truth.

3.1 Selecting Posts to Label
We started with the complete dataset of contributions on
Piazza from four years of a graduate level Artificial Intelli-
gence (AI) course. This course, offered by a large private
university, contained an average of 1610 questions and notes
per year from 2013 to 2016, with 2237 questions and notes
in the most recent dataset. The ratio of the total number of
questions and notes to the number of students on the forum
was 11 in the most recent dataset. Given the large data
volume we used simple heuristics to exclude questions and
notes that would be irrelevant for the Student FAQ.

In our choice we considered the following features when de-
ciding about including a post in the survey for the experts:

• Number of upvotes on the post (question or note)

• Number of upvotes on the students’ answer (if the post
was a question)

• Number of upvotes on the instructor’s answer (if the post
was a question)

• Number of unique collaborators in the follow-up thread
of a candidate post

• Number of unique views of the post

• Length of the follow-up thread induced by a candidate
post

We chose these features to ensure that our system was gen-
eralizable for use with other, similar forum datasets. These
statistics are readily available or derivable in most forum
facilities. Additionally, these choices were an easy way of
indirectly having prediction features crowd-sourced. We did
not at this point consider linguistic content analysis as a
source for selection criteria.

Individual minimum threshold percentiles were set for each
of the above features. These thresholds served to assem-
ble the final post set for the expert opinion surveys. For
instance, a threshold of 10th percentile on the number of
question upvotes would mean that to be included in the sur-
vey, a question would need enough upvotes to clear that
hurdle.

The thresholds for each of the above six features was set to
a 5th percentile for the most recent class offering. As we
progressively selected candidate FAQs from older datasets,
these thresholds were gradually increased. Our assumption
was that more recent offerings would have posts that are
more relevant to upcoming offerings. Additional investiga-
tion is required to confirm this assumption. Our strategy
was to keep the individual filters very low in order to cover
the entire breadth of potentially interesting questions. How-
ever, only the questions that crossed the thresholds for all

Table 1: Low interrater reliability in all three groups

Fleiss Kappa p

G1 -0.23 0.05
G2 0.09 0.4
G3 0.13 0.04

the features survived. We accumulated the candidate posts
for inclusion in the survey using four years of forum data for
the same course. Forty-one question-answer pairs and notes
were then randomly sampled from this set.

Thirteen additional posts were randomly sampled and in-
cluded in the survey, to a total of 54. We allowed these ad-
ditions to lie below the thresholds. We found strong support
that the excluded posts were justifiably elided by observing
the decisions of our experts. The experts selected none of
the randomly sampled posts for inclusion in the FAQ. The
posts were presented to the experts in random order.

The set of 54 items was partitioned into three batches. The
batches were presented to three groups of three experts each:
G1, G2, and G3.

All the experts were recruited from among the current course
instructors for the same class from which the forum contri-
butions of the past few years were drawn. The survey in-
structions and one sample entry from the survey are included
in the Appendix.

Table 1 shows that agreement around which posts are wor-
thy of inclusion in a FAQ was low in all three expert groups.
These values reflect that the experts’ decision task was in-
trinsically subjective. We could not train the judges in
how to make ‘correct’ decisions as we would in rating tasks
with firm rules. Instead, we investigated two alternatives
as ground truth: majority vote, and unanimous yes. The
latter approach considers a post to be fit for a FAQ if all
three judges agreed that the post is worthy of inclusion. We
present prediction results for both notions of ground truth.
Either choice provides a seed of posts for the FAQ list.

One approach towards continuous improvement after the ini-
tial list construction would be the inclusion of per-post vot-
ing by the student customers once the list is online. We
could then add additional entries from the archives that are
similar to upvoted items, or remove less useful contributions.
We do not discuss this enrichment scheme here.

Our small set of human judgments was a challenge for both
logistic regression (LR), and random forest (RF). We there-
fore compare in the results below two methods of applying
each of these technologies. The first relies on the intrinsic
randomization of 10-fold cross validation, repeated ten times
for LR, and uses all 54 posts for training and performance
estimation. In the RF this full-set method similarly relies
on the randomness of RF feature and input selection, plus
repeated CV, while using the full set of 54 posts.

The second method we investigated for LR and RF was the
standard dataset split–70:30, which left us with 38 posts to
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Table 2: Results for Logistic Regression

LR-Split LR-Full

Majority UnanYes Majority UnanYes

Accuracy 0.56 0.63 0.69 0.72
Precision 0.6 1.0 0.9 0.83
Recall 0.38 0.25 0.36 0.43
F1 0.46 0.4 0.51 0.57

Table 3: Logistic regression confusion matrices for
UnanimousYes and majority ground truths

LR-Split UnanYes LR-Full UnanYes

Exclude Include Exclude Include

Exclude 8 6 29 13
Include 0 2 2 10

LR-Split Majority LR-Full Majority

Exclude Include Exclude Include

Exclude 6 5 28 16
Include 2 3 1 9

train, and 16 to test. In this case both trainings were again
run with repeated 10-fold CV.

3.2 Logistic Regression Classifier
After centering and scaling, we allowed the R glmnet train-
ing to find an optimal LASSO lambda via grid search. The
optimal lamda was found to be 0.1. Prediction quality using
the logistic regression classifier for both the data split (LR-
Split), and use-all (LR-Full) methods are shown in Tables 2
and 3.

3.3 Random Forest Classifier
We trained our 4000-tree random forest classifier using 10-
fold cross validation, repeated 10 times. The optimal mtry
hyperparameter for the number of predictors to choose ran-
domly while constructing trees was 2. The number 4000 of
trees was determined empirically.

Figure 1 shows the decrease in GINI accuracy if each of
the predictors were removed from use in the classification.
The chart is sorted such that the highest predictor on the
vertical axis is the most important, as it contributes most
effectively to the decisions. Note that the low position of
no_upvotes_on_i_answer and no_upvotes_on_s_answer is
not entirely reliable. This effect stems from our candidate
posts including both questions and notes. In Piazza, notes
do not have instructors’ nor students’ answer options. Thus
both, upvotes on student and instructor answers were set to
0 for notes, which was the most frequent value for these two
measures in the other posts of our sample.

Notice the high placement of unique views. Views are the
lowest-friction method for students to ‘vote with their eye-
balls’, which then manifests strongly in the classifier.

Performance results for the 4K-tree random forest classifier
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Figure 1: Decrease in GINI accuracy when removing
specific predictors

Table 4: Results for Random Forest 4K

RF4K-Split RF4K-Full

Majority UnanYes Majority UnanYes

Accuracy 0.5 0.63 0.98 0.98
Precision 0.5 0.75 1.0 0.96
Recall 0.25 0.37 0.96 1.0
F1 0.33 0.5 0.98 0.98

are shown in Tables 4 and 5.

3.4 Discussion
We see that predicting unanimous yes leads to more reli-
able classification than predicting simple majority in all but
one case, whether a split-set or full-set approach is used for
training. Only for the random forest technology using the
full data set are accuracies the same for predicting either
outcome.

When comparing accuracies between split and full dataset
approaches both logistic regression and random forest ben-
efit from the full set. With more labeled training data we
would expect this difference to narrow.

Whether predicting unanimous yes or majority, random for-
est reached higher accuracy than logistic regression. It is un-
clear whether the extremely high RF accuracy of 0.98 with
the full set is overfitting in spite of random forests being
known to resist this pitfall. Yet there is little doubt that RF
is superior to LR for this data.

3.5 Deploying FAQtor in a Class Setting
We are exploring alternatives for allowing students to search
and browse our forum archive. One supporting technology
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Table 5: Random forest confusion matrices for
UnanimousYes and Majority ground truth

RF4K-Split Majority RF4K-Full Majority

Exclude Include Exclude Include

Exclude 6 6 29 1
Include 2 2 0 24

RF4K-Split UnanYes RF4K-Full UnanYes

Exclude Include Exclude Include

Exclude 7 5 30 0
Include 1 3 1 23

Figure 2: Example of clickable word cloud with key-
words from the FAQ of a Convolutional Neural Net-
works for Visual Recognition class. Clicking on a
word retrieves related posts from the archive.

towards a browsing interface is topic analysis of MOOC dis-
cussion content [3], which has been explored recently in [4]
and [1].

For our browsing interface we use an adapted version of the
Rapid Automatic Keyword extraction algorithm [8] to iden-
tify ‘important’ keywords in our FAQ. These keywords are
then used to create an interactive word cloud, where clicking
each keyword or topic leads the user to a list of question-
answer pairs from the archive in descending order of rele-
vance.(See Figure 2). We plan to deploy FAQtor in a real
world class, and study usage logs, similar to the approach
in [6]. By allowing students and instructors to vote entries
in and out of the FAQ, we plan to capture patterns, and
continuously improve the FAQ.

An important line of follow-on research needs to be an inves-
tigation into the generalizability of our results to non-science
classes. The success of such transfer learning is not guaran-
teed, but is not out of the question [2].

4. CONCLUSIONS
We demonstrated how machine learning algorithms, in con-
junction with available forum statistics, can reveal which
question-answer pairs and notes are relevant and important
for future offerings of a course.

Unlike much related work around frequently asked question
lists, which assume the pre-existence of a knowledge base,
we have sketched an approach for creating a solid starting
point for such lists.
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APPENDIX
The survey instructions for ground truth collection were:

Please choose ’Yes’ or ’No’ for each of the following questions/notes.

A ’Yes’ indicates that the respective forum item would be relevant

and useful in a FAQ list for the class.

A ’No’ means that the item should not be included in the FAQ

for future offerings of the class.

The entries in the FAQ are taken from previous iterations of the

class. Their intent is to answer student questions instantly, and

reduce TA workload (by answering common student questions)

One sample item from the survey is as follows:

Question: For the definition of Markov Blanket does it refer to

finding the neighbors of A in terms of the factor graph or in terms

of the Bayesian network

Response: The Markov blanket refers to all variables that have

a factor in common with at least one of the variables in A. If two

variables are connected in a Bayesian Network, then they must

share a factor in the corresponding factor graph representation.
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ABSTRACT
It’s been clear for years now that STEM (Science, Technol-
ogy, Engineering, and Mathematics) fields workforce have a
great impact worldwide. Efforts have been made to fill the
gap between offer and demand in STEM positions and to
encourage young students to enroll in STEM college major.
However, enrolling in STEM major requires specific skills in
maths and science that are taught earlier. Thus, interven-
tions needed to be done in middle to high schools. Thanks
to the increasing adoption of educational software, academic
institutions have the possibility to gather fine-grained data
about students usage of the software, and build predicting
models using that data. For instance, researchers used data
from an Intelligent Tutoring System (ITS) to predict stu-
dent’s STEM college enrollment [10]. In this paper we build
a model that predicts if a student will pursue a career in
STEM fields using data gathered from an ITS called AS-
SISTements. We propose a school-based approach where we
aggregate students’ features relatively to their peer school-
mates. We compare this approach to a normal approach
where no data transformation based on school is made. Our
tests show a better AUC for the school-based approach at-
taining 0.601.

Keywords
STEM Career choice, Educational Data Mining, Predictive
Analytics

1. INTRODUCTION
Science, Technology, Engineering, and Mathematics (STEM)
fields are regarded worldwide as the building blocs for a na-
tion’s economy. Yet, STEM fields are facing shortage in
manpower. Due to the importance of the problem, strategic
decisions had to be made in order to find durable solutions.
In fact when we think about filling the gap between the
demand and supply in STEM fields position, it is hard to
forget to mention the process of training such a high skilled
manpower [6]. Several problems arise in college, when en-
rolled students find that they lack the necessary skills in
maths and science and they face troubles when they reach
the high level of mastery in college [4]. That causes a non-
negligible number of students to drop out from the STEM
major enrollment, which makes it more difficult to respond
to the initial objective of filling the STEM fields positions.
Consequently, a deeper analysis is required; one that goes
into the early period in a student’s academic journey, which
is the middle school. It’s in this period of time when stu-
dents start to build their opinion and self-beliefs. It’s also

during that time where they are supposed to acquire the nec-
essary skills that form the building blocks of their academic
and professional life. Being able to detect students who face
some troubles and providing the adequate support might be
a decent solution. Yet, the traditional detectors rely heav-
ily on students’ grades and field observations, which are not
helpful in detecting students that need help in the near term.

However, thanks to the advances in Information Technol-
ogy, powerful educational software were developed and are
rapidly being adopted by various academic institutions. They
give the possibility to record finer-grained data about stu-
dents activity within the software, opening the borders for
more diverse and accurate models. Using data from the AS-
SISTments 1 ITS, researchers have built detectors of student
knowledge, affects and behaviours [1, 2, 12]. Then proceed-
ing by discovery with models, more predictive analysis were
done, to predict the learning outcome, college enrollment
[13] and more specifically STEM majors college enrollment
[10].

In this paper, we aim at a longer term predictions of whether
or not students will pursue a STEM career. We use data
from the ASSISTments ITS. Our approach is to take stu-
dents’ performances and detectors’ values and put them in
context relative to their peer school-mates. We want to in-
vestigate if school-mates’ data can improve model’s predic-
tions. To this end we measure the z-score for each student’s
features relative to his peer school-mates’. We compare it
to the normal approach where data are not transformed
in a school-based way. We also discuss which features of
affects, performance and behaviours are good predictors,
meanwhile, we introduce the usage of genetic programming
in the process of finding the best machine learning pipeline
for each approach.

2. METHODOLOGY
2.1 Data Acquisition
In order to proceed to our research, we used a large amount
of data gathered from the ASSISTments platform. It’s a
web-based Intelligent Tutoring System provided by Worces-
ter Polytechnic Institute free of charge. It targets middle
school mathematics, where teachers can use a predefined
set of content or they can create their own. The system
provides students with the right assistance while assessing
their knowledge. When students use the platform to work

1www.assistments.org
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on problems assigned by their teachers, they receive imme-
diate feedback whether they are correct or not. If they are
right, they can proceed to the next problem, if not, the sys-
tem provides them with scaffolding exercises which are sub-
components of the original problem to help students master
the required skills to solve the problem.

The gathered data consists of actions log files representing
click-stream interactions of students with the ASSISTments
software. We count 942,816 actions stored in the log files
coming from different types of student interactions, such as,
requesting help, answering a question or even revealing a
hint. Each action has a set of recorded information. Those
actions were made by a group of 591 students, from 4 dif-
ferent schools, who used ASSISTments during the period
between 2004-2007.

2.2 Features Exploration
The dataset contains 80 features; some of them were gen-
erated following a discovery with models approach; includ-
ing student knowledge predictions, students behavioural fea-
tures and affects. We also used other features that are di-
rectly related to the students’ interactions with the software
such as: number of problems solved within the system, time
taken to answer a question, number of original and scaffold-
ing problems, correctness in original and scaffolding prob-
lems, correctness in overall, number of hints used as well as
bottom hint usage, and the number of help requests done as
first attempts

2.3 Discovery with models
Several models have already been used to capture some of
students behaviours or to predict their knowledge. In fact,
for many years, predicting students knowledge was an active
field of research [3, 9, 11, 5] that has shown the emergence
of the Bayesian Knowledge Tracing (BKT) [3] as one of the
most used models. Indeed, the BKT is able to estimate the
student latent knowledge of a specific skill given previous
observable performances.

Along with predicting the student’s knowledge, different mod-
els were developed in order to estimate students’ affects and
disengaged behaviours. Researches such as [8] have pro-
duced 4 affective states detectors: Boredom, Engaged Con-
centration, Confusion, and Frustration. The disengaged be-
haviours appear in form of off-task attitude, gaming the sys-
tem and carelessness.

2.4 Features Transformation and Selection
To make predictions related to the students’ enrollment in
a STEM career, we need to change the granularity of our
data from the interaction level to the student level. Thus,
we took the average of the selected features across all actions
for each student. Picking the right features was done using
the univariate feature selection, only keeping features that
have strong relationship with the predicted variable (STEM
job). Results of the selection process are shown in Table 1

After running the test we observed that only some features
have a strong relationship with the predicted variable. In
fact, correctness is a strong predictor not only in this study
but also in previous studies interested in college enrolment

Table 1: Univariate Features Selection
STEM
Career

Mean Std F-Value

Avg Bored
0 0.252 0.033 2.90e-05

p=0.991 0.252 0.031

Avg Bottom hint
0 0.046 0.035 10.811

p<0.011 0.034 0.029

Avg Carelessness
0 0.12 0.065 18.207

p<0.0011 0.15 0.078

Avg Confused
0 0.106 0.038 0.013

p=0.9101 0.105 0.035
Avg Correct
Original

0 0.43 0.156 11.458
p<0.0011 0.485 0.176

Avg Correct
Scaffold

0 0.584 0.106 4.494
p<0.051 0.606 0.101

Avg Correct
0 0.417 0.152 16.516

p<0.0011 0.471 0.144
Avg Engaged
Concentration

0 0.647 0.03 1.209
p=0.2711 0.650 0.026

Avg Frustration
0 0.127 0.047 1.834

p=0.1761 0.121 0.052

Avg FirstHelpRequest
0 0.285 0.066 1.126

p=0.2881 0.292 0.071

Avg Gaming
0 0.113 0.124 4.115

p<0.051 0.088 0.105

Avg Hint
0 0.266 0.141 14.108

p<0.0011 0.214 0.124

Avg Knowledge
0 0.224 0.135 16.881

p<0.0011 0.283 0.162

Avg Off-Task
0 0.216 0.082 0.069

p=0.7921 0.219 0.074

Avg Original
0 0.298 0.125 8.904

p<0.011 0.337 0.139

Avg Scaffold
0 0.418 0.114 0.573

p=0.4491 0.426 0.118

Avg Time Original
0 64.38 34.18 0.946

p=0.3311 67.82 38.16

Avg Time Scaffold
0 32.51 17.16 0.416

p=0.5181 33.64 17.99

Avg Time Taken
0 40.84 21.09 2.445

p=0.1181 44.25 23.51

Nb Problems
0 236.3 139.5 1.754

p=0.1851 255.1 143.9

[13, 10]. This is more emphasised when we look at the cor-
rectness in original problems, the difference in its mean value
is higher compared to the difference of the mean value in
correctness of scaffolding problems. It’s due to the fact that
scaffolding questions aim to help the students acquire the
skill and help him solve the original problem. In a way,
having higher correctness in original problems gives us more
insight about the the student’s skills. Another strong pre-
dictor is the average number of original problems, since it is
the proportion of original problems over the total number of
problems done by the student. Higher proportion of origi-
nal problems translates to less ”learning phase” through the
scaffolding questions.

One of the interesting features is the hint functionality us-
age. Hints give the student some advices on how to solve a
problem while explaining the skill. That’s why students with
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high hint requests are more likely to pursue a non-STEM ca-
reer. Furthermore, bottom hints explain the problem from
it’s basic notions. They are the lowest level of help, and
that’s why they are used less often but the difference be-
tween the two groups of students is still significant. Exten-
sive hints usage has been reported as a detector for gaming
the system behaviour [1], which is another strong predic-
tor for students’ enrollment in STEM career. Students who
loose interests in STEM have higher mean values in gamin
the system.

Additional features that can be good predictors are careless-
ness and knowledge estimation. Similarly to STEM major
predictions [10], carelessness of students seems to increase
when they are going to continue in a STEM career which is
a non-intuitive finding shared by the two researches. Finally
the average knowledge of a student is an estimation of his
skills.

2.5 Approaches
Once the useful features are selected, we transformed the
dataset to prepare for the first approach which considers
the effect of the school on the student’s career outcome. If
we put the students’ performance in the context of their
surrounding, which, in this case, is the school, we might
grasp some important information about the students’ per-
formances. So, the first approach, called school-based ap-
proach, is to separate students by their schools, then mea-
suring the z-score of all students’ features by school. This
gives us a set of transformed data describing students rel-
ative to their peer school-mates. That was straightforward
because all the students in the dataset had not changed their
school while using ASSISTments. On the other hand, the
normal approach is to simply use these features without dis-
tinguishing their school.

2.6 Optimization and genetic programming
Since we compare two different approaches independently,
we want to find the most adequate machine learning method
with its best hyper-parameters for each approach. We use
genetic programming to find the best machine learning ”pipeline”
which is a combination of stacked machine learning tech-
niques and their respective hyper-parameters. In fact, we
do not compare two machine learning methods but rather
try to give each approach its best shot.

Briefly, genetic programming is a technique derived from
genetic algorithms in which instructions are encoded into a
population of genes. The goal is to evolve this population
using genetic algorithms operators to constantly update the
population until a predefined condition is met. The most
common ways of updating the population is to use two fa-
mous genetic operators called crossover and mutation.The
population is evolving from one generation to another while
keeping the fittest individuals in regard to one or many
objectives. When using genetic programming for machine
learning optimization, we use the pipeline score as the ob-
jective function. For example the pipeline accuracy score
ca be considered as an objective function which has to be
maximized.

In our case, we used genetic programming by searching through
a multitude of machine learning techniques and their respec-

tive hyper-parameters, to find out which combination gives
the best results. To achieve our goals we used the python
library TPOT [7]. However, there are several genetic pro-
gramming hyper-parameters that we need to initialize.

Table 2: Genetic Programming Hyper-parameters

Generations
Population

size
Offspring

size
Scoring

200 150 100 ROC AUC
Mutation

rate
Crossover

rate
Internal Cross

Validation
0.8 0.2 5 folds

Table 2 explores the principal hyper-parameters that we
have to initialize. The Generations count is the number of
iteration of the whole optimization process. The Population
size is the number of individuals which will evolve in each it-
eration. The Offspring size is the number of individual that
is supposed to be generated from the previous population
using the genetic algorithms’ operators. After executing the
operators and generating the offspring, individuals from the
population and the offspring will compete to survive and be
part of the next population (iteration i+1). Therefore we
only keep the fittest ones, meaning the individuals with the
best score. The method used to measure the score is the
Area Under the Receiver Operating Characteristic Curve
(ROC AUC). That means we only keep individuals (repre-
senting pipelines) which have the top values of ROC AUC.
Mutation and Crossover rates are the probabilities of having
respectively a Mutation or a Crossover operation to evolve
one or more individuals. We set them to be 80% chance of
having a mutation against 20% of having a crossover oper-
ation, which are common values. Finally, we proceed to an
internal cross-validate for our pipelines, therefore we set the
number of folds to 5.

We separately ran the optimization process for each ap-
proach and we ended up with two different machine learning
techniques in two different pipelines. For the school-based
approach we use a Gaussian Naive Bayes and for the nor-
mal approach we found that a Random Forest Classifier was
the most efficient. Before running the optimization phase
we did split the data into 2/3 for training (almost 400 stu-
dents) and 1/3 for validation (almost 200 students) that we
hold for the final validation at the end of the process. This
split was stratified using the label (STEM Career) and the
school, in order to respect the proportions of school diversity
and STEM career outcome.

As shown in Table 3, the approach in which we z-scored the
students features within their respective school gave us sta-
tistically significant better result than the normal approach
with an AUC of 0.604 while the result of the normal ap-
proach is about 0.494. But in the case of RMSE, the nor-
mal approach had a better score of 0.425 compared to 0.476
achieved by the school-based approach.

Table 3: Validation score of both pipelines
School-based Normal approach

ROC AUC 0.604 0.494
RMSE 0.476 0.425
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Once we know which methods and parameters to use, we
proceed to training the cross-validated models using the
whole dataset. But now, compared to the optimization
phase where we had an internal 5-folds CV, we conducted
a 10-fold stratified cross-validation training. And as previ-
ously, the folds were stratified in respect to the label (STEM
Career) and the school id.

Table 4 shows the mean of the cross-validated values for
both models. This time the school-aggregated model suf-
fered an increase of RMSE which overpass 0.54 compared to
its counter part. On the other hand the normal approach
attained 0.521 in ROC AUC score but still lower than the
score of the school model (0.601).

Table 4: Cross-validated scores for both approaches
School-based Normal approach

ROC AUC 0.601 0.521
RMSE 0.546 0.45

Even if the difference between the two approaches is statis-
tically significant (p<0.01), the school-based approach has
better AUC while the normal approach has lower RMSE,
thus we cannot clearly confirm that the school-based ap-
proach has radically better results. The gain in terms of
AUC is significant but it suffers from a relatively high RMSE.

3. DISCUSSION AND CONCLUSION
In this paper, we aimed at a longer term predictions of
whether or not students will pursue a STEM career. Our
approach was to take students performances and detectors
values and put them in context relative to their peer school-
mates. We wanted to investigate if taking into account the
local peer performances can improve model’s predictions.
Aggregating within the school gave us better ROC AUC
scores but suffered from high RMSE suggesting that the im-
provement are not so big between both approaches. Perhaps,
thinking about how well a student performs compared to his
peers in the same school may not have a huge impact. But
if we push the analysis further to aggregate student per-
formances within his own classroom or to his teacher’s stu-
dents we can grasp some valuable informations of whether a
teacher had an influence in the student’s passion for STEM.
Since it’s the professor who is in contact with the students,
it would be interesting to compare student’s performances
within a finer-grained entity which is the classroom.
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ABSTRACT

In this study, we investigated the effect of gamification on college 
students’ engagement in an English reading-ability assessment 
system. Two versions of the assessment system were developed 
for the study: one version with gamification elements such as 
levels, a progress bar, and scores and the other version of the 
same mechanism but missing those gaming elements in the 
interface. A group of Chinese college students (N=342) were 
randomly assigned to use one of the systems during one semester 
(8 weeks). Preliminary results indicated that students using the 
gamification version stayed longer in the system during each 
session and spent more time in the system in total. In addition, the 
gamification effect was equally motivational for both male and 
female students. 

Keywords
Gamification, Student Engagement, English online assessment, 
Gender 

1. INTRODUCTION
Gamification is the use of game elements in a non-gaming context 
to improve user experience and motivation [5]. In a gaming 
environment, effectively designed gamification elements can 
create a sense of flow [4], resulting in improved concentration, 
joy, and involvement [10]. Results from many gamification 
studies suggest the positive influence gaming has on students 
motivation and performance [1–3, 6, 8].  

However, the results of the effect of gamification are mixed in 
terms of gender and duration. Existing literature is far from 
reaching consensus on the role of gender in a gaming 
environment. For example, De Jean, Upitis, Koch, and Young [9] 
found that gender played a key role in learning outcomes and 
attitude in a gamified learning environment. However, another 
line of studies found that gamification had equal motivation on 
high school male and female students in a computer science 
course [14], and there was no gender effect on fifth grades math 

performance and attitude [12]. A recent literature review by Ke 
[11] summarized that gender may only influence game-play and
learning processes rather than learning outcomes. Besides gender
effect, little research has been done to investigate the long-term
effect of gamification on students’ behaviors and motivation. One
previous research study argued that the increased engagement and
interest brought by a gamified system may decay over time
because this positive effect is due to a novelty effect [13].
Therefore, more research on the long-term effect of gamification
and gender difference is needed.

This study investigated the use of a gamified formative assessment 
system with college-level Chinese English language learners. The 
study examined the effect of gamification on students’ 
engagement across a semester and whether this effect is 
moderated by gender differences. The study results provide more 
evidence on the effect of gamification on students’ engagement.  

2. METHOD
2.1 Participants and Settings
Participants were recruited from a four-year, second-tier regional 
college in Sichuan Province, southwest China. The college enrolls 
approximately 12,000 undergraduate students. All freshmen and 
sophomores are required to take a 90-minute English language 
class weekly each semester. Students from 14 classes taught by 
four English teachers (N=342) were recruited for this study.  

2.2 Materials 
The materials used in this study included two versions of the 
Maze tests generated by Avenue: PM, a web-based assessment 
system. A full description of the software (including the 
management system, different assessments and scoring rules) is 
presented elsewhere [7].  

The Maze test used in the study is a cloze reading formative 
assessment. It involves presenting students with reading passages 
in which every seventh word is replaced with blanks. Students are 
given 60 seconds to complete each test. Two versions of the Maze 
were developed for this study. Both present students with Maze 
tests, but they differ in the presence or absence of gaming 
elements designed to enhance student motivation and two 
different interfaces. engagement. Figure 1 and Figure 2 
demonstrate the screenshots of the two systems.  
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Figure 1. Screenshot for Maze test with game features. 

 

 
Figure 2. Screenshot for Maze test with no game features. 
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2.2.1 Version 1: With gaming features  
 The gamified version of the Maze tests includes three elements to 
enhance students’ motivation. The first element is a progress bar 
indicating the steps that must be completed to move up (or down) 
a level. The second element is the presence of visually appealing 
images of animal characters that represent the levels. Low levels 
use characters that are lower on the food chain (i.e., a jellyfish) 
and high levels use more advanced animals (i.e., an elephant). The 
third element is the display of goals to pass each level. The fourth 
element is the indication of progress towards a goal by comparing 
of user scores and test passing scores. Upon completing an 
assessment, students receive their score and information about 
whether they passed the current passage or not.  

2.2.2  Version 2: Without gaming features  
A version of the Maze was developed without the gaming features 
described above. Students do not know their current levels, their 
progress within a level, or their scores for each passage. Despite 
the interface differences between the two versions, the progress 
mechanism still operates. Thus, students are unaware of their 
progress although they may move forward or backward to 
different levels.  

2.3 Procedure 
Students were randomly assigned to one of the two groups, using 
Maze with or without gamifications. Students were told to 
complete tests using the software for around 10 minutes every 
week; however, they were free to leave the system anytime they 
wanted. Students’ performances were captured and archived in a 
database for evaluation. Students received extra credit for 
participating the study. 

2.4 Hypotheses and Data Analysis 
The hypotheses of this study were: 

Hypothesis 1: Students using a game-featured system will spend 
significantly more time overall in the system than the students 
who are using a non-game featured system.  
Hypothesis 2: Students using a game-featured system will have 
significantly longer average time on system than the students who 
are using a non-game featured system.  
Students’ engagement was measured by the total and average time 
on system. Since the students were free to use and leave the 
system at any time, a longer time would indicate a higher level of 
engagement. 

3. RESULTS 
Table 1 demonstrates students’ demographic information. 250 of 
the 342 students were female. Around 30% of students were male 
in both the control and the treatment group, which is consistent 
with the gender ratio across the college population.  

Table 1. Students’ grouping information 

3.1  Comparing the Total Time Spent 
A two-sample t-test was used to examine this hypothesis. Table 2 
demonstrates the descriptive data for total time of the two groups.  

 Table 2. Students’ total time spend (in minutes) 

 
Q-Q plot revealed that the total time was not normally distributed 
therefore a log transformation was performed on the total time 
before conducting the two-sample t-tests. After log 
transformation, the normality and homogeneity of variance 
assessed by Levene’s Test were achieved. It found that students in 
the treatment group (using gamified version) spent significantly 
more time in the system during the study process than the students 
in the control group (using non-gamified version) (t = 2.02, p = 
.044).  
In addition, gender was taken into consideration to exam whether 
gamification had an equal effect on the total time between 
different genders. Two-way ANOVA on gender and gamification 
showed that there was a main effect of gamification, F(1, 338) = 
4.27, p = .0396, and a main effect of gender, F(1, 338) = 13.8, p = 
.0002. Female students spent 16.4 more minutes in total than male 
students. However, there was no interaction between gender and 
gamification, F(1, 338) = 0.65, p = .42, which indicate that the 
game features were equally effective for male and female students.  

3.2 Comparing Average Time on System 
Table 3 reports the descriptive data for the students’ average time 
on system per visit, broken down by gamification and gender. 
Students using the gamification system spent 2.41 more minutes 
on average than students in the non-gamification group.  
Log transformation was used before conducting the two-sample t-
test to achieve the normality and equal variances. A t-test (t = 
3.20, p = .002) showed that students spent significantly longer in 
the gaming system than students using the non-gaming system.  
In addition, gender was taken into consideration to examine the 
effect of gamification on students’ average session. Two-way 
ANOVA on gender and gamification indicated that there was a 
main effect of gamification, F(1, 338) = 9.93, p = .0018, and 
gender, F(1,338) = 5.30, p = .0219. Female students spent 1.34 
more minutes for each session than male students. However, there 
was no interaction between gender and gamification, F(1, 338) = 
.69, p = .408, which indicates that the game features were equally 
effective for both male and female students.  
Table 3. Descriptive information of average time on system (in 

minutes) by treatment groups and gender 

 Without gamifications  With gamifications 

 N Mean SD  N Mean SD 

Male 50 8.39 4.93  42 10.59 7.31 

Female 125 9.53 4.07  125 11.95 8.14 

Total 175 9.20 4.35  167 11.61 7.94 

 
N Mean SD 

without gamification 175 43.64 34.80 

with gamification 167 50.95 36.72 

total 342 47.21 35.88 

 
  

without 
gamification   

with 
gamification 

    N percent   N percent 

gender male 50 28.6% 
 

42 25.1% 

 
female 125 71.4% 

 
125 74.9% 

total   175 51.2%   167 48.8% 
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4.  CONCLUSION 
The purpose of this study was to investigate the effect of 
gamification (mainly on the progressive level and points) on 
college students’ engagement while using an assessment system.  

A preliminary finding of the study is that the gamification 
significantly improved college students’ engagement in using an 
online assessment system. According to the results, students using 
the gamified system spent significantly more time in total and 
stayed longer for each session.1 The results also demonstrated that 
gamification is effective for both male and female students, even 
though female students are significantly more engaged in using 
the system than male students in both conditions.  

The current study has three particular strengths. First, 
gamification was not compared to a traditional paper-based 
assessment or a different computer-based assessment, but to an 
identical system except for a few gaming features in the interface. 
Therefore, the study provides convincing evidence for the studied 
game features (levels, progress bar, and scores on students’ 
engagement. Secondly, recall that the participants were not kids, 
but college students who are less easily motivated by games. 
Arguably, the effect of the same gamified system on children or 
adolescents might be significantly larger than the effect we found 
in this study. The third strength is that we use engagement 
indicators derived from students’ recorded behaviors in the 
system, which is more accurate and objective than subjective 
surveys. In addition, the engagement indicator can capture 
subconscious behaviors that are not even realized by the students. 

The next step of data analysis would go further to understand the 
long-term effect of gamification on students. After looking at the 
total and average time on the system, we will investigate how the 
session length change over time (e.g. from week 1 to week 8). We 
would also investigate when students quit the system for each 
session. For example, did the students quit when they passed or 
failed a passage, or when they went up or went down a level? 
These would help us understand which gamification elements are 
more useful when motivating students.  
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1 One alternative explanation for the longer time on system for the 
treatment group is that the UI of gamified system is significantly 
more complex than that in the non-gamified system. Therefore, 
students spent extra time to process the meaning of the features 
in the gamified system. We believe this does not explain the 
result for two reasons. First, before the start of the experiment, 
each student was given a user handbook corresponding to their 
system version. They were also given a practice test to 
familiarize themselves with the interface. Second, the 
gamification features are very straightforward, and the 
participants in this study are college students who should have 
the mental capacity to comprehend the gamification features 
reasonably fast. Thereby, we don’t believe the time difference is 
a result of extra exploring time in the gamified system. 
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1. INTRODUCTION 
The demands made on universities in Germany have significantly 
changed in recent decades, transforming them into service 
providers. The student, who is the main customer of a university, 
has an enormous variety of “product” choices. These products 
include all different kinds of degree programs, from full-time to 
part-time programs, international study offers and online courses. 
In addition, the student can choose from various kinds of Higher 
Education Institutions (HEI) – e.g., universities, business schools 
and digital universities – and from HEI institutions all around the 
world. Therefore, universities need to develop their professional 
management and constantly increase their reputation to ensure 
long-term success and existence. 

A major challenge for universities that significantly impacts their 
success and reputation is the overbooking or underbooking of study 
programs. Overbooking is a phenomenon that happens when more 
units from a limited capacity are sold than are actually available [1]. 
In the airline and hotel industry, this is happening to avoid revenue 
loss from no-show customers [2, 3]. Without overbooking, every 
cancellation would lead to an empty room or seat and consequently 
to a loss in income [1, 4]. However, if every booking does appear, 
there might not be enough available spaces for each customer, 
meaning the hotel or airline face additional costs, as they must 
provide customers with lucrative alternatives to give-up their 
booking. Otherwise, customer dissatisfaction is high, which would 
most likely result in bad reviews and a low degree of esteem. 

Universities face the same problem. In Germany, potential students 
have an enormous choice of universities and study programs. In 
general, they apply for more than one program and to several 
different universities. As a result, only a relatively small number of 
people applying to a degree program are actually willing to start the 
program once accepted. As universities in Germany get a portion 
of their government funding for their first semester student 
numbers, the capacity utilization is very important. In addition, 
existing resources – human resources, assets, equipment – are not 
exploited to their full potential; however, they still must be 
available and subsidized. Therefore, universities regularly 
overbook their available study spaces and hope that in the end 
exactly the right number of applicants will matriculate.  

Conversely, if course capacities are overbooked, the available 
resources are overloaded. The lecture theaters are overcrowded, 
lecturers are overworked, and supplementary services are working 
to their limits. This situation is visible to all, staff members, 
students and external stakeholders, and will most likely lead to 
dissatisfaction on all sides. 

The decision on the exact number of applicants invited to the 
program is, in practice, widely based on the experience of the 
professionals in the admissions department; it is accordingly often 
instinctive and based on the experiences of previous semesters. 

Further information is necessary to assure an accurate estimation of 
no-show applicants. Consequently, universities should use all the 
resources available to support the concerning decision-making 
process. During the application process, each university collects 
data about the applicants and potential students. We assume that the 
collected data contains supporting information. With Data Mining 
techniques, universities have the opportunity to extract information 
from existing data resources and forecast the no-show of applicants, 
which can objectively support the relevant decision-making 
process and positively influence the long-term success and 
existence of a university. 

This research presents a first attempt at calculating a prediction 
model that can help to forecast the no-show of students. Therefore, 
we analyzed data from the application period for the winter 
semester of 2017/18 for a small German university, using decision 
tree modelling, rule induction and logistic regression analysis.  

2. ANALYSIS 
2.1 Approach 
For analysis purposes, we extracted applicant data from the 
application period for the winter semester 2017/18. The dataset 
contains data of six different bachelor study programs, namely 
business administration, business administration in health, 
information management, information management automotive, 
industrial engineering and industrial engineering in logistics. In 
total, the dataset is comprised of 25 attributes and 1,830 examples. 
The attributes that are considered interesting for analysis purposes 
are presented in Table 1. The final admission status (AS) was 
extracted from the system around six weeks before the official 
beginning of the winter semester. The final matriculation status 
(Status), which is the target variable for the predictive analysis, was 
extracted four weeks after the official beginning of the semester. 

2.2 Descriptive Analysis 
In Figure 1, the deviation of the applicants across the study 
programs is illustrated. The majority of applicants applied for the 
business administration program (29.8%) and the study program 
with the least number of applicants is industrial engineering 
logistics (9.8%). In terms of Priority, 86% of students chose the 
first-preference subject and 11.2% their second-preference subject. 
Only 2.8% had made an application to a program which did not 
appear in their first two preferences.   

The average applicant at our case university is 21 years old, and we 
have in total 909 male and 921 female applicants. From these 
applicants, 243 females and 206 males enrolled to one of the 
programs as students at the beginning of the semester. There are in 
total 449 students, 24% of the whole dataset. Accordingly, 76% of 
the students that did apply for one of the study programs until 6 
weeks before the start of semester did not matriculate at the 
university.  
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In terms of study experience, 76.6% of the applicants had not 
previously studied at university and 23.4% have previous study 
experience. The students with study experience had, on average, 
studied for three semesters at this or another university.  

The attributes that give some information about the history of the 
applicants is HEEQ kind and HEEQ grade. Figure 2 illustrates the 
student deviation according to their HEEQ and their gender, and 

Table 2 illustrates the HEEQ grades of the applicants in 
correspondence to the main HEEQ kinds. The HEEQ certificate can 
be achieved in several ways. Classically, students attend the 
Gymnasium and graduate after successfully finishing the 12th or 
13th grade. This certificate qualifies the students to study at the HEI 
of their choice. If students do not attend Gymnasium, they can 
obtain their qualification for higher education through continuous 
education. The most common forms are the Fachoberschule, the 
Berufsoberschule or a Kolleg [6]. In the Fachoberschule, students 
gain a topic-related HEEQ. The Berufsoberschule is for students 
with a finished apprenticeship that want to qualify for higher 
studies, and the Kolleg can either offer a way to make the HEEQ in 
the evening, full-time or topic related. 

 
The main body of HEEQ of our applicants attended the 
Gymnasium. Furthermore, we see that a notable number of male 
applicants attended the Berufsoberschule or the Kolleg. 
Accordingly, our male applicants often have practical experience 
and a finished apprenticeship, whilst female applicants are more 
likely to directly apply to university after finishing school. 

 

Table 2. HEEQ grades in correspondence to the main HEEQ 
kinds. 

 Abend-
gymnasium 

Fachober-
schule 

Gymnasium Berufs-
obersch. 

Other 

< 1.9 25 21 127 12 11 
2.0 8 5 38 7 11 
2.1 9 8 59 6 8 
2.2 5 6 51 10 11 
2.3 10 17 62 13 7 
2.4 1 6 97 5 3 
2.5 11 27 117 1 6 
2.6 7 29 90 9 7 
2.7 12 16 81 15 18 
2.8 13 29 65 3 12 
2.9 7 22 69 9 0 
3.0 21 33 54 5 8 
> 3.0 25 114 182 28 26 
Total 154 333 1092 123 128 

30%

18%
17%

15%

10%

10%
Business administration

Industrial engineering

Business administration in health

Information management

Information management
automotive

Industrial engineering logistics

0 200 400 600 800 1000 1200

Abendg./Kolleg

Berufsob.

Fachob.

Gymnasium

Other

Total Female Male

Attribute Description 

ID The individual student ID identifies each 
example and ensures the anonymity of the 
applicants in the dataset. 

Date of Birth The exact date of birth of the applicant, which is 
used to calculate the age. 

Place of Birth The birthplace of the applicant. 

Age The age of the applicant at the time of the 
application. 

Gender The gender of the applicant that is either f = 
female or m = male. 

Matriculation 
(Status) 

An attribute that indicates if the applicant 
enrolled at the beginning of the semester (true) 
or if she/he did not enroll (false).  

Place Name of the place, where the applicant resides at 
the time of application. 

Postcode (PC) The postcode of the place of residence. 

Nationality (Nat) The nationality of the applicant. 

GerNat This attribute tells us if an applicant is of German 
nationality (Yes) or is not (No). 

HEEQ type The kind of Higher Education Entrance 
Qualification (HEEQ) that the student obtained 
to qualify for study. An overview of the various 
kinds can be found at Hochschulstart [5].  

HEEQ grade The grade of the HEEQ certificate. In Germany 
this can be 1= excellent, 2 = Good, 3 = 
satisfactory, 4 = sufficient and all the decimals 
numbers in between. 

First Semester 
(FS) 

This attribute describes if a student starts her/his 
first semester at university (Yes) or if she/he 
studied before in another program or university. 
This attribute is important, as German 
universities get funding for the students which 
start their first university semester (FS) in one of 
their programs. 

Number of 
previous 
semesters (PS) 

If the applicant already has FS, this attribute 
shows the number of semesters she/he has 
already studied at this or another university. 

Admission Status 
(AS) 

During the application process, each applicant 
passes through various stages, which are 
indicated with the admission status. The status 
can either be admitted, received university place 
offer, place rejected (by the applicant) or place 
accepted. The status admitted means that the 
student fulfills the necessary requirements to be 
admitted to the program. This is proven by 
documents which must be provided and sent by 
the student. Afterwards, the student receives a 
study place offer, which he/she can either accept 
or reject. 

Priority This attribute indicated the priority of a student 
for a specific study program. It can be between 1 
and 6, with 1 indicating the highest priority.  

Table 1. Attributes in the dataset. 

Figure 1. Deviation of the applicants in the data dataset. 

Figure 2. Deviation of applicants according to HEEQ kind. 
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2.3 Data Mining Analysis 
2.3.1 Data Preparation 
The goal attribute of our analysis is the Status attribute, which tells 
us if an applicant actually matriculated (true) and started as a 
student in the study program. Of our remaining dataset, only 357 
cases have in fact started as students at the university and the 
remaining 976 cases did not matriculate. Therefore, our dataset is 
slightly skewed. Skewed data can be addressed in various ways. 
We chose to balance our dataset at this stage of the analysis through 
only considering 400 of the applicants’ cases who did not start at 
the university (Status = false). Hence, a final number of 757 
examples – 400 students that did not enroll and 357 students that 
did enroll – remained for the following analysis.  

2.3.2 Decision tree 
First, the data has been analyzed with a decision tree modeler. 
Several decision tree algorithms are available in RapidMiner. The 
standard decision tree operator is a combination of various 
algorithms and is able to consider all data types for analysis [6]. It 
is robust to missing values and has a number of pruning options 
which are easy to adjust by the analyzer. The generation of the tree 
is based on the concept of information entropy that splits the dataset 
according to a measure of the maximized information gain and the 
reduction in entropy [7]. The information gain obtained towards the 
label attribute by splitting the data at a specific attribute B can be 
described as:  

ሻܤሺ݊݅ܽܩ ൌ ሻܧሺ݋݂݊ܫ െ	݋݂݊ܫ஻ሺܧሻ 

where Info(E) is the original information requirement and 
  is the new information requirement after partitioning the	ሻܧ஻ሺ݋݂݊ܫ
dataset on a specific attribute B[7].  

Several decision trees have been calculated, adjusting the pruning 
parameters and comparing the performance measure predictive 
accuracy. The pruning parameters of the final decision tree are 
described in Table 3, and the tree itself is described in Figure 3. The 
generated tree shows a good overall accuracy (Table 4), meaning 
that the model predicted the correct matriculation status (Status) in 
88% of the cases. The class recall for both target classes – true 
(student matriculates) and false (potential student does not 
matriculate) – is of high value too and the same can be said for the 
class precision. If we focus on the target class true, then we can see 
that our model is able to identify 85% of the potential students who 
will matriculate at the beginning of the semester. 

For the applicants that did not enroll at the beginning of the 
semester, this value is even higher, and in 90.5% of the cases, the 
decision tree was able to predict the student no-show. 

The applicants who had accepted the study place offer by the six-
week date before the official beginning of the semester are more 

likely to matriculate to the study program of their choice, if they do 
not have previous study experience and are between 17 and 19 
years of age. Furthermore, students that are between 20 and 22 
years of age, with a very good HEEQ grade (equal to or above 
1.85), and no previous study experience are also likely to attend the 
program. According to the model this is also true for applicants 
with no previous study experience, an age between 20 and 22, and 
a HEEQ grade below 3, as well as for female students between the 
age of 20 and 22, with a HEEQ grade higher than 2.85, and no 
previous study experience. 

Applicants that are, six weeks before the official start of the 
semester, still not advanced in the application process and have 
only been admitted by this time, are most probably not attending 
the program. Furthermore, applicants that accepted the study place 
offer and have had previous study experience have, according to 
the model, a high probability of not actually starting the studies at 
the official beginning of the semester.  

Table 4. Confusion matrix for the final decision tree model. 

2.3.3 Rule Induction 
With the rule induction Data Mining process IF-THEN rules are 
deducted from a dataset [8]. The RapidMiner rule induction 
approach works with the Repeated Incremental Pruning to Produce 
Error Reduction (RIPPER) by Cohen [9]. The algorithm builds 
rules one by one and focuses on one class label first, before moving 
on to the next class, which in our example is Status (true) or Status 
(false). The rules ݎ௜ are built by adding conjunctions one by one to 
an empty rule set with the aim of increasing the overall rule 
accuracy [8].  

For our analysis, we split the dataset into a training set (80% of the 
dataset) and a testing set (20%). Afterwards, we analyzed the 
dataset several times, including and excluding attributes. The 
results have been compared according to the performance accuracy 
of the rules, which are presented in Table 5.  

In Scenario 1, we included all the criteria of Table 1, before we 
iteratively removed attributes to improve the performance. In 
Scenario 2, we removed all the attributes from the analysis that 
were additionally represented through other attributes. These 
attributes are Date of Birth (Age), Postcode (Place of Residence), 

Parameter Setting Description 

Confidence 0.25 This is the confidence level used for 
pessimistic error calculation. 

Minimal 
gain 

0.02 The tree nodes are split only if they are 
greater than the pre-defined minimum 
gain. The higher the min. gain, the viewer 
splits will be in the decision tree. 

Minimal 
leave size 

10 The minimum number of data objects that 
form a leave node. 

Minimal 
size of split 

20 The minimum number of examples that 
need to be in a tree node for it to be split 
on. 

Accuracy: 88.08 +/- 5%  

 True false True true Class precision 

Pred. false 362 55 86.81%  

Pred. true 38 325 89.53% 

Class recall 90.50% 85.53%  

AS = Received place offer {false=138, true=31} 
AS = place accepted 
|   FS = false 
|   |   Age = 17-19: true {false=8, true=148} 
|   |   Age = 20-22 
|   |   |   HEEQ grade > 1.850 
|   |   |   |   HEEQ grade > 3: true {false=4, true=46} 
|   |   |   |   HEEQ grade ≤ 3 
|   |   |   |   |   Gender = M: true {false=3, true=33} 
|   |   |   |   |   Gender = W 
|   |   |   |   |   |   HEEQ grade > 2.85: false {false=6,  
    true=6} 
|   |   |   |   |   |   HEEQ grade ≤ 2.85: true {false=9,  
    true=38} 
|   |   |   HEEQ grade ≤ 1.85: true {false=0, true=11} 
|   |   Age = 23-25: true {false=6, true=33} 
|   |   Age = 26 and older: true {false=0, true=10} 
|   FS = true 
|   |   HEEQ grade > 2.95: false {false=20, true=0} 
|   |   HEEQ grade ≤ 2.95 
|   |   |   Gender = M: false {false=13, true=4} 
|   |   |   Gender = W: true {false=5, true=6} 
AS = place rejected: false {false=72, true=8} 
AS = admitted: false {false=116, true=6} 

Figure 3. Description of final decision tree model. 

Table 3. Final pruning parameter for decision tree model. 
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Nationality (NatGer) and Number of Previous Semesters (First 
Semester). In Scenario 3, the Place of Birth attribute was removed 
from the analysis as well, because the descriptive analysis indicated 
that the main body of our applicants had been born in the region. 
Accordingly, we assume that this attribute does not contribute to 
classifying the dataset. The same is applicable for the attribute 
Place, which has additionally been removed in Scenario 4.  

The results indicate that Scenario 4 is the best possible solution for 
the rules in our dataset, with an overall model accuracy of 79.49%. 
As this is significantly lower than the performance of the decision 
tree, the rule induction results are not considered for interpretation 
at this stage of the analysis. 

Table 5. Performance measures of the rule induction 
scenarios. 

2.3.4 Binominal logistic regression 
Another suitable approach to model if an applicant enrolls at the 
beginning of the semester is the binominal logistic regression, 
because our target attribute is binominal. The logistic regression 
model calculates the probability of an event happening, which in 
our case is either Status (true) or Status (false). Conforming to the 
above analysis approaches, we calculate several logistic regression 
models. The different models present the above described scenarios 
1 to 4 and are again compared through the overall model accuracy 
(see Table 6).  

Table 5. Performance comparison of the logistic regression 
models. 

Scenario  Model Accuracy 

Scenario 1 77.82% 

Scenario 2 65.26% 

Scenario 3 64.62%,  

Scenario 4 87.69% 

The best solution has been achieved with the settings of scenario 4, 
which only including Age, Gender, Status, GerNat, HEEQ type, 
HEEQ grade, FS, AS and Priority in the analysis, with an overall 
model accuracy of 87.69%. 

The coefficients of the regression model indicate whether an 
attribute has a positive or a negative influence on the probability of 
a student matriculating. The model only shows a limited number of 
significant attributes (p-value < 0.05), which is also represented in 
a relatively low determination coefficient (R² = 0.618). 
Nevertheless, the results indicate that if the student has previous 
study experience (FS=true) and the AS is either admitted or rejected 
study place offer, the probability decreases that she/he will 
matriculate at the beginning of the semester (see Table 7). 
Furthermore, the AS status of accept study place as well as a HEEQ 
grade of 2 or 2.1 positively influence the probability of a student 
starting the study program.  

Table 7. Significant attributes in the logistic regression model. 

Attribute Coefficient p-value 

AS = accepted place offer 3.55 0.000 

AS = admitted -1.51 0.002 

Age = 26 or older 1.83 0.007 

HEEQ grade = 2.2 2.02 0.014 

AS = rejected place offer -1.1 0.017 

HEEQ grade = 2.1 1.44 0.048 

3. RESULTS AND NEXT STEPS 
This first attempt to get more insight into the challenge of 
overbooking study programs at German universities by using the 
available applicant data resources shows promising results. The 
decision tree model and the logistics regression model are both able 
to predict the no-show of students with an accuracy of 
approximately 90%. Therefore, the university admissions 
departments can use the information provided by these models to 
plan further courses of action and ensure that the study spaces are 
used to full capacity at the beginning of the semester.  

For example, if many applicants have not accepted their admittance 
or study place offer six weeks prior to the beginning of the 
semester, the university needs to find either more applicants or to 
actively address the existing applicants and win them as students. 
According to the information provided by the decision tree, they 
could focus on applicants with no previous study experience. Both 
models show, if students with no previous study experience accept 
the place offer, they are highly likely to start as students at the 
beginning of the semester. 

Besides such interesting first insights which the decision tree and 
logistic regression model provide, the research is still in its early 
stage and not without limitations. Only a low number of attributes 
have been identified as informative by the model, providing limited 
insights to the decision makers. This can be connected to the 
relatively small dataset on which the results are based. 
Furthermore, no practical implementation and testing of the model 
has been done so far. 

As a result, we have collected data from the application period of 
the summer semester 2018 and include this data to re-assess the 
results. Afterwards, we plan on applying the model on the applicant 
data of the winter semester of 2018/2019 and on testing its practical 
usefulness. 
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ABSTRACT
In the past few years, many competing learning models have
been proposed for improving the accuracy of predicting stu-
dent performance (PSP). A well-studied subclass of algo-
rithms focused on PSP uses temporal models to determine
the knowledge state of users. Bayesian Knowledge Tracing
(BKT), as one of the leading models in this subclass, uses
Hidden Markov Models to capture the student knowledge
states. An emerging new subclass of algorithms focused
on PSP uses collaborative filtering, which is used primar-
ily by recommender systems. Matrix Factorization (MF), a
leading model in this subclass, can be presented as a rating
prediction problem where students, tasks, and performance
information are mapped to users, items and ratings, respec-
tively. BKT and MF complement each other’s strengths
and limitations quite effectively. In particular, BKT relies
on four skill-specific parameters for learning the sequential
behavior of learners on each concept, but it does not cap-
ture the similarities among users and items. In contrast,
MF uses latent factors to exploit the similarities among users
and items from learner-item performance, but disregards any
temporal effect in modeling student learning. In this paper,
we aim to investigate the effect of combining variations of
BKT and MF using a proposed algorithm that exploits the
power of MF in modeling the implicit similarities among
learners and items while using the explicit parametrization
of BKT towards improving PSP. Our results on four bench-
mark educational datasets show that our approach outper-
forms the base classes as well as traditional techniques such
as linear regression, logistic regression and Neural Networks
for combining BKT and MF.

1. INTRODUCTION
Heavily studied in the community of educational data min-
ing (EDM), the problem of predicting student performance
(PSP) uses observations from students’ behavior to find a
model that predicts their future performance on unseen learn-
ing tasks [3].

Temporal models have been used extensively for PSP and
determining the knowledge state of users. They rely on the
sequential behavior of learners to model their learning. In
these models, the students’ performance on the next task is
predicted using their performance on their prior test items
[11] and a Q-matrix [1], which is a binary matrix that shows
the relationship between test items and underlying concepts.
One of the leading temporal models for PSP is Bayesian
Knowledge Tracing (BKT) [3]. BKT uses Hidden Markov

Models for capturing students’ knowledge states as a set of
binary variables. While BKT has received significant atten-
tion and improvement since it was first proposed, it is unable
to capture similarities among learners or items, which has
shown to be an important aspect in improving PSP [14].

Applying collaborative filtering (CF) techniques is another
promising approach for PSP. One of the most successful col-
laborative filtering techniques is the factorization method
based on the matrix or tensor decomposition [2]. As shown
by [8], applying matrix factorization (MF) can lead to im-
proved prediction results in PSP compared to traditional
PSP methods. MF predicts student performance by extract-
ing similarities among learners and items from the learner-
item performance data in form of latent factors. MF creates
two matrices with latent factors for each of learners and
items, so there is no need to explicitly encode Q-matrix or
other parameters such as Slip and Guess [14]. In addition,
MF is very effective in dealing with insufficient data as it
effectively captures and uses the similarities among learn-
ers and items [14]. The main limitation of MF is its lack
of temporal effect as MF discards any temporal information
and learns the typical performance of students at one time.
Tensor Factorization overcomes this limitation; however, the
running time of tensor factorization is significantly longer
than MF [13], so in practice it is not used as frequently.

In this paper, we introduce a new approach called MBKT
that combines BKT and MF for the task of PSP. Traditional
models of combining where the predictions results of indi-
vidual algorithms are stacked, would require MF to learn an
implicit Q-matrix and latent factors incorporating Slip and
Guess from Scratch. To fully exploit the advantages of com-
bining BKT and MF, MBKT first utilizes BKT to capture
the temporal effects of the student model using an explicit
Q-matrix and parameters referring to Slip and Guess. This
information is then passed on to MF, which enables the la-
tent factor of MF to be tuned for capturing the similarities
between students and items.

Our results on four benchmark datasets obtained from the
DataShop platform [9] indicate that using MBKT for com-
bining various variations of BKT and MF for PSP outper-
forms the base models. We also show that MBKT outper-
forms traditional methods of combining the results of BKT
and MF using linear regression, logistic regression and Neu-
ral Networks.
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2. RELATED WORK
The problem of combining different algorithms for improve-
ment in PSP has been well studied, with contradicting re-
sults. To evaluate the effect of ensemble techniques in Intel-
ligent Tutoring System (ITS), Baker et al. [4] selected nine
different PSP individual algorithms and combined them us-
ing logistic and linear regression on a genetic dataset. Their
experimental results showed that the accuracy of ensem-
bling is mixed and slightly different from the individual algo-
rithms. They argued that there may be three explanations
for this lack of improvement: (1) use of only simple models
of ensembling like linear and logistic regression, (2) use of
small datasets with a limited number of learner interactions,
and use of similar ensemble techniques on learning models
with slight differences. Pardos et al. [10] reported that en-
sembling on large enough datasets will lead to promising
improvements even with similar base models. However, in
practice, student models rely on small datasets for training,
so the results of ensemble techniques on large datasets can-
not be applied directly to ITS. More recently, [12] used a
knowledge graph representation to identify feasible activity
scopes, which were combined to predict student performance
on a learning objective in an ensemble.

Despite development of various ensembling algorithms on
PSP, to the best of our knowledge, collaborative filtering al-
gorithms have not been used in conjunction with knowledge
tracing algorithms in the previous studies. Given that these
two complement each other on many fronts, we attempt to
extend the work of previous studies by primarily investigat-
ing the impact of combining MF as a leading collaborative
filtering algorithms with knowledge tracing for PSP.

3. COMBINING KNOWLEDGE TRACING
AND MATRIX FACTORIZATION

As mentioned in the previous sections, the characteristics of
BKT and MF complement each other quite well. BKT uti-
lizes the temporal behavior of learners to model their learn-
ing, while MF does so by capturing the similarities among
learners and items. In addition, BKT uses an explicit Q-
matrix to find the parameters related to learners including
their initial knowledge of skills, the mastery probability of
skills and Slip and Guess parameters. In contrast, MF uses
latent factors to implicitly learn a Q-matrix and the men-
tioned learner-related parameters. In this paper, we propose
a new model called MBKT for combining BKT [3] and MF
[14] for PSP that takes advantage of how these models com-
plement each other. We also considered two other variations
of BKT as described in [6]. The first variation, BKT-CGS
(Contextual Guess and Slip) model, is a variation in which
Guess and Slip properties are no longer learned per skill
but rather averaged across all skills and actions. The sec-
ond variation, BKT-PPS (Prior Per Student) assumes a per-
sonalized prior knowledge per student. In our experiments,
we used a simplified version of this model that divides stu-
dents to high-performance and low-performance groups as
proposed by [6]. Using MBKT, the predicted performance
of leaner u on item i is predicted as follows:

In the first step, the BKT model is utilized to predict student
performance using the following formula

OBKT
N×M = BKT (train set),

where oBKT
ui presents the computed probability of the BKT

model on user u answering item i correctly based on the last
opportunity of u on the topic related to i.

In the second step, the error of BKT predictions for the
learner-item performance is computed as follows

EBKT
N×M = Otrain

N×M −OBKT
N×M ,

where otrainui is 1 if user u has answered question i correctly
in their final attempt, 0 if user u has answered question i
incorrectly and Null otherwise. eBKT

ui is the computed error
of the BKT model for user u on question i.

In the third step, the error of BKT predictions for the learner-
item performance is passed on to MF as input to predict the
BKT prediction error using the following formula

OMF
N×M = MF (EBKT

N×M ),

where oMF
ui presents the approximated error of the BKT

model on the final opportunity of user u on answering ques-
tion i.

Finally, the outcome of MBKT is computed by summing the
BKT predictions and predicted error of MF for BKT using

OMBKT
N×M = OBKT

N×M + OMF
N×M ,

where oMBKT
ui represents the predicted performance of user

u on question i, which is computed by MBKT.

Discussion. Using the traditional models of combining
where the prediction results of individual algorithms are
stacked, MF needs to learn the Q-matrix and latent fac-
tors from scratch using a random initialization. This makes
the combination unlikely to fully exploit the advantage of
combining BKT as a temporal model and MF as a model
to draw out the similarities among learners and items. In
MBKT, instead of directly stacking the prediction results of
BKT and MF, BKT is utilized as the underlying algorithm
to predict student performance. Then the prediction error
of BKT is passed to MF as input to learn the BKT error.
Insinuating the outcome of the BKT model in the input of
MF enables MBKT to benefit from BKT’s explicit param-
eterization of the learners and items including the initial
knowledge, the mastery probability of skills and Slip and
Guess concepts. This, in turn, would enable the latent fac-
tors of MF to further focus on modeling similarities among
learners instead of trying to incorporate those parameters.

4. EXPERIMENTS
In this paper, we have discussed the benefits of combining
knowledge tracing and collaborative filtering algorithms for
PSP using MBKT. In this section, we aim to investigate
whether use of MBKT leads to improved PSP. Our evalua-
tion has been guided by the following two research questions.

• RQ1: Does MBKT improve the performance of PSP
compared to the base models?

• RQ2: Does MBKT improve the performance of PSP
compared to traditional techniques of stacking the re-
sults of BKT and MF?
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For the experiments, we utilize LearnSphere [9] to find the
parameters of each BKT variation using 10 fold cross-validation
with Baum-Welch solver. To find the latent factors related
to each MF variation, we use MyMediaLite library [5] with
again 10 fold cross-validation.

4.1 Dataset
We use four data sets that are commonly used for PSP from
DataShop [9] in our evaluation. The total number of inter-
actions and students of each dataset is described in table 1.

Table 1: DataSets
Data Set #transactions #students

Geometry Area 6,778 59
Intelligent Writing Tutor 6,625 120

Writing 1 12,568 31
Writing 2 11,347 54

These are the results of learners’ interactions with the tutor-
ing system. As learners engage in the system, all interactions
such as their success or failure, time spent on each step, etc
are recorded. In these experiments, the unique interaction
between learners and system is the step, which belongs to
the hierarchy of unit, section and problem. KC defines dif-
ferent knowledge components for each step in the hierarchy
and Opportunity determines the total number of times that
a leaner has had on the KC related to the step. In these
datasets FirstAttempt is considered as the outcome of the
interaction: correct means success and incorrect and hint
show failure in that interaction.

4.2 Methods and Evaluation Metric
In our experiments, standard BKT (BKT) [3], Contextual-
ized Guess and Slip BKT (BKT-CGS) [10], Prior Per Stu-
dent BKT (BKT-PPS) [10], Standard Matrix Factorization
(MF) and Biased Matrix Factorization (BMF) as described
in [14] are used as the base methods.

The BKT and MF variations are combined using logistic re-
gression (LogReg), linear regression (LinReg), Neural Net-
works (NN) and MBKT.

Evaluation Metric. As commonly used in evaluating the
PSP algorithms, Root Mean Squared Error (RMSE) is uti-
lized to measure the error as follows:

RMSE =

√
1

|D|test
∑

(u,i)∈Dtest

(otestui − opredicedui )2,

where opredicedui is the predicted probability, otestui is the real
output of the instance and Dtest is the total number of in-
stances.

4.3 Results
Table 2 compares the RMSE of the model fit statistics re-
lated to each model for the task of PSP. In this table, Geo,
IntW, HW1, and HW2 refer to Geometry Area, Intelligent
Writing, Hand Writing 1, and Hand Writing 2 datasets re-
spectively. Based on the experimental results for all datasets,
there is no superiority among different BKT variations. Among
the two MF variations, BMF significantly outperforms MF
both as an individual algorithm and in combination with the

Table 2: RMSE of different learning models

Methods Geo IntW HW1 HW2
BKT 0.422 0.438 0.431 0.408
BKTPPS 0.421 0.422 0.412 0.392
BKTCGS 0.419 0.438 0.431 0.407
MF 0.427 0.453 0.433 0.396
BMF 0.418 0.433 0.407 0.390

BKT
-MF

LogReg 0.419 0.447 0.440 0.397
LinReg 0.424 0.447 0.450 0.397
NN 0.420 0.449 0.451 0.4
MBKT 0.428 0.44 0.432 0.395

BKT
-BMF

LogReg 0.417 0.421 0.406 0.391
LinReg 0.415 0.422 0.406 0.390
NN 0.420 0.421 0.406 0.391
MBKT 0.411 0.418 0.404 0.387

BKTPPS
-MF

LogReg 0.419 0.431 0.428 0.395
LinReg 0.424 0.427 0.433 0.395
NN 0.420 0.435 0.438 0.396
MBKT 0.424 0.423 0.417 0.391

BKTPPS
-BMF

LogReg 0.417 0.412 0.406 0.388
LinReg 0.416 0.411 0.407 0.390
NN 0.420 0.412 0.407 0.387
MBKT 0.415 0.411 0.406 0.386

BKTCGS
-MF

LogReg 0.420 0.447 0.44 0.397
LinReg 0.430 0.447 0.405 0.397
NN 0.421 0.449 0.452 0.4
MBKT 0.422 0.435 0.431 0.394

BKTCGS
-BMF

LogReg 0.416 0.421 0.406 0.391
LinReg 0.415 0.422 0.406 0.399
NN 0.421 0.421 0.406 0.391
MBKT 0.408 0.418 0.405 0.387

BKT variations. For instance, the average RMSE for BMF
and MF as an individual algorithm on all datasets is 0.412
and 0.427 respectively. A similar difference is observed in
the combinational models. So, for the rest of discussions,
we only concentrate on BMF as the collaborative filtering
algorithm.

RQ1. The results of cross-validated RMSE on all datasets
indicates that for all combinations of BKT variations and
BMF, MBKT achieves the best RMSE. As presented in Ta-
ble 2, MBKT outperforms its base models by ≈ 10%. To
evaluate the statistical significance of the improvements in
predictions, Ttest is used. For each dataset, we applied
Ttest on the RMSE of the best individual model and the
best combination of BKT and MF using MBKT. For all four
datasets, the difference between the results of the individual
algorithms and MBKT was statistically significant with the
computed p values smaller than 0.01.

RQ2. To answer this research question, we used the tra-
ditional stacking techniques including linear regression, lo-
gistic regression, and Neural Network to combine each of
the BKT variations with BMF. Our experimental results
on all datasets indicate that for each combination of BKT
variations and BMF using MBKT and other stacking tech-
niques, MBKT always outperforms the traditional stacking
techniques, except for IntW where linear regression achieves
the same RMSE as MBKT when combining BKTPPS and
BMF. To evaluate the statistical significance of the mod-
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els, we limited our comparisons to the combinations with
the same base models. Our results on the four datasets in-
dicate that with BKTPPS and BMF as the base models,
MBKT and linear regression were not significantly different
from one another for both Geometry Area and Intelligent
Writing Tutor datasets. For the renaming 10 combinations,
MBKT improve PSP with statistical significance (p < 0.01)
compared to traditional stacking techniques.

In addition, MBKT always outperforms its base models and
achieves ≈ 10% improvement in the predictive power com-
pared to its underlying BKT model. This is a significant
improvement for a predicting model. In contrast, applying
the traditional combining models do not always improve the
predictions over those of the base models. For example, for
Hand Writing 2, using logistic regression or Neural Network
for combining BKT or BKT-CGS with BMF leads to poorer
RMSE than BMF itself. This lack of success for traditional
combining models reflects the same result is presented by
[4].

5. CONCLUSION AND FUTURE WORK
In this paper, we investigated the effect of combing time-
aware knowledge tracing algorithms with matrix factoriza-
tion as a time-invariant collaborative filtering algorithm for
PSP. Variations of Bayesian Knowledge Tracing (BKT) and
Matrix Factorization (MF) were used for this task. These
models complement each other’s strengths and limitations
quite effectively. BKT captures temporal changes in learn-
ers’ behavior using an explicit Q-matrix and BKT parame-
ters such as Slip and Guess. In contrast, MF captures sim-
ilarities among learners using latent variables that implic-
itly encode a Q-matrix as well as learners’ initial knowledge,
skill mastery probability, Slip and Guess Parameters. We in-
troduced an algorithm for combining MF and BKT, where
instead of directly combining the prediction result of each
individual algorithm, it first utilizes BKT as the underlying
algorithm to predict student performance. It then passes
the error, true values - predicted values, from BKT predic-
tions as input to MF. Incorporating the outcome of the BKT
model in the input of MF enables it to benefit from BKT’s
explicit parameterization including Slip and Guess concepts.
This, in turn, would enable the latent factors of MF to fur-
ther focus on modeling similarities among learners instead
of trying to incorporate Slip and Guess parameters.

Our results on four benchmark datasets from the Datashop
platform indicates that using MBKT for combining varia-
tions of BKT and MF leads to as much as 10% improve-
ment over the base models for PSP on unseen datasets. In
addition, MBKT generally provides statistically significant
improvements over traditional techniques such as linear re-
gression, logistic regression and Neural Networks for com-
bining BKT and MF again, for PSP on unseen dataset.

There are several interesting directions to pursue in future
work. Primarily, we are working on integrating our ap-
proach into an open-source, student facing adaptive learning
environment called Recommendation in Personalized Peer
Learning Environments (RiPPLE) [7]. Our goal is to use
the proposed algorithm for predicting student performance,
which in turn, is used for recommending personalized ques-
tions based on learners’ current knowledge gaps.

6. REFERENCES
[1] Tiffany Barnes. The q-matrix method: Mining student

response data for knowledge. In American Association
for Artificial Intelligence 2005 Educational Data
Mining Workshop, pages 1–8, 2005.

[2] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and
Shun-ichi Amari. Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way
data analysis and blind source separation. John Wiley
& Sons, 2009.

[3] Albert T Corbett and John R Anderson. Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted
interaction, 4(4):253–278, 1994.

[4] Ryan SJ d Baker, Zachary A Pardos, Sujith M
Gowda, Bahador B Nooraei, and Neil T Heffernan.
Ensembling predictions of student knowledge within
intelligent tutoring systems. In International
Conference on User Modeling, Adaptation, and
Personalization, pages 13–24. Springer, 2011.

[5] Zeno Gantner, Steffen Rendle, Christoph
Freudenthaler, and Lars Schmidt-Thieme.
MyMediaLite: A free recommender system library. In
Proceedings of the 5th ACM Conference on
Recommender Systems (RecSys 2011), 2011.

[6] SM Gowda, RSJD Baker, Z Pardos, and
NT Heffernan. The sum is greater than the parts:
ensembling student knowledge models in assistments.

[7] Hassan Khosravi. Recommendation in personalised
peer-learning environments. arXiv preprint
arXiv:1712.03077, 2017.

[8] Hassan Khosravi, Kendra Cooper, and Kirsty Kitto.
Riple: Recommendation in peer-learning environments
based on knowledge gaps and interests. JEDM-Journal
of Educational Data Mining, 9(1):42–67, 2017.

[9] Kenneth R Koedinger, Kyle Cunningham, Alida
Skogsholm, Brett Leber, and John Stamper. A data
repository for the edm community: The pslc datashop.
Handbook of educational data mining, 43, 2010.

[10] Zachary A Pardos, Sujith M Gowda, Ryan SJd Baker,
and Neil T Heffernan. The sum is greater than the
parts: ensembling models of student knowledge in
educational software. ACM SIGKDD explorations
newsletter, 13(2):37–44, 2012.

[11] Steffen Rendle, Christoph Freudenthaler, and Lars
Schmidt-Thieme. Factorizing personalized markov
chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide
web, pages 811–820. ACM, 2010.

[12] Martin Stapel, Zhilin Zheng, and Niels Pinkwart. An
ensemble method to predict student performance in an
online math learning environment. In EDM, pages
231–238, 2016.

[13] Nguyen Thai-Nghe, Lucas Drumond, and Tomás
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ABSTRACT
Looking only at the final writing does not tell us how the
students pursued the writing task. The keystroke logs can
help us disambiguate what we have observed from the final
essays. In this study, we focus on the analysis of writing
bursts, which are defined as sequences of rapid text produc-
tion without long pauses. Compared to the existing mea-
sures, the new personalized burst measures showed stronger
association with essay quality, a weaker correlation with key-
boarding skill, and moderately strong cross-task reliability.

Keywords
Response process, Keystroke log, Writing burst, Translation
process, Hierarchical clustering

1. INTRODUCTION
There is a growing number of recent educational research
studies that use timing and process information for assess-
ment purposes [6]. Response process data provide informa-
tion about students’ proficiency and performance that is not
accessible by examining the final answers alone. As eluci-
dated in the Standards [1], the processes that test-takers
undertake in responding to an item or an assessment pro-
vide validity evidence for evaluating the meangingfulness of
the inferences made on test scores. In this paper, we focus
on a specific type of response process data that is collected
via logging the keystrokes and mouse movements during a
writing task. This work is part of a larger research and devel-
opment project at Educational Testing Service (ETS) that
aims to understand, analyze, validate, and ultimately report
writing processes in educational and assessment contexts.

Generally speaking, analyzing writing process data starts
with the development of a set of feature variables that repre-
sent the writing process quantitatively. Among various fea-
ture variables that have been used to characterize the writing
process, sequences of fast text production, or bursts, have
been identified as providing important information about

the fluency and efficiency of individual writing processes
[2]. Although there is a consensus about the importance
of bursts, there are many ways to define a burst in practice,
depending on the location where bursts are allowed to end
(between characters, or between words), and on the length
of a pause that is considered long enough to count as a burst
boundary. Here, we introduce a specific approach to defining
bursts at the word level, personalized bursts, which can
be obtained by identifying the optimal number of clusters for
each individual, by applying a hierarchical clustering anal-
ysis to individual inter-word intervals. The results of this
study highlight the potential that keystroke logs of writing
have for educational assessment applications.

1.1 Keystroke Logging of Writing Process
When writing tasks are delivered on a computer, we can
record the processes by which a student produces his/her
essay response through keystroke logging. In this study, we
used a keystroke logging system developed at ETS – one
primarily intended for large-scale digital administrations to
support classroom instruction and educational assessment
[5]. A keystroke logging system records all changes to the
text buffer while a student is writing, along with associated
time stamps. The gap-time between keystrokes, which is
often termed “silence” in speech, is usually called a “pause”
in the analysis of keystroke logs. The entire text production
process can be precisely reconstructed from the keystroke
log. Some examples of the key information tracked by the
ETS system [5] are: type of action (e.g., insert, delete),
length of action (e.g., with regard to the number of time
elapsed), location of action (e.g., between words), and time-
point of action (e.g., at the start of a writing session).

1.2 Cognitive Model of Writing Process
The current study is guided by the cognitive framework pro-
posed by Hayes [7]. In this framework, the writing process is
represented as a multidimensional construct including four
connected dimensions. Each dimension has its distinct be-
havioral and temporal features. For example, idea gener-
ation and task preparation (i.e., proposing) are generally
associated with pauses at the start of writing and at sen-
tence boundaries where writers stop and think about what
to say. Fluency of putting ideas into language (i.e., trans-
lating) relates to the length of bursts. Orthographic profi-
ciency and motor skill (i.e., transcribing) typically relates
to pauses inside a word and to edits designed to make im-
mediate corrections to typos. And, when writers are editing
and reviewing (evaluating), they are more likely to jump
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to different locations in the text to make changes or replace
chunks of existing text with new content. With keystroke
logs, these theoretically-defined subconstructs of the writing
process can be estimated separately (see, for example, [9]).

2. RESEARCH PROBLEM AND QUESTION
In this study, we analyzed one of the most important fea-
tures in the psycholinguistic literature – bursts of rapid text
productions. Bursts are defined as stretches of rapid, consec-
utive text production without major interruptions, where an
interruption point is signaled by a long pause. The literature
has suggested that various burst measures, including burst
size, burst frequency and maximum burst length, are indica-
tive of a writer’s text production fluency. One difficulty in
using existing burst measures to make inferences about writ-
ing fluency, however, is that the properties of bursts can be
affected by more than one cognitive process, including both
the ability to translate ideas into language (translating) and
the ability to put words on paper (transcribing). In practice,
the transcription subprocess can be approximated by typing
speed. Ideally, we would like a measure of fluency, sepa-
rate from typing speed, that reflects the speed with which a
writer can generate ideas and put them into words.

Previous research recommends a 2/3 second pause for inter-
key intervals and/or a 2 second pause for inter-word inter-
vals, to indicate a burst boundary [2]. This approach applies
a single pre-determined fixed threshold for every text pro-
duced by every writer. It is simple and straightforward; yet
one disadvantage of this approach is that the resulting burst
measures do not control for keyboarding skill. A slow typist
may seem disfluent without actually having weaker abilities
to generate ideas or to put them into words.

The existing literature provides one alternative approach to
defining writing bursts which is less strongly linked to typing
speed [5]. In this approach, the thresholds for burst bound-
aries change as the composition proceeds. Burst boundary
thresholds are calculated on-the-fly for inter-word intervals
(IWI) using all IWI information collected so far, where the
thresholds (in current practice) are defined as being four
times the median across previous IWIs. This method gener-
ates personalized thresholds across each essay response, and
yields relatively long bursts that are less likely to change due
to differences in typing speed. Due to its time-adaptive na-
ture, this method does not fully consider the pause patterns
throughout the writing process. This approach can also be
sensitive to a writer’s composition strategy and, from previ-
ous analyses, generates burst measures only weakly related
to the quality of an individual’s writing.

Our goal in this study is to find a better way of to define the
cut point between bursts, one that is more sensitive to lin-
guistic processes (translation), but less sensitive to typing
speed (transcription). The approach we have investigated
is also personalized to individual writers. Unlike the above-
mentioned time-adaptive thresholds, this new approach uses
all inter-word pause information together, thereby fixing the
threshold for each individual instead of changing it as writ-
ing proceeds. We empirically compared the performance of
this new method (fixed and personalized) to the two base-
line methods (fixed for all persons vs. adaptive by person).
For simplicity, we will refer to the new method as “person-

alized,” and the two existing ones as “fixed” and “adaptive.”
Our research question is: can we find a criterion for setting
personalized burst boundaries that better characterizes an
individual’s writing behavior?

3. METHOD
3.1 Participants and Instrument
The participants were 1,351 6th-8th grade students in U.S.
middle schools. The data collection procedure can be found
in [8]. Three scenario-based persuasive writing assessments
[3] were used, each containing one essay-length writing task.
Each student took two of the three assessments. The three
assessments were strictly parallel with the only difference in
the scenario presented to the students. The Service Learn-
ing (SL) scenario: What would be the best choice of service
learning project for a class to carry out? The Culture Fair
(CF) scenario: What would be the best theme for a school
culture fair? The Generous Gift (GG) scenario: What is
the best way for a school to spend a large sum of money
provided by a generous donor? The student sample sizes for
each assessment, respectively, are 842 (SL), 831 (CF), and
557 (GG). Each essay response was graded by a human rater
on two scoring rubrics. The first rubric evaluates the stan-
dard academic English writing skills, such as grammar and
word usage. The second rubric evaluates the key elements
required for persuasive writing. A total essay score is then
calculated as the sum of the two rubric scores.

3.2 Personalized Burst
The following single-sentence example illustrates the gen-
eral scheme of searching for an optimal personalized burst
threshold (Figure 1). In this example, each IWI is marked.
The longest IWI is .80 sec., lying between the words “think”
and “that.” The second longest IWI is .60 sec., lying be-
tween “should” and “cook,” and so on. If the burst boundary
threshold is set at .80 sec. (i.e., the longest IWI, Level 1),
the writing process will be broken into two bursts: “I think”
would be the first burst, and the remainder of the sentence
would be the second. If we lower the threshold to Level 2,
then the writing process would be broken into three bursts.
In the extreme case, for this example, using a threshold of
.05 sec. (Level 5) would break this short sentence into ten
one-word bursts.

Figure 1: Impacts of Burst Cut Threshold on Trans-
lation Process: A One-Sentence Illustration

This approach to setting burst boundaries can easily be gen-
eralized to complete keystroke logs. Figure 2 shows a den-
drogram based on the single-linkage of the IWIs from a full
essay. It is clear that, if we make the threshold too low,
the translation process will become rather fragmented. The
goal here is to search for an optimal cut threshold, by which
one can meaningfully break the translation process into an
optimal number of bursts.
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Figure 2: Dendrogram of IWI in a Complete Essay

From the perspective of hierarchical clustering analysis, this
is essentially a problem dealing with the optimal number
of clusters. We used the Calinski-Harabasz (CH) index,

CH(k) = B(k)
W (k)

n−k
k−1

, to determine the optimal number of

clusters [4], where n refers to the number of elements, k is
the number of clusters, and B(k) and W (k) are the between-
and within- cluster variances respectively corresponding to
k clusters. The optimal number of clusters corresponds to
the threshold value that leads to the maximum CH value.

3.3 Burst Features and Evaluation
Once we have determined how to define burst boundaries,
we can calculate summary statistics for each response. The
literature suggests that average and maximum burst length
(BL) is of particular interest. We expect more fluent writers
to produce longer bursts, and less fluent writers to produce
shorter bursts. We therefore computed the average person-
alized BL and the maximum personalized BL for each essay.
To evaluate the performance of the personalized burst fea-
tures, we compared them with summary statistics for two
existing burst definitions: fixed bursts (2/3 sec for IKI) and
adaptive bursts (4x the median IWI). In particular, we ex-
amined their correlations with essay scores and typing speed.
As discussed above, a measure of BL that separates trans-
lation fluency from transcription fluency should not be too
strongly associated with keyboarding (KB) skills. For this
purpose, we generated a KB measure designed to provide a
fairly pure measure of typing speed. This measure was based
on how quickly a writer typed extremely common English
words. We followed the practice suggested in [10], in which
the typing speed is calculated as the median value of charac-
ters per second across all valid words on the most common
100 English words and their inflections. Finally, since most
students submitted two essay responses, we examined the
cross-prompt reliability of the different burst measures.

4. RESULTS
4.1 Association with Quality and Typing
In Table 1, we examined various burst length measures’ cor-
relations with essay quality as evaluated by human raters
and with typing speed. We also included two reference fea-
tures: Essay Length (the number of words in the essay) and
Time on Task, both of which are known to be moderately
correlated with writing quality.

Two findings are worth highlighting. First, we observed that
the personalized method for defining bursts yielded stronger

correlations with human score on both rubrics, compared to
fixed or adaptive methods. For rubric 1, the average BL and
maximum BL from the new threshold correlated with rubric
1 in the magnitude of .50s, whereas the others had correla-
tions in the magnitudes of .20s or mid .30s. The correlations
were not as strong as Essay Length with rubric 1, but were
greater than the total writing time. Similar observations
apply to the content rubric (rubric 2), where the new burst
features outperformed the existing burst features.

A second critical finding is that the average and maximum
personalized BL correlated only moderately with keyboard-
ing skill as reflected by the speed of typing common words.
From Table 1, we can see that although the BL statistics de-
rived from the adaptive burst definition showed the weakest
correlation with keyboarding skills, their correlations with
the writing quality was poor, particularly with the content
score, only 0.11 and 0.26 in magnitude. The personalized
burst features, by contrast, showed moderate correlations
with keyboarding, 0.45 for mean BL and 0.48 for max BL,
but displayed high correlations with essay score. This is a
desirable property since we would like to separate the con-
tributions of the translating subprocess from those of the
transcribing subprocess, while still obtaining good informa-
tion about overall writing quality.

4.2 Cross-Prompt Reliability
The availability of double essays submitted by students al-
lowed for analysis of feature consistency across writing tasks.
Table 2 shows the results of the cross-prompt reliability for
each burst measure. Higher feature reliability is preferable,
since we would like the burst features to provide stable es-
timates of individual traits. Of course, in reality, not all
writing tasks are exactly equivalent to each other, so some
variations are expected. The greatest cross-prompt reliabil-
ity was observed with the burst measures that used a fixed
threshold of 2/3 of a second to define burst boundaries. The
resulting cross-prompt correlations were in the range of .80s
and .90s, which spoke to the stability of these features. They
achieved about the same level of reliability as the keyboard-
ing measure. However, the 2/3 second threshold is rather
low, and yields very short bursts. It is possible that this low,
fixed threshold essentially cuts off the long tails where most
of the pauses related to planning and idea generation take
place, reducing the fixed burst measures to measures of key-
boarding fluency. By contrast, the personalized burst mea-
sures showed moderately strong cross-prompt consistency.
While the resulting measures are less reliable than the fixed
burst measures, they were more reliable than the adaptive
burst measures, and had generally higher correlations with
essay length, total writing time, and essay total score.

5. DISCUSSION
The ultimate goal of our research is to identify features that
more cleanly separates out different skills – translation, tran-
scription, idea generation, and evaluation – and allow us to
estimate individual parameters for each of these processes.
In this paper, we introduced a new personalized burst based
on a threshold optimized against the overall clustering pat-
tern of the IWIs, with the goal of providing more direct mea-
surement of translation fluency, and less direct measurement
of transcription fluency. We compared the performance of
the burst features obtained from different burst definitions
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Table 1: Pearson Correlations of Burst Length Measures with Scores and Typing (SL Form)
Basic Content Essay Total Keyboarding

Threshold Feature (n=540) (n=529) (n=529) (n = 528)

Personalized Avg. BL (word) .50 .32 .46 .45
Max BL (word) .51 .33 .47 .48

Fixed (2/3 sec.) Avg. BL (word) .25 .14 .22 .61
Med. Log of BL (char.) .34 .21 .31 .75

Adaptive (4x median) Avg. BL (word) .21 .11 .18 -.01†
Max BL (word) .37 .26 .36 .22
Essay Length (word) .66 .47 .63 .30
Time on Task (sec.) .40 .39 .45 -.13

Note: All but one correlations are statistically significant at p < .0001 level. †: significant at p < .05
level. Results reproted in this table are from the SL assessment form. BL = Burst Length

Table 2: Cross-Prompt Reliability of Burst Length Measures
CF–GG CF–SL GG–SL

Threshold Feature (n=437) (n=216) (n=203)

Personalized Avg. BL (word) .66 .55 .69
Max BL (word) .52 .48 .55

Fixed (2/3 sec.) Avg. BL (word) .89 .87 .81
Med. Log of BL (char.) .91 .93 .87

Adaptive (4x median) Avg. BL (word) .59 .63 .51
Max BL (word) .45 .48 .46
Essay Length (word) .63 .62 .66
Time on Task (sec.) .44 .45 .41
Essay Score (2-10) .48 .53 .55
Keyboarding (char/sec) .89 .91 .90

Note: All Pearson correlations are statistically significant at p < .0001 level.

and showed that the personalized burst feature was only
moderately correlated with keyboarding skills, while being
more strongly correlated with essay scores than other meth-
ods for defining burst thresholds. The personalized burst
feature also showed reasonable cross-prompt correlations.
All of these characteristics indicate that the personalized
burst feature is a promising candidate to replace existing
burst definitions in future writing process studies.

However, we emphasize that the personalized burst feature
introduced in this paper is capable of further optimization.
For example, we used the CH index to determine the opti-
mal threshold, which, based on our experimentation, tended
to produce short bursts of only a few words each. Use of
other criteria might lead to slightly larger burst sizes with-
out damaging performance. It is also worth noting that
our conclusions may be limited by the nature of the studied
sample. We do not know how these features shift in their
performance by age, and have only begun to explore how
they shift between demographic groups. Presumably, in a
population that was more fluent in keyboarding, it might be
easier to use bursts as a pure measure of fluency, while in an
elementary school population, we might find it much more
difficult to separate translation from transcription. Overall,
our results suggest that there is considerable room to create
improved methods for measuring student writing processes
using modern statistical and data mining methodologies.
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ABSTRACT
Massive Open Online Courses (MOOCs) have become increas-
ingly popular in recent years, enabling millions of students
worldwide to pursue their educational objectives in new ways.
However, little is known about the nature of the reasons why
students enroll in courses, and how those reasons differ across
demographic groups. In this paper we explore the connec-
tion between student engagement and the sentiment of their
self-reported reasons for enrolling in MOOCs. We found that
there were significant differences in sentiment between de-
mographic groups, and that sentiment of enrollment reasons
had small—but consistent—power to predict future course
engagement level (Spearman’s ρ = .102). Finally, we discuss
the implications of these findings for future student modeling
research in MOOC contexts, particularly for students with
different backgrounds.

Categories and Subject Descriptors
H.4 [Computers and Education]: Computer Uses in Ed-
ucation

Keywords
Sentiment, MOOC enrollment, demographic differences

1. INTRODUCTION
Recent years have seen an explosion in the availability of
massive open online courses (MOOCs), and millions of new
students have enrolled in them [8]. MOOCs offer worldwide
access to high-quality courses offered by prestigious institu-
tions, and as such they attract a diverse group of learners
from around the globe. These students are often even more
diverse than typical university student bodies, in part be-
cause of the unique affordances MOOCs provide: low cost
and flexible schedules.

However, reasons students enroll are complex and especially
difficult to define in MOOC-style learning contexts. Fur-
thermore, enrollment reasons may systematically differ be-
tween different courses and student demographics [5]. In
this poster, we focus specifically on the sentiment as-
pect of students enrollment reasons. Particularly, we
explore whether sentiment of reasons for enrolling differs
across course and demographic dimensions, and question
how sentiment of enrollment reasons relates to students’ lev-
els of engagement in a course. Sentiment in this context
refers to aspects such as positivity, fear, certainty, and others
that can be inferred from text. One might also expect, for
example, that the amount of positivity inherent in students’

stated reasons for enrolling relates to how long they persevere
in a course.

Previous work has also found that demographics relate to
MOOC outcomes (e.g., gender relates to persistence in MOOCs
[4]). Given that there were 78 million students in almost
10,000 MOOCs [8] in the year 2017, it is tremendously im-
portant to understand all potential indicators of student
engagement and student needs. This includes the emotional
cues contained in the goals they may express when enrolling
in a course.

Wladis et al. analyzed approximately 27,800 students who
enrolled in online STEM (science, technology, engineering,
and math) classes [11]. They found key differences in enroll-
ment rates, concluding that non-traditional students were
significantly more likely to enroll in online courses than their
peers. Furthermore, they found that female students per-
formed less well in online environments than in face-to-face
learning, but older students enjoyed greater success online
[12].

Robinson et al. [7] asked students enrolling in a MOOC
to “provide one or two specific examples of how you think
what you will learn in this class will apply to your life.” They
extracted frequent word unigrams and bigrams, and trained a
logistic regression classifier to predict whether students would
drop out of the MOOC or not. Their model was statistically
better than chance as measured by area under the receiver
operating characteristic curve (AUC)—specifically, AUC =
.564 (versus .500 chance level). Additionally, they found that
including student demographics as predictors improved model
accuracy to AUC = .598. This study demonstrated that
linguistic aspects of the reasons students state for enrolling
in a class can modestly predict course outcomes, but that
student demographics are also worth considering.

In this study we apply non-parametric statistics and ma-
chine learning methods to explore the relationships between
the sentiment of students’ reasons for enrolling in MOOCs,
student demographics, and course engagement. We cross-
validate analysis across courses and demographic variables
to answer three research questions: 1) How does sentiment
of enrollment reasons differ across student demographics?
2) Does sentiment of enrollment reasons predict the level of
course engagement? and 3) Is sentiment of enrollment rea-
sons equally predictive of engagement across different courses
and demographics?
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2. METHOD
We analyzed data from five different MOOCs offered on
the Coursera platform1. These included Creative, Serious,
and Playful Science of Android Apps, Introductory Organic
Chemistry, Subsistence Marketplaces, Introduction to Sus-
tainability, and E-Learning Ecologies. We queried students
for demographic information, including age range and gen-
der2, and asked them to provide their reasons for enrolling in
the course by writing an answer to the open-ended prompt
“Why are you taking this course? What do you hope to get
out of it?” Of 37,178 students who enrolled and responded
to at least one question, 9,327 responded in English to all
questions.

2.1 Sentiment of Enrollment Reasons
We extracted sentiment from students’ written reasons for
enrolling in MOOCs with the SEANCE (SEntiment ANal-
ysis and Cognition Engine) tool [3]. SEANCE provides
indices of sentiment derived from a collection of eight differ-
ent databases of words, where each word is associated with
a sentiment. SEANCE also provides 20 component scores,
which are derived from principal components analysis and
have interpretable labels based on the indices the compo-
nents are derived from. These component scores compose the
sentiment-based feature space in which we represent students’
reasons for enrolling. Given the large ratio of students to
features (approximately 450:1), we did not perform feature
selection.

Sentiment components provided by SEANCE were not nor-
mally distributed. Thus, for comparisons involving sentiment
we calculated non-parametric statistics. To compare senti-
ment across genders, we coded gender as a number and
computed Spearman’s rho (ρ) correlations between gender
and sentiment components. This analysis permits testing for
significant differences between genders as well as providing
an estimate of the effect size (ρ ranging from -1 to 1). Age
groups are categorical, but strictly ordered, so ρ is an ap-
propriate measure for the relationships between age groups
and sentiment components as well. Geographical areas are
not strictly orderable in a meaningful way, so we could not
measure ρ across all geographical areas together.

2.2 Prediction of Engagement from Sentiment
In this study we adopt a multi-level engagement definition to
distinguish students who are only active during a few weeks
of the course (≤ 2 weeks), versus those who engage with the
course for some time but not the entire set of content (3 − 5
weeks), and those who complete essentially all of the course
(6 − 8 weeks).

We predicted engagement from sentiment components by
training a random forest [2] machine learning model using
scikit-learn [6]. Random forests work by training a large num-
ber of small tree models (i.e., a forest) on random subsamples
of data. Random forest models make no assumptions about
the distribution of the data, as a Gaussian model does, for
instance. This is a key consideration given the non-normal

1https://www.coursera.org
2Gender responses included female, male, and other, but
after filtering the dataset (as described in Section 2) the only
responses were female and male.

distributions of sentiment components. Our definition of en-
gagement is also multi-level, and is thus a multiclass problem
for which random forests are suited.

Predictive student models are frequently evaluated with ac-
curacy metrics suited for binary classification problems (e.g.,
Cohen’s κ, F1). However, in this study the prediction target
(engagement) has three strictly-ordered levels. Therefore, we
evaluate model accuracy with Spearman’s ρ.

We utilized different cross-validation approaches to answer
the research questions in this paper. In each approach, we
split data into training and testing data, trained a random
forest model (optimized on training data only), and evaluated
the model by its ability to predict the unseen the testing
data. We repeated this process iteratively until every student
(data point) had been in the testing data exactly once.

3. RESULTS
In this section we present results for our three research
questions, with explanatory methods for the first research
question and predictive models for the second and third
questions.

RQ1: How does sentiment of enrollment reasons dif-
fer across student demographics? The number of stu-
dents analyzed was large (9,327). Thus, many correlations
between sentiment components and demographic variables
were highly statistically significant (25 of 60 correlations
with p < .001) even after Benjamini-Hochberg corrections
for multiple tests [1]. Therefore, we report only the largest
five correlations for the sake of conciseness (Table 1).

In general, females expressed more sentiment in their stated
reasons for enrolling. In fact, mean ρ = .047 across all
20 sentiment components. The largest difference between
genders was in the SEANCE economy component, which
consists of words from manually-curated lists of nouns and
adjectives related to economical concerns [9]. Females were
coded as 1, so the positive correlation (ρ = .106) indicates
that females expressed more economy-focused words than
males.

Both female students and older students expressed more fear
and disgust in their reasons for enrolling (ρ = .104 and .101
respectively). Older students also appeared to express more
sentiment than younger students, based on the largest five
correlations in Table 1. However, mean correlation across all
20 sentiment components for age groups was just ρ = .007,
indicating that the larger sentiment differences in Table 1
were offset by many smaller negative correlations (12 of 20
correlations were negative).

RQ2: Does sentiment of enrollment reasons predict
the level of course engagement? We trained predictive
models with four-fold cross-validation to answer this research
question. Predictions were significantly better than chance (ρ
= .102, p < .001), confirming the hypothesis of the research
question. Additionally, accuracy was consistent across folds,
ranging from ρ = .093 to ρ = .116. This serves as a baseline
for research question 3, which explores prediction variance
across demographics and courses to quantify generalization.

Proceedings of the 11th International Conference on Educational Data Mining 554



Table 1: Differences between enrollment reason sen-
timent components for students with different demo-
graphics.

Sentiment component Spearman’s ρ

Gender (female = 1)

Economy .106

Fear and disgust .104

Joy .085

Politeness .082

Virtue adverbs .081

Age group

Fear and disgust .101

Respect .066

Certainty -.057

Politeness .056

Objects .052

Overall accuracy was modest. It is, however, notable that
the prediction was better than chance, given the difficulty
of the problem—predicting student engagement before the
course even begins. In comparison, Robinson et al. [7] trained
models to predict course dropout from extensive text features.
They achieved a similar degree of accuracy (AUC = .564
versus .500 chance level), despite using features capturing all
types of words and word pairs—not just sentiment words.

RQ3: Is sentiment of enrollment reasons equally pre-
dictive of engagement across different courses and
demographics? We re-trained the classification model
in research question 2 to measure generalization by cross-
validating across courses and demographics instead of four-
fold cross-validation. Table 2 details the results.

Course-level cross-validation resulted in notably lower accu-
racy than four-fold cross-validation (overall ρ = .066 versus
.102), indicating that sentiment of students’ enrollment rea-
sons was less predictive across courses. Accuracy, when
testing on the Android Apps course, was particularly notable,
in that it was not significantly above chance despite having
3,050 students. Conversely, engagement prediction did gener-
alize well from other courses to the Subsistence Marketplaces
course (ρ = .119).

Models did not generalize well across genders compared to
the four-fold model that ignored gender (overall ρ = .073
versus .102). However, female and male results were similar
(ρ = .085 and .067 respectively).

Conversely, predictive models generalized well across age
groups (overall ρ = .103). Accuracy was consistent as well,
ranging from ρ = .078 to .133. Because there was little
fluctuation in ρ across age groups, it follows that age group
and sentiment were unrelated, at least with respect to en-
gagement (though there were differences in sentiment overall;
see Table 1).

There was a large degree of variation in prediction accuracy
across different geographical regions, ranging from ρ = -.019
to .368. However, several of these regions were represented

by only a few students (as low as 12), so results should be
approached with an appropriate degree of caution. Overall
accuracy was notably lower than the four-fold model (ρ =
.070 versus .102), indicating that sentiment of enrollment
reasons was unequally predictive across regions.

Table 2: Classification accuracy (Spearman’s ρ)
when predicting course engagement generalizing
across courses and demographics.

Cross-validation approach ρ p-value N

Leave one course out

Android Apps -.009 .637 3,050

E-Learning Ecologies .091 .009 830

Organic Chemistry .021 .565 782

Subsistence Marketplaces .119 .001 728

Sustainability .052 .001 3,937

Overall result .066 .000 9,327

Leave one gender out

Female .085 .000 4,061

Male .067 .000 5,266

Overall result .073 .000 9,327

Leave one age group out

< 18 .133 .175 105

18-24 .105 .000 1,484

25-29 .078 .001 1,931

30-39 .082 .000 2,471

40-49 .112 .000 1,457

50-59 .108 .000 1,096

> 59 .119 .001 783

Overall result .103 .000 9,327

Leave one region out

Africa .171 .177 64

Asia .081 .089 444

Australia -.019 .863 81

Central and South America .124 .110 167

Europe .101 .003 865

North America .074 .000 7,694

Other .368 .239 12

Overall result .070 .000 9,327

4. GENERAL DISCUSSION
We expected gender, age, and geographical variation among
students would relate to the sentiment they express in their
reasons for enrolling. For example, there were clear differ-
ences in rates of enrollment for females and males depending
on course topic, especially for the Android Apps course (much
higher male enrollment). Such enrollment differences could
be driven, in part, by sentiment at the time of enrollment.
In fact, we found differences in the sentiment of students’
reasons for enrolling among students of differing genders and
ages, though less difference across geographical regions. Both
female and older students shared an increased expression of
fear and disgust compared to their male and younger student
peers, respectively (Table 1).

We also expected sentiment of enrollment reasons to be pre-
dictive of course engagement, though not to a large degree
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since there are other possible factors at play (e.g., individual
differences, unexpected life events, quality of instruction). In-
deed, we found a predictive random forest classification model
based on sentiment was significantly better than chance when
predicting three levels of engagement. However, prediction
accuracy was greatly impacted by geographical region (Table
2). It is possible that the results are indicative of regional
differences between students. For example, cultural expecta-
tions could impact expression of sentiment, as could use of
English as a second language—as is likely the case for many
students outside North America.

Our findings suggest design choices for MOOCs with data-
driven interventions to improve retention (e.g., [10]). Stu-
dents’ enrollment sentiment could be analyzed to predict
engagement or enrollment with the goal of driving interven-
tions. Given modest accuracy, such interventions should be
“fail-soft”, but would also be combined with existing models
in an ensemble to target interventions more accurately.

4.1 Limitations and Future Work
In this study we explored the sentiment of students’ reasons
for enrolling in MOOCs. However, some students might
stay in MOOCs for different reasons than why they enrolled.
In other words, they might discover unexpected value in a
MOOC that extends or replaces the original reasons they
had for enrolling. Future work should extend this research
to consider how students’ reasons for remaining in a MOOC
evolve over time, and in particular how sentiment of their
reasons changes in response to successes and failures they
experience.

Some of our results were also limited by sample size despite
the large number of students considered. Certain compar-
isons between demographic groups and predictive model
generalization across demographics would have benefited
from more data. For instance, there were only 64 students
from Africa (Table 2) in our data, and even though results
suggest the engagement prediction model generalized well to
these students, it is unclear without additional data. Future
work should focus on groups underrepresented in MOOCs
so that they are not “left behind” by models and analyses
tuned for traditional majority students.

5. CONCLUSION
In this paper we examined the sentiment of students’ self-
reported reasons for enrolling in MOOCs, and found that
there were demographic differences. Although those differ-
ences were small, they consistently predicted some of the
variation in course achievement across five different MOOCs.
Our findings will lead to future work understanding students’
learning objectives, especially with respect to better under-
standing how learners from different backgrounds approach
courses differently. It is our objective that this will eventually
lead to MOOCs that are designed to support the needs of
all students.
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ABSTRACT
To investigate the reliability and validity of online exams
as a replacement of traditional on-paper examinations, we
compared simultaneously given online and traditional on-
paper weekly quizzes in an introductory Newtonian mechan-
ics course. The online quizzes were composed of approxi-
mately 10 questions and the on-paper quizzes of one or two
problems hand-graded with a rubric. Both correlated com-
parably with the traditional long problems on the hand-
graded final exam, but the online quizzes correlated better
with both the concept questions and the Mechanics Reason-
ing Inventory [3] on the final exam. The overall correlation
of the online quizzes with the final examination was high, r
= 0.88. We conclude that online quizzes are a better over-
all measure of student ability in mechanics, likely due to
a number of factors: research-developed online questions,
broader coverage due to having more questions, absence of
grading error, and an observed greater reliability (freedom
from random testing error). Online examinations offer ad-
vantages such as immediate feedback for the students, re-
duction of grading errors, stable year to year comparisons of
student knowledge, and reduction of faculty and staff time
spent grading. Additionally, their adoption would provide
key outcomes data that would benefit EDM studies of stu-
dent knowledge and learning.

1. INTRODUCTION
A central objective of EDM is to assess student knowledge
and skills, ideally in real time. Unfortunately, in most on-
land campus settings, assessment is administered on paper,
making it difficult to get detailed student response data into

digital form for subsequent data mining. “Traditional”hand-
graded, open response symbolic problems with rubric-based
partial credit grading have long been considered the gold
standard of assessment by most science and engineering in-
structors.

In order to move instructor practice towards online exams
we must show instructors that online exams are at least
as effective at measuring student knowledge as traditional
on-paper exams. Prior work has shown that carefully de-
signed multiple choice questions can approximate tradition-
ally hand-graded open response problems [2, 6].

This work extends these findings by showing that online
quizzes are at least equal to simultaneously administered
on-paper quizzes at predicting scores on traditional hand-
graded problems on the final exam. Importantly, the online
quizzes are significantly better predictors of scores on con-
ceptual questions on that exam.

2. PROCEDURES
To compare online quizzes with traditional testing, we ad-
ministered weekly quizzes, each comprised of a 25 minute
on-paper quiz and a 25 minute online quiz. We compared
these quizzes with each other and with other assessments
including the final exam. The on-paper quizzes consisted
of traditional long-form questions that were graded using
a rubric to assign partial credit. The online quizzes were
drawn from a comprehensive set of online assessments that
our RELATE.MIT.edu group is making, each concentrat-
ing on a single topic that would correspond to one week of
instruction in a typical introductory Newtonian mechanics
course or a single chapter in a typical textbook (e.g. Momen-
tum, Energy, Newton’s Laws, Angular Kinematics, etc.).

To make the online quizzes, we combined questions from
research-developed instruments where possible [5, 4] with
questions previously used in MOOCs or large on-campus
courses for which we were able to calculate Item Response
Theory difficulty and discrimination parameters for each
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question. Higher discrimination questions yield more infor-
mation about student ability. The final weekly quiz ques-
tions are selected from this corpus based on three criteria:
achieving uniform coverage across subtopics, high discrim-
ination and appropriate difficulty, and more quantitative
emphasis than typically found on concept tests. We coded
questions requiring numerical or symbolic response using the
appropriate open response formats.

Two weekly quizzes (weeks seven and nine) were not com-
posed according to this approach. The week seven online
quiz consisted of our Angular Procedures Test, an assess-
ment being developed to measure students’ ability to per-
form basic calculations of quantities such as torque, angular
momentum, etc., and was all open response; the week nine
online quiz consisted of the problem decomposition portion
of the Mechanics Reasoning Inventory [3] and was all multi-
ple choice. Both of these correlated with the average of the
other tests at the r ≈ 0.1 level and they were dropped from
further analysis.

To account for the variation in mean quiz score from week
to week, we calculated z-scores [(deviation from class av-
erage)/(standard deviation)] for every student for the on-
paper and online portions of each week’s quiz.

Many of the online quiz questions allowed several attempts.
We suspect a priori that a correct answer offered on the
first attempt is indicative of greater ability than one given
after one or more incorrect attempt. Furthermore, the on-
line quizzes include both multiple choice and open response
questions that emphasize conceptual and calculational abil-
ity respectively. Consequently, we have explored weighting
schemes which award credit differentially according to the
number of attempts made and the format of the question.

All of the weighting schemes we studied belong to a three
parameter family defined by

sadj(wo, PM , PO) = (1 − wo)
[
(1 − PM )sM,1st + PMsM,ev.

]
+ wo

[
(1 − PO)sO,1st + POsO,ev.

]
(1)

where sM,1st is the score a student earned on their first at-
tempts on the multiple choice questions, sM,ev. is the score
earned by the student on multiple choice problems including
all attempts, and likewise sO,1st is the first attempt score on
open response questions, and so on. The parameter wo con-
trols the relative weight given to open response and multiple
choice problems and PM and PO control the amount of par-
tial credit awarded to students who submit correct answers
after already having made incorrect attempts on multiple
choice and open response questions, respectively. The offi-
cial grades used in the course were calculated with wo = 1

2
(i.e. weighting multiple choice and open response equally)
and PM = PO = 1 (i.e. students got full credit if the ever got
the correct answer within the allowed number of attempts).

In the following sections we evaluate the weekly quizzes on
the basis of self-consistency and correlation with traditional
measures of student knowledge.

Corr. w/
Scheme α Final p(
1
2
, 0.0, 0.0

)
0.74 0.83 0.00012(

1
2
, 0.7, 0.7

)
0.78 0.86 0.00004(

1
2
, 1.0, 1.0

)
0.76 0.86 0.00005

(0.35, 0.4, 0.8) 0.80 0.88 0.00002

Table 1: Cronbach’s α and correlations with fi-
nal exam scores are presented for weekly on-paper
quizzes as well as weekly online quizzes with four
different weightings. The notation for the online
weighting is a list of the parameters (wo, PM , PO), as
defined in Equation 1. Thus, for example,

(
1
2
, 1.0, 1.0

)
corresponds to equal weighting of multiple choice
and open response with no penalty for multiple at-
tempts. The final line is the scheme which maxi-
mizes correlation with the final exam. For the re-
mainder of the paper, we use the parameters in the
second line

3. ANALYSIS OF SELF-CONSISTENCY
To quantify the week to week consistency of the written
and online tests, we calculated Cronbach’s α parameter for
both test types. Cronbach’s α is a standard statistic used in
psychometrics to measure the extent to which a set of items
measure the same underlying construct, and is defined as

α =
Kc̄

(v̄ + (K − 1)c̄)
(2)

where K is the number of items (in this case K = 11, the
number of weekly quizzes), v̄ is the average of the variances
of the individual items (v̄ = 1 in this case because of the use
of z-scores), and c̄ is the average of all covariances between
the items in the assessment. Results are summarized in
Table 1 and Fig. 1.

Cronbach’s α ranges between zero and one, with zero cor-
responding to no correlation between items (quizzes). An
assessment with an α above 0.7 is considered to have ac-
ceptable self-consistency. Hence the value 0.78 observed here
indicates good consistency and suggests that there is little
systematic dependence of students’ ability on the topic of
the week.

Of particular note is that all weighting schemes for the online
quizzes resulted in better self-consistency than that of the
written quiz. Since 1 − α is the ratio of the error variance
to the observed test variance (which is 1 for z-scores), the
online quizzes have at least one third less error than the
written quizzes.

4. CORRELATION WITH OTHER ASSESS-
MENTS

Hestenes’ revolutionary Force Concept Inventory [1] showed
that success on traditional calculational problems did not
imply understanding of concepts. Similar considerations led
us to create the Mechanics Reasoning Inventory (“MRI”)
that tests students’ understanding of which physics princi-
ples apply in a given situation [3]. We administered the
MRI as part of the final exam as well as including addi-
tional more general concept questions (CQ). Thus the final
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Figure 1: The self-consistency of the online quizzes
and their correlation with different components of
the final exam are plotted as a function of the
amount of credit awarded to correct answers submit-
ted after incorrect answers, independent of problem
type. The weightings depicted consist of sadj(

1
2
, p, p)

with p ranging from 0 to 1. A value of p ≈ 0.7 gives
nearly optimal Cronbach’s α and correlation with
the final exam, so except where otherwise noted this
is the value we have used elsewhere in the paper.

exam (“FIN”) had two types of conceptual questions (MRI
and CQ), as well as traditional problems requiring analytical
answers.

The multiple choice (MC) and open response (OR) parts of
the online online quizzes are mostly conceptual and calcula-
tional respectively, and were averaged separately. To explore
which parts of the final are best correlated with which type
of online quiz questions, we found the correlation coefficients
as a function of wO, the weight of the open response grade
vs the MC grade. (See Fig. 2.)

Our most dramatic finding is that all measures of conceptual
knowledge correlate best with predictions based solely on the
MC grade on the online quizzes. Final conceptual knowledge
correlates poorly with the online OR quiz scores (0.40), and
even worse with with the on-paper quizzes (0.37).

Turning to the traditional symbolic response final questions,
we see that the online quiz scores (weighted 3:1 on OR)
correlate at 0.83 vs. only 0.78 for the written quiz scores.
This is suggestive that the long-form, symbolic, open re-
sponse written quizzes don’t measure anything better than
the online quizzes. This finding suggests that the testing
and grading error associated with traditional problems out-
weighs any intrinsic advantage they may have for assessing
students. Even if symbolic open-response questions are the
“best” indicator of student ability, the online quizzes have
better ability to predict this measure because they have less
intrinsic error.

5. DISCUSSION AND CONCLUSION
The major limitation of this study is that only N=15 stu-
dents took the final exam. Thus the statistical errors on the

Figure 2: The correlation of the online quizzes with
different components of the final exam are plotted
as a function of the fractional weight given to open
response questions, wo. Notably, correlation with
the concept questions CQ and MRI is best when
only MC quiz scores are included, while correlation
with the analytical problems on the final exam is
best when the OR quiz score is weighted 3:1 over the
MC quiz score. The colored horizontal lines indicate
the correlation of the written quiz questions with the
corresponding exam component.

correlation coefficients are typically 0.2 and only a few of our
results are statistically significant (at p = 0.05), which we
designate with the words ‘significant’ or ‘show’. Neverthe-
less, we have confidence in other results designated with the
word ‘suggest’. The basis of our confidence is that some test-
ing error is “common mode” - for example random testing
error on the final exam will lower the correlation coefficient
of both online and on paper quizzes with the final in a corre-
lated manner, while adding error to both. Also, our results
are robust: removing two quizzes, changing the weighting of
multiple choice vs. open response, and variations of the par-
tial credit for correct on subsequent attempts do not change
the relative performance on online vs on paper quizzes. Rep-
etition of this experiment in larger classes is highly desirable,
and is ongoing.

This experiment provides strong evidence that online quizzes
out-perform on-paper quizzes containing hand-graded tradi-
tional problems in an introductory physics course. It should
help educational data miners convince instructors to replace
on-paper testing with online testing, which will greatly fa-
cilitate studies of learning.
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4. ANALYTICS RESULTS
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ABSTRACT
Computer-aided assessment and online intelligent tutoring
systems have great potential in assessing student skills in
order to tailor course contents and adaptively provide cus-
tomized hints, when students meet a bottleneck. However,
these systems rely on the mapping of items to skills; this
is called Q-matrix. The construction of the Q-matrix is a
labor-intensive hand-engineered task; therefore, the demand
for automatically constructing the Q-matrix for online as-
sessment platforms is ever critical. To address this problem,
we utilize the autoencoder, which is an artificial neural net-
work used for unsupervised learning in the effective learning
of robust dataset representation. We propose a Q-matrix-
generated autoencoder (QAE) model, as an approach to au-
tomatically learn the Q-matrix from unlabeled data based on
skill constraint. Comparative experiments, on an artificial
and two real-world datasets, clearly show a promising result
when using the QAE to construct the Q-matrix. Moreover,
state-of-the-art performance was achieved when construct-
ing the Q-matrix on the basis of reconstructing the original
data.

Keywords
the mapping of items to skills; Q-matrix; Q-matrix-generated
autoencoder model

1. INTRODUCTION
In the field of educational data mining, the cognitive diag-
nostic models require the mapping of items to skills (i.e.,
Q-matrix) in order to determine the skills mastered by the
student. Intuitively speaking, the Q-matrix is a binary rep-
resentation illustrating the relationship between test ques-
tions and the learner’s latent traits[1]. However, it is difficult
and tedious to analyze which skills are involved in an item.
Therefore, the demand for the automatic construction of
the Q-matrix, for online assessment platforms, is ever criti-
cal and a more effective method to construct the Q-matrix
is needed. Therefore, a more effective method for automat-
ically building the Q-matrix is needed. With the growing
popularity of deep learning methods, we attempt to utilize

the autoencoder method in order to deal with the hard prob-
lem of constructing the Q-matrix. In this paper, the main
contribution of our work is to propose the QAE model, which
can automatically learn the Q-matrix from student response
data, while also being able to reconstruct the student re-
sponse data, even though with some noise included.

2. RELATED WORK
2.1 Autoencoder
An autoencoder is a neural network trained in attempting to
copy its input to its output used in the unsupervised learning
of efficient input coding. The aim of the autoencoder is to
learn an effective and robust representation for a data set.
In addition, it can also be used in dimensionality reduction.
An autoencoder[6] consists of the encoder and the decoder,
which can be defined as the deterministic mapping fθ and
gθ. An autoencoder takes an input x ∈ [0, 1]d and maps it

to a hidden representation y ∈ [0, 1]d
′

through fθ, such that:
y = fθ(x) = s(Wx + b) where s is a non-linearity such as
the sigmoid and θ = {W,b}. W is a d′ × d weight matrix
and b is a bias vector.

3. QMATRIX-GENERATED AUTOENCODER
ARCHITECTURE

Fig.1 illustrates the structure of our QAE model. The model
obtains two parts, the upper part is where we use the Q-
matrix to constrain the hidden representation, called skill
constraint, in the training process only. For example, for
the item i input data ri, the QAE model can obtain the la-
tent representation yi with qi constrained. The other part
is a basic autoencoder with corrupted input, and L(r, z) +
L(q,y) denotes the loss function for (r, z) and (q,y). In
order to improve the model’s performance, we used cross-
entropy as a loss function with an added trade-off parameter
β; then, the loss function can be rewritten as β · LH(r, z) +
(1 − β) · LH(q,y). And the structure of our Deep-QAE
model is similar to the QAE model. The only difference in
the two models is that the Deep-QAE uses a stacked autoen-
coder model consisting of multiple layers. Thereby, it is able
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to obtain a richer and more effective hidden representation
when carrying out various tasks.

Hidden Code
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Figure 1: Illustration of QAE model

Regularization is a very important technique for preventing
overfitting. In our model, we added an L1 regularization
term to the hidden representation y and an L2 regularization
term to the weight matrices W. After training QAE model
with Q-matrix constraint, our model can predict the new
Q-matrix from the new student response data. Because we
only added the Q-matrix constraint during training, we did
not add the Q-matrix to it during the prediction stage. This
is a typical way of training deep learning models using labled
data to train the model, and then using the model to predict
new data labels.

4. EXPERIMENTAL EVALUATION
4.1 Datasets Introduction
In this study, we use both artificial and real datasets in order
to evaluate the performance of the algorithm. We divided
the experiment into two parts: (i) artificial dataset, and
(ii) real dataset experiments. This makes it easier to vali-
date whether or not the algorithms succeeded in achieving
accurate results. To generate the artificial data, we model
the learner’s latent traits and the expert Q-matrix, in or-
der to generate the ideal leaner response as denoted by IDR
[5]. This allows us to obtain an accurate measure of learner
performance. With regard to real datasets, we use two
datasets consisting of fraction-subtraction data(FrcSub1)
and Japanese language learning data(CAS), respectively.
The private dataset CAS was collected from Japanese lan-
guage learning courses for undergraduates in 2013, and it
includes 73 problems and 14 skills.

4.2 Experimental Results
4.2.1 Evaluation Criteria

In the experiment, we used two popular prediction metrics to
evaluate the algorithms for each dataset; namely, Accuracy

1https://cran.r-project.org/web/packages/CDM/CDM.pdf

(Acc.), and Root Mean Squared Error (RMSE). In order to
verify the performance of our models, we used baseline ap-
proaches to compare. BMC[7]: A latent space perturbation
algorithm for Boolean matrix completion, based on weighted
Frobenius Norm, for predicting the missing values in a bi-
nary matrix of an educational area. NMF[3]: Non-negative
matrix factorization is a useful decomposition technique for
multivariate data, with the property of all matrices hav-
ing no negative elements. It can be used for dimensionality
reduction or topic extraction. MLP[4]: A multilayer percep-
tron is a feedforward artificial neural network model, with
each layer fully connected to the next one. AE[2]: An arti-
ficial neural network used for unsupervised learning in the
effective learning of a robust dataset representation.

To observe model performance, we constructed training sets
of different sizes, with 30%, 60%, 80%, and 95% of student
response data for each item. We selected the training set
randomly, from the original dataset, and used the remain-
ing data as the test set. We repeat the evaluation 10 times,
with different randomly selected training sets, and obtained
the average RMSE and Acc. evaluation metrics. We added
a dropout layer in our QAE model, and used a fixed dropout
rate of 0.5 in order to achieve adaptive regularization dur-
ing model training. The Deep-QAE network architecture
has an architecture of ‘I-K-K-K-K-I’ for the datasets. I
denotes the number of students and K denotes the number
of skills. QAE and Deep-QAE models are both implemented
by Keras on an Nvidia Tesla K80 GPU with 12 GB of mem-
ory. For the purpose of comparison, we recorded the best
performance of each algorithm by tuning the parameters.
NMF -K denotes that it has K latent factors corresponding
to the same number of skills in the Q-matrix. For the MLP
method, we used student response data as features, and used
the Q-matrix for labelling. Here, the AE model is a basic
autoencoder model, with the same network structure as our
QAE model. Moreover, it handles the student response data
without skill constraint.

Table 1 shows the average RMSE of BMC, NMF, MLP, AE,
QAE and Deep-QAE, with different percentages of train-
ing data in the three datasets, in Q-matrix generation. Our
models outperform other algorithms over all three datasets,
with different training percentages, in addition to obtain-
ing lower RMSE. For instance, when the training data is
greater than 60%, our models perform better than other
algorithms. More importantly, with the increase in skill de-
lineation complexity with regard to the question items, it
becomes more difficult for experts in related fields of knowl-
edge to obtain the accurate Q-matrix. For instance, for
the FrcSub dataset, the questions are intended for primary
school students; therefore, they can easily be defined by hu-
man experts. However, in the CAS dataset, the Japanese
learning questions are designed for undergraduates; there-
fore, defining them is a more complicated and difficult task.
Then, with the increase in the complexity of the real-world
Q-matrix, the BMC, AE, NMF -K models do not fit the
data sets very well and cannot obtain good results for Q-
matrix generation. Consequently, theMLP algorithm’s per-
formance is barely satisfactory.

Table 2 shows accuracy results, which compare NMF -K,
BMC, AE, MLP , QAE, and Deep-QAE. We found that
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Table 1: RMSE of the experimental Q-matrix generation results

Model
SimulatedData FrcSub CAS

30% 60% 80% 95% 30% 60% 80% 95% 30% 60% 80% 95%

NMF -K 0.7259 0.7225 0.7249 0.7249 0.6101 0.6212 0.6267 0.6283 0.4823 0.5005 0.5207 0.5368
BMC 0.6597 0.6780 0.6789 0.6863 0.6020 0.5968 0.5809 0.5916 0.5683 0.4681 0.4713 0.4713
AE 0.6702 0.6605 0.6607 0.6469 0.7062 0.6960 0.7199 0.7490 0.7009 0.8018 0.7724 0.7432

MLP 0.5098 0.4783 0.4549 0.4480 0.4089 0.3865 0.4021 0.2798 0.4550 0.4437 0.4324 0.4244
QAE 0.500 0.4997 0.4470 0.3925 0.4720 0.4211 0.4424 0.3560 0.5115 0.4722 0.4310 0.4085

Deep-QAE 0.5262 0.4767 0.4465 0.4085 0.4038 0.3817 0.3883 0.2414 0.4549 0.4397 0.4074 0.4012

Table 2: Accuracy of experimental Q-matrix generated results

Model
SimulatedData FrcSub CAS

30% 60% 80% 95% 30% 60% 80% 95% 30% 60% 80% 95%

NMF -K 0.4731 0.4780 0.4745 0.4745 0.6275 0.6138 0.6069 0.6050 0.7674 0.7494 0.7289 0.7118
BMC 0.5325 0.5300 0.5313 0.5275 0.6375 0.6438 0.6625 0.6500 0.6808 0.7808 0.7779 0.7779
AE 0.5502 0.5628 0.5619 0.5771 0.4920 0.5125 0.4783 0.4250 0.5033 0.3567 0.4024 0.4446

MLP 0.7089 0.7331 0.7600 0.7583 0.8125 0.8297 0.8156 0.8625 0.7732 0.7757 0.7800 0.7804
QAE 0.7489 0.7496 0.7987 0.8292 0.7759 0.8187 0.8000 0.8375 0.7379 0.7760 0.8129 0.8304

Deep-QAE 0.7227 0.7719 0.7975 0.8083 0.8170 0.8359 0.8313 0.9000 0.7747 0.7974 0.8329 0.8357

the prediction results from these datasets provide a more
stable prediction accuracy in Q-matrix generation. This in-
dicates that our QAE models perform better in the auto-
matic learning of the Q-matrix from unlabeled real-world
data based on skill constraint, while simultaneously recon-
structing the original dataset by using the reconstruction
properties of autoencoder model.

Specifically, in the CAS dataset, our models can achieve best
performance for more complex, real-world datasets. This
proves that our algorithms are better at modeling the hid-
den knowledge skills of question items. This demonstrates
their potential ability to capture item characteristics more
precisely, in real-world scenarios, where the questions are
very complicated, and the response data is very sparse and
include noise. In summary, we demonstrated that our model
can autonomously learn the latent knowledge skills of ques-
tion items with greater precision, even if the original re-
sponse data include some noise. Therefore, our method
is more suitable to real-world testing scenarios, where the
datasets are complicated, sparse, and contaminated.

5. CONCLUSIONS
This study was motivated by the need to develop good train-
ing algorithms for automatically mapping question items to
skills. We overcame this problem by studying the autoen-
coder applied to the Q-matrix generated task. In this pa-
per, we introduced a very simple and effective model called
QAE. Furthermore, we described our QAE architecture for
Q-matrix generation. Our QAE model can effectively learn
the Q-matrix and reconstruct the original student response
data with noise. Our experimental results show that our
QAE method provides a promising means to generating a Q-
matrix with better delineated skills, for the question items
obtained from student response data. However, the pro-
cess of Q-matrix generation is very complex; therefore, in
future work, we will need to discover a better QAE network

structure in order to capture the items’ latent traits, under
certain conditions, with a higher degree of accuracy.
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ABSTRACT 

So far, educational researchers have focused on analyzing and 

visualizing and mining digital textbook logs to enhance the 

quality of teaching and learning. Previous digital textbook works 

did not collect the data which positions of the pages learners were 

browsing in digital textbooks unless eye-tracking technologies. 

This paper proposes a method to collect the data which positions 

of the pages learners were browsing in the digital textbooks. To 

discover various learning behaviors from digital textbook logs 

collected by our method, this study adopts non-negative matrix 

factorization technique. We used 50-page browsing and 867-block 

browsing logs of 36 students, and discovered five kinds of 

browsing patterns.  

Keywords 

Digital textbook, non-negative matrix factorization, data mining. 

1. INTRODUCTION 
A digital textbook has been known as an e-textbook, electronic 

book and e-book. In recent years, the digital textbook 

technologies have been introduced to schools and universities in 

many countries [1], [2], [3]. Japan governments announced to 

introduce the digital textbooks into all K12 schools by 2020 [4]. 

Majorities of countries’ digital textbook policies only focus on 

introducing the digital technology. In the digital textbook studies, 

researchers suggested that introducing digital textbook 

technologies lead to enhance the learning efficacy and quality of 

education. 

Recently, a few researchers have focused on analyzing, 

visualizing and mining the digital textbook logs in order to find 

the following points [5], [6], [7], [8]: (1) learning materials to be 

improved, (2) learning processes and learning patterns, (3) 

students’ comprehensive level. In analyzing digital textbook logs, 

they use the data which pages the learners were browsing in the 

digital textbooks. But, they did not consider the data which 

positions of the pages the learners were browsing in the digital 

textbooks. It is difficult to collect the data unless using eye-

tracking technologies. In addition, it is difficult to give eye-

tracking equipment for all students because eye-tracking 

equipment is a little expensive. 

To tackle the issue, this study proposes a method to collect the 

data. By analyzing the logs by our method, it enables teachers to 

grasp which positions of the pages learners were browsing in the 

digital textbooks.  

However, it is insufficient to understand behaviors of learners 

because of their diversity and high dimensionality. To discover 

their various learning behaviors, this paper adopts non-negative 

matrix factorization (NMF) technique [11], which is known as 

akin to principal component analysis. This study analyzes to 

discover their browsing patterns based on two methods: (1) which 

pages learners were browsing in the digital textbooks and (2) 

which positions of the pages learners were browsing in the digital 

textbooks.  

 

2. DIGITAL TEXTBOOK SYSTEM  
To collect more detailed data about digital textbooks, this study 

developed a digital textbook system called SEA (Smart E-

textbook Application)-Reader. Figure 1 shows the interface of 

SEA-Reader. 

 

 

Figure 1. SEA-Reader interface 
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By using the system, learners can use several functions such as 

next, prev, bookmark, highlight and memo. Unlike previous 

digital textbook works [9], [10], the system automatically hides 

the texts in the digital textbooks with mask processing before the 

learners browse the texts in the digital textbooks. For example, if 

there are five text areas in a page as shown in Figure 2, the system 

covers the text areas in each row with mask processing. 

3. METHOD 
To discover several browsing patterns, this study uses non-

negative factorization (NMF). NMF approximately decomposes a 

matrix of n×m positive numbers V as product of two matrices: 

 

According to Shimada et al. [12], they reported that the matrix V 

named “browsing matrix” is represented by the fact whether a 

student browsed a page or not. More specifically, they set an 

element  of the matrix V by  

 

where  is the duration of page i browsed by student j. The 

decomposed matrices represent two latent relationships: “page 

browse vs. patterns” given by matrix W and “patterns vs. 

students” given by matrix H. 

Unlike their study, this study represents that the matrix V named 

“masked browsing matrix” is represented by the fact whether a 

student browsed a masked text area in a page or not. We set an 

element  is the duration of a masked text area i browsed by 

student j. The decomposed matrices represent two latent 

relationships: “masked block browse vs. patterns” given by matrix 

W and “patterns vs. students” given by matrix H 

4. EXPERIMENTS  

4.1 Instruments 
The browsing matrix and masked browsing matrix were created 

from 36 first-year students in a programming education course at 

Tokyo University of Agriculture and Technology in Japan. The 

students were required to preview a digital textbook in advance 

before the lecture. Table 1 shows the details of the digital 

textbook. The digital textbook consists of five sections. The first 

section describes the contents of previous lecture regarding an 

array pointer. Second section describes a list structure. Third 

section describes an example program of the list structure. Fourth 

section describes an exercise regarding the list structure. Final 

section describes hints to complete the exercise.  

The digital textbook consists of 50 pages and masked 867 blocks. 

Therefore, the V of the page browsing pattern is represented by 

36-row  50-column matrix as shown in Figure 2, while the V of 

masked browsing pattern is 36-row  867-column matrix as 

shown in Figure 3. NMF was performed to find five patterns 

based on two matrices: “browsing matrix” and “masked browsing 

matrix”. 

Table 1. The Structure of the digital textbook 

 

 

Figure 2. browsing matrix (36-row  50-column). The red and 

blue color show the value of , red for one, blue for zero, where 

the th was set to be 10 seconds 

 

Figure 3. masked browsing matrix (36-row  867-column). The 

red and blue color show the value of , red for one, blue for zero, 

where the th was set to be 5 seconds 

4.2 Results 

4.2.1 Browsing matrix 
Figure 4 shows the decomposed browsing matrix W and Figure 5 

shows the decomposed browsing matrix H. The color scale is 

decided from green (low) to red (high). Each pattern can be 

roughly described as Table 2. 

 

Figure 4. Visualized browsing matrix W  

 Detail 

Page 1~7 The contents of previous lecture 

Page 8~19 A list structure 

Page 20~30 An example program of the list structure  

Page 31~36 An exercise regarding the list structure 

Page 37~50 Hints of the exercise 
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Figure 5. Visualized browsing matrix H 

 

Table 2. Discovered browsing patterns 

 

After the NMF, this study summarized the details of students’ 

learning achievements based on each learning pattern as shown in 

Table 3. The average score and the standard deviation mean the 

scores calculated from top 10 students in each learning pattern. 

 

Table 3. Details of students’ learning achievement based on 

each learning pattern (Browsing matrix) 

 

We compared each pattern with attendance, exercise and report 

scores. The exercise was conducted after a teacher explained 

about the contents of the digital textbook. The average score of 

the exercise of the pattern 5 was lower than other patterns, while 

pattern 1 got the highest score. The average score of the report of 

the pattern 1 was higher than other patterns. We guess that the 

students in the pattern 1 were able to enhance their understanding 

because they previewed whole pages in the digital textbook well. 

On the other hand, the students in pattern 5 were not able to 

enhance their understanding because they only previewed the 

former parts in the pages. 

4.2.2 Masked browsing matrix 
Figure 6 shows the decomposed mask browsing matrix W and 

Figure 7 shows the decomposed mask browsing matrix H. The 

color scale is decided from green (low) to red (high). Each pattern 

can be roughly described as Table 4. 

 

 Table 4. Discovered masked browsing patterns 

  

Figure 6. Visualized masked browsing matrix W  

 

Table 6 shows the details of students’ learning achievements 

based on the masked browsing matrix. The average score and 

standard deviation mean that the scores calculated from top 10 

students in each learning pattern. 

We compared each pattern with attendance, exercise and report 

scores. The average score of the pattern 1 in the both exercise and 

report were higher than other patterns. We guess that the students 

in the pattern 1 were very diligent because they clicked whole 

blocks to preview the contents of the digital textbook. On the 

other hand, the average score of the pattern 2 in both exercise and 

report were lower than the pattern 1. We guess that the students in 

the pattern 2 were not able to enhance their understanding because 

they did not click the masked blocks in the digital textbook well. 

The average scores of the pattern 3, 4 and 5 were lower than 

pattern 1. The students in the pattern 3, 4 and 5 did not previewed 

the contents from page 31 to 50. The contents of these pages were 

related to the exercise and report to enhance their understanding. 

Therefore, they did not get better exercise and report scores than 

the pattern 1. 

Table 6. The details of students’ learning achievement based 

on each learning pattern  (Masked browsing matrix) 

 

 Detail 

Pattern 1 Browse the whole pages 

Pattern 2 Browse the pages from 1 to 36 

Pattern 3 Browse the pages from 1 to 30 

Pattern 4 Browse the pages from 1 to 19 

Pattern 5 Browse the pages from 1 to 7 

 
Attendance 

(Scoring 14) 

Exercise 

 (Scoring 10) 

Report 
(Scoring 20) 

 AVG. SD. AVG. SD. AVG. SD. 

Pattern 1 13.3 1.18 9.6 0.8 19.5 0.67 

Pattern 2 13.3 1.18 8.6 2.01 18.6 2.91 

Pattern 3 13.9 0.3 8.4 2.49 17.5 3.07 

Pattern 4 13.3 0.9 8.1 3.28 17.7 3.92 

Pattern 5 13.5 0.92 8 3.09 17.6 3.37 

 Detail 

Pattern 1 Browse the whole blocks 

Pattern 2 
Browse blocks from the former to middle parts in the 

whole pages 

Pattern 3 
Browse whole blocks in the pages from 1 to 17 and from 

20 to 30 

Pattern 4 Browse whole blocks in the pages from 1 to 19 

Pattern 5 Browse whole blocks in the pages from 1 to 7 

 
Attendance 

(Scoring 14) 

Exercise 

 (Scoring 10) 

Report 

(Scoring 20) 

 AVG. SD. AVG. SD. AVG. SD. 

Pattern 1 13.7 0.45 9.2 1.83 18.2 2.89 

Pattern 2 13 1.34 7.4 3.46 17.4 3.9 

Pattern 3 13.7 0.45 8 2.36 17.5 4.94 

Pattern 4 13.5 0.92 8 3.34 18.1 1.77 

Pattern 5 13.7 0.45 7.8 3.09 17.6 2.08 

Figure 7.  Visualized masked browsing matrix H  
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4.3 Discussion 
By decomposing the browsing matrix and masked browsing 

matrix, this study discovered five patterns as shown in table 3 and 

5. The results of the browsing matrix indicated that students got 

the highest exercise and report scores because they previewed 

whole pages in the digital textbook well. However, we were not 

able to find the fact of whether students really previewed the 

contents in the pages if using the browsing matrix.  

Therefore, we found that the fact of whether they really browsed 

the contents in the pages by using the masked browsing matrix. 

As shown in Table 5, when they previewed whole pages, there 

were two patterns: “browse the whole blocks (pattern 1)” and 

“browse blocks from the former to middle parts in the whole 

pages (pattern 2)”. 

In the pattern 1, we guess that students were very diligent because 

they clicked whole blocks to preview the contents of the digital 

textbook. Consequently, they got the highest exercise and report 

scores. On the other hand, students in the pattern 2 were not able 

to preview whole blocks in the pages well, especially, page 8 to 

19. The contents of these pages include how to use memory 

allocation and freeing. This is an inevitable in programming a list 

structure. Therefore, the understanding level of the students in the 

pattern 2 were poorer than pattern 1 as shown in table 6 because 

they really did not browse whole blocks in the pages. 

In summary, this study newly found two browsing patterns as 

shown in table 7. In considering students’ learning behaviors, we 

believe that these findings can improve their learning behaviors 

with teacher support. 

Table 7. The summarized browsing patterns 

 

5. Conclusion and future work 
This papers newly proposed a data collection regarding digital 

textbooks. By using our digital textbook system, we can collect 

logs of whether students browsed the contents in a page in digital 

textbooks. This study conducted NMF to find newly several 

students’ learning behaviors compared with learning behaviors 

found from previous digital textbook systems. We found out that 

NMF could provide reasonable decomposed matrices to explain 

browsing patterns. 

As a result, we found two learning patterns: “browse the whole 

blocks (pattern 1)” and “browse blocks from the former to middle 

parts in the whole pages (pattern 2)”. However, it is yet to be 

conducted the evaluation experiment using the findings. In 

addition, we need to investigate the appropriate number of 

patterns because we predefined the number of patterns in this 

paper.  
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Browsing 

matrix 

Masked 

browsing matrix 

Browse the whole pages ☑ ☑ 

Browse the pages from 1 to 7 ☑ ☑ 

Browse the pages from 1 to 19 ☑ ☑ 

Browse the pages from 1 to 30 ☑ ☑ 

Browse the pages from 1 to 36 ☑ ☑ 

Browse the whole blocks in the 
whole pages 

 ☑ 

Browse blocks from the former to 

middle parts in the whole pages 
 ☑ 
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ABSTRACT
Trained models such as Support Vector Machines are gov-
erned by parameters. Appropriate parameter settings can
make the difference between success and failure. Identify-
ing useful parameters is time-consuming and error prone,
nor are there always good parameters to find. We evalu-
ated whether or not hyperparameter tuning, via Differen-
tial Evolution (DE) provides significant improvements on 4
EDM tasks with 3 data algorithms. DE found near optimal
parameter settings for SVMs but not for DT or RF. And
there were significant differences in the weights of those top
features as observed, ultimate DE may be suitable for other
general tuning tasks.

Keywords
Hyperparameter optimization, Differential evolution, Fea-
ture importance

1. INTRODUCTION
The availability of student data from learning management
systems, course assessments, and online actions, allows us
to perform deep analyses of pedagogical strategies, student
interventions, and other educational activities. Prior re-
searchers [23, 17] have surveyed the literature and found
that the most common tasks in the educational domain have
been resolved through data mining techniques. However,
if the prediction model cannot reach a high level of per-
formance [10], the results are of no use to anyone. These
models come with different parameter settings which, if set
correctly, would improve the performance of the model [13,
9]. These improvements may sometimes make the difference
between finding a well-structured model, or finding static.
Finding good parameters however, it is costly and time-
consuming to identify good parameters. Many researchers
often rely on default parameter settings which are often
package-specific.

We used Differential Evolution(DE) to tune model parame-
ters faster to obtain a near optimal configuration. [24]. We
focus on three of the most prevalent models in EDM: deci-
sion trees (DT), random forests (RF), and support vector
machines (SVM) [20, 23, 17]. We answer two research ques-
tions: RQ1: Does tuning improve the performance
scores of different models? RQ2: Does tuning make
features stand out from the rest?

2. DATA
This study is conducted on data from UCI machine learning
repository and kaggle. Table 1 shows the overview of the
datasets. The reproduction package of the code and the
prepossessed data is available to download from https://

github.com/amritbhanu/EDM591_Hyperparameter

Table 1: Dataset Overview
Dataset

# of
Instances

# of
Attributes

Associated
Tasks

Area

D1 math 395 33 Regression Social
D1 portuguese 649 33 Regression Social
D2 814 102 Classification Computer
D3 480 16 Classification Education

The D1 [6]1 is student performance data from UCI which is
a regression task to predict final grades. D2 [21]2 covers soft-
ware engineering teamwork assessment in education setting
from UCI. This dataset consists student teamwork data from
San Francisco State University. Features used here capture
aspects of students performance in a team. And D3 [2, 1]3

was collected by Kaggle which is a platform for predictive
modelling and analytic competitions to produce the best
models for predicting data.

We preprocessed the datasets as follows: 1) Filled out miss-
ing values with their corresponding median values; 2) Con-
verted categorical attributes via One-hot encoding [5]; and
3) Normalized each feature with min-max normalization [18].
For the different datasets, performance measures, and mod-
els, we conducted a 5*5 stratified [22, 14] cross-validation
study to make our results more robust. And we checked the
amount of variance for each models. For implementations of
these models, we used the Scikit-Learn toolkit [19] and we
relied upon their default parameters as our baseline.

1http://archive.ics.uci.edu/ml/datasets/student+
performance
2http://tiny.cc/dataset_2
3https://www.kaggle.com/aljarah/xAPI-Edu-Data
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3. METHODOLOGY
3.1 Hyperparameter Optimization
Hyperparameter optimization is the systematic search for
ideal parameters for a given model and dataset or learning
task. Prior literature suggests some of the most popular op-
timizers like simulated annealing (SA [8]), various genetic
algorithms [12], DE [24], tabu search and scatter search [11,
3, 15], particle swarm optimization [16], etc. make use of
Hyperparameter Optimization. This tells that hyperparam-
eter optimization has been vastly studied in the literature
and its impact is well understood [4]. Yet issues of tuning
are rarely addressed when it comes to EDM domain.

DE is a stochastic based parameter optimization algorithm [24,
7]. DE is used to optimize either the MSE or F1-score. DE
operates through similar computational steps as employed
by a standard evolutionary algorithm (EA) but there is a key
difference on how it evolves its candidates. DE is smarter
than other optimization techniques like certain classes of
GAs, SA as they mutate all their attributes independently,
whereas DE supports vector-level mutation that retain the
association between variables in the space [7].

DE generates new Candidates by extrapolating between cur-
rent solutions from the Population5. Three solutions a, b
and c are selected at random12. For each parameter i, at
some probability cr13, we replace the old setting candidate
with newf . We use an extrapolation equation17, newf =
a[i] + f ∗ (b[i] − c[i]). There is a trim function that limits
the new value to the legal range [min,max] of that param-
eter. With every generation of DE, the Population contains
examples that are better than at least one other candidate.
As the looping progresses, the Population is full of increas-
ingly more valuable solutions which, in turn, also improves
the candidates, which are extrapolated from the Population.
Finally, we get the best (near optimal) set of parameters
from the DE9.

3.2 Machine Learning Algorithms
In this study, we analyzed the effect of different param-
eter sets on three classic machine learning models: Sup-
port Vector Machine, Classification and Regression Decision
Tree(CART), and Random Forest Tree. Table 2 shows the
parameters and the range we tuned in this study. To eval-
uate our model output, we apply weighted precision and

Table 2: Machine Learning Models Parameters
Parameters Default Tuning Range

SVM
C 1.0 [0.1, 100]
kernel rbf {linear, poly, rbf, sigmoid}
degree 3 [1, 20]

CART
min impurity decrease 0.0 [0, 1]
min samples split 2 [2, 10]
min samples leaf 1 [1, 50]
max depth None [1, 20]

Random Forest
min impurity decrease 0.0 [0, 1]
min samples split 2 [2, 20]
min samples leaf 1 [1, 20]
max leaf nodes None [2, 50]
n estimators 10 [10, 150]

Table 3: Model performances for untuned and tuned

MSE
math portuguese

SVM RF DT SVM RF DT
D1 Untuned 9.3 1.8 2.9 4.8 1.3 2.3
D1 Tuned 1.9 1.9 2.0 1.2 1.3 1.2

F1 score
SVM RF DT

P R P R P R
D2 Untuned 0.89 0.53 0.91 0.89 0.90 0.90
D2 Tuned 0.91 0.89 0.90 0.87 0.91 0.90
D3 Untuned 0.62 0.58 0.78 0.78 0.70 0.70
D3 Tuned 0.71 0.72 0.79 0.76 0.75 0.73

recall scores for classification tasks. The traditional preci-
sion score is the positive prediction value while recall score
is the true positive rate. However, in multiple classification
tasks, the unbalanced distribution of classes influences the
precision and recall values a lot. In certain situations, the
minority class result does not have much of an impact on
the total scores. To solve this problem and give an advan-
tage to small classes, we apply weighted scores [25] which
weights the average of each class by their level of support.
In addition, for regression tasks, we apply mean squared er-
ror which measures the squared error between the predicted
and actual values.

4. RESULTS
All these results were computed on High Performance Com-
puting (HPC) Servers available at NC State. They were run
on 16 cores with minimum of 2GB of RAM per core. And
we applied 10-fold-cross validation for each experiment to
make our study robust.

As mentioned above, D2 and D3 are classification tasks, so
we report precision and recall. We report MSE for D1 math
and D1 portuguese since they are regression tasks. Table 3
shows the performance comparison of tuned and untuned
results for all datasets. We only reported median of 25 re-
peats for each measure, and the values which are in bold
shows statistically significance than others.

Per the D1 results, we found that tuning improves the per-
formance of SVM(with 400% improvement) and DT signif-
icantly, however RF do not show any difference. In D2, we
observed median precision and recall values indicate tuning
improves recall with SVM significantly. Meanwhile, RF and
DT do not show much difference. In addition, D3 results
shows performance for D3 tuning improves with SVM sig-
nificantly, while RF and DT do not show much difference
for either precision or recall. Therefore, after examining the
results we can say that DE or hyperparameter optimization
improves the performance of SVM significantly by finding
optimal parameter settings.

We also note what DE choose as the optimal configurations
in those 25 repeats. As previously mentioned, we performed
5*5 cross validation, in which every time DE was run. This
way DE finds 25 different parameter settings to find the
optimal settings and that is why we report boxplots to show
the median and variance of each parameter for DT for the
3 different datasets in figure 1 and for SVM, RF, please see
online4 due to space restrictions.

4http://tiny.cc/rq1_parameters
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When considering the figures described above, we can see
that they find valid settings which fall far off from the default
settings of every learner in every dataset. For example, if we
look at the parameter min samples leaf for DT in Figure 1a,
we observe that median value is close to 25, and on the other
hand the default value is mentioned to be 1. We observed
similar kind of examples for every learner and every other
dataset. This suggests that everytime you use a learner for
a new dataset we need to run an optimizer like DE to find
the optimal settings rather than using defaults.

One important consideration for any researcher with hyper-
parameter optimization is its computational cost. We ac-
knowledge that any optimization study would be expensive
but is that justifiable to use. We observed that 1 run of
DE usually terminates DT, RF and RF within 1.5, 26.13
and 25.3 seconds respectively for each of the datasets un-
der the study. When we consider SVM, we observed that it
improves about 400% for regression analysis at a cost of 25
more seconds. Similar instances are observed for D2, and
D3. Thus it is justifiable to use an optimizer (like DE).

With respect to the second research question, each model
assigns a weight to each feature while modeling the data.
Figure 2 shows the top 10 feature importance values com-
paring untuned and tuned settings for RF for D3. Y-axis
shows the name of features and x-axis shows importance of
each of these attributes. Due to space restrictions, the re-
sults for the other models and datasets can be seen online5.

After tuning, DT finds few features which stand out com-
pletely from the others. Also, with RF it is observe that
relative feature importance changes. This kind of trend is
also observed for the math and portuguese and for D2.

This concludes that researchers, industrial people and ed-
ucation systems should be wary of using top features find
by default models to drive their analysis or product. They
might want to use tuning to identify these top features and
then use it for their analysis. Thus, we conclude that tun-
ing do impact on the importance of features in educational
machine learning models.

5. CONCLUSIONS & FUTURE WORK
Our goal in this paper was to address two research questions.
Based upon our results above we conclude that with respect
to (RQ1). We observed that hyperparameter tuning did lead
to statistically significant differences between SVM and the
other models but not between DT and RF. Thus the use
of an optimizer like DF is justified given its cost but is not
guaranteed to yield major gains. With respect to (RQ2) we
conclude that the observed feature importance does change
after using tuning and some of the features do stand out from
the rest when compared against learner’s default settings.
This indicates that the use of tuning may be informative on
a per-feature basis.

Based on our findings above, we offer some general rec-
ommendations. Hyperparameter optimization improves the
performance of the models by finding near optimal param-
eter settings. Default machine learning algorithms settings

5http://tiny.cc/rq2_features

are incorrect and we should use an optimizer like DE. Dif-
ferent datasets need different configurations to model them
accurately and hyperparameter optimization needs to be run
everytime if you are using a different data. It cannot replace
the default configurations of models from the findings of any
other tuning study. Tuning is computationally costly but
the performance gain achieved makes this cost an acceptable
increase. We can also rightly claim that in future any such
studies should involve hyperparameter optimization and DE
is a good candidate to find a near optimal solution. As a
conclusion, when educational researchers, developers, and
instructors make decisions or provide suggestion to students
based on any kind of machine learning models, such as fea-
ture selection, classification, or regression, they should keep
in mind that their machine learning models may not be as
reliable as they expect without hyperparameter tuning.

The limitation of this study is the tuning parameters and
tuning ranges that are selected by other researchers, so there
is still a small chance we achieved the local optima instead
of global optima or we failed to choose the most effective
parameter settings. In addition, we only analyzed 3 ma-
chine learning methods, and among them, decision tree and
random forest have the same core algorithm. So in the fu-
ture, we plan to analyze more machine learning methods,
e.g. Naive Bayes, with general benchmark datasets in the
educational domain.
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ABSTRACT
Item Response Theory can be used to estimate the degree
of mastery of a concept by learners, to automatically assess
their knowledge. The models stemming from this theory are
tuned to be adapted to the questions used to assess mastery.
The correct estimation of the parameters is key to be able to
have a correct estimation of the mastery. However, this es-
timation can be skewed by missing data, noise on the model,
or a lack of data.
The question we ask here in this paper is how much data,
created by a given number of students answering to a given
number of questions is necessary to retrieve reliable coeffi-
cients of the questions, when the database at disposal have
missing data. To do so we use simulated data. There are
two case studies with different levels of data emptiness: one
is the baseline and has complete information, the other has
only half information.
We find that even though IRT models seem robust against
missing values, it is not possible to use the thresholds of the
literature obtained with a full database.

Keywords
item response theory, parameter estimation, missing values

1. INTRODUCTION
Item Response Theory (IRT) models are used in psycho-
metrics to evaluate the value of a “latent trait”, the value of
a descriptor that cannot be assessed directly. IRT offers a
framework to be able to measure this unreachable feature.
These models are widely used in education to evaluate the
degree of understanding and of mastery of a piece of know-
ledge. In the educational context, that latent trait is called
“ability”.
As the“ability”cannot be assessed directly, it is necessary to
know from which amount of data it is possible for the model
to give good estimations. Some studies have been conduc-
ted, such as (Chuah, Drasgow, & Luecht, 2006) and (Şahin

∗PhD Student hosted by the society Domoscio

& Anıl, 2016), to highlight a threshold of data amount under
which the results cannot be seen as reliable. To our know-
ledge, no study has been conducted with a database where
the students only answered some of the questions, and not
all the database. This situation is very likely to happen,
for example when the learner did not have enough time to
answer all the questions.
This study uses simulated data, which therefore respects ex-
actly the IRT model. We are investigating whether the IRT
algorithm is able to retrieve the simulated questions coeffi-
cients. Data is simulated, and cleaned; we run an IRT al-
gorithm thanks to the software R; and finally the theoretical
and experimental parameters are compared and the quality
of the estimation is estimated through various indicators.

2. RELATED WORK
2.1 What is IRT?
The IRT builds a probabilistic model which hypotheses a re-
lationship between characteristics of the questions and the
mastery of the topic by the student. This model has two sets
of parameters: the latent trait dedicated to the representa-
tion of the student, and some dedicated to the representation
of the questions. In this study, we only focus on unidimen-
sional models, and the latent trait can be represented by a
unique parameter, usually noted θ.
Here, given a student Sj and given a question Qi and work-
ing with the unidimensional 2-Parameter Logistic model, the
probability of success of the student for that question can
be written:

P (Sj , Qi) =
e(ai(θj−bi))

1 + e(ai(θj−bi))
(1)

With [ai, bi] being the parameters of the question Qi. ai is
called the discrimination and it is positive. bi is called the
difficulty; it can either be positive or negative, and 0 repres-
ents the mean difficulty.
The inputs of the item response theory models are the an-
swers of the students to the questions. The likelihood of the
responses patterns given the probability of success explained
in eq. (1) is maximized so as to deduce the most likely ques-
tions coefficients and students abilities. Compared to other
evaluation theories, one of the advantages of the IRT models
is their ability to deal with missing values. There are many
methods to estimate the parameters, including Bayesian or
non-Bayesian, so we will not list them here.

2.2 Previous work
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We would like the reader to keep in mind that, depending
on the algorithm used to estimate the parameters, the para-
meters will not be the same, so as their precision; Gao and
Chen (2005) give an example of such a situation. Given
the evolution in the methods of parameters estimation, we
choose not to use studies older than 2000. This drastically
reduces the number of studies trying to evaluate the fit of
the estimation of the parameters.

RMSD is used in various studies as indicator: (Svetina et
al., 2013) and (Yavuz & Hambleton, 2017) use it on simu-
lated data to compare theoretical and experimental values
of item parameters; (Svetina et al., 2013) also uses it on
person ability. It is also used in (Şahin & Anıl, 2016) on
the item parameters where the baseline is the parameters
obtained when all the data are used; the estimation using
part of the database are said good when RMSD ≤ 0.33.
(Wyse & Babcock, 2016) uses it to have a view on items
parameters variations.
Correlation is used as an indicator by (Şahin & Anıl, 2016)
like RMSD; the results are said good when r ≥ 0.70.
Biais can be also used, like in (Svetina et al., 2013).

These studies never paid attention to the influence of missing
values, while in education, the databases are continuously
filled with missing values. They can have several origins:
different sets of questions have been given to the students,
the students did not have time to answer the question, they
chose to skip it, etc. We choose to focus on this part.

3. EXPERIMENTAL
3.1 Description of experiments
The research question can be formulated as follows: how
much data, created by a given number of students answering
to a given number of questions is required to obtain a good
estimation of the parameters of the questions, given that the
students may not answer all the questions of the database?
In this study, we do not aim at measuring the goodness of fit
of the model, since in the first axis we know that the model
is the good one: the data were simulated thanks to it.

3.2 Methods
In that study, we chose to use simulated data. This allows us
to know the latent trait of the students and the coefficients of
the questions, thus we are able to compare precisely the the-
oretical coefficients with the experimental ones. Moreover,
since the data is simulated thanks to the model which will
be applied, there is no interference of model misfit.

Data has been simulated for 50, 100, 500, 1000, 2000, and
3000 students, on 4, 8, 16 and 32 items, which make a total
of 24 situations. The abilities of the students follow a stand-
ard normal distribution, in this we follow the examples of
(Kim, Moses, & Yoo, 2015); (Neel, 2004); (Yavuz & Hamb-
leton, 2017). The discriminations of the items follow a uni-
form distribution between 0.8 and 1.8, in this we follow the
examples of (Svetina et al., 2013); (Yavuz & Hambleton,
2017). The difficulties of the items follow a standard normal
distribution, in adequacy with the abilities, in this follow the
examples of (Haberman, Sinharay, & Chon, 2013); (Svetina
et al., 2013).

For a student Sj and an item Qi this probability Pij is com-
puted by equation 1 and compared to random number com-
puted following a uniform law between 0 and 1. If it is above,
the student answered the question correctly, otherwise it is
false.

The parameters have been computed thanks to the package
mirt in R, with an“itemtype” selected at“2PL”which refers
to the 2-Parameters Logistic model.

3.3 Data cleaning
The parameters of a question cannot be evaluated if it has
never been answered, or if all the students answered the
same thing (i.e. if they all succeeded or they all failed to
that question). The data is not simulated to avoid that
situation, since it could introduce bias. Instead, we remove
the question of the database: in IRT terms, this kind of
question is useless because it does not add any information.

3.4 Cases studies
The study has been separated in two cases.

Case A. We have full data, which means that all the stu-
dents answered all the question, there is no missing value.
This case is designed to be the baseline, the “perfect case”.

Case B. The students only answered half of the questions.
Each student answers a to a different random subset of ques-
tions, without checking the number of student who already
answered the question, nor the difficulty or discrimination
of the questions.

3.5 Indicator
The results are shown in the following figs. 1 to 4. The indic-
ator is the RMSD between the experimental and theoretical
values of the questions’ coefficients, which one wants as low
as possible.
In accordance with the literature, we chose the value 0.3 as
the threshold for the RMSD (Şahin & Anıl, 2016). In the
following plots, it is represented by a bar.
We represent the results of the difficulty and discrimination
parameters for the two cases A and B.

4. RESULTS AND DISCUSSION
4.1 Experiment of axis 1
4.1.1 Results

The results of case A are shown in figs. 1 and 2. The results
of case B are shown in figs. 3 and 4.

4.1.2 Discussion
In the two cases, we can see that the difficulty parameters are
always easier to compute than the discrimination ones. This
is a phenomenon frequently noticed in the literature. As
Svetina et al. (2013) points out, the RMSD of the difficulty
would have been bigger if we had chosen b N(0, 2) instead
of b N(0, 1) because of the imprecisions “in the long tail”,
i.e. for low or high difficulties.
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Figure 1: RMSD of discrimination parameter in
case A

Figure 2: RMSD of difficulty parameter in case
A

Figure 3: RMSD of discrimination parameter in
case B

Figure 4: RMSD of difficulty parameter in case
B
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In case A, we confirm the findings of the literature and ex-
tend it to that package, which states that from 500 students
and 8 questions the results are good. However with only 4
questions, the results are a little bit weak, as can be seen
with the discrimination parameter.

Case B highlights that both the number of students and the
number of questions are important parameters. This is less
noticeable in case A because it converges towards acceptable
situation too quickly. In case B, it can be noticed by looking
at the curve representing the RMSD and the correlation of
the discrimination parameters.

Case B brings out that the relationship between the percent
of answers and the amount of data required might be linear.
Here we only have half of the data, and for the same number
of student we need twice as much questions to obtain the
same quality of results, and the same holds for the situation
with the same number of questions, twice as much students
are required to obtain the same quality of results.

4.1.3 Conclusion
The main lesson is that when we deal with a database with
missing values, we cannot use the thresholds of the literature
obtained with a full database.

5. CONCLUSION AND FUTURE WORK
In this study, we aimed at understanding the effects of miss-
ing values on the reliability of parameters estimation, and
the threshold of data amount. We highlighted that missing
data is a parameter that has to be taken into account when
one uses a database, and that the thresholds of the literature
obtained with a full database cannot be used.
When facing case A, we recommend to have at least 4 ques-
tions with 1000 students, or 4 questions with 500 students;
when facing case B, we recommend to have at least 8 ques-
tions with 1000 students, or 4 questions with 2000 students.

To complete this study, we will go through other cases of
missing data, and use other indicators, such as correlation.
That study made the hypothesis that the data respect ex-
actly the model: we will investigate the influence of noisy
data. One could also compare these results with other pro-
grams, whether other libraries in R or software such as WIN-
STEP or PARSCALE.

6. ACKNOWLEDGMENTS
The authors wish to thanks Charles Tijus and Simon Lemerle
for their help.
This study has been partially financed by the National Asso-
ciation of Research and Technology of France, and Domos-
cio, which we thank too.
This work has been partially supported by the Spanish min-
istry of Economy and Competitiveness and the European
Regional Development Fund, grant TIN 2017-83445-P.

References

Chuah, S. C., Drasgow, F., & Luecht, R. (2006). How big is
big enough? Sample size requirements for CAST item
parameter estimation. Applied Measurement in Edu-
cation, 19 (3), 241–255. Retrieved from http://www.
tandfonline.com/doi/abs/10.1207/s15324818ame1903
5

Gao, F. & Chen, L. (2005). Bayesian or non-Bayesian: A
comparison study of item parameter estimation in the
three-parameter logistic model. Applied Measurement
in education, 18 (4), 351–380. Retrieved from http://
www.tandfonline.com/doi/abs/10.1207/s15324818ame1804
2

Haberman, S. J., Sinharay, S., & Chon, K. H. (2013). Assess-
ing item fit for unidimensional item response theory
models using residuals from estimated item response
functions. Psychometrika, 78 (3), 417–440. Retrieved
from http : / / link . springer . com / article / 10 . 1007 /
s11336-012-9305-1

Kim, S., Moses, T., & Yoo, H. H. (2015). A comparison
of IRT proficiency estimation methods under adaptive
multistage testing. Journal of Educational Measure-
ment, 52 (1), 70–79. Retrieved from http://onlinelibrary.
wiley.com/doi/10.1111/jedm.12063/full

Neel, J. H. (2004, November). A New Goodness-of-Fit Test
for Item Response Theory. Journal of Modern Ap-
plied Statistical Methods, 3 (2), 581–593. doi:10.22237/
jmasm/1099268760
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ABSTRACT 

Intelligent tutoring systems (ITS) aim to optimize the learning 

experience by adapting to the needs of the individual learner. 

However, the system may not always adapt appropriately. Meta-

assessment of learner responses in ITSs can improve instruction 

efficacy and learner satisfaction. Accordingly, this paper evaluates 

the quality of semantic matching between learner input and the 

expected response in AutoTutor, an ITS which holds a 

conversation with the learner in natural language. AutoTutor’s 

dialogue is driven by the AutoTutor Conversation Engine (ACE), 

which uses a combination of Latent Semantic Analysis (LSA) and 

Regular Expressions (RegEx) to assess learner input. We assessed 

ACE via responses from eighty-six Amazon Mechanical Turk 

users, who answered 40 electronics questions. This produced a 

total of 1840 responses, from which we randomly selected 194 

responses for our sample. We computed LSA and RegEx scores 

for learner responses, and two subject-matter experts also judged 

each response. These analyses explore (1) the relationship 

between regular expressions and LSA, (2) interrater reliability 

between the two judges, and (3) the agreement between responses 

in human judgment and ACE scores computed using regular 

expressions and LSA. As expected, regular expressions and LSA 

had a moderate, positive relationship. Also as expected, the 

agreement between ACE and the human judges was encouraging, 

but somewhat lower than the agreement between the two humans.   

Keywords 

AutoTutor, natural language processing, intelligent tutoring 

systems, meta-assessment, computational linguistics. 

1. INTRODUCTION 
ITSs that incorporate natural language processing aim to 

accomplish human-like language processing to properly evaluate 

user verbal contributions and respond in an appropriate manner. 

An ideal natural language processing system would be able to 

paraphrase an input text, translate the text into another language, 

answer questions about the contents of the text, and draw 

inferences from the text (Liddy, 2011). ITSs provide 

individualized instruction and feedback to learners, typically 

without much variation from human tutoring. Large effect sizes 

regarding instructional efficacy have been observed in modern 

ITSs (d = .80; VanLehn, 2011). ITSs can cover a wide range of 

domains, including physics (AutoTutor, Graesser et al., 2004; 

Nye, Graesser, & Hu, 2014), scientific reasoning (Operation: 

ARIES, Cai et al., 2011; Operation: ARA, Halpern, Millis, 

Graesser, Butler, Forsyth, & Cai, 2012), biology (GuruTutor, 

Olney et al., 2012), and electronics (SHERLOCK, BEETLE-II; 

Lesgold, Lajoie, Bunzo, & Eggan, 1992; Dzikovska, Steinhauser, 

Farrow, Moore, & Campbell, 2014). ITSs are often less costly 

than human tutors in terms of time invested (Dorça, 2015), and, 

depending on the knowledge domain or task, may combat a 

shortage of available human tutors. Although ITSs can be costly 

and time-consuming to develop, one recent approach is to 

broaden the coverage of topics and implement more learning 

resources for existing ITSs. 

For example, a new ITS, ElectronixTutor (Graesser et al., 2017), 

integrates multiple ITSs and learning resources to focus on 

electrical engineering. ElectronixTutor was developed as part of 

the ONR STEM Grant Challenge. ElectronixTutor is designed for 

select trainees who scored above average in the Armed Services 

Vocational Aptitude Battery and are in the process of completing 

electronics courses in A-school as conducted by the Navy 

Educational Training Command. ElectronixTutor integrates 

several learning resources and pedagogical strategies to teach 

students. Some of these learning resources from various 

intelligent systems include AutoTutor, Dragoon (VanLehn, 

Wetzel, Grover, & van de Sande, 2016), Learnform 

(BBN/Raytheon), ASSISTments (N. Heffernan and C. Heffernan, 

2016), and BEETLE-II. Additionally, ElectronixTutor offers topic 

summaries as well as the Navy Electronics and Electricity 

Training Series (NEETS) for learners to read. Many of the same 

AutoTutor materials that were made for use with the 

ElectronixTutor system have been integrated into the Personal 

Assistant for Life-Long Learning (PAL3; Swartout et al., 2016). 

PAL3 is an intelligent learning guide that knows a learner’s 

background, skills, and goals and will accompany them 

throughout their career. Like ElectronixTutor, PAL3 was 

developed for technician trainees in the Navy. It can also make 

suggestions on learning materials and difficulty based on its 

knowledge of the user.  

For AutoTutor to properly respond to users in an intelligent 

manner, it must evaluate user input effectively. AutoTutor’s 

assessment of student input is based on semantic matching, which 

compares user responses to one or more expected answers. In this 
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paper, we analyze a sample of responses collected from Amazon 

Mechanical Turk (AMT) workers and discuss the computational 

linguistics and information retrieval algorithms used to 

automatically compute semantic matches in user responses to 

questions or partial questions. Additionally, we compared the 

system’s evaluations to those of subject matter experts.  

Section 2 describes conversations in AutoTutor, and Section 3 

explains how the system evaluates the accuracy of the learner’s 

input. In Section 5, we detail the methodology used in our 

analyses. In Section 6, we report the meta-assessment of the 

system, and discuss the results in Section 7. 

2. AUTOTUTOR CONVERSATIONS IN 

ELECTRONIXTUTOR AND PAL3 
AutoTutor teaches by holding a conversation with the learner in 

natural language. AutoTutor conversations can be a dialogue 

between the human learner and a tutor agent, or a peer student 

agent can be added to create a trialogue. Trialogues offer more 

flexibility in the conversation, including vicarious learning, 

competition, and contradiction (Graesser, Cai, Morgan, & Wang, 

2017).  

In traditional classroom environments, students are often assessed 

with multiple-choice tests. However, multiple-choice formats are 

mundane and rarely provide the immediate, individualized 

feedback that comes with a conversational ITS. In contrast, 

AutoTutor helps the learner actively construct an answer to the 

question by collaboratively improving on the answer in a turn-

based conversation similar to human tutors (Graesser, D’Mello, 

Hu, Cai, Olney, & Morgan, 2012). 

When asking a question, human tutors often identify expectations 

(good answers or procedural steps) and misconceptions (common 

incorrect answers) associated with the question. AutoTutor’s 

Expectation and Misconception Tailored Dialogue models the 

learner’s knowledge by matching the open-ended responses to a 

pre-defined list of expectations required to answer the main 

question and associated misconceptions. The following is an 

example of a main question in ElectronixTutor, the ideal answer, 

and a breakdown of the ideal answer into expectations: 

Main Question: What are the I-V characteristics 

related to the threshold and breakdown voltage of a 

real diode compared to an ideal diode? 
Ideal Answer: An ideal diode has a threshold voltage of 

zero. An ideal diode has no breakdown voltage. A real 

diode has a threshold voltage greater than zero. A real 

diode has a breakdown voltage less than zero. 
Expectation One: An ideal diode has a threshold 

voltage of zero. 
Expectation Two: An ideal diode has no breakdown 

voltage. 
Expectation Three: A real diode has a threshold 

voltage greater than zero. 
Expectation Four: A real diode has a breakdown 

voltage less than zero. 
AutoTutor elicits each expectation from the learner via a series of 

dialogue movies, including pumps, hints, prompts, assertions, and 

answering student questions. As the dialogue progresses, the tutor 

provides more and more information to help the learner until the 

expectation is covered. Feedback is provided to the learner after 

each dialogue turn. Once an expectation has been covered, the 

system moves to another uncovered expectation, or, if all other 

expectations have been covered, to a summary of the entire 

answer. Table 1 provides an example of hints and prompts used in 

ElectronixTutor. 

Table 1: Hints and prompts for the expectation “An ideal 

diode has a threshold voltage of zero.” 

Question 

Type 
Question 

Correct 

Answer 

Hint 

Consider the I-V voltage 

parameters. Why does the ideal 

diode conduct current immediately 

after the forward voltage is applied 

to it? 

Because it has 

a threshold 

voltage of 

zero. 

Hint 

Look at the figure on the left. What 

specific voltage cut-off point does 

the origin represent for the forward 

bias voltage? 

The threshold 

voltage of the 

ideal diode. 

Prompt 

An ideal diode starts conducting 

immediately when the applied 

forward voltage crosses which 

zero-valued voltage of the diode? 

The threshold. 

Prompt 
Which diode has a threshold 

voltage of zero? 

The ideal. 

Prompt 
The threshold voltage for an ideal 

diode is equal to what? 

Zero. 

3. LATENT SEMANIC ANALYSIS AND 

REGULAR EXPRESSIONS 
Latent Semantic Analysis (LSA, Landauer et al., 2007) is a 

mathematical technique with 100 to 500 statistical dimensions for 

assessing the similarity of pairs of texts expressed in natural 

language. “Cat” and “dog”, for example, often appear in the same 

documents and, as such, have high semantic similarity. The LSA 

algorithm measures the similarity between a learner’s input and 

the good answer in the form of a cosine match score from 0 to 1.  

In addition to LSA, AutoTutor’s learner input evaluations also 

employ regular expressions (Jurafsky & Martin, 2008). Regular 

expressions are text strings which define a complex search 

pattern. These strings allow for increased flexibility in recognizing 

student input in three ways. First, they can account for common 

misspellings (e.g., “sou?r[cs]\w*” would capture “source”, 

“sourse” “sorce”, etc). Second, regular expressions can account 

for anticipated synonyms (e.g., “increased”, “higher”, “larger”, 

etc.), Third, they also can handle complex student answers. For 

example, “A will increase, and B will decrease” can be expressed 

by the combination of “A.*B, increase.*decrease” and “B.*A, 

decrease.*increase”. This also captures “B will decrease and A 

will increase”, but does not capture “A will decrease and B will 

increase.” Thus, whereas regular expressions capture keywords, 

synonyms, and complex structures, LSA compares the semantic 

similarity of the learner’s answer to the good answer. 
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4. THE CURRENT STUDY 
This paper evaluates the quality of the semantic matching between 

learner input and the expected response in AutoTutor. Regular 

expressions and LSA combined provide the tools required for the 

analysis, yielding precision and recall scores to compare the 

models. We expected the ranges of agreement would conform to 

similar studies in different domains (e.g., Gautam, Swiecki, 

Shaffer, Graesser, & Rus, 2017), where precision reached 96%, 

and recall 78%. We analyzed a corpus of responses obtained on 

AMT to explore (1) the relationship between regular expressions 

and LSA, (2) interrater reliability between the two human judges, 

and, most importantly, (3) the agreement between the human 

judges and scores from ACE computed using RegEx and LSA. 

We first hypothesized that RegEx and LSA should yield a 

moderate, positive relationship. Although regular expressions and 

LSA both compare learners’ answers to expectations, they use 

different approaches. Hence, an especially strong relationship 

would indicate that using both methods would be redundant. 

Secondly, we hypothesized that analyses should yield a relatively 

high agreement for interrater reliability between the human 

judges. The judges were both subject-matter experts and were 

expected to reliably distinguish between correct, partial, and 

incorrect answers. Finally, we hypothesized ratings between ACE 

analysis and humans would be similar, but lower than interrater 

reliability between humans. Although automatic assessment 

continues to improve, human subject-matter experts are still the 

gold standard. 

5. METHOD 
We collected data from 86 unique AMT workers who answered 

40 questions asked by AutoTutor in ElectronixTutor. Each 

question received up to 20 user responses, for a total corpus of 

1840 responses. Workers were asked to describe their background 

in electronics and to answer questions to the best of their ability 

without doing any research. Users were compensated $1 for each 

response submitted. Of the 1840 collected responses, 194 were 

randomly selected, roughly 5 from each of the 40 questions. Two 

subject-matter experts independently rated the user responses on a 

continuous scale ranging from 1–6. The scoring definitions are 

displayed in Table 2. 

Table 2: Operational definitions for human judge ratings. 

1 No attempt to answer the question. 

2 Answer is not on topic/includes metacognitive. 

3 Answer is on topic, but completely incorrect. 

4 Answer is mostly incorrect. 

5 Answer is mostly correct. 

6 Answer is completely correct. 

 

6. RESULTS 
We began by examining the relationship between RegEx and LSA 

using a Pearson correlation. We hypothesized a moderate, positive 

relationship between the two, and this was indeed the case, r 

(194) = .420, p < .001. See Table 3 for descriptive statistics. 

Table 3: Descriptive statistics for RegEx and LSA. 

 Mean SD N 

RegEx .328 .354 194 

LSA .477 .269 194 

 

In evaluating learner responses, successfully detecting partial 

answers can help the system select the best hint or prompt, but the 

critical decision is whether the response is fully accurate or not. 

Accordingly, to compare the human judges to ACE, all ratings 

were recoded to either a 1 (correct) or a 0 (incorrect). For the 

human judges, any judgment between 1 and 5 was coded as a 0 

and a score of 6 as a 1. For Regex and LSA, a threshold of .8 for 

either score was scored as a 1, and below .8 was coded as a 0. The 

.8 threshold is subject to change in future studies, but as observed 

in our data, setting the threshold too low (>.75) often results in a 

false-positive in evaluating user verbal responses on the part of 

LSA.  

We next analyzed the ratings of the human judges on the 

responses from AMT users using Cohen’s kappa. The interrater 

reliability was moderate to good, k = .699, p < .001, but perhaps 

slightly lower than expected.  

Finally, the third analysis examined the agreement between 

human judge ratings and ACE scores on correct vs. incorrect 

responses. The interrater reliability between ACE and the first 

judge was moderate, k = .509, n = 194, p < .001. The interrater 

reliability between ACE and the second judge was similar, k = 

.477, n = 194, p < .001. See table 4 for crosstabulation between 

the human judges and ACE. 

Table 4: Agreement among human judges and ACE. 

 Judge2 ACE 

Correct Incorrect Correct Incorrect 

 

Judge1 

Correct 30 14 24 20 

Incorrect 5 145 11 139 

 

Judge2 

Correct  

— 

20 15 

Incorrect 15 144 

 

7. DISCUSSION 
This paper investigated both human and automated assessments of 

AMT workers’ responses to electronics questions. The first 

analysis examined the relationship between two automated 

methods, LSA and RegEx, which provide complementary 

evaluations using different components of the text. Hence, 

although there was a significant relationship, some variation is 

expected between regular expressions and LSA.  

The interrater reliability between the two human judges was 

moderate to good. The interrater agreement between ACE and the 

human judges was somewhat smaller, as expected. However, this 

is nonetheless encouraging because numerous optimizations can 
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be made to increase the agreement, including adding synonyms to 

the regular expressions and optimizing the threshold for each 

answer.  

The findings from the analyses can be used to train computational 

models to evaluate the quality of learner contributions more 

efficiently. Expectation Misconception Tailored conversations 

from ElectronixTutor covered in this paper focused on main 

questions and expectations rather than full trialogues including 

hints and prompts. Due to the nature of the length of answers, it 

might be beneficial to consider an analysis between main question 

and expected responses rather than randomly selecting from a 

pool of both. Having comparable scores from other learners in 

ElectronixTutor materials adds a definitive boost in evaluating 

learners’ verbal contributions. 

Aside from collecting more data from learners to improve 

evaluation of responses, the system would also need to be further 

tested to ensure proper functioning. Materials should be prepared 

by subject-matter experts and accompanied by regular expressions 

and LSA when collecting data from learners. Collecting more data 

samples from learners as well as refining RegEx strings will assist 

in optimizing assessment models. Although agreement has room 

for improvement between human judges and ACE, the results are 

ultimately encouraging and certain to improve moving forward. 
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ABSTRACT 

In this paper we introduce a new method for creating models of 

student learning and performance log data using logistic 

regression. Many such variants have occurred in the literature, but 

a large section of the space of possible models has not been 

explored. We use 12 features, combined pair-wise to create 144 

variants, and we test these models with 3 versions of these 

pairwise combinations, using KC models representing the item, 

objective and item, or objective, item, and student. Each model is 

fit with a single difficulty constant or one constant to represent 

each KC. This procedure was replicated in 2 halves of a dataset 

from a McGraw Hill online practice app. For these data, the 

findings confirmed the accuracy of rPFA and PFA-Decay features 

and revealed that the logit feature [ln(successes/failures)] worked 

well in many contexts to create accurate models. Other 

decay/forgetting-based features also performed well. Standard 

PFA did poorly compared to these newer models and the logit 

feature.  

Keywords 

Logistic regression; student modeling, adaptive instruction. 

1. INTRODUCTION 
Discovery of the most parsimonious models for tracing knowledge 

using logistic regression variants has previously proceeded in a 

series of steps that can be traced item response theory (IRT). IRT 

was developed to understand and evaluate results from academic 

testing by allowing a modeler to fit parameters to characterize 

performance on a set of items by a set of students. As a form of 

logistic regression, IRT predicts 0 or 1 (dichotomous) results like 

the results of individual items for students. In the case of a 1 item 

parameter IRT model, this result is predicted as a function of 

student ability minus item difficulty (x), which is scaled to a 

probability estimate by looking up the probability from the 

logistic function cumulative distribution, in which p=(1/(1+e-x)). 

It is from this basis that we build our models. 

Within this context a “new model” typically consists of new ways 

to organize the Q-matrix often combined with new ways to 

compute the effect of prior experience. We search a relatively 

large space of such logistic regression models in this paper. As it 

turns out, there are more than 10 plausible ways to compute prior 

experiences, and these may be applied to the prior experience for 

different types of encounters.  

For example, we can talk about using the natural log of the count 

of all prior trials for a KC. This predictor will be insensitive to 

performance and count earlier practice as more effective than later 

practice according the natural log function. The coefficient should 

be positive for such a predictor since we expect learning with 

experience. Another example would be using an exponentially 

decayed count of prior failures for the KC. This predictor would 

be more sensitive to recent failures depending on the decay 

parameter. Because failures, despite the opportunity for learning 

indicate lower prior performance capability, the coefficient for 

this predictor is often negative unless there is very strong effective 

feedback following failures in the learning system generating the 

data the model is fit to. 

2. DATA FROM STUDYWISE 
The data used for this study comes from a new mobile application, 

StudyWise, from McGraw-Hill Education (MHE), which was 

designed to allow students in courses which use a selection of 

MHE SmartBook titles to practice the end-of-the-chapter 

questions anywhere, anytime.  At present, there are ten titles 

available in the Apple App Store and the Google Play Store, the 

majority of which are from titles related to Biology and Medicine.   

Medical-related titles were emphasized because of the continuing 

need in these fields for practitioners to memorize a great deal of 

declarative knowledge.  In critical situations, doctors, nurses, 

EMTs, pharmacists, and physician’s assistants need to have 

knowledge of anatomy, physiology, pharmacology, and other 

topics memorized for immediate recall and the licensing 

requirements in these fields reflect this.  Most of the user data 

(about 80%) comes from one title on Anatomy and Physiology. 

There is a separate StudyWise app for each title and within an 

app, the material is organized by topic (i.e. chapter).  Each topic 

has a number of Learning Objectives (LO). Each LO has 

anywhere from one to five questions associated with it, with the 

overall average being two distinct questions per LO. We use 

objectives to represent the KCs in the work below. 

3. ANALYSIS 
The model space tested used a 3 level KC hierarchy where 

performance was predicted as a function of 2 predictive feature 

terms for each of the 3 levels. The simplest model only used an 

item level KC that traced prior events for exact repetitions for the 

question item. The next model included a middle level KC that 

grouped related items in objectives. The most complex model also 

included a “student” KC that grouped all the items for that 

learner. To limit the search space, we choose to use the same 

predictive expression for the two predictive terms in every level of 

the hierarchy. Thus, if the model used TOC (total opportunity 

count) for the first term and LNPERF (ln prior failures) for the 

second term, these same expressions would be used for all three 

levels, so if the model included item and objective levels, it would 

use AFM to compute the first term for both levels and use log 
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(prior failures) to compute the second term for both levels. This is 

a limitation, since a more complete search might reasonably use 

different predictive expressions at different levels. 

Data for these analyses are drawn from 4,694 individual users 

who worked on StudyWise questions, at their own pacing and 

schedule, between its launch in early April 2017 and mid-January 

2018. The raw dataset contains over a million rows. 

Unfortunately, analyzing this data set with per-objective 

difficulties was prohibitively slow due to the memory 

requirements: to speed the analysis, we examined only the 20 

objectives with the most usage; this created a subset of the data 

consisting of 41 distinct items and 8 distinct topics. The first split 

contained 1,465 distinct users and 39,570 question-responses and 

the second split contained 1,517 users and 40,786 question-

responses. As shown in our results, our models were quite stable 

across folds in both test datasets.   

Analysis was done in the R programming language. The logistic 

models were implemented using the built-in generalized linear 

model (glm) function. For the models that include an exponential 

or power decay constant, an iterative process was used: a function 

was written that, for a given decay rate, re-computed the features, 

refit the model, and calculated and returned the log-likelihood of 

the model given the data; the built in quasi-Newton optimizer 

(nlminb) called this function repeatedly until the exponent was 

found that produced the likeliest model.  

3.1 Assumptions 
We assume that the models are well tested by fitting the same 

coefficient for all KCs for each feature. While we do look at 

intercepts (constants for prior knowledge) for each objective KC, 

our method does not individualize any slope (learning rate) 

parameters for each KC, as is normally done, but uses the same 

coefficient for all KCs for each feature. This essentially means 

that there is a single learning rate for each of the two learning 

effect terms at each level, which we fit as an overall coefficient for 

each of level of our hierarchy (see below). This assumption was 

necessary at this point in the research to limit the search space. 

While we do not model difference in learning rates for KCs, we 

do capture differences in initial item difficulty/prior knowledge at 

using topic or objective level intercepts. We also compare models 

using only a single intercept to test the influence of the initial 

difficulty on determining the best expressions to use in the model. 

For these two terms, we allow combinations of any 2 predictors 

(i.e. successes, failures, or total trials), with the exception that we 

don’t test combinations which use both success or both failures 

for both predictors (e.g. using count failures and log count 

failures) is not tested but using total trials for both is allowed (e.g. 

using count total and log count total) is tested. 

We make other assumptions as well, such as limits on our model 

non-linear parameters (between 0 and 1), however, prior work has 

typically used values in this range [1,2]. 

3.2 Features 

3.2.1 Total opportunity count (TOC) 
This predictor is a simplified equivalent to the well-known AFM 

model, which predicts performance as a linear function of the 

prior total experiences with the KC. This is a simplified AFM 

model, since we do not test using KC to differentiate learning rate, 

rather, all KCs have the same opportunity count coefficient. 

3.2.2 Log total opportunity count (LNTOC) 
This predictor has been sometimes uses in prior work and implies 

that there will be decreasing marginal returns as opportunities 

increases, according to a natural log function. The assumption 

here makes the most sense if the exercises provide limited 

feedback, which might cause lower learning for later practice. [3] 

3.2.3 Power-decay TOC (POWTOC) 
This predictor multiplies TOC by the age since the first practice 

(trace creation) to the power of a decay rate (negative power).  

3.2.4 Log POWTOC (LNPOWTOC) 
This predictor is the same as POWTOC, except it use the natural 

log of prior trial count plus one.  

3.2.5 Exponential decay (EXPTOC) 
This predictor considers the effect of the TOC as a decaying 

quantity according to an exponential function.  

3.2.6 Linear PERF (LINEPERF) 
This term is equivalent to the terms in performance factors 

analysis (PFA).  [4-7] 

3.2.7 Linear sum performance (LINESUMPERF) 
This term uses the success minus failures (as term 1) or failures- 

success (as term 2) to provide the simple summary of overall 

performance.  

3.2.8 Log PERF (LNPERF) 
This expression is simply the log transformed performance factor 

(successes or failures), corresponding to the hypothesis that there 

are declining marginal returns according to a natural log function. 

[8,9] 

3.2.9 Proportion PERF (PROPPERF) 
This expression uses the prior percent correct or incorrect as the 

predictor. It performed generally well, but not quite as well as the 

following 3 mechanisms 

3.2.10 Logit PERF (LGTPERF) 
This function is the log odds with an additional parameter to 

characterize trial 1 baseline, where logit= log(0/0) otherwise. 

3.2.11 Exponential decay of proportion 

(EXPPROPPERF) 
This expression uses the proportion right or wrong (again 

depending on whether it is expression 1 or expression 2) and was 

introduced as part of the rPFA model [1,10,11]. We set the 

number of ghost attempts at 3 as suggested by Galyardt and 

Goldin [1]. 

3.2.12 Exponential decay (EXPPERF) 
This expression uses the decayed count of right or wrong (again 

depending on whether it is expression 1 or expression 2). This 

method appears to have been first tested by Gong, Beck and 

Heffernan [2]. This method is also part of rPFA and is used for 

tracking failures only, whereas rPFA uses EXPPROPPERF to 

track correctness [1]. 

4. RESULTS WITH OBJECTIVE KCS 
 For the Objective KC results, the counts for the mid-level KC 

were based on the objective in the StudyWise application, and 

when KC intercepts were used they were also based on the 

objective assignment in the application. Our result took the form 
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of 2 large tables, each containing the 864 models found, note 

however, that some of these models were partially redundant due 

to their reflective nature. Since in some of the more complex 

models, we were not certain the models were fully reflexive, we 

included them in the analyses. For example, TOC and LNTOC is 

functionally identical to the LNTOC and TOC. 

We first observed that AUC and R2 correlated at .982, and 

therefor decided to use AUC for our primary analyses. Next, we 

confirmed that the 2 randomly selected folds had a highly 

correlated rank order to insure our results were stable and 

therefore valid. The Pearson correlation of the AUC rank for the 2 

lists was .994. To get a better perspective on which model 

pairings were doing best, we also looked at the top 10 models 

split in Table 1.  

5.  DISCUSSION 
The results show that this method produces models that are both 

novel and compare well with the best models in the literature, e.g. 

rPFA [1]. We will discuss these results first by reviewing the 12 

features and how they fared overall. Following these discussions 

of the individual features we discuss paired feature models, 

focusing on models that parallel or replicate models in the 

literature. In this section we compare how versions of AFM, PFA, 

rPFA, and PFA-Decay fared vs the models tried in the search. 

One implication of these results is to shift the model building 

discussion away from specific formalism like PFA and towards an 

approach which tries to find the most effective features for 

modeling change in performance at each level of the data. The 

problem with specific formalisms is their coarse grainsize which 

makes it difficult if not impossible to see how their composition 

(the features used in the model) influences their function. Due to 

the complexity of multiple factors all being important to the 

model, the model may become a black box that might function 

well but is difficult to improve or understand. Hopefully, by 

turning the discussion to towards the individual components of 

models it will be easier for developers to assemble models to fit 

the special needs of different applications. 

5.1.1 Power-decay TOC (POWTOC) 
This predictor was among the best features. 

5.1.2 Log POWTOC (LNPOWTOC) 
Just as the natural log feature improves on the fit of linear AFM 

model, the natural log also improves the power-decay feature. It 

seems the diminishing marginal returns for practice quantity 

combines well with a decaying trace. In fact, while the margin of 

difference was not large, this feature was the best feature for the 

objective KC models.  

5.1.3 Exponential decay (EXPTOC) 
This forgetting predictor did remarkably well for the objective KC 

models. This suggests that the power-decay model may be less 

robust in conditions where KCs are coarser grained. It should be 

noted that the exponential model measured forgetting across trials, 

while the power law model was a function of time.  

5.1.4 Proportion PERF (PROPPERF) 
This expression merely uses the prior percent correct or incorrect 

as the predictor. It does well, performing quite convincingly the 

objective KC models, however, all three of the following features 

can be argued to work better in more situations. 

5.1.5 Logit PERF (LGTPERF) 
This expression uses the logit (natural log of the success divided 

by failures; or the reverse as the second term). This function 

paired very well in both datasets, showing general power when 

combined with either performance or total count features. There is 

some indication that logit may pair slightly better LNPOWTOC. 

Also, in the objective KC models we saw that LGTPERF did quite 

poorly when used in a 3-level model with a single intercept. 

Apparently using the objective KC intercepts allowed this 

mechanism to function maximally. 

5.1.6 Exponential decay of proportion 

(EXPPROPPERF) 
This expression uses the proportion right or wrong (again 

depending on whether it is expression 1 or expression 2). As 

suggested by the inventors of this mechanism, Galyardt and 

Goldin, we set the number of ghost attempts at 3 [1]. This feature 

showed strong predictiveness like the LGTPERF or EXPPERF 

below. This mechanism did seem a bit stronger more generally 

accurate than logit, similar to EXPPERF below. 

5.1.7  Exponential decay (EXPPERF) 
This expression uses the decayed count of right or wrong (again 

depending on whether it is expression 1 or expression 2). This 

method appears to have been first tested by Gong, Beck and 

Heffernan [2] and was still used for failures counts in later work 

[1] with the EXPPROPPERF. This feature showed strong 

predictiveness like the logit or simple exponential decay above. 

Table 1. Objective KC model fit AUC values, averaged across KC hierarchy used (Fold 1). 

Model 3 Level Model

Objective and 

Item Model Item

LNPOWTOC EXPPERF 0.7032 LGTPERF LNPOWTOC 0.6760 LNPOWTOC EXPPERF 0.6603

EXPPROPPERF EXPTOC 0.7015 LNPOWTOC LGTPERF 0.6760 LNPOWTOC LINESUMPERF 0.6601

LNPOWTOC EXPPROPPERF 0.7012 LNPOWTOC EXPPERF 0.6760 LINESUMPERF LNPOWTOC 0.6601

POWTOC EXPPERF 0.7003 LNPOWTOC EXPPROPPERF 0.6750 LGTPERF LNPOWTOC 0.6570

EXPPROPPERF EXPPERF 0.6996 LNPOWTOC LINESUMPERF 0.6749 LNPOWTOC LGTPERF 0.6570

LNTOC EXPPERF 0.6993 LINESUMPERF LNPOWTOC 0.6749 LNPOWTOC EXPPROPPERF 0.6561

PROPPERF EXPPERF 0.6991 LNPOWTOC LNPERF 0.6746 LNPOWTOC LNPERF 0.6557

EXPPERF EXPPERF 0.6987 LINESUMPERF POWTOC 0.6736 LINESUMPERF POWTOC 0.6553

EXPTOC EXPPERF 0.6986 POWTOC LINESUMPERF 0.6736 POWTOC LINESUMPERF 0.6553

PROPPERF EXPTOC 0.6986 POWTOC LINEPERF 0.6732 POWTOC EXPPERF 0.6550  
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5.2 Best Feature Combinations   
Table 1 helps us understand the best ways to pair 2 of the features 

we looked at in our study. One result that stands out is that the 

two term model EXPPROPPERF and EXPPERF, corresponding 

to the form of rPFA’s practice features [1] performs very well for 

the 3 level objective KC models. While this strength was notable, 

it was also interesting that EXPPROPPERF paired well with 

EXPTOC also, indicating that any two decaying terms might be 

best. However, not to be outdone, EXPPERF with EXPPERF also 

performed very well, indicating the PFA-Decay model [2] was 

about as accurate as r-PFA for our data, perhaps suggesting the 

proportion and ghost attempts complexity of rPFA is not needed 

for accurate models.  

6. CONCLUSIONS 
In this paper we have shown how to conduct a search over a large 

space of models to find better features for logistic regression 

knowledge tracing. This work has revealed at least two features 

unique to the literature, LGTPERF and LNPOWTOC which 

competed well with features in some of the latest models. While 

logistic regression is not a complex formalism compared to 

methods such as deep knowledge tracing [12], even in complex 

forms it is computationally efficient and tractable to use in 

educational systems [13]. For this reason, these results are likely 

to be practically important for people considering models of 

learning performance in trial based educational systems. 

This project was conducted as part of the development of  the 

LearnSphere community analytic tool [14]. In this paper we 

searched a space of 864 models, but, we could easily have wanted 

to search a space of hundreds or thousands of times larger to get a 

fuller coverage of the possible space of models. Such a search 

space would have been intractable, requiring years of computer 

time with our current methods. An alternative to this is to develop 

some sort of hill climbing search akin to LFA  (Leaning Factors 

Analysis) [15], but such that it performs a search over a subset of 

the possible categorical variations of model structure.  
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ABSTRACT
Understanding how learning transfers from one task to another is a
critical topic in learning science. In this paper, we investigate the
impact of the scope and granularity of learning transfer by com-
paring three models across multiple data sets. Prior work demon-
strated the value of component models of learning transfer that
group items into knowledge components. Within the component
models, that work left open whether difficulty (variation in perfor-
mance over tasks) is better modeled by knowledge components (the
strong model) or by items (the “weak” model). The strong compo-
nent model is theoretically desirable because it provides a single ex-
planation for both difficulty and transfer. However, we find that the
weak component model better predicts student performance across
six data sets. While this weak model predicts better, it is hard to
interpret because an explanatory parameter that represents latent
knowledge difficulty of student performance is absent. To main-
tain explanatory power without sacrificing prediction, we propose
a new alternative that uses a hierarchical mixed effect regression
model where item difficulty is pooled within component difficulty.
Experimental results, across six data sets, show that the predictions
of the hierarchical model are better than the strong model and as
good as the weak model, while also producing theoretical useful
explanatory parameter values for knowledge components.

Keywords
Transfer, hierarchical mixed effects models, student modeling, knowl-
edge component modeling

1. INTRODUCTION
Transfer of learning, the application of knowledge acquired in one
situation to other new, relevant learning situations, is an age-old
fundamental problem in human cognition and education [1, 8]. A
central question is determining the loci of transfer at a grain size
of analysis that is fine grained to make accurate and useful predic-
tions yet broad or simple enough to provide explanatory insight that

∗(Does NOT produce the permission block, copyright informa-
tion nor page numbering). For use with ACM_PROC_ARTICLE-
SP.CLS. Supported by ACM.

advances science or application. In modeling transfer, [4] contrast
two statistical models of the faculty theory of transfer with two sta-
tistical models of an alternative component theory of transfer using
multiple datasets. That work provided a convincing case for a com-
ponent theory of transfer over a faculty theory of transfer, it also
raised a new question. To be effective, statistical models of learn-
ing transfer control both for general student proficiency and varia-
tions in the difficulty of tasks. When contrasting statistical models
of the component theory, the results were mixed as to whether task
difficulty is better modeled by items or by components.

It is worth stating more precise definitions for key terms: item,
knowledge component, strong and weak component models. For
our purposes, items are tasks that appear as questions or steps in
problems where student responses are evaluated as correct or not.
An example item is to find the area of a circle given its radius is
10. A knowledge component(KC) is defined as “an acquired unit
of cognitive function or structure that can be inferred from perfor-
mance on a set of related tasks”[3]. For example, analysis of stu-
dent correctness data on related geometry tasks leads to inferences
about differences in generality of KCs related to trapezoid area ver-
sus circle area. Whereas few differences in difficulty across trape-
zoid items suggests a single general KC: “Use the trapezoid area
formula to find any unknown value in the formula”, difficulty dif-
ferences across circle items suggests two KCs that separate items
into two groups depending on whether the area is unknown (easier)
or the radius is unknown (substantially harder)[5].

A strong component model[4] is one in which item difficulty and
learning transfer are both modeled using KCs. A weak component
model uses KCs only to model transfer but uses items to model item
difficulty. It is “weaker” because it provides a less coherent and
less parsimonious theory by having separate explanations for diffi-
culty and transfer rather than a unified explanation as in the strong
model. Despite this explanatory disadvantage, the weak model was
found to produce better predictions than the strong model in some
cases[4]. In particular, it produced better predictions than the strong
model when generalizing to unseen students. Given the theoreti-
cally desirability of the strong model, we set a goal to develop a
statistical model that would maintain the theoretical benefits of the
strong model without any sacrifice to prediction. To address this
goal, we used hierarchical mixed effects regression as an approach
that allows the combination of estimates of both item difficulty and
component difficulty.

2. RELATED WORK
Work on statistical student modeling has pursued a variety of alter-
natives within families of logistic regression variations, of Bayesian
Knowledge Tracing variations, and of recurrent neural networks.
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Figure 1: Root mean squared error (RMSE) results for item-blocked (a) and student-blocked (b) cross-validation across 6 diverse
datasets showing a disadvantage of the weak model in generalization across items (middle gray bars are highest in a) and a disad-
vantage of the strong model in generalizing across students (left white bars are highest in b). The hierarchical model provides the
best prediction fit in most cases (8 of 12) and is essentially tied with the strong model in item generalization in the other cases.

Logistic regression variations include a few simpler alternatives,
like Item Response Theory[10] and the Additive Factors Model
(AFM). Recently, a family of statistical student modeling based on
recurrent neural networks has begun to emerge[7]. Deep Knowl-
edge Tracing is highly complex and is particularly difficult to inter-
pret, thus limiting its explanatory power and application potential,
at least at this point. Among these methods, key reasons for con-
trasting AFM variations are a) to pursue models with a greater bias
toward explanatory simplicity as there are many others, as indi-
cated above, pursuing more complex models and better prediction
with relatively less concern for interpretability and downstream ap-
plication and b) to more directly build off the prior work on trans-
fer that used AFM variations but left an open question as described
above[4].

3. METHODS
The component theory of transfer uses a matrix to map knowledge
components to items. The strong model suggests a single expla-
nation for both difficulty and transfer but sacrifices some predic-
tive power. The weak model theory offers better prediction but is
less explanatory. We investigate an alternative model that com-
bines benefits of the strong and weak models in a hierarchical fash-
ion. We hypothesize that this alternative model will provide the
explanatory power of the strong model without losing the predic-
tive power sometimes better displayed by the weak model. We seek
the interpretability and application benefits of explaining both dif-
ficulty and transfer using KCs, but without losing predictive power
as has been observed with a strong component model or AFM.

3.1 Datasets
A variety of datasets representing four domains including geome-
try, algebra, English articles and statistics, with different task order-
ing approaches, were selected from LearnLab’s DataShop [2], an
open repository for diverse educational domain data. The datasets
had different characteristics (e.g., number of students, number of
KCs, etc,), which have been reported previously [4].In the educa-
tional technology applications that students used in producing this
data, students solve problems or answer questions sometimes with
multiple steps with feedback. Each evaluated step is considered a
task or assessment “item” and can be labeled with one or more
knowledge components (KC). Each dataset had multiple knowl-
edge component models associated with it, where each model rep-

resents a different mapping from steps/items to skills/KCs. In this
paper, for each dataset we used best KC model generated by LFA.
The best was selected using the lowest root mean squared error
(RMSE) on item-blocked cross-validation (explained below). We
compared three different statistical models across six datasets.

3.2 Metrics of predictive accuracy
To evaluate predictive accuracy, we used five independent runs of
10-fold cross-validation (CV) using three variations of how the
folds are produced, randomly, blocked by item, blocked by stu-
dent, as per standard practice in LearnLab’s DataShop[2]. We ex-
plain the item-blocked and student-blocked approaches next. The
prior work[4] compared the component strong model and compo-
nent weak model by creating folds in CV and blocking data records
either by item or by student. In item-blocked CV, on each iteration,
all data for an item is either in the training set or test set, but never
both. In that prior work, the prediction fit of the weak models was
consistently worse than the strong models when tested for general-
ization to new items, that is, via item blocked CV. This result can
be explained by noting that in the weak model item difficulty esti-
mates are not available for predicting test set data. The weak model
relies only on overall difficulty, as well as student proficiency and
KC learning rate, to predict on test set. In contrast, the strong model
can use KC difficulty, as well as student proficiency and KC learn-
ing rate, to predict on test set. At the same time, it is important
for models to generalize to new students and thus testing them via
student-blocked CV is also sensible. In this case, prior work[4]
demonstrated that the strong models were consistently worse than
the weak when tested for generalization to new student, that is,
via student-blocked CV. This observation leads to a central ques-
tion of this paper: Can we address this prediction fit limitation of
the strong component model (AFM) without losing the explanatory
power of the KC difficulty estimation?

3.3 Statistical Models
To fit the statistical models, we used a generalized linear mixed-
effects model (lme4 package in R)[6] to specify both random and
fixed effects parameters. All three models set student proficiency
as a random effect and learning rate as a fixed effect, thus leaving
the difficulty parameter as the discriminant for prediction.

3.3.1 Strong component Model(AFM)
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Table 1: A comparison of three cross validation results (random, student-blocked & item-blocked) using root mean square error
across three component models (strong, weak & hierarchical) for six datasets. The RMSEs in bold indicate the best predictive
models.The hierarchical model is the best predictor for all six datasets for random and student-blocked CV and for 2 of 6 datasets for
item-blocked CV. Small differences are seen in the remaining 4 datasets in the item-blocked CV between the strong and hierarchical
models.

Component Strong (AFM) Component Weak Hierarchical Model
Data Random Student-blocked Item-blocked Random Student-blocked Item-blocked Random Student-blocked Item-blocked
Geom 0.3972 0.4068 0.3990 0.3970 0.4055 0.4158 0.3955 0.4051 0.4009
Stats 0.3253 0.3287 0.3357 0.3169 0.3212 0.3493 0.3153 0.3198 0.3379
Math 0.4380 0.4917 0.4405 0.4159 0.4716 0.4645 0.4157 0.4714 0.4413
Eng1 0.4078 0.4409 0.4157 0.4027 0.4388 0.4160 0.4026 0.4374 0.4150
Eng2 0.3747 0.4017 0.3843 0.3609 0.3898 0.3890 0.3604 0.3894 0.3819
Eng3 0.3892 0.4179 0.3939 0.3841 0.4127 0.3988 0.3836 0.4121 0.3942

The strong component model, also known as the Additive Factors
Model (AFM), is a logistic regression statistical model shown in
R script in Equation 1. The response variable (correctness of stu-
dent performance) is modeled as a function of the random effect
for student proficiency combined with a fixed effect for knowledge
component difficulty and a fixed effect for opportunity to practice
each knowledge component. When KCs are modeled as fixed ef-
fects, the KC parameters estimates capture all the variance due to
KC difficulty and there is no variance for items within the KC. The
strong model uses parallel vectors of parameters with length equal
to the number of KCs, thus explaining both difficulty and transfer
using the same KCs.

correctness ∼ (1|Student) +KC +KC : OppKC (1)

3.3.2 Weak component Model(AFM’)
The weak component model uses an item difficulty parameter to
replace knowledge component difficulty found in the strong com-
ponent model (see Equation 2). Unlike the strong model, the weak
model provides a separate parameter for each item and, as such,
does not provide a general explanation of difficulty, but merely a
description of it. In this model, difficulty predictions (second term)
are decoupled from transfer predictions (third term) as item is used
for one and KC for the other.

correctness ∼ (1|Student) + (1|Item) +KC : OppKC (2)

3.3.3 Hierarchical Model(AFM’h)
The hierarchical model (AFM’h, Equation 3) models item difficulty
through a hierarchical combination of KC-level and item-level es-
timates. Each item-level estimate is “pooled” within the KC it be-
longs and is thus constrained by the corresponding KC estimate.
Item estimates are variations on the KC estimate and the model fit
is penalized for item estimates away from zero (even as those es-
timates may improve correctness prediction). In machine learning
terms, this constraint on item estimates is a kind of regularization.
AFM’h provides an explanation of task difficulty in terms of knowl-
edge components (as in AFM) but also provides an estimate of item
difficulty (as in AFM’).

correctness ∼ (1|Student) + (1|Item/KC) +KC : OppKC
(3)

4. RESULTS
Figure 1a shows the root mean square error (RMSE) results from
item-blocked CV across six datasets. The figure shows the weak
model (see gray bars) is disadvantaged when generalizing across
items as demonstrated by the height of the gray bars in comparison
to the strong models (white bars) and hierarchical models (black
bars). In all six datasets the weak models fared worse with item-
blocked CV. Likewise, Figure 1b shows the RMSE for student-
blocked CV where the component strong model (see white bars)

fares poorly for all datasets in generalizing across students. These
results confirm previous findings in which the strong model did
better than the weak model in item-blocked CV (8 of 8 datasets)
suggesting weak model has predictive disadvantages as well as ex-
planatory ones[4]. Conversely, [4] found the weak model did better
than the strong model in 7 of 8 datasets for student-blocked CV.
Thus, there are predictive disadvantages of the strong model.

The important new result is that, while maintaining explanatory
coherence and simplicity, the hierarchical model does not have ei-
ther of these prediction disadvantages. See Table 1 for details. For
both item-blocked and student-blocked CV, the prediction fits of
the hierarchical model are never the worst. For student generaliza-
tion (the student-blocked CV), 6 of 6 datasets have better predic-
tion compared with the strong and the weak models and 2 of 6 for
item generalization. They are essentially tied with the strong model
in item generalization in the other cases. The differences slightly
in favor of the strong model are in the Geom, Stats, Math, and
Eng3 datasets. The pattern of results of random cross-validation,
where data records are randomly assigned to CV folds irrespective
of student or item tags, is highly similar to the pattern of results of
student-blocked CV. Namely, the strong model is consistently the
worst in prediction fit and the other two models are essentially tied.

5. DISCUSSION
This project advanced from the work done by [4] who provided
clear evidence against the faculty theory, but identified an open is-
sue about how best to implement the component theory. We hy-
pothesized that combining the predictive power of a weak com-
ponent model with the explanatory power of a strong component
model would capture the best features of both models. Indeed from
our results, the hierarchical models have as good or better predic-
tion performance compared with the other two. The hierarchical
model removes the prediction disadvantages of the strong model
(for both student and item generalization) and both the explanatory
disadvantage of the weak model and its prediction disadvantage on
item generalization. Hence, we find that the hierarchical model gets
the best of the both worlds: good prediction and good explanation.

One limitation of this study is that all the KC models used were
single-KC models where each item is labeled by just one KC. Fu-
ture work could attempt extend to models with multi-KC labeled
items. Another future work possibility is to explore the use of the
item random effect estimates of the hierarchical model as a better
guide for KC model search than in recommended practice[9]. By
comparing features of the hard items with those of the easy items,
an analyst can hypothesize possible hidden skills and test whether
associated KC relabeling produces better prediction fit. Current
recommended practice relies on item means that may be biased
estimates of item difficulty. These estimates are prone to inaccu-
racy particularly when there are a limited number of data points for
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Figure 2: The hierarchical model (dotted line) better predicts item means (solid line) than the strong model (dashed line), but not
perfectly so. Differences may indicate cases where the item mean is miss-estimating actual item difficulty perhaps because of limited
data. An analyst trying to improve a KC model may be better guided by the hierarchical model predictions than by the simple means.

an item. This situation occurs frequently in early system design
and testing, which is just the point in system development when
KC model testing and improvement is most needed. Low item fre-
quency also occurs in systems that automatically generate a wide
variety of items (e.g., with random numbers in math). The hier-
archical model provides a less biased estimate of item difficulty,
which is more robust to small samples given that it is influenced by
data on other items within the same KC. The KC estimate serves as
a Bayesian prior for all items embedded within it.

Figure 2 shows a performance profiler displaying 20 steps/items
labeled by a suspect KC in an early non-optimized KC model for
the Geom dataset. The items are sorted by mean error rate as dis-
played in the solid line. In dashed line are the error predictions
of the strong component model (AFM) which are particularly poor
because an early and non-optimized KC model is being used. The
hierarchical model predictions (in dotted) are closer to the mean er-
ror rate, but are importantly different. In particular, the last row in
Figure 2 is the item with the highest mean error rate, but the hierar-
chical model suggests that it may not be so hard. Since analysts try-
ing to improve a KC model are looking to identify possible knowl-
edge demands that differentiate harder and easier items, it may be
helpful for them to not be deceived by possible miss-estimates of
difficulty resulting from using item means.

6. CONCLUSIONS
The search for highly predictive statistical models is a major focus
of educational data mining and data mining more generally. This
search is often pursued with less attention to the explanatory power
of the models. Good explanatory models provide both scientific in-
sight about the nature of learning and interpretable implications for
improvement in educational interventions. This paper provides a
model case, which we hope others will follow, of seeking a method
that provides both predictive accuracy and explanatory power.
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ABSTRACT
Adaptive textbooks use student interaction data to infer the
current state of student knowledge and recommend most
relevant learning materials. A challenge of student mod-
eling for adaptive textbooks is that conventional student
models are constructed based on performance data (quiz or
problem-solving), however, students’ interactions with on-
line textbooks may produce a large volume of student read-
ing data but a limited amount of performance data. In this
work, we propose a dynamic student knowledge modeling
framework for online adaptive textbooks, which utilizes stu-
dent reading data combined with few available quiz activi-
ties to infer the students’ current state of knowledge. The
evaluation shows that proposed model learns more accurate
students’ knowledge state than Knowledge Tracing.

Keywords
student modeling, knowledge tracing, adaptive textbooks

1. INTRODUCTION
Adaptive online textbooks are one of the oldest technologies
of personalized web-based learning [7, 10, 16]. A gradual
shift to electronic books and textbooks over the last ten
years makes this technology even more attractive than in its
early days. The challenge for the modern research on adap-
tive textbooks is its integration with other online learning
tools - problems, questions, animations, etc. In particular,
student modeling (SM) approaches based on textbook read-
ings behavior should be made compatible with more con-
ventional SM based on student performance. This compat-
ibility would support important “cross-content” recommen-
dation where pages to read could be recommended through
the analysis of problem-solving performance while interac-
tive content (animations, problems, questions) could be rec-
ommended by considering the reading progress.

∗both the authors contributed equally to the paper.(Does
NOT produce the permission block, copyright information
nor page numbering). For use with ACM PROC ARTICLE-
SP.CLS. Supported by ACM.

In performance-oriented intelligent tutoring systems (ITS),
student knowledge state is measured on the level of indi-
vidual domain skills or concepts, which are referred to as
Knowledge Components (KCs). The main goal of KC-level
knowledge modeling is to provide effective learning and re-
duce the total time of skill acquisition by offering adap-
tive feedback guiding the student to the most appropriate
learning content. To support this personalization, the sys-
tem keeps track of students’ performance such as problem-
solving and question-answering. These user interactions are
later used by SM systems to distill student knowledge and
predict student behavior.

Unfortunately, this well-explored approach could not be di-
rectly applied to adaptive textbooks. In most cases, text-
book interaction logs provide only a small fraction of per-
formance data (e.g., data on question answering and other
activities related to course), which is not sufficient for timely
and reliable SM. Naturally, these reading logs provide mas-
sive amount of data on student reading. However, the use
of this data for SM is not straightforward because:

• The reading logs are noisy and not accurate. For exam-
ple, a student can open a course content, start reading
and then switch to some personal task.

• Individual differences (reading proficiency, motivation)
could significantly affect student behavior.

In this paper, we present and evaluate a novel approach that
combines student activities (reading data and performance
data) to construct dynamic student knowledge model for
adaptive textbooks. In the remainder of the paper, Section
2 discusses related work; Section 3 describes the proposed
approach; Section 4 introduces the evaluation setup; Section
5 presents experimental results; and Section 6 summarizes
conclusions and directions of future work.

2. RELATED WORK
2.1 Knowledge Tracing in ITS
Knowledge Tracing (KT) model was introduced in 1995 by
Corbett and Anderson [3]. KT uses Hidden Markov Mod-
els (HMM) to represent student knowledge as binary latent
variables. Each latent variable represents student knowl-
edge of a particular KC, which could be either known or
unknown. The observed variable is the performance of stu-
dent at a given step, which is measured as a binary variable
representing the correctness of a step or an answer (correct
or not correct). KT directly represents KC-level knowledge
estimation and allows dynamic knowledge update at each
student learning opportunity. The conventional KT model
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has been extended further to learning individualized features
[13] and providing instructional based intervention node [12].
In this work, we follow the KT modeling approach since we
need knowledge estimates of different KCs to support several
kinds of personalization.

2.2 Adaptive Online Textbooks
The research on adaptive textbooks has been motivated by
the increasing popularity of World Wide Web (WWW) and
the opportunity to use this platform for learning. The hyper-
text nature of early WWW made an online hypertext-based
textbook a natural media for learning while the increased di-
versity of Web users stressed the need for adaptation. The
first generation of adaptive textbooks [2, 4, 7, 10] focused
on tracing student reading behavior to guide students to
most relevant pages using adaptive navigation support [2,
4, 7, 16] or recommendation [10]. These types of personal-
ization were based on a sophisticated knowledge modeling:
each textbook page was associated with a set of concepts
presented on the page as well as concepts required to under-
stand the page [2, 4]. On the other hand, SM was relatively
simple: these systems treated each visit to a page as a con-
tribution to learning all presented concepts.

A significant trend of modern online textbooks is the in-
creased inclusion of interactive content“beyond text”. While
the attempts to integrate online reading with problem solv-
ing have been made in the early days of online textbooks
[16], it was a rare exception. Modern textbooks, however,
routinely integrate a variety of “smart content” such as visu-
alizations, problems, and videos. In this context, the ability
to integrate data about student work with all these compo-
nents and use it for a better-quality SM becomes a challenge
for modern online textbooks.

3. KNOWLEDGE MODELING IN
ADAPTIVE TEXTBOOKS

Our work attempts to combine the ideas of reading-based
SM explored in the area of adaptive textbooks with the
ideas of performance-based modeling explored by conven-
tional ITS. The goal is to develop more reliable modeling for
modern adaptive textbooks that could support several kinds
of personalization such as guiding students to most appro-
priate sections or recommending relevant external content.
This section introduces our earlier work on SM in textbooks
and presents two novel models that combine reading-based
KT [9] with performance-based KT [3] thus leveraging both
reading and question-answering data.

3.1 Behavior Model (BM) and Its Problems
As a baseline model in this work we use, Behavior Model
(BM) suggested and explored earlier by Huang et al. [9]. The
BM has a strict assumption that students reading speed is
positively correlated with their knowledge state. However,
other research indicated that this assumption might not al-
ways hold [1]. Indeed, in the dataset we considered for this
study we observed a negative correlation between student
reading behavior and quiz performance of −0.58, which in-
dicates that data consists of mixture different types of stu-
dents with noisy reading interactions. The primary goal of
models presented in this paper was to improve BM. Our key
ideas are (1) to handle mixture and noisy reading behavior
among students by tuning it with other available activities
performed by the student and (2) incorporate individual stu-
dent differences to address better knowledge estimation for

different types of students. In two following subsections,
we present two models that advance the original BM in the
proposed directions.

3.2 Behavior-Performance Model (BPM)
To achieve this we utilized Feature Aware Student Knowl-
edge Tracing (FAST) framework [11], which replaces the
conditional probability tables of the emission and transmis-
sion probabilities in BM framework with logistic regression
(LR) distribution. HMM parameters are thus computed
based on LR with features at each time step. This allows
flexibility of incorporating a large number of features at each
learning step. To enable FAST for different types of obser-
vation variables we introduce an activity type indicator vari-
able which is set to 0 for Read and 1 for Skim (see Figure
1).

Figure 1: Behavior Performance Model (BPM)

3.3 Individualized Behavior-Performance
Model (IBPM)

The BPM incorporates reading activities as binary variables
with values Skim and Read. Since reading is a continuous
variable, discretization of this manner causes a lot of in-
formation loss at student level. This information might be
very helpful to characterize individualized student reading
behavior and to obtain individualized parameters for differ-
ent kinds of students. We propose Individualized Behavior-
Performance Model (IBPM) that incorporates the individ-
ualized reading speed information as a feature in addition
to activity type indicator features. This feature is based on
accumulated median reading speed from first reading activ-
ity till (t− 1)th reading activity of a student, where t is the
current step of observation in an HMM of a KC. The feature
is normalized to be in the range of 0 to 1 as there is a large
variance in reading speed observation. Thus at each step
along with different activity sequence observed, the model
is also provided individual average reading speed observed
so far. There are several benefits of our method:

• This method provides different sets of parameters (learn,
guess, slip) for students with different reading speed.

• Compared with adding a parameter per-student for in-
dividualization, this feature provides more generalized
modeling, because it learns the in-general association
of the speed with HMM parameters for each KC.

• It is a flexible approach to integrate other behavior
features as FAST has linear complexity in respect to
the number of features [11].

4. EXPERIMENTS
4.1 System and Dataset
The dataset used for the experiment is collected from online
reading platform Reading Circle [6] in spring 2016. This
system was used for a graduate level course on Informa-
tion Retrieval at the University of Pittsburgh. The system
provides an active reading environment where students read
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the material of the assigned textbook to prepare for the next
class. Each section of the assigned reading is followed by a
quiz with several questions, which allow students to assess
how well they learned the content. There is no restriction on
the number of attempts to the questions. The final dataset
contains 22,536 interactions from 22 students (see Table 1).

Table 1: Dataset Statistics
documents 394
questions 158
Average questions attempted 126
% of skimming Activities 33
% of reading Activities 67

4.2 Data-Preprocessing
Discretization of reading time is performed to label the ob-
servations to Read and Skim. For discretization we fol-
lowed the same technique as performed by Huang et al. [9]
The key to well-trained KT model is to have correct rep-
resentative KCs. The conventional way of defining KCs is
manual knowledge modeling by subject experts. Recently,
Huang et al. [9], tried different KC extraction methods and
found automatic word-based method to be reliable. How-
ever, word-based method gives a large set of KCs and it is
very noisy. To improve automatic KC extraction based on
words’ importance in a reading unit, we applied the TF*IDF
(Term Frequency - Inverse Document Frequency) approach.
For each document, top 5 TF*IDF-weighed words were ex-
tracted and considered as KCs for that reading.

4.3 Tools and Parameters
For building both BPM and IBPM models, we used open
source FAST toolkit [5]. HMM models are prone to get
trained for local optimum values, due to which proper ini-
tialization of HMM parameters is very important. In all the
models the HMM modes were initialized with (0.1,0.1,0.8,0.8)
parameter values for (P (L0),P (T ),P (G),P (S)). This choice
of initialization is based on observing the negative correla-
tion between reading and performance and preliminary ex-
periments under another initial parameter set (0.1,0.1,0.2,0.2)
where the predictive performance of all models was worse [9].

4.4 Baseline Methods
In order to show the performance gain of proposed approach,
we used two variations of KT as baselines. The first model is
the Behavior Model (BM) reviewed in section 3.1, and the
second is Performance Model (PM) trained on quiz activi-
ties by the student. In addition we use a majority class base-
line (MC). As the proposed model is able to perform both
reading time and quiz performance predictions, BM and
PM separately act as a baseline for proposed models’ read-
ing time prediction and quiz performance prediction task.

4.5 Cross Validated Prediction Evaluation
FAST trains individual HMM for each KC using training
data and performs prediction on test data. Firstly, we ran-
domly selected 50% of students and put all their reading
and quiz activity data into training set. Then for the re-
maining 50% of students, we put the first half of their ac-
tivity sequence into training set. The second half of their
activity sequences are withheld for test set. This process
is repeated 10 times. The prediction is reported on reading
speed, first attempt quiz performance, and all-attempts quiz
performance. 10 split cross-validation is performed from the
generated folds. Both Area Under the Receiver Operating

Characteristic curve (AUC) and Root Mean Squared Error
(RMSE) are reported based on a recent paper, that raised a
concern about using only AUC for evaluation of SM [14].

5. RESULTS AND DISCUSSION
5.1 Predictive Performance of BPM
Table 2 summarizes the predictive performance computed by
averaging across 10 splits and Table 3 reports significance.
Comparing with MC, BPM has significantly better RMSE
and AUC across all prediction tasks. The relatively lower
AUC value of BPM in reading prediction task indicates high
noise in reading interactions. Since quiz performance usu-
ally correlates better with knowledge than reading behavior,
the prediction on quiz is of more importance than that on
reading, thus the result indicates a clear advantage of BPM
over MC. Comparing with BM and PM which are trained
on a single type of interactions, BPM also beats them signif-
icantly in corresponding prediction tasks in both RMSE and
AUC metrics. We clearly see the advantage of integrating
behavior and performance data in BPM over PM and BM.
Better performance of BPM over BM indicates that even a
small amount of quiz performance data could significantly
improve knowledge inference and performance prediction.
Better performance of BPM over PM indicates that read-
ing data albeit being noisy still carries valuable information
that could help infer knowledge and conduct prediction.

5.2 Predictive Performance of IBPM
The intuition behind IBPM is that it provides additional
student reading behavior features (in addition to activity
type indicator) for capturing individual differences. As can
be seen in Table 2, IBPM incorporating individualized speed
feature shows improvement by both RMSE and AUC met-
rics compared with BPM. The improvement is significant for
reading speed prediction task and quiz all-attempts perfor-
mance prediction. However, its improvement over BPM on
predicting first attempt performance in terms of RMSE is
not significant. A probable reason is that our dataset ex-
hibits a mixture of students in terms of reading behavior
and performance (indicated by negative correlation value).

Table 2: Prediction performance for reading speed,
1st attempt quiz prediction, and all attempts. Two
best results are shown in bold.

Model RMSE AUC RMSE AUC RMSE AUC
reading 1st att. all att.

IBPM .483±.008 .512±.014 .472±.004 .635±.018 .391±.007 .867±.010
BPM .487±.008 .458±.012 .473±.004 .633±.018 .391±.007 .867±.010
BM .508±.011 .442±.019 - - - -
PM - - .504±.002 .602±.014 .427±.005 .803±.009
MC .593±.019 .500±.000 .550±.013 .500±.000 .693±.003 .500±.000

Table 3: Paired t-test p value for reading and quiz
prediction performance with Bonferroni correction

read 1st att. all att.
Compared Models RMSE AUC RMSE AUC RMSE AUC

IBPM vs BPM *** *** 0.18 * * *
IBPM vs BM/PM *** *** *** *** *** ***

IBPM vs MC *** ** *** *** *** ***
BPM vs BM/PM *** *** * *** *** *

BPM vs MC *** *** *** *** *** ***

10CV paired t-test, p-values
∗0.05/5 = 0.01, ∗∗0.01/5 = 0.002, ∗∗∗0.001/5 = 0.0002

5.3 Parameter Analysis of BPM
To validate our hypothesis that quiz activities contain less
noise than reading activities for inferring knowledge, we con-
duct a drill-down analysis of parameters of BPM and base-
line models. We compute the parameters for each KC in
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BPM by setting the value of activity type indicator to 0 for
the reading part and 1 for quiz part in the logistic regression
of each parameter, and then average the parameters across
all KCs. According to Table 4, BPM has fitted lower guess
and slip parameters in quiz activity part than reading ac-
tivity part, which indicates that quiz activities have higher
positive correlation with knowledge state than reading ac-
tivities i.e., quiz activities indeed have much less noise for
inferring knowledge. In addition, Table 4 shows that the
parameters learned for guess and slip for BPM are smaller
than those for BM and PM , which indicates that BPM has
higher plausibility enabling more accurate knowledge infer-
ence than these baseline models [8]. The high values of guess
and slip parameters for BM and PM model indicates that
single activity is not able to learn accurate student behavior.

Table 4: Parameters learned by different models for
learn, guess and slip probabilities

Model Activity Type learn guess slip
BM Reading 0.384 0.505 0.776
PM Quiz 0.091 0.705 0.589
BPM Reading 0.404 0.363 0.420
BPM Quiz 0.354 0.288 0.313

6. CONCLUSION AND FUTURE WORK
This paper investigated the significance of integrating het-
erogeneous student activities in a KT framework for adap-
tive textbooks. The integrated model BPM was trained
with large volume of noisy reading data and small amount
of quiz performance data. BPM significantly outperforms
the basic model BM , which is based on only reading behav-
ior logs, and PM which is based on only quiz behavior logs.
The results indicate that combining quiz and reading inter-
actions help in inferring student knowledge state. To address
student differences, IBPM integrated continuous observa-
tion in BPM . The performance of IBPM was similar to
BPM with a considerable improvement on reading speed
prediction and small improvement on quiz performance pre-
diction. In the future, we would like to further investigate
IBPM by utilizing other individualization features.

Although overall performance is not as high as in ITS fo-
cused on mastery learning, our past experience with topic-
based SM [15] hints that current level of prediction perfor-
mance could be sufficient to deliver successful personaliza-
tion based on adaptive navigation support where the student
can choose from several recommended options. We plan to
assess the value of our SM approach as a basis for personal-
ized guidance in the future studies.

Our work could be considered as the first attempt to model
dynamic student knowledge in adaptive textbooks with het-
erogeneous interactions. We believe that the possibility of
integrating individual differences to the proposed model makes
it especially promising for real-time learning systems. More-
over, our approach makes it possible to integrate more types
of student activities like search, video, listening and discus-
sion to further increase the quality of modeling and to pro-
vide holistic SM. We plan to explore these opportunities in
the future work.
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P. Brusilovsky. Integrating knowledge tracing and
item response theory: A tale of two frameworks. In
Workshop on Personalization Approaches in Learning
Environments at Int. Conf. on User Modeling,
Adaptation, and Personalization, pages 7–12, 2014.

[12] C. Lin and M. Chi. Intervention-BKT: Incorporating
instructional interventions into bayesian knowledge
tracing. In Intelligent Tutoring Systems, pages
208–218, Cham, 2016. Springer.

[13] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In Proc. the
18th Int. Conf. on User Modeling, Adaptation, and
Personalization, pages 255–266. Springer-Verlag, 2010.
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ABSTRACT 

One of the key benefits that Bayesian Knowledge Tracing (BKT) 

offers compared to many competing student modelling paradigms 

is that its parameters are meaningful and interpretable. These 

parameters have been used to answer basic research questions and 

identify content in need of iterative improvement (due to, for 

instance, low learning or high slip rates). However, a core challenge 

to the interpretation of BKT parameters is that several 

combinations of BKT parameters can often fit the same data 

comparably well. Even if, as some have argued, BKT is not truly 

non-identifiable, in practice highly different parameters with 

comparable goodness are often found using modern BKT fitting 

packages. These parameter sets can have highly divergent values 

for guess and slip. Several approaches have been proposed but none 

of those have yet led to fully stable and trustworthy parameter 

estimates. In this work, we propose a new iterative method based 

on contextual guess and slip estimation that converges to stable 

estimates for skill-level guess and slip parameters. This method 

alternates between calculating contextual estimates of guess and 

slip and estimating skill-level parameters, iterating until 

convergence. Thus, it produces a more stable set of parameters that 

can be more confidently used in analyzing content efficacy. 

Keywords 

Bayesian Knowledge Tracing, Contextual Guess Slip, Content 

Efficacy, Brute Force BKT Model, EDM 

1. INTRODUCTION 
The process of developing an intelligent tutoring system (ITS) is an 

iterative one, and content frequently needs revision to reach its 

desired effectiveness for students [1]. In addition, even as 

intelligent tutors have become more widespread, the quality of the 

content present in them has often become more varied, with the 

advent of approaches such as crowd-sourcing for generating large 

amounts of content quickly [2]. As such, improving the quality of 

content that the students are exposed to is one of the significant 

aspects of the development of ITS. One approach to achieving this 

is to put in place a framework for automatically reviewing content, 

identifying/flagging content that does not meet the desired 

objectives. In this paper, we discuss our efforts to create such a 

system within the context of Mindspark*, an ITS software being 

used by over 80,000 students in India. 

The cornerstone of our efforts is discovering skills which have 

unexpected negative properties, specifically very low learning 

rates, or very high rates of guess and slip within the Bayesian 

Knowledge Tracing paradigm (Corbett & Anderson, 1995). 

Bayesian Knowledge Tracing is a highly-cited paradigm for student 

modeling and is used in a wide range of real-world adaptive 

learning systems. Although recent evidence suggests that 

extensions to BKT and competing paradigms may in some cases 

achieve better prediction of immediate correctness [3], BKT 

remains a high-quality, highly interpretable paradigm for modeling 

student latent knowledge as well as meaningful attributes of 

individual skills. However, one challenge to interpreting BKT 

parameters is that different sets of parameters can fit the data 

comparably well [4]. Although recent articles have argued that 

BKT is not truly non-identifiable [5], nonetheless contemporary 

packages for choosing BKT parameters regularly produce very 

different parameter values with comparable fits. Other researchers 

have noted the problem of unstable parameters; however, these 

approaches have tended to assume skills have similar parameters to 

each other [6], [7]. These assumptions may lead to more plausible 

parameters in general but may be unhelpful for identifying skills 

whose guess, slip, or learning rates are genuinely problematic.  

Hence, in this paper we propose a new iterative approach for 

stabilizing the parameter values of BKT that leverages additional 

information about student performance. Previous work proposed 

contextually estimating guess and slip in all cases with situational 

information [8]; this approach produced unstable improvements in 

model goodness, however, with positive impacts in some data sets 

and negative impacts in other data sets. This paper instead uses 

iterative contextual estimation of guess and slip to help select guess 

and slip parameters for traditional Bayesian Knowledge Tracing – 

i.e. the final model is non-contextual. By using additional 

information to derive better estimates of guess and slip, we can be 

more confident about our model parameters, and more confident 

about our ability to use these parameters in driving quality 

improvement. 

The subsequent sections explain the dataset used, the 

conceptualization of the iterative parameter estimation approach, 

the results obtained and how we validated the approach. We 

conclude with a discussion of how this approach will be leveraged, 

going forward, to analyze content efficacy in Mindspark. 

2. DATA DESCRIPTION AND APPROACH 

 

2.1 Data sets 
In order to evaluate our approach to estimate BKT parameters, we 

considered a simulated data set and a genuine data set from the 

Mindspark platform. 
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Simulated data: 

Student responses were simulated for four different skills by 

assuming four different set of BKT model parameters values – L0, 

G, S, T – and then estimating the probabilities of student responses 

using the BKT paradigm. Each skill had 2,000 users, with four 

attempts for every user. Each of the four skills came from a 

different [L0, G, S, T] combination: [0.6, 0.3, 0.05, 0.25], [0.6, 0.3, 

0.05, 0.02], [0.6, 0.05, 0.25, 0.25] and [0.6, 0.05, 0.25, 0.02] 

respectively. Data consisted of 0 and 1 for incorrect and correct 

response by users on each attempt. The data was simulated by 

calculating the likelihood of knowledge and a correct response 

based on the BKT model and each simulated user’s response 

history. 

Real student log data from Mindspark Math: 

Actual student response data was also extracted from the 

Mindspark log data. Mindspark is an adaptive-learning program for 

Math and English, developed by Educational Initiatives (EI). 

Mindspark Math currently has 80,000 users, primarily from private 

schools, in grades 1 to 9, across India. For our purpose, data from 

the ‘Revision Module’ in Mindspark was taken. The Revision 

Module is a 30-minute session that gives students questions from 

topics selected by the teacher. It is intended to help students learn 

concepts for which that student had relatively low performance in 

regular modules. The reason for selecting the Revision Module for 

this exercise was that this module usually has multiple attempts per 

skill for each student. A ′attempt′ here means an opportunity 

provided to a student to apply the skill in order to solve a question. 

Hence when a student has multiple attempts on a particular skill, 

the student is presented a set of questions testing the same skill and 

each response is scored as correct/incorrect. Data of 1,032 users 

across a total of 5,200 attempts was extracted for six different skills. 

We limited the data set to students who had at least three attempts 

and capped the number of attempts at five per user in order to avoid 

focusing the data set on students who struggled to reach mastery.  

Skill Grade Learning Objective 

NTH001_8 5 
Determining least multiple for a number 

out of a given set of numbers 

WNC034_7 5 
Estimating a number to the nearest 

hundred 

NTH021_8 5 
Writing factorizations of a number using 

the factor tree of the number 

WNC059_12 5 
Estimating a number to the nearest 

thousand 

WNO033_10 5 
Adding a 3-digit number to another 3-

digit number vertically 

WNO049_10 5 
Writing quotient and remainder given 

dividend and divisor 

Table 1. Skills used from the Revision Module of Mindspark 

2.2 Approach 
We derived contextually-inspired parameters for Bayesian 

Knowledge Tracing as follows: We start by obtaining initial 

parameter values for each skill using the common Brute Force grid 

search method [9] and classical BKT paradigm. This set of 

parameter values are used as input to the Contextual Guess Slip 

model [8] to estimate the contextual probability of guess and slip 

for each student attempt. The contextual probability of guess and 

slip is derived from the likelihood of a student knowing the skill at 

a specific attempt, which in turn is estimated based on the student’s 

performance on the next two attempts on that skill. The formulas 

from the original contextual guess/slip model [8] were used to 

calculate P(Ln-1) which represents each student’s knowledge state 

after (n-1) th attempt. The formulas take into account a student’s 

subsequent two attempts (n and n+1 response data) to calculate 

P(Ln-1). 

P(Ln-1 | An,n+1) = P(An,n+1 | Ln-1) * P(Ln-1) / P(An,n+1) (1) 

P(An,n+1) = P(Ln-1) * P( An,n+1 | Ln-1)  

+ (1 - P(Ln-1)) * P(An,n+1 | ~Ln-1)   (2) 

The probability of the actions at time n and n+1, in the case that the 

student knew the skill at time n (Ln-1), is a function of the 

probability that the student guessed or slipped at each opportunity 

to practice the skill. C denotes a correct action; ~C denotes an 

incorrect action.  

P(An,n+1 = C,C | Ln-1) = P(~S)2    (3) 

P(An,n+1 = C,~C | Ln-1) = P(~S)*P(S)   (4) 

P(An,n+1 = ~C,C | Ln-1) = P(S)*P(~S)   (5) 

P(An,n+1 = ~C,~C | Ln-1) = P(S)2   (6) 

The probability of the actions at time n and n+1, in the case that the 

student did not know the skill at time n (~Ln-1), is as below: 

P(An,n+1 = C,C | ~Ln-1) = P(G)*P(~T)*P(G)  

+ P(G)*P(T)*P(~S)     (7) 

P(An,n+1 = C,~C | ~Ln-1) = P(G)*P(~T)*P(~G)  

+ P(G)*P(T)*P(S)     (8) 

P(An,n+1 = ~C,C | ~Ln-1) = P(~G)*P(T)*P(~S)  

+ P(~G)*P(~T)*P(G)    (9) 

P(An,n+1 = ~C,~C | ~Ln-1) = P(~G)*P(T)*P(S)  

+ P(~G)*P(~T)*P(~G)    (10) 

After calculating P(Ln-1), the contextual probabilities of guess and 

slip at nth attempt was assigned as: 

P(G′n) = 1 - P(Ln-1)     (11) 

P(S′n) = P(Ln-1)     (12) 

The probabilities obtained are at a student attempt level. To obtain 

skill level parameters, we aggregate these values across all the 

attempts for a given skill as below: 

G = Σ P(G′n | C) / Σ P(G′n)    (13) 

S = Σ P(S′n | ~C) / Σ P(S′n)    (14) 

where P(G′n) and P(S′n) are taken from equations 11 and 12 

respectively. 

In other words, to obtain the guess parameter, we take the ratio of 

the sum of the P(G′n) values for the attempts where the response by 

the student was correct and the sum of the P(G′n) values across all 

the attempts for the skill. Similarly, to obtain the slip parameter, we 

take the ratio of sum of the P(S′n) values for attempts where the 

response was incorrect and the sum of P(S′n) values across all the 

attempts for the skill. 
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Subsequently, if the skill level guess and slip estimates from the 

contextual model do not agree with the guess and slip estimates 

obtained from the Brute Force grid search method originally, then 

it means that the BKT parameters are not stable. These parameters 

can be refined by using contextual estimates of guess and slip as 

input to Brute Force grid search algorithm and iterating this process 

until the skill level G and S values from the two approaches match 

with each other. Here note that each iteration is performed on the 

entire dataset (all the attempts of the students) which means the 

dataset does not change from one iteration to another. The 

flowchart below summarizes the whole process:

 
Fig. 1. BKT with Contextual Guess Slip Flow 

 

 

3. VALIDATION AND RESULTS 

3.1 Validations carried out on simulated data 
The purpose of using simulated data was to confirm that the skill 

level G and S values calculated through the contextual model match 

the original G and S values used to generate the simulated data. The 

calculated values from the proposed approach achieved a match 

within 1% error margin to the parameter values used for simulating 

the data for all four cases. 

Table 2. Original vs Calculated G and S values for each skill 

Data set Original G Original S Calculated G Calculated S 

Skill 1 0.3000 0.0500 0.2998 0.0499 

Skill 2 0.3000 0.0500 0.3001 0.0500 

Skill 3 0.0500 0.2500 0.0500 0.2501 

Skill 4 0..0500 0.2500 0.0500 0.2501 

 

We also used the simulated data to check if the iterative model 

achieves convergence over time and results in a stable set of 

parameter values. For this purpose, we used arbitrary parameter 

values [L0=50%, G=15%, S=15%, T=10%] for first iteration for all 

four simulated skills instead of estimating the parameters from the 

Brute Force BKT model. We observed that L0, G, S, T values 

started converging after a reasonable number of iterations for all 

four cases and the output matched the original parameter set used 

to simulate the data. Fig. 2 shows the convergence for all four 

simulated skills. We have also shown the trend in RMSE values 

over the iterations for all four skills in Fig 4. Since we had started 

with arbitrary parameter values, RMSE is quite high in the first 

iteration but decreases continuously to achieve the minimum value 

over multiple iterations. 

3.2 Validation carried out on Mindspark data 
It is not possible to determine whether the proposed approach 

reaches “true” parameter values for real-world data, because it is 

unknown what those true parameter values would be (and, indeed, 

we know that BKT is an imperfect model of the real world). 

However, we are still able to validate how well the proposed 

approach converges when applied to real data, where the noise may 

be different in kind than the noise generated by BKT for the 

simulated data. As Fig. 3 shows below, the curve for all four skills 

starts flattening out after a tractable number of iterations, exhibiting 

convergence in the data.  

We also show here that the model achieves convergence without 

significantly increasing the original RMSE achieved through the 

Brute Force BKT model which indicates that the model fit does not 

worsen over the iterations. The change in the RMSE values was 

observed to be under 0.002 across all six skills and the trend has 

been shown in Fig 4. 

 

Proceedings of the 11th International Conference on Educational Data Mining 598



 

 

  

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Contextual BKT approach on the simulated data with four skills across 40 iterations. The values in the parentheses represent the 

actual values used for simulation 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3. Contextual BKT approach on Mindspark data with six skills across 40 iterations 
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Fig. 4. RMSE values of the Contextual BKT model for simulated and real data across 40 iterations. As can be observed, the error metric 

changes very minimally across iterations.

 

4. CONCLUSION AND FUTURE WORK 
 

In this paper, we discuss a new, iterative approach to fitting BKT 

parameters, involving iteration between fitting skill-level 

parameters for guess and slip, and contextually estimating guess 

and slip within each problem attempt. This approach converges 

across iterations to a stable and single set of parameters which have 

a principled justification for their selection. As such, we can then 

have higher confidence about interpreting and using these 

parameters for commenting on content efficacy. The skill level 

BKT parameters enable us to evaluate content on multiple 

dimensions: (a) grade appropriateness, (b) learning rate, and (c) 

quality of the content as indicated by low or high guess and slip 

values. For content to be effective in a given context, it should have 

BKT parameters within a desired range. In future work, the desired 

range of values will be determined through multiple approaches 

including analyzing parameter distributions to set up heuristic 

rules, anomaly detection, and discussions with our pedagogical 

experts. 

If the parameter values for a skill is outside of those permissible 

ranges, it would indicate that the content does not meet the 

quality/effectiveness standard. For example, for a piece of content 

to be grade appropriate, L0 should likely be between 25% to 85%. 

Any content which has L0 above 85% may not lead to substantial 

improvement in student learning, as most of the students already 

know it. By contrast, any content which has L0 below 25% is also 

not appropriate as students may not know the pre-requisite skills to 

learn the content. 

Our next step is therefore to establish thresholds (the desired range 

of values) for each parameter to develop filters which will 

automatically identify ineffective content and bring it to the 

attention of the content developers.  

An added advantage of screening content using BKT parameters is 

that we can also provide auto-generated guidance on what the issue 

might be with the content rather than just highlighting that the 

content needs improvement. Apart from being a tool for ITS / 

content developers in identifying lower quality content for revision, 

this approach has wider application in the domain of Bayesian 

Knowledge Tracing as it provides a means to capture a single set of 

skill parameters and have a justification for preferring this set of 

values to others with comparable fit. 
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ABSTRACT 
Imbellus is an assessment company that builds immersive 
simulation-based assessments designed to evaluate cognitive 
processes. The work described here explores our partnership with 
McKinsey & Company, a best-in-class management-consulting 
firm, to build a simulation-based assessment that evaluates 
incoming applicants' cognitive skills and abilities. Our simulation-
based assessments are designed to produce a substantial amount 
of information about the incoming applicants, including 
metacognitive skills, decision-making processes, and situational 
awareness (to name a few of the constructs we measure). This 
paper will explore the rich telemetry data we collect and quantify, 
as well as the novel scoring and exploratory techniques we are 
conducting to gain insight into applicants’ cognitive profiles. We 
will present our initial findings and describe implications of our 
current work for the fields of artificial intelligence, educational 
data mining, and assessment. 
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1. INTRODUCTION 
Imbellus assessments are designed to provide a wealth of 
information concerning applicants’ cognitive skills and profiles. 
In contrast, traditional standardized cognitive assessments 
primarily evaluate content mastery, processing speed, and 
memory. The rise of automation makes insights around domain 

knowledge, processing speed, and memory less relevant features 
of human cognition, while higher level, complex cognitive 
abilities become features that make all the difference in 
individuals’ preparedness for modern work and life. Imbellus 
assessments evaluate what have historically been hard-to-measure 
skills like problem-solving, creativity, systems thinking, and 
critical thinking. To take a practical approach to designing good 
assessments, Imbellus partners with industry leaders whose 
employees leverage key 21st Century skills at an elite level. Our 
early work with McKinsey & Company, a best-in-class 
management-consulting firm, has involved building an assessment 
to gauge incoming applicants' cognitive skills and abilities, which 
will be used to construct profiles of each applicant. 

Standardized cognitive assessments were developed in the late 
1800s to “stratify students of different abilities into different 
curricular paths” [9]. The release of Goddard’s IQ formula and the 
Stanford-Binet cognitive assessment in the early 1900s launched a 
movement of mass testing in the United States. The College 
Entrance Examination Board, now the College Board, was 
established in 1923 to define a set of college admission standards 
through the dissemination of the Scholastic Aptitude Test (SAT) 
[3]. In 1959, the American College Test (ACT) was released as an 
alternative to the SAT [3]. The ACT’s stated goal is to “measure 
information taught in high school,” instead of evaluating cognitive 
reasoning skills. [8]. The ACT and SAT set college admissions 
standards, which became significant shaping forces. Today over 
39 Advanced Placement tests and 20 SAT Subject tests dictate the 
curriculum in our K-12 education system and influence 
infrastructure and resource allocation. The ACT and the SAT 
focus on standardized content in mathematics, writing, science, 
and other subject-specific areas to create objective metrics. [6]. 
While widely adopted across the nation, these assessments have 
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“revealed little about specific cognitive abilities or predicted 
performance” [3].  

In response to the shortcomings in both the methodology of and 
substance of traditional standardized college admissions tests, 
employers have adopted other traditional cognitive ability or 
intelligence tests in an effort to glean more predictive insights on 
applicants’ cognitive profiles. Most cognitive ability tests measure 
“reasoning, perception, memory, verbal and mathematical ability” 
[1]. These assessments, like standardized admissions tests, focus 
on content mastery, processing speed, and memory. These factors 
ignore the increasing need to develop and measure capabilities 
required by the 21st-century workforce. These tests ignore the 
cognitive process that users engage in during that task.  

Past their shortcomings in predictive validity, most cognitive 
assessments are paper-and-pencil multiple-choice tests, a medium 
for evaluating cognitive skills that artificially constricts the nature 
of possibility spaces framing users’ potential cognition. Multiple 
choice tests demand asking clear, static questions about some 
subject matter where one of n choices is right and n-1 of n choices 
are wrong. Such a scenario, at an abstract level, is at odds with the 
nature of modern demands on cognition. Traditional admissions 
tests focus on product scores (i.e., correctness) not the process of 
how (i.e., strategy) a user got there. It is vital to understand a 
user’s cognitive process, as cognition by its nature is dynamic 
across time and tasks.  

Beyond content irrelevance, the degree to which today’s 
standardized admissions tests can be “gamed” leads to inequity in 
opportunity for success. Users who have the resources to master 
the testing process are more likely to perform better on the 
assessments. The College Board reported a substantial correlation 
of r=.42 between socioeconomic status and SAT scores [4]. The 
SAT’s correlation with socioeconomic status is higher than The 
College Board’s self-reported correlation of r=.33 between SAT 
score and first-year college GPA [4]. 

Imbellus assessments focus on evaluating how people think 
instead of what they know. Through our scenarios that take place 
in our simulation-based environments, we observe details of 
users’ cognitive processes, not just their end choices. We’ve 
designed our assessments to discount the high value placed on 
memory and processing speed in traditional cognitive 
assessments. The simulation-based assessment discussed in this 
paper consists of several scenarios embedded in an abstracted 
natural world environment. Users interact with a series of 
challenges involving natural terrain, plants, and wildlife (See 
Figure 1).  We designed each scenario as an abstract 
representation of the problem-solving capabilities and processes 
required to succeed on the job. This abstraction allows us to 
transpose skills to a new context with a similar structure to the 
first—known as far transfer [5]. We strategically chose the natural 
world as a setting for our tasks because it offers an accessible 
context for a global population. 

Second, our problem-solving assessment focuses on skills mastery 
rooted in cognitive and learning science theory, as well as an 
exploration of the nature of work at McKinsey & Company. 
Together, with McKinsey & Company, we conducted a cognitive 
task analysis to understand the problem-solving domain [7]. Using 
this analysis, we developed a problem-solving framework 
representing seven major constructs (e.g. situational awareness, 
metacognition, decision-making). We examined on-the-job 
activities at McKinsey & Company to ensure that the structure of 
our problem-solving framework was aligned with the practical 

skills and abilities employees engage in at the firm. This work laid 
the groundwork for scenario development within our simulation. 

Third, our problem-solving assessments focus on the process in 
which users solve and engage in during the task. We do not just 
look for correct or incorrect answers; instead, we aim to 
understand how a user solved a problem and what strategies they 
engaged in to do so. This novel approach to cognitive testing in 
the hiring domain provides an abundance of information to better 
assess which candidates are likely to succeed at the company.  

Figure 1. View of natural world simulation environment 

We designed each scenario in the assessment based on a set of 
problem-solving constructs and workplace activities wrapped in a 
natural world setting. For example, in one scenario, users may be 
researching and evaluating an infected species in desert terrain. As 
users play through a scenario, we test them on both their cognitive 
process and product by capturing their telemetry data. These 
hovers and clicks are captured as evidence to make inferences 
about their cognitive processing. 

 

2. OVERVIEW OF SCORE 
DEVELOPMENT 
Imbellus scores were developed using our problem-solving 
ontology, comprised of approximately 100 constructs, and the 
cognitive task analysis we conducted with McKinsey & 
Company. Imbellus scores quantify how users’ actions, 
timestamps, and performance relate to the cognitive constructs 
within our problem-solving ontology. We derive all Imbellus 
scores from the users’ telemetry data. We then map the scores to 
one or more problem-solving constructs within our framework.  

To create the Imbellus scores, we engaged in a step-by-step 
process to build, test, and refine each score and its link to the 
theoretical framework. First, we built expert models for each 
scenario within our simulation. Expert models help us understand 
how applicants’ cognitive skills manifest in telemetry data. Within 
our expert models, we outlined the evidence we expected to see in 
users’ behaviors (e.g. efficiency, systematicity) as they complete 
tasks. We used these evidence statements to develop our Imbellus 
scores. Following our initial score design, we conducted a series 
of think-aloud tests aimed at linking specific thinking patterns and 
behaviors to our scores. We incorporated information from these 
think-aloud sessions to revise our expert models and scores. We 
used the initial set of Imbellus scores as a basis for our November 
2017 pilot study. 
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3. PRELIMINARY PILOT OVERVIEW 
Using our preliminary Imbellus scores, we conducted a large-
scale pilot study in the Fall of 2017. This pilot study tested the 
predictive capacity of our scores, as well as assessment and 
simulation environment. We mapped each Imbellus score to one 
or more of five high level cognitive constructs: critical thinking, 
decision-making, metacognition, situational awareness and 
systems thinking. This mapping allows us to build cognitive 
profiles while also examining the predictive bearing of each score. 
The pilot study data will be used to inform future designs, validate 
methodologies, and refine scores. 

3.1 Method 
Our pilot test, comprised of 527 McKinsey & Company 
candidates, represented our largest cohort to date. Testing 
occurred in London, UK from November 13, 2017 through 
November 17, 2017 and was an optional part of the candidates’ 
interview process with McKinsey & Company. After the 
conclusion of our game-based assessment, participants completed 
a survey designed to collect demographic information and user 
feedback.  

Based on survey data, 40% of participants were female, 59% were 
male, and 1% chose not to provide gender. Based on the Equal 
Employment Opportunity Commission’s guidelines, the ethnic 
breakdown of the sample was as follows: 52.6% White, 29.7% 
Asian, 3.9% Hispanic, 4.1% Mixed, 3.3% Black, 2.8% Other, and 
3.5% did not specify [2]. Participants’ educational backgrounds 
ranged from humanities-based disciplines to business and  
engineering. On English proficiency, 56% of the sample reported 
being a native English speaker, 43% reported being a fluent but 
non-native English speaker, and 1% reported having a “business-
level” proficiency of English. 

The participants in our pilot population were given the option of 
completing our digital assessment after completing the McKinsey 
& Company Problem-Solving Test (PST), a paper-based 
assessment. McKinsey & Company administers the PST at 
proctored test sites. The PST is a traditional cognitive assessment 
designed to provide insight into applicants’ cognitive skills. For 
the sample of participants who also completed the Imbellus 
assessment, the proctors told the participants that chose to 
complete the Imbellus assessment that the outcomes of the 
assessment would not affect their recruitment process.  

Candidates were allotted 60 minutes, the recommended amount of 
time excluding cases of learner accommodation, to complete the 
three scenarios. The digital assessment was administered using 
McKinsey-owned laptop computers in a controlled environment. 
Along with assessment telemetry and survey data, we collected all 
scratch paper used by candidates. The assessments took place over 
the course of 5 days of testing and 29 sessions, none of which 
experienced significant technical difficulties. 

 

3.2 Creating Construct Profiles 
To better understand how participants performed in our 
assessment, we created a cognitive profile for each participant 
based on five cognitive constructs: critical thinking, decision-
making, metacognition, situational awareness and systems 
thinking. We already had created theoretical construct affinities 
for each item score. However, not every item score was 
predictive. We created a non-negative logistic regression with 
LASSO regularization to predict the probability a user would pass 
the first cognitive screen [10]. 

Before we performed the regression, we imputed missing scores 
by their median value. All scores were scaled from 0 to 1 using 
their smallest and largest values. The regression must have non-
negative weights because we assume that a higher item score is 
evidence of higher ability. We used LASSO because of its feature 
selection properties [11]. The LASSO regularization strength, λ, 
was found through 10-fold cross-validation. The goal of this step 
was feature selection, so we chose λ based on a combination of 
non-zero coefficients and deviance. A λ of 7.68 × 10-3 produced a 
model with 26 (from 81) non-zero coefficients and a deviance of 
1.24 (minimal deviance model = 1.22). 

We scaled the resulting item score weights according to their 
theoretical relevance to each construct. The most relevant scores 
were multiplied by 3, while relevant scores were multiplied by 2. 
Marginally relevant scores were not scaled. Item scores that were 
irrelevant to the construct were set to 0. This created five 
construct-scaling vectors. The scores for each user were 
multiplied element-wise by each of the scaling vectors. 

These scaled item scores were summed together for each 
construct. The result was then rescaled by dividing each construct 
by its highest possible score and transformed into percentile ranks. 
All construct scores except decision-making had high Pearson 
correlation (>0.60) with passing McKinsey’s multiple-choice 
Problem-Solving Test (PST). Decision-making had a Pearson 
correlation of 0.43. The full correlation table between the 
constructs and passing the PST is displayed below.  

Table 1. Correlations between construct scores and PST passing 
scores 

   Meta ST SA DM CT PST 
Pass 

Meta 1.00 0.46 0.52 0.43 0.69 0.63** 

ST 0.46 1.00 0.70 0.28 0.80 0.67** 

SA 0.52 0.70 1.00 0.28 0.79 0.71** 

DM 0.43 0.28 0.28 1.00 0.33 0.43** 

CT 0.69 0.80 0.79 0.33 1.00 0.65** 

PST 
Pass 

0.63 0.67 0.71 0.43 0.65 1.00 

**All constructs are significantly related to PST pass rate at 
p<.01** 
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Figure 2. Median Construct Percentile through McKinsey & Company Recruiting Pipeline 

 

The plot above shows the median percentile rank of each of the 
five construct measures at each stage of the interview process (See 
Figure 2). Each colored bar in the plot represents the outcome of 
the interview process. The disposition labeled “PST” signifies that 
the candidate was screened out before the first interview. “RD1” 
and “RD2” signify that the applicant did not continue past the first 
or second round interviews, respectively. “Offer” means that the 
applicant received an offer from the company. 

Below is a table of the median percentile of each of the five 
constructs at each stage of the interview process along with the 
median absolute deviation (MAD). This table reveals that 
preliminary cognitive construct scores are significantly related to 
success in the interview process. While more work needs to be 
done to explore this relationship, the initial results are favorable.    

Table 2. Median percentile construct score by interview stage. 

	
   PST RD1 RD2 Offer 

Critical 
Thinking 

0.43 
(.34) 

0.62 
 (.35) 

 0.65 
 (.28) 

0.78  
(.31) 

Decision 
Making 

0.45 
(.37) 

0.59 
(.35) 

0.51 
(.40) 

0.56 
 (.24) 

Metacognition 0.44 
(.36) 

0.59 
(.36) 

0.61 
(.27) 

0.62  
(.33) 

Situational 
Awareness 

0.44 
(.34) 

0.6 
(.36) 

0.74 
(.24) 

0.71  
(.36) 

Systems 
Thinking 

0.43 
(.35) 

0.62 
(.35) 

0.78 
(.28) 

0.66  
(.19) 

**Median scores and (Median absolute deviations)** 
 

4. CONCLUSIONS & FUTURE WORK 
Results from the pilot are promising and show that the Imbellus 
scores can be used to build out predictive cognitive profiles of 
candidates. Indeed, these results showed that the cognitive profiles 
of users were predictive of their success through the McKinsey & 
Company hiring pipeline. Beyond predictability, these results also 
show that cognitive processing skills can be captured and 
quantified using telemetry data within a complex problem-solving 
task.  

To examine the generalizability of these results, we are currently 
conducting playtests with McKinsey & Company employees and 
candidates, globally. This extra testing will be used to help us 

iterate on the design of the assessment and refine our Imbellus 
scores. In the fall of 2018, we will run a large-scale field test with 
an expected sample size of over 1000 of McKinsey & Company 
candidates. 

The current version of the simulation is deployed in a secure, 
proctored environment. In the future, our assessments will be 
deployed remotely. As such, our assessment will aim to account 
for performance effects across demographic factors. At its core, 
Imbellus will leverage a data-driven, artificial intelligence (AI) 
architecture to prevent cheating. Every user who takes the 
Imbellus assessment will receive a unique task instance that, on 
the surface, is varied by its individual properties, complexity, and 
visual design, while structurally every task version remains 
consistent in its assessment. Through this approach, Imbellus 
assessments will prove robust against cheating, hacking, and 
gaming challenges that face many existing intelligence tests. Our 
assessments are designed for scale, enabling our team to reach a 
variety of domains and populations. 

Looking beyond this work, we are exploring capabilities beyond 
problem-solving, including affective skills that are essential for 
success in the 21st Century workforce. At Imbellus, we aim to 
provide insightful data points on incoming applicants and current 
employees that will help companies build successful and 
sustainable teams in the future.  
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ABSTRACT
In the context of an adaptive learning and assessment sys-
tem, ALEKS, we examine aspects of forgetting and aspects
of a ‘testing effect’ (in which the act of simply being pre-
sented a problem in an assessment seems to assist in the
learning process). Using a dataset consisting of over six
million ALEKS assessments, we first look at the trend of
student responses over the course of the assessment, find-
ing little evidence for such a testing effect. We then re-
fine our approach by looking at cases in which a question
is repeated in an assessment; repeats are possible because
some question is always chosen at random in an assessment
for data-collection purposes. We find evidence of a testing
effect for higher-performing students; for lower-performing
students, we find a decreased willingness to attempt an an-
swer the second time a problem is presented. Then, turning
to forgetting, we find that the content representing the“high
points” of a student’s learning sees a more precipitous drop
in the student’s memory than does other content (perhaps
because the “high point” skills and concepts may not have
been practiced or developed much since the original learn-
ing event). Consequences and possible improvements for the
ALEKS system, and also a brief comparison to recent work
in the modeling of forgetting, are mentioned.

Keywords
Knowledge space theory, adaptive learning, forgetting curves,
testing effect

1. INTRODUCTION
ALEKS, which stands for “Assessment and LEarning in
Knowledge Spaces”, is a web-based, artificially intelligent,
adaptive learning and assessment system [13]. The arti-

ficial intelligence of ALEKS is a practical implementation
of knowledge space theory (KST) [5, 7, 8], a mathemati-
cal theory that employs combinatorial structures to model
the knowledge of learners in various academic fields of study
including math [11, 15], chemistry [9, 18] and even dance
education [19].

2. BACKGROUND
Memory and forgetting is an area that has seen significant
research, pioneered by the late-nineteenth century work of
Ebbinghaus with his ‘forgetting curves’ [2, 6]. Ebbinghaus
posited that memory, as measured, say, by the ability to
recall words presented in a list, decays exponentially with
time; one such exponential model is given in Equations (7.1)
and (7.2) in Section 7 below. A great deal of study has been
done on the possible effects of various experimental con-
ditions, such as whether the experiment probes explicit or
implicit memory [12], the effect of the physical context in
which the learning and recall take place [3, 17], and the ex-
tent to which the content is meaningful for the participant
[10, 14], among many other experimental conditions. In the
current paper, we will examine forgetting in the context of
the adaptive learning and assessment system ALEKS, at-
tempting to isolate the effect of aspects of the adaptivity on
forgetting.

We will also look at a kind of ‘testing effect’ in which the
act of simply being presented content in the adaptive assess-
ment seems to assist in the learning process [1, 4]. We use
the term ‘testing effect’ somewhat loosely here, as our use
differs from that typically seen in the literature, since, for
example, our situation does not include systematic feedback
[16]. We use the term only to refer to a situation in which
recall (or skill, or confidence) seems improved as content is
encountered during an assessment.

In KST, an item is a problem that covers a discrete skill
or concept. Each item is composed of many examples called
instances; these instances are carefully chosen to be equal in
difficulty and to cover the same content. A knowledge state
in KST is a collection of items that, conceivably, a student
at any one time could know how to do. In other words,
roughly speaking, a set of items is a knowledge state if some
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student could know how to do all of the items in the set and
not know how to do any of the items outside the set. For
example, the empty set and full set are always considered
knowledge states.

Another important concept from KST is the inner fringe
of a knowledge state. An item is contained in the inner
fringe of a knowledge state when the item can be removed
from the state and the remaining set of items forms another
knowledge state. Intuitively, the inner fringe items are the
“high points” of a student’s knowledge, as they are not pre-
requisties required to master any of the other items in the
knowledge state. This concept will be important for our
work on forgetting in Sections 5 and 6.

While using the ALEKS software, the student is guided
through a course via a cycle of learning and assessments.
Each assessment (described below) updates the system’s as-
signment of a knowledge state to the student. Then, in
the learning mode, the student is given problems to prac-
tice based on her knowledge state, with the system tracking
the student’s performance and continually updating the stu-
dent’s knowledge state. Subsequent assessments then mod-
ify the knowledge state as needed, and the process continues.

Each ALEKS assessment has about 15 to 29 questions, with
each question comprising the presentation of some item to
the student. The item is chosen in an adaptive way, that
is, chosen based on the student’s previous responses during
the assessment. (More specifically, the item is chosen to
be maximally informative for the system’s evaluation of the
student. The effect is that the assessment adapts to the level
of the student, not necessarily becoming easier or harder
for the student, as the assessment continues.) The student
can elect to give an answer for the item, in which case her
response is classified by the system as correct or incorrect,
or she can choose to respond “I don’t know,” which she is
encouraged to do if she has no idea how to approach the
item. In addition, in each assessment, an extra problem is
chosen uniformly at random from all of the items in the
course and presented to the student as a question in the
assessment. The student’s response to the extra problem
does not affect the system’s evaluation of the student.

3. EXTRA PROBLEM BY RANK
For our first analysis, we will look at how responses (correct,
incorrect, or“I don’t know”) to the extra problem evolve dur-
ing the assessment. In other words, does the question rank
of the extra problem have an effect on students’ responses?
(By question rank, we mean the point in the assessment at
which the question is asked, that is, the question number.)
One hypothesis is that the extra problem success rate would
increase throughout the assessment. (By success rate, we
mean the proportion of the responses that are correct.) For
example, it is possible that simply by working through re-
peated assessment questions, students experience a boost in
performance; we will consider this phenomenon as a type of
‘testing effect’ [1, 4, 16]. One could imagine that this effect
would be more pronounced after a long academic break, such
as a summer or winter vacation, since the skills required for
a particular course could suffer from a lack of recent use, and
being assessed on these skills could help to sharpen them.
As another example, there could be user interface issues for
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Figure 1: Proportions of responses to the extra
problem by question rank for initial assessments.
The types of responses are correct, incorrect, and
“IDK” (“I don’t know”). Note that the sample size
is shown on a logarithmic scale.

a student who is unfamiliar with the ALEKS system. Since
the large majority of ALEKS problems require open-ended
solutions, rather than multiple choice responses, it is pos-
sible that students would improve in performance as they
became accustomed to the ALEKS interface. In both of
these scenarios, the effect, if it existed, would seem to be
more apparent earlier in a course, so we will look at data
from ALEKS initial assessments, which are the assessments
given at the start of an ALEKS course.

Note that both of the hypothesized effects in the previous
paragraph would result in an increased extra problem suc-
cess rate as the assessment progresses. However, one effect
that would possibly lower the success rate, and that has
been observed anecdotally, is that of assessment fatigue: as
an assessment goes on, students may be more likely to re-
spond incorrectly or not at all. This effect may be amplified
by the open-ended answer interface used by ALEKS, which
could make it more appealing for a student to respond “I
don’t know” rather than make the effort to input a complete
answer.

To start, we will look at a dataset consisting of 6,132,681 ini-
tial assessments, grouping the responses to the extra prob-
lem by question rank. The results can be seen in Figure 1.
The first thing to note is that the success rate (the propor-
tion of correct responses) does not increase as the assessment
goes on; its curve is essentially flat. Thus, whatever testing
effect there may be is overwhelmed by other factors. In par-
ticular, the rate at which students answer “I don’t know”
shows a steady rise as the question rank increases, and the
incorrect rate shows a corresponding decrease; keeping in
mind that the extra problem is a randomly chosen problem
that is asked at a randomly chosen point in the assessment,
we see evidence that students are experiencing some sort of
fatigue. As students get further along in the assessment,
they seem less willing to attempt a problem and more will-
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Figure 2: Proportions of responses to the extra problem by question rank for initial assessments, with
percentage scores in (i) the first decile, (ii) the fifth or sixth decile, and (iii) the tenth decile.
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Figure 3: Proportions of responses for repeated
items in initial assessments. The horizontal axis
gives the difference in question rank between the
two occurrences. The dotted curves (e.g., “correct-
1”) give the response proportions for the first occur-
rence, and the solid curves (e.g., “correct-2”) give
the response proportions for the second occurrence.
The top set (pair) of lines represents the correct re-
sponses, the middle set represents the incorrect re-
sponses, and the bottom set represents the “I don’t
know” responses.

ing simply to respond “I don’t know.” What is striking is
that, since the proportion of correct responses holds steady,
it appears that many of these“I don’t know”responses would
have been incorrect responses earlier in the assessment; thus,
one can alternatively interpret this as students being more
“accurate” or “honest” in their self-assessment of the items
they are capable of answering correctly.

To better understand these observed effects, we look more
closely at the data based on the results of the initial as-
sessment. We define the student’s initial assessment score
to be the percentage of the items in the course that are in

the student’s knowledge state according to the initial assess-
ment, which gives a measure of the student’s knowledge at
the start of the course. Figure 2 shows the same results as in
Figure 1, but this time separately for the three groups of stu-
dents with initial assessment scores in (i) the first decile of
all of the scores in the dataset, (ii) the fifth or sixth decile,
and (iii) the tenth decile. From the plots in Figure 2, we
can see that the (putative) fatigue effect is dependent on
the group. The students in the middle group, with scores in
the fifth and sixth deciles, seem to be most heavily affected,
with a large increase in the “I don’t know” rate as the as-
sessment progresses. On the other hand, the students in the
tenth decile show hardly any change over the course of the
assessment, with the rates being mostly constant. Lastly,
the students in the first decile are somewhere in the middle,
with a sharp increase in the “I don’t know” rate for the first
few questions, and then a relatively flat curve thereafter.

4. REPEATED QUESTION
In the previous section, we saw that over the length of an
assessment, the success rate was relatively flat. Thus, if
there is any sort of boost from a testing effect, it is over-
whelmed by other factors and is not apparent in our initial
analysis. In the current section, we will take a more tar-
geted approach and look at cases in which an item appears
multiple times in an assessment. In particular, we will look
at cases in which an item is first asked as an extra problem
and then asked later in the same assessment as a “regular”
question. (It is important to note that a different instance
of the item is given each time, so that even though the type
of problem being tested is the same, the particular example
being presented is different.) Using a dataset composed of
644,462 initial assessments, each having some item repeated
during the assessment, we can compare the success rates for
the two occurrences of the repeated item. The results of
this analysis are shown in Figure 3, where the horizontal
axis gives the difference in question rank between the two
occurrences. We can see that, overall, there is a gap be-
tween the success rates for the first and second occurrences,
with the students being more successful on the second at-
tempt. However, as with the analysis in Section 3, grouping
the students by their initial assessment scores shows some
pronounced differences. Figure 4 shows the results for stu-
dents with initial assessment scores in the first decile; here,
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Figure 4: Proportions of responses for repeated
items in initial assessments, for students with a per-
centage score in the first decile. The horizontal axis
gives the difference in question rank between the
two occurrences. Using the ordering at the leftmost
edge of the horizontal axis, the top set (pair) of lines
represents the incorrect responses, the middle set
represents the “I don’t know” responses, and the
bottom set represents the correct responses.

in contrast to the overall trend, the students do worse on the
second attempt. Interestingly, both the correct and incor-
rect rates decrease on the second attempt, with the “I don’t
know” rate showing a correspondingly large increase. Thus,
it seems that the overall trend for students in this category
is to be less confident, or at least less willing to attempt an
answer, on their second attempt at a repeated item.

On the other hand, Figure 5 shows a much different trend
for the students in the tenth decile. The “I don’t know” rate
is unchanged from the first attempt to the second, while a
significant portion of the incorrect responses from the first
attempt seemingly become correct responses in the second
attempt. Thus, for students whose initial assessment scores
are at the high end, it does appear that having multiple
attempts at a problem gives a significant advantage.

As described in the previous section, the majority of stu-
dents taking an initial assessment are returning from a break
in schooling, often due to summer vacation. Thus, taking an
ALEKS initial assessment may be one of the first chances in
several months for a student to practice her math skills; in
such a case, the simple act of working on an item may help
the student recall some of the needed skills, or even to figure
out new skills, which may then translate to greater success
on a subsequent appearance of the item.

5. INNER FRINGE FORGETTING CURVE
In the next two sections we will examine forgetting as it
applies to the ALEKS system. We will begin by looking at
how the success rate of an inner fringe item changes as a
function of the time since the item was first learned (with
“learning” an item amounting to demonstrating a certain
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Figure 5: Proportions of responses for repeated
items in initial assessments, for students with a per-
centage score in the tenth decile. The horizontal axis
gives the difference in question rank between the two
occurrences. The top set (pair) of lines represents
the correct responses, the middle set the incorrect
responses, and the bottom set the “I don’t know”
responses.

amount of success on the item in the learning mode). To do
this, we will use data gathered from 286,345 ALEKS progress
assessments, which are assessments given to a student after
he has spent some time in the learning mode. The purpose
of a progress assessment is to verify the student’s recent
learning. The progress assessments we examine here are
limited to those for which the item presented as question
1 of the assessment is contained in the inner fringe of the
student’s knowledge state. Since the assessment is adaptive,
we restrict our analysis to the first item presented to avoid
any bias from the item-selection algorithm. We also look
only at inner fringe items to reduce any bias that may come
from the student working on items with related content: As
mentioned, items in the inner fringe of a student’s knowledge
state are not required to master any of the other items in
the knowledge state, so if an item is in the inner fringe, the
student has not spent time learning new concepts that build
on that specific item. For each of these progress assessments
in which question 1 is an item appearing in the inner fringe
of the student’s knowledge state, we compute the number of
days from the time the student learned the item to the time
the item appeared in the progress assessment.

The results are in Figure 6. In this figure, the solid curve
(the one near the top of the figure) can be considered a
forgetting curve [2, 6]. As shown, there is a clear decrease
in the success rate as the number of days since the item was
learned increases, while the rates of incorrect and “I don’t
know” responses both increase. The changes are greatest
over the initial few days and then flatten out somewhere
between one and two weeks. As an aside, we can also see in
Figure 6 the weekly cycle of student use, which causes the
sample size to peak every seven days.
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Figure 6: Proportions of responses as a function of
the time (in days) since the item appearing as ques-
tion 1 in a progress assessment was learned.

6. EXTRA PROBLEM OVER TIME
For the next part of our analysis, we again use data gener-
ated by ALEKS progress assessments. Rather than looking
at the first item presented, however, we instead focus on the
extra problem. Restricting our analysis to extra problems
that have been previously learned by the student, we can
again look at the response rates as a function of the time
since the item was first learned. Using data from 72,045
progress assessments that fit the criteria, we show the re-
sults in Figure 7. (Furthermore, for ease of comparison, we
display the information from Figures 6 and 7 in Figure 8.)

While there is a drop in the success rate over the first few
days, in comparison to Figure 6 this drop is less pronounced,
and it levels off within a shorter amount of time. The reason
for this is most likely that we are no longer looking only at
items in the inner fringe of the student’s knowledge state.
Recall that, if an item is in the student’s inner fringe, then
the student has not (at least in theory) mastered any subse-
quent material that requires complete mastery of that item.
However, this no longer holds for a randomly chosen item
from the student’s knowledge state; for example, the stu-
dent may have mastered one or more subsequent items that
require complete mastery of the extra problem, which may
have the effect of reinforcing the learning of the concepts
in the extra problem. Thus, the flatter nature of the extra
problem forgetting curve can be viewed as a consequence of
the adaptive nature of the ALEKS system, which serves to
reinforce the original learning.

On the other hand, the success rate on the extra problem
does exhibit a noticeable decline over the first several days
after the item is learned. It is during this period that more
targeted review and/or practice may be beneficial.

7. DISCUSSION AND FUTURE WORK
In the above analyses, we observed the following: (1) Stu-
dents, especially those near the middle of the range in con-
tent knowledge, tend to replace incorrect responses with
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Figure 7: Proportions of responses as a function of
the time (in days) since the extra problem appearing
in a progress assessment was learned.

ones of “I don’t know” as the assessment progresses; (2)
Students at the upper end in content knowledge tend to
improve on an item the second time the item is asked in
an assessment, while students on the lower end tend to do
worse the second time, or at least to become less confident;
(3) Items that give the “high points” of a student’s learning
see a more precipitous drop in the student’s memory than
do other items (perhaps because the skills and concepts in
these “high point” items may not have been practiced or
developed much since the original learning event). A pos-
sible improvement to the ALEKS learning and assessment
software based on these observations may be to introduce
pointed feedback during an assessment to provide encour-
agement or guidance to students who are at risk of fatiguing
or declining in confidence. Another may be to have a dedi-
cated review period for “high point” items, perhaps given in
conjunction with a progress assessment itself, to help with
immediate forgetting.

In addition to suggesting improvements to the ALEKS sys-
tem, our analyses may both inform and be informed by the
extensive literature on memory. Take, for example, the par-
ticular forgetting curve analysis in [2], in which the authors
examine models of forgetting given by

R(t) = a+ (1 − a) × b× P (t), 0 < a, b < 1, (7.1)

for different functions P (t). Here, R(t) gives the probability
of retention at time t, and a and b are parameters. One such
function P (t) examined in [2] is

P (t) = (1 + t)−β , (7.2)

in which β > 0 is a parameter. Fitting R(t) (with this form
of P (t)) to the success rates for question 1 and extra problem
data gives the smooth curves shown in Figure 8. The fit is
strong, with the R(t) curves closely following the trend of
the data. (The increasing jaggedness of the correct curves in
Figure 8 stems from the decreasing sample sizes, as shown
in Figures 6 and 7.) For reference, we report that for this
fit, the parameters a, b and β are estimated to be 0.55, 0.56
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Figure 8: A direct comparison of Figures 6 and 7.
The solid curves (e.g., “correct-EP”) are from Figure
7, giving the proportions of responses as a function
of the time (in days) since the extra problem was
learned. The dotted curves are from Figure 6, giving
the proportions of responses as a function of the
time (in days) since the item appearing as question
1 was learned. Also shown are the curves obtained
from fitting R(t) given by Equation (7.1) (with P (t)
as in (7.2)) to the data.

and 0.59, respectively, for the question 1 curve; for the extra
problem curve, these parameters are estimated to be 0.64,
0.42 and 0.58, respectively.

It is a natural next step to implement such a model to im-
prove students’ experiences using ALEKS by improving, for
example, the scheduling of progress assessments, the item-
selection algorithm, and the timing and content of review
periods for newly learned items.

Further, it is feasible that the very large data sets examined
in this paper may contribute to the discussion of compet-
ing mathematical models of forgetting. For example, the
authors in [2] also examine forgetting functions of the form

R(t) = a+ (1 − a) × be−αt (7.3)

and of the form

R(t) = 0.116 + (1 − 0.116) × b× (1 + γt)−β , (7.4)

comparing the various special cases of (7.1) given by (7.2)-
(7.4). Our data would likely contribute to this and similar
discussions.
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ABSTRACT
Learning & development (L&D) is an important strategic
factor for sustainable business growth of any organization.
L&D has become an integral part of an organization, consid-
ering the fast-paced growth of industries. Success of learning
and development program depends on how well it identi-
fies the critical skill gaps in its workforce and bridges those
gaps by considering individual learner’s strengths and as-
pirations while recommending learning opportunities. Such
recommendation requires a rich information about learners
and learning opportunities. In this paper, we propose a
framework that recommends learning opportunities to learn-
ers based on their preferences. We also propose a way to
connect users of similar interests on the platform to im-
prove course engagement. We developed a conversational AI
agent that assist the learner in their journey. We evaluated
our approach on the dataset consisting of 5,000 learners, and
49,202 courses. Our approach performed significantly better
than the baseline approach.

Keywords
Learning & Development, Recommendation, Personaliza-
tion

1. INTRODUCTION
Learning & Development (L&D) program plays a vital role
in the overall talent management of any organization. The
primary functions of the L&D program are to - 1. Identify
the skills that are needed to achieve business goals, 2. Un-
derstand the skill gaps in its workforce, 3. Define a plan to
close the gaps, and 4. Successfully deploy that plan. These
are the crucial steps to create a strong pipeline of employ-
ees with appropriate skills required for current and future
business needs. It also helps in understanding employees’

learning needs based on their career aspiration and provides
them a personalized learning plan. To provide a personalized
learning plan, one needs to have access to variety of infor-
mation such as employees’ data, their goals, their position,
and preferences. Along with this, one also needs to have
an understanding of business requirements, courses avail-
able internally and externally, etc. With changing times,
large employee base, global footprint, and varied profiles to
train, monitoring and processing of data has become diffi-
cult. Large amount of learning content is available within
the organization along with various other external sources
of learning such as Massive Open Online Course (MOOC).
Most of the content is not personalized and so the learn-
ers spend an inordinate amount of time in identifying the
relevant content to leverage. We have used employee and
learner interchangeably. A number of studies focus on rec-
ommending courses to learners [2] [6]. However, these exist-
ing recommendation systems have three major shortcomings
- 1. They work on a limited set of information and do not
utilize the rich set of information available about learners
and courses. These information are dispersed at several en-
terprise systems making it difficult to consume. 2. They
do not consider the scenario of a new learner whose course
preference data is not available. 3. They do not utilize the
social connections that learners may have for enhanced peer
learning with learners of similar interests.

To address these challenges, we propose a recommendation
framework that models the learner’s behavior from the data
available about them on different platforms. The framework
is a part of the system “LeCoRe” that helps the learners in
selecting the right learning content based on their history.
The learners’ preference model is built from the courses that
learners have registered or completed in the past and their
profile information captured through several internal as well
as external platforms such as LinkedIn, Accenture People 1

etc.
The main contributions of the paper are as follows:

1. An ensemble based learning content recommender: We
propose an ensemble based approach of content and
collaborative filtering to evaluate the recommendation

1Accenture Internal portal to manage employee’s details
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framework. The results show a significant improve-
ment over the baseline approach.

2. Conversation AI agent: We propose a conversational
AI agent that assist the learner in their journey on the
learning platform.

3. A system to connect learners with similar interests:
The system also promotes an effective engagement among
learners by establishing a connection with other similar
learners within the platform.

The proposed system brings three main advantages. Firstly,
the system improves the ease with which the learners select
the learning content, matching with their interest. Secondly,
the right content helps the learners in their career growth.
Thirdly, the analytic techniques we have devised make use
of much richer and contextual data available about learners.
The remainder of this paper is structured as follows: Section
2 discusses the related work study in course recommenda-
tion. In subsequent section 3, we discuss the recommenda-
tion framework. In Section 4, we discuss the system archi-
tecture. We describe our dataset in Section 5 and discuss
evaluation methodology and results in Section 6. Section 7
discusses the implementation as a tool. Finally, Section 8
concludes with summary of our findings.

2. RELATED WORK
Several studies have been performed in the area of recom-
mending courses to learners. Aher et al. [6] combined clus-
tering and association rule mining algorithms to recommend
courses using historical data. Apaza et al. [3] proposed the
course recommendation system based on the topic model-
ing technique. They computed the semantic similarity be-
tween the topics extracted from college course syllabus with
the topics of MOOCs based courses and then applied con-
tent based approach to recommend relevant online courses
to college students. However, it didn’t consider the learner’s
history and lacked personalization. Fatiha et al. [7] applied
Case Based Reasoning (CBR) based approach to find courses
for learners that best fit their personal interests. They used
Levenshtein distance to measure the similarity between the
cases’ attributes. Piao et al. [1] compared the three user
modeling strategies based on job title, education and skills
available on user’s LinkedIn profiles, for personalized MOOC
recommendations. They applied dot product similarity be-
tween user and course profiles, and then ranked the user’s
courses based on the similarity. Jiye et al. [5] conducted an
experiment on edX platform to identify the factors that con-
tribute to student enagagement in MOOC discussion forums.
Jiezhong et al. [2] analyzed the key factors that influence
users’ engagement in MOOCs using the data collected from
xuetangX, one of the largest MOOCs platform from China.
Our approach can be differentiated with the state-of-the-art
approaches along three dimensions. Firstly, we are the first
to apply Deep Learning based approach to model learner’s
preference and recommending learning content. The system
also addresses the problem of new learners with no learning
history. Secondly, our platform provides bot assisted learner
journey and also helps the learner to connect to social com-
munity to promote interaction among learners. Thirdly, our
approach is much more comprehensive and models learner’s
preference over various dimensions of learner and course pro-
files.

3. FRAMEWORK
We propose a recommendation framework that models the
learner’s preference. We apply an ensemble based approach
where we combine the predictions of Collaborative filtering
and Content based techniques.

1. Collaborative-based approach: It is one of the
most popular and powerful techniques used in recom-
mendation systems. Collaborative Filtering approach
(CF) builds the user’s interest by collecting preferences
of many other users [22]. We employ three popular col-
laborative filtering techniques:

(a) Singuar Value Decomposition: It is one of
the most popular Matrix factorization based tech-
niques that involves decomposing a sparse user-
item matrix into two low rank latent matrices
that represents user factors and item factors. The
missing ratings are then predicted from the inner
product of these two factor matrices [22].

(b) Slope-One: The Slope-One approach considers
information from other users who rated the same
item and from the other items rated by the same
user [4].

(c) K-Nearest Neighbor: K-Nearest Neighbor ap-
proach takes into account either the items or the
users that are similar. This is captured using sim-
ilarity metrics like Pearson Correlation, Euclidean
Distance etc. It predicts rating of the item given
by the user based on the weighted average of top-k
similar users.

2. Content-based approach: The collaborative based
approach considers the rating given by learners for
different courses. However, it doesn’t consider the
learner’s profile and the content of the courses. We
employ content based approach that considers the per-
sonal characteristics of the learner and course informa-
tion registered or completed by the learner. Personal
characteristics of the learner includes Skills (skillset
of the learner), Geography (geographical unit of the
learner), Experience (years of experience) and Indus-
try. Course information includes the course title, course
description, course content type (such as web-based
etc.). The title and description of the course is rep-
resented as topics vector using Topic Modeling tech-
niques. Topic modeling [17] techniques are probabilis-
tic model that have been used to identify topics within
the text documents. Latent Dirichlet Allocation (LDA)
[16], one of the popular topic modeling techniques,
extracts topic information from unstructured text as
probability distribution of words. LDA model is used
as feature descriptor for course title, course descrip-
tion and profile description of the learner. We pose it
as a regression problem. The algorithm predicts the
learner’s rating to a course using learner’s profile and
course information as the features. We apply Deep
Neural Network based approach to predict the rating
for the course. We use Multi-layer Perceptron [9] (also
feed-forward neural network) model that consists of in-
put layer, 6 hidden layers and an output layer. Multi-
layer Perceptron is a supervised algorithm that learns

Proceedings of the 11th International Conference on Educational Data Mining 614



a non-linear function for classification or regression. It
utilizes a backpropagation technique to optimize the
weights so that the neural network can learn to map
arbitrary inputs to outputs during training [15]. The
predicted output of the network is compared to the ex-
pected output and an error is calculated. The error is
then back propagated through the network, one layer
at a time, and the weights are updated according to the
amount contributed to the error. We use Dropout reg-
ularization technique to prevent neural networks from
overfitting [8]. This is a technique where randomly se-
lected neurons within the network are ignored while
training the model. The dropout is applied after each
hidden layers. The “Relu” activation function is ap-
plied to all the hidden layers. Activation functions
convert an input signal of node to an output signal
and introduce non-linear properties to neural network.

Many times, the system does not have much information
about the new learner’s preferences in order to make rec-
ommendations. This scenario is referred as “Cold Start”,
which is a classical problem in recommendation system. In
order to build the profile of the new learner, we applied the
concept of transfer learning where we identified the learners
who are similar to the new learner and used their prefer-
ences. The concept of similar learner also helps in matching
learners who are mutually interested, and likely to commu-
nicate with each other based on their profile characteristics
and course enrollment. One of the main reasons for very
high dropouts rate in MOOC is lack of engagement among
the users [20]. Studies [18][21] have shown that collaboration
among the learners promotes better engagement and reduces
dropouts on MOOC platform . This would help in fostering
the communication between the learners and forming social
community of learners. We used the following similarity
measures to compute the similarity between learners.

1. Similarity between the projects completed by the learn-
ers. We applied content matching approach “Latent
Dirichlet Allocation”to find the similarity between their
projects.

2. Similarity between their profile characteristics such as
Profile Overview and skills

3. Similarity between the description of the courses that
the learners have enrolled.

The steps for computing similarity between the learners is
described in Algorithm 1. The algorithm computes the simi-
larity between the learners i.e., the distance between a learner
with every other learners based on the learner’s history. This
is computed offline and updated at certain intervals. We ap-
plied user-based Nearest Neighbor (K=5) approach to find
the similar learners.

4. SYSTEM ARCHITECTURE
The framework of our approach named LeCoRe, shown in
Figure 1. Our recommendation approach combines both
content-based and collaborative filtering techniques. The
proposed recommendation approach consists of four major
phases:

Algorithm 1 Learner-Learner Similarity

Input: Learner’s profile information
Output: Matrix representing the similarity score between

learners
1: Initialize all the diagonal elements of matrix to 1 and

rest 0
2: for i ∈ {1, ..., N} do
3: for j ∈ {i + 1, ..., N} do
4: Apply LDA on description of projects completed by

learners li and lj
5: Compute the cosine similarity between Project De-

scription Topics vector of li and lj

cos sim(PDli , PDlj ) =
~PDli .

~PDlj

||PDli ||.||PDlj ||

6: Apply LDA on profile overview of learners li and lj
7: Compute the cosine similarity between Profile

overview Topics vector of li and lj as:

cos sim(POli , POlj ) =
~POli .

~POlj

||POli ||.||POlj ||

8: Calculate the skill/concepts similarity between
learners li and lj as:

Skill similarity(Sli , Slj ) =
|Sli ∩ Slj |
|Sli ∪ Slj |

where Sli and Slj is the set of skills possessed by
learners li and lj respectively.

9: Apply LDA on description of courses enrolled by
learners li and lj

10: Compute the cosine similarity between Course De-
scription Topics vector of li and lj as:

cos sim(CDli , CDlj ) =
~CDli .

~CDlj

||CDli ||.||CDlj ||

11: end for
12: Calculate learner-learner similarity score as:

Lij = (cos sim(PDli , PDlj )+cos sim(POli , POlj )

+Skill similarity(Sli , Slj )+cos sim(POli , POlj ))/4

13: end for

1. Learners Similarity: The system retrieves the learner’s
profile information which consists of individual charac-
teristics of the learner such as profile overview, projects,
etc. as well the learner’s course history. The system
utilizes the learners’ profile to compute the similarity
among the learner, as discussed in Algorithm 1. The
output will be learner-learner similarity matrix which
will have the similarity score of one learner with rest
of the learners. The learner-learner similarity matrix
will be stored in the database. These computations are
performed offline and updated after certain intervals.

2. Data Filtering: The system retrieves the learner’s pro-
file and filter the features required for the collaborative
filtering and content filtering. The layer also filters the
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courses for which the learner has not provided any rat-
ing.

3. Feature Extraction: For content-based approach, we
apply feature extraction techniques that unify numer-
ical as well as text features. We apply LDA to extract
the features from textual data - course title, course de-
scription, and profile description of the learner. These
features are represented as vectors. The numerical fea-
tures are then combined with the textual feature vec-
tors and pass it to the content-based algorithm.

4. Learner Training: In this step we separately train col-
laborative filtering algorithms (such as Singular Value
Decomposition) and content-based algorithms (Deep
neural network model).

5. Content Prediction: Finally, we apply the trained model
on test set, i.e. new courses posted on the platform.
The trained model can be used to predict the rat-
ing that the learner will provide to the new courses.
The system provides the top-3 recommendations to
the learners sorted based on the decreasing order of
the rating predicted by the trained model.

5. DATASET
We collected the dataset from Learning & Development team
within Accenture through the REST-based services. The
dataset consists of learner’s profile information and the courses
they have enrolled or completed. The dataset consists of
5,000 unique learners and 49,202 unique course content, re-
sulting in total of 2,140,476 enrollments by all learners. The
learners have enrolled for multiple courses.

6. EVALUATION AND RESULTS
In this section, we discuss the evaluation of our proposed
framework. For collaborative filtering techniques, we con-
sidered tuples of <Learner Id, Course Id, Rating> as fea-
tures. In content-based technique, we considered tuples of
<Skills, Country, Experience, Industry, T itle, Description,
Rating, Category, Duration, Profile Overview, Content
Type>. The features considered for the study are explained
in Table 2. These features are passed as an input to the Deep
Neural Network model. We used 10-fold cross-validation set
up in order to avoid overfitting. Deep neural network models
are typically sensitive to the magnitude or scale of features.
We apply feature scaling to all the features used as inputs
in Deep neural network. The training process will run for
a fixed number of iterations through the training dataset
called epochs. We used 50 as epoch size. We specified batch
size as 10. Batch size is the number of instances that are
evaluated in the training set before the weights are updated
in the neural network. We applied efficient Gradient De-
scent algorithm “Adam” [10], an optimizer used to search
through different possible weights for the network that min-
imize loss. Multi-layer Perceptron model requires tuning
a number of hyperparameters such as the number of hid-
den layers, number of neurons in each hidden layer, batch
size, epochs, optimizer, activation function etc. We used
GridSearch [14] techniques to find the best parameters for
a prediction algorithm. It performs exhaustive search over
specified parameters for any estimator object. The parame-
ters of the estimator object are optimized by cross validated
grid-search. We use “GridSearchCV” library in scikit-learn

[12]. We also use trial and experimentation approach to ar-
rive at the optimal number of neurons at each hidden layer
that minimizes the overall error. The deep neural network
model was implemented using Keras library [11]. In order
to assess the effectiveness of the proposed hybrid recom-
mendation model, we considered two evaluation metrics -
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) [13]. Mathematically, they are defined as:

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| (1)

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

|yi − ŷi|2 (2)

where n is the number of samples, ŷi is the predicted value
of the ith sample and yi is the corresponding true value.

The performance measures of recommendation techniques
are shown in Table 1. For evaluating the proposed frame-
work, we compare the recommendations made by a baseline
approach with that of the proposed framework. Learners’
skillset is one of the most preferred modes of recommend-
ing the courses [6]. We considered a baseline approach that
involves recommending courses based on the matching of
the learners’ skills with the course description. The MAE
value of baseline algorithm is 1.853. The prediction made
by Deep learning algorithm is better than the Collabora-
tive as well as baseline approach. Deep learning algorithm
performs better as it extracts more relevant features from
the non-linear function. The recommendations made by the
proposed framework performed significantly better as com-
pared to the baseline approach.

7. SYSTEM IMPLEMENTATION
The framework is integrated within our internal web-based
learning platform. The system recommends the right set
of content to the learners based on their preferences cap-
tured either implicitly or explicitly. The platform is inte-
grated with a bot which acts as a virtual buddy for the
learner. The bot learns the learner’s preference implicitly
through their course enrollment or completion history. The
bot also captures the learner’s preference explicitly by ask-
ing the learner. We use DialogFlow [19] to build conversa-
tional interface (bot) which provides the natural language
understanding services via intent identification. The rec-
ommendations are exposed as a REST-based services and
integrated via webhook of DialogFlow. The system consists
of two major components:

1. Learning Content Recommendation: The system
recommends the relevant training content to the learners
based on learner’s history. The system provides the recom-
mendations based on two considerations - learner’s personal
preference and the preference of other similar learners. The
former is referred as “Suggested content based on your in-
terests” and the latter as “Content trending among similar
peers”.
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Table 1: Performance measures of Hybrid Recommendation techniques
Algorithms MAE RMSE
Singular Value Decomposition 0.61 1.00
Slope-One 0.68 1.05
K-Nearest Neighbor 0.613 1.03
Deep Neural Network 0.42 0.66

2. Similar Learner Community: The system also helps
in finding the community of other similar learners and thus
promotes peer learning. The learners can communicate with
other similar learners and engage in meaningful discussions.

Due to space limitations we are not able to show screenshot
of the system. However, screenshots can be accessed at [23]

8. CONCLUSION AND FUTURE WORK
In this work, we proposed hybrid recommendation frame-
work to build learner’s preference. The proposed approach
solves the cold start problem often faced by new learners.
We applied various predictive modeling techniques to evalu-
ate our recommendation framework. We observed that the
proposed framework is able to model the learner’s prefer-
ence quite well. As future work, we will include learner’s
career path preference for recommending learning content.
We also plan to pilot the system to a set of users to evaluate
the recommendations.
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Figure 1: LeCoRe Framework

Table 2: Features considered for the study
Attributes Description Entity
Course Id Unique Id of the course Course
Title Textual summary of the course Course
Description Textual description of the course Course
Category Category of the course e.g. Web development, Mobile

development
Course

Duration Total duration of the course Course
Content Type Type of the content e.g. web-based, classroom etc. Course
Learner Id Unique Id of the learner Learner
Country Country to which learners belong Learner
Skills Skills possessed by the learner Learner
Education Level of educational degree learner has. We considered

five levels of education - High School, Diploma, Bachelor,
Masters, and PhD

Learner

Experience Total years of work experience learners possess Learner
Profile Overview Profile description of the learner Learner
Industry Industry group (Accenture Vertical ) to which the learner

belongs to e.g. Financial Services, Health & Public Ser-
vice etc.

Learner

Project description Textual description of the projects completed by the
learner

Learner

Rating Score provided by the learner to a course on a scale of
1-5

Learner-Course
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ABSTRACT
As large-scale online classes become more prevalent there is great
interest in finding ways to model students at scale in these classes
in order to predict outcomes. Student models, if successful, would
help determine strong predictors of student success, which would
highlight  potential  causal  factors  for  such  success,  allowing
schools to focus on refinements and interventions that positively
impact  their  student  outcomes.   In  this  research,  TutorGen has
partnered  with  Western  Governors  University  (WGU),  a  large
online  university,  and  gathered  data  at  scale  in  order  to  build
exploratory  models  to  predict  student  outcomes.   This  paper
presents our results so far in successfully identifying students who
will  pass (or even take) the final exam. We have examined the
order  in  which  students  take courses,  as  well  as  the  timing of
starting  and  completing  work;  our  initial  analysis  reveals  that
these are strong predictors of course outcomes.

Keywords

Predictive  modeling,  online  education,  student  interventions,
cognitive  models,  student  models,  online  courseware,  feature
selection,  data  visualization,  mixed  effects  modeling,  logistic
regression.

1. INTRODUCTION
In  collaboration  with  Western  Governors  University,  a  large
online  university,  we  have  been  examining  large  data  sets  of
students’ online interactions, which will help provide insight into
the way students succeed in course completion. Our initial work
has  focused  on  building  a  set  of  predictive  models  looking  at
success within course and also between courses. Based on student
in  course  data  as  well  as  post  course  assessment,  we  know
learning  is  occurring  within  courses.  We  do  know  that  some
students  do  not  pass  the  final  assessment,  and  these  are  the
students  we  were  most  interested  in  modeling.  From  our
exploratory data analysis and initial models, three important and
distinct  factors  emerged.  First,  there  was  a  “basic  dropout,”
students  who  did  not  pass  simply because  they stopped  being
active in the course – not completing assignments or taking tests.
Second, was a group termed “late and out of time” that started
very late in the semester and appeared to run out  of time. And
finally,  there  was  group  we  termed  “exam  avoidance”  that
appeared to have mastered enough to pass the final assessment,
but for unknown reasons did not attempt the test. We examined

some of  the  properties  of  each  of  these  types  of  students  and
suggest strategies that we plan to implement in order to intervene
with each type appropriately.

2. BACKGROUND
Western Governors University (WGU) was founded in 1997 by
nineteen  governors  as  a  non-profit,  competency-based,  100%
online  university,  which  has  graduated  more  than  100,000
students. WGU currently has more than 94,000 students across all
50 states. Offering 60 degrees in four colleges supporting high-
demand  fields  such  as  business,  K-12  teacher  education,
information  technology,  health  professions,  WGU’s  success  is
founded  on  their  unique  learning  ecosystem  that  is  student-
centric,  competency-based,  and 100% technology enabled.  This
approach lowers tuition and provides faster time to graduation.

The WGU competency-based model enables students to leverage
their existing knowledge and skills while seeking to improve their
opportunities  to  advance  their  careers.   Students  earn  college
credit by demonstrating what they know and can do rather than
basing the credit  on seat-time in a course.  The curriculum and
assessments  are  defined  by  career-relevant  competencies  to
accelerate learning according to a student’s  level of experience.
WGU  provides  the  curriculum,  formative  assessments,  and
summative  evaluation.  In  addition,  the  WGU  student-centric
support  services  promote  success  in  student  learning  through
disaggregated  faculty roles  including:  program mentors,  course
instructors, evaluators, and curriculum and assessment developers.
This  approach  allows  students  to  remain  at  the  center  of  all
activities such that the focus is on the learning of each student.
The success of the online model that combines competency-based
learning models with strong student support is demonstrated by
their  high  student  satisfaction  ratings,  contributing  to  a  higher
than average retention rate. 

WGU is committed to continually evaluating all aspects of their
educational experience in order to enhance their models, content,
delivery methods, and student support through proven academic
research.  This approach helps them make strategic and impactful
improvements to student learning outcomes while enhancing the
overall student experience (reduced time to achievement,  career
advancement,  learning  support,  completion/achievement  etc.)
This drive to measure and identify areas for improvement resulted
in a deep data dive evaluating courses that have relatively lower
completion rates than others within the same program.
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2.1 WGU Course and Term Structure
WGU students  begin  their  degree programs on  the first  of any
month,  which  begins  their  first  term.  A  term  at  WGU  is  six
months in  length.  Tuition  is billed at  a flat-rate every term, so
students  pay  for  the  time,  not  by  credit  hour  or  by  course.
Students are encouraged to complete as many courses as they can
in  those  six  months,  resulting  in  cost  savings  for  students.
Students complete courses by passing assessments, demonstrating
competency.

2.2 WGU Faculty
The  faculty at  WGU underpin  WGU’s  unique,  student-centric,
competency-based approach that places the greatest emphasis on
student  learning.  Learning  at  WGU  is  competency-based,  the
institution does not use typical online classes that are dependent
upon fixed schedules  or  group pacing.  Instead,  each student  is
guided and assisted through a personalized learning experience by
two primary roles: program mentors and course instructors.

2.2.1 Program Mentors
For  each  student,  the  primary  faculty  support  is  a  personally
assigned Program Mentor. The role of the Program Mentor is to
provide  program  instruction,  coaching,  and  support  from  the
moment  an individual  becomes a student  to the time he or she
graduates. More specifically, Program Mentors:

● Provide instruction and guidance at the program level.
● Provide information on programs, policies, and 

procedures.
● Assess students’ strengths and development areas to 

help them develop a plan of study.
● Provide feedback on assessments and recommend 

learning resources.
● Help students to sustain motivation and maintain on-

time progress to their degree.
● Recommend appropriate student services.

This  support  involves  regularly  scheduled  academic  progress
conversations weekly and active involvement in other aspects of
the student’s academic career. While not an expert in all subjects,
the  Program  Mentor  guides  the  student  through  the  overall
program and offers coaching, direction, and practical advice.

While  there  is  a  default  order  to  degree  paths,  mentors  and
students are empowered to personalize the course order. During
enrollment each term, the student and program mentor agree upon
a set of courses to meet the credit requirement for that term. They
set  an  order,  taking  any  prerequisites  into  account.  Estimated
start/end dates are populated for each course assuming the student
works on 1 course at a time. (The student may, however, opt to
work  on  multiple  courses  consecutively.)  The  program mentor
helps guide students’ academic activities. 

2.2.2 Course Instructors
WGU’s Course Instructors are subject matter experts who instruct
and support students as they engage specific sections of the WGU
curriculum. Their experience and advanced training is specific to
the courses they support. They are knowledgeable and can address
any issue that might arise related to a course, a learning resource,
or an assessment. Specifically, Course Instructors:

● Bring WGU courses of study to life with students via 
one-to-many or one-to-one forums.

● Provide instructional help (proactively and reactively) 
and facilitate learning communities.

● Provide content expertise for students who are 
struggling with course material.

The type and intensity of instructional support varies based on the
needs  of  each  student  in  a  particular  course,  from  help  with
specific  questions  that  arise  to  more  fully  engaged  tutorial
support.

2.3 Assessments at WGU
WGU has developed  assessments  for  each course based on the
competencies identified for each course subject. Assessments can
take  several  forms  at  WGU  but  follow  two  main  categories:
performance assessments and objective assessments.  

Performance  assessments  are  embedded  throughout  the  course,
such as tests, quizzes, and other assignments, as a way to track
progress as students complete the course material.  Performance
assessments receive qualitative feedback from an assessment team
using  a  standard  rubric.  Objective  assessments  are  timed  and
proctored  summative  exams.  Question  types  may include  short
answer responses, fill-in-the-blank questions, or multiple choice.
With a high-speed Internet connection, a block of uninterrupted
time, and a dedicated room with no distractions, students can take
these exams at home. During the exam, students are monitored by
a live proctor through a webcam provided by WGU. The course
evaluated here was of the objective assessment variety.

For  objective  assessment  courses,  pre-assessments  (also  called
pre-tests or practice tests) help students and faculty gauge student
readiness  to  take  an  objective  assessment.  Pre-assessments
measure the same content as the objective assessment,  with the
same  question  types,  and  the  same  time  limit.  However,  the
questions that appear on the pre-assessment will be different from
those that appear on the objective assessment.

Both  pre-assessment  and  objective  assessment  results  are
provided  using  four  categories:  unsatisfactory,  approaching
competence, competent, and exemplary. A score of “competent”
or  “exemplary”  is  required  to  pass  a  pre-assessment  and/or
objective assessment. Exactly what constitutes competence for a
given assessment is carefully determined by WGU’s Assessment
department in concert with a group of experts in the subject matter
being assessed.

A student's first attempt on their objective assessment is approved
by the program mentor. Mentors can require the completion and
pass of a pre-assessment before approval to schedule the objective
assessment.  Second and subsequent  attempts are approved by a
course instructor.  Course instructors  will  require  the student  to
complete certain tasks to gauge success on the next attempt before
an approval is granted. Students are permitted four attempts for
each  objective  assessment  requirement.  Any  attempt  thereafter
will need to be approved through the program mentor and course
instructor senior leadership.

A WGU course is considered complete when the assessment is
passed.  For  courses  with  objective  assessments,  a  student  with
extensive  prior  knowledge  can  forgo  any  interaction  with  the
course materials and move directly to  the assessment (typically
passing  the  pre-assessment  first).  This  is  true  for  first  and
subsequent  attempts—so  if  a  student  is  very  close  to  passing
during their first attempt, their second attempt might require very
little time and/or effort. 
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3. RELATED LITERATURE
As large-scale online classes become more prevalent there is great
interest in finding ways to model students at scale in these classes
in order to predict outcomes. This has been a major area of work
in  the fields  of Educational  Data Mining (EDM) and  Learning
Analytics (LAK) [2] and is leading to methods of executing large
scale data experiments in  near real-time [9].  Student  models, if
successful,  would  help  determine  strong  predictors  of  student
success, which would highlight potential causal factors for such
success,  allowing  schools  to  focus  on  refinements  and
interventions  that  positively impact their  student  outcomes.  For
example, early research at Purdue University presented “academic
analytics” tools for predicting at-risk students [4,1].  In [12] the
authors  develop  a  “survival  model”  of  student  dropouts  in  a
MOOC,  determining  several  significant  predictors  of  dropout
behavior.   MOOCs,  however,  present  a  special  case  of  online
courseware,  and tend to  show quantitatively different  outcomes
than online courseware with a fixed enrollment, monetary costs to
students, and offering course credit and accreditation.  In this vein
some researchers have looked at similar online environments.  In
[7]  the  authors  not  only  developed  models  to  predict  student
outcomes, but also showed how metrics and visual data provided
to  instructors  can  help  improve  outreach  and  positive
interventions. 

In this research, TutorGen has partnered with Western Governors
University (WGU), a large, fully accredited online university that
offers course credit and an online degree program, and gathered
data  at  scale  in  order  to  build  exploratory  models  to  predict
student  outcomes.   This  paper  presents  our  results  so  far  in
successfully identifying students who will pass (or even take) the
final exam. We have further  examined the order of the courses
that  students  complete  and  the  timing  of  the  course  work
completed to subsequently show that this order of completion and
timing of the work within the semester is a strong predictor  of
student success.

4. DATA AND METHODS
Our research focused on a single course in the Business school
dealing with Finance. The dataset spanning 2016 contained data
from over 1,000 students  and had low level interaction data of
nearly 1 million transactions that was imported into DataShop [8].
In addition to the transaction data, we had practice test data, final
summative evaluation data (in the form of Pass, Not Pass, Other),
student interactions with the LMS (both with the finance course
and  other  courses),  and  student  summative  data  from previous
courses attempted.

5. ANALYSIS AND DISCUSSION
In  order  to  derive insight  about  student  behavior  in  the online
courses,  we  used  several  approaches  including:  visualization,
predictive modeling, and knowledge tracing.

Questions:

1. Are students learning within the course?
2. How are students interacting with the course materials?
3. What are the key differences between the passing and 

non-passing students?
4. What behaviors describe non-passing students?
5. Can these be used to build an intervention?

To explore question 1, we performed a learning curve analysis on
the data in DataShop based on previously defined methods [10].

From these methods, we can visually inspect the learning curves
created  from low level  interaction  data  tagged  at  a Knowledge
Component  (KC)  level.  From  these  visualizations  we  would
expect a declining learning curve to emerge as seen in  Figure 1.
Looking at  combined learning curves of all  97 tag KCs in our
dataset, we visually saw a declining curve suggesting learning is
occurring within the course. Drilling down to individual skills the
majority were also classified as “good” in the DataShop learning
curve interface suggesting learning is occurring.

Figure  1.  A  sample  learning  curve  of  all  KCs.  The  y-axis
represents  error  rate  and  the  x-axis  represents  all  student
opportunities to apply each skill. If learning is occurring we
expect to see a declining curve as seen.

To examine question 2, we did an exploration of the activities that
students did within their course. We did note that the particular
course we were exploring was one of the most difficult and had
lower than average completion rates. We used the finest-grained
level of data available. This data included the student’s step by
step actions in the online system. We constructed a visualization
to represent  student  behavior  across  time,  as well  as  how they
performed on practice tests and final assessments.

Figure  2.  Timeline  for  an  individual  student.  Vertical  bars
represent a course activity session,  and circles and triangles
represent the practice test and final exam attempts.

Figure 2 shows a timeline for an individual student, vertical bars
represent  a  course  activity  session  (reading,  practice  problems,
etc. performed within the same time online session) Circles and
Triangles represent the practice test and final exam attempts. This
provides a high-level view of student work across time, as well as
visually representing the student testing behaviors. We used color
(blue  and orange)  to  encode  passing and non-passing students,
figure 4 shows typical behavior of passing students while figure 5
shows typical behavior of some non-passing students.
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Figure 3. Key for the work timeline visualization.

Figure  4.  Typically,  students  engage  with  the  course  for  a
while before taking the practice test, depending on the results
of that test they take and pass the final exam. It is rare for
students to take the practice test before starting some of the
coursework.

Figure  5. A common behavior for non-passing students is to
dropout fairly  soon after starting  the course.  Students  have
multiple opportunities to take the final exam, however many of
the non-passing students do not take the final multiple times.

Figure 6. Long fail behavior, note the late pass on the practice
exam  with  no  attempt  on  the  final  exam.  Not  all  failing
students dropout quickly after starting, some students do work
throughout  a  term.  Interestingly,  some  students  pass  the
practice exam but sim

These  exploratory  visualizations  helped  to  highlight  three
important predictive features of this data: deviation from planned
course start, action density once started, and the course order. For
example, some students would quickly work through the material
while others would spread it out. 

Figure  7.  Cram pattern  of  activity  vs.  a  spread  pattern  of
activity. How students planned and executed their coursework
proved to be predictive of success.

Students can choose when to schedule courses throughout a 180-
day long term. We found that both planned start time, as well as
deviation from that start time to be an important factor between
passing and non-passing students.  This information would help
us  to  build  a  predictive  model,  and  allow  for  more  targeted
interventions, as discussed in the next section.

5.1 Predictive Model

In  order  to  explore  potential  interventions,  we  aimed to  create
predictive  models  for  test  performance  and  course  grade.  We
developed  a predictive  model  for  student  test  performance and
overall  course  performance.  In  order  to  be  useful  in  a  live
environment,  we  needed  an  updating  model  that  makes  a
prediction based on the continuously updating activity data. We
also needed to address the fact that students are able to choose
when to take the assessment tasks. 

For each session, we want to make a prediction about the student
performance on the next test. We refer to the sessions between (or
in  the  case  of  the  first  test  taken,  all  sessions  before)  testing
opportunities  as  assessment  windows.   Our model  will  use  the
previously observed data to predict the performance on the next
testing opportunity.

Figure 8. Next test performance is predicted using information
from  assessment  windows  proceeding  testing  opportunities.
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We integrate the results of these models into our visualization,
which  takes  the  form  of  an  orange  to  blue  gradient  on
colorization with extra information available in tool tips.

We predict for each session the probability that the student will
ultimately pass the course, as well as their predicted score on the
next testing opportunity. We use a logistic regression for the pass
prediction and a mixed effects model for the next test prediction.
The overall  performance of the pass  prediction  model  was fair
with 69% accuracy; when using an 80% cutoff value on the pass
prediction we had a positive prediction value (Recall) of about .7
and  a  negative  prediction  value  (Precision)  of  .66.  The  most
important  features  include  observed  test  performance,  total
number of observed actions, total time engaged in the materials,
the accuracy the lesson activities,  the total  number of sessions,
and the amount of time from the planned start of the course.

The next test prediction model also had fair performance with an
overall RMSE of 6.92,  which improves slightly as more data is
added to a value of 6.6 until around the 20th session, after which
the  RMSE  gradually  moves  to  6.95.  The  primary  predictive
features  were  previous  test  performance,  total  observed
transactions, accuracy on lesson activities, time between sessions,
and the amount of time between the planned start of the course.

Exploration  of  the  model  predictions  and  the  visualization
revealed that a number of students who are expected to pass the
next assessment, simply never attempt the final. For students that
ultimately do not pass the course, roughly 32% never attempt the
final assessment (19% of failing students take neither the pretest
or final.) Our model indicates that 35% of failing students would
have been likely to receive a passing grade on their next test (30%
if we only include students with at least one final exam attempt.)
This  is  evidence  of  potential  test  anxiety  [5]  or  avoidance  of
demonstrating  a  lack  of  ability  [6].  Avoiding  tests  is  not  an
uncommon occurrence in low-stakes tests [11].  See Table 1 for
the complete breakdown of unsuccessful course explanations. 

Table 1. Explanations or potential explanations, for students
who did not pass the examined courses 

Reason Proportion

Quit Early, low use of resources 13%

Has Activity, Complete Testing Avoidance 4%

Has Activity, Predicted Pass w/o Test 35%

Ran out of time in term (Started very late) 8%

Low Activity 22%

Not Explained 18%

5.2 Intervention Opportunities
There are several opportunities for developing interventions that
can improve student  outcomes.  There are three primary targets:
Instructors, Mentors, and Students. Rather than target the students
directly, we will focus on providing information to the Program
Mentors. By providing visualizations like the ones above, we can
allow the  mentors  to  create  unique  advice to  the students.  For
example, a mentor can provide encouragement to take an attempt
on the final due to the next test prediction metric. Targeting the
students who seem to be avoiding the final assessment is an area
that  could  provide  great  impact  to  student  outcomes.  The
challenge  here  is  to  balance  flexibility  for  students  -  a  key
attribute  of  competency-based  education  [3]  -  with  enough

structure and support, in order to optimize student performance.
For  example,  while  a  flexible  timeframe  for  completing
coursework is a hallmark of competency-based learning,  it  may
prove that many students need some structure and prompting in
order to compel completion rates.

6. CONCLUSIONS AND FUTURE 
WORK
WGU has  a  unique  structure  for  online  educational  programs.
Exploration of student data revealed that students generally make
use  of  the  course  resources  and  learning  materials,  but  will
sometimes fail  courses  due to  course scheduling  and  failing to
adhere to their planned start dates. More importantly, a significant
proportion  of  failing  students  would  likely pass  if  they would
attempt  to  take the final  assessment.  We propose  interventions
targeting the program mentors,  rather than students,  in order to
explore methods of addressing the scheduling,  activity,  and test
avoidance issues that make up the majority of the reasons students
fail to pass courses. The end goal is to proactively advise students,
course instructors, and student mentors with relevant just-in-time
information in order to insert and test appropriate interventions.
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ABSTRACT
Student performance prediction - where a machine forecasts
the future performance of students as they interact with on-
line coursework - is a challenging problem. Reliable early-
stage predictions of a student’s future performance could be
critical to facilitate timely educational interventions during
a course. However, very few prior studies have explored
this problem from a deep learning perspective. In this pa-
per, we recast the student performance prediction problem
as a sequential event prediction problem and propose a new
deep learning based algorithm, termed GritNet, which builds
upon the bidirectional long short term memory (BLSTM).
Our results, from real Udacity students’ graduation predic-
tions, show that the GritNet not only consistently outper-
forms the standard logistic-regression based method, but
that improvements are substantially pronounced in the first
few weeks when accurate predictions are most challenging.

Keywords
Student performance prediction, Deep learning for educa-
tion, Educational data mining, Learning analytics

1. INTRODUCTION
Education is no longer a one-time event but a lifelong expe-
rience. One reason is that working lives are now so lengthy
and fast-changing that people need to keep learning through-
out their careers [3]. While the classic model of education
is not scaling to meet these changing needs, the wider mar-
ket is innovating to enable workers to learn in new ways.
Massive open online courses (MOOCs), offered by compa-
nies such as Udacity and Coursera, are now focusing much
more directly on courses that make their students more em-
ployable. At Coursera and Udacity, students pay for short
programs that bestow microcredentials and Nanodegrees in
technology-focused subjects such as self-driving cars and An-
droid. Moreover, universities are offering online degrees to
make it easier for professionals to access opportunities to
develop their skills (e.g., Georgia Tech’s Computer Science
Master’s degree).

However, broadening access to cutting-edge vocational sub-
jects does not naturally guarantee student success [2]1. In a
classic classroom, where student numbers are limited, var-
ious dimensions of interactions enable the teacher to quite
effectively assess an individual student’s level of engagement,

1HarvardX and MITx have reported that only 5.5% of peo-
ple who enroll in one of their online courses earn a certificate.

and anticipate their learning outcomes (e.g., successful com-
pletion of a course, course withdrawals, final grades). In the
world of MOOCs, the significant increase in student numbers
makes it impractical for even experienced human instructors
to conduct such individual assessments. An automated sys-
tem, which accurately predicts how students will perform
in real-time, could possibly help in this case. It would be
a valuable tool for making smart decisions about when to
make live educational interventions during the course (and
with whom), with the aim of increasing engagement, pro-
viding motivation and empowering students to succeed.

The student performance prediction problem has been partly
studied within the learning analytics and educational data
mining communities in the form of the student dropout (or
completion) prediction problem (which is an important sub-
class problem of the student performance prediction prob-
lem). Most previous works can be divided into two ap-
proaches:

• The first traditional approach principally relies on gen-
eralized linear models, including logistic regression, lin-
ear SVMs and survival analysis (see [10] for a thorough
summary). Each model considers different types of be-
havioral and predictive features extracted from various
raw activity records (e.g., clickstream, grades, forum,
grades).

• The second emerging approach involves an exploration
of neural networks (NN). Few prior works explore deep
neural network (DNN) model [10], recurrent neural
network (RNN) model [6] and convolutional neural
networks (CNN) followed by RNN [9]. However, all of
these new models, so far, have shown primitive perfor-
mance. This is mainly because the models still rely on
feature engineering to reduce input dimensions which
appears to limit one to develop larger (i.e., better) NN
models.

Student activity records collected from different courses of-
ten have various lengths, formats and content, so that fea-
tures that are effective in one course might not be so in
another. Even carefully designed feature dimensions are
usually constrained to be small2. Both of these deficiencies
produce inputs that are, so far, too restricted to tap the full

2In past works, DNN of width 5 [10] and LSTM of 20 cell
dimensions [6] are used.
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benefits of sequential deep learning models. To avoid the
deficiencies of prior works, GritNet takes students’ learn-
ing activities across time as raw input (see Section 2.3.1)
and (implicitly) searches for parts of an event embedding
sequence that are most discrminative to predicting a stu-
dent’s performance without having to engineer those parts
as an (explicit) input feature (see Section 2.3.2).

In the remainder of this paper, we introduce the basic Grit-
Net model in Section 2, followed by the Udacity data and
training discussions in Section 3. In Section 4, we demon-
strate the performance of GritNet via experimental results
and give conclusions in Section 5.

2. GritNet
2.1 Problem Formulation
The task of predicting student performance can be expressed
as a sequential event prediction problem [8]: given a past

event sequence o , (o1, . . . , oT ) taken by a student, estimate

likelihood of future event sequence y , (yT+D, . . . , yT ′) where
D ∈ Z+.

In the form of online classes, each event ot represents a stu-
dent’s action (or activities) associated with a time stamp. In
other words, ot is defined as a paired tuple of (at, dt). Each
action at represents, for example, “a lecture video viewed”,
“a quiz answered correctly/incorrectly”, or “a project sub-
mitted and passed/failed”, and dt states the corresponding
(logged) time stamp.

Then, log-likelihood of p(y|o) can be written as Equation 1,
given fixed-dimensional embedding representation υ of o.

log p(y|o) '
T ′∑

i=T+D

log p(yi|υ) (1)

The goal of each GritNet is, therefore, to compute an indi-
vidual log-likelihood log p(yi|υ), and those estimated scores
can be simply added up to estimate long-term student out-
comes.

2.2 Baseline Model
In order to assess how much added value is brought by the
GritNet, logistic regression is used as a baseline model. Here,
we use the bag of words (BoW) model to represent each
student’s past event sequence o. After transforming all stu-
dents’ activities into a BoW, we count the number of times
each unique activity appears in o.

Let fixed-dimensional feature representation υ of o be an
N -dimensional feature vector where υj ∈ Z≥0. Given υ,
logistic regression models log p(yi|υ) as follows:

log p(yi = 1|υ; θ) =
1

1 + exp (−θTυ)
, (2)

where θ ∈ RN are the parameters of the logistic regression

model. For M training instances
{(
υ(k), y(k)

)}M
k=1

, L2 reg-

ularized logistic regression finds the parameters θ that solve
the following optimization problem:

arg max
θ

m∑
k=1

log p(y(k)|υ(k); θ) + α‖θ‖2. (3)

Concatenate . . .

GMP

FC

Softmax

LSTM LSTM LSTM. . .

LSTM LSTM LSTM. . .

Embedding . . .

input . . .

Figure 1: Architecture of a GritNet for the student
performance prediction problem as described in Sec-
tion 2.3.

Often, it will be convenient to consider L1 regularized lo-
gistic regression instead of Equation 2 to handle irrelevant
features [7]. We noticed even simpler feature selection meth-
ods (e.g., Chi-Square score based), combined with L2 regu-
larized logistic regression, provides similar results as the L1

based.

2.3 GritNet Architecture
2.3.1 Input Representation

In order to feed students’ raw event records into the GritNet,
it is necessary to encode the time-stamped logs (ordered
sequentially) into a sequence of fixed-length input vectors3.
We do this simply by one-hot encoding. A one-hot vector
1(at) ∈ {0, 1}L, where L is the number of unique actions
and j-th element defined as:

1(at)j ,

{
1 if j = at

0 otherwise
, (4)

is used to distinguish each activity at from every other.
Then, we connect one-hot vectors of the same student into
a long vector sequence to represent the student’s whole se-
quential activities in o.

3GritNet does not need manual feature selections [6] or time-
series input aggregations per normalized time intervals [9].
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Figure 2: Student and event characteristics of two Udacity Nanodegree program datasets (ND-A and ND-
B) by week: size of dataset (left) and maximum event sequence length (right). The reason the number of
students climbs over time is that we only include students who have interacted with their mentor, so if they
do not interact in the first couple weeks they are not included early on (left). As a student progresses, the
accumulated event sequence gets longer (right).

While this encoding method preserves ordering information,
in contrast to the BoW method (see Section 2.2), it has a
limitation in capturing students’ learning speed. Varying
learning speed is an important piece of time-dependent in-
formation, reflecting a student’s progress and/or the course
content’s difficulty. Since directly employing each time stamp
dt will increase the input space too fast, we define the dis-
cretized time difference between adjacent events as4:

∆t , dt − dt−1. (5)

Then, one-hot encode ∆t into 1(∆t) and connect them with
the corresponding 1(at) to represent 1(ot) as:

1(ot) , [1(at);1(∆t)]. (6)

Lastly, we pre-pad the output sequences shorter than the
maximum event sequence length (of a given training set)
with all 0 vectors.

2.3.2 Model Architecture
The core of our GritNet model is the embedding [1], BLSTM
[4] and GMP [5] layers trained to ingest past student events
and predict a log likelihood of a future one. The first embed-
ding layer5 learns an embedding matrix Eo ∈ RE×|O|, where
E and |O| are the embedding dimension and the number of
unique events (i.e., input vector 1(ot) size), to convert an
input vector 1(ot) onto a low-dimensional embedding υt de-

4For the Udacity data described in Section 3.1, we use day
to represent inter-event time intervals.
5With an embedding layer which provides a dense represen-
tation for an event, GritNet achieves an improved perfor-
mance on the Udacity dataset. Furthermore, after training,
similar events appear to be closer in the embedding event
space.

fined as:

υt , Eo
1(ot). (7)

This event embedding υt is then passed into the BLSTM and
the output vectors are formed by concatenating each for-
ward and backward direction outputs. Next, a GMP layer
is added before the output layer. With the GMP layers,
GritNet learns to focus the most relevant part of the event
embedding sequence while ignoring the rest. This GMP op-
eration seems crucial in boosting prediction power, particu-
larly for imbalanced data provided without any feature en-
gineering6.

The GMP layer output is, ultimately, fed into a fully-connected
layer and a softmax (i.e., sigmoid) layer sequentially to cal-
culate the log-likelihood log p(yi|υ). The complete GritNet
architecture is illustrated in Figure 1.

3. DATA AND TRAINING
3.1 Udacity Data
We benchmarked our methods on the student datasets of
two Udacity Nanodegree (ND) programs: ND-A and ND-B.
These two ND programs were selected specifically because
they diverge from each other along many axes. For example,
ND-A curriculum has a lower expectation of prior technical
knowledge and a relatively higher graduation rate than ND-
B.

6We empirically find that vanilla BLSTM (without the GMP
layer) on the (imbalanced) Udacity datasets does not yield
comparable results as shown in Figure 3. A GMP layer
appears to combat this imbalanced data issue effectively
by ensuring training errors back-propagate only to the net-
work weights corresponding to the most discriminative part
within the event embedding sequence.
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Figure 3: Student graduation prediction accuracy comparisons of the GritNet vs baseline models in terms of
mean AUC (over all five folds) on two Udacity Nanodegree program datasets: ND-A (left) and ND-B (right).
GritNet provides 5.3% abs (7.7% rel) accuracy improvements at week 1 for ND-A dataset (left). Notice that
for ND-B dataset, the baseline model requires eight weeks of student data to achieve the same performance
as the GritNet is able to achieve with only three weeks of student data (right).

In both programs, graduation is defined as completing each
of the required projects in a ND program curriculum with
a passing grade. When a user officially graduates, their en-
rollment record is annotated with a time stamp, so it was
possible to use the presence of this time stamp as the tar-
get label. Users have to graduate before 2017-09-30 to be
considered as successfully graduated.

Each ND program’s curriculum contains a mixture of video
content, written content, quizzes, and projects. Note that
it is not required to interact with every piece of content
or complete every quiz to graduate. See below for detailed
characteristics of each dataset used for this study.

• ND-A Dataset: From the students who enrolled in
ND-A program (from 2017-03-07 to 2017-09-30), we
selected 1,853 students who had actively engaged with
their classroom mentor (believing these to be the stu-
dents exhibiting full engagement with the curriculum
overall). This set of 1,853 students includes 777 stu-
dents who graduated, yielding a graduation rate of
41.9%. The length of each student’s events streams
ranges from 0 to 4,175 events, with an average of 536
events. The curriculum for ND-A program contains 9
projects, 1,025 unique content pages to visit, and 77
quizzes to attempt.

• ND-B Dataset: As prescribed above, we selected
8,301 students who actively engaged with their class-
room mentor from the students who enrolled in ND-B
program (from 2016-06-20 to 2017-09-30). This set of
8,301 students includes 1,005 students who graduated,
yielding a graduation rate of 12.1%. The length of each
student’s event streams ranges from 1 event to 4,554
events, with an average of 242 events. The curricu-
lum for ND-B program is composed of 6 projects, 668

unique content pages, and 347 quizzes.

For both datasets, an event represents a user taking a spe-
cific action (e.g., watching a video, reading a text page, at-
tempting a quiz, or receiving a grade on a project) at a
certain time stamp. Some irrelevant data is filtered out dur-
ing preprocessing, for example, events that occur before a
user’s official enrollment as a result of a free-trial period. It
should be noted that no personally identifiable information
is included in this data and student equality is determined
via opaque unique ids.

3.2 Training
We learned that the GritNet models are fairly easy to train.
The training objective is the negative log likelihood of the
observed event sequence of student activities under the model.
The binary cross entropy loss is minimized7 using stochastic
gradient descent on mini-batches.

In our experiment, the BLSTM with forward and backwards
LSTM layers containing 128 cell dimensions per direction is
used. Embedding layer dimension was grid-searched for the
best parameters based on the dataset: from 1024 to 3584 for
ND-A set and from 1024 to 5120 for ND-B set. A dropout
rate, ranged from 10 to 20%, applied to the BLSTM out-
put and worked well for both datasets to prevent overfitting
during training with a mini-batch size of 32.

For both baseline and GritNet models, we trained a different
model for different weeks, based on students’ week-by-week
event records, to predict whether each student was likely to

7In this case, minimizing the binary cross entropy is equiv-
alent to maximizing the log likelihood.
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graduate. Figure 2 shows the number of students and the
(longest) event sequence length of a student, both observed
at each week.

4. PREDICTION PERFORMANCE
4.1 Evaluation Measure
To demonstrate the benefits of the GritNet, we focused on
student graduation prediction. Since the true binary tar-
get label (1: graduate, 0: not graduate) is imbalanced (i.e.,
number of 0s outweighs number of 1s), accuracy is not an
appropriate metric. Instead, we used the Receiver Operat-
ing Characteristic (ROC) for evaluating the quality of the
GritNet’s predictions. An ROC curve was created by plot-
ting the true positive rate (TPR) against the false positive
rate (FPR). In this task, the TPR is the percentage of stu-
dents who graduate, which the GritNet labels positive, and
the FPR is the percent of students who do not graduate,
which the GritNet incorrectly labels positive.

The accuracy of each system’s prediction was measured by
the area under the ROC curve (AUC) which scores between
0 and 100% (the higher, the better) − with random guess
yielding 50% all the time. We used 5-fold student level cross-
validation, while ensuring each fold contained roughly the
same proportions of the two groups (graduate and non grad-
uate) of students.

4.2 Results
For fair comparisons, the baseline performance was opti-
mized by sweeping α values (in Equation 3) at each week8.
The GritNet also required slight hyper-parameter optimiza-
tion (e.g., embedding dimension as prescribed in Section 3.2)
for the optimal accuracy at each week.

We have shown that the GritNet really does improve the
student graduation prediction accuracy across weeks. From
the prediction results on both Udacity datasets in Figure 3,
we clearly see that the performance is similar between the
baseline and GritNet models after receiving eight weeks of
data about a given student. However, the GritNet is able to
achieve significant prediction-quality improvements within
the first few weeks of the student experience.

Specifically, the GritNet was able to attain superior perfor-
mance by more than 5.0% abs on both ND-A dataset (at
week 1) and ND-B dataset (at week 3). Moreover, on ND-B
dataset, the baseline model required a wait of two months
to reach the prediction accuracy that the GritNet showed
within three weeks. We believe this is a crucial advantage of
the GritNet, creating a quickly adaptable but accurate met-
ric to estimate long-term student outcomes to accelerate the
student feedback loop (which typically takes a few months
from enrollment to iterate).

5. CONCLUSION
In this paper, we have successfully applied deep learning
to the challenging student performance prediction problem
which, so far, has not been fully exploited. In contrast to
prior work, we formulated the problem as a sequential event

8The optimized results are quite strong such that initially
explored NN models (e.g., DNN, CNN-BLSTM) on the same
BoW input features did not yield big win over the baseline.

prediction problem, introduced a new algorithm called the
GritNet to tackle the problem, and demonstrated the su-
periority of the GritNet using student data from Udacity’s
Nanodegree programs.

Two novel properties of the GritNet are that (1) it does not
need any feature engineering (it can learn from raw input)
and (2) it can operate on any student event data associ-
ated with a time stamp (even when highly imbalanced). For
future work, we anticipate that incorporating indirect data
(e.g., student board activity, interactions with mentors) into
the GritNet will potentially further improve the GritNet’s
impressive performance.
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ABSTRACT
NLP tools have demonstrated themselves to be an important 
component of educational data mining studies with an increasing 
number of studies published yearly. However, there is no 
agreement on the effect that text size has on NLP analyses by 
feature, text type, domain, and/or level of writer. This study 
provides evidence that NLP tools provide differential associations 
between linguistic features and student outcomes based on text 
size and level within an online learning platform focused on math 
instruction.  

Keywords
Natural language processing (NLP), text length, math success, on-
line learning, syntactic complexity, lexical sophistication 

1. INTRODUCTION
Natural language processing (NLP) tools are becoming more 
common in educational data mining (EDM) research. This 
research includes investigations into learning behaviors in 
intelligent tutoring systems (ITSs) that teach writing [1] and 
reading strategies [2], massive open online courses [3], and online 
tutoring systems [4, 5]. NLP tools, like many other analytic tools, 
can be extremely powerful and provide exciting new insights into 
learning and instruction. However, they can also be misused based 
on poor understandings of the fundamental nature of language, the 
manner in which the tools calculate linguistic features, and how 
language is acquired and used by humans. A chief concern in 
educational data mining is that many language samples produced 
by learners within instructional systems are short and may not 
provide enough linguistic coverage to accurately examine the 
distributional properties of students’ language skills. If NLP tools 
are used to generate a linguistic profile of a student using only a 
small sample of a student’s language, that profile may contain 
more statistical randomness than actual linguistic information. In 
such cases, the profile developed will not accurately reflect the 
student and may rather reflect the task, the student’s linguistic 
performance within a small window of time, or neither.  
For instance, educational researchers may be interested in 
assessing students’ reading comprehension as reflected in self-
explanations [6, 7] and question generation [8]. However, both 
tasks elicit only a sentence or two of student self-generated text as 
do generated questions. While the models developed from these 
short texts may be predictive and generalizable to a task, it is not 
clear that they provide a true profile of learners’ language 
knowledge (i.e., learners’ language proficiency or ability). What is 
clear is that learning models for self-explanations derived from 
language data seem to benefit from longer text samples [6, 7]. 
These studies along with a number of other studies examining text 
length outside of educational settings [9, 10, 11] seem to support 
the notion that longer texts provide stronger and more reliable 
NLP results.  

However, a study examining how student language samples of 
different text lengths moderate the strength of associations 
between NLP indices and learning variables is missing. In 
addition, no studies to our knowledge, have examined the 
potential for NLP indices to differ based on the age or cognitive 
maturity of learners. Such differences are likely in light of 
evidence that shows differential language acquisition stages based 
on age. For instance, research generally supports the notion that 
children move from producing single words (i.e., a holophrastic 
stage) around the age of one-year, to two words that are 
semantically and syntactically related around the age of two-
years, and then longer utterances that shared syntactic structures 
with adult production after three years of age [12].  
Thus, the purpose of this study is to examine differences in 
association strength between NLP indices and a learning variable 
based on differential text length and grade level. We focus 
specifically on language data taken from student e-mails in an on-
line math tutoring system. We examine how the strength of 
associations change between a number of attested NLP indices 
and math scores within the system as a function of text length 
(texts greater than 50 words, texts greater than 100 words, and 
texts greater than 150 words) and as a function of grade level (2nd 
and 3rd grades, 4th and 5th grades, and 2nd-5th grades). Our goal is 
to examine if text length and grade level influence the strength of 
association between the NLP indices and math scores.  

2. METHOD

2.1 Online Learning System
The data used in this study came from Reasoning Mind's 
Foundations product. RM Foundations is a blended learning 
mathematics program that is used primarily in grade levels 2-5. 
Foundations allows students to learn math concepts at their own 
pace within an engaging, animated world. Of interest in this study 
are problems that address basic math knowledge and skills for 
each objective, which comprise the lowest level of knowledge 
within the system. These problems address basic knowledge and 
skills related to the objective covered within the Foundations 
system. The problems are relatively simple and typically require a 
single step to solve. We used these problems as our benchmark for 
math success.  
Within the system, students intact with a variety of animated 
characters that provide backstories for the math concepts being 
learned. The main character within the system is called Genie. 
Genie is a pedagogical agent who encourages students throughout 
their work in the system. Students are also able to send emails to 
the Genie and these e-mails are answered in character by 
Reasoning Mind employees.  

2.2 Participants 
The data used in this study came from a larger sample of 
Foundations students in the 2016-17 academic year (from August 
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1, 2016 to June 17, 2017. In the total sample, there were 34,602 
students from 462 different schools located in 99 different 
districts found mainly in Texas. From this larger sample, we 
selected students who had messaged the Genie and had produced 
at least 50 words within these messages. We further refined our 
selection process by sampling students who had completed pre-
test and post-test surveys related to math identity, had completed 
Level A math problems, and were in the 2nd through 5th grades. 
After the selection criteria, we were left with data from 2,016 
students. 

2.3 Corpus 
The messages sent from the students to the Genie were used as 
our language sample. One problem with these messages is that 
many of the samples are quite small consisting of only a few 
words. Thus, we aggregated all e-mails sent by each student into a 
single text file in order to create a linguistic representation of each 
student’s language activity. Because the data were extremely 
noisy with multiple misspellings, non-linguistic garbage, 
repetitions, and foreign languages, we cleaned the data prior to 
analysis. First, all non-ASCII characters that could interfere with 
the NLP tools were removed from the data. Second, all texts were 
automatically spell-checked and corrected using an 
implementation of Grammar-Check available in Python. Next, 
non-English texts were identified and removed and then all non-
English words were automatically removed from the data. Lastly, 
all texts were cleaned of redundancies so that repeated words and 
phrases were removed.  

2.4 Selected NLP Indices 
We selected indices from NLP tools that have previously 
demonstrated strong correlations with math success in previous 
studies focusing on similar data [6]. The indices and the tools that 
calculate them are discussed briefly below. 

2.4.1 TAALES 
The Tool for the Automatic Analysis of Lexical Sophistication 
(TAALES [13]) is a freely available too that calculates over 150 
indices related to basic lexical information, lexical frequency, 
lexical range, lexical registers, word information features, and 
psycholinguistic variables. Based on results reported in Crossley 
et al. [4, 5], we selected indices related to lexical registers that 
reference the number of registers in which words are found in the 
Kucera-Francis database (e.g., humor, fiction, and academic 
registers), psycholinguistic features related to phonological and 
orthographic neighborhoods (i.e., the number of near neighbors a 
word has based on its sound or spelling, the frequency of those 
neighbors, and the Levenshtein distance of the neighbors), the 
number of senses a word has (i.e., polysemy), the proportion of n-
grams in a text that are common in a large reference corpus (i.e., 
the Corpus of Contemporary American English or the British 
National Corpus), and word frequency indices (i.e., how frequent 
a word is in a reference corpus).  

2.4.2 TAACO 
The Tool for the Automatic Analysis of Cohesion (TAACO [14]) 
incorporates over 150 classic and recently developed indices 
related to text cohesion. Based on findings from Crossley et al. 
[6], we included a single measure of cohesion: Incidence of 
determiners. Incidence of determiners is related to text givenness 
with a higher incidence indicating more given information in a 
text (i.e., a more cohesive text). 

2.4.3 TAASSC 
The Tool for the Automatic Analysis of Syntactic Sophistication 
and Complexity (TAASSC [15]) measures large and fined grained 
clausal and phrasal indices of syntactic complexity and usage-
based frequency/contingency indices of syntactic sophistication. 
Based on Crossley et al. [4, 5],  we included a single index related 
to syntactic complexity: complex T-units. A t-unit is defined as a 
dominant and any subordinate clause. A complex t-unit is a t-unit 
the included a dominant and at least one subordinating clause.  

2.4.4 SEANCE 
The SEntiment ANalysis and Cognition Engine (SEANCE [16]) is 
a sentiment analysis tool that relies on a number of pre-existing 
sentiment, social positioning, and cognition dictionaries to 
measure sentiment, cognition, and social order. From SÉANCE, 
two indices were selected based on Crossley et al. [4, 5]: 
quantitative terms and certainty words. Quantitative terms refer to 
words that assess quantity (e.g., above, addition) while certainty 
terms refer to words related to sureness and hedging. 

2.5 Statistical Analysis 
We conducted a number of correlations between the NLP indices 
described above and the A-level scores for students. We grouped 
students into three categories based on the number of words 
produced in their messages to the Genie (50 words and above, 100 
words and above, 150 words and above). We further divided 
students based on grade level (2nd and 3rd grade students and 4th 
and 5th grade students) because linguistic development occurs in 
stages that differ based on age [12]. We used the correlations to 
assess the strength of the relationships between the NLP indices 
and A-level scores based on the number of words in the text and 
students’ grade levels. Prior to all analyses, we first assessed 
correlations between text length and A-level scores to ensure 
length and score were not strongly related. 

3. RESULTS 

3.1 Text Length and A-Level Problems 
We ran initial correlations between text length and success on A-
level problems for the three text length categories to examine 
relationships between length and math success (see Table 1). The 
correlation indicated that the number of words produced by 
students in e-mail messages to the Genie had no meaningful 
correlation with math success within the system. 

Table 1 

Correlations between text length and A level scores (all grades) 

Index All words 
(n = 2013) 

> 100 words (n 
= 1105) 

> 150 words (n 
= 684) 

Text length 0.012 -0.001 -0.008 

 

3.2 All Grade Levels 
We conducted correlations between the selected NLP indices and 
the three text length categories for students in all grade levels (see 
Table 2). The correlations indicated that greater text length lead to 
larger correlation in 12 out of the 13 NLP indices. One NLP index 
(Bigram Proportion [COCA News]) showed neither an increase or 
a decrease in correlation. All correlations demonstrated at least a 
small effect size (r ≥ .100 [17]) between NLP indices and A-level 
accuracy scores.  
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Table 2 
Correlations between language features and A level accuracy 
scores (all grades) 

Index 

All 
words (n 
= 2013) 

> 100 
words (n 
= 1105) 

> 150 
words (n 
= 684) 

Kucera-Francis categories 0.147 0.155 0.184 
Phonological neighbors 
distances (Levenshtein) 0.212 0.209 0.258 

Complex T-units -0.108 -0.134 -0.109 

Polysemy (adverbs) -0.047 -0.098 -0.154 

Quantitative terms 0.132 0.124 0.198 
Bigram proportion 
(COCA news) 0.159 0.138 0.154 

Phonological Neighbors -0.219 -0.206 -0.256 
Average Levenshtein 
Distance of closest 
orthographic neighbors 

0.188 0.19 0.208 

Trigram proportion (BNC 
spoken) 0.118 0.138 0.131 

Content word frequency 
(BNC written) 0.138 0.139 0.156 

Average frequency of 
closest orthographic 
neighbors 

-0.192 -0.17 -0.219 

Incidence of determiners 0.06 0.058 0.104 
Certainty words 0.138 0.092 0.171 

 

3.3 2nd and 3rd Grade Data 
We conducted correlations between the selected NLP indices and 
the three text length categories for students in the 2nd and 3rd grade 
(see Table 3). The correlations indicated that greater text length 
yielded larger correlations in 8 out of the 13 NLP indices. Like the 
full analysis, the NLP index related to ngram proportion scores 
showed neither an increase or a decrease in correlations. Indices 
related to register categories, word frequency, and complex T-
Units also showed no correlation patterns. All correlations 
demonstrated at least a small effect size (r ≥ .100) between NLP 
indices and A-level accuracy scores. Two indices related to 
neighborhood effects demonstrated medium effect sizes (r ≥ .300 
[17]). 

3.4  4th and 5th Grade Data 
We conducted correlations between the selected NLP indices and 
the three text length categories for students in the 4th and 5th 
grades (see Table 4). The correlations indicated that greater text 
length lead to larger correlation in 10 out of the 13 NLP indices. 
Unlike the 2nd and 3rd grade analysis, three NLP index related to 
neighborhood effects showed neither an increase or a decrease in 
correlations. Unlike the 2nd and 3rd grade analysis, indices related 
lexical sophistication (word frequency and register indices) showe 
effects for increased text length as did indices related to syntactic 
complexity (complex T-units). All correlations demonstrated at 
least a small effect size (r ≥ .100) between NLP indices and A-
level accuracy scores. 
 
 
 

Table 3 
Correlations between language features and A- level accuracy 
scores (2nd-3rd grade) 

Index 

All 
words (n 
= 1046) 

> 100 
words (n 
= 558) 

> 150 
words (n 
= 333) 

Kucera-Francis categories 0.159 0.158 0.159 
Phonological neighbors 
distances (Levenshtein) 0.225 0.247 0.323 

Complex T-units -0.079 -0.127 -0.036 

Polysemy (adverbs) -0.014 -0.101 -0.126 

Quantitative terms 0.116 0.132 0.217 
Bigram proportion 
(COCA news) 0.165 0.131 0.163 

Phonological Neighbors -0.222 -0.256 -0.322 
Average Levenshtein 
Distance of closest 
orthographic neighbors 

0.203 0.24 0.277 

Trigram proportion (BNC 
spoken) 0.125 0.11 0.116 

Content word frequency 
(BNC written) 0.169 0.138 0.149 

Average frequency of 
closest orthographic 
neighbors 

-0.203 -0.257 -0.299 

Incidence of determiners 0.037 0.043 0.096 
Certainty words 0.146 0.123 0.196 

 

Table 4 
Correlations between language features and a accuracy scores 
(4th-5th grade) 

Index 

All 
words (n 
= 967) 

> 100 
words (n 
= 547) 

> 150 
words (n 
= 351) 

Kucera-Francis categories 0.078 0.128 0.198 
Phonological neighbor 
distances (Levenshtein) 0.138 0.142 0.172 

Complex T-units -0.148 -0.14 -0.197 

Polysemy (adverbs) -0.084 -0.083 -0.173 

Quantitative terms 0.106 0.091 0.152 
Bigram proportion 
(COCA news) 0.084 0.109 0.103 

Phonological Neighbors -0.167 -0.126 -0.169 
Average Levenshtein 
Distance of closest 
orthographic neighbors 

0.118 0.111 0.113 

Trigram proportion (BNC 
spoken) 0.071 0.14 0.111 

Content word frequency 
(BNC written) 0.066 0.128 0.153 

Average frequency of 
closest orthographic 
neighbors 

-0.137 -0.044 -0.105 

Incidence of determiners 0.049 0.06 0.105 
Certainty words 0.068 0.021 0.108 
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4. DISCUSSION/CONCLUSION  
The key finding from this study is that longer texts lead to 
stronger associations between linguistic features reported by NLP 
tools and math success within an online tutoring system. 
importantly, text length was not correlated with math scores (i.e., 
students who wrote longer emails within the system did not have 
lower or higher math scores). However, in almost all cases, 
increased text lengths led to stronger correlations. This was 
especially true for the correlations that included all grade levels in 
which 12 of 13 indices showed increased correlations. 
Importantly, for all grades, longer text length led to correlations 
that demonstrated at least small effect sizes (r > .010).  

Deconstructing the grade level analyses also leads to interesting 
comparisons. Chief among these is the finding that phonological 
neighborhood effects have stronger effects for 2nd and 3rd graders 
when compared to 4th and 5th graders. This is likely the result of 
younger students demonstrating greater development in word 
learning than older students as a result of language acquisition 
stages [12]. In contrast, older students generally develop stronger 
syntactic skills once lexical development stabilizes [49], which 
may be reflected in the stronger correlations we see between our 
single syntactic complexity index (complex T-units) and math 
scores for 4th and 5th graders. This notion gains support when we 
compare it to the lower correlations reported between math scores 
and complex t-units for 2nd and 3rd graders. 

While the findings of this study provide evidence of both text 
length and grade level differences in NLP analyses, they need to 
be tested on different data sets. For instance, the data used in this 
analysis included all available data regardless of text length. This 
meant that the corpus containing texts greater than 50 words also 
contained texts that had more than 100 and more than 150 words. 
Future studies should examine bands of texts that contain only 
specific text lengths (e.g., a band consisting of only texts with 
lengths between 50 and 99 words compared to texts consisting of 
100 to 149 words). Future studies should also see whether the 
results reported here extend to other learning domains (e.g., 
literacy or science domains), other text types (e.g., questions, 
summaries, self-explanations), other NLP tools and features, and 
other grade or age levels. 
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ABSTRACT 
A significant amount of research has illustrated the impact of 
student emotional and affective state on learning outcomes. Just 
as human teachers and tutors often adapt instruction to 
accommodate changes in student affect, the ability for 
computer-based systems to similarly become affect-aware, 
detecting and personalizing instruction in response to student 
affective state, could significantly improve student learning. 
Personalized and affective interventions in tutoring systems can 
be realized through affect-aware learning technologies to deter 
students from practicing poor learning behaviors in response to 
negative affective states and to optimize the amount of learning 
that occurs over time. In this paper, we build off previous work 
in affect detection within intelligent tutoring systems (ITS) by 
applying two methodologies to develop sensor-free models of 
student affect with only data recorded from middle-school 
students interacting with an ITS. We develop models of four 
affective states to evaluate and determine significant predictors 
of affect. Namely, we develop a model which discerns students’ 
reported interest significantly better than majority class.   

Keywords 

Intelligent tutoring systems; Affect detection. 

1. INTRODUCTION 
The ability to identify and deliver personalized interventions 
that are effective for individual students can greatly benefit the 
learning process by recognizing and addressing specific student 
needs. However, it’s often unfeasible to realize personalized 
instruction and support in traditional classrooms with large 
numbers of students per teacher. With growing access to 
technology in classrooms, online learning platforms such as 
MathSpring have provided personalized learning opportunities 
that have shown positive achievement outcomes for student 
users [3]. Recently, such work has shifted focus to acknowledge 
and leverage the impact that emotion has on learning. Affect-

aware learning technologies, including online learning 
platforms, can be developed and deployed to monitor and 
predict affect to provide appropriate interventions to maximize 
student learning.  
Modeled after the control-value theory of emotion in education 
[16] and previous work in affect detection, we aim to develop 
sensor-free predictive models of affect from user behavior and 
performance within MathSpring. We will use students’ self-
reported levels of confidence, interest, excitement, and 
frustration during four user sessions to create predictive models 
and detect how student behaviors in the system relate to levels 
of affective states. Doing so will further efforts to build, study, 
and deploy affective interventions within MathSpring to 
optimize learning with feasible means for educational settings. 

2. LITERATURE REVIEW 
2.1 Affect and Control-Value Theory 
A growing body of research has investigated emotion and affect 
in the context of education [12, 13]. To differentiate emotions 
and affect, consider emotions to be intuitive feelings, such as 
joy and anger, while affect broadly captures the manifestations 
of those feelings, such as pleasure and frustration, particularly in 
educational settings [17]. From perspectives in psychology, 
education, and computer science, a large amount of evidence 
suggests that student affect influences learning and deeper 
comprehension, both positively and negatively [5, 10, 12]. This 
research highlights the importance of affect in learning to 
provide content that effectively challenges students.  
Our framework is based on the control-value (CV) theory of 
emotion [16]. Pekrun’s CV theory of achievement emotions 
posits that student beliefs of their control over success in a 
subject and their value in understanding said subject will most 
influence their affect and, consequently, overall learning. For 
example, a student might feel enjoyment during an activity for 
which that student feels greater confidence in learning the 
content. The CV theory attributes student affect to feelings of 
control and subject value within a learning environment, 
underscoring the necessity of providing students with 
appropriately challenging tasks and adaptive content to maintain 
emotions that will positively influence learning in a given 
activity.  

2.2 Sensor-Free Affect Detection   
Efforts have been made to develop sensor-free affect detectors 
with tutoring systems for educational settings, particularly by 
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pairing student log files with human observations to detect 
behavior that might be representative of affect. For instance, 
Baker and colleagues developed BROMP [15] for observers to 
code student affect over short intervals and then match the 
observed affect with student activity logs [8]. Researchers have 
also observed facial expressions and body movement to create a 
framework for mapping affect onto student behavior [10, 17]. 
However, it is difficult to implement student affect detectors 
with physiological sensors or observational data in a permanent 
school setting [7] due to cost and the potential threat to validity 
introduced by such methods caused by alterations of the learning 
environment. Researchers have previously tried to predict self-
reported affect with log data and questionnaires [9] but less 
work has been done with solely log data.  

3. CURRENT STUDY 
MathSpring is an intelligent tutoring system that covers 
Common Core mathematics curriculum for students in 6th-10th 
grade to prepare for standardized tests [1]. The system adapts to 
provide content that will likely keep the student in the zone of 
proximal development [3] while providing scaffolding and 
fostering growth mindsets through personalized, pedagogical 
support. Affective support is realized through text, audio, and 
images from an animated learning companion as students solve 
problems [3]. Studies have found that using MathSpring leads to 
significant performance gains on standardized math tests as 
opposed to students who do not practice with MathSpring [1]. 
We currently aim to utilize student data from MathSpring build 
affect predictors from only student logs. We intend to 
respectively construct predictive models for confidence, interest, 
excitement, and frustration levels reported over brief intervals in 
user sessions. Based on previous affect detection work, and gaps 
in the literature, we hypothesize that students changing topics 
and viewing progress in MathSpring will contribute to affect 
predictions [1]. We predict that topic changes may indicate 
frustration and be negatively related to positive affective states.  

This study was conducted with 85 eighth-grade students at a 
middle school in Massachusetts. Between December 2016 and 
May 2017, students participated in four, hour-long sessions with 
MathSpring. In each session, students worked on assigned 
problem sets corresponding with class material. Students 
typically completed the assigned problem set in that time or 
completed the set in the next session. Throughout each session, 
users saw a learning companion that delivered messages to 
remind students of the hint button or provide encouragement. 
Previous work has looked at the effects of interventions with 
different affective messages, such as empathetic, growth 
mindset, and success/failure messages [1]. Growth mindset 
messages were used in this study because they are the default for 
MathSpring. If a user selected an incorrect answer, the hint 
button would flash. After a second wrong attempt, the learning 
companion delivered a growth mindset message. Students could 
skip problems or return to the “My Progress” page any time 
where they could view topic mastery and choose to continue, 
change topics, challenge themselves, or review content.  
Drawing from previous work on affect detection in learning 
technologies [1, 2, 4, 6], we inquired about levels of excitement, 
interest, confidence, and frustration during user sessions.  
Roughly every five minutes between problems, students 
received a prompt to self-report affect on a 5-point Likert scale 
ranging from 1=Not at all to 5=Extremely, with the option to 

skip the self-report. Prompts randomly alternated between the 
affective states but contained the same wording. For example, 
the prompt for Confidence would read, “Please tell us how you 
are feeling. Based on the last few problems tell us about your 
level of Confidence in solving math problems.” 

4. MODELS AND ANALYSES 
We first reconstructed data from student log files. Affect self-
reports were randomized throughout the user sessions so the 
order and summation of self-reports for each affect varied by 
user. For example, a student could have reported on confidence 
followed by interest level while another student could have been 
prompted for frustration and then excitement level. Due to this 
variation between and within students, we chose to use the 
“mini-sessions” of activity between each affect report. This is 
supported by previous findings that recently completed problems 
are more predictive of affect than an entire user session [6] and 
alleviates the possible effect of elapsed time on affect reports.  

Table 1. Descriptive statistics on affect self-reports. 
 Excitement Frustration Interest Confidence 

N Affect 
Reports 138 129 133 154 

Mean (SD) 1.78 (1.17) 2.36 (1.67) 1.98 (1.29) 3.23 (1.53) 

With mini-sessions of self-reported affect (N=554; Table 1), we 
aggregated behavior variables, such as the number of problems 
seen between reports, that corresponded with a given affect 
report then separated mini-sessions by affect. Observations 
without a reported emotion level (N=196) were culled. A PCA 
with “mini-session” level variables revealed four factors. We 
selected one variable per factor for the models. Topic changes 
refer to a student changing problem sets due to completion or 
topic mastery, prolonged poor performance, or self-electing to 
return to the progress page and choose a different topic. The 
average number of hints refers to the average seen per problem. 
The percentage of problems answered correctly is calculated 
within the “mini-session”. Lastly, the number of interventions 
sums hint button flashes and messages from the learning 
companion during problem solving. 
Based on past MathSpring work [1], we tried two methods of 
building predictive models of affect by constructing logistic 
regressions with five-fold cross-validations at the student level. 
The “at least somewhat” models attempt to predict whether 
students would report “Not at all” to “A little” (1-2 on the self-
report scale) or “Somewhat” to “Extremely” (3-5) of a given 
affect. Then, the “at least a little” models attempt to predict 
whether students reported any degree of a given affect (2-5) or 
not at all (1). 

Table 2 summarizes the performance of models. Notably, both 
models of interest perform comparably to other predictive 
models of affect (kappa > 0.20) [14]. While there is variation 
across affect and discretization, with both Confidence models 
and the “at least a little” model for Frustration performing below 
chance (AUC < 0.50; kappa < 0), five of the models appeared to 
be performing above chance with disagreeing AUC and kappa 
values. Unlike AUC, accuracy, F1, and kappa values are 
sensitive to the choice of rounding threshold of model estimates, 
particularly with unbalanced labels. This incongruence between 
AUC and kappa has been seen in other work on sensor-free 
affect detection using deep learning [8]. Given the imbalance of 
labels within each affective state, we calculated an optimized    
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Table 2. Logistic regression model performance. 

Note: Bolded rows indicate model performance above chance (0.50 < AUC ≤ 1; 0 < kappa ≤ 1). Optimized accuracies significantly 
better (p<.05) than a base rate model are denoted with (*), while optimized accuracies significantly worse than base rate are denoted 
with (†). 

metric by learning a reasonable rounding threshold of model 
estimates using the training set of each fold. We also compared 
each model’s optimized accuracy to the respective base rate, 
majority class model to determine significance. It is found that 
only the model for “at least a little” Interest has a significantly 
higher accuracy than the base rate. Table 3 details standardized 
coefficients for each model. Number of interventions was the 
most frequent predictor across affects and discretization levels. 
Percentage of correct problems was also a strong predictor of 
interest (p < 0.01). Topic changes positively predicted interest 
and excitement and negatively predicted frustration. 

Table 3. Standardized coefficients (β) of predictors by model. 

Model 

 

Topic 
Changes 

Avg. 
Hints 

Correct 
Problems (%) 

Number of 
Interventions 

At Least Somewhat    

Interest 0.69 -0.10 0.95 -0.80 

Confidence 0.39 0.40 0.04 -0.48 

Excitement 0.48 0.12 -0.23 -0.80 

Frustration -0.83 0.17 -0.37 0.75 

At Least A Little    

Interest 0.41 -0.13 0.67 -0.53 

Confidence 0.37 0.16 0.01 -0.56 

Excitement 0.55 -0.03 0.10 -1.04 

Frustration -0.26 0.10 0.05 0.26 

5. DISCUSSION 
We presented predictive models of affect within MathSpring 
with a model of “at least a little” interest that performs 
significantly well. In general, the “at least somewhat” models 
perform better, suggesting that this discretization split should be 
used in future projects to predict student affect. While some of 
the models do not perform well, this is not surprising given that 
sensor-free affective models are more difficult to build than 
models profiting from detectors or pre- and post-study data.  

However, it is surprising that the number of topic changes, 
contrary to our hypothesis, was positively related to interest and 

excitement levels and negatively related to frustration. This 
implies that higher frequencies of topic changes between affect 
reports indicate positive affective states. Conversely, a student 
who does not change topics between affect reports is more likely 
to report a higher level of frustration. We assumed that students 
would change topics if they performed poorly (indicating that 
the content is too challenging to be productive) or were bored. 
However, students could also change topics if they mastered or 
completed a topic (indicating the content is too easy). 
Considering the positive relationship between interest and topic 
change, and excitement and topic change, perhaps students were 
more likely to change topics because of completion or mastery. 
This suggests that students might conflate the concepts of 
interest and excitement with feelings of achievement. 

The other predictor to note, number of interventions, was the 
most common, statistically significant predictor of affect level 
across models. Number of interventions was negatively related 
to positive affect which suggests that fewer interventions led to 
higher reports of positive affective states. Conversely, the 
number of interventions positively predicted frustration, 
suggesting that more interventions predicted a higher level of 
frustration. Assuming that interventions increased as student 
attempts increased, it is unsurprising that higher numbers of 
interventions precede higher reports of frustration and lower 
reports of positive affective states. The number of topic changes 
and interventions between affect reports were the main 
predictors of affect across models, while percent of problems 
answered correctly only positively related to interest. The lack 
of strength in the four predictive attributes suggests that we 
should consider other variables from the four PCA components.  

There are other caveats to consider. Namely, self-report from 
middle school students might not be accurate and prompting 
students to self-report throughout user sessions might disrupt 
natural affect. Also, the type of intervention might influence 
affect rather than the quantity of interventions. For instance, 
students who saw affirmative messages after answering a 
problem correctly might have felt differently towards the 
learning companion and MathSpring than a student who saw 
growth mindset messages after attempting a problem multiple 

Model AUC Kappa F1 
Optimized 
Accuracy Optimized F1 Optimized Kappa 

At Least Somewhat       
    Interest 0.75 0.24 42.41 72.29 58.54 0.38 
    Confidence 0.70 0.02 73.76 68.41 70.33 0.32 
    Excitement 0.68 0.10 25.00 63.17† 37.50 0.10 
    Frustration 0.53 -0.04 18.46 59.36 18.46 -0.04 
At Least A Little       
    Interest 0.73 0.32 60.34 67.14* 61.57 0.35 
    Confidence 0.69 -0.04 84.18 64.76† 70.94 0.22 
    Excitement 0.62 0.06 42.11 65.42 58.18 0.20 
    Frustration 0.39 -0.17 32.03 36.33† 32.03 -0.17 
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times. That said, using interventions as a variable in the sensor-
free predictive models is only beneficial to data from 
MathSpring until we better comprehend the underpinnings of 
how interventions influence student affect more broadly.  

This work poses future directions to give better consideration to 
these questions. It might be worthwhile to construct ordinal 
regression to predict the level of affect reported rather than a 
binary classification. We also intend to create a feature that 
indicates the previous self-report level of the affect in question. 
This feature was not included for the initial round of analyses 
due to the randomization of affect report ordering. A student 
might only report on a given affect once or twice towards the 
beginning of the session, rendering the information less useful 
than if the same affect were reported on twice in a row across a 
shorter span. Even with potential irregularity of affect reporting, 
previously-reported same-affect level could be suggestive of the 
dynamics of affect throughout user sessions. Pursuing these 
directions will help us better understand the dynamic between 
student affect and behavior in tutoring systems.   

6. CONCLUSION 
We presented a high-performing predictive model of interest, as 
well as predictive models of excitement and confidence that 
perform above chance, demonstrating the ability to build sensor-
free detectors of affect in MathSpring. Given the limitations of 
the current models and future plans with the data from this 
study, we consider this to be a first effort. We intend to utilize 
the data to improve sensor-free affect detection so that socio-
emotional interventions in MathSpring can be better realized to 
optimize student support and learning. Progress in sensor-free 
affect detection research has positive implications for classroom 
implementation of affect-aware learning technologies and 
sustainable data collection through student activity files. 
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