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ABSTRACT
A growing subset of the web today is aimed at teaching
and explaining technical concepts with varying degrees of
detail and to a broad range of target audiences. Content
such as tutorials, blog articles and lecture notes is becoming
more prevalent in many technical disciplines and provides
up-to-date technical coverage with widely different levels
of prerequisite assumptions on the part of the reader. We
propose a task of organizing heterogeneous educational re-
sources on the web into a structure akin to a textbook or a
course, allowing the learner to navigate a sequence of web-
pages that take them from point A (their prior knowledge)
to point B (material they want to learn). We approach this
task by 1) performing a shallow term-level classification of
what concepts are explained and assumed in any given text,
and 2) using this representation to connect web resources
that explain concepts to those web resources where the same
concepts are assumed. The main contributions of this pa-
per are 1) a supervised classification approach to identifying
explained and assumed terms in a document and 2) an algo-
rithm for finding optimal paths through the web resources
given the constraints of the user’s goal and prior knowledge.

Keywords
web resources; optimizing learning

1. INTRODUCTION
No scholar is born at the frontier of knowledge — early learn-
ing and lifelong learning both play a defining role in shaping
the research vector of an academic [7]. More alarming, recent
research [6] demonstrates that the pre-career idle time of an
up-and-coming researcher has been on the steady rise during
the last century, attributing to the “burden of knowledge”
phenomenon — the inflation of the body of prerequisite prior
knowledge to be mastered before being able to contribute to
the field with original research. The hypothesis of [9, 10] is
that facilitating effective early and lifelong learning practices
is a viable way for easing the “burden of knowledge”.

While physical textbooks and classrooms traditionally as-
sumed the role of knowledge curators, they also present
a bottleneck in today’s rapidly growing web of up-to-date
technical and academic content — peer-reviewed articles,
lecture notes, tutorials, slides etc — from academics and
“citizen scientists” alike. An automatic approach for “weav-
ing” natural curricular progressions through the web of such
heterogeneous academic/educational content, we believe, will
catalyze early and lifelong learning by creating more effi-
cient and goal-oriented curricula targeted to the level of the
audience.

The web is the only collection of resources today where
attempting this task becomes meaningful and promising.
The reason for this is that the web contains an extensive
amount of diversity in its content, i.e. content that explains
the same concepts but in many different ways. Naturally
this diversity reflects the diversity of the people who create
this content, their backgrounds, styles of learning and ways
of thinking about complex concepts, which would naturally
match learners with similar characteristics. We believe that
this diversity can be leveraged to create learning pathways
that are not bound to the traditional curricula that are
often constrained for no better than a historical reason. We
propose instead to optimize a curriculum directly for what
you want to know given what you already know.

We propose to tackle the problem of curriculum mining on the
web, which broadly, involves linking technical resources on
the web to other resources that explain a subset of concepts
that are assumed in the original document. We propose to
decompose the task into 1) understanding what is explained
and assumed in a document on the part of the the reader
and 2) use this document-level representation to sequence
documents that guide the learner from their current state of
knowledge towards their goal, for example, understanding a
specific research paper or a set of lecture notes.

We propose a term-centric approach for inducing curricular
relations between any pair of documents. Naturally, under-
standing a technical concept is more than being familiar with
its surface term, and in this view an approach that operates
at the level of individual terms may appear to be näıve. Af-
ter all, to explain a new concept is to put together existing
concepts in a novel way [13], and in the process introduce
convenient nomenclature. However, we hypothesize, that by
the virtue of seeking the shortest sequence of documents that
“cover” (explain) multiple terms at once, the resulting bottle-
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neck will implicitly “prefer” to link to prerequisite documents
that introduce and explain whole concepts, i.e. groups of
terms, as opposed to introducing terms one document at a
time (an extreme example would be presenting a sequence
of pages from a dictionary, each document defining a term
independence; this is clearly undesirable). It will be our
running assumption, that there exists a correlation between
the knowledge of the terms and the understanding of the
overarching concept.

Thus, to a first-order approximation, we model technical doc-
uments as “bags of terms”, and in the interest of tractability
set forth the following set of modeling assumptions:

• Assumption 1 A document is a bag-of-technical-terms
(multiset) that is further partitioned into two multisets:
E (Explained), A (Assumed) — corresponding to the role
(aspect) of the term within the document:

Explained: The terms appear in the context that fur-
thers the understanding of the concept corresponding
to the term.

Assumed: The concept corresponding to the term is
assumed to be familiar, and is required for understanding
the context in which it appears.

• Assumption 2 The degree of reliance on the knowledge
of a particular term in the document is proportional to
the frequency of the term in the Assume multiset, i.e.
which concepts are fundamental to the understanding of
the document, and which are auxiliary is reflected in the
number of occurences of the corresponding terms.

As an illustration, consider the following excerpt from Christo-
pher Bishop’s classic textbook Machine Learning and Pattern
Recognition from the chapter that introduces the concept of
Expectation Maximization:

Expectation Maximization
An elegant and powerful method for finding maximum
likelihood solutions for models with latent variables
is called the expectation maximization algorithm, or
EM algorithm.

In the excerpt above, we solid–underline the terms that ap-
pear in the Explained aspect and dash–underline terms that
appear in the Assumed aspect. Understanding the concept of
Maximum likelihood is a prerequisite for understanding Ex-
pectation Maximization. It is no surprise that most resources
that introduce the concept of Expectation Maximization im-
plicitly assume that the reader is familiar with Maximum
Likelihood. Academic and educational literature is fraught
with such implicit assumptions that may be challenging to
unravel for a learner especially new to the area. Note that on
the surface it may seem that detecting instances of explained
terms in the text is an equivalent task to finding instances of
term definitions – a well studied task – but it is not so. Espe-
cially in technical disciplines, explaining a concept requires
much more than giving a definition. A document defining a
term, may or may not actually explain the concept behind it.
For example, a document may define a term to refresh the

reader’s memory but otherwise assume the reader’s familiar-
ity with it. On the other hand, a document may explain a
term without ever giving a one-sentence definition.

Finally, the proposed dichotomy may appear as a gross over-
simplification, ignoring the entire continuum of pragmatics
between the two extremes. We argue that while binary term-
level classification alone may not capture the fine-grained
aspect of any one term, combining it with the context of the
entire document, will enable us to unravel the prerequisite
relationships between documents.

2. RELATED WORK
Evidence of information overload in traditional text-
books Formal study of textbook organization conducted
by [1] on a corpus of textbooks from India quantitatively
addresses the issue known as the “mentioning problem” [12],
where “concepts are encountered before they have been ad-
equately explained and forces students to randomly ’knock
around’ the textbook”. The work of [1] suggests that many
traditional textbooks suffer from the resulting phenomenon
of “information burden” and provide diagnostic metrics for
evaluating it. A user study conducted by [2], though limited
to electronic textbooks, demonstrated the utility of a naviga-
tional aid that links concepts and terms within a textbook
and allows the user to navigate according to own preferences.
This suggests the potential utility of tools that expand such
“navigational ability” outside textbooks.

Attempts at manual curriculum curation There have
been at least two efforts that we are aware of, that attempts
to manually create “paths” between a selected set of resources
on the web — two educational start-ups, Metacademy [5], and
Knewton [4]. While motivated by the same goal, we believe
that manual web-scale curriculum curation is akin to the
manually-curated directory of the web (not too different from
the original Yahoo directory from the 1990s), i.e. offering
poor scaling capability in the dynamic, growing landscape of
educational content on the web.

Attempts at automatic curriculum curation Most rel-
evant to our task is the work of [11] that attempt to infer
prerequisite relationships between a pair of Wikipedia ar-
ticles. They frame the problem of prerequisite prediction
as “link-prediction” between a pair of pages using primarily
graph-derived (e.g. hyperlink structure) and some content-
derived features (e.g. article titles). In contrast to their
approach, we do not assume any existing structure connect-
ing the web resources (e.g. within Wikipedia), as the majority
of the educational content on the web is unstructured. Our
approach also naturally facilitates a scalable assimilation of
new content, as we require only a document-scoped term-
level classification, without needing to explicitly construct
or update a prerequisite graph. Furthermore, we develop an
approach for optimizing curricular paths using the proposed
representation. More recent work of [8] develop a method
that does not rely on a manual annotation of the prerequisite
relations as in [11], and instead uses the statistics of concept
reference in a pair of pages to determine the prerequisite
relation between them. Similar to [11], their focus is on the
pairwise link prediction, in contrast to our goal of globally
optimizing a learning curriculum.
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Figure 1: (a) ROC curves for the task of binary aspect
classification. (b) AUC (left y-axis) of aspect classification
for terms with a maximum document rank given on x -axis.
Shaded region shows the number of terms up to the given
maximum rank (right y-axis).

3. MODEL
3.1 Modeling explanations
We model the problem of identifying the explained and as-
sumed terms in a document as a term-level binary classifica-
tion task, i.e each term in the document is classified into one
of the two categories. Although simple from an implemen-
tation perspective, this task is made difficult by the lack of
annotated data in this domain. In this work, we rely on (i)
manual annotation of the term aspects performed by us for
one of the textbooks (Rice University’s statistics text) and
(ii) explicit annotations from the index of Bishop’s Pattern
Recognition and Machine Learning textbook that were made
by the author of the text (the annotation is in the form of a
location in the text where a particular concept is explained).

The Rice University’s Online Statistics Education: An In-
teractive Multimedia Course of Study textbook, from hereon
referred to as statsbook consists of a total of 112 units,
with a median of 12.5 unique technical terms per unit, for
a total of 339 different technical terms in the book. We
scrape the text content of the book from the web, replace
all mathematical formulae and symbols with special tokens,
and manually annotate each technical term mention with its
representative form from the index, i.e. normally distributed
with normal distribution. Manual term annotation obviates
the need for introducing a word-sense disambiguation com-
ponent and additional errors. We process the PRML dataset
in an identical manner.

Each technical term in every unit of the book was annotated
with the binary {explain, assume} aspect, following the defi-
nitions outlined on the previous page. While for most terms,
the application of these definitions is fairly unambiguous, for
a significant number of term mentions, the aspects are not
mutually exclusive, i.e. the term may be construed to belong
to both aspects simultaneously. Often, in using (assuming)
a term to explain a related concept, something about the
assumed term is also explained as a side effect. The degree
to which the explanation is distributed between the terms
is difficult to judge objectively, and may vary between dis-
tinct mentions of the terms in different parts of the same
document. We adopt a simple strategy for “breaking ties” in
such cases: if we a judge a term as having been intended to
be explained in the given context by the author, we mark
it with the explain aspect, otherwise, the term is assumed

to be assumed. In total across the entire statsbook corpus,
1878 terms were annotated for their aspect (note that the
same term appears in multiple documents with potentially
different aspects), with a class ratio of 537 terms belonging to
the explain and 1341 terms belonging to the assume aspect.

The PRML dataset contains a total of 3883 annotated terms,
with 222 terms belonging to the explain and 3661 terms
belonging to the assume aspect. The aspect of the term
was determined from the index of the book, which explicitly
specifies the pages where a term is explained.

A logistic regression model (LIBLINEAR [3] with default
regularization parameter) was trained to predict a binary
aspect of the terms and evaluated with 10-fold stratified
cross-validation. A set of lexical and dependency features
describing the context of each term (within a 1 sentence
window), positional features describing the location of the
term’s mention within the document and sentences in which
the term appeared, and the frequency rank of the term within
the document were employed. We compare the performance
of a classifier that uses all of these features with the one that
uses only the rank. A classifier that is given rank as the
only feature, will essentially learn a rank “threshold” that
will decide the aspect of the term within the document, i.e.
predict all terms above a certain rank as explained.

Figure 1(a) summarizes the performance of aspect prediction
with the classifier trained using both linguistic and rank
features (Rank+Text, AUC=0.76) versus a classifier trained
using only the rank (Rank only, AUC=0.66) for the stats-
book corpus. As expected, rank is predictive of the aspect,
but contextual linguistic cues provide a significant boost.

Keeping our end goal in mind, under Assumption 2 stated in
the introduction, we hypothesize that the frequency rank of
the term in a document correlates with the degree to which a
term is either assumed or explained in that document. In the
downstream task of linking documents to their prerequisites,
getting the aspects of the more frequent terms correct is
arguably more important than of the terms that only appear
once or twice. We evaluate the performance of our aspect
classifier as a function of the term’s rank. Figure 1(b) il-
lustrates predictive performance (AUC) on a subset of the
data stratified by the term’s frequency rank. We observe
a favorable trend in increased predictive performance for
higher ranked terms. An obvious explanation is that more
frequent terms accumulate a larger set of features describing
them (since each mention of the term contributes its context
features), effectively decreasing variance in the predictions.

3.2 Optimal learning paths
Consider now that we have a large collection of documents
(e.g. tutorials, papers, textbook chapters). Each such docu-
ment explains some concepts but also assumes the reader’s
knowledge of other concepts (e.g. a tutorial may explain the
concept of normal distribution, but may assume the knowl-
edge of probability and distribution). We will now consider
that we can reliably classify each term in each document into
either the Explained or Assumed category. Consider that we
also have a user who is interested in understanding a specific
(target) document (or a set of target documents). The goal
is to give a user a self-contained sequence of documents of
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Figure 2: Each document is represented by a blue shaded
region: the top part corresponds to the explained set Ei and
the bottom part corresponds to the assumed set Ai. Red
dots correspond to terms. This is an example of a feasible
solution, where each document is covered.

minimal length that explains all of the concepts needed to
understand the target document.

Formally each document di in our collection is a set of two
sets of terms: the explained terms Ei = E(di) and the
assumed terms Ai = A(di). A term in any document is
either explained or assumed, but not both, i.e. Ai ∩ Ei = ∅.
We say that the document di is covered by a prerequisite set
of documents Pi when:

Ai ⊆
⋃

dj∈Pi

E(dj)

In other words the document is covered when every one of
its assumed terms is explained by at least one document in
the prerequisite set. For any prerequisite set that covers this
document, the documents in the prerequisite set need to be
covered as well, recursively until all documents have been
covered. We assume the existence of documents with no
prerequisites (leaves), i.e. those documents for which A· = ∅.
The goal is to find a smallest self-contained set of documents
P , i.e. a set of documents such that all the documents in
P are covered and d0 ∈ P , where d0 = {A0, E0} is the
target document of interest to the user. Figure 2 illustrates a
feasible solution to an example problem. Without additional
restrictions, solutions to this problem can contain cyclical
dependencies. Such cycles don’t make sense in our setting.
Thus an important restriction is that the the set of documents
P can be ordered such that every document in the sequence
is covered by the preceding documents in the sequence. Let
p be a sequence of documents of length K, where pk is the
kth document in the sequence, then we seek:

minimize |p|

s.t. ∀k : A(pk) ⊆
k−1⋃

k′=0

E(pk′)

d0 ∈ p (1)

ILP formulation
We formulate an Integer Linear Program (ILP) that finds
a minimum length self-contained sequence p of at most K
documents such that it covers a user’s document of interest

d0. Consider that we have a total of D documents. We define
the following variables:

xki ∈ {0, 1} document di is in kth position in the sequence

We define the following constants:

eij ∈ {0, 1} Term j is explained in document i
aij ∈ {0, 1} Term j is assumed in document i

Each assumed term in a document in position k must be
explained by at least one document up to (but not including)
the document in position k. This can be expressed via the
following constraint:

k−1∑

k′

D∑

i

eijx
k′
i ≥

D∑

i

aijx
k
i ∀j∀k

Each position in the sequence contains at most 1 document:

D∑

i

xki ≤ 1 ∀k

User’s preference of covering a document of interest d0 is an
additional constraint:

K∑

k

xk0 = 1 ∀k

Finally, the objective is to minimize the number of documents
in the sequence:

minimize

K∑

k

D∑

i

xki

The above formulation also allows us to directly incorporate
the user’s prior knowledge into this optimization problem. If
we represent a user as a set of explained terms, i.e. terms that
the user is assumed to have mastered, then the constraints
corresponding to these terms may simply be dropped from
the formulation.

In the most general case, this formulation has D2 variables
and O(D2 × V ) constraints, where V is the number of terms
in the vocabulary. In practice, however, we will often limit
the maximum allowable sequence length to a fairly small
constant (e.g. 10, as done in our experiments), reducing
the order of the problem to O(D) variables and O(D × V )
constraints.

While in extremely large settings (hundreds of thousands of
documents), even with a small K, solving this ILP directly
is infeasible, in practice, we find that that we can can obtain
exact solutions using LP relaxation and a vanilla Branch
and Bound (using GLPK1) within several seconds, even
with a many as 1,000 documents and hundreds of terms.
Developing an approximation algorithm based on rounding
the LP solution is our ongoing work.

1https://www.gnu.org/software/glpk/
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Figure 3: Term aspect classification is useful at the task of re-
covering prerequisites for units within a textbook. The y-axis
is the average AUC at the task of predicting whether a par-
ticular unit is a prerequisite of another unit, based on three
metrics. The metric that incorporates the Explain/Assume
classifier performs best (solid line).

4. EVALUATION

4.1 Prerequisites
In order to evaluate the Explain/Assume classifier in an
end-to-end setting, we employ the output of this classifier in
the task of predicting prerequisites in a dataset where the
prerequisites have been explicitly annotated. One such re-
source is Rice University’s Online Statistics Textbook, which
in addition to the text content, provides an explicit depen-
dency graph annotating prerequisite relations between pairs
of units (units are at the level of chapter sections). We pro-
pose a metric for scoring a pair of units according to their
prerequisite relationship based only on the terminology of
both units and the output of the Explain/Assume classifier.
The proposed “prerequisite score” is defined as follows:

P (da → db) =

∑
ti∈db n

a
i 1[ti assumed in db ∧ explained in da]
∑

tj∈da n
a
j1[tj explained in da]

where na
i is the number of occurrences of term i in document

da. Since the above score is guaranteed to be in the [0, 1]
range, we can interpret it as a probability P (da → db), a
probability that document a is a prerequisite of document
b. There is an intuitive interpretation to the above score:
a document can be considered a strong prerequisite of a
target document when it explains all of the assumed terms
in the target document and nothing more. We can convince
ourselves that in this case the score as defined above will be
equal to 1. A document that explains too many unrelated
concepts will suffer a penalty with respect to its prerequisite
score to another document. Furthermore, we consider the
relative frequency of the explained term in the prerequisite
document as an additional signal of that term’s importance.
We find that this additional information increases the perfor-
mance of prerequisite classification (discussed at the end of
this section).

Because the output of the Explain/Assume classifier is a
probability, rather than a class, we can relax the above score

to directly incorporate the uncertainty in the classification:

P (da → db) =
∑

ti∈db

na
i P (ti explained in da)∑

tj∈da n
a
jP (tj explained in da)

(2)

Note that in addition to relaxing the requirement of an ex-
plicit Explain or Assume label, we also drop the requirement
that only the assumed terms need to be explained to count
towards the prerequisite score. This distinction is optional,
but it encodes an important assumption on the kinds of
“prerequisites” that this score will discover. This also brings
up the importance of being precise about the definition of a
prerequisite. A document a is a strict prerequisite of docu-
ment b, if document a explains a subset of the assumptions
in document b. However, we can relax this definition by
not requiring that the terms explained in the prerequisite
(a) are strictly assumed in the target (b). In other words, a
document that explains a subset of the terms also explained
in the target and nothing else, will have a score of 1 according
to the above equation. In practice this corresponds to docu-
ments that explain the same concepts but in a simpler way
(since they explain only a subset of the explained concepts in
the target), and this is often a desired behavior in a learning
sequence. For example, before reading a more advanced arti-
cle on Support Vector Machines, the learner might want to
read a more basic introduction to Support Vector Machines,
although from the perspective of term classifications, both
documents explain the same concept.

4.1.1 Reconstructing prerequisites
Rice University’s Online Statistics Textbook provides a valu-
able resource for evaluating the effectiveness of the Ex-
plain/Assume classification at the task of predicting prereq-
uisite relations between documents. The textbook consists
of 112 units at the granularity of chapter sections, annotated
as a directed graph, i.e. specifying a directed edge between
a pair of units if one unit is considered a prerequisite of an-
other unit. We process the raw HTML files of the textbook
by removing markup, segmenting sentences and extracting
terminology (obtained from the index) features as described
in Section 3.1. We pose the problem of prerequisite rela-
tion prediction as a standard binary classification task, i.e.
predicting for each pair of units in the book whether one
unit is a prerequisite of another, where we consider a pair of
units to be in a gold-standard prerequisite relation if there
is a directed path between them in the graph. AUC is a
convenient metric for evaluating performance in this pre-
diction task, as the output of our scoring metric (Equation
2) is already scaled between 0 and 1. Note that the model
trained only on the PRML corpus was used for term-aspect
classification in this task. Figure 3 illustrates the results
for three different models, as a function of the prerequisite
depth, i.e. stratifying the classification results for a pair of
units by the maximum distance between them in the graph.
The three models evaluated are as follows:

• Model Prerequisite score is computed with Equation 2.

• Baseline 1 Prerequisite score is computed with Equation
2, but with all na

i , na
j and P (t· explained in ·) set to 1.

This baseline is equivalent to a ratio between the number
of overlapping terms between a pair of documents and the

number of terms in the prerequisite, i.e. |da∩db||da| .
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• Baseline 2 Prerequisite score is computed with Equation
2, but with P (t· explained in ·) set to 1.

Each baseline illustrates the effect of not including a com-
ponent of the scoring function in Equation 2. Our first
conclusion from the results in Figure 3 is that the output of
the Explain/Assume classifier provides an important signal in
predicting the prerequisite relationship between documents.
Furthermore, the relative frequency of the explained terms
in the prerequisite document provides an additional gain in
performance. This can be explained by Figure 1(b): the
performance of the Explain/Assume classifier is greater in
the higher term-frequency regime; discounting low-frequency
terms (that are also likely less important to the content) re-
duces the classification noise and boosts the performance at
the prerequisite prediction task. An additional observation
is that the performance of the pairwise prerequisite classifica-
tion improves for pairs of units that are closer in the graph,
i.e. with less units in between. This is easily explained:
units that are farther apart typically share less terminology,
making the estimates based on terminology overlap noisier.

It is also interesting to note that the simplest baseline that
considers only the ratio of overlapping terms between a pair
of documents to the total number of terms in the prerequisite
document does surprisingly well, especially well for pairs of
documents closer together. This can be explained as follows:
in a sequence of units like those in a textbook, units that
are prerequisites tend to be less advanced, i.e. have less
terminology, since less of it was introduced up to that point.
Thus, units that are prerequisites, at least in a textbook,
would be fairly predictable from the relative frequency of
overlapped terms alone.

4.2 Scaling to the web
We collect and release two web corpora of educational con-
tent in the areas of Machine Learning and Statistics. Both
corpora were collected using Bing Search API, by querying
for short permutations of terms collected from the index
of the Pattern Recognition and Machine Learning and Rice
University’s Online Statistics Textbook. The two corpora
contain 42,000 and 1,000 documents respectively – a mix-
ture of HTML and PDF files, pre-processed and converted
to plain text. The difference in size of the two corpora is
due to a smaller set of keywords used in the query set, and
used primarily to rapidly validate the proposed model for
path optimization. Consequently, because of a smaller term
vocabulary, the smaller corpus is significantly less noisy (less
irrelevant documents). The union of the terminology from
the index of both textbooks was used as the vocabulary in
processing each document. Additionally, terminology vari-
ations and abbreviations were consolidated using the link
data from Wikipedia, e.g. terms EM, E-M, Expectation-
Maximization, are all mapped to the same concept of EM in
the terminology extraction stage.

Following the extraction of terminology from each webpage,
each term is classified using the Explain/Assume classifier
trained on the Pattern Recognition and Machine Learning
textbook. We train this classifier in a fully supervised set-
ting using all of the annotated data. In the next several
sections, we present the analysis of the two web corpora and

demonstrate the effectiveness of the proposed approach to
connecting educational resources on the web.

4.3 Diversity of assumptions
The web is a unique setting, that unlike a traditional text-
book or a course, offers a multitude of diverse explanations of
the same concept. This diversity potentially enables the level
of personalization that is not possible in traditional resources.
We can analyze the diversity in the educational content on
the web by looking at a slice of the web resources that share
the same topic, but differ in their underlying assumptions
and explanations. Figure 4 illustrates two articles that are
both on the topic of Expectation Maximization. However,
the two articles differ significantly in their assumptions on
the background of the reader. Article 1 (left in Figure 4) is
a very basic introduction to the topic and does not assume
the knowledge of even the concept of maximum likelihood,
which under most traditional curricula is assumed to be the
prerequisite. Article 2 (right in Figure 4), however, assumes
the knowledge of many more concepts such as posterior prob-
ability, likelihood function and maximum likelihood. This
difference in the distribution of the underlying assumptions
is explained by the fact the Article 1 s a very basic intro-
duction to the topic, intended for an audience not in the
area of statistics or machine learning. Article 2, however,
is a significantly more thorough and a more technical in-
troduction to the concept of the Expectation Maximization
algorithm and thus assumes significantly more prerequisite
background in the areas of statistics and machine learning.
It’s important to note that this distinction between the two
documents cannot be easily made from their titles, or other
surface cues: both documents are approximately the same
length and their titles do not give away the level of technical
detail. Their text content, however, provides the necessary
cues to this information.

4.4 Fundamental prerequisites
Figure 5 illustrates the result of optimizing a learning path
over the web corpus of 1,000 documents for the target web-
page on the topic of “Maximum Likelihood Estimation”. Se-
quences were optimized using the ILP formulation described
in Section 3.2 using the GLPK Branch and Bound solver.
Red rectangles correspond to terms for which the predicted
label is assumed in the given document, and blue otherwise.
In addition to the term-coverage diagram, we also illustrate
the prerequisite dependencies extracted from the term cov-
erage data: a directed edge is drawn to a document from
the closest prerequisite in the sequence that covers at least
one assumed term in the document. In the example in Fig-
ure 5, the target web-page is a fairly technical article on
Maximum Likelihood Estimation that assumes the reader’s
understanding of the concepts such as the likelihood function
which is pivotal for understanding the concept of maximum
likelihood. As a consequence, the web-page that is placed
immediately before in the optimal sequence are slides which
consist of a more basic introduction to the maximum likeli-
hood. Furthermore, the original target article assumes the
reader’s familiarity with Generalized Linear Models (which is
in fact the previous section of the lecture notes of that series,
indicating it as a prerequisite). The resulting sequence also
contains an additional prerequisite on this topic. Finally, an
interesting observation is that while the target article is fairly
advanced in its assumptions about the reader’s knowledge of
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Figure 4: An example of two different web-pages about
the same topic: Expectation Maximization, together with
each page’s terminology and its classification into either the
Explained class (green) or the Assumed class (red). Observe
that the two pages, while about the same topic, are different
in what they assume about the reader. The article on the
left is a very basic introduction to this topic, while the article
on the right is written for experts.

probability, it actually goes into surprising depth in explain-
ing the concept of a derivative and maximizing a function
using derivatives from scratch, which is another important
prerequisite to the concept of maximum likelihood. This is
highly unconventional in traditional textbook and course
curricula. This again underlines the advantage of working
with the assumptions at document-level, allowing to leverage
the diversity in explanations to find “shortcuts” through the
learning paths.

Figure 6 provides additional insightful examples of the gen-
erated sequences extracted from the term-coverage data of
each sequence. Figure 6(d) is another example where the
target document is a fairly advanced introduction to the topic
(Expectation Maximization), which is preceded by a more
gentle introduction to the same topic, as well as an addi-
tional prerequisite (Maximum Likelihood) which is a common
prerequisite for this topic. Note, however, that while Maxi-
mum Likelihood is traditionally considered as a prerequisite
for learning about Expectation Maximization, it is not the
case for the more basic introduction to this topic (What is
the Expectation Maximization algorithm), as that particular
introduction aims to bring a very high-level understanding
of the topic without burdening the reader with additional
prerequisite requirements. Therefore, in that particular se-
quence, the reader is first given a gentle introduction to the
topic, then the necessary prerequisite (Maximum Likelihood)
for understanding the more advanced introduction.

4.4.1 Error analysis
The extracted sequences are not without errors. These errors
stem from several potential sources, as a fairly involved
pipeline lies between the raw document and the resulting
optimal sequence, providing an opportunity for errors to

propagate through the different stages. We break down these
errors by their source to give a better understanding of how
these problems need to be addressed in future work:

Terminology extraction: The greatest source of errors
stems from errors in terminology extraction. There are two
types of errors involved in terminology extraction: false
negatives (missing terms) and false positives (term sense
disambiguation errors). False negatives are more difficult to
detect and often result in missing prerequisites; missing terms
are especially difficult when relying on a finite vocabulary.

Explain/Assume classification: The second greatest source
of errors are the mistakes made by the aspect classifier. Clas-
sifying an explained term as an assumed term creates un-
necessary prerequisites, while the reverse results in missing
potentially important prerequisites.

Path optimization: because we solve the optimization
problem exactly (i.e. find a global optimum), there are no er-
rors stemming from the optimization itself (this will become
a potential source of errors, however, when an approximation
scheme, e.g. LP rounding, is used to obtain an approximate
solution). However, the formulation of the optimization prob-
lem can be improved so as to introduce robustness to the
errors in the earlier stages of the pipeline. As path opti-
mization is the final stage that produces the final output, its
sensitivity to the errors in terminology extraction and term
aspect classification are directly reflected in the resulting
output. Introducing robustness to these errors directly in
the formulation of the optimization problem is potentially
the most effective way to address the issues in the earlier
stages of the pipeline. One issue with the current formu-
lation is its inability to incorporate the relative frequency
of the term into the optimization objective: ideally terms
that appear less frequently in a document should have a
lesser precedence for coverage than those that appear more
frequently (Assumption 2 in the Introduction). The exam-
ple in Figure 5 demonstrates the lack of robustness in the
third document, where the appearance of the term integral
creates an additional sequence of documents that cover this
concept. From our earlier analysis is Section 3.1, we have
shown that the errors in the Explain/Assume classifier are
directly related to the relative frequency of the terms, and
thus a way to incorporate these frequencies as weights into
the optimization would potentially be the most effective way
to deal with this noise.

5. CONCLUSION
We developed what we believe is the first end-to-end ap-
proach towards automatic curriculum extraction from the
web, relying on the following pipeline: 1) extracting what
is assumed vs. what is explained in a single document and
then 2) connecting these documents into a sequence ensuring
that the progression builds up the knowledge of the learner
gradually towards their goal. We developed algorithms that
addressed both of these components: 1) a semi-supervised
approach for learning a term aspect classifier from a very
small set of annotated examples and 2) an optimization prob-
lem for learning path recommendation based on the user’s
learning goals. To the best of our knowledge, we for the
first time demonstrate and leverage the most unique charac-
teristic of the web in the domain of learning: diversity, i.e.
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Figure 6: Additional examples of optimal paths generated from the 1,000-document web-page corpus for a select set of target
web-pages. See text for details.

presence of content that explains the same concepts but in
many different ways and from many different angles. This
property of the web opens the doors to personalizing learning
sequences that leverage the differences in explanations to find
the most effective paths and shortcuts through the Internet.
Finally, we outlined a set of important challenges that need
to be addressed in order to make this task a practical reality
at web-scale. We hope that this work, in addition to the
datasets that we release, will serve to inspire interest from

the community in what we believe is a challenging and an
important task.
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