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ABSTRACT
Graph data such as argument diagrams has become increas-
ingly common in EDM. Augmented Graph Grammars are a
robust rule formalism for graphs. Prior research has shown
that hand-authored graph grammars can be used to auto-
matically grade student-produced argument diagrams. But
hand-authored rules can be time consuming and expensive
to produce, and they may not generalize well to novel con-
texts. We applied Evolutionary Computation to automati-
cally induce empirically-valid graph grammars for argument
diagrams that can be used for automatic grading or provide
the basis for hints. Our results show that our approach can
generate more relevant rules than experts or other state of
the art algorithms, and that these evolved rules outperform
the alternatives.
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1. INTRODUCTION
Intelligent tutoring systems and computer-supported collab-
oration platforms have grown increasingly popular in recent
years. As they have grown in popularity they have also been
applied in increasingly complex domains such as argumen-
tation [14], legal reasoning [22] and writing [6]. MOOCs and
other online educational platforms have also grown in pop-
ularity yielding large repositories of user-system interaction
logs [10], and classical tutors and educational games have
grown more common in classrooms yielding large reposito-
ries of student data [13]. Much of this data can be repre-
sented as rich graph structures such as argument diagrams
[17] or interaction networks [7].

Despite the increasing prevalence of graph data, compara-
tively little work has been done on automatically evaluating
student-produced graphs or graph logs. In prior work we
demonstrated that hand-authored Graph Grammars can be

used as features to automatically grade student-produced
argument diagrams [16, 17]. But hand-authoring complex
rules is time consuming, expensive, and does not generalize
well to novel contexts. Other authors have developed an-
alytical tools tuned to path analysis [24, 3], however these
are tailored to a specific task. Other more general purpose
algorithms (e.g. [30, 5]) have limitations and are unsuited to
the induction of generalized rules that use negation or other
complex elements. Therefore it has not yet been shown that
it is possible to automatically induce complex, empirically-
valid, rules for rich graph structures that are comparable to
rules produced by domain experts.

In this paper we will describe our work on the automatic in-
duction of Augmented Graph Grammars for student-produced
argument diagrams. Our goal in this work is to explore ways
to automatically induce empirically-valid graph rules that
can be used as features for automatic grading and which
can provide the basis for hints. While our previous work
was focused on inducing positive rules in [33] and in [19],
in this work we applied Evolutionary Computation (EC) to
induce both positive and negative rules for student graphs
that incorporate more complex elements such as negation
and generalized types. Additionally, in our previous work we
compared the induced rules with a small number of expert
rules while in this work, we will compare our induced rules
to a full set of complex rules authored by domain experts
and rules produced by other the state of the art induction
algorithms.

2. BACKGROUND
2.1 Argument Diagrams
Argument diagrams are semi-formal graphical representa-
tions that reify key features of arguments such as hypothesis
statements, claims, and citations as nodes and the support-
ing, opposing, and clarification relationships between them
as arcs. Argument diagrams directly connect the syntax
of the argument representation to the underlying semantics
thus making it clear and computationally tractable. Argu-
ment diagrams can serve to make the often implicit structure
of an argument salient to students while also constraining
them to make relevant contributions [29]. Prior researchers
have shown that argument diagrams can be used to scaffold
students’ understanding of existing arguments [12, 8]; can
frame collaborative learning [26]; and can help to support
scientific reasoning [29].
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Figure 1: A student-produced Argument Diagram.

A sample student-produced diagram is shown in Figure 1.
The diagram includes a central research claim node, which
has a single text field indicating the content of the research
claim. A set of citation nodes are connected to the claim
node via supporting, opposing and undefined arcs colored
green, red, and blue respectively. Each citation contains two
fields: one for the citation information, and the other for a
summary of the work; each arc has a single text field explain-
ing what purpose the relationship serves. At the bottom of
the diagram, there is a single isolated hypothesis node that
contains two text fields, one for a conditional or IF field,
and the other for a consequence THEN field.

2.2 Augmented Graph Grammars
Graph Grammars are a graph-based representation for rules
about graphs that are analogous to string grammars. Graph
grammar rules are composed of standard graph elements
such as nodes and directed or undirected arcs. As with string
grammars they are defined by a finite alphabet of basic or
ground node and arc types as well as a set of production
rules for variable elements. A single graph rule defines a
space or class of matching graphs. Graph grammars can be
used to generate graphs from an initial seed via recursive
rule applications where each variable element expands to a
larger subgraph. They can also be used to match graphs
in a layered fashion by first mapping all ground elements to
individual nodes or arcs and then recursively matching the
sub-elements. Graph grammars have been used for analysis
and graph transformation in domains such as visual pro-
gramming [9] and mechanism analysis [27].

Augmented Graph Grammars are an extension of traditional
graph grammars that are allow us to match rich graphs with
complex node and arc types that contain sub-elements, text,
and other variable structures [15]. Augmented Graph Gram-
mars also support: negated elements which select for the
nonexistence of subgraphs; generalized node and arc types

t

a b

O S

¬ c

(ParedWcomp)





t.Type = “claim′′or“hypothesis′′

a.Type = “citation′′

b.Type = “citation′′

c.Type = “comparison′′





Figure 2: A simple augmented graph grammar rule
that detects uncompared counterarguments.

which match multiple items; complex element constraints
which allow us to compare individual elements; complex
graph expressions which allow for universal and existential
quantification; and the incorporation of NLP rules or other
external features. As such they are an ideal rule represen-
tation for the analysis of argument diagrams, user-system
interaction logs, and other educational data.

A sample rule is shown in Figure 2. This rule is designed
to identify cases of uncompared counterarguments, that is:
there is an opposing arc O from the citation a to the node t
and also a supporting arc S from the citation b to the node
t, however, there exists no comparison arc between the two
citations a and b. This is designated by the negated arc ¬c.
Here node t is either a claim or hypothesis. The variable
elements O and S are defined by recursive production rules
which are not shown. Those rules define supporting paths
as chains of supporting arcs and opposing paths as chains of
supporting arcs with any odd numbered (including single)
chain of opposing arcs.
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This example rule was designed by a domain expert in ar-
gumentation. It is designed to identify cases where a stu-
dent has presented conflicting background information but
has made no attempt at resolution. This is a critical struc-
tural flaw that is commonly found in student-produced ar-
guments. Students at all levels frequently absorb the lesson
that they must show conflicting citations but routinely fail to
explain those citations or to resolve the differences in a way
that clarifies their own argument. As we have shown pre-
viously such expert-designed rules can be empirically-valid
and predictive of student performance [16]. However manu-
ally designing rules can be both costly and inefficient.

Thus our goal is to automatically induce meaningful rules,
rules that highlight structural flaws or argumentation errors;
rules that generalize beyond basic types; and rules that in-
clude negated elements(detecting non-existing cases).

2.3 Graph Grammar Induction
Current grammar induction algorithms fall into one of two
broad categories: frequent subgraph matching, or graph
compression. Frequent subgraph algorithms include Yan
and Han’s gSpan algorithm [32], Inkokuchi’s AGM [1], and
the FSG algorithm [20]. These algorithms carry out con-
trolled graph walks to identify common structures. They
are quite effective, particularly in grounded domains such
as cheminformatics where the graphs, in this case molecu-
lar models, have low degree and exact matches are required.
However the algorithms do not support disjoint subgraphs,
negation, or generalized elements. While we can, in theory,
insert explicit negation arcs that would expand the size of
the graphs exponentially and thus make any search process
intractable. Similarly, while we could replace individual el-
ements with generalized forms that would simply force the
system to use a smaller range of types and would not al-
low for context-sensitive generalization of elements. These
algorithms are also ill-suited for identifying errors as the
search process is strictly unsupervised and finds frequently-
occurring structures without reference to external weights.

Graph compression algorithms such as Subdue take a differ-
ent approach to the problem. Subdue is a recursive beam-
search algorithm that generates a hierarchical grammar by
recursive collapse based upon the MDL principle [5]. Sub-
due operates by iteratively identifying the most frequently
occurring arc in the graph and then reducing it to a new
variable node. Unlike gSpan the resulting grammar is hier-
archical and the beam search process can be used for super-
vised learning given a suitable set of positive and negative
examples [11]. The candidate graphs are ranked according
to a normalized error metric:

(PosGraphsNotCovered+NegGraphsCovered)

TotalExamples

While Subdue is more flexible than the frequentist approaches
it too does not support generalized elements, negation, or
disjoint subgraphs.

2.4 Related Work
We have previously shown that domain experts can hand au-
thor augmented graph grammars that are empirically-valid
and which can be used as features in a regression model
to automatically grade student-produced diagrams [16, 17].

In more recent experiments we have also shown that it was
possible to apply EC to induce graph grammars that are
positively correlated with argument grades and that we can
apply χ2-filtering to select unique rules from the large space
of candidates [19]. We were also able to show that the in-
duced rules outperformed rules generated by both Subdue
and gSpan and outperformed similar expert rules that fit
into the limited rule space. The rules produced in that study,
however, were limited in scope. While they supported dis-
joint graphs, they did not identify errors, and did not sup-
port generalized elements or negation. In this work we will
build upon these results to include generalization and nega-
tion, and we will compare the resulting rules to a full set of
77 hand-coded expert rules.

3. METHODS
We conducted two experiments on the induction of Aug-
mented Graph Grammars using EC. First we applied EC to
induce graph rules composed of static node and arc types
that were both positively and negatively correlated with the
overall argument quality. That is, we sought to identify
ground rules that either highlighted good features of argu-
ments (positive) or matched structural flaws(negative).
We then compared them to expert-produced rules and to
rules induced by the Subdue and gSpan algorithms. In our
second experiment we applied EC to induce rules that also
incorporated generalized nodes as well as negated arcs (de-
tecting non-existing cases). We describe them below.

Evolutionary Computation is a general beam-search algo-
rithm based upon Natural Selection. The EC algorithm be-
gins with a population of candidate solutions in a shared
solution representation. This population may be randomly
generated or supplied by the user. The individual solutions
are then ranked by means of a fitness function which may
be an absolute performance metric or a form of tournament
selection. The next generation of the population is then
formed by a combination of fitness proportional selection,
crossover or recombination of candidate solutions, random
mutation of solutions, and elitist cloning. EC algorithms
proceed iteratively until a given fitness threshold is reached
or a fixed number of generations has passed. EC has been
used in a number of applications such as tuning Neural Net-
works [21], and evolving computer code [2].

EC has a number of advantages over other special-purpose
induction algorithms. Firstly, it is very flexible, the behav-
ior of the system is determined by the user-specified solution
representation and the genetic operators. This makes it easy
to tune the behavior of the system to include new types of
elements or to test out alternative inductive biases. Sec-
ondly, EC is very robust, the basic algorithm can be applied
in a wide range of domains and it can be used in areas where
the contours of the search space is unknown. There are a
number of widely-available EC systems. For the purposes
of this research we used pyEC an open-source EC engine
[18] coupled with AGG an engine for graph matching using
Augmented Graph Grammars [15].

The rules induced in Experiment I consisted entirely of ground
nodes and arcs while the rules induced in Experiment II in-
cluded generalized node types and negated comparisons as
shown in Figure 2. For both experiments we assessed the
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Figure 3: Canonical matrices for crossover.

fitness of the rules using the same nonparametric frequency
correlation that we discussed in Subsection 2.4 with the tar-
get values being maximized or minimized depending upon
the experimental goals.

Mutation in the EC algorithm is a general-purpose opera-
tion that is designed to promote exploration by introducing
heterogeneity into the population. For this set of experi-
ments we applied basic point mutation that added, deleted,
or modified individual graph elements (see [33, 19]). Here
mutation occurred with a small constant frequency when
individuals were added to each population.

For these experiments we employed stable matrix crossover
based upon the work of Stone, Pillmore, & Cyre [28] illus-
trated in in Figure 3. In this form of crossover we select
a pair of parent graphs using fitness-proportional selection
and represent them as adjacency matrices (P0). The nodes
are represented by letters on the rows and columns, while
the arcs are represented by the numbered cells within the
table. Empty cells indicate the absence of an arc. The order
of elements in the matrices is canonical and is determined
by the order in which the nodes were added to the rule.

On crossover we align the nodes and arcs in the parent ma-
trices and then randomly shuffle the nodes and arcs between
them based upon a series of coin tosses to produce the two
children (C0). Any constraints that are attached to an indi-
vidual element are copied with it. Matrix crossover always
produces two children that match the size of their parents
with all excess elements being copied directly to the larger
of the two offspring. Table 1 shows this crossover process at
the graph level. By design crossover is an adaptive process
that is designed to promote homogeneity and to preserve
good building blocks or partial solutions called introns [2].

4. DATA
Our experimental analysis was based upon two previously-
collected datasets. The first is a set of student-produced
argument diagrams for empirical research reports. The sec-
ond is a repository of hand-authored rules defined by domain
experts. Both datasets were collected as part of our prior
work on the diagnosticity of argument diagrams [16, 17].

A

B C

D

1

3

4

5(P0)

E

F G

7(P1)

E

B G

D

1

3

5(C0)

A

F C4

7(C1)

Table 1: Graphical representation for crossover.

4.1 Argument Data
Our repository of argument diagrams was collected at the
University of Pittsburgh in a course on Psychological Re-
search Methods. Students in the course learn about design-
ing, conducting, and reporting on empirical research. The
course has a significant writing component. Students com-
plete two research projects over the course of the semester
both of which result in a written report modeled on a confer-
ence publication. They are allowed to work on the projects
individually or as a team of two. For the purposes of our
study, the students were required to plan their written argu-
ments graphically before writing them. The diagrams were
authored using LASAD, an online tool for argument dia-
gramming and collaboration [14]. The diagramming ontol-
ogy contained four types of nodes: citation, claim, current
study and hypothesis; and four types of arcs: supporting,
opposing, comparison, and undefined. Currstudy nodes are
used to represent factual information about the study such
as the target population. Undefined arcs represent cases
where nodes provide clarification or concept definitions.

After removing dropouts and one diagram containing a sin-
gle node, we collected a set of 104 paired diagrams and es-
says from the course. These diagrams and essays were in-
dependently graded by an experienced TA according to a
parallel rubric with 14 questions that were focused on the
argument’s quality, coherence, use of citations, and other
criteria. In this work we will focus on the gestalt grades
for overall graph and essay quality. The gestalt grades were
assigned on an 11 point scale from -5 (worst quality) to +5
(complete, coherent, and persuasive) at 1

2
point intervals.

This same dataset was used in our prior work [19].

4.2 Expert rules
In parallel with data collection, we also collaborated with a
group of domain experts to define a set of 77 a-priori argu-
ment rules. These rules were designed to identify individ-
ual features of argument diagrams or sub-graphs that were
consistent with high quality argumentation or which repre-
sented structural flaws. Thirty-four of these rules focused on
basic features such as the size or order of the diagram, the
average number of parents and children, or the presence of
empty elements. The remainder were complex rules that de-
scribed the relationship between elements or matched larger
graph structures such as the uncompared counterarguments
shown in Figure 2. These rules included features that dealt
with the text inside the elements, appropriate grounding of
hypotheses or claims in citations, connectedness of the dia-
gram, and the appropriate use of individual elements.
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In prior work we evaluated whether or not these rules were
empirically-valid. That is whether or not they correlated
with the independently-assigned diagram grades and whether
or not they could be used to predict the paired essay grades
[16, 17]. In that work we assessed the validity of each indi-
vidual rule by testing the correlation between the observed
rule frequency on each diagram and the final graph or essay
grade. The strength of this correlation was assessed using
Spearman’s ρ a nonparametric correlation measure [31]. We
found that most, but not all of the rules were strongly cor-
related with the grades. We also found that some of the cor-
relations ran counter to the experts’ a-priori expectations.

5. EXPERIMENTS
In this work we induced sets of baseline rules using the Sub-
due and gSpan algorithms. We also conducted two sets
of evolutionary experiments designated EC-Base and EC-
General. The rules from each of these experiments were
compared to assess their overall performance.

Subdue: For these experiments we used Subdue V5 [4] in
supervised learning mode to induce rules that were positively
and negatively correlated with the overall graph and essay
grades. In order to induce positively correlated rules we
partitioned the graphs into positive and negative examples
based upon their graph or paired essay score. All graphs
with a grade of 0 or more were treated as positive exam-
ples, and all graphs with a negative grade were treated as
negative examples. We then ran the system to extract the
12 best rules. In order to induce negatively-correlated rules
we reversed the assignment with rules that were graded less
than or equal to 0 being treated as positive examples and
all others being treated as negative. We experimented with
more restrictive thresholds > 0 and < 0 and found the per-
formance did not improve.

gSpan: In this experiment we used gSpan v6 [34]. The soft-
ware runs in strictly unsupervised mode where it returns all
subgraphs whose frequency exceeds a user-specified thresh-
old. In this case we ran the software over our dataset and
collected all rules that exceeded a 1% threshold and then
ranked the candidate rules based upon their ρ value to iden-
tify the most positive and negative examples.

EC-Base: In this experiment, we conducted a series of
six evolutionary runs that were tuned to induce negatively-
correlated rules. Three of those runs used the graph grade
as a target and three used the essay grade. In each case
we used a fixed population size of 100 individuals and ran
the algorithm for 1,000 generations. In each generation, we
cloned the top 10 individuals directly into the next genera-
tion under elitism. We selected 10 individuals for point mu-
tation and the remaining 80 individuals for crossover, then
we copied the results over to the next generation. Fitness
values were assigned using a fixed measure of −ρ for each
individual rule. The initial populations were composed of
randomly-generated individuals containing 3 - 10 elements
each. The nodes and arcs were all ground elements and
were selected from a predefined ontology of basic types that
matched the types used in the argument diagrams.

Unlike standard EC we did not rely solely on the final popu-
lation of rules for our results. EC populations grow increas-

ingly homogeneous over time making the final population
virtual clones. In this case our goal was to induce a range of
potential rules. We therefore collected candidate rules from
each generation of the run by selecting every rule with a
ρ ≤ −0.1. The full set was used in our analysis.

EC-General: Here we conducted a series of twelve evolu-
tionary runs. Six of the experiments were tailored to induce
positively correlated rules while the rest were tailored to in-
duce negatively-correlated ones. As with EC-Base the popu-
lation size was 100, the algorithm ran for 1,000 generations,
and we used ±ρ as the basic fitness metric and the muta-
tion and crossover rate were the same as before. Unlike the
EC-Base study these rules also included negated comparison
arcs as well as two generalized node types: nodes that are ci-
tations or claims (CitOrClaim) and nodes that are hypothe-
ses or claims (HypOrClaim). These elements were chosen
for addition because they were used by the domain experts
when crafting their rules. As before we collected candidate
rules from the positive and negative runs with thresholds
of (ρ ≥ 0.18) and (ρ ≤ −0.1) respectively. These thresholds
were chosen based upon a series of exploratory runs in which
we found that the ρ values became statistically significant
after exceeding ±0.18.

6. RESULTS & ANALYSIS
Table 2 shows the number of positively and negatively corre-
lated rules for the Graph grades (columns 3 and 4) and the
Essay grades (columns 5 and 6) that were collected during
our experiments. Total designates the total number of rules
produced by each method or in the expert set, while Thresh-
old indicates the number for which ρ ≥ 0.18 or ρ ≤ −0.18
in the positive and negative cases respectively.

As Table 2 shows the EC approaches generated the largest
number of candidate rules in both the positive and negative
cases. Of the expert rules, most of them were positively
correlated with performance but less than half of them ex-
ceeded the cutoff thresholds. Indeed only two of the expert
rules did so for the essay grades. Both Subdue and gSpan
identified positively and negatively-correlated rules but only
a few of the positive rules exceeded the threshold. None of
the negative rules did so.

Next, we will describe the rules induced during our EC-Base

Table 2: Number of Positive and Negative Rules

Methods
Graph Essay

Pos Neg Pos Neg

Subdue
Total 12 2 8 10
Threshold 11 0 3 0

gSpan
Total 34 5 27 12
Threshold 12 0 6 0

Expert
Total 56 21 46 32
Threshold 25 6 0 2

EC-B
Total 82 256 172 160
Threshold 82 51 172 22

EC-G
Total 394 392 652 518
Threshold 394 193 652 30

? Threshold: number of rules with ρ ≥ 0.18 or ρ ≤ −0.18
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Table 3: Spearman correlation values for the best 3 rules in each experiment.

Positive-correlated Negative-correlated

Graph Essay Graph Essay
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Subdue .276 .270 .253 .281 .215 .181 -.050 -.022 NA -.173 -.167 -.164
gSpan .352 .314 .272 .300 .281 .261 -.137 -.063 -.05 -.123 -.102 -.075
Expert .427* .338 .329 .180 .138 .137 -.238 -.236 -.202 -.256 -.218 -.148
EC-B .371 .369 .362 .334 .334 .319 -.272 -.272 -.271* -.233 -.233 -.233

EC-G .396 .391* .385* .357* .357* .356* -.273* -.272* -.270 -.269* -.269* -.269*

? The best of results for Experiment I is in bold;
? ‘∗’ is for best of results across both Experiment I and II.

experiment and we will discuss how they compare to the
expert rules and the rules induced by Subdue and gSpan. We
will then discuss the EC-General rules and compare them to
our earlier results.

6.1 Experiment I: EC-Base
Rows 1-4 in Table 3 list ρ values for the three best rules
from the four methods. The bold values indicate the best
performing rule among the sets. As the table illustrates EC-
B outperformed both Subdue and gSpan across the board.
And it outperformed the expert rules in most cases. The
lone exception being the best positive case for the graph
grades and the best negative case for the essay grades.

The best positively-correlated expert rule for the graph grades
matched arcs with empty text fields. The best negatively-
correlated expert rule with the essay grade matched graphs
with no hypothesis nodes. Both of these rules relied on com-
plex grammar features, textual rules and expressions, that
were outside the scope of our current experiments.

k0

k1

h

c0 c1

s0 s1(B-G-P)





k ∗ .T ype = “claim′′

h.Type = “hypothesis′′

c ∗ .T ype = “citation′′

s ∗ .T ype = “supporting′′





h

c0 c1

s o(B-E-P)





h.Type = “hypothesis′′

c ∗ .T ype = “citation′′

s.Type = “supporting′′

o.Type = “opposeing′′





Figure 4: EC-Base: Strongest Positively-correlated
Rules Induced by EC.

Figures 4 and 5 illustrate the best positive and negative rules
induced by the EC-Base runs. In Figure 4 graph rule B-G-P
represents a rule that has 5-nodes, two of which are cita-
tions (c0 & c1) that support a shared claim node (k0). The
remaining nodes are a single claim (k1) and a hypothesis
(h) which may or may not be connected to the rest of the
structure. This reflects a graph where the authors identi-
fied at least two related citations that can be synthesized
to support a single claim and where they included both a
hypothesis and another claim. This is one of the structures

k0 k1

k2 k3

cs0 cs1

(B-G-N)

{
k ∗ .T ype = “claim”

cs ∗ .T ype = “currstudy”

}

k

c

u(B-E-N)





k.Type = “claim′′

c.Type = “citation′′

u.Type = “unspecified′′





Figure 5: EC-Base: Stronges Negatively-correlated
Rules Induced by EC.

that students have been encouraged to make in their argu-
ments as it shows an ability to synthesize citations to form
a complex claim.

Interestingly, the best positive essay rule (B-E-P) is very
closely related to the expert rule shown in Figure 2. Here it
selects for the presence of a hypothesis node (h) that is di-
rectly connected to two citations (c0 & c1). Here c0 directly
supports h while c1 directly opposes it. Given that the al-
gorithm could not induce variable arcs it is not surprising
that it does not include paths. The absence of a comparison
arc, however, is interesting. As we noted above the students
were instructed to include one. The fact that this rule per-
forms so well despite lacking one suggests that the students
did not regularly do so.

Figure 5 shows the best negative rules. As stated above, we
expect that these rules will flag errors or persistent struc-
tural flaws. B-G-N consists of 4 claim nodes (k0 − k3) and
two currstudy nodes (cs0 & cs1) all of which may or may
not be connected to one-another. While this rule has a high
correlation with the grade, its semantic meaning is unclear.
It is possible that it is detecting is overly large graphs that
lack sufficient focus. In future work we will evaluate the
matching graphs with domain experts to assess this.

B-E-N is easier to interpret. In this case the rule contains a
single claim node (k) which is connected to a citation node
(c) via an undefined arc (u). This is a clear violation of the
semantic guidance that students were given. The students
in the experiment were instructed to use unspecified arcs
for definitions or clarifications only. Some students instead
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used them when they were unsure about the strength of their
evidence or did not understand the citation. The students
were also instructed to use citations to add information to
their claims, not the other way around. For a student to
use an unspecified arc in this way suggests that they were
unsure about the structure or content of the argument.

6.2 Experiment II: EC-General
The last row of Table 3 shows the performance of the EC-
General rules. These rules were compared against all of the
rules in Experiment 1. The best performing rules across
both experiments are in bold and marked *. As Table 3
shows EC-General produced better performing rules than
EC-Base. All but one of the ρ values on the final row exceeds
the corresponding value on the fourth, and the one that does
not do so falls behind by only 0.001. EC-General outper-
formed the best negative expert rule for the essay grades
(-0.269 vs. -0.256), despite the fact that the expert rule
relied on complex expressions. The best expert rule for the
graph grade still outperforms EC-General. Thus, our results
for EC are better than all other methods save for one expert
rule that relies on novel textual features.

Figure 6 shows the best positively-correlated rules for the
graph and essay grades. G-G-P matches cases where a sup-
porting arc has been drawn from a citation or claim to a
claim or hypothesis. In short, it matches correct uses of
supporting arcs. This is a good feature that indicates well-
supported arguments. G-E-P, by contrast, is complex and
selects for a graph with three claim nodes (k0−k2) and two
uncompared citations (c0 & c1), where c1 directly supports
a hypothesis or claim (hk) which in turn has an unspecified
arc to a citation or claim node (ck). The semantic meaning
of this rule is unclear and will require deeper analysis.

Figure 7 shows the strongest negatively-correlated rules. As
with G-E-P, G-G-N, is somewhat hard to interpret. It se-
lects for a number of disjoint nodes, and for the presence
of a currstudy node (cs0) as well as a claim (k3) which are
not connected via a comparison arc. Further analysis is re-
quired to determine why this rule holds. G-E-N, by contrast
represents a clear variation on B-E-N. Here we select for a
hypothesis or claim node (hk) that has an undefined arc to
a citation along with a separate hypothesis node that may
or may not be connected. This rule is interesting because
in part it will select a superset of the graphs matched by
B-E-N but the presence of the extra hypothesis node will
restrict that somewhat. This suggests that this rule may be
relatively specific to our dataset. We plan to examine the
matching graphs to assess its generality.

7. CONCLUSIONS
In this paper, we reported our work on the automatic induc-
tion of Augmented Graph Grammars for student-produced
argument diagrams through EC. In prior work we demon-
strated that hand-authored expert rules can be empirically-
valid and that those valid rules can be used for automatic
grading. We have now shown that it is possible to auto-
matically induce complex rules for argument diagrams that
match both positive and negative examples and which can
therefore be used as features for automatic grading. We have
also shown that the induced rules outperform all but one
of the expert rules and the rules induced by other general-
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purpose grammar induction algorithms. The strongest ex-
pert rule was outside the scope of this experiment.

In future work we plan to work with domain experts to eval-
uate these rules. Our goal will be to determine whether the
rules are semantically valid, and whether or not they can
serve as the basis for automatic hints. We will also assess
whether or not the rules can be used for data-driven grading
by using them as features in a regression model. And finally
we will expand the scope of our EC induction to include the
automatic induction of hierarchical rules with expressions
and complex element constraints.
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