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ABSTRACT
The Cognitive Tutor Algebra I (CTAI) curriculum, which
includes both textbook and online components, has been
shown to boost student learning by about 0.2 standard de-
viations in a randomized effectiveness trial. Students who
were assigned to the experimental condition varied substan-
tially in how, and how much, the used the online component
of CTAI, but original analyses of the experimental data fo-
cused on estimating average effects, and did not examine
whether the CTAI treatment effect varied by the amount
of style of usage. This study leverages log data from the
experiment to present a more nuanced analysis. It uses the
framework of Principal Stratification, which estimates the
varying CTAI treatment effect as a function of “potential”
usage—either how students used the program, or how they
would have used it had they been assigned to the treatment
condition. With experimental data, Principal Stratification
does not require that we assume that all relevant variables
have been measured. With this framework, we find that stu-
dents who receive a medium amount of assistance from the
software (in the form of hints and error feedback) experience
the largest effects, with lower effects for students who receive
a lot or a little; and evidence that students who do not follow
the curriculum order experience smaller treatment effects.

Keywords
Causal Mechanisms, Principal Stratification, Intelligent Tu-
tors, Bayesian Hierarchical Models

1. INTRODUCTION
Intelligent tutors—computer programs designed to teach—
claim to improve student achievement via a number of mech-
anisms, including a reliance on cognitive modeling, instant
feedback, and individualized instruction. As the demand for
intelligent tutors grows, so does the demand for evidence of
their effectiveness, and the educational research community
has kept apace, with a number of randomized field trials
[e.g. 5, 9, 14]. Since intelligent tutors are computerized, it

is relatively easy for experimenters to collect student log
data, alongside traditional evaluation data. This paper will
provide a template for how to evaluate the log data from an
intelligent tutor experiment, to help elucidate the intelligent
tutors’ mechanisms and when and for whom they work.

A recent randomized study of Carnegie Learning’s Cognitive
Tutor Algebra I (CTAI) curriculum, under real-life condi-
tions, was reported in [8]. In the second year of the experi-
ment, in high school classrooms, the study found, that CTAI
boosts student learning by about 0.2 standard deviation, on
average. However, in the first year of the experiment CTAI’s
effect was close to nil. Surely one explanation for this het-
erogeneity is that students and teachers used the curriculum
differently in the two years—but how? What aspects of stu-
dent usage predict a treatment effect?

The effectiveness trial produced extensive student usage data,
as the computer program logged students’ activity. In this
paper, we use this data—in particular, usage data from the
2nd-year high school sample that apparently experienced a
substantial CTAI effect—to explore the relationship between
student usage and causal effects. In future work, we will at-
tempt to use these findings to explain the difference between
the two years of the experiment.

A preliminary study, [17], argued that the best causal model
for the usage data relies on the “principal stratification”
framework [2, 7], under which students who used the CTAI
software in a particular way are compared to control stu-
dents who would have used it in the same way, had they
been assigned to treatment. This study is the first full study
that last year’s preliminary study promised. It provides two
sets of results exploring different aspects of CTAI’s mech-
anisms: an analysis of assistance, which is calculated from
the hints that students request and the errors they make,
and an analysis of the the order at which students work on
CTAI’s sections. The paper also includes a more detailed
discussion of the models, and a discussion of some issues
with the results in [17].

2. DEFINING THE QUESTION: HOW DOES
POTENTIAL USAGE MODERATE THE
CTAI EFFECT?

As in [17], in this paper we model student usage under
the principal stratification (PS) framework, a generaliza-
tion of the Neyman-Rubin Causal Model [15] of potential
outcomes. If Z is a binary treatment assignment, and Y
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is an outcome, each subject has two potential outcomes:
Y (Z = 1) and Y (Z = 0), the outcome she would present
under the treatment condition, and under the control con-
dition, respectively. Each of these is defined, though un-
observed, prior to treatment assignment Z. After subjects
have been assigned to treatment, exactly one of the potential
outcomes is observable for each subject: for treatment sub-
jects, the observed Y = Y (Z = 1), and for control subjects,
Y = Y (Z = 0).

[2] generalized the potential outcomes framework, introduc-
ing the concept of principal strata. A principal stratum is a
grouping of subjects based on potential values of intermedi-
ate outcomes. For example, if we call students’ usage values
U , each student has usage values U(Z = 1) and U(Z =
0)—the usage they would exhibit under the treatment and
control conditions, respectively. In the CTAI experiment,
U(Z = 0) = 0 for all subjects, since no control subjects had
access to the cognitive tutor. Say we model usage as a cat-
egorical value for K categories, U = 1, ...,K. Then there
are k principal strata: {U(Z = 1) = k, U(Z = 0) = 0} for
k = 1, ...,K. In this framework, principal stratum mem-
bership is observed for students in the treatment group—we
observe their usage once they are assigned to treatment, and
we know from the experimental design that they would not
have used the tutor had they been assigned to control. The
potential usage for students in the control group, however,
is unobserved, and must be estimated; the following section
will discuss this process in more detail.

For each stratum, we can define a “principal effect”: the av-
erage treatment effect τk = E[Y (Z = 1)− Y (Z = 0)|U(Z =
1) = k, U(Z = 0) = 0] for subjects in principal stratum k.
Although unobserved, these strata are defined prior to treat-
ment assignment—if assigned to treatment, what would a
student’s usage be? That is, observed usage U is an interme-
diate outcome, or a mediator, but potential usage U(Z = 0)
and U(Z = 1) is a pre-treatment covariate, or a moder-
ator. The principal effects are, then, subgroup effects, for
various levels of potential usage. Differences between princi-
pal effects are differences in the effect of CTAI for students
who use (or would use) CTAI differently. To put it more
precisely, consider the difference τj − τk. This is the dif-
ference in the effect of CTAI between the group of subjects
who, if given the opportunity, would exhibit usage in the
amount of j or the amount of k. While the effect estimates
τj and τk are themselves causal (due to randomization) the
difference between them could be due to the effect of usage,
or to pre-treatment differences between students in the two
groups. In other words, since usage values were not assigned
randomly, the difference in CTAI effect between two usage
principal strata are not necessarily causal. Still, estimating
principal effects, and their differences, along with differences
in the composition of principal strata, can shed light on the
mechanisms of CTAI.

In one of our analyses below, usage is measured as a contin-
uous, not categorical, variable, so the PS approach entails
discretizing usage scores. [4] suggested an alternative: mod-
eling potential usage as a continuous mediator, via an inter-
action in a regression analysis. They refer to this analysis as
a “causal effect predictiveness” or CEP curve. CEP curves
are directly analogous to principal strata effects, but with

continuous intermediate variables.

3. ESTIMATING PRINCIPAL EFFECTS AND
CEP CURVES

Estimating principal effects and CEP curves is a complex
process, since first we must estimate unobserved principal
strata membership or potential usage variables, and only
then to estimate treatment effects. In fact, principal effects,
in some circumstances, are only partially identified—even in
an infinite sample, a Bayesian credible interval for a princi-
pal effect may have a finite width. This is especially the case
when researchers attempt to estimate principal effects with-
out covariates, and while relaxing traditional instrumental
variables assumptions. However, in the presence of covari-
ates that predict usage variables, we may estimate informa-
tive effects.

This section describes the models that we use to estimate
principal effects and CEP curves. More details can be found
in [16].

3.1 The Model
In general, the central challenge in PS modeling is that prin-
cipal strata membership is unknown. In the CTAI experi-
ment, since control students had no access to CTAI software,
strata membership for the treatment group is known, but
must be estimated for the control group. The distribution
of the potential outcomes for Y , conditional on covariates,
p(Y (Z = 0)|Xi), can be decomposed into the probability
distribution of Y given Ui(Z = 1), which is the distribu-
tion of interest, times the distribution of p(Ui(Z = 1)|Xi),
which, due to random assignment, may be estimated from
the treatment group. Then, we may estimate the parameters
of p(Y (Z = 0)|U(Z = 1) = a,X) and compare them to the
analogous distribution p(Y (Z = 1)|U(Z = 1) = a,X) yield-
ing estimates of treatment effects within principal strata.

If we assume that outcomes are conditionally normally dis-
tributed, the result is a finite normal mixture model:

p(Yi(Z = 0)|Xi) =

K∑

k=1

Pr(Ui(Z = 1) = k|Xi)φ(µk(Z = 0) + fk(Xi), σk) (1)

and

p(Yi(Z = 1)|Xi, U(Z = 1) = k) =

φ(µk(Z = 1) + fk(Xi), σk) (2)

where φ(µ, σ) is the normal density with mean µ and stan-
dard deviation σ. Equations (1)-(2) additionally assume no
interaction between covariates and treatment status within
principal strata. The contribution of covariates Xi to the
mean of Yi(Z = 1) can vary from stratum to stratum, but
within stratum it does not vary with treatment status. In
practice, we estimate fk(Xi) as linear in covariates:

fk(Xi) = XT
i βk (3)

where we estimate a different set of slopes β in each stra-
tum k. The linearity assumption can be relaxed or adjusted
based on the model’s fit to the data. The effect of CTAI in
the kth principal stratum is τk = µk(Z = 1)− µk(Z = 0).
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The model to estimate a CEP curve is broadly similar to the
PS model, with one important difference. In the PS model,
usage was parametrized as a categorical variable, and dif-
ferent effects were calculated for each stratum. In the CEP
framework, usage is continuous, and its interaction with the
effect of treatment must be modeled. As the next section
will discuss, we chose to model the CTAI effect as quadratic
in usage, for instance. The CEP outcome model, then, is

p(Yi(Z = 0)|Xi) =

pU(Z=1)|Xi
(a)φ(fU|Z=0(a) + fX(Xi), σ). (4)

and

p(Yi(Z = 1)|Xi, U(Z = 1) = a) =

φ(fU|Z=1(a) + fX(Xi), σ). (5)

where pU(Z=1)|X(a) is the density of U(Z = 1) conditional
on X, fU|Z=0(a) and fU|Z=1(a) are parametric functions of
usage for treated and untreated subjects, respectively, and
fX(Xi) is a model for covariates. The CTAI treatment effect
is now a function of potential usage, U(Z = 1): τ(a) =
fU|Z=1(a)− fU|Z=0(a).

Models (1), (2), (4), and (5) all require a model for the
density of usage, as a function of covariates X. In our paper,
the usage model, p(U(Z = 1)|X), is also linear in X. When
the the usage variable is continuous, it is:

p(U(Z = 1)|X) = φ(Xγ, σU ) (6)

normal-theory linear regression. In PS models, when we
discretize U , we do so after fitting model 6.

When U is binary, we use a linear logistic regression to esti-
mate p(U(Z = 1)|X):

Pr(U(Z = 1)|X) = invLogit(Xγ) (7)

We fit all of the above models simultaneously with Markov
Chain Monte Carlo (MCMC), using JAGS and R [10, 11].
Since MCMC is a Bayesian technique, it required priors; we
put a normal prior with mean zero and standard deviation 3
on each of the model fixed effects—a prior that easily accom-
modates any plausible effect, but discourages outlandish es-
timates. We put a weakly-informative inverse-gamma(0.001,
0.001) prior on the variance parameters.

The models for assistance, described below in Section 5,
were fit with the Stampede Supercomputer at the Texas
Advanced Computing Center.

3.2 Some Potential Pitfalls
[17] presented a set of preliminary results from principal
stratification analyses. They were presented as a first at-
tempt at fitting principal stratification models, to illustrate
the technique and its potential for helping us understand
some of the factors behind CTAI’s effect. However, since
the EDM 2015 conference, a number of issues emerged with
the preliminary results in that paper. It is instructive to
discuss those results as an illustration of potential pitfalls in
principal stratification analysis.

3.2.1 Model Convergence

One of the first checks of a Markov Chain Monte Carlo model
is convergence. MCMC models (ideally) proceed through
two stages: first, in the “burn-in” stage, parameter estimates
fluctuate widely as the model converges on the posterior dis-
tribution for the parameters. After convergence, the algo-
rithm draws from the posterior distribution of the param-
eters. From these draws, we can estimate the posterior’s
mean—a point estimate for the parameters—standard devi-
ation, and quantiles. However, it is not always clear when
the burn-in period has ended, and the model has begun sam-
pling from the posterior. There are two principal ways of
checking this. Both methods rely on running the MCMC
separately in two or more chains. That is, start the Gibbs
sampler c separate times, with c sets of starting values for
the parameters, and let the c separate chains each take their
own course. Then, the results from the c chains may be com-
pared; if the model has converged, they should resemble one
another, since they each would have converged on the true
posterior distribution. One method of measuring whether
this is the case is the Gelman-Rubin R-hat statistic, which
compares the within-chain variance two the between-chain
variance; since, after the burn-in stage, the chains should all
be sampling from the same distribution, the between-chain
variance should be small. At convergence, the R-hat statis-
tic should be approximately one. Typically, values of R-hat
less than 1.1 are acceptable. Additionally, analysts may in-
spect “traceplots”: plots of the c chains for each parameter.
If the chains are each stationary—that is, not changing in
location or variance—and seem to share a location and scale
with each other, the model has most likely converged. If the
various chains converge on different distributions, the model
might be non-identified, or multi-modal—several different
estimates might be equally consistent with the data.

Some of the models in [17] may not have achieved conver-
gence. In this paper, all of the models had clearly achieved
convergence.

3.2.2 Gain-Score Modeling and Covariate Selection
A second concern with the model results from [17] emerged
from our use of gain-scores—the difference between a post-
test and a pre-test—as the outcome in the model, as op-
posed to the post-tests themselves. The problem with doing
so is that the usage model was linear in the pre-test, by
design. In the assistance model, for instance, assistance is
anti-correlated with pretests, so the the control subjects who
were estimated to have high levels of potential assistance
also had high pre-test scores. On the other hand, pre-test
scores are anti-correlated with gain scores, due to regression
to the mean. So the control subjects with high estimated
assistance will have lower gain scores on average. This can
lead to an overestimate of an effect in the high-assistance
stratum, especially if the usage model is misspecified. In
principle this is an easy problem to correct, simply by in-
cluding pre-test scores as a covariate in the outcome model
as well. However, doing so would undermine the rationale of
gain score modeling. For these reasons, we relied exclusively
on post-test modeling in this paper, with the pre-test as a
covariate in both the usage and outcome sub-models.

3.2.3 Student-Level Averages as Usage Variables
[17], and an earlier version of this manuscript, estimated
the variation of the CTAI effect as a function of the av-
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erage number of hints and errors each student requested
or committed (called “assistance”).1 These averages were
taken over all of each student’s worked problems. Subse-
quent analysis revealed a curious phenomenon: the students
with the most extreme average assistance values worked very
few problems–almost uniformly so. Interpreting the CEP
curve, in this case, becomes nearly impossible, since average
assistance is so closely related to the amount of usage. The
reason for the close relationship is straightforward: sample
averages are random variables, and the variance of a sample
mean is directly proportional to the sample size. The aver-
age assistance values for the group of students who worked
very few problems had a high variance; conversely, the vari-
ance of average assistance for students who worked a large
number of problems was much smaller.

The solution we chose for this issue was to run the model not
on student-level average assistance values, but on problem-
level data directly, adding another level into the multilevel
structure. That way, the model considers student-level usage
variables to be latent, as opposed to manifest (i.e. directly
observed). Extreme values of latent variables estimated from
a small number of problems enter into the model less as
students with extreme usage patterns, and more as students
whose usage is poorly-determined. In other words, from one
MCMC draw to another, the estimate for each low-usage
student’s assistance value would vary considerably, so low-
usage students would contribute little to the overall estimate
of the CEP curve. We discuss the problem-level assistance
model in Section 5.

3.2.4 Model Validation
The difficulty of constructing correct principle stratification
models, and the ease of constructing models that yield mis-
leading results, suggests that PS models should undergo rig-
orous specification checking before they are believed. [1], an
excellent example of careful principal stratification analysis,
provided guidance on how to validate a PS model, which
we followed. We conducted three types of checks with each
model:

• Estimating each effect with multiple different mod-
els and checking for concordance. In the assistance
analysis, we estimated MCMC models treating the us-
age variable as either categorical or continuous. In
both analyses we estimated both a normal-distribution
model, as discussed in in Section 3.1, and a “robust”
model, in which we substituted student’s t-distribution
for normal distributions in the model, allowing for out-
liers.

• Inspecting residual plots to assess model fit, for both
the usage model and the outcome model.

• Estimating models with made-up outcome data. We
did this primarily with a placebo outcome, generated
by adding random noise to the pre-test variable. We
then hoped not to find any treatment effects.

1The original manuscript also included an analysis of each
student’s average number of problems per section, which fell
prey to the same issues as the assistance analysis. We will
revisit the problem-per-section analysis in future work.

In this paper, due to space constraints, we included esti-
mates from alternative methods, but not residual plots or
placebo results; these, though, are available upon request.

Unfortunately, we cannot claim, at this point, that a method
or model exists that will always recover the correct answer
and never mislead—each model needs to be carefully tailored
to its data, and then validated.

4. THE DATA
The CTAI experiment is described in [8]. The study was con-
ducted in 73 high schools and 74 middle schools in 52 urban,
suburban, and rural school districts in seven states, encom-
passing nearly 18,700 high school students and 6,800 middle
school students. The schools were matched on a set of co-
variates prior to randomization, and were subsequently ran-
domized to treatment or control conditions within matched
pairs.

The study was an effectiveness trial, where the intervention
must be adopted in as naturalistic conditions as possible.
This means the study is supposed to capture common im-
plementation variation resulting from imperfect implemen-
tation or even refusal to implement certain instructional ma-
terials. The naturalistic design of the experiment is partic-
ularly important for our analysis of student usage—usage
patterns in the experiment plausibly correspond with what
we may expect in general.

For the current study, we used only data from the second
cohort in high schools. This is because that was the stra-
tum in which overall effects were detected at the 5% level.
Indeed, in the first year of implementation point estimates
for the effect were close to zero. It may be the case that
the difference in effect between the first and second years
(a difference which itself is statistically significant) is due to
different usage patterns. We hope that our larger project of
estimating treatment effect heterogeneity by usage will help
explicate the heterogeneity by cohort.

Software usage data is available for only a subset of the stu-
dents in the treatment group. Considering only students
who were present at post-test and are thus a part of out-
comes analyses, we have usage logs for 83%. Students not
present at post-test are considered to have attritted from
the study.

The percentage of non-attritted students for whom we have
usage data varies by school, from 0% (n=3 schools) to 100%
(n=20 schools). We assume that schools that have 0% cover-
age did not implement the CTAI curriculum, despite being
assigned to the treatment group. Carnegie Learning was
unable, for technical reasons, to retrieve software usage log
data for that school.

4.1 Imputing Missing Data
As described above, there were missing data values in the
covariates, as well as in the student log scores. We used the
missForest package in R [18, 11] to impute missing covariate
values. The out-of-box normalized root mean-squared-error
for the imputation was 0.02. Since this value is so low, since
there was a relatively small amount of missing data, and
since covariates play a merely predictive role in our analy-
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sis, we assumed that the uncertainty from other aspects of
the model would dominate the uncertainty due to covariate
imputation and only imputed one dataset, rather than a full
multiple imputation.

Missing usage data presents a more serious problem. First,
some schools in the CTAI study were not included in the
usage dataset. We deleted these schools from the analysis,
along with their matched pairs. Since a matched randomized
experiment is an aggregate of a randomized trial in each
matched pair, discarding the matched pairs with missing
data is nearly benign.

We classified within-school missing usage data into two groups:
some students did not have usage data because they did not
use the software. Since absolute software usage is driven
primarily by teachers, we calculated the proportion of stu-
dents with missing data for each teacher. If almost all of a
teacher’s students were missing from the usage dataset, we
assumed that they did not use the tutor in their classroom.

The rest of the missing student usage data was due to our in-
ability to match students to their records. We assumed that
these data were missing at random [6]—that their missing-
ness was ignorable conditional on their measured covariates.
The missingness was likely not missing completely at ran-
dom, since students who were difficult to match generally
did not fill out their student information thoroughly, and
thoroughness may correlate with post-test scores or usage
patterns. The imputation strategy for these missing data
points was identical to the imputation of unobserved poten-
tial usage for the control students. That is, the same model
that estimated densities for usage variables for control stu-
dents also estimated missing usage data for some treated
students. The missing data strategy in this case was, there-
fore, either full-information maximum likelihood or MCMC,
depending on the analysis.

5. HINTS AND ERRORS
5.1 Assistance Scores

#Errors=0 #Errors>0 Sum
#Hints=0 0.42 0.34 0.76
#Hints>0 0.01 0.23 0.24

Sum 0.43 0.57 1.00

Table 1: The proportions of problems in our dataset
in which students make at least one error or request
at least one hint.

[12] defined assistance as the sum of the number of hints
students request and the number of errors they make, which
together represent the feedback CTAI gives the students.
High assistance indicates that a student is struggling.

Hints and errors vary from problem to problem, from section
to section, and from student to student. Table 1 shows the
joint probability of requesting at least one hint and making
at least one error in our dataset. In 58% of worked problems,
the student requested at least one hint or one error. Fur-
ther, hints and errors tend to accompany each other: in only
1% of worked problems the student requested a hint without
making an error. In many problems, hints and errors occur

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

● ●

●

●

●

●

● ●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●
●

●●
●

●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
● ●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
● ●

●

●

● ●

●

●

●
●

●●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Avg. # Errors

A
vg

. #
 H

in
ts

Figure 1: The average number of hints and errors
requested for each student. The size of the plotted
points is proportional to the square root of the num-
ber of problems they completed—and hence to the
standard deviation of the plotted averages.

sequentially: a student will work part of the problem, per-
haps make an error and receive feedback, perhaps request
a hint, and then move on to the rest of the problem. It is
important to keep in mind, then, that hints do not always
precede errors—sometimes, they are the result of a prior
error made while working the same problem.

Figure 1 plots the average number of hints a student requests
as a function of the average number of errors he makes.
While most students request between 0 and two hints per
problem, and make between one and eight errors per prob-
lem, some students request far more hints or make far more
errors. Further, students who request more hints are much
more likely to make more errors. The size of the points
in Figure 1 is proportional to the square root of the num-
ber of problems they completed—and hence to the standard
deviation of the plotted averages. The extreme values in
the figure typically come from students who work very few
problems, as described in Section 3.2.3, complicating the in-
terpretation of a model that uses average hints or errors as
a mediator variable.

For that reason, we incorporated a problem-level sub-model
for assistance into our larger principal stratification model.
Rather than model the total number of hints and errors per
problem, which would necessitate a complex, and possibly
misspecified, count-data model, we modeled the probability
of a student requesting a hint or making an error (or both)
on each problem. The model was as follows:

Pr(Aip ≥ 1) = invLogit(Ui + δs[p]) (8)

Where Aip is the total amount of assistance, i.e. hints and
errors, that student i experiences from problem p. Ui is a
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random student effect, representing the student’s propensity
to receive assistance on a problem, and δs[p] is a section

random effect.2

The variable Ui, student i’s “assistance score,” is the medi-
ator that we use to predict her CTAI treatment effect.

Ui is itself predicted, in turn, by a set of covariates includ-
ing pretest scores, demographics, and teacher random effects
nested within school random effects. The results of this us-
age model are available upon request. They show that prior
test scores and “gifted” status are inversely correlated with
assistance scores—higher performing students are less likely
to make errors or request hints. Special education students
are more likely to receive assistance, and males are less likely
than females.
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Figure 2: Assistance model results: E[Y (Z = 1) −
Y (Z = 0)|U(Z = 1)], CTAI treatment effect as a
function of potential assistance U(Z = 1) quantiles.
Results are shown for an MCMC CEP normal-
distribution model that treats assistance as con-
tinuous, a “robust” CEP model based on the t-
distribution that allows for outliers, and a normal-
distribution PS model that breaks assistance scores
into high, medium, and low categories. To display
statistical uncertainty, we also plotted 500 draws for
the effect function from the CEP model, and 95%
credible intervals (error bars) for the three PS ef-
fects. The treatment effect is in effect size units.

Figure 2 shows the results for three models—a normal- dis-
tribution CEP model, a robust CEP model, and a normal-
distribution PS model—which roughly agree that treatment
effects are highest for students with assistance scores in the

2The conventional item response theory model in this case
would have a problem effect instead of a section effect. We
chose section effects rather than problem effects since there
are 5438 problems (that only appear once in the dataset,
making problem effects difficult to estimate.

center of the distribution, and lower for students who used
a high or low amount of assistance. The PS model, in
which assistance scores were discretized, reports more ex-
aggerated differences between treatment effects for students
with medium assistance scores and those with high or low
scores; these differences, moreover, are highly significant—
the probabilities that the average effect for medium students
is higher than that for low and high students are 1 and 0.987,
respectively. However, when the estimation error is taken
into account, it is apparent that the CEP and PS models do
not necessarily disagree.

There are a number of ways to interpret these results. The
results reflect varying CTAI effects for various usage pat-
terns. One of CTAI’s selling points is the instant feedback it
provides students as they work through and complete prob-
lems. Students who under-utilize this service—in the low
assistance stratum—are then likely to experience a smaller
CTAI effect. This may be because they began as excellent
students—assistance is anti-correlated with pretest scores—
and hence did not need the extra help that CTAI provides.
Alternatively, students with low assistance scores may be
under-utilizing the service for a different reason; perhaps
they feared that requesting too many hints, or making too
many mistakes, would slow their progress through the tutor,
so they were overly cautious.

Students who request hints or make errors quickly, with-
out slow deliberation, may not be able to learn from the
problems they work. Some students “game” the system, by
requesting hints until they are provided with the correct
answer, or they simply do not try very hard to figure out
the answer themselves. It may be that the students in the
CTAI experiment with very high assistance scores, experi-
ence lower treatment effects for some of these reasons Al-
ternatively, they might have struggled with the material in
general, and required more personalized help from a teacher,
as opposed to a computerized tutor.

However, students in the middle of the assistance distribu-
tion experienced large CTAI effects, suggesting an assistance
“sweet spot.” In future trials, teachers could be instructed
to encourage their students to use a medium number of
hints, and complete problems with a moderate amount of
caution—trying hard to answer problems correctly, but also
allowing themselves to make mistakes. If this strategy leads
to higher CTAI effects, it suggests that part of the CTAI ef-
fect heterogeneity across usage patterns is causal—that us-
ing the system differently leads to higher effects.

6. SKIPPING SECTIONS
An important part of the design of CTAI is the scaffolding
of skills and knowledge. The skills that students learn in
Algebra I build on each other, so the order in which students
learn material and master skills matters—at least in theory.
The design of CTAI accounts for this order, by insisting that
students master certain skills before moving on to others.
Indeed, that is the notion that lies behind the sections of
the CTAI curriculum.

We attempted to test the hypothesis that this scaffolding
matters—that is, do students who the CTAI curriculum
learn more from CTAI than students who do not? To answer
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this question, we compared the order in which students in
the CTAI experiment worked on sections to the intended or-
der. About 80% of students worked on the sections in order.
However, 20% of students skipped at least one section. Did
the students who skipped one or more sections experience
the same CTAI effect as those who completed the sections
in the intended order? More precisely, is the CTAI effect the
same in the principal stratum of students who, if assigned to
CTAI, would complete the section in order, and in the prin-
cipal stratum of students who, if assigned to CTAI, would
skip at least one section?

A complication in estimating counterfactual stratum mem-
bership for control students in this case was that in the
CTAI setup, teachers, not students, control which sections
the students work on. Indeed, there were 38 teachers in
the treatment group for whom we had data on whether stu-
dents skipped a section. Of those 38 teachers, 17 teachers
did not have any students who skipped any sections at all,
while there were five teachers more than 80% of whose stu-
dents skipped sections. Since such a large proportion of the
variation in section-skipping occurred at the teacher level,
we included a set of teacher-level predictors in our usage
model. An anonymous reviewer alerted us to the threat of
over-fitting; hence, due to the small number of teachers in
the treatment group, we chose only two teacher level covari-
ates in the model: percent ESL, and average pre-test. The
small covariate-to-sample size ratio at both the student and
the teacher levels, combined with the informative priors [See
3], should alleviate concerns of over-fitting.

The usage model, whose results are available upon request,
was unsuccessful in estimating precise effects for any covari-
ate, but in aggregate was able to predict stratum member-
ship. One exception is that students with higher pretest
scores are more likely to skip sections, as are teachers whose
students have higher pretest scores on average.

Stratum Effect (Normal) Effect (Robust)
Do Not Skip 0.27 0.19

0.09 0.07
(0.06–0.44 ) (0.05–0.33)

Skip ≥ 1 If Treated -0.09 -0.07
0.13 0.11

(-0.33,0.17 ) (-0.28,0.48)
Difference -0.36 -0.26

0.12 0.11
(-0.59,-0.12) (-0.48,-0.03)

Table 2: The CTAI effect in the two principal strata
defined by whether a not a student would skip a sec-
tion if they were assigned to the treatment. We esti-
mated principal effects with both an MCMC model
based on the normal distribution, based on the more
robust student’s t-distribution. Standard deviations
of the posteriors are in italics, and 95% credible in-
tervals (MCMC) are provided in parentheses under
the estimates.

The results of our analysis are in Table 2 and Figure 3. Both
models detect significantly greater treatment effects in the
principal stratum of students who would not skip sections if
assigned to the treatment, than in the stratum of students
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Figure 3: Estimates, and 95% credible intervals, for
the CTAI effect in the principle stratum of students
who would not skip sections, and in the stratum of
students who would. The results plotted for both
the normal and t-distribution (“robust”) models.

who would. This might be taken as evidence that the order
in which students complete sections plays a large role in the
effectiveness of CTAI. Alternatively, it may be that teachers
who tinker with the order of sections that their students
work are likely to tinker with other aspects of the CTAI
design as well, to deleterious effect (perhaps along the lines
of [13]). In either reading, the effect of CTAI is not merely
due to the practice it gives students, or immediate feedback,
but also to its underlying pedagogical and cognitive theory.

A third possibility is that the entire difference is driven by an
underlying teacher or student characteristic, such as ability;
students with higher pretest scores are more likely to skip
sections—perhaps the treatment effect is significantly lower
for them, as well.

7. DISCUSSION
We showed that without additional identification assump-
tions, researchers can use log data to form a deeper under-
standing of their software’s effect. However, we also dis-
cussed some of the difficulties in estimating these models
correctly.

We updated and clarified a result from our preliminary study
[17]. We find that the relationship between the amount of
assistance students receive from CTAI and the CTAI treat-
ment effect they experience is not monotonic. The highest
effects appear for the students who receive a medium amount
of assistance; those who receive much more or less experi-
ence smaller treatment effects, on average. This may be the
result of student attributes—that the students at the mar-
gins are either too advanced or gaming the software—or it
may be that certain modes of software usage are better than
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others.

Next, we investigated if students who skip a section in the
recommended curriculum, working on sections out of order,
may experience lower effects. The result may confirm part
of the motivating theory behind CTAI: that Algebra I skills
build on each other, so the order at which students work on
material can contribute or detract from their success.

Along those lines, we plan a number of future analyses. We
hope to update the preliminary study’s results that sug-
gested that the CTAI treatment effect increases with the
amount of usage, and to investigate the dependence of the
CTAI effect on students’ mastery of sections. Further along,
we hope to discover and define interesting multivariate prin-
cipal strata, perhaps as the result of a cluster analysis of the
high-dimensional usage data.

Finally, after cultivating a more complete understanding of
the usage patterns that lead to higher CTAI effects, we
can explore treatment-effect heterogeneity. In particular,
we may be able to answer why in the first year of implemen-
tation CTAI did not seem to boost test scores, but in the
second year it did. Was differential usage to blame?

In the meantime, this paper uses rigorous causal methods
to confirm some previous hypotheses about CTAI’s causal
mechanisms, and points a way forward for future work mod-
eling usage variables in experimental designs.
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