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ABSTRACT 
During the semester break, 36 second-grade students accessed a set 

of resources and completed a series of online math activities 

focused on the application of the model method for arithmetic in 

two contexts 1) addition/subtraction and 2) multiplication/ 

division. The learning environment first modeled and then 

supported the use of a scripted series of steps for solving 

mathematical word problems. As students completed the activities, 

the learning environment captured their event-related data. We then 

used a combination of Affinity Propagation, an automated form of 

clustering, and sequential pattern mining to convert the activity logs 

into interpretable activity sequences. Analysis of the activity 

sequences identified distinct patterns of behavior that strongly 

predicted which students would transit from the familiar 

addition/subtraction word problem activity to the unfamiliar 

multiplication/division word problem activity. Students who 

showed the greatest and least compliance with the script were the 

least likely to attempt the multiplication/division activity. Students 

who showed more of a schematic problem solving process were 

more likely to continue to the multiplication/division activity.  
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1. INTRODUCTION 

1.1 Mathematics Learning via the Model 

Method 
In Singapore, early-elementary students are taught to solve 

arithmetic word problem via the model method [1]. This systematic 

approach is based on Polya’s problem solving techniques [2]. The 

method can be broken into five steps known as the RIGHT 

sequence. When applying the RIGHT sequence, students 1) read 

the word problem, 2) identify the nouns, numeric values, and 

unknown variable to be solved, 3) graph these values in a box 

diagram, 4) indirectly perform the appropriate calculation by 

reasoning through the diagram, and 5) review their work.  

The RIGHT sequence, as a learning mnemonic, provides students 

with a script for executing the model method. Scripts are collections 

of discrete actions that, when followed, achieve a goal or specific 

outcome [3]. Ordering food at a restaurant serves as the classic 

example of following a cognitive script [3]. In most dining 

establishments, the same set of steps, with some allowance for 

minor deviations, will lead the patron to receive a meal. Similarly, 

following the RIGHT sequence will lead students to the correct 

answer to a word problem. Scripts have been found to reduce 

cognitive load for novice learners by lessening the mental resources 

needed for planning and completing the plan. Scripts also lead to 

greater expressions of automaticity by experts [4]. However, 

cognitive psychologists also view scripts as the most nascent form 

of schemas [5]. The application of scripts is contextually bound and 

rather inflexible. Schank and Abelson [6] refers to scripts as event 

schemas which are task specific and order dependent. The previous 

restaurant script may work for purchasing food at most dining 

establishments, but it could not be used successfully to purchase 

food at a supermarket. To negotiate the supermarket, one would 

need to apply either a different script or rely on a more 

generalizable schema. 

Generalizable schemas consolidate the steps of an event schema 

under a larger label [7]. Rather than simply ordering a meal at a 

restaurant, a generalizable schema for acquiring food would 

include all of the known methods of gaining nourishment. What 

generalizable schemas sacrifice in terms of automaticity, they make 

up with flexibility [5].  

Returning to the original example of the model method, the intent 

behind introducing students to using box diagrams to solve 

algebraic word problems is to give them a generalizable schema for 

solving real-world problems [1]. In practice, students often 

instantiate the schema in the form of a word problem solving script 

[8]. When looking at problem solving accuracy, teachers cannot 

diagnose whether a student has internalized the model method as a 

generalizable schema or as a problem solving script because both 

strategies work in the short term. However, only the generalizable 

schema prepares students to flexibly transfer the model approach to 

new situations. In this study, we sought to generate an algorithm to 

classify students as exhibiting script-like or generalizable schema-

like behaviors in the context of a series of online math enrichment 

activities. We then tested whether script-like behaviors, 

generalizable schema-like behaviors, or problem solving 

accuracies were more predictive of students seizing future learning 

opportunities. 

1.2 Machine Learning and Temporal 

Sequencing 
In the context of this paper, we define an action as a single line item 

in a log file and action sequences as the collection of actions that 

can be described with a more general semantic label. For instance, 

entering a number into a text box constitutes an action. All of the 

various combinations of actions that lead to the calculation of that 

 

 

Proceedings of the 9th International Conference on Educational Data Mining 167



number being entered into the text box constitute a single action 

sequence.  

When attempting to identify meaningful action sequences while 

preserving the temporal relationships between those actions, 

educational data miners use techniques like process mining and 

sequential pattern mining. With process mining, the learning 

pathways students take within a learning environment are identified 

and visualized [9, 10]. Deviations in these pathways from the 

intended pathways can then be analyzed for meaning [9, 10]. 

Alternatively, sequential pattern mining identifies frequently 

occurring subsequences within a temporal dataset for further 

analysis. Recently, Ye et at. used a hierarchical variant of SPAM to 

analyze data collected from Betty's Brain OELE [11]. The analysis 

illustrates the importance of using temporal relationships between 

user activities to make predictions about future learning behaviors 

[11]. Veeramachaneni, Adl, and O'Reilly [12, 13] also highlight the 

significance of incorporating a range of temporal dependencies into 

features when predicting student traits. Applying a crowd sourcing 

technique, they obtained lists of complex features that, when 

divided, seem obvious to experienced teachers and data scientists. 

However, neither group could have generated the entire list of the 

features on its own [12]. 

When extracting frequent patterns from unstructured data, 

sometimes the patterns are composed of short sets of actions which 

actually belong to longer action sequences. These algorithms have 

a tendency to obscure the temporal relationships between the 

extracted features. Additionally, sequencing combinations of 

actions and filtering out rare patterns rather than using the complete 

action sequences can result in the loss of rare action combinations 

that achieve a common action sequence [14]. The potential for 

losing rare actions belonging to common action sequences is 

magnified in learning environments populated by novice learners. 

Novice learners who are introduced to a learning environment have 

the dual task of learning to navigate the environment as well as 

gaining competency with the concepts central to the learning 

activities. In such situations, data mining techniques that analyze 

learner actions more schematically, rather than in scripted terms, 

may actually yield more parsimonious models. 

With the goal of aligning our data mining techniques with learners' 

mental schemas, we propose conceptually reframing individual 

actions as words and action sequences as sentences. With this 

recasting, we can apply a combination of string distance measures 

that take into account the vocabulary and word order within the 

sentences to make pair-wise comparisons. We used an Affinity 

Propagation (AP) [15] algorithm to recover distinct action 

sequences that translated to learning behaviors and the sequence 

exemplars are referred to as action sequences archetypes (ASAs). 

Sequential pattern mining is applied to cluster members to 

summarize the temporal deviations within each cluster. The 

described method preprocesses the data for analysis and 

interventions to steer learners towards desired educational 

outcomes. 

AP is useful for our particular context because it simultaneously 

considers all data points in relation to a shared preference to 

determine a suitable number of output clusters. This structure 

independence lends AP to situations where there is no a priori 

expectation about the output cluster size or number [15]. In our 

case, the number of sequences within the dataset varies greatly 

between sessions. Beyond accommodating this variability, the 

algorithm’s input, a similarity matrix defined by the pairwise 

similarities between two sequences, is not limited to symmetrical 

pairwise similarities. This freedom creates opportunities to 

differentiate the discrete ordered lists using different distance 

measurements. We augmented the AP algorithm with a tree-based 

sequential pattern mining algorithm for its ability to handle 

multiple minimum supports and rare item filtering [14]. The 

algorithm is used to extract maximal sequences, which are longest 

sequences that satisfy the minimum frequency threshold, for each 

cluster.  

2. Data Collection 
36 second grade students completed the first phase of activities in 

the online learning environment during the school holidays. The 

activities were part of an ``out of school" enrichment opportunity. 

At the onset of data collection, all of the invited participants had 

previously received formal instruction from their teachers on using 

the model method to solve addition and subtraction word problems. 

The students had not yet received instruction within the school 

curriculum on using the model method with multiplication and 

division word problems.  

The online learning environment offers two phases of content. 

During Phase 1, students’ complete addition and subtraction 

activities. In Phase 2, students encounter multiplication and 

division activities. Each content phase is divided into four sets of 

activities: 1) video tutorials, 2) structured activities, 3) unstructured 

activities, and 4) multiple choice questions (MCQ). The video 

tutorials explain the RIGHT sequence and the use of the model 

method in a pen-and-paper context. After each video, students 

receive a set of practice exercises related to the content of the video 

tutorial. Additional video segments at the start of each practice 

question introduce the recommended sequence of steps to solve the 

word problems using the model method and the representational 

supports found within the learning environment. The 

representational supports include using the highlighted noun blocks 

and the RIGHT checklist while answering the word problems. 

The structured activity focuses on the “G” in the RIGHT sequence. 

Each question in the activity is presented with a practice word 

problem. The problem is displayed with four multiple choice 

options showing different bar diagrams and a checklist in the right 

corner of the workspace. The checklist shows the first three steps 

of the RIGHT sequence. Students are advised to tick off the 

respective check boxes as they complete each step in the RIGHT 

sequence. In the structured activity, the checklist is limited to the 

first three steps of the RIGHT sequence as students are not expected 

to take their model to completion.  

After students identify the model they think matches the content of 

the word problem, they are given feedback about their choice 

before moving on to the next question. They are presented with 

options to review, ask for hints or proceed to the next question. 

Choosing to review the question returns students to the last 

snapshot of the question before the answer submission. Requesting 

a hint provides students with a partially completed model as a 

guide. Hints are given progressively until the complete model is 

revealed. Two hints can be requested for each question. If a student 

chooses to proceed to the next question without reviewing errors 

after submitting an error, the learning environment logs the action 

as ignoring an error.  

In the unstructured activity, students solve the problems using the 

RIGHT sequence. A snapshot of the learning environment for this 

activity prior to any attempt is shown in Figure 1. Model templates 

for all four arithmetic operations are made available for students to 

complete with the correct numerical values. Nouns mentioned in 

the problem are also presented as colored blocks for labeling the 

relevant model. Students can drag and drop the blocks to their 
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selected model. Students may also enter mathematical expressions 

in the provided text boxes. Alternatively, students may forego 

performing any or all of these actions. However, they must submit 

a final answer before receiving feedback about their answer and 

proceeding to the next question.   

For the MCQs, students are presented with a page containing ten 

multiple-choice questions. Each question requires inputting a 

numerical answer into a textbox. Students again have the option of 

using the RIGHT checklist that floats in the right margin of the 

screen. The checklist resets whenever a student interacts with a 

different question. Students must complete all of the activities 

before proceeding to Phase 2. 

3. Data Preprocessing 
Only clickstream and navigation information occurring within the 

online module was recorded to the log file as students worked 

through the activities. Beyond navigation and interface information 

like mouse clicks and text entries, off-task behavior like leaving the 

learning environment by activating another browser tab and 

returning to the online module was also collected. A total of 23233 

log entries were collected. Table 1 lists the recorded actions.  

The log entries were preprocessed to indicate the use of the 

different learning resources within the learning environment. For 

example, highlighting a keyword within a question is recorded as 

one log entry per keyword. However, only the first instances of 

highlighting and canceling of highlights are retained for each 

question attempt to signal that the highlighting resource was used. 

In addition, while learners navigate through the model template 

selection, we only analyze the final template selection instead of 

considering all of the navigation activity within the selection area. 

Filtering out these events greatly reduces the amount of variability 

within the action sequences and makes them more schematic. To 

identify revision of answers, first selections for the MCQs are 

labelled as mcq_select. Additional selections are labelled as 

mcq_alter. Following the described procedure reduced the size of 

the dataset to 9918 entries, or 275 entries per student. The 

maximum number of analyzed actions for a student was 868. The 

final list of actions for each type of activity is shown in Table 1. 

In the reduced dataset, each action sequence is identified and 

labelled. For videos, an action sequence constitutes the actions 

taken from the start of a video to terminating the video either by 

completing the video or navigating away from the current page. For 

the exercises, the action sequences span from the initiation of a 

question until the user proceeds to the next question.  

4. Techniques 

4.1 Distance Measures 
To differentiate action sequences as one would differentiate 

sentences, it is necessary to consider the vocabulary (actions) of 

each action sequence and the order of those words. Our proposed 

distance measure includes four components, a modified version of 

the common word order measure [16], Jaccard distance, length 

difference, and vocabulary rarity. The features capture different 

aspects of action sequences for differentiation. The distance 

measure between two action sequences 𝑆1 and 𝑆2 is given by the 

weighted sum of all four features. In this paper, a constant weight 

is assigned across the four features. 

 𝑑𝑖𝑠𝑡(𝑆1, 𝑆2) = 𝑤1 ∗ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐷𝑖𝑠𝑡(𝑆1, 𝑆2) 
                +𝑤2 ∗ 𝐶𝑊𝑂(𝑆1, 𝑆2) 

                +𝑤3 ∗ max (𝑖𝑑𝑓𝑡𝑗∉𝑆1∩𝑆2(𝑡𝑗 , 𝐷)) 

                +𝑤4 ∗ 𝑎𝑏𝑠(𝑙𝑒𝑛𝑔𝑡ℎ(𝑆1) − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆2)) 

(1) 

where  

 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 1 (2) 

Table 1: List of all log actions 

Action Video Structured Unstructured MCQ 

leave_page    

return_to_page    

phase_start    

phase_stop    

video_start     

video_stop     

video_pause     

video_scrub_ 

foward1     

video_scrub_ 
back1     

video_end1     

video_end_full1     

video_replay     

video_select_ 

same 
    

video_select_ 
diff 

    

attempt_qn    

highlight    

undo_highlight    

check_checklist    

mcq_select2    

mcq_alter2    

confirm_model2    

mouse_drag2    

label_model2    

label_eq    

submit2    

review_error    

ignore_error    

show_hint    

1 Actions are inferred from clickstream data due to limitation of 

YouTube’s application programming interface (API). 

2 Actions are recorded but filtered out for the purpose of this 

analysis. 

 

Figure 1: Workspace for unstructured activity. 
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Jaccard distance defined by  

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐷𝑖𝑠𝑡(𝑆1, 𝑆2) = 1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚(𝑆1, 𝑆2) (3) 

where  

 
JaccardSim(S1, S2) =

|S1 ∩ S2|

|S1 ∪ S2|
 (4) 

captures the degree of dissimilarity between two sequences through 

the number of unique terms that are not common to both. The 

Jaccard distances are derived from Jaccard similarity which 

determines the ratio of unique common actions between two action 

sequences. Jaccard similarity and distances are bounded between 

zero and one. 

In our context, the common word order measure reflects the 

similarity of the order in which actions appear between two action 

sequences. The measure equals zero when the common actions of 

two sequences occur in the same order and reaches a maximum of 

one when the common actions appear in reverse order. Given two 

sequences 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑚} composed 

of l common action, where 𝑙 ≤  𝑛 ≤  𝑚. Retaining only the 

common actions, sentence 𝐴 = {𝑎1, 𝑎2, . . , 𝑎𝑙} is transformed into a 

numerical representation 𝑋 = {1,2,… , 𝑙} by substituting the actions 

with its indices. The same actions in 𝐵 are replaced with the same 

numerical indices to form 𝐵. The common word order measure can 

then be computed by 

 CWO(S1, S2)

=

{
 
 

 
 1 −

(2∑ |𝑥𝑖 − 𝑦𝑢|
𝑙
𝑖=1 )

𝑙2
, 𝑖𝑓 𝑙 𝑖𝑠 𝑒𝑣𝑒𝑛

1 −
(2∑ |𝑥𝑖 − 𝑦𝑢|

𝑙
𝑖=1 )

𝑙2 − 1
, 𝑖𝑓 𝑙 𝑖𝑠 𝑜𝑑𝑑

1, 𝑖𝑓 𝑙 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑙 = 1

 
(5) 

The common word order measure is designed for sentences where 

a bag-of-words representation has a large number of words, most 

of which have low frequencies. Due to the constraints of the 

learning environment, our data set contained many actions with 

high frequencies. Retaining the common terms within action 

sequences may result in substrings of inequivalent lengths. 

Therefore, there may exist more than one combination of mapping 

between these sentences. To remedy this possibility, we adapted the 

concept of a common word order measure to obtain a distance 

estimate for the action sequences by first filtering the reduced 

sequences to remove actions occurring at a specific position that do 

not contribute to the distance metric. We then match the remaining 

actions based on their position within the reduced sequence.  

The vocabulary rarity is defined as the maximum of the inverse 

document frequency (idf) [17] of terms that are not common to both 

sentences. This measure allows us to distinguish sequences that 

have actions that are less likely to occur from sequences involving 

trivial navigational patterns. The inverse document frequency of 

each term 𝑡𝑖 in a set of documents 𝐷 is computed by the logarithmic 

inverse of the ratio of document counts containing 𝑡𝑖 to the total 

number of documents in the document set 𝐷. 

 
𝑖𝑑𝑓(𝑡𝑖 , 𝐷) = log

|𝐷|

{|𝑑 ∈  𝐷: 𝑡𝑖 ∈  𝑑|}
 (6) 

4.2 Affinity Propagation 
The AP algorithm [15] is a message passing clustering algorithm 

used in image recognition, text comparison and gene clustering. 

Unlike centroid-based clustering like k-means clustering, AP does 

not require users to pre-specify the number of clusters and it is less 

sensitive to parameter initialization [15]. The algorithm takes a 

pair-wise similarity matrix and a set of shared preferences as inputs 

to determine the suitability of data points as cluster centroids. 

Without prior knowledge of the centroids, shared preferences may 

be set uniformly across all items. When shared preferences are 

assigned to the minimum value of the pairwise similarity, the 

number of resulting clusters will also be at its lowest. The inverse 

is also true. The number of clusters generated by the different 

shared preference values for the structured activity are shown in 

Figure 2.  

 

For our purposes, clusters are determined by passing messages 

between data points (action sequences) to simultaneously 

determine their suitability as cluster centroids. The provided 

similarity matrix may contain unknown pair-wise similarities. 

However, messages are passed only between points with known 

similarities. There are two types of messages passed between data 

points -- responsibility and availability. Responsibility 𝑟(𝑖, 𝑘), sent 

from data point 𝑖 to data point 𝑘, dictates the amount of evidence 

that 𝑘 is suitable to serve as the exemplar for 𝑖, while availability 

𝑎(𝑖, 𝑘), sent from 𝑘 to 𝑖, determines the appropriateness for point 𝑖 
to choose point 𝑘 as its exemplar. Availabilities are initialized as 

zeroes and the messages are updated iteratively using 

 𝑟(𝑖, 𝑘) = 𝑠(𝑖, 𝑘) − max
𝑘′≠𝑘

{𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)}, (7) 

 

𝑎(𝑖, 𝑘) = min {0, 𝑟(𝑘, 𝑘) + ∑ 𝑚𝑎𝑥{0, 𝑟(𝑖′, 𝑘)}

𝑖′∉{𝑖,𝑘}

} (8) 

 𝑎(𝑘, 𝑘) = ∑ max{0, 𝑟(𝑖′, 𝑘)}

{𝑖′≠𝑘}

 (9) 

At the end of each iteration, exemplars are determined from  

 𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟(𝑖, 𝑘) = argmax
𝑘

{𝑎(𝑖, 𝑘) + 𝑟(𝑖, 𝑘)} (10) 

Pairs (𝑖, 𝑘) identified from equation (10) state that either data point 

𝑖 will serve as an exemplar for data point 𝑘 or vice versa. The 

algorithm terminates only when either a predefined number of 

iterations is completed or the changes in the messages falls below 

a certain threshold.  

Essentially, the AP algorithm seeks to identify action sequence 

archetypes (ASA) around which to cluster the remaining action 

Figure 2: Number of generated clusters based on shared 

preferences for structured activity. 
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sequences. After identifying the ASAs, the similar cluster 

sequences inherit the index of their closest archetype. 

4.3 Sequential Pattern Mining 
The position coded pre-order linked web access pattern tree mining 

(PLWAP) algorithm with multiple minimum supports (MMS) [14] 

is a tree-based sequential pattern mining algorithm. A PLMS-tree 

is constructed from the logs by adding actions for each learning 

opportunity sequentially. Each node holds four variables, the label, 

the frequency count, a binary position code, and a minimum 

multiple item support (minMIS).  

The binary code is similar to Huffman coding as it uniquely 

identifies nodes and subtrees. The root node of the tree is labelled 

as 0. The leftmost child of any node has a position code of 1 

appended to the back of the position code of the node. The position 

codes of other children are derived from the position codes of their 

nearest sibling to the left by appending a 0 to the position code.  

The support determines the lower bound for frequencies that 

sequences must satisfy to qualify as a frequent pattern. For multiple 

minimum support, a minimum support is computed for each unique 

item in the dataset. In the case of our action sequences, the items in 

sequential pattern mining correspond to actions in the action 

sequences. The global minimum support is dictated by the smallest 

of the minimum supports. Each node maintains its minMIS which 

defines the support required by itself and the suffix tree to qualify 

as frequent.  

As the nodes are added to the tree, a header table is maintained. The 

header table contains the unique node labels with a list of 

corresponding binary code of nodes for the same label within the 

tree. The table is then sorted by order of decreasing frequencies. An 

example of the PLMS-tree and its corresponding header table is 

shown in Table 2 and Figure 3. 

Once the tree is populated, it can be traversed to mine the sequential 

patterns in the dataset. The mining algorithm proceeds as follows:  

1. For each of the entries in the header table, the nodes are 

identified from the tree using the position codes and the 

total occurrences is consolidated from the counts of 

individual nodes. A 𝑘-sequence is an ordered list of 𝑘 

items.  

a. If this sequence satisfies its minMIS, it qualifies as a 

1-sequence. 

b. If the frequency of this node satisfies the global 

minimum but not its minMIS, the label qualifies as a 

1-sequence candidate. Candidates are kept as 

candidates for mining because a subsequent item of 

lower minMIS may qualify these sequences as 

frequent sequences.  

2. The algorithm proceeds to identify the next item in the 

sequence by scanning the header table. 

3. Position codes in the header table containing the position 

code of the last found node as its prefixes are identified 

as descendants for that node.  

4. The frequencies of the newly identified nodes are 

aggregated and a new minMIS is updated to be the lower 

of the minMIS from previous nodes and the identified 

node.  

5. The algorithm proceeds to search for possible extensions 

and validates the frequency of these sequences against 

the minMIS.  

6. The algorithm terminates when no more descendants are 

identified from the header table or if the frequencies of 

the newly identified nodes are less than the value of the 

global minimum support.  

5. Clustering 
Sequences of attempts for each of the four activities are clustered 

with the AP algorithm. The shared preferences of AP are set to the 

maximum of the similarity matrices. We use the R package AP for 

this analysis. PLWAP is then used to retrieve a descriptive 

summary for each cluster. We restrict the algorithm to only identify 

contiguous sequences.  

We manually merge the clusters into ASAs based on their 

compositions. The compositions are determined by indicators 

signaling the use of certain actions between defined checkpoints, 

similar to the process mentioned in [10]. During the merging 

process for each archetype, we consider the actions spanning from 

the onset of a question to the first submission of the question 

attempt. Descriptions of the ASAs identified in the video, 

structured and unstructured activities are presented in Table 4, 

Table 5, and Table 6 respectively. 

Table 2: Header table example for Figure 3 

Label Support Position Code 

video_start 10 {01} 

video_end_full 6 {011}, {0110001} 

video_end 4 
{0110}, {011001}, 

{011000101} 

video_pause 2 {011000} 

video_scrub_back 1 {01100010} 

video_scrub_forward 1 {01100} 

 

 

Figure 3: Example of a PLMS-tree for the video activity. 

Table 3: Action Sequence Profiles 

Activity 
No. of 

Attempts 

No. of 

Profiles 

Video 89 10 

Structured 286 11 

Unstructured 303 11 

MCQ 33 12 
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Because the MCQ activity presents multiple word problems on the 

same page, students may freely switch between the problems 

without signaling their intent. This freedom of choice yields ASAs 

with indefinite boundaries. The nebulousness of the ASAs 

associated with each question provides little inferential utility and 

will not be addressed in the following section beyond attempting to 

use each student's MCQ accuracy to predict the probability of 

persisting to Phase 2. 

6. Results 

6.1 Score-based Prediction of Persistence 
We calculated the percentage of questions students correctly 

answered for the structured, unstructured, and MCQ activities. As 

shown in Table 7, only a student's MCQ performance is associated 

with persisting into Phase 2. Knowing students' performances for 

the structured and unstructured activities leads to a prediction 

accuracy level similar to that of assuming no student persists from 

Phase 1 to Phase 2. 

As a caveat, the deterministic appearance of the association 

between MCQ performance and persisting to Phase 2 is misleading. 

The high correlation is due to the MCQ activity being a prerequisite 

for Phase 2. The mere presence of an MCQ submission, rather than 

the score itself, is predictive of persisting to Phase 2. Students who 

do not make an MCQ submission effectively earn a score of zero 

for the activity and do not have the possibility to continue to Phase 

2. Additionally, all students who do persist to Phase 2 must have 

scored above a zero on the MCQ activity. 

6.2 Sequence-based Prediction of Persistence 
We converted the frequency of each ASA into a percentage of a 

student's total action sequences. We then used a classification and 

regression tree (CART) algorithm to predict which students 

continued on to Phase 2 based on their ASA values. The decision 

trees associated with progressing based on ASAs from the video, 

structured and unstructured activities are presented in Table 4, 

Table 5 and Table 6 respectively. 

While persistence cannot be reliably predicted based on video 

ASAs, it can be accurately predicted by the structured and 

unstructured ASAs. The predictability of these features is 

Table 4: Action sequence archetypes for the video activity 

ASA Description 

V1  Offtask  

V2  Pre-mature termination  

V3  Complete video without other actions 

V4  Complete video with pauses  

V5  Complete video with off-task  

V6  Complete video with pauses and off-task  

V7  Complete video with pauses and scrub back  

V8  Incomplete video  

V9  Incomplete video with pauses  

V10  Incomplete video with scrub forward  

 

Table 5: Action sequence archetypes for the structured activity 

ASA  Description  

S1 Pre-mature termination  

S2 Direct answer with off-task  

S3 Direct answer  

S4 Direct answer with alter of choice  

S5 Answer with highlights  

S6 Answer with highlights and alter of choice  

S7 Answer with checklist  

S8 Answer with checklist and highlights  

S9 
Answer with highlights and alter of choice and 

checklist  

S10 Submission with checklist and highlights but no answer 

S11 Submission without answer  

 

Table 6: Action sequence archetypes for the unstructured 

activity 

ASA Description  

U1 Attempts with no submission  

U2 Attempts with off-task and no submission  

U3 Submission without attempts  

U4 Submission without answer  

U5 Submission with answer and highlights  

U6 Submission without highlights and drags  

U7 Submission without highlights  

U8 Submission without drags  

U9 
Submission without drags with one change of model 

template  

U10 
Submission without drags with multiple change of 

model template 

U11 Submission without drags with off-task  

U12 Suggested steps  

U13 Suggested steps with one change of model template 

U14 
Suggested steps with multiple change of model 

template  

U15 Suggested steps with off-task  

 

Table 7: Mean activity scores for students who stop during 

Phase 1 and persist to Phase 2 

 Accuracy 

Activity Stop-out Persist 

Structured 53.08% 55.23% 

Unstructured 54.56% 69.81% 

MCQ 0% 91.84% 
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determined using a logistic regression classifier for each activity. 

The results are presented in Table 8. 

 
The stop-out prediction accuracy increases as more activity scores 

are included in the logistic regression models. The accuracy of 

these models is highly dependent on the inclusion of the MCQ 

activity scores. The MCQ activity is the last activity students must 

complete before proceeding to Phase 2. 

The decision tree for the video activity, as shown in Figure 4, 

identify premature termination (ASA V2) as the best criterion for 

determining if students are likely to stop the activities. Prematurely 

terminating attempts at a frequency higher than 25% of the student's 

attempts is predictive of stopping the activity 83% of the time. In 

addition, a low compliance with incomplete video watching by fast-

forwarding (ASA V10) and completing the video without 

additional actions (ASA V3) are indicative of students who stop out 

of the learning environment. 

For the structured activity, a high compliance with the 

recommended process but without submitting an answer (ASA 

S10), answering questions with highlighting of keywords (ASA S5) 

and answering questions with the scripted steps, as shown in Figure 

5, all indicate students who are likely to proceed to Phase 2. 

Students who tend not to provide an answer for these attempts are 

likely to not proceed to Phase 2. 

While the unstructured activity gives more freedom to participants, 

the number of splitting criteria is minimal. Learners who do not 

proceed to Phase 2 are characterized by submitting more than 13% 

of their questions without any attempt to solve them (ASA U3). 

Also students who complied more than with the scripted steps more 

than 56% of the time also tended to stop out (ASA U12). We note 

that the lower compliance with the RIGHT sequence in 

unstructured activity in Phase 1 is associated with 86% probability 

of learners proceeding to Phase 2.  

7. Conclusions 
In this study, we presented a framework for converting clickstream 

data into action sequence archetypes. ASAs provide insight into 

how students approach learning activities by consolidating similar 

plans of action under a common label. For us, having a common 

label to refer to different patterns of actions facilitates discussion 

and interdisciplinary collaboration between the computer sciences 

and the learning sciences. This collaboration led us away from 

trying to analyze learning outcomes with click counts and time on 

task measures and toward ASAs. ASA frequencies identify how 

often a learner attempts to reach a goal via a particular method. 

Table 8: Logistic regression classification for stop-out 

prediction. 

Variable Set Variables Accuracy 
Kappa 

Statistics 

Score-based 

Structured 48.00% -0.06 

Structured + 

Unstructured 
66.67% 0.43 

MCQ 100.00% 1.00 

Sequence-

based 

Videos 75.00% 0.48 

Structured 81.48% 0.61 

Unstructured 81.82% 0.63 

MCQ 82.35% 0.56 

 
 

Figure 4: Decision tree for the video activity. 

 

 

 

 

Figure 6: Decision tree for the unstructured activity. 

 

 

 

Figure 5: Decision tree for the structured activity. 
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Looking at our decision trees, ASAs can be used to quickly identify 

whether a learner is using on-task or off-task behaviors. However, 

they also can also be used to separate different approaches to 

achieving the same goal.  

In our case, students whose action sequences aligned more strongly 

to the archetype representing the RIGHT sequence presented in the 

online videos were less likely to persist to the second phase of 

activities. In one sense, it is counterintuitive to suggest that students 

who follow a taught script more closely would be less likely to 

persist in an activity. However, if script use is a way of minimizing 

cognitive load, novices who consistently exhibit script-like 

behaviors could be indicating more routinization and less 

assimilation of new concepts. What these students may have 

learned from their classroom instruction and the online material is 

a series of steps for completing the structured and unstructured 

activities and not the generalizable schema that underlies those 

activities. 

Using the ASAs to separate script users from generalizable schema 

users gives us a method of predicting a student's likelihood of 

persisting through the first phase of activities and attempting the 

second phase composed of unfamiliar math models. This method 

of prediction identifies students who are likely to stop out before 

the second phase much earlier than looking at how accurately the 

students solve the word problems. By the end of the second activity, 

our model could predict with high accuracy whether a student 

would continue on to Phase 2. Using a more traditional method of 

performance assessment and analyzing accuracy levels to predict 

future behavior required students to complete all of Phase 1 before 

the model could accurately predict whether the student would 

persist. In short, using ASAs to analyze how students approach the 

activities is more diagnostic of future performance than looking at 

past performance measures.   

Finally, it is not lost on us that we developed an algorithm that 

converts action sequences (scripts) into action sequence archetypes 

(schemas) to measure students' use of scripts and generalizable 

schemas. For this project, the machine learning goals and the 

students learning goals happened to overlap. We plan to continue 

developing the parallels by integrating our ASA analysis into a 

student feedback engine that can shift students away from off-task 

behaviors and toward on-task behaviors. We also seek to lead on-

task students toward more productive action sequences that foster 

the development of generalizable problem solving schemas rather 

than specific problem solving scripts. 
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